

Ministry of Housing,
Communities &
Local Government

English Housing Survey

Headline Report 2024-25:
housing quality and energy efficiency

Contents

Introduction and key findings	1
Background to the English Housing Survey 2024-25 data	1
This report	2
Key findings	3
Chapter 1: Housing quality	8
Introduction	8
Bedrooms available to households	8
Overcrowding and under-occupation	9
Dwelling quality and condition	11
Decent Homes	12
Housing Health and Safety Rating System (HHSRS)	15
Damp	17
Smoke alarms	21
Carbon monoxide detectors	23
Chapter 2: Energy Efficiency	24
Energy Efficiency Ratings	24
Energy efficiency rating bands, by tenure	27
Energy efficiency rating bands, by dwelling characteristics	28
Energy efficiency rating bands, by region	29
Heating system	30
Insulation	31
Electricity smart meters and payment methods	34
Subjective overheating	35
Costs to improve to an energy efficiency rating band C	36
Technical notes	40
Glossary	40

Introduction and key findings

The English Housing Survey (EHS) is a national survey of people's housing circumstances and the condition and energy efficiency of housing in England. It is a repeated cross-sectional survey that pairs a household interview with a physical inspection of the home. It is an Accredited Official statistic (previously known as a National statistic), and is one of the longest standing government surveys, first run in 1967.

To support timely and relevant reporting, the usual EHS Headline report has been split into two releases. This report is the second publication of findings from the 2024-25 survey and focuses on housing quality and energy efficiency. The [first report](#) was published in December 2025 and focused on household demographics, dwelling characteristics, and financial resilience.

The headline findings will be followed up with a series of more detailed topic reports in the spring and summer of 2026.

Background to the English Housing Survey 2024-25 household and 2024 physical data

The interview fieldwork for the 2024-25 data was carried out from end of March 2024 to March 2025, and the physical survey data was collected over a slightly longer timeframe, from March 2023 to March 2025. During this time, households were faced with rising inflation, including higher interest rates, as well as increases in the cost of energy and other necessities. Renovating and remediating homes also grew more expensive during this period, due to disruptions in the supply chain over the pandemic, as well as increased costs of materials and labour shortages.

Over the longer term, EHS data continue to show improvements to both the energy efficiency and quality of English homes. This is particularly marked in recent years, in the case of energy efficiency, where the overall mean SAP score has increased over the past decade, along with the proportion of homes in EER bands A-C.

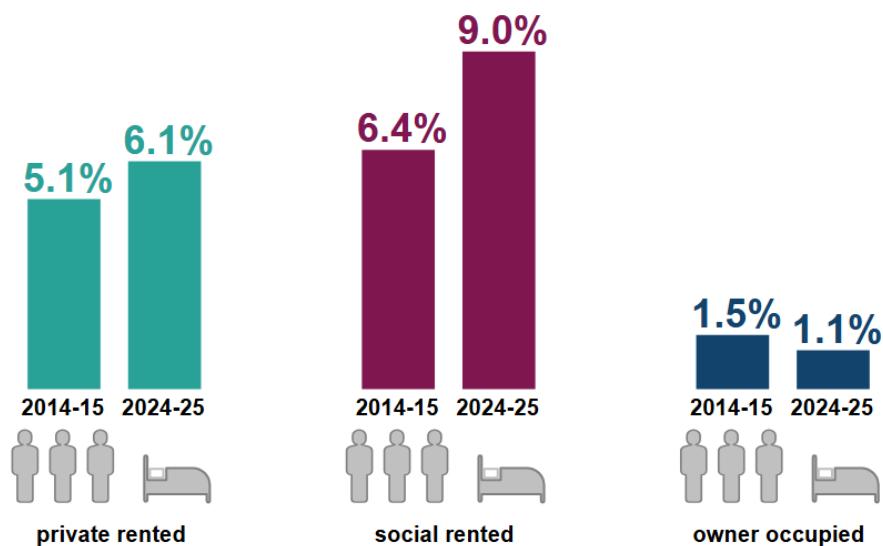
On the quality side, we continue to see long term improvements in the proportion of homes that fail the existing Decent Homes Standard, though progress is more mixed on other metrics – levels of dangerous damp and mould continue to be high post-pandemic, and levels of overcrowding in the rented sectors have increased significantly compared to ten years ago. We have also seen changes to the regional pattern of housing quality, with a higher proportion of homes failing the Standard in the South East, compared with two years ago.

Taken together, the findings show that while we are making progress towards targets on energy efficiency and quality, we are only recently beginning to understand the legacy of the COVID-19 pandemic on English homes. While the methodology has returned to business-as-usual, our data and analysis show lingering effects of this period on the quality and energy efficiency of our dwellings, as well as our relationship to our homes.

This report

This report contains headline findings on housing quality and energy efficiency. It is split into two chapters.

The first chapter focuses on housing quality and condition, including decency, safety and damp. Rates of overcrowding and under-occupation by tenure are also examined.

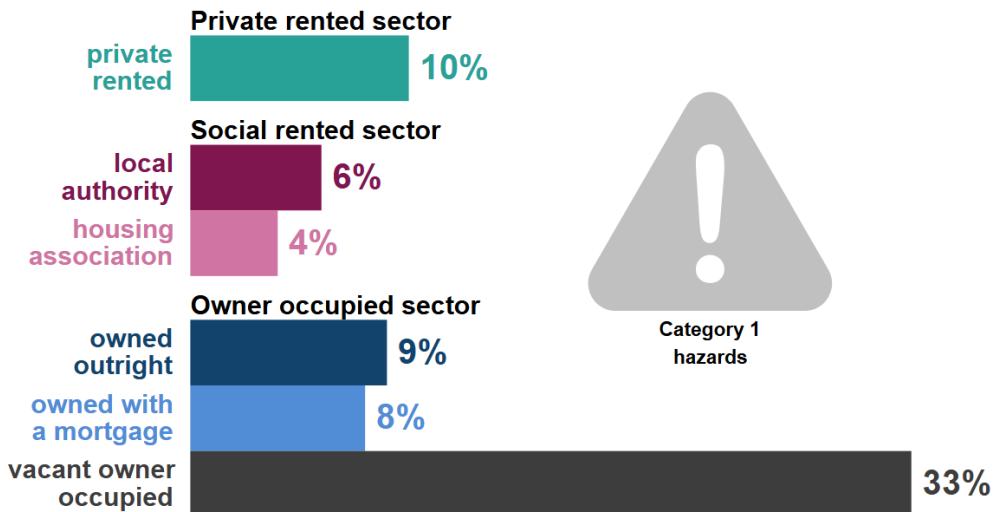

The second chapter covers energy efficiency, heating and insulation. It also looks at smart meters, electricity payment methods, subjective overheating and the cost to improve dwellings to an energy efficiency rating of band C.

Throughout the report, data are referred to as either 2024-25 or 2024. The interview fieldwork relates to households and presents data for '2024-25'. Fieldwork was carried out from March 2024 to March 2025, inclusive, and the terminology reflects this. Sections relating to physical dwellings presents figures for '2024'. Fieldwork was carried out over two years between March 2023 and March 2025, and the data is weighted to a midpoint of April 2024. Dwellings refer to the physical accommodation that may be shared by several households and can be either occupied or vacant.

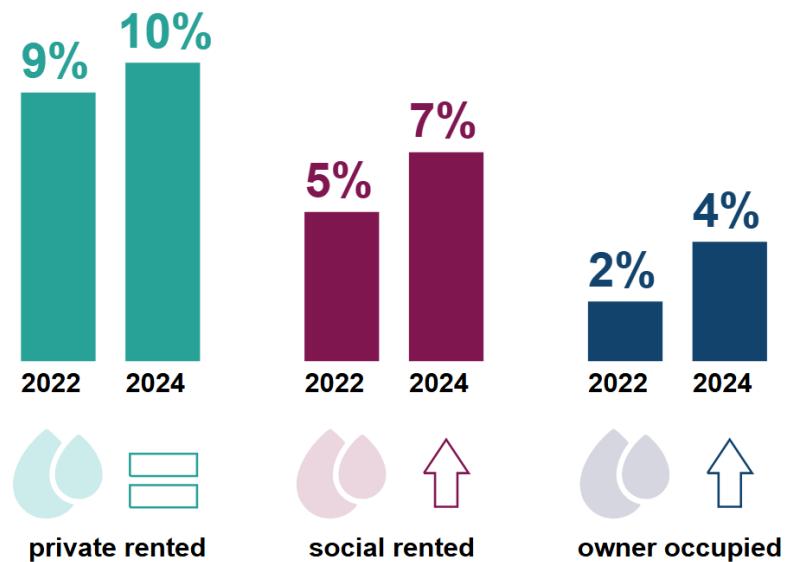
This is the second publication of findings from the 2024-25 survey, the first report was published in December 2025 and focused on household demographics, dwelling characteristics, and financial resilience. The headline findings will be followed up with a series of more detailed topic reports in the spring and summer of 2026.

Key findings

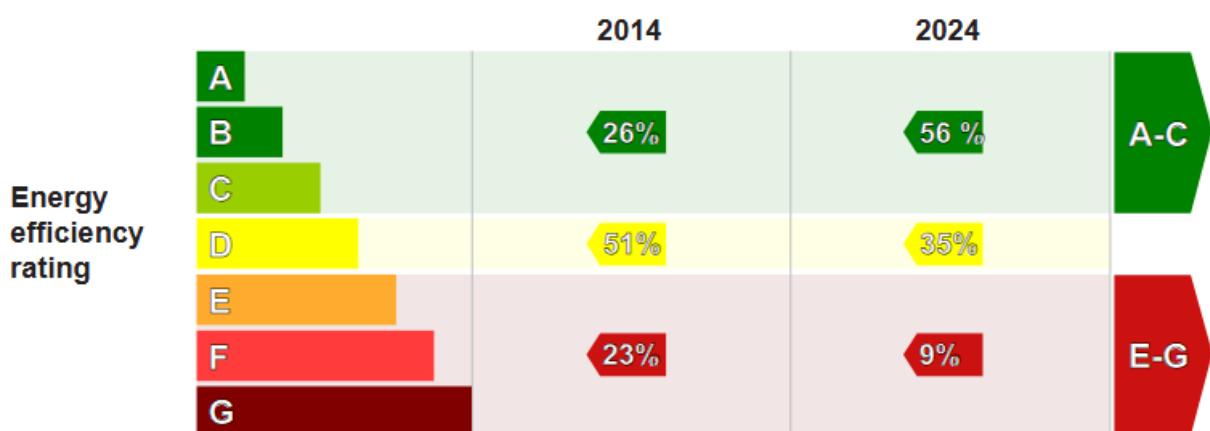
In 2024-25, 3% of households were overcrowded and 40% were under-occupied, according to the bedroom standard. Overcrowding has risen over the last decade in both the social rented sector from 6% to 9% of households, and in the private rented sector from 5% to 6% of households. Alongside, there was an increase in rates of under-occupation, and decreases in overcrowding, in the owner occupied sector.



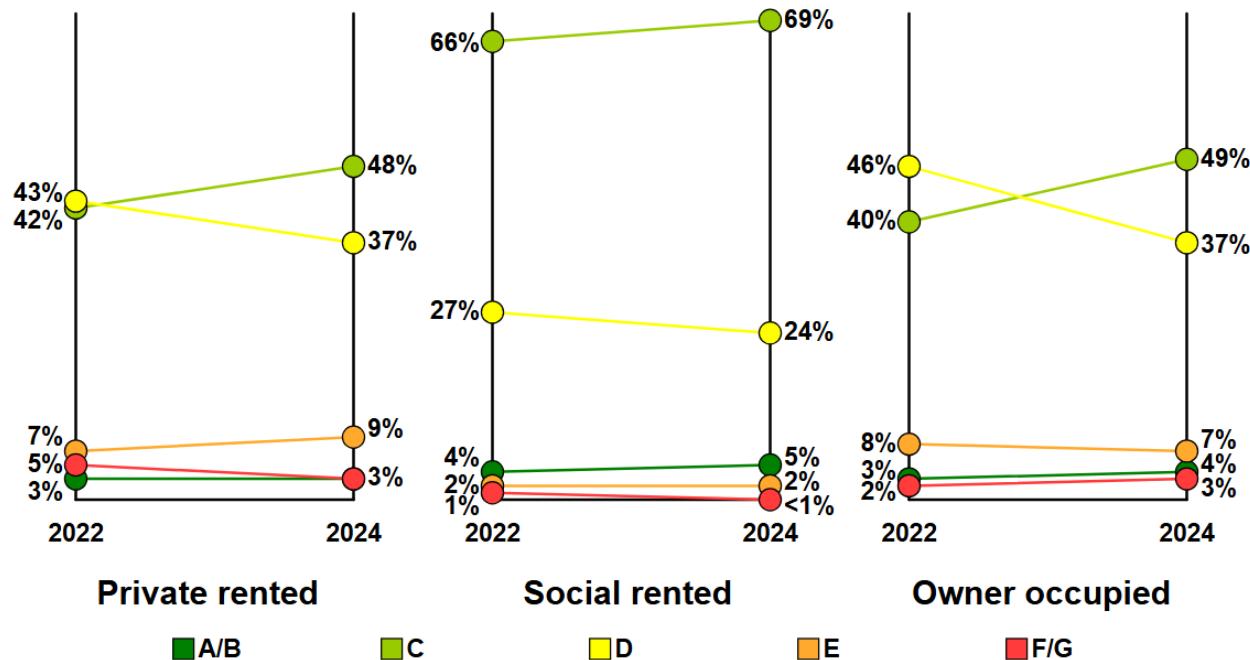
There were 4.0 million dwellings (15%) that failed to meet the current Decent Homes Standard in 2024, similar to 2022. Compared to 2022, there were decreases in the proportion of dwellings failing the standard in housing association and private rented sector dwellings in the North West, and increases in the owner occupied and private rented sector dwellings in the South East.


