

Improving the visibility of distributed energy assets

Government response to the call for evidence

Where we have identified any third-party copyright information you will need to obtain permission from the

copyright holders concerned.

Contents

1	Executive Summary				
2	Int	roduction	5		
	2.1	Background to this government response	5		
	2.2	Strategic view and stakeholder responses	5		
	2.3	Proposed approach	6		
	2.4	Recent developments	7		
3	Sta	akeholder responses	9		
	3.1	Defining assets and asset visibility landscape (Questions 1, 4 and 5)	9		
	3.2	The benefits of increased asset visibility (Questions 2 and 3)	_ 12		
	3.3	Opportunities to increase visibility and access to asset data (Questions 6 to 18) _	_ 13		
4	Go	overnment response and conclusions	_ 25		
5	Next Steps				
Ar	Annex A: Call for evidence questions				

.

1 Executive Summary

The UK government is committed to decarbonising the power sector and delivering a smarter, more flexible electricity system that minimises necessary infrastructure spend and thereby lowers costs for consumers. Achieving these ambitions requires the deployment of low-carbon technologies, but also improved visibility of distributed energy assets such as heat pumps, electric vehicle charge points, batteries, and solar PVs connected to the distribution network.

In July 2025, the government published a call for evidence (CfE) on improving the visibility of distributed energy assets. We set out why accurate and timely data on such assets is essential for network planning, system resilience, and enabling consumer-led flexibility. In this way, improved asset visibility supports cost-effective decarbonisation, enhances consumer engagement and bill reduction opportunities, and underpins the delivery of the Clean Power 2030 Action Plan and Clean Flexibility Roadmap.

We asked stakeholder views on the benefits of asset visibility, existing gaps in network providers' asset registers, and solutions to enhance visibility. 43 responses from Distribution Network Operators (DNOs), manufacturers, installers, suppliers, and trade associations offered valuable perspectives on the benefits, challenges, and opportunities for improvement.

The evidence shows that respondents strongly support the need for improved asset visibility and identified several key themes and barriers. The majority of respondents agreed there is currently a fragmented regulatory landscape on asset visibility, and many explicitly described the current landscape as inefficient. Responses highlighted key barriers to asset visibility, including unclear and inconsistently applied registration obligations for newly installed assets, burdensome and inconsistent registration processes, and poor-quality, fragmented existing datasets.

There was consistent support for a coordinated, digital-first approach to overcome these challenges. This requires clear obligations on installers, streamlined DNO registration processes, and practical digital tools that reduce administrative burden. Respondents also highlighted that consideration should be given to the integration of complementary datasets such as smart meter data or energy scheme databases, particularly in identifying already connected assets. Crucially, stakeholders urged that the government should take actions in tandem as a holistic package.

There is strong industry agreement that increasing asset visibility is important for delivering Clean Power 2030. Government supports Ofgem's review of DNO connections processes and consultation on DNO obligations to improve asset registers. We are also committed to taking a coordinated approach alongside Ofgem's measures, which includes clarification of installer registration obligations at a suitable legislative opportunity, launching an industry asset visibility task and finish group to develop an MVP single point of notification tool to reduce overall installer burden, and finding ways for industry to better access and utilise existing data to increase the visibility of installed assets.

2 Introduction

2.1 Background to this government response

The UK's Clean Power 2030 Action Plan sets out a clear commitment to decarbonise the power sector and deliver a smarter, more flexible electricity system. Achieving this requires not only the rapid deployment of low-carbon technologies but also their effective integration into network planning and operations. Visibility of distributed energy assets such as heat pumps, electric vehicle charge points, batteries, and solar PV is critical to meeting these objectives and ensuring system resilience.

To support this ambition, the government published the Clean Flexibility Roadmap¹, which outlines the steps needed to unlock flexibility across the energy system. Additionally, NESO's Energy Sector Digitalisation Plan² sets out priorities for improving data sharing, interoperability and digital tools across the energy sector. These strategies highlight that accurate and timely asset data is critical to unlocking system flexibility, enabling wholesystem planning, and delivering cost-effective decarbonisation.

