

Improving the customer journey for heat pump adoption

Lessons from the Heat Pump Ready programme

June 2025

Contents

1. Introduction.....	3
1.1 About Heat Pump Ready.....	3
1.2 Report objectives and audience	3
1.3 Relevant projects – smart and flexible home energy systems	4
1.4 Key project learnings.....	4
2. Detailed project learnings	6
2.1 Digital tools can reduce time, cost and friction, but there are limits to digital-only customer journeys	6
2.2 Clear, non-technical and tailored messaging can improve engagement.....	8
2.3 Peer learning and trusted messengers increase confidence and conversion	10
2.4 Finding a solution for 'distressed purchase' heating system replacements is essential, but remains challenging	10
2.5 Shared surveys and standardised data reduce duplication of site visits and improve outcomes	12
2.6 Better informed customers improved the likelihood of a successful outcome and provided better leads for installers.....	12

1. Introduction

1.1 About Heat Pump Ready

Heat Pump Ready is part of the UK Government's £1 billion Net Zero Innovation Portfolio (NZIP), which provided funding for low-carbon technologies and systems and aimed to decrease the cost of decarbonisation, helping enable the UK to end its contribution to climate change.

Heat Pump Ready, led by the Department for Energy Security and Net Zero (DESNZ), aimed to accelerate heat pump adoption in the UK. The programme supported the development of new tools, technologies and business models to:

1. Improve the customer journey for heat pump adoption
2. Improve the installer journey from survey and design to aftercare
3. Develop smart and flexible home energy systems utilising heat pumps
4. Advance heat pump technology and manufacturing
5. Create innovative finance models for heat pump deployment
6. Develop new approaches to heat pump deployment at high-density

1.2 Report objectives and audience

This report presents learnings from Heat Pump Ready projects focused on **improving the customer journey** for heat pump adoption. These projects trialled new tools, engagement strategies, and digital journeys to simplify and accelerate the adoption of heat pumps by households.

The report is aimed at any stakeholder involved in the deployment of heat pumps to homeowners, including policymakers, energy suppliers, local authorities, digital tool developers, and retrofit professionals. It identifies challenges in current customer journeys and highlights effective innovations to increase conversion, reduce dropouts, and enhance customer confidence.

Similar reports on the lessons learned for the other Heat Pump Ready themes, more detailed case studies on individual projects and programme evaluation reports can be found on the [gov.uk](https://www.gov.uk)

[website](#). The Carbon Trust has authored this report as a part of its Heat Pump Ready trial support and learning contract.

1.3 Relevant projects – improve the customer journey

Table 1: Summary of Heat Pump Ready projects focused on improving the customer journey

Company	Project name	Summary
Thermly	Thermly	Developed a digital platform offering a streamlined end-to-end customer journey, from an assessment of heat pump readiness through to installation. Used extensive user research to simplify language and reduce technical complexity.
MCS & Energy Saving Trust	Go Renewable	Created a platform combining a national renewables assessment tool and single Elmhurst home survey to connect customers with multiple MCS-certified installers for quote comparison.
Hildebrand	Glow Markt	Built an online community of consumers and installers, offering peer-to-peer learning, real-life case studies, technical resources, and measured data to support confidence and informed decisions.
EDF	Catalyst	Designed an app to automate and digitise the end-to-end heat pump installation journey for EDF heat pump customers, with integrated surveys, quotes, DNO notifications, and monitoring tools for post-install support.
Thermly	Thermly Distress Diagnostics	Focused on identifying and supporting customers facing imminent boiler failure ('distress purchases'), with proactive targeting and a repair-reimbursement offer to support heat pump uptake.
DF	Sojourner	Delivered personalised, whole-house retrofit roadmaps using drone thermal imaging, automated recommendations, and digital grant/finance options. Piloted with 79 households.

1.4 Key project learnings

- 1. Digital tools can reduce time, cost and friction, but there are limits to digital-only customer journeys.**

Projects including EDF Catalyst, MCS Go Renewable and Thermly used digital platforms to simplify the customer journey, develop initial quotes and surveys, reduce the need for site visits and reduce lead times. Projects identified how digitalisation of the customer journey can bring several benefits, but also highlighted that clarity, intuitive design, and the continued presence of human interactions were essential to maintain trust and engagement.