There were 2.3 million dwellings (9%) that had a HHSRS Category 1 hazard in 2024, similar to 2022. Private rented and owner occupied dwellings were equally likely to contain hazards (9-10%), though two years ago, owner occupied dwellings were less likely than private rented dwellings (9% vs 12%).

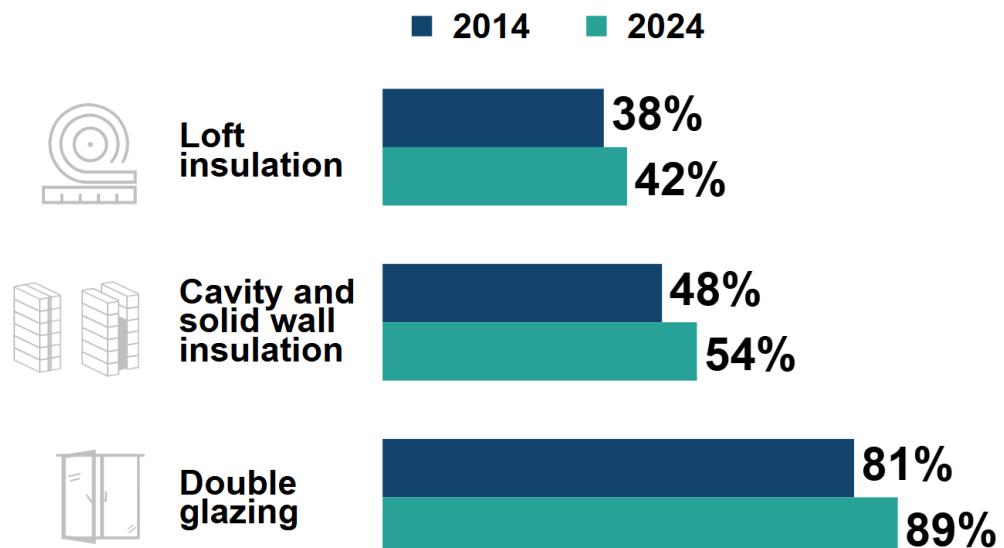
In the social rented sector, local authority dwellings (6%) were more likely than housing association dwellings (4%) to have hazards. In the owner occupied sector, vacant owner occupied dwellings (33%) were much more likely to contain hazards than those owned with a mortgage (8%) or owned outright (9%).



There were 1.4 million dwellings (5%) that had a problem with damp in 2024, an increase compared to 2022. Damp was more prevalent in the private rented sector (10%) than in the owner occupied (4%) and social rented sectors (7%). Local authority dwellings were more likely to have a problem with damp (8%) than housing association dwellings (6%). Since 2022, there have been statistically significant increases in damp in the owner occupied and social rented sectors.


Damp was also more common in homes owned with a mortgage (4%) than those owned outright (3%). The most common form of damp was severe condensation (3%), which was more prevalent than rising damp (1%) or penetrating damp (2%).

Overall, the energy efficiency of the English housing stock continued to improve. In the last decade, the proportion of homes in the highest energy efficiency bands A to C increased from 26% in 2014 to over half of all dwellings (56%) in 2024, while the proportion within the lowest bands of E to G decreased (23% to 9%).


Over the last ten years, the proportion of dwellings with an energy efficiency rating of band D has continually decreased. However, in the last two years, the proportion decreased substantially (43% in 2022 to 35% in 2024), with a corresponding increase in dwellings rated band C (45% in 2022 to 52% in 2024). The pattern of energy efficiency varied by tenure.

In 2024, the estimated average cost to improve dwellings to at least an energy efficiency band C was £7,480 across all tenures, with owner occupied dwellings costing the most and social rented homes costing the least.

Rates of loft and wall insulation increased over the last ten years. Around 42% of all dwellings (with a loft) had loft insulation (over 200mm thickness), an increase from 38% in 2014. Just over half (54%) of all dwellings had cavity or solid wall insulation (up from 48% in 2014) and 89% of all homes had full double glazing, up from 81% of homes in 2014.

Acknowledgements and further queries

Each year the English Housing Survey relies on the contributions of many people and organisations. The Ministry of Housing, Communities and Local Government (MHCLG) would particularly like to thank the following people and organisations without whom the 2024-25 survey and this report would not have been possible: all the households who gave up their time to take part in the survey, NatCen Social Research, the Building Research Establishment (BRE) and CADS Housing Surveys.

This report was produced by the Housing Evidence, Research and Surveys Team at MHCLG. If you have any queries about it, would like any further information or have suggestions for analyses you would like to see included in future EHS reports, please contact ehs@communities.gov.uk

The responsible analyst for this report is: Chauncey Glass, Data, Analysis, Statistics and Surveys Division, MHCLG. Contact via ehs@communities.gov.uk.

Chapter 1: Housing quality

Introduction

This chapter begins by presenting the number of bedrooms available to households and levels of overcrowding and under-occupation, followed by an assessment of EHS housing quality measures: decent homes, Housing Health and Safety Rating System (HHSRS) and damp by tenure. It ends by discussing the presence of a working smoke alarm, the household frequency of testing smoke alarms, and whether dwellings with or without a solid fuel appliance have a carbon monoxide detector.

For a summary of main findings in this report as a whole, please see the [Introduction and Main Findings page](#).

Bedrooms available to households

Compared to pre-pandemic data (in 2019-20), there was a decrease in the number of bedrooms available to rented sector households, alongside a decrease in the mean household size.

In the private rented sector, 21% of households in 2024-25 had one bedroom, 41% had two bedrooms and 38% had three or more bedrooms. This distribution was similar to 2023-24, though compared to 2019-20, there was an increase in the proportion with one bedroom (from 18% to 21%) and a concurrent decrease in the proportion with three or more bedrooms (from 44% to 38%), Annex Table 1.1.

The social rented sector saw a similar trend. The proportion of households who had one bedroom increased from 28% in 2019-20 to 31% in 2023-24 and remained stable into 2024-25 (32%).

While bedroom counts in the social rented sector as a whole have remained similar to 2023-24, there was an increase in the proportion of local authority homes with three or more bedrooms from 32% in 2023-24 to 36% in 2024-25. This was a reversal of the fall in proportion that occurred from 38% in 2019-20 to 32% in 2023-24.

There was also a change for owner occupied households from 2019-20 to 2024-25. A small proportion (3%) of households had one bedroom in 2019-20 which rose to 4% in 2024-25, Figure 1.1. A statistically significant rise occurred for both dwellings owned outright (2% to 3%) and those owned with a mortgage (3% to 4%).

Figure 1.1: Households with one bedroom, by tenure, 2019-20 and 2024-25

Base: all households

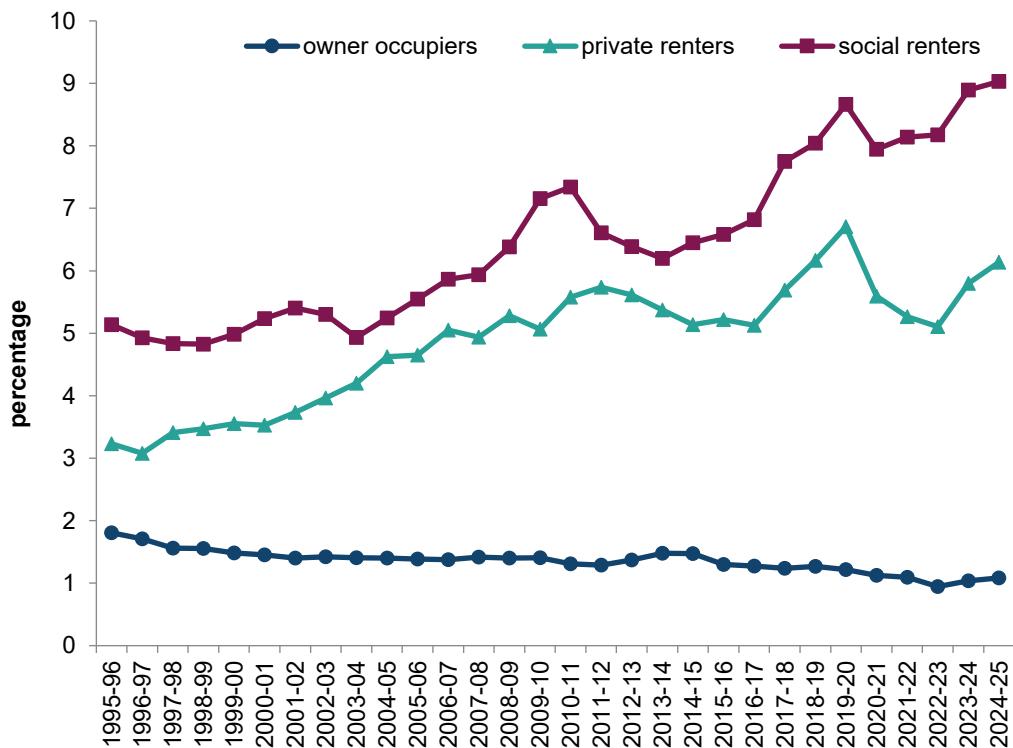
Note: underlying data are presented in Annex Table 1.1

Source: English Housing Survey, full household sample

Compared to pre-pandemic times, the mean household size also decreased from 2.4 to 2.2, [Annex Table 1.3, English Housing Survey 2024-25 Headline Findings on Demographics and Household Resilience](#).

Overcrowding and under-occupation

Levels of overcrowding and under-occupation are measured using the bedroom standard (see [glossary](#) for more detail). This is the difference between the number of bedrooms needed to avoid undesirable sharing (given the number, ages and relationship of the household members) and the number of bedrooms available to the household.


Since the number of overcrowded households included in each survey year is too small to enable reliable overcrowding estimates for any single year, data from the three most recent survey years (2024-25, 2023-24 and 2022-23) were combined to produce the overcrowding estimates in this section. Care should be taken in interpreting individual year-on-year changes.

The overall rate of overcrowding in England in 2024-25 was 3%, with approximately 824,000 households living in overcrowded conditions. This is similar to 2021-22, three years ago, where around 732,000 households were overcrowded (3%), Annex Table 1.2.

Overcrowding was more prevalent in the rented sectors than for owner occupiers. In 2024-25, 1% of owner occupiers (173,000 households) were overcrowded compared with 9% of social renters (365,000) and 6% of private renters (286,000). Social rented households were more likely to be overcrowded than private rented.

Overcrowding has increased over the last ten years in the social rented sector, affecting 6% of households in 2014-15 and 9% in 2024-25, and in the private rented sector, affecting 5% of households in 2014-15 and 6% in 2024-25. In the owner occupied sector, there has been a small decrease in the proportion of households being overcrowded in the last ten years from 1.5% of households in 2014-15 to 1.1% of households in 2024-25, Figure 1.2.

Figure 1.2: Overcrowding, by tenure, 1995-96 to 2024-25

Base: all households

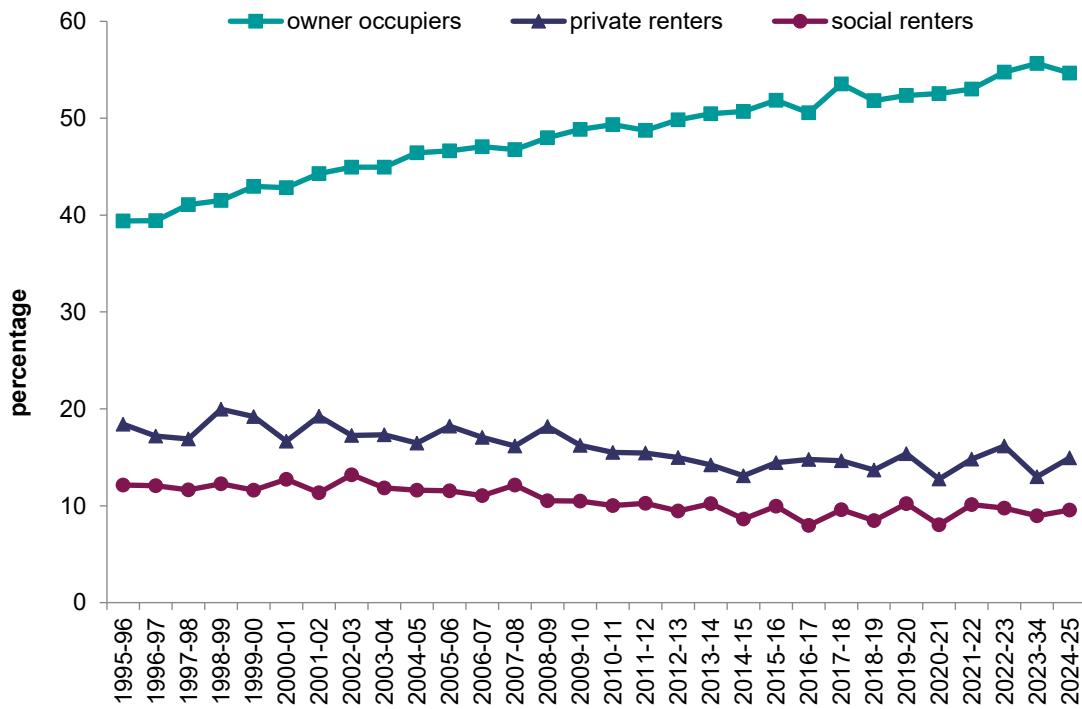
Notes:

1) data are based on three year averages, which are the average of the three years up to and including the labelled date

2) underlying data are presented in Annex Table 1.2

Sources:

1995-96 to 2007-08: Survey of English Housing


2008-09 onwards: English Housing Survey, full household sample

The overall rate of under-occupation in England in 2024-25 was 40%, with around 10.0 million households living in under-occupied homes, Annex Table 1.3.