In the Clean Flexibility Roadmap, the government committed to do a CfE on asset visibility and respond by the end of 2025. In July 2025, the government published the CfE on improving the visibility of distributed energy assets, seeking views on the definition of relevant assets, the benefits of increased visibility, and opportunities to enhance data access and registration processes³. The CfE received 43 responses in total from a broad range of stakeholders, including DNOs, manufacturers, installers, suppliers, and trade associations. These responses have provided valuable insights into the barriers and opportunities for improving asset visibility.

2.2 Strategic view and stakeholder responses

The CfE sets out an end-to-end view of the asset visibility landscape, describing the processes and actors involved in capturing, storing, and sharing data on assets. This included the role of installers in notifying DNOs at the point of installation, the use of existing registers such as the Microgeneration Certification Scheme (MCS) database, and emerging platforms like Connect Direct and Flexibility Market Asset Register (FMAR). The CfE also emphasised the importance of interoperability and data standards to enable seamless data exchange across systems.

Respondents broadly agreed with this strategic framing, recognising that asset visibility is not only about knowing what assets exist but understanding how they operate within the system. Static data (such as asset type, location, and capacity) was seen as essential for

¹ Clean Flexibility Roadmap

² NESO Energy Sector Digitalisation Plan

³ Government call for evidence on improving visibility of distributed energy assets

planning and registration, while dynamic data (such as usage profiles and tariff information) was considered critical for flexibility services and system optimisation.

In the responses, there was strong industry consensus that improving asset visibility is an enabler for Clean Power 2030. 80% of respondents endorsed the proposed use cases, highlighting the role of visibility in enabling system flexibility, improving network planning, and supporting consumer engagement. Respondents also identified additional benefits, such as enhancing safety, reducing costs though better investment decisions, and supporting local authority decarbonisation strategies.

However, responses also revealed significant barriers to achieving this vision. Common themes included:

- 1. **Installer obligations:** DNO installer obligations were seen as unenforceable, unclear, and primarily safety-oriented rather than for improving visibility, increasing flexibility potential or network efficiency.
- 2. **DNO process:** DNO connection and asset data storage processes were seen as fragmented, incomplete and inconsistent. There is therefore a very limited view of load, generation and flexibility potential on the network, and the existing data is difficult to use for the sector.
- 3. **Installer burden:** Streamlining the notification process was seen as something that could have a positive impact on asset registration by helping to reduce the burden on installers. A digital first approach was highlighted as important.
- 4. **Using other datasets to improve visibility**: Existing datasets, including disaggregated smart meter consumption data, may enhance visibility, but this was often seen as secondary to capturing asset information at the point of installation.

Stakeholders agreed that improvements will not occur organically or at the pace required to meet Clean Power 2030. They called for a coordinated approach across government, Ofgem and industry, combining clearer obligations, streamlined processes and better use of datasets.

Further details on stakeholder views are provided throughout this document. In particular:

- Section 3.1 explores definitions of assets and the current visibility landscape.
- Section 3.2 summarises views on benefits and use cases for asset visibility.
- Section 3.3 sets out opportunities to increase visibility and access to asset data, including proposals for digital tools, streamlined processes, and alternative data sources.

2.3 Proposed approach

CfE responses made it clear that a single measure is unlikely to improve DNO asset registration, and overall asset visibility. The government will take forward a coordinated approach built around four interdependent themes:

- 1. **Clarifying installer obligations**: Introduce clear, enforceable obligations for installers to register distributed energy assets with DNOs. This will be delivered through primary legislation at a suitable legislative opportunity.
- 2. Improving DNO processes: We support Ofgem's consultation, published on 12th December 2025, on new requirements for DNOs to maintain asset registers and enable secure data exchange. We also agree that Ofgem's connections end-to-end review next steps and consultation, published on the 8th December 2025, should help identify the challenges with the existing process⁴. Subsequent actions should lead to improving the installer experience and help to support compliance with existing registration requirements. We will continue to engage with Ofgem on these processes, and their monitoring of progress on DNO performance.
- 3. **Reducing installer burden:** Improvements in the registration process for installers are needed so that they can comply to new obligations with ease. We therefore agree that a digital-first approach is important, including a single point of notification digital tool that improves installer notification. This should build on existing industry solutions.
- 4. **Using other datasets to improve visibility:** We support the use of existing datasets to enhance visibility but agree that this should be seen as secondary to capturing asset information at the point of installation.