- 2. Clear, non-technical and tailored communication improves engagement.**

Projects consistently found that customers engaged more effectively when presented with clear, jargon-free information tailored to their specific needs and interests. Platforms like Thermly, Hildebrand's Glow and EDF Sojourner reduced technical complexity in their messaging, while platforms such as MCS Go Renewable and EDF Catalyst streamlined the content and navigation of their digital platforms based on usability testing and customer feedback. Projects including Thermly and EDF Sojourner found that tailoring messaging based on specific characteristics of the home and the homeowner led to increased engagement of customers.

- 3. Peer learning and trusted messengers increase confidence and conversion.**

Social proof and community engagement played a key role in influencing customer decisions. Hildebrand Glow's case studies-based approach demonstrated that relatable examples and local champions can significantly boost awareness, trust, and uptake.

- 4. Finding a solution to 'distress purchase' heating system replacements is essential, but remains challenging.**

Emergency boiler replacements represent a critical barrier to heat pump adoption as, in a 'distress' circumstance, customers typically prioritise the speed and familiarity of replacing a gas boiler like for like. Thermly's Distress Diagnostics project tested innovative predictive models and incentives to help customers either install heat pumps before their boiler breaks down or enable them to purchase a heat pump in a distress situation.

- 5. Standardised data and surveys made available to multiple installers can reduce duplication and improve outcomes for customers.**

MCS Go Renewable and Hildebrand Glow Markt both highlighted how enabling customers to complete one survey assessment which multiple installers can then use to quote from has the potential to streamline the customer journey and reduce overall survey costs. The Go Renewable approach was based around a single standardised survey from which multiple MCS contractors

could provide a quote for heat pump installation, avoiding the need for multiple surveys of the same home.

6. **Better quality leads and clearer expectations help installers deliver.**

By preparing customers with trusted advice and consistent survey data, and requiring meaningful customer commitment prior to referral, projects such as Thermly and Go Renewable both demonstrated potential to reduce installer workload and improve conversion rates.

2. Detailed project learnings

2.1 **Digital tools can reduce time, cost and friction, but there are limits to digital-only customer journeys**

Digital platforms were central to most of the projects aimed at improving the customer journey. Projects sought to use digitalisation and online platforms to streamline processes, reduce the time and cost associated with site visits, paperwork, and customer communications, and enhance coordination between customers, surveyors, and installers. For example:

- **EDF Catalyst** developed a mobile app designed to digitalise the full retrofit journey, from property assessment and quote generation to DNO notification and post-install monitoring. The app aimed to reduce lead times and costs by enabling remote property assessments and automating workflows across different stages of the process. The project reported that they expected the Catalyst app to reduce the average lead time (from initial enquiry to completed installation) from 12 weeks to 10 weeks, notably by reducing the need for occasional second or third home visits. EDF estimated that the app would reduce the duration of home visits to around 1½ hours, down from their previous survey durations of between 2½ and 3¼ hours. The app also reduced the frequency and duration of emails and phone calls with customers. Although EDF did not achieve significant numbers of app users during the project timeframes, the project team estimated that, combining all the efficiencies resulting from the use of Catalyst would result in overall cost savings of around £200-400 per customer.
- **EDF Catalyst** also established, however, that some customers do not want to undertake the high-level survey process independently of an installer. Catalyst set out to explore whether eliminating pre-installation home visits was possible. Some customers were hesitant about undertaking any aspect of home surveying themselves, even if it was followed by an in-person verification survey. These customers either preferred the reassurance of the process

being handled by a knowledgeable professional, or didn't have a sufficient level of knowledge, such as knowing where their consumer unit is.

- **Thermly** introduced a user-friendly end-to-end web platform where customers can quickly understand their home's heat pump suitability, obtain a range of online estimates, book a survey and contract the installation. Through Thermly's Heat Pump Readiness Assessment, users input core details about their property and, in return, are provided with an estimated size and cost for a heat pump installation, all within a few minutes. The platform then enables customers to digitally share this assessment with local installers and receive indicative quotes for installation within 72 hours. Thermly has found that these quotes are typically within 10-15% of the final installation figure quoted by installers. Customers can then book surveys and contract an installer for the installation via the platform. Thermly's platform demonstrates how digitally led platforms can expedite the end-to-end customer journey, with initial interest to signed contract taking as little as 10 days.