Under-occupation was much more prevalent among owner occupiers than in the rented sectors. Over half (55%) of owner occupied households (8.9 million households) were under-occupied in 2024-25, compared with 15% of private rented (705,000) and 10% of social rented (389,000) households.

Compared to ten years ago, there was an increase in under-occupation in the owner occupied sector from 51% in 2014-15 to 55% in 2024-25. No statistically significant changes occurred in either rented sector, Figure 1.3.

Figure 1.3: Under-occupation, by tenure, 1995-96 to 2024-25

Base: all households

Note: underlying data are presented in Annex Table 1.3

Sources:

1995-96 to 2007-08: Survey of English Housing

2008-09 onwards: English Housing Survey, full household sample

Dwelling quality and condition

Data from 2024 was not impacted by the COVID-19 pandemic, during which surveyors were unable to undertake full surveys of dwellings. During the pandemic, a more limited 'external plus' approach was taken to the physical survey, and detailed assessments of housing quality variables were not possible (for more information see the EHS [Technical Reports](#)). Housing quality measures modelled during the COVID-19 period (2020 and 2021) were for occupied dwellings only and, in 2022, a hybrid variable that combined actual measured data from 2022-23 with modelled data from 2021-22, which included vacant dwellings, was used. Comparisons made between 2024 and pandemic years (2020-2022) should be considered with caution. Where appropriate, we have made additional comparisons with pre-pandemic data (2019).

Decent Homes

For a dwelling to be considered 'decent' under the Decent Homes Standard it must:

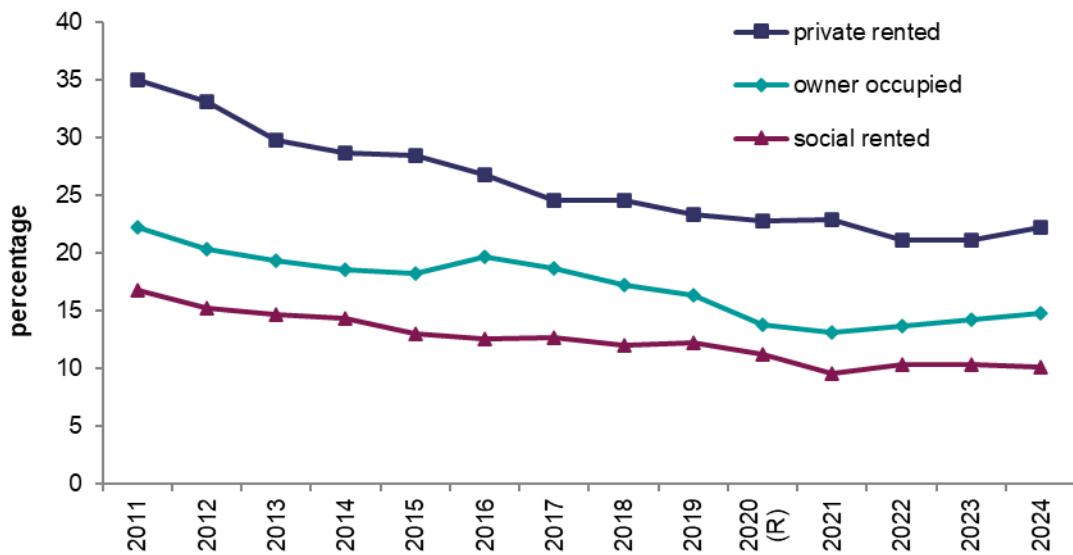
- meet the statutory minimum standard for housing (the Housing Health and Safety System (HHSRS) since April 2006), homes which contain a Category 1 hazard under the HHSRS are considered non-decent
- be in a reasonable state of repair
- have reasonably modern facilities and services
- provide a reasonable degree of thermal comfort

The Decent Homes Standard (DHS) was introduced as a regulatory standard in the social rented sector in 2006. In the owner occupied and private rented sector, the DHS is not a regulatory standard, though it is tracked through the EHS. Regulatory standards in the private rented sector are assessed against the existing Housing Health and Rating System (HHSRS), i.e. Criterion A of the DHS.

On 28th January 2026, the Government announced a new Decent Homes Standard to apply to both rented sectors from 2035. Failure rates for dwellings under this new standard for 2023 have been published as part of an EHS Briefing. This report presents data on the existing Decent Homes Standard.

In 2024, 15% or 4.0 million dwellings failed to meet the Decent Homes Standard, similar to 2023, but lower than in 2019 (17%), Annex Table 1.4.

As in previous years, the private rented sector had the highest proportion of non-decent dwellings (22%), while the social rented sector had the lowest (10%). Among owner occupied dwellings, 15% failed to meet the Decent Homes Standard, similar to 2023, Figure 1.4.


Over the last ten years, a decrease in the prevalence of non-decency occurred across all tenures. Since 2014, the proportion of private rented sector dwellings considered non-decent decreased from 29% to 22%, in the owner occupied sector from 19% to 15%, and in the social rented sector from 14% to 10%.

Between 2011 and 2019, there was a notable reduction in the prevalence of non-decent dwellings across all tenures. From 2019 to 2024, the proportion of non-decent dwellings in the private rented sector remained stable. In both 2019 and 2024, 1.1 million private rented sector dwellings were non-decent (the apparent drop from 23% in 2019 to 22% in 2024 was statistically insignificant).

Conversely, there were decreases in the owner occupied sector (from 16% to 15%) and the social rented sector (from 12% to 10%) from 2019 to 2024. More recently, there has been a small rise in the proportion of non-decent owner occupied homes from a low of 13% in 2021 to 15% in 2024, however, 2021 data is based on modelling

rather than observed housing quality, and therefore this comparison should be treated with caution.

Figure 1.4: Non-decent homes, by tenure, 2011 to 2024

Base: 2011-2019 and 2022-2024 all dwellings; 2020-2021, occupied dwellings

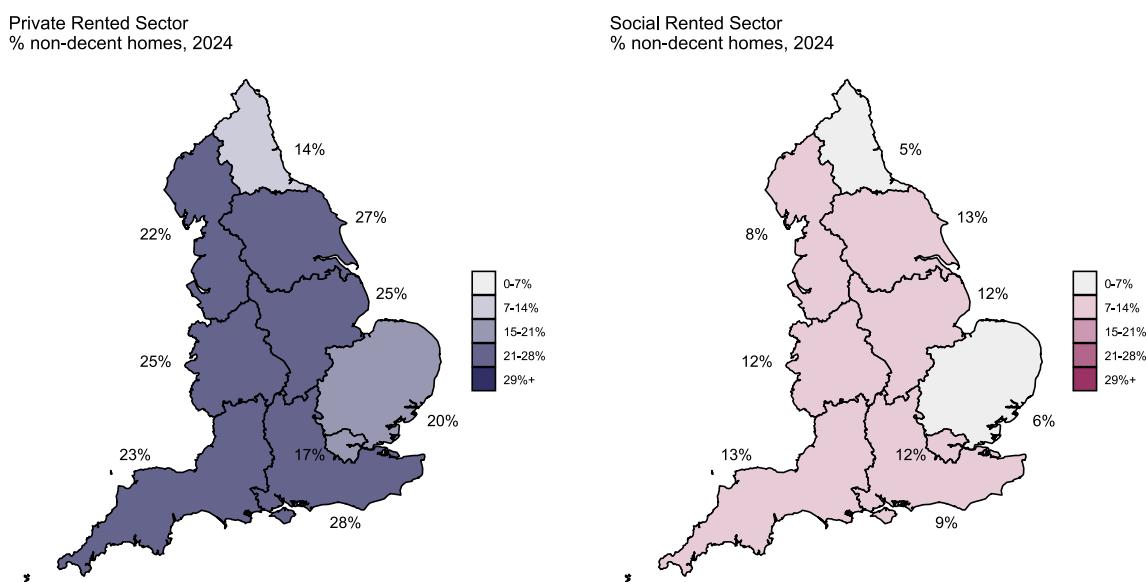
Notes:

- 1) 2020 and 2021 figures are estimated based on dwelling level modelled data
- 2) 2020 were revised from extrapolated to dwelling modelled data and marked with an (R)
- 3) underlying data are presented in Annex Table 1.4

Sources:

2011-2019: English Housing Survey, dwelling sample
 2020-2021: English Housing Survey, modelled data based on occupied dwelling sample
 2022: English Housing survey dwelling sample, modelled and observed data based on all dwellings
 2023 onwards: English Housing Survey, dwelling sample

[Local Authority Housing Statistics \(LAHS\)](#), published alongside this report, show that local authorities report 9% of their homes did not meet the Decent Homes Standard on 31st March 2025. The LAHS figures show a lower proportion of non-decent homes for multiple reasons. Firstly, only the properties that local authorities have been made aware of (e.g. after a property is vacated or if the tenant raises an issue) are included in the count. Additionally, LAHS represents dwellings as of 31st March, so will not include dwellings identified and then remediated during the year, compared to the English Housing Survey which assesses dwellings year-round. Cases where tenants have refused improvement work are also excluded in LAHS figures.


The EHS shows there is significant variation in housing quality across England. In the owner occupied sector, the North East had a significantly lower rate of non-decent dwellings (9%) compared to other regions (15-18%) except the East Midlands, London and East of England (12-14%).

Similarly in the private rented sector, dwellings in the North East (14%) were less likely to be non-decent than other regions (23% to 28%), with the exception of the North West (22%), East of England (20%) and London (17%).

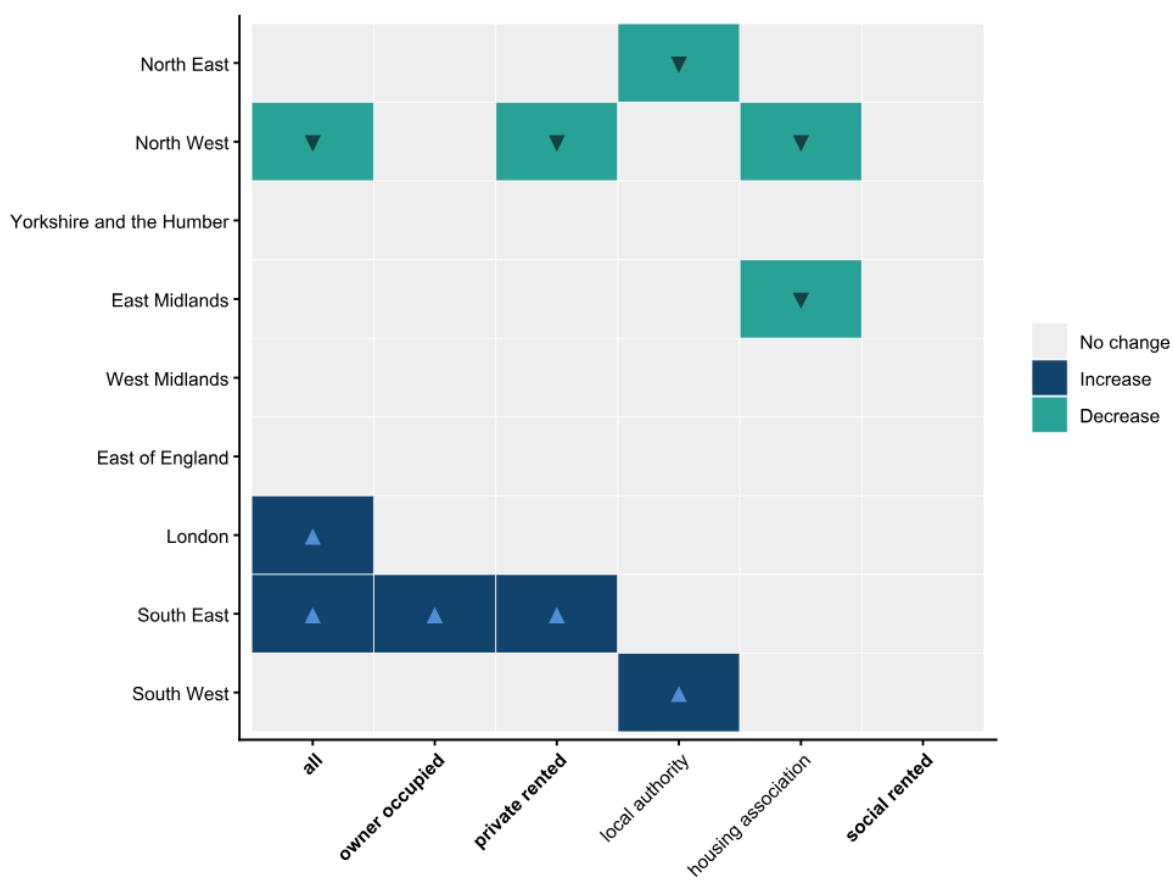
In the social rented sector, the North East also had the lowest rate of non-decency (5%), significantly lower than all other regions (9% to 13%) with the exception of the East of England and the North West (6 to 8%), Figure 1.5.

In all regions except London, rates of non-decency were higher in the private rented sector than the social rented sector.

Figure 1.5: Non-decent homes, by region, 2024

Base: all dwellings

Note: underlying data are presented in Annex Table 1.5


Source: English Housing Survey, dwelling sample

At the national level, levels of non-decency have remained similar from 2022 ([English Housing Survey 2022 to 2023: housing quality and condition - GOV.UK](#), Annex Table 4.1) to 2024 (both 15%), though statistically significant changes have occurred in individual regions.

In the North West, there was a decrease in the proportion of non-decent homes (from 19% to 16%), driven by decreases in non-decency for housing associations (from 10% to 6%) and private rented sector dwellings (from 32% to 22%).