Together, these measures form a strategic approach to improving asset visibility. They combine legal clarity, enhanced DNO processes, a focus on reducing installer burden, and better use of existing data to deliver a system that is efficient, interoperable, and capable of supporting flexibility and decarbonisation.

Further details on each element of the proposed approach and how they work together are provided in Section 4 of this document.

2.4 Recent developments

Since the CfE closed, several initiatives have strengthened the case for improving asset visibility. These include:

- NESO Energy Sector Digitalisation Plan: Published in September 2025, the plan sets
 out 16 actions to accelerate digitalisation across the energy sector. It highlights asset
 visibility as a critical enabler for flexibility and whole-system planning, including
 commitments to develop an integrated asset register for flexibility assets and establish
 interoperability standards by 2027.
- Ofgem RIIO-ED3 Sector Specific Methodology Consultation (SSMC)⁵: Published in October 2025, this consultation sets out proposals for the RIIO-ED3 price control for electricity DNOs, emphasising strategic planning and flexibility integration. Improved

⁴ Ofgem end-to-end connections review next steps and consultation

⁵ Ofgem RIIO-ED2 SSMC

- asset visibility is recognised as essential for delivering efficient investment and supporting electrification of heat and transport.
- Ofgem end-to-end connections review updated proposals, next steps and
 consultation: Published on 8th December 2025, the consultation sets out proposals to
 improve the connections process across seven themes, including enhanced visibility
 and accuracy of connections data, improved standards of service, and streamlined
 smaller connections processes. These proposals complement our approach to asset
 visibility by addressing related challenges in data quality, interoperability, and installer
 burden.
- Ofgem consultation on enhancing asset visibility: Published on 12th December 2025, the consultation sets out options for Distribution Network Operators (DNOs) to take a common approach to asset registration.

3 Stakeholder responses

This section details stakeholder views based on the questions that were asked as part of our CfE. Questions and responses have been grouped into the following key areas:

- 1. Defining assets and the asset visibility landscape (Section 3.1)
- 2. The benefits of increased asset visibility (Section 3.2)
- 3. Opportunities to increase visibility and access to asset data (Section 3.3)

In the summary of responses, percentages used are as a proportion of all 43 respondents unless otherwise specified.

We thank all those who read the CfE, and those who responded. Your feedback is directly informing the government's policy approach, and we thank you for your time and expertise.

3.1 Defining assets and asset visibility landscape (Questions 1, 4 and 5)

Question 1: What are your views on:

- a. The definition of assets relevant for consumer flexibility, network planning or other benefits of asset visibility?
- b. Who do you think will need to have visibility of these assets?
- c. What information about the asset will be most relevant?

Definition of assets for consumer flexibility and network planning

Most respondents (77%) agreed with the proposal to prioritise increasing visibility with a power rating of less than 50kW. Several respondents provided feedback on the scope, highlighting additional technologies and scope considerations that were not discussed in the CfE. These included consideration of:

- Other technologies such as thermal energy storage systems, such as storage heaters, heat batteries and hot water cylinders;
- · Assets used in non-domestic and commercial settings;
- Assets with a power rating larger than 50kW, if not necessarily prioritised, to ensure alignment with other programmes (such as FMAR and the Smart Secure Electricity Systems (SSES) Programme);
- Ensuring that all generation be visible;
- · Capturing any 'behind the meter' asset.

There was also support for clarifying terminology of 'Consumer Energy Assets' and 'Distributed Energy Assets' to define behind the meter assets, in line with industry practice.