Thermly identified some challenges, however, in onboarding installers into this integrated digital journey. To ensure a smooth customer journey, Thermly requires installers to manage each step (except the onsite survey and final installation) within the Thermly platform, which is designed to provide a seamless customer experience. They found that most existing installer processes are offline or are centred around customer journeys offered by alternative providers, with installers reluctant to migrate to a new platform. Thermly aims to demonstrate the benefits in speed, efficiency and journey quality over time through their pilot initiatives to persuade installers to adopt the integrated process.

- **Go Renewable** (a joint initiative between MCS and the Energy Saving Trust) developed a digital platform that combines existing tools into a single online customer journey. This included the Energy Saving Trust's heat pump suitability checker, followed by the online booking of a PAS 2035-compliant in-home property survey carried out by Elmhurst Energy, and an online process to obtain multiple quotes from local MCS-certified installers. The platform aimed to streamline the path from initial interest to receiving installer quotations, removing the need for householders to approach multiple contractors individually. Although the platform was not tested at a significant scale with householders during the project, **Go Renewable** is now being piloted in Gloucestershire, Wiltshire, Herefordshire, Worcestershire, Bristol and Oxfordshire. Installers' feedback from customers and installers has been positive about the platform and use of the Elmhurst home survey to inform quotations.

- **Hildebrand's Glow** platform acts as a digital home energy hub, integrating real-time energy monitoring, customer education resources, and an online space to store and share heat pump system data. The team aimed to create a platform that enabled customers to make informed choices, track the performance of their systems over time and share relevant data with installers. Core features included over 200 FAQs, an expanding library of case studies, smart meter integration, and a “Survey Locker” that allowed users to upload and share property assessments or system specifications with suppliers. Informal feedback gathered from forums of existing Glow users reportedly valued the ability to compare their energy use and performance with similar homes, however its effectiveness in improving or expediting the customer journey was not formally assessed during the project timeframes.
- **EDF Sojourner** developed a digital retrofit dashboard to help customers understand their home's energy performance and identify potential upgrades. The core digital innovation was the use of drone-captured thermal images, which were colour-coded and geolocated, allowing customers to visually identify areas of heat loss. These images were embedded into a personalised online portal, which also provided a retrofit roadmap, indicative costs, and signposting to grant or finance options. The online dashboard aimed to make retrofit more tangible and intuitive by providing visual evidence of energy inefficiency and clear next steps. Structured interviews were carried out with 11 users who had accessed the dashboard. Feedback indicated that the thermal images were a compelling entry point that sparked interest in home upgrades. Users described the visual format as “eye-opening” and felt it helped bridge the knowledge gap around where to start. However, most users did not revisit the dashboard beyond initial access, and there was limited evidence of customers progressing to installation. The team concluded that while visual tools are powerful for initial engagement, ongoing support, clearer calls to action, and sustained follow-up are needed to translate interest into action.

2.2 Clear, non-technical and tailored messaging can improve engagement

A common barrier identified across projects was the complexity of the customer journey and the technical nature of information about heat pumps. Multiple teams sought to reduce confusion and build trust by simplifying language, improving interface design, and tailoring communications to users' needs.

- **Thermly** undertook extensive iterative user testing as part of its platform design. The team began with in-depth research into how consumers search for and assess home heating options

online. Analysis of Google Search data and common customer queries led to a redesign of the user interface, replacing jargon-heavy terms with plain English questions such as “Is my home suitable?” and “How long will it take?” The platform also trialled interactive visuals and staged information delivery to reduce cognitive load. These features were tested with users through informal feedback loops and monitored via click-through and drop-off analytics. For example, the team observed a significant reduction in drop-off rates after simplifying the quote page. This iterative process allowed the platform to evolve in response to real-time behavioural data.

- **EDF Catalyst** developed a mobile application that supported the entire heat pump journey, from property assessment to quote generation. The app included embedded guidance, tools, tips, and educational screens aimed at demystifying key concepts such as heat loss, flow temperature, and MCS compliance. These features were developed with input from installer partners and reviewed internally by the design team.
- **Hildebrand’s Glow** offered users a suite of educational resources, including over 200 FAQs, downloadable technical guides, and explainer videos. The content was structured to support different stages of the journey, from early curiosity to post-install troubleshooting. This was supported by early-stage interviews with users of the Glow smart energy platform (mainly solar PV and battery customers) to identify common misconceptions and anxieties. Although no formal usability study was conducted during the project, the team gathered anecdotal feedback through an online community forum. They reported that users appreciated the availability of real-world examples and simple graphics but acknowledged that the impact on decision-making was not measured systematically.