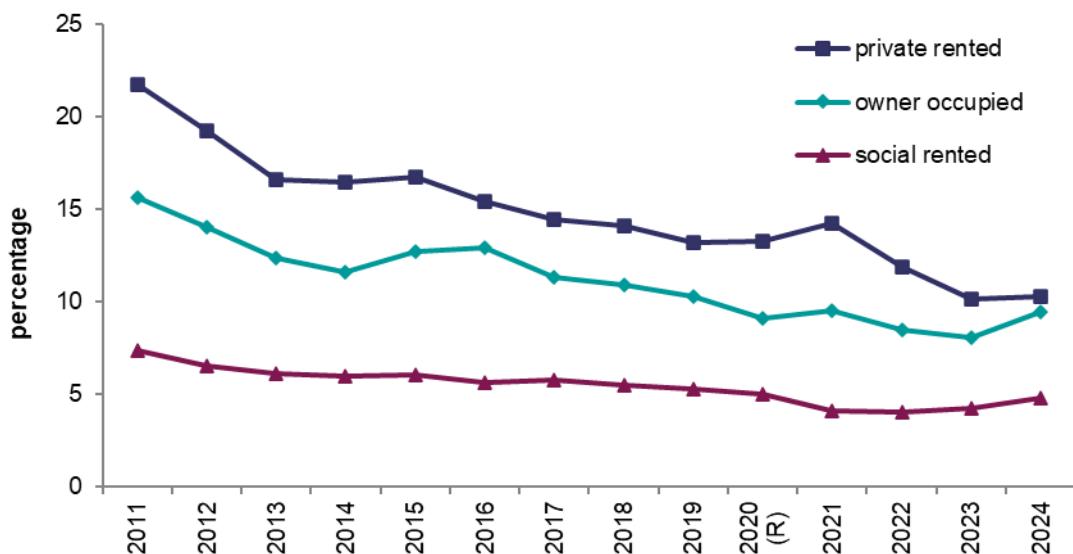
Conversely, in the South East, there was an increase in the proportion of non-decent homes (from 11% to 17%), driven by increases in non-decency in owner occupied (from 10% to 16%) and private rented sector dwellings (from 18% to 28%).

Figure 1.6: Statistically significant changes in the proportion of non-decent dwellings, 2022 to 2024

Base: all dwellings

Note: underlying data are presented in Annex Table 1.5

Source: English Housing Survey, dwelling sample


Housing Health and Safety Rating System (HHSRS)

The HHSRS is a risk-based assessment that identifies hazards in dwellings and evaluates their potential effects on the health and safety of occupants and their visitors, particularly vulnerable people, e.g. children or older people. The most serious hazards are called Category 1 hazards and, where these exist in a home, it fails to meet the statutory minimum standard for housing in England.

In 2024, 9% or 2.3 million dwellings in England had a HHSRS Category 1 hazard, statistically similar to 2022 (8%) though lower than in 2019 (10%). These hazards were more prevalent in private rented (10%) and owner occupied dwellings (9%) than in social rented dwellings (5%). Within the social rented sector, local authority dwellings (6%) were more likely to have a Category 1 hazard than housing association dwellings (4%), Annex Table 1.6 and Figure 1.7.

In 2022, private rented sector dwellings were more likely to have a Category 1 hazard (12%) than owner occupied dwellings (9%). In 2024, this difference was no longer present (9-10%)

Figure 1.7: Homes with Category 1 hazards, by tenure, 2011 to 2024

Base: 2011-2019 and 2022-2024 all dwellings; 2020-2021 occupied dwellings

Notes:

- 1) 2020 and 2021 figures are estimated based on dwelling level modelled data
- 2) 2020 figures were revised from extrapolated to dwelling modelled data and marked with an (R)
- 3) underlying data are presented in Annex Table 1.6

Sources:

- 2011-2019: English Housing Survey, dwelling sample
- 2020-2021: English Housing Survey, modelled data based on occupied dwelling sample
- 2022: English Housing survey dwelling sample, modelled and observed data based on all dwellings
- 2023 onwards: English Housing Survey, dwelling sample

A dwelling with a Category 1 hazard automatically fails the minimum standard part of the Decent Homes Standard. However, not all non-decent dwellings contain a hazard, since they may fail on other DHS criteria regarding disrepair, modern facilities and thermal comfort.

In the private rented sector, both failures on the minimum standard (10%) and thermal comfort (9%) were higher than on disrepair (6%) or modern facilities (2%). In the social rented sector, failures on the minimum standard (5%) were more common than failures on disrepair (2%), modern facilities (1%) and thermal comfort (3%). This trend occurred for both local authority and housing association dwellings, Annex Table 1.7.

In the owner occupied sector, more dwellings failed on the minimum standard (9%) than on disrepair (3%), modern facilities (1%) and thermal comfort (5%).

The owner occupied sector is split into homes owned outright, those owned with a mortgage and those that are vacant. Vacant owner occupied dwellings, i.e. those that are not currently occupied, were more likely to fail all criteria. For example, 33%

of vacant owner occupied dwellings failed the minimum standard, higher than those owned with a mortgage (8%) or owned outright (9%).

Dwellings can also fail the standard on multiple criteria. Vacant owner occupied homes (24%) were more likely to fail on multiple criteria than homes owned outright (3%) or owned with a mortgage (2%). Across tenure, 1% of social rented dwellings failed on multiple criteria, lower than owner occupied (3%) and private rented dwellings (4%), Annex Table 1.7.

The most common Category 1 hazards found across all dwellings were falls on stairs (4%), excess cold (2%), falls on the level (1%), falls between levels (1%) and damp (1%), Annex Table 1.8.

The proportion of dwellings in the social rented sector with a falls on stairs hazard (1%) was significantly lower than in the owner occupied (4%) and private rented sectors (5%). This trend was similarly observed for excess cold, where 0.3% of social rented sector dwellings had this hazard, lower than in owner occupied (3%) and private rented (3%) dwellings.

Dwellings owned with a mortgage were less likely to have a falls between levels hazard (0.6%) than dwellings owned outright (1.3%). Vacant owner occupied homes were more likely to have an excess cold hazard (20%) than dwellings owned with a mortgage (2%) or owned outright (3%).

In 2024, 3% of private rented sector dwellings (125,000) had more than one Category 1 hazard. This was higher than in owner occupied dwellings (2%, 267,000) and social rented dwellings (1%, 23,000).

Damp

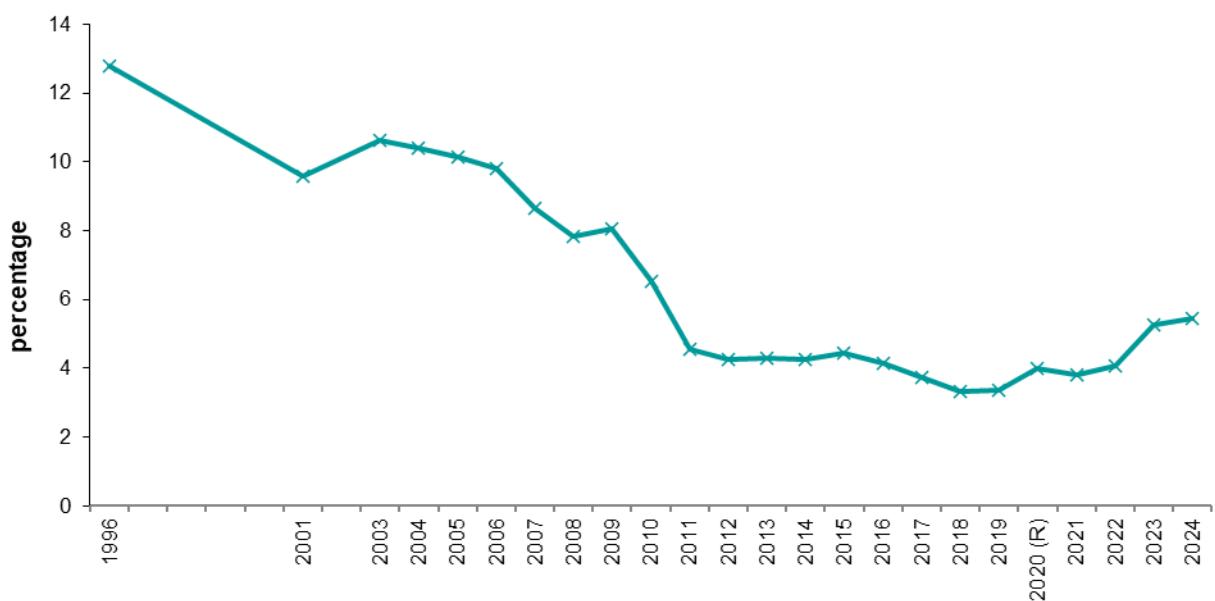
In the English Housing Survey, a home is considered to have damp, or a problem with damp, if the surveyor records damp that is significant enough to be taken into consideration when making their HHSRS assessments. Therefore, minor issues of damp are not recorded.

Comparisons with inter-pandemic years should be considered with caution, as modelled data was used from 2020 to 2022.

In 2024, 5% or 1.4 million dwellings had a problem with damp, an increase on the 4% in modelled data in both 2021 and 2022, Annex Table 1.9.

Between 1996 and 2011, there was a sizable reduction in the prevalence of all dwellings with damp problems, however, incidences of damp increased since 2019, Annex Table 1.9 and Figure 1.7. While this goes against the general trend of housing quality improvement, it is not necessarily surprising.

Analysis using the definition of the new Decent Homes Standard indicates that rented sector dwellings deteriorated in quality in some ways between 2019 and 2023, including increases in levels of damp, in contrast to observed improvements in


housing quality under the existing Decent Homes Standard. The updated scope of the new standard captures housing quality elements not included in the existing standard, such as removing age criteria, to reveal worsening conditions the existing standard does not capture.

Remediation of damp over the COVID-19 pandemic was possibly slowed, since work could not be done under social distancing restrictions. 2024 data indicate these levels of damp have persisted.

The [English Housing Survey 2023 to 2024: Drivers and Impacts of Housing Quality Report](#) observed higher levels of damp in dwellings that were in disrepair or poor condition. This link was particularly strong where there were less common disrepair issues such as inadequate ventilation, e.g. 1% of dwellings had inadequate ventilation, of which 60% had a problem with damp.

Increasing energy costs over this time period may have also made it more difficult for households to effectively heat dwellings, a known driver of serious condensation alongside poor ventilation. The [English Housing Survey 2023 to 2024: Drivers and Impacts of Housing Quality Report](#) observed that homes where households reported they were unable to keep comfortably warm in winter, or where households had reduced heating or limited energy use in response to rising energy prices, were more likely to have a problem with damp.

Figure 1.8: Damp problems, 1996 to 2024

Base: 1996-2019 and 2022-2024 all dwellings; 2020-2021 occupied dwellings

Notes:

- 1) 2020 and 2021 figures are estimated based on dwelling level modelled data
- 2) 2020 have been revised from extrapolated to dwelling modelled data and marked with an (R)
- 3) underlying data are presented in Annex Table 1.9

Sources:

1996-2007: English House Condition Survey, dwelling sample

2010-2019: English Housing Survey, dwelling sample

2020-2021: English Housing Survey, modelled data based on occupied dwelling sample

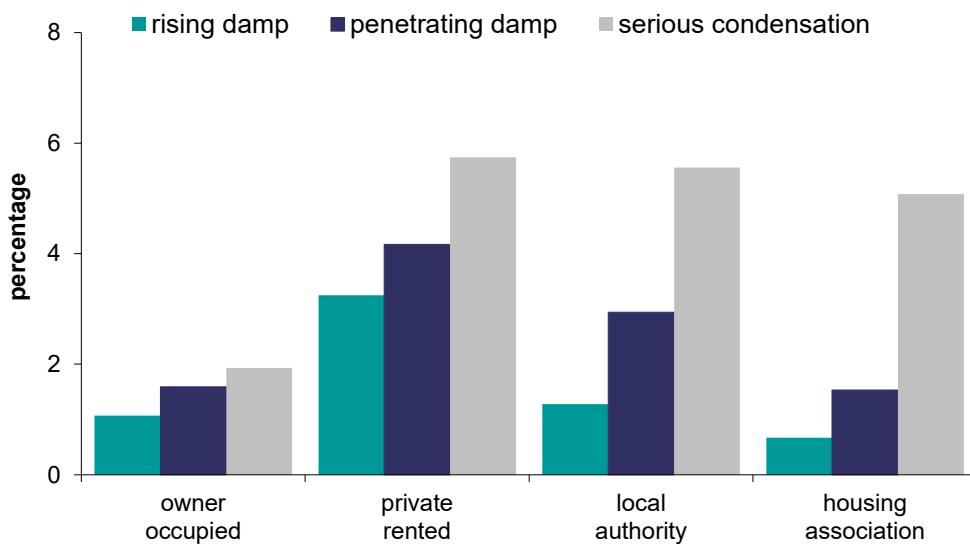
2022: English Housing survey dwelling sample, modelled and observed data based on all dwellings

2023 onwards: English Housing Survey, dwelling sample

Damp problems were more prevalent in private rented dwellings, with 10% of dwellings having a problem in 2024, compared to 7% of social rented dwellings and 4% of owner occupied dwellings. Local authority dwellings (8%) were more likely to have a problem with damp than housing association dwellings (6%), and dwellings owned with a mortgage (4%) were more likely than those owned outright (3%), Annex Table 1.10.

For owner occupied (2% to 4%) and social rented sector (5% to 7%) dwellings, this was a significant increase from 2022 to 2024. The apparent rise in the private rented sector (9% in 2022, 10% in 2024) was not statistically significant.

In 2024, serious condensation was more prevalent in homes (3%) than penetrating damp (2%) and rising damp (1%). Since 2019, there has been an increase in rising damp from 1.0% to 1.5%, an increase in penetrating damp from 1% to 2% and an increase in serious condensation/mould from 2% to 3%.


In 2024, the proportion of dwellings with serious condensation was highest in the social rented sector (5%) and private rented sector (6%), with lower prevalence in the owner occupied sector (2%). Within the social rented sector, local authority dwellings were just as likely to have serious condensation as housing association dwellings (5-6%).