Overall, there was general support for maintaining flexibility related to the scope of assets to accommodate emerging technologies.

Who will need to have visibility of these assets

Respondents indicated general support for the organisation types mentioned in the CfE, but also highlighted others that would benefit from visibility of asset data. The most popular were:

- Independent Distribution network Operators (IDNOs)
- Government and regulators
- Local authorities
- Certification bodies
- Academics and researchers

Other organisation types mentioned included charities, emergency services, property market and finance organisations.

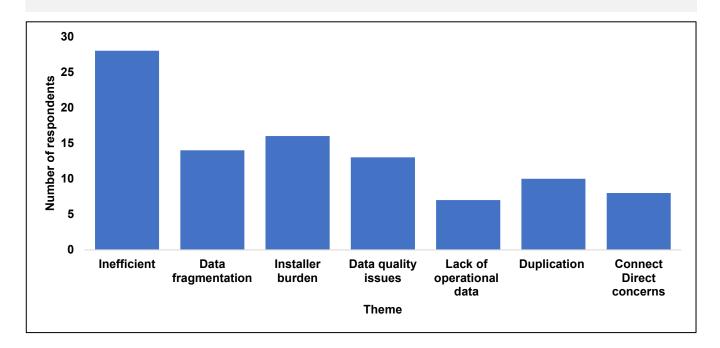
9% stated that different organisation types should have access to different asset datasets, depending on the purposes and needs of those organisations.

Information most relevant about the asset

Responses emphasised that the data collected should be purpose-driven and proportionate. Responses supported that static data (e.g. asset type, location, capacity) supports planning and registration, while dynamic data (e.g. usage profiles, tariff information) enables flexibility services and system optimisation. The most frequently cited data points were capacity, location, status, manufacturer, and asset type, seen as foundational for planning, flexibility services, and system optimisation.

Some respondents recommended that any decision for collection of dynamic data should be guided by a cost–benefit analysis or similar proportionality test, underling the importance of balancing data granularity with usability, cost, and consumer protection. Themes such as privacy, infrastructure costs and overall system complexity were highlighted as important considerations for policy development.

Question 4: Do you have a view of the comprehensiveness of the distributed energy asset visibility landscape set out in this call for evidence, or are there any other pertinent components, actors, gaps or duplication which should be considered?


Most respondents (79%) supported the asset visibility landscape outlined in the CfE. Notably, all DNOs, several aggregators, and installer associations endorsed the importance of improving visibility of distributed energy assets, recognising its strategic role in enabling smarter, more flexible energy system. No respondents disagreed with the landscape.

Respondents consistently emphasised visibility for network planning, forecasting, and flexibility market participation, but noted gaps such as missing operational data and poor interoperability. Four responses highlighted the absence of operational data in current registers, limiting their system modelling and investment decisions. Interoperability and shared technical standards were seen as critical for consumer participation in flexibility services.

Identified barriers included unclear installer compliance, fragmented registers, and legal restrictions on data sharing. Some respondents stressed the role of underrepresented actors like customers, manufacturers, and housing associations, while others suggested suppliers and aggregators could capture and share data.

Eight respondents identified missing components, including building energy management systems and digital EPCs. Two respondents proposed alternative models, including multi-channel reporting and consumer-led updates. Overall, respondents supported a coordinated approach prioritising data quality, interoperability, and inclusive participation.

Question 5: Do you have a view of the efficiency of the current asset visibility landscape?

65% of all respondents explicitly described the asset visibility landscape as inefficient, with none calling it efficient.

Fragmentation was a major concern as it creates confusion and reduces the value of data. 14 respondents cited disconnected registers and called for a single point of notification and better integration between systems like Connect Direct, FMAR and MCS.