Several projects found that tailoring messaging, based on specific characteristics of the home and the homeowner, led to increased engagement of customers.

- **Thermly** developed a set of customer personas to tailor messaging on its website and social media channels. These personas were informed by a synthesis of behavioural science research, heat pump segmentation studies, and input from marketing professionals. Examples included the “practical problem solver” and the “green idealist,” with messaging adapted accordingly (e.g. focusing on cost savings vs. climate benefits). The platform used A/B testing to assess which messages resulted in higher click-through rates. While conversion data was limited, early engagement analytics suggested that targeted messaging improved time-on-page and reduced bounce rates.

- **Sojourner** used drone-captured thermal images of participants' homes as a conversation starter and motivator. These images, presented via a colour-coded web portal, illustrated areas of heat loss and suggested upgrades. In follow-up interviews, participants described the visuals as "eye-opening" and noted that they helped build understanding of where improvements were needed. One user described the experience as "the first time I could see the problem for myself." While this feedback was based on a small sample of 11 homes, it indicates that visual, personalised information can support engagement and prompt further inquiry.

2.3 Peer learning and trusted messengers increase confidence and conversion

A lack of familiarity with heat pumps and trust in the technology was cited by many projects as a key barrier to uptake. To address this, several teams implemented strategies based on peer learning and social proof, providing householders with relatable examples and trusted sources of information. For example:

Clean Heat Streets (Oxford) designed its entire outreach model around community engagement and trusted messengers. Key features included: a local 'heat pump champion' who had a system installed in their own home; open house events; peer-to-peer Q&A sessions; and regular community meetings in the Rose Hill area. While the number of installations (18) was modest, the project evaluation suggests that peer-led engagement helped overcome initial scepticism and build trust over time.

- **Hildebrand's Glow** platform curated a growing library of over 60 heat pump case studies submitted by early adopters. Each case study included property characteristics, system specifications, installation costs, and measured energy performance. Users could filter case studies by home type, location, and retrofit journey stage. Hildebrand did not systematically track user engagement metrics or measure the impact on decision-making, however, qualitative feedback from Hildebrand's existing online community of smart meter customers suggested that users found these real-world examples helpful in addressing specific concerns, such as noise, disruption, or system performance.

2.4 Finding a solution for 'distress purchase' heating system replacements is essential, but remains challenging

A distress purchase, where a customer urgently replaces a failed heating system, is one of the most common pathways to replacing a heating system in the UK. In these situations, customers typically

prioritise speed, cost, and familiarity over low-carbon options. The Thermly Distress Diagnostics project focused explicitly on developing tools and offers to overcome the barriers to choosing a heat pump in this context. While the pilot was small and uptake was limited, the project generated valuable insights into customer decision-making under pressure and how digital targeting and financial incentives might influence behaviour.

- **Thermly Distress Diagnostics** developed two customer journey pathways: a proactive journey aimed at encouraging boiler replacement before failure, and a reactive journey for customers already experiencing distress. For the proactive journey, Thermly investigated the feasibility of predicting which households were most likely to experience boiler failure in the near future. While they were unable to access the Gas Safe Register as planned, the team compiled building control data from over 40 local authorities, covering 750,000 homes. The analysis revealed good insights on typical boiler age at replacement, which was integrated into customer messaging to encourage pre-emptive action. However, statistical analysis of the data did not result in strong predictive power to predict boiler failure in homes, although Thermly were confident that access to the full Gas Safe Register data could enable this in future.
- Thermly also developed and tested targeted messaging for three customer personas identified through Ipsos surveys and interviews: ‘Green Tech Innovators’, ‘Value Maximisers’ and ‘Progressive Aspirers’. They used Google’s audience targeting tools (Pmax) to deliver tailored messages designed to motivate each persona to act early, before a distress purchase situation arose.
- As part of the reactive customer journey, **Thermly** developed an offer to help households who experienced a boiler breakdown. The offer allowed customers to pay for a short-term boiler repair with a cost of up to £450, through a local contractor of their choice. If the customer then decided to install a heat pump via the Thermly platform within six months of the repair, Thermly would reimburse the cost of the boiler repair as a discount on the heat pump installation. Thermly’s customer research found that customers don’t like to feel they are being pressured into a decision, even when in a distress purchase situation. This approach aimed to remove the time pressure typically associated with a boiler failure, giving customers breathing space to consider a low-carbon option without being left without heating. The model was not tested at scale during the project, so its real-world uptake and impact remain unproven. However, Thermly found this offer to be both financially viable for the business and appealing to customers in surveys and focus groups.