In the private rented sector, the proportion of dwellings with penetrating damp and rising damp (4% and 3% respectively) was higher than in the owner occupier sector (2% and 1% respectively) and social rented sector (2% and 1% respectively), Figure 1.9.

Within the social rented sector, local authority dwellings were more likely to have a problem with penetrating damp (3%) than housing association dwellings (2%).

A small proportion of dwellings had multiple problems with damp, i.e. two or more of condensation, penetrating damp or rising damp. Private rented sector dwellings (2.9%) were more likely to have multiple types of damp compared to the social rented sector (1.2%), which was also higher than in the owner occupied sector (0.7%).

Figure 1.9: Type of damp problems in dwellings by tenure, 2024

Base: all dwellings

Note: underlying data are presented in Annex Table 1.10

Source: English Housing Survey, dwelling sample

As a part of the interview for the English Housing Survey, respondents were asked about common problems that people may experience in their homes. In 2024, similar to 2023, 30% of households reported their home had problems with condensation, damp or mould.

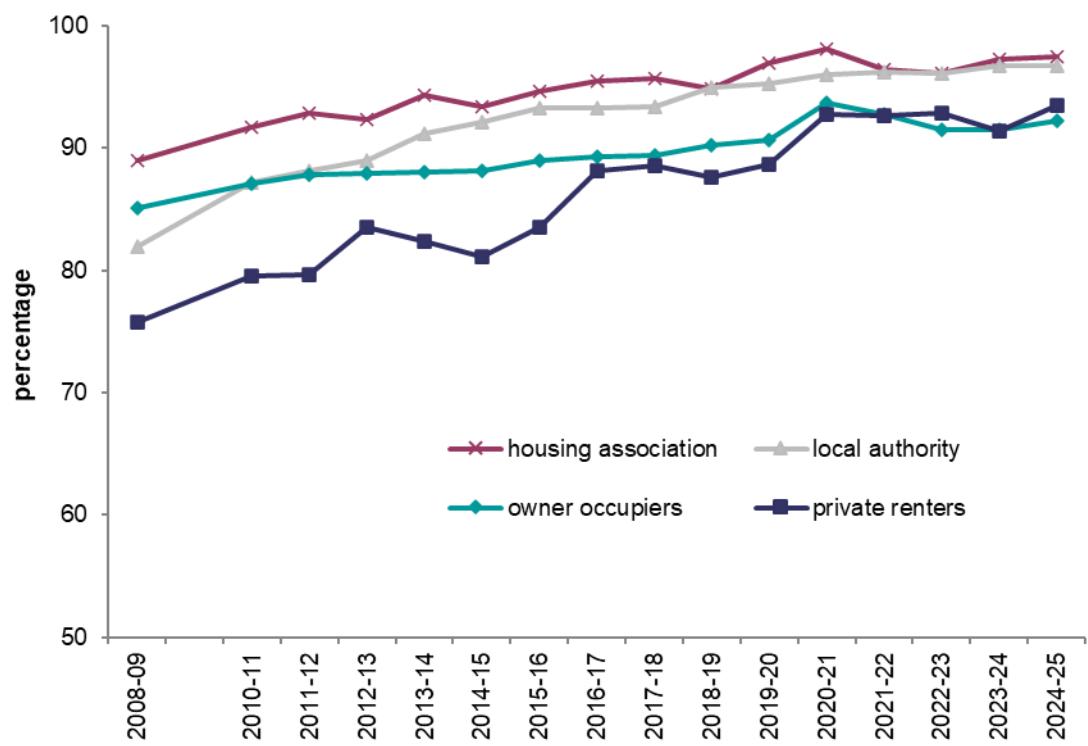
Households in the private rented sector (46%) were more likely to mention this than the owner occupied (22%) or social rented sector (41%).

In the social rented sector, 41% of households reported a problem. This was higher for local authority dwellings (44%) than housing association dwellings (38%).

In the owner occupied sector, 22% of households reported a problem. This was higher for homes owned with a mortgage (28%) than homes owned outright (17%). Self-reported trends mirrored those observed by physical EHS surveyors.

Levels of self-reported damp are substantially higher than levels of damp recorded by surveyors. This is likely to be for several reasons. Households may have reported problems with condensation, damp or mould during the EHS interview where these issues were present at lower levels (they were not significant enough to be taken into consideration in a HHSRS assessment), or in rooms rarely or never used by the household. Additionally, damp, condensation and mould can be seasonal and transient, and therefore not necessarily observed at the time of an EHS physical survey, if issues were not present on the day or time the surveyor visited. Finally, the self-reported damp measure is a subjective rather than objective measure, and there will inevitably be differences in the level or type of damp that households consider problematic.

Across all tenures, 13% of households who mentioned having a problem with condensation, damp or mould lived in a dwelling where surveyors observed a problem with damp, 3% with multiple problems with damp, and 2% where a Category 1 hazard level of damp was present, Annex Table 1.11.


Presence of a problem with condensation, damp or mould in the EHS interview may be driven by how a household uses and occupies their home in addition to the physical structure of the dwelling. From 2017 to 2019, the [Energy Follow-Up Survey](#) sampled respondents from the EHS to collect further detailed information on heating, hot water and appliances. The report found links between both the physical elements of dwellings and the socio-economic characteristics of the households and the likelihood of households reporting they had a problem with damp. This suggests variation and complexity in the reasons a household may report a problem within the EHS interview.

Smoke alarms

In 2024-25, 93% of households reported having at least one working smoke alarm, higher than in 2023-24 (92%). The proportion of households reporting they have working smoke alarms varied by tenure. Social renters were most likely to report having at least one working smoke alarm (97%), compared with 93% of private renters. Owner occupiers had the lowest likelihood of reporting having a working smoke alarm, though this was still reported by nearly all households (92%), Annex Table 1.12 and Figure 1.10.

In 2024-25, a greater proportion of private rented sector households reported having a working smoke alarm (93%) compared to 2023-24 (91%), though this was similar to 2022-23 (93%). Over the last ten years, the proportion of households with a working smoke alarm increased across all tenures.

Figure 1.10: Households with at least one working smoke alarm, by tenure, 2008-09 to 2024-25

Base: all households

Notes:

- 1) data was not collected in 2009-10
- 2) data are as reported by the householder
- 3) underlying data are presented in Annex Table 1.12

Source: English Housing Survey, full household sample

While the proportion of households with smoke alarms increased over the last decade, nearly a quarter of households (24%) reported they had never tested their smoke alarm in 2024-25, similar to 2023-24, Annex Table 1.13. (Smoke alarms have previously been explored in more detail in the [2014-15 Smoke Alarms in English Homes Report](#)).

In 2024-25, 29% of private renters, 29% of social renters and 22% of owner occupiers reported they had never tested their smoke alarm.

Carbon monoxide detectors

In 2024, 62% of all dwellings had a carbon monoxide alarm, up from 60% in 2023, Annex Table 1.14.

Dwellings with a solid fuel burning appliance, such as a coal fire or wood burning stove, were more likely (66%) to have a carbon monoxide alarm than dwellings with no solid fuel appliance (61%).

In the owner occupied sector, there was an increase in the proportion of dwellings with a carbon monoxide detector from 58% in 2023 to 60% in 2024. Similarly, in the social rented sector, there was an increase from 69% to 75%.

From October 2015, private sector landlords have been required to install a carbon monoxide alarm in any room containing a solid fuel burning appliance. They were also required to ensure the alarm was working at the beginning of each new tenancy.

In 2024, 52% of private rented sector dwellings with a solid fuel appliance had a carbon monoxide alarm, this was lower than in 2023 (65%). In terms of tenure comparison, this was lower than in the social rented sector (82%) and owner occupied sector (68%).

Chapter 2: Energy Efficiency

Introduction

This chapter discusses findings on energy efficiency ratings and heating systems and how this differs by tenure. It then goes on to discuss insulation measures in dwellings, smart meters by tenure and subjective overheating, then finishes with the average cost of improving dwellings to an EER band C.

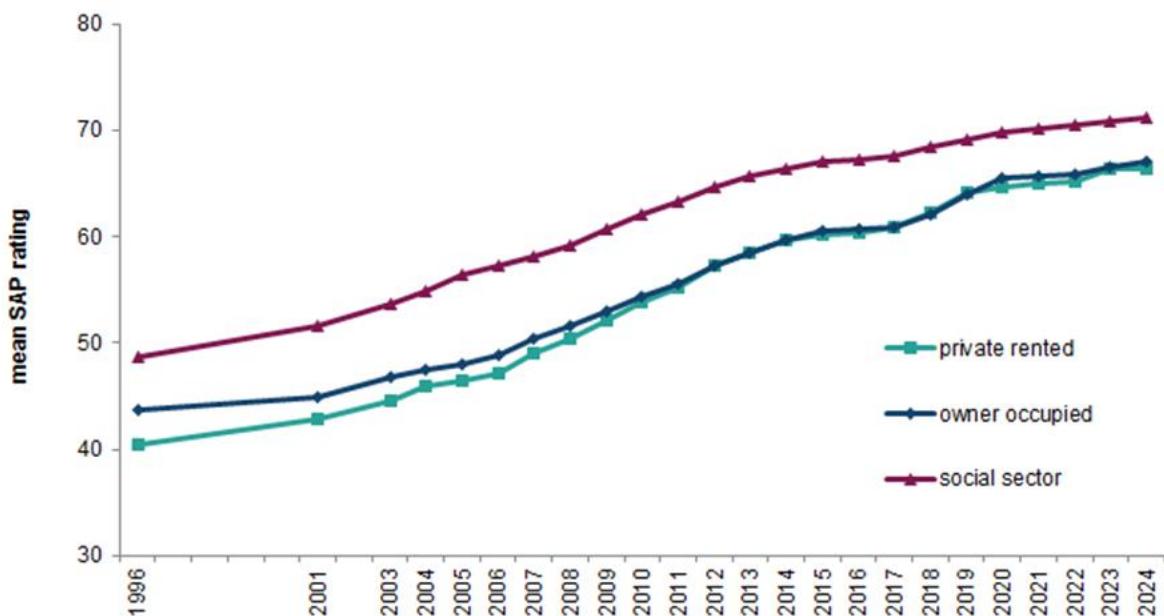
For a summary of main findings in this report as a whole, please see the Introduction and Main Findings page.

Energy Efficiency Ratings

The Government's Standard Assessment Procedure (SAP) is used to monitor the energy efficiency of homes. It is an index based on calculating annual space and water heating costs for a standard heating regime and is expressed on a scale of 1 (highly inefficient) to 100 (highly efficient, with 100 representing zero energy costs). Findings presented in this report were calculated using Reduced Data SAP (RdSAP) version 9.93.

As mentioned in the introduction to this publication, the English Housing Survey physical data aggregates two years of the survey for analysis. Dwelling data from 2023-24 and 2024-25 was based on full inspections and was not impacted by COVID-19 restrictions.

The government ran a consultation on reforms to the Energy Performance of Buildings regime in December 2024, and a [partial government response](#) was published on 21st January 2026. Alongside this, proposals to ensure homes in the private rented sector in England and Wales meet [minimum energy efficiency standards \(MEES\)](#) of EER C by 2030 and the [Warm Homes Plan](#) were published. Further proposals will be published this year on the minimum energy efficiency standards for social rented homes. The current minimum energy efficiency standard in the private rented sector is EER E.


Overall, the energy efficiency of the English housing stock continued to improve. In 2024, the average SAP rating for English dwellings was 68 points, up from 45 points in 1996. This longer-term upward trend was evident in all tenures and largely driven by improvements in the prevalence of the most common energy efficiency measures across the stock, particularly cavity wall insulation, boiler upgrades from standard to condensing combi and full double glazing, Annex Table 2.1 and Figure 2.1.

Over the last ten years, the biggest improvements in average SAP rating were in owner occupied and private rented dwellings, a seven point increase for both since 2014. However, the social rented sector continued to be the most energy efficient sector, where the average SAP rating of local authority dwellings increased from 66

in 2014 to 71 in 2024, and similarly, the average SAP rating of housing association dwellings increased from 67 in 2014 to 72 in 2024. This is not surprising given the social sector contains a higher proportion of purpose built flats compared to the private and owner occupied sector, which have less exposed surface area (external walls and roofs) through which heat can be lost ([Headline findings on demographics and household resilience, Chapter 1](#)).

When compared to 2019 (pre-COVID pandemic), energy efficiency increased three points for owner occupied dwellings (from 64 to 67) and two points for both private and social rented sector homes (from 64 to 66, and from 69 to 71 respectively), Annex Table 2.1, Figure 2.1.