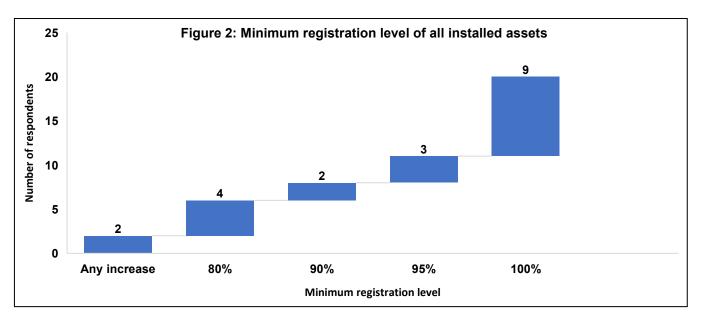
Installer burden was highlighted by 16 respondents, noting duplicative, manual processes and inconsistent requirements. Six respondents said some installers guess at completing technical fields or skip registration due to administrative burden.

Data quality issues were raised by 13 respondents, pointing to handwritten forms, PDF submissions, and lack of automated checks. 10 of them flagged duplications across registration processes, as some DNOs, certification bodies, grant schemes and warranty providers collect the same information without coordination or standardisation. 9 respondents also noted varying DNO requirements. Connect Direct was recognised as a step forward, although concerns included inconsistencies across DNOs, low installer awareness and the lack of a digital connect-and-notify pathway.

Overall, respondents agreed efficiency requires a coordinated, digital-first approach with standardised formats, streamlined processes, and better integration.

3.2 The benefits of increased asset visibility (Questions 2 and 3)

Question 2: To what extent do you agree with the benefits and use cases for asset data visibility and access set out, and how might they support increased system flexibility?


81% of respondents explicitly endorsed the proposed benefits in the CfE, with strong support from all DNOs, installers, and trade associations.

78% agreed that improved visibility would enhance system resilience and investment efficiency. Additionally, 68% highlighted its role in unlocking greater flexibility. Respondents underscored the importance of asset data supporting whole-system planning, specifically for supporting the delivery of Regional Energy System Plans and modelling.

Additional benefits cited included consumer offerings (10 responses) and improved consumer engagement (13 responses). Several highlighted network safety and reliability benefits, supporting DNOs to better anticipate and manage risks.

Respondents who expressed mixed or neutral views noted that although asset data can help forecast network upgrades, once assets are connected it is often too late to expand capacity. One also emphasised that incentives for demand turn-up are as important as reducing peak demand.

Question 3: What level of asset registration (the minimum rate of registration of all installed assets, by asset type) do you believe is necessary to support effective network planning and operation? Please explain your reasoning.

20 respondents provided a numerical view on minimum registration levels.

Nine respondents stated that only 100% registration would be sufficient, while two suggested any increase would be valuable or that thresholds should be statistically significant at local level rather than nationally uniform. Six respondents called for retrospective registration of existing assets.

Three respondents cautioned against minimum targets, arguing that they could create unhelpful incentives focused on meeting minimum thresholds and instead advocated for voluntary mechanisms. Some respondents noted that registration data alone is insufficient without understanding flexibility potential and asset usage.

Overall, respondents agreed that high levels of asset visibility are essential to unlock flexibility and enable effective network planning, with many calling for near-complete registration and coordinated action to deliver these benefits at pace.

3.3 Opportunities to increase visibility and access to asset data (Questions 6 to 18)

3.3.1 A review of DNO processes (Questions 6-7)

Question 6: Do you agree that the improvements to the minor connections process Ofgem has consulted on will encourage asset registration by installers, increasing asset visibility with DNOs?

60% of respondents agreed that improvements to the minor connections process would encourage asset registration and increase asset visibility. Many responses linked low registration rates to a lack of confidence in and understanding of the process and referenced administrative burden as a driver of non-compliance.

12 respondents called for greater standardisation between DNO and IDNO processes. Respondents also called for clearer responsibilities on DNOs, with twelve highlighting the need for DNOs to improve their performance and transparency. Digitalisation of the process was a recurring theme. Stakeholders noted that current digital platforms are hindered by inconsistent DNO criteria, low auto-approval rates, and limited integration. Targeted enhancements were recommended to improve usability, consistency, and interoperability with other systems.