2.5 Shared surveys and standardised data reduce duplication of site visits and improve outcomes

A point of friction in the customer journey that several projects tried to address was standardisation and sharing of survey data between multiple installers. For a homeowner seeking several quotes for installation, it is typically the case that several surveys may be conducted by different installers, leading to increased time, hassle and, potentially, cost for the homeowner and installers. Projects sought to address this in different ways, for example:

- **GO Renewable** placed shared and standardised surveys at the core of its platform strategy. Customers would complete an online suitability checker followed by an Elmhurst-accredited home survey, designed to meet PAS 2035 standards. This standardised survey would then be made available to a pool of local MCS-certified installers, enabling multiple quotations to be produced from a single assessment. This approach removed the need for multiple site visits and ensured that all installers worked from consistent data. Feedback from installers and local authority partners suggested that this reduced customer friction, improved trust in the quotations, and helped householders make better-informed comparisons. Although the platform has only delivered a modest number of job postings and quotations to date, the project team view the shared survey model as central to future scale-up. Plans are in place to further streamline survey outputs and develop automated design tools linked to the standard survey.

Glow (Hildebrand) incorporated a Survey Locker feature into its digital platform, allowing customers to upload and share their heat loss assessments and other technical survey data. This aimed to reduce duplication and enable customers to obtain multiple quotes more easily. While the idea aligned with the project's commitment to open data and user control, usage of the Survey Locker was limited during the pilot phase, and its impact on customer behaviour remains untested.

- **EDF Catalyst** embedded automated technical assessments within its digital app, with survey data collected remotely and structured to be compatible with MCS standards. The intention was to reduce costs and lead times by generating consistent, shareable outputs that could be used by installers across the supply chain. While pilot use was limited, the approach was welcomed by installers and offered early indications of reduced administrative burden and improved design quality.

2.6 Better informed customers improved the likelihood of a successful outcome and provided better leads for installers

Projects found that supporting customers before referral to an installer improved the likelihood of a successful installation. Key enablers included pre-survey qualification, customer education, and the provision of standardised data. These measures helped manage expectations, reduce installer burden, and improve quote accuracy. Several projects also reported that better-prepared leads resulted in higher conversion rates or improved installer satisfaction, although not all tested this quantitatively.

- **Thermly** designed its customer journey to prepare users before engaging with an installer. The platform included a guided process that required customers to complete a home suitability checker, review simple explanations of common installation issues, and provide key information about their property and preferences. This enabled Thermly to generate pre-qualified leads, accompanied by standardised data on heat loss, insulation, and system requirements. Feedback from installers involved in the project indicated that these better-prepared leads saved time, reduced site visit inefficiencies, and improved customer conversion. While the scale of testing was limited, the project team reported that structured onboarding helped align customer expectations with technical realities, reducing the likelihood of drop-outs or project redesigns.
- **GO Renewable** adopted a structured pathway that supported customers with a full PAS 2035-compliant survey before they were referred to installers. Because all quotations were based on the same underlying survey data, installers could provide more accurate and comparable pricing without needing to revisit the property. This reduced duplication and gave installers greater confidence in the quality of referrals. Although the project did not track post-referral conversion rates, feedback from participating local authorities and advisors suggested that this approach led to more productive installer engagement and improved trust in the quotations provided.

EDF Catalyst planned for a customer journey in which householders completed a structured remote survey through a mobile app, generating automated technical data to support installer quotation and system design. Although this journey was not fully rolled out during the pilot phase, the concept was co-designed with installer input, and trial feedback suggested that access to pre-structured survey outputs could reduce design time and minimise miscommunication. Future iterations of the platform will aim to further integrate this approach to streamline the handover between customers and installers.

Further information on these and other Heat Pump Ready projects can be found at www.gov.uk.