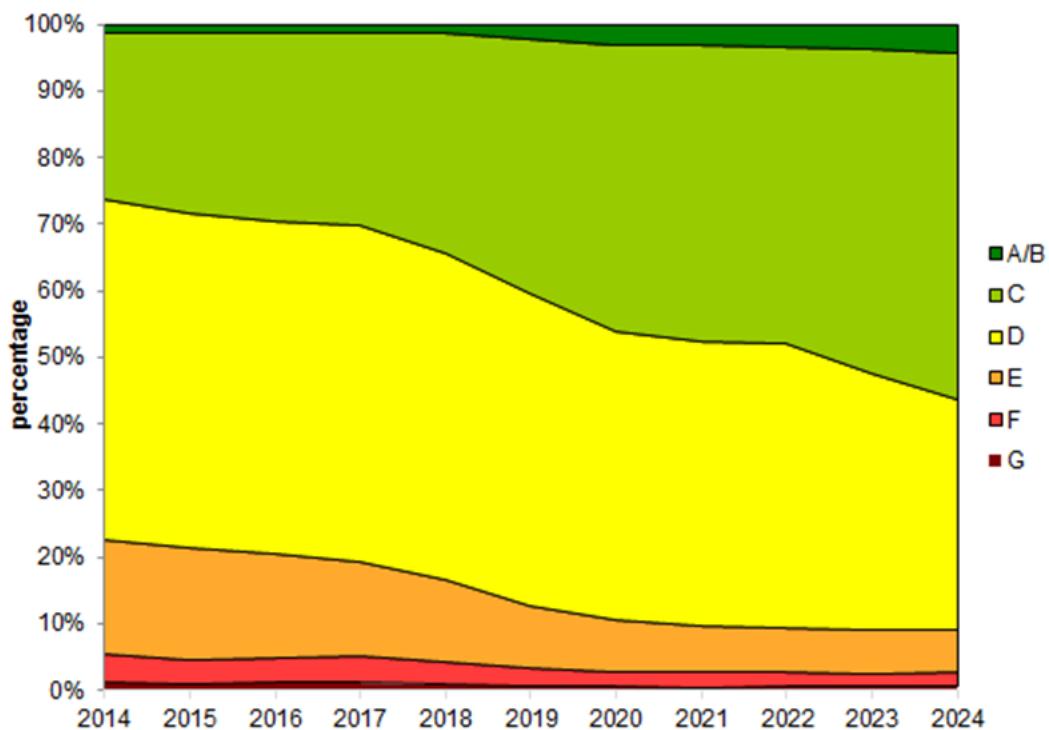
Figure 2.1: Mean SAP rating, by tenure, 1996 to 2024

Base: 1996-2019 all dwellings; 2020-2021 occupied dwellings; 2022 modelled and observed data; 2023-2024 all dwellings

Notes:

- 1) 2010-2012 uses SAP09
- 2) 2013-2018 uses SAP12. In 2018 RdSAP changed to version 9.94 and improvements were made to the modelling, which has led to a larger increase in the mean SAP rating compared to previous years.
- 3) underlying data are presented in Annex Table 2.1

Sources: 1996 to 2007: English House Condition Survey, dwelling sample
 2008-2019: English Housing Survey, dwelling sample
 2020-2021: English Housing Survey, modelled data based on occupied dwellings
 2022: English Housing Survey, dwelling sample, modelled and observed data based on all dwellings
 2023 onwards: English Housing Survey, dwelling sample


The proportion of dwellings in the highest SAP energy efficiency rating (EER) bands A to C increased over the last decade, from 26% in 2014 to over half of all dwellings (56%) in 2024, while the proportion in the lowest bands (E to G) decreased over the same time period (23% to 9%), Annex Table 2.2.

Over the last ten years, the proportion of dwellings with an energy efficiency rating of band D has continually decreased. However, in the last two years, the proportion

decreased significantly (43% in 2022 to 35% in 2024), with a corresponding increase in dwellings rated band C (45% in 2022 to 52% in 2024), Annex Table 2.3.

Figure 2.2 demonstrates the transition of the individual EER bands from 2014 to 2024, highlighting the overall improvement in the energy efficiency of the English housing stock.

Figure 2.2: Energy efficiency rating bands, 2014 to 2024

Base: 2013-2019 all dwellings; 2020-2021 occupied dwellings; 2022 modelled and observed data; 2023 onwards all dwellings

Notes:

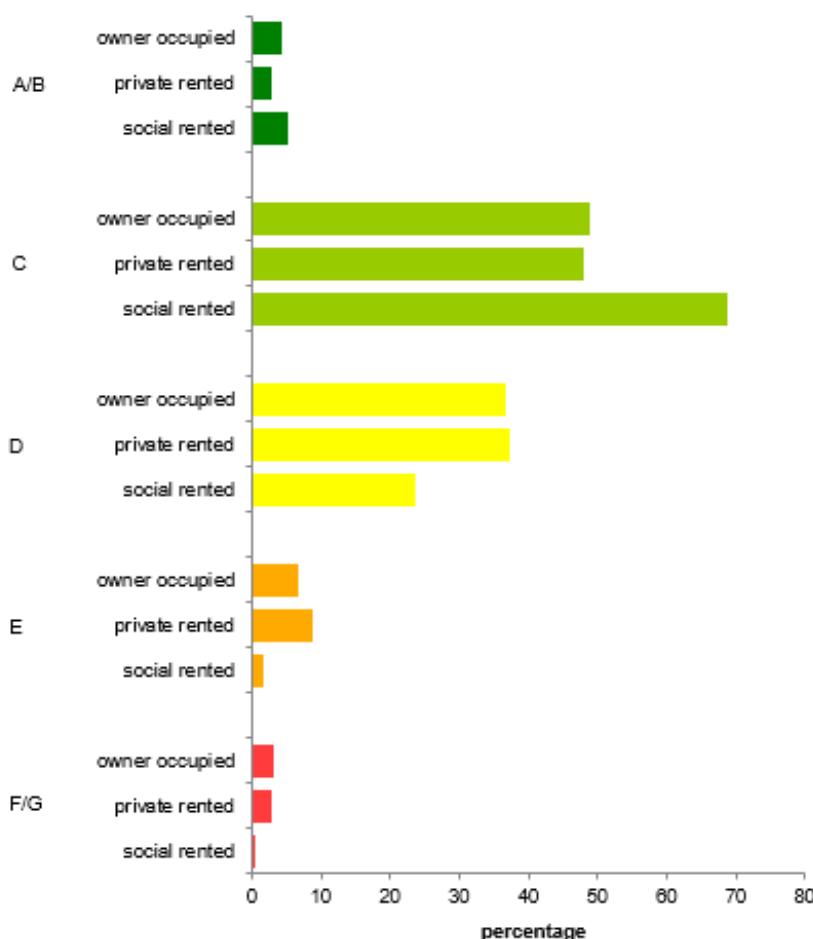
- 1) from 2018 the SAP 2012 methodology used new U values for cavity, solid and stone walls, both insulated and uninsulated.
- 2) EER bands A and B are grouped. There are currently insufficient numbers of Band A properties existing for which meaningful estimates can be made through a sample survey.
- 3) Due to the COVID-19 pandemic, EHS surveyors did not conduct any inspection of vacant properties in 2020. Although an external inspection of vacant homes occurred in 2021, the 2021 combined survey dwelling sample is for occupied properties only.
- 4) Underlying data are presented in Annex Table 2.3

Sources:

2014-2019: English Housing Survey, dwelling sample

2020-2021: English Housing Survey, modelled data based on occupied dwellings

2022: English Housing Survey, dwelling sample, modelled and observed data based on all dwellings


2023 onwards: English Housing Survey, dwelling sample

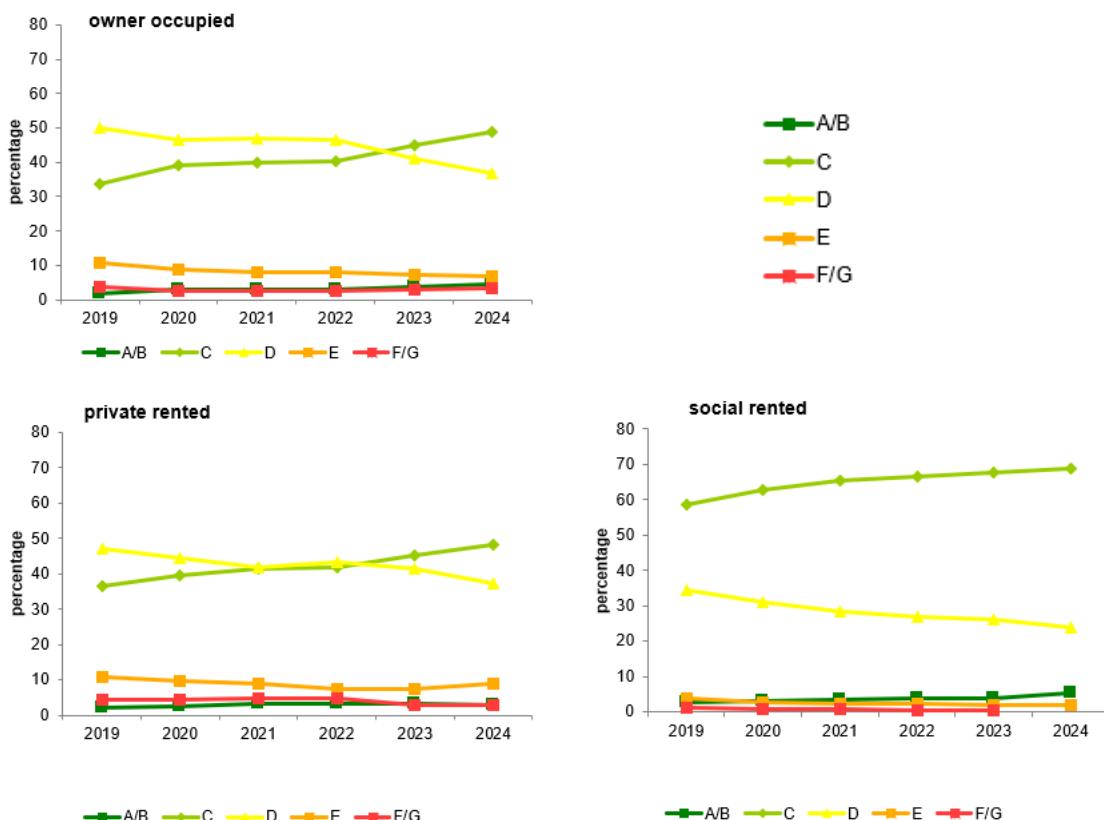
Energy efficiency rating bands, by tenure

In 2024, the most common EER band was band C, with 69% of social rented dwellings, 49% of owner occupied dwellings and 48% of private rented dwellings falling into this rating, Annex Table 2.2 and Figure 2.3.

Social rented dwellings were more likely to be rated A or B (5%), than owner occupied dwellings (4%) and private rented dwellings (3%). Consequently, private rented dwellings were more likely to be EER band E (9%) than owner occupied (7%) and social rented dwellings (2%).

Figure 2.3: Energy efficiency rating bands, by tenure, 2024

Base: all dwellings


Notes: underlying data are presented in Annex Table 2.2

Source: English Housing Survey, dwelling sample

The energy efficiency bands of dwellings varied by tenure over time. In the last two years private rented dwellings with an energy efficiency rating of band D significantly decreased from 43% in 2022 to 37% in 2024 with a subsequent increase in band C dwellings (42% to 48%).

For owner occupied and social rented dwellings, as the proportion of band D rated dwellings decreased from 2022 to 2024 (from 46% to 37% for owner occupied, 27% to 24% for social rented dwellings) there was an increase in both Band C rated dwellings (from 40% to 49% and 66% to 69% respectively) and A/B rated dwellings (3% to 4% and 4% to 5% respectively).

Figure 2.4: Energy efficiency rating bands, by tenure, 2019 to 2024

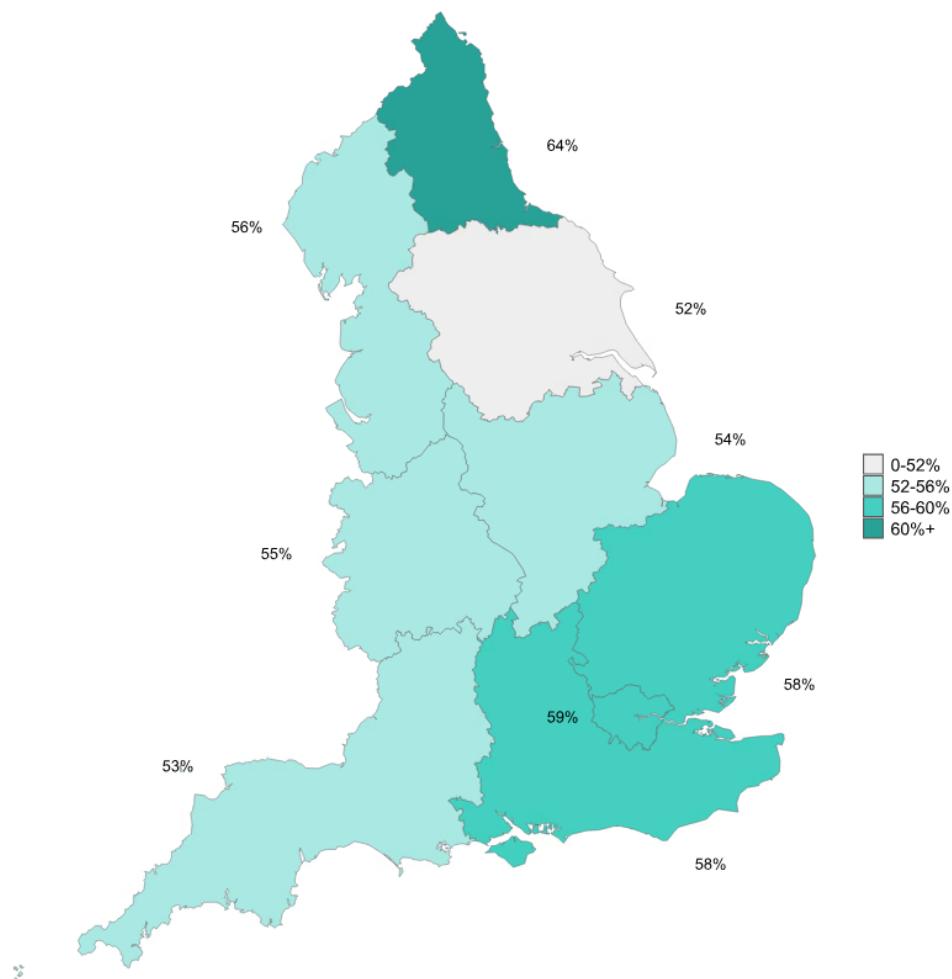
Base: all dwellings

Notes:

1) underlying data are presented in Annex Table 2.2

Source: English Housing Survey, dwelling sample

Energy efficiency rating bands, by dwelling characteristics


In 2024, the most energy efficient homes (EER bands A to C) were more likely to be newer dwellings. The majority of dwellings built after 1944 were in bands A to C (ranging from 55% to 94%), whereas more than a quarter (27%) of dwellings built prior to 1919 had an EER of A to C, Annex Table 2.4.