Five respondents supported greater access to connections data, including proposals for an install-readiness system that would provide information before connection. This was seen as a potential way to improve installer confidence and streamline the customer journey.

Overall, stakeholders were supportive of proposed improvements to the minor connections process and recognised their potential to increase asset registration and visibility. The Ofgem end-to-end review was seen as key, although respondents stated that changes should be part of a broader package, including digitalisation, standardisation, and clearer obligations.

Question 7: What use cases or practical applications do you see for improved DNO registers of small-scale distributed energy assets and what industry actors would require access? Please reference and where possible quantify benefits, as well as relevant access arrangements that would be required.

Respondents strongly supported improved DNO registers, confirming the use cases outlined in the CfE and adding further applications. The most frequently cited benefits were flexibility market enablement (56%) and network planning and reinforcement deferral (53%)

Stakeholders emphasised that these benefits depend on data quality, standardisation, and interoperability, with one-third calling for integration with platforms such as FMAR and MCS. A summary of use cases and applications are detailed in Table 1 below.

Table 1: Use cases and applications

Use case	Number of respondents	Application or benefit
Flexibility market enablement	24	Supports onboarding, portfolio management, and market growth
Network planning and reinforcement deferral	23	Enables targeted upgrades, reduces reinforcement costs
Installer benefits	7	Provides local capacity data, streamlines connection process
Supplier tariff design and forecasting	7	Improves tariff design and consumption forecasting
Improved forecasting	6	Enhances demand / export forecasting for NESO and suppliers

Use case	Number of respondents	Application or benefit
Local authority energy planning	6	Informs Local Area Energy Plans and decarbonisation strategies
Consumer participation	4	Empowers consumers to engage in flexibility markets

Industry actors requiring access

Respondents identified a range of stakeholders that would benefit from access to improved DNO registers including: DNOs and IDNOs, NESO, flexibility providers, suppliers, local authorities, installers, manufacturers, investors, and researchers.

Access arrangements

16 responses raised access-related concerns. Proposals included role-based access, consent-based sharing, aggregated or anonymised data for non-operational use, and API-based interoperability with platforms such as FMAR and MCS.

Overall, respondents agreed that improved DNO registers are essential to unlocking the full benefits of asset visibility. Implementation must ensure robust governance and access arrangements that balance utility, privacy, and interoperability.

3.3.2 Clarifying asset registration obligations and reducing installer burden (Questions 8-14)

Question 8: Do you have a view of the completeness of installer obligations to register assets with DNOs as set out in section 4.2? Are there obligations and existing requirements that have not been covered, but relevant in providing visibility of assets to DNOs?

26 respondents did not provide an answer to this question. The majority (76%) of respondents who provided a response indicated that the installer obligations outlined were broadly complete. Ambiguity of obligations, particularly under the Electrical Safety, Quality and Continuity Regulations (ESQCR) 2002, was seen as a barrier to effective enforcement and compliance. Respondents also noted the absence of verifiable evidence requirements, reducing robustness.

Some respondents identified specific gaps, including:

- The underutilisation and poor understanding of ENA guidance for mass applications, particularly relevant for installers installing multiple assets in close geographic proximity.
- The need to account for all 'behind the meter' assets, such as solar panels, often excluded from formal registration processes but critical for network visibility.

- The National Terms of Connection (NTC) were flagged as relevant but overlooked obligations, as they require customers to notify DNOs of any generating equipment.
- While the CfE references the IET Wiring Regulations, it was clarified that these are considered best practice rather than enforceable obligations.

Several contributions also stressed the importance of specifying compliant digital notification routes (such as ENA Connect Direct) and establishing a minimum core dataset for asset registration. Finally, the potential for enhanced collaboration between DNOs and MCS to share installation data was highlighted as a practical step toward improving asset visibility.

Question 9: Which installer obligation clarification and streamlining option(s) would you support for increasing the registration of assets with DNOs? Please explain your view.

Most respondents (58%) supported legislative measures to clarify installer obligations to improve asset registration with DNOs. 26% opposed introducing new or clarified obligations, arguing that systemic inefficiencies and data gaps should be addressed through technical innovation and improved DNO processes rather than compliance measures. 14 respondents did not respond, with some expressing that other market participants were best placed to provide views.

Among those in favour, there was divergence on the preferred regulatory route:

Primary legislation

Of those in favour, 40% preferred a single, clarified obligation introduced through primary legislation, citing the need for long-term certainty and enforceability. They argued this would remove ambiguity across fragmented frameworks and strengthen consumer protection.

Several respondents added caveats. Three pointed out that primary legislation could be delayed by parliamentary time constraints, and three highlighted that moving straight to punitive measures without process improvements would be disproportionate.

Secondary legislation

The same number of respondents (40% of those in favour) favoured amending existing obligations through secondary legislation as a pragmatic, faster step toward clarifying obligations. This option was seen as proportionate and achievable in the short term, enabling updates to existing frameworks and mandating digital registration.

Three respondents stressed that success depends on robust monitoring and enforcement, and 12 mentioned that it must be paired with streamlined processes to avoid administrative burden.

Hybrid approach

20% advocated a layered or hybrid approach, starting with secondary legislation and process improvements, then transitioning to primary legislation over time. These respondents emphasised that awareness campaigns should complement legislative changes but must be carefully designed to avoid deterring low-carbon technology uptake.

Technical solutions and incentives

Technical solutions were highlighted by nine respondents as critical to success, including a single point of notification, API integration, and automated verification. Four respondents also suggested linking compliance to financial incentives, such as grant eligibility.

More than half of those in favour of legislative measures cautioned that clarified obligations alone will not deliver the desired outcomes unless embedded within a supportive ecosystem that that combines digital tools, installer education, streamlined processes, and proportionate enforcement.

Question 10: How effectively could enhancements to existing digital tools (such as Connect Direct), or the development of new solutions, streamline the notification and registration process for installers, particularly in the context of minor connections processes and asset visibility objectives?

74% of respondents supported enhancements to existing platforms and 26% had no view. None opposed their use. Respondents agreed that digital tools can reduce installer burden, but 13 warned improvements will not deliver the benefits without better integration between platforms such as Connect Direct, FMAR, and MCS datasets.

12 respondents supported the enhancing of existing registration routes, with Connect Direct most frequently cited. Suggested enhancements included standardisation across DNOs and IDNOs, clearer guidance, increased auto-approvals, and better user interfaces. Several noted the absence of a 'connect-and-notify' pathway for real-time digital submissions.

15 supported a single point of notification to consolidate multiple installer notifications into one standardised process. 13 called for better interoperability between platforms to enable automatic data and reduce duplication.

Respondents also mentioned some barriers for adoption, including limited awareness, fragmented systems, and inconsistent DNO policies. Nine flagged low-auto renewals rates and lack of integration as key issues.

Overall, the responses agreed that improving efficiency requires a coordinated, digital-first approach with standardised data formats, streamlined processes, and interoperability. Without these changes, the system will continue to fall short in supporting a smarter, more flexible energy system.

Question 11: Which existing notification and data provision requirements across distributed energy asset installation processes could be consolidated or streamlined and in what priority order? What evidence supports the benefits of such consolidation in reducing installer burden and/or improving asset visibility?

23 respondents provided a view. Of those, there was strong support (81%) for combining installation notification and data provision requirements. Other respondents preferred streamlining existing notification routes (9%), and alternatives including focusing on back-end development and automated asset registration (9%). In general, respondents were consistent in stating that notification processes are fragmented and duplicative across DNOs, IDNOs, certification bodies, grant schemes, and manufacturers.

Some respondents provided examples of successful models for how consolidating notification requirements could reduce installer burden and improve asset visibility:

- The integration of MCS' Installation Database and Benchmark Online, enabling heat pump installers to complete commissioning and certification through a single interface. This reduced duplication, improved accuracy, and accelerated processing.
- The UK's National Planning Portal, a single digital route for planning applications improved compliance and reduced administrative burden.
- The government's Automatic Asset Registration (AAR) programme showing that consolidated registration systems can reduce manual data entry, improve data accuracy and support further integrations.

Question 12: What delivery routes would you see as appropriate for streamlining and consolidating installer notification requirements, given that it would involve coordination across multiple recipient organisations?

Responses broadly supported the need for the development of a coordinated delivery route to consolidate installer notifications. 47% of respondents supported a single point of notification and five proposed alternative approaches. 18 respondents did not provide a view. Responses emphasised the need for a solution that reduces duplication, simplifies compliance, and enables efficient coordination across the relevant industry stakeholders.

Delivery route

A single point of notification that allows installers to submit data once, with relevant information securely shared across recipient organisations was the most frequently supported delivery route. It was seen as the most effective way to reduce administrative burden and improve asset visibility. Five responses proposed alternative approaches, including automation of processes, the creation of a centralised register, or enhancing existing routes without full consolidation.

Delivery mechanism

Respondents recommended several different tools or mechanisms for delivery:

- Connect Direct was supported as a foundation for a single point of notification, though
 many of the responses called for enhancements to improve usability, consistency and
 integration with other systems for this to work.
- FMAR was proposed by five respondents as a potential centralised route for asset registration, though mainly in reference to assets participating in flexibility markets.
- The AAR innovation programme products were recommended by four responses as a solution that could be utilised.
- Some respondents suggested a government-backed central asset register that can integrate with existing platforms.
- A small number of responses proposed notifications go through energy suppliers to improve accessibility for consumers.

Implementation considerations

Responses emphasised that any delivery route for streamlining installer notifications must be practical, cost-effective, and technically feasible. Key considerations included:

- **Cost-effectiveness and scalability:** Building on existing tools and programmes to reduce implementation costs and avoid duplication.
- **Technical feasibility:** Delivery routes should be underpinned by standardised data formats and APIs to enable interoperability between systems.
- **User-centred design:** Notification systems must be intuitive, accessible, and avoid introducing additional administrative burden for installers.
- Governance and accountability: Clear roles and responsibilities across participating organisations were seen as essential to ensure effective coordination.
- **Data governance and consent:** Some responses raised concerns about data privacy and security, highlighting the need for robust consent mechanisms to enable lawful and trusted data sharing.

Question 13: How could the usage of digital tools and solutions be encouraged, making them desirable in reducing administrative burden on installers?

Respondents strongly supported the use of digital tools. 70% expressed clear support, with the remainder either neutral or offering no view. They emphasised that adoption of obligations will only occur if tools deliver real time savings, reduce duplication, and integrate seamlessly into existing initiatives.

67% supported digital-first solutions, and around 4 respondents stressed that digital tools must remain accessible for sole traders and SMEs, with intuitive design and minimal technical requirements, alongside options for integration for larger organisations.

Table 2: Drivers for usage of digital solutions

Driver	Number of respondents	Summary of stakeholder views
Consolidation, integration, and standardisation	17	Strong support for a single point of notification linking DNO registration with other schemes.
Burden reduction and usability	14	Tools must be simple, intuitive, and demonstrably faster than paper-based routes
Automation and standardisation	7	Features such as pre-populated fields, address lookups, and API-based interoperability.
Training and awareness	7	Targeted onboarding and campaigns to build installer confidence and familiarity.
Security and trust	4	Ensure compliance with GDPR
Financial incentives and cost removal	3	Free or subsidised access and linking tool use to faster approvals or grant eligibility.

Question 14: To what extent do you consider asset self-registration to be a desirable approach in this context? In addition to the considerations outlined in Section 4.2, are there any other factors you believe are relevant to assessing the feasibility of this option?

Stakeholders expressed mixed views on asset self-registration. One-third supported the concept, but 70% of them viewed as a long-term aspiration, not an immediate priority. 35% opposed, and 28% were neutral, with the