Purpose built high rise (80%) and purpose built low rise (75%) flats had the highest proportion of A to C rated dwellings compared with all other dwelling types (ranging from 42% to 55%). In comparison, bungalows (58%) and converted flats (55%) had the largest proportion of D to G rated dwellings compared to all other dwelling types (ranging from 20% to 49%).

Energy efficiency rating bands, by region

Overall, the North East had the highest proportion of energy efficient dwellings compared to all other regions. In the North East 64% of dwellings had an EER of A to C compared with 59% in London and 51% to 58% in all other regions, Figure 2.5 and Annex Table 2.4.

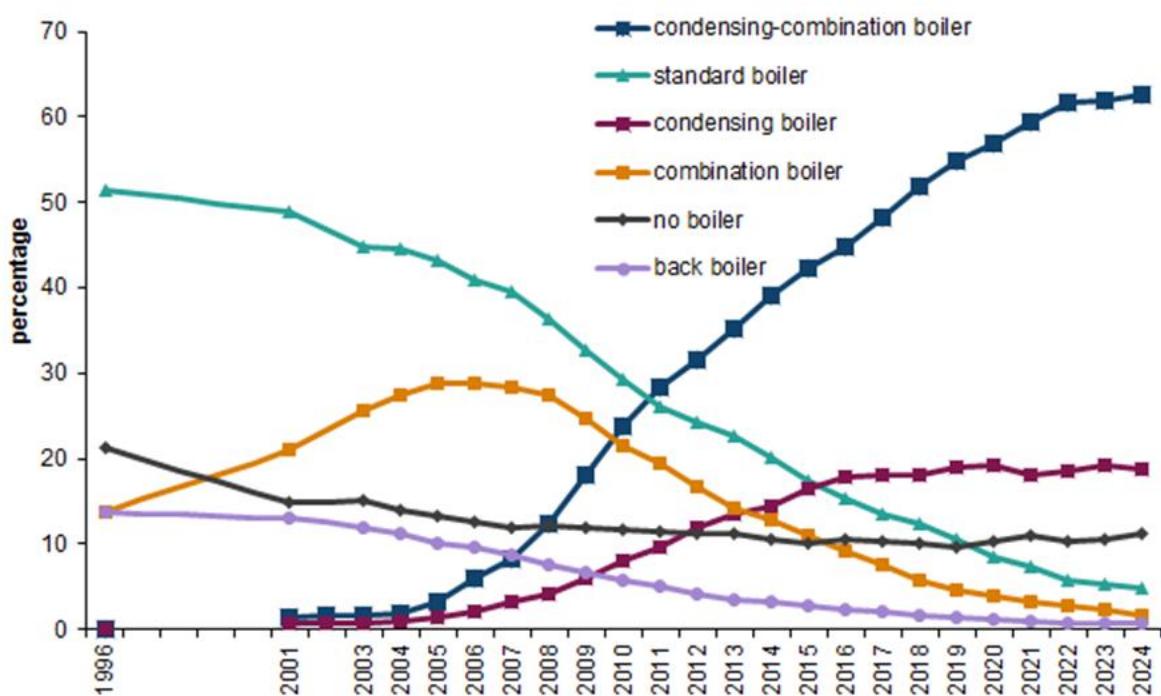
Figure 2.5: Dwellings with energy efficiency rating A to C, by region, 2024

Base: all dwellings

Note: underlying data are presented in Annex Table 2.4

Source: English Housing Survey, dwelling sample

Heating system


There are two key methods of increasing the energy efficiency of existing dwellings: upgrading the dwelling's heating system and increasing insulation.

Between 1996 and 2024, the proportion of homes with central heating increased (from 80% to 93%), while the proportion of homes with room heaters as their main heating source – the least cost-effective and most inefficient method of heating – decreased from 12% to 4%, Annex Table 2.5.

In 2024, owner occupied and local authority homes had the highest proportion of homes with central heating (both 95%), followed by housing association homes (91%), and private rented homes (85%) with the lowest. In addition, the proportion of dwellings in the private rented sector with fixed room heaters was higher than in other tenures (8% compared to 3% for owner occupied and 1% for the social rented sector), Annex Table 2.6.

Condensing boilers are generally the most efficient boiler type and since the mid-2000s have been mandatory for new and replacement boilers. As expected, the proportion of dwellings with condensing or condensing-combination boilers has increased considerably since 2001. In 2001, just 1% of homes had condensing boilers and 2% had a condensing-combination boiler. By 2024, this increased to 19% and 63% respectively, Figure 2.6 and Annex Table 2.7.

Figure 2.6: Boiler types, 1996 to 2024

Base: 1996-2019 all dwellings; 2020-2021 occupied dwellings; and 2022 All dwellings; 2022 modelled and observed data; 2023 onwards all dwellings

Notes:

1) Condensing and condensing-combination boilers were rare in 1996, so data collection did not start until 2001

2) Underlying data are presented in Annex Table 2.7

Sources:

1996-2007: English House Condition Survey, dwelling sample

2008-2019: English Housing Survey, dwelling sample

2020-2021: English Housing Survey, modelled data based on occupied dwellings

2022: English Housing Survey, modelled and observed data based on all dwellings

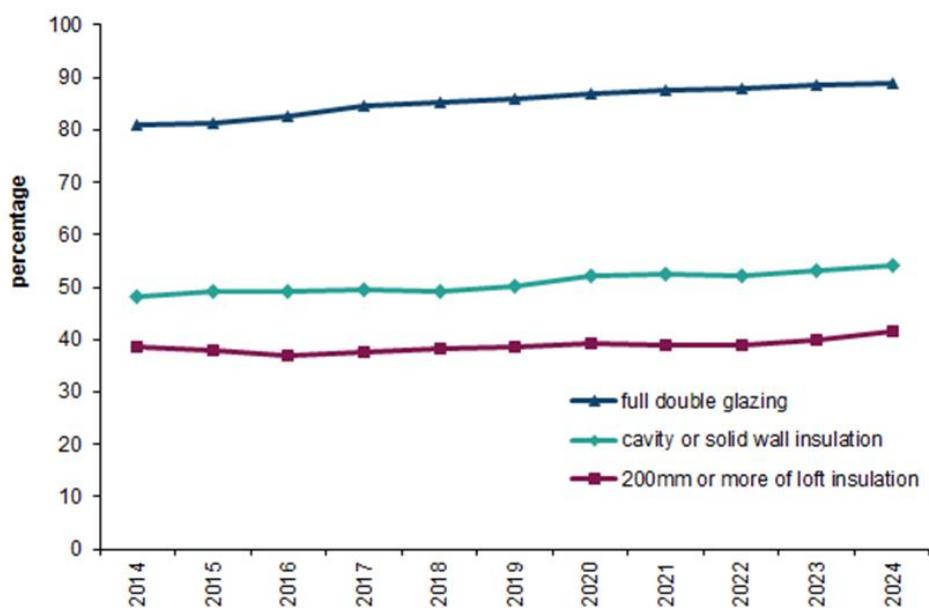
2023 onwards: English Housing Survey, dwelling sample

Private rented and housing association homes were the most likely to have no boiler in their property at all (19% and 17% respectively), compared to 15% of local authority dwellings and 8% of owner occupied.

Overall, homes in the social rented sector were more likely to have newer, more energy efficient condensing-combination boilers (67%) compared to private rented and owner occupied dwellings (64% and 61% respectively). This may reflect the age and type of dwellings across tenures, Annex Table 2.8.

Insulation

The base for the following section is all dwellings, though not all dwellings will be suitable for particular upgrades e.g. some homes will not have loft space, so are unsuitable for loft insulation.


In alignment with current SAP assumptions dwellings built after 1995 with cavity walls with no evidence of insulation in the survey have been assumed to be insulated.

The second main method of increasing a dwelling's energy performance is by installing or upgrading insulation. Standard insulation measures include installing cavity or solid wall insulation, loft insulation and double glazing. Installation of these measures has increased in the last ten years, though the changes are not as substantial as for other improvements.

In 2024, 42% of dwellings had 200mm or more of loft insulation (up from 39% in 2014). Just over half (54%) of dwellings had cavity or solid wall insulation (up from 48% in 2014) and 89% of homes in England had full double glazing, up from 81% of homes in 2014, Figure 2.7 and Annex Table 2.9.

Over the last two years, the proportion of homes with 200mm or more of loft insulation rose from 39% in 2022 to 42% in 2024. Increases were also apparent for dwellings with solid wall insulation (from 3% to 4%) and double glazing (88% to 89%). However, there was no significant increase in dwellings with cavity wall insulation over the same period.

Figure 2.7: Insulation measures, 2014 to 2024

Base: 2014-2019 all dwellings; 2020-2021 occupied dwellings; 2022 modelled and observed data; 2023 onwards all dwellings

Notes:

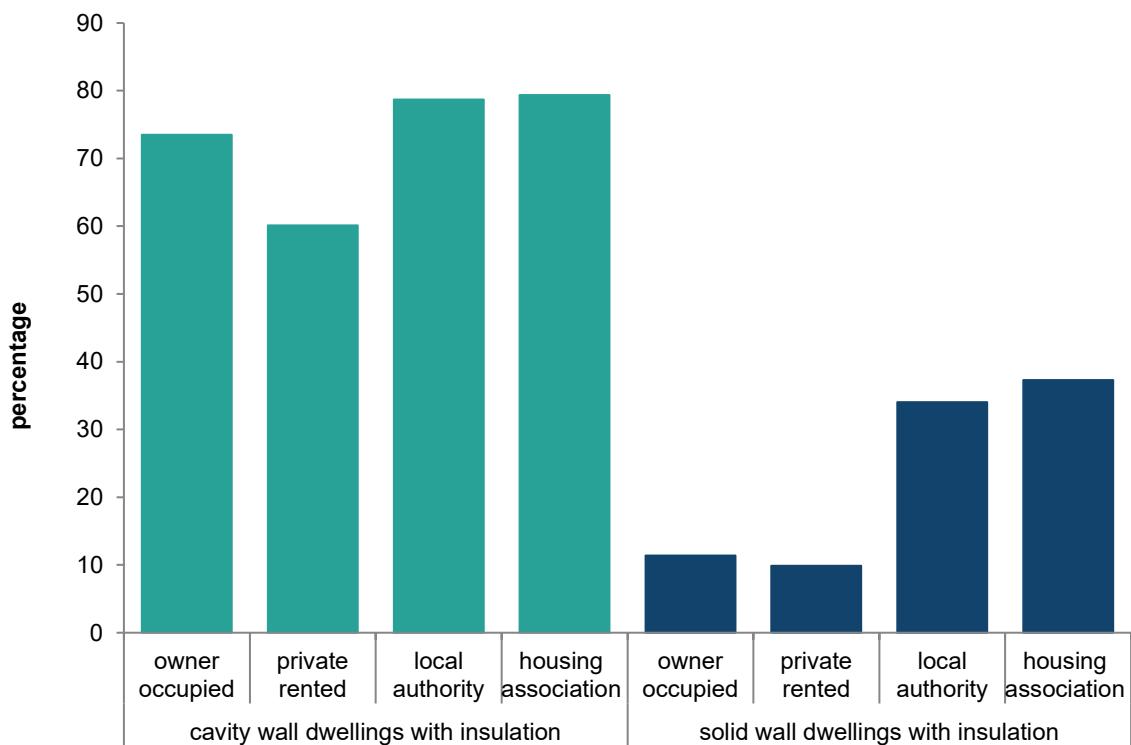
- 1) Percentages are based on all dwellings, including those with no loft or other wall type.
- 2) Underlying data are presented in Annex Table 2.9. See footnotes in this table for further detail on methodology for cavity and solid wall insulation.

Sources:

2011-2019: English Housing Survey, dwelling sample

2020-2021: English Housing Survey, modelled data based on occupied dwellings

2022: English Housing Survey, dwelling sample, modelled and observed data based on all dwellings


2023 onwards: English Housing Survey, dwelling sample

Among dwellings with solid walls, the social rented sector had a higher proportion of dwellings with solid wall insulation (local authority housing 34%, and housing association 37%) compared to both owner occupied (11%) and private rented dwellings (10%), Annex Table 2.10.

The proportion of housing association dwellings with solid wall insulation increased from 28% in 2023 to 37% in 2024. All other tenures remained around the same.

Private rented dwellings had the lowest proportion of cavity wall insulation (60%) compared to all other tenures (73% owner occupied, 79% for both local authority and housing association dwellings), Figure 2.8.

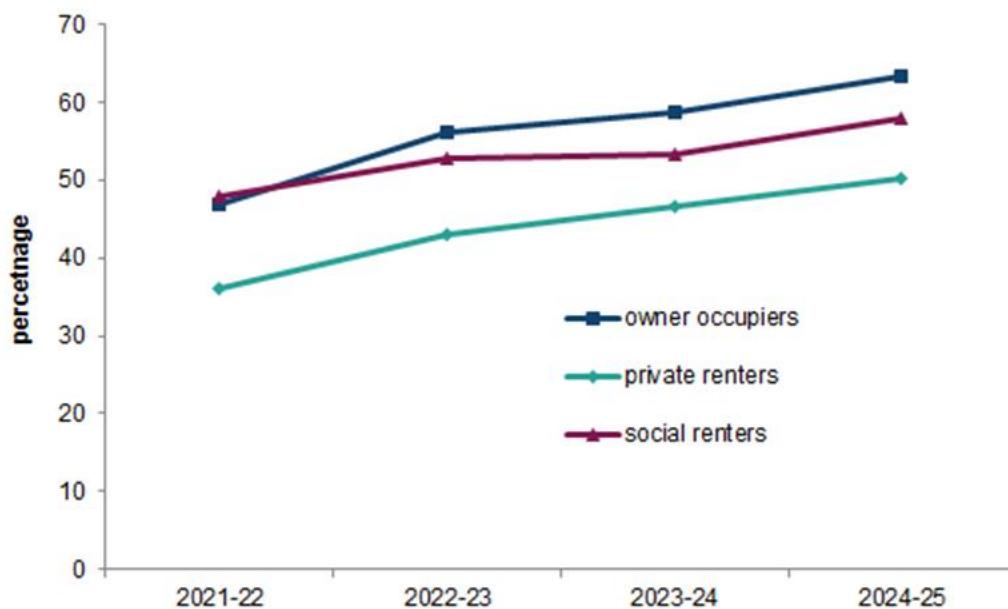
Figure 2.8: Wall insulation, by main wall type and tenure, 2024

Base: dwellings with predominantly cavity wall insulation (green); dwellings with predominantly solid wall insulation (blue)

Note: underlying data are presented in Annex Table 2.10

Source: English Housing Survey, dwelling sample

Electricity smart meters and payment methods


The replacement of traditional meters with smart meters is a national infrastructure upgrade that aims to make the country's energy system cheaper, cleaner and more reliable. Smart meters offer a range of intelligent functions. For example, they can tell residents how much energy they are using in pounds and pence via an In-Home Display. This information should help customers manage their energy use, save money and reduce emissions. Smart meters in smart mode communicate automatically with energy suppliers, which avoids manual meter reads and provides customers with accurate bills.

The English Housing Survey asks residents whether they have a smart meter. This section of the report is based on the information given by the resident through the household survey and focuses on electricity smart meters only.

In 2024-25, 60% of households in England reported having an electricity smart meter (around 15 million households), an increase from 56% in 2023-24, Annex Table 2.11.

Owner occupiers and social renters were more likely to report having an electricity smart meter (63% and 58% respectively) compared with private renters (50%). The proportion of households with an electricity smart meter continued to increase for all tenures, Figure 2.9.

Figure 2.9: Electricity smart meters, 2021-22 to 2024-25

Base: all households

Notes:

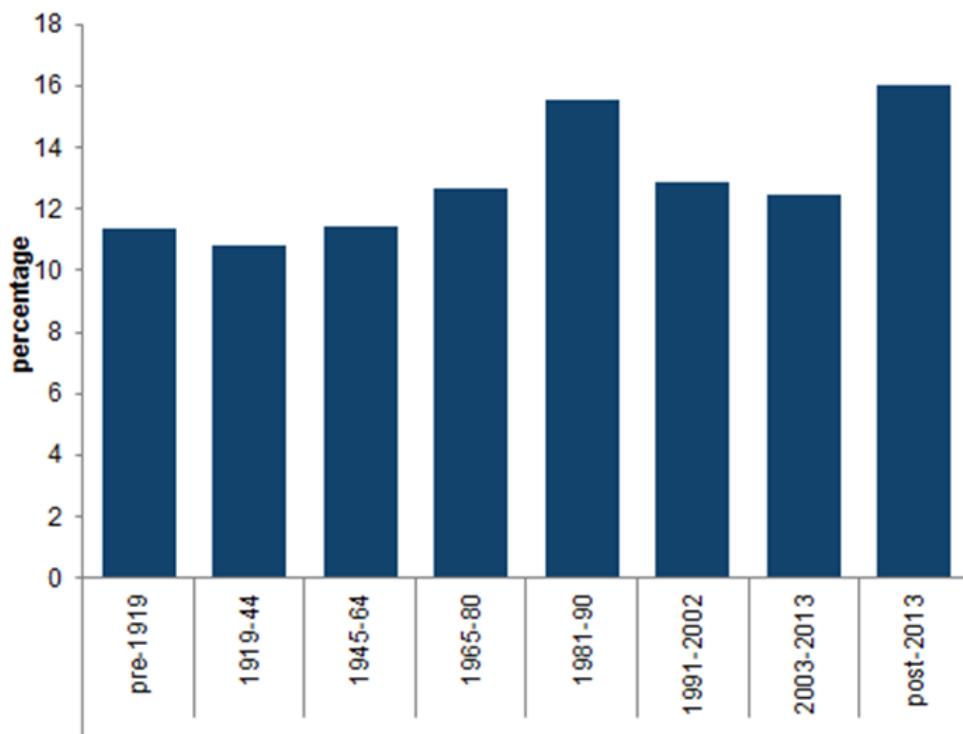
- 1) Self reported presence of electricity smart meters
- 2) Underlying data are presented in Annex Table 2.11

Source: English Housing Survey, full household sample

Households who paid for their electricity by direct debit (62%) or pre-payment token (61%) were more likely to report having an electricity smart meter than those who paid on receipt of the bill (46%) or by other methods (32%) e.g. included in the rent, fixed annual bill, Annex Table 2.11.

The English Housing Survey results are broadly in line with [smart meter statistics](#) from the Department for Energy Security and Net Zero (DESNZ) over the same time period. As of 30 September 2024, 68% of domestic properties had an electric smart meter. Differences between EHS and DESNZ statistics are likely to reflect the different time periods for data collection and the EHS survey reliance on self-reporting.

Subjective overheating


The English Housing Survey includes a subjective measure for gauging whether households feel any part of their home gets uncomfortably hot.

In 2024, 12% of households reported at least one part of their home got uncomfortably hot, no change from 2023, Annex Table 2.12.

Owner occupiers (13%) were more likely to report at least part of their home got uncomfortably hot than those in the private and social rented dwellings (both 11%). Households living in detached houses (15%) were most likely to report overheating in their homes, compared with 11% in terraced houses, 10% in low rise flats and 9% in purpose built high rise flats, Annex Table 2.12.

Households living in newer homes were more likely to report overheating than those in older homes. Older homes can be more difficult and costly to insulate compared to new homes. In 2024, 16% of households in homes built post-2013 reported at least one part of their home got uncomfortably hot, compared with homes built between 1919 and 1964 (11%), Figure 2.10.

Figure 2.10: Subjective overheating, by dwelling age, 2024

Base: all occupied dwellings with households reporting overheating

Note: underlying data are presented in Annex Table 2.12

Source: English Housing Survey, dwelling sub-sample

Costs to improve to an energy efficiency rating band C

This section looks at the cost of improving dwellings with an energy efficiency rating (EER) band of D or lower to an EER band of at least C, by dwelling characteristics.

To estimate costs, for each dwelling identified as having an EER band of D or lower, improvement measures were simulated cumulatively using SAP as the underlying methodology. After each improvement, the SAP rating was recalculated until the dwelling reached the threshold for EER band C (SAP rating of 68.5 or higher).


In certain cases, a dwelling's energy efficiency rating may be improved beyond the target band, where a dwelling's energy efficiency rating is already close to the band C threshold. If a measure with a high SAP improvement yield is installed, for example cavity wall insulation, then the dwelling may be improved beyond a band C into the band B range.

In 2024, fewer than half of the dwellings in England (42%) could be improved to an EER band C or higher. Around 2% (443,000) would either not be suitable to receive any improvement measures or received at least one improvement measure but were unable to reach band C, and the remaining dwellings in the stock (56%) already had an EER band of C or higher, Annex Table 2.13.

The mean cost to improve dwellings to an EER band C was £7,480 per dwelling. The median cost per dwelling was slightly higher, at £8,648 to improve dwellings to band C, Annex Table 2.14.

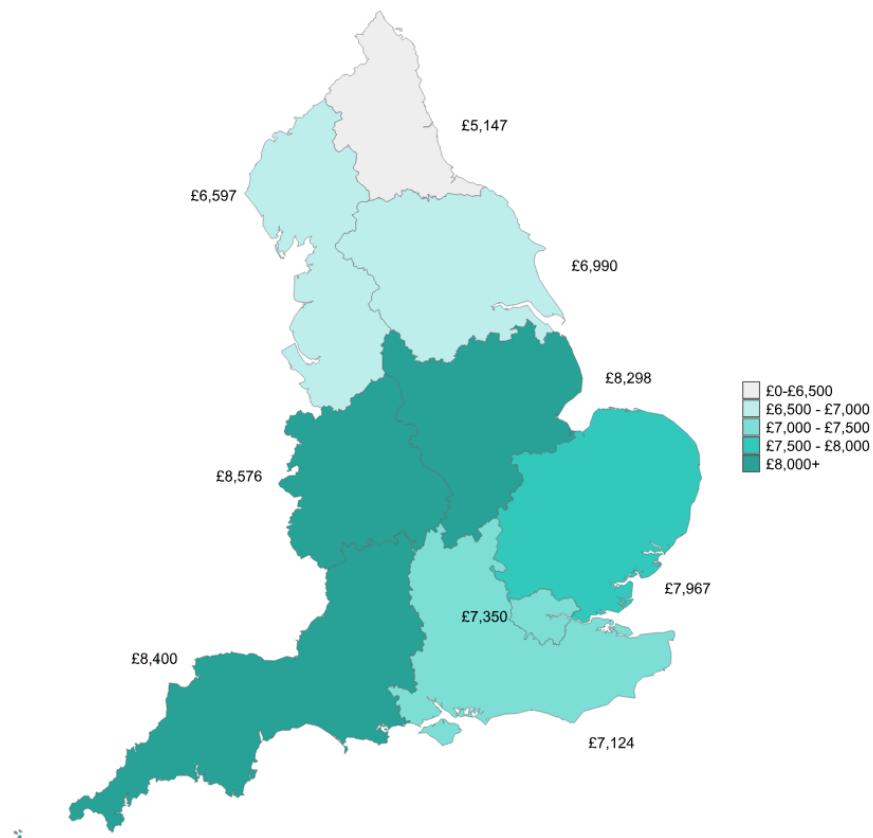
On average, owner occupied dwellings would cost the most to improve to an EER band C (£7,869) compared to private rented (£7,040) and social rented dwellings (£5,655). Within the social sector, housing association dwellings cost more than local authority dwellings to improve (£6,082 compared to £5,050), Figure 2.11.

Figure 2.11: Average cost to improve to energy efficiency rating band C, by tenure, 2024

Base: all dwellings able to be improved to an EER band C

Note: Underlying data are presented in Annex Table 2.14

Source: English Housing Survey, dwelling sample


The age and type of dwelling have a large influence on the energy efficiency of homes, and it is not surprising that the cost to bring older dwellings up to a band C was higher. Dwellings built before 1919, which are more likely to be of solid wall construction, had the highest average cost to improve to a band C, at £10,728, followed by dwellings built between 1919 to 1944 (£7,143).

Detached dwellings had the highest average cost to reach band C, at £9,464, closely followed by medium/large terraced houses (£8,075). Conversely, purpose built, low rise and purpose-built, high rise flats had the lowest average costs, at £4,193 and £2,468, respectively. Converted flats cost the most out of all flat types, at £7,167, this is not surprising given converted flats tend to be older dwellings than purpose built flats and therefore will likely cost more to improve.

As expected, dwellings with an EER rating of F or G had a higher average cost to improve to a band C (£17,354), than E (£12,430) and D rated dwellings (£6,002).

The cost to improve a dwelling to an EER rating of band C varied by region. The West Midlands had the highest average cost of £8,576 to achieve an EER rating of band C compared to the North East with the lowest, £5,147, Figure 2.12.

Figure 2.12: Average cost to improve to energy efficiency rating band C, by region, 2024

Base: all dwellings able to be improved to an EER band C

Note: underlying data are presented in Annex Table 2.14

Source: English Housing Survey, dwelling sample

Banded costs to improve to an energy efficiency rating band C

In 2024 it would cost between £1,000 to £4,999 to improve just over a quarter (27%) of eligible dwellings to an EER band C and around £5,000 to £9,999 to improve just under half (44%). Around 5% of eligible dwellings would require less than a £1,000 investment, whereas 15% of eligible dwellings would require larger investments of between £10,000 and £14,999. The remaining 8% would need more than £15,000 to improve to a band C, Figure 2.13, Annex Table 2.15.

Figure 2.13: Banded cost to improve to energy efficiency rating band C, by region, 2024

Base: all dwellings able to be improved to an EER band C

Note: underlying data are presented in Annex Table 2.15

Source: English Housing Survey, dwelling sample

Owner occupied dwellings (10%) were more likely to cost £15,000 or more to bring up to band C compared to private rented (7%), housing association (2%) and local authority (1%) dwellings, Annex Table 2.15.

The South West, West Midlands and East of England were more likely to have dwellings costing £15,000 or more to improve compared to all other regions (14%, 14% and 11% respectively).

Technical notes

Results for households are presented for '2024-25' and are based on fieldwork carried out between March 2024 and March 2025 on a sample of 16,438 households. Throughout the report, this is referred to as the 'full household sample'.

Results that relate to the physical dwelling, are presented for '2024' and are based on fieldwork carried out between March 2023 and March 2025 (a mid-point of April 2024). The sample comprises 14,919 occupied and vacant dwellings. In 2022, face-to-face interviews and internal inspections of properties resumed with the option for the interview to be carried out by telephone if needed (knock to nudge approach).

The reliability of the results of sample surveys, including the English Housing Survey, is positively related to the unweighted sample size. Results based on small sample sizes should therefore be treated as indicative only because inference about the national picture cannot be drawn. To alert readers to those results, percentages based on a row or column total with unweighted total sample size of less than 30 are italicised. To safeguard against data disclosure, the cell contents of cells where the unweighted cell count is less than 5 are replaced with a "u".

Where comparative statements are made in the text, these have been significance tested to a 95% confidence level. This means we are 95% confident that the statements we are making are true.

A more thorough description of the English Housing Survey methodology is provided in the [Technical Report](#) which is published annually. A full account of data quality procedures followed to collect and analyse English Housing Survey data can be found in the [Quality Report](#), which is also updated and published annually.

For data underlying this report, see the Annex Tables and Figures published alongside this report.

Glossary

For detailed glossary of terms used throughout this report please see the [Glossary](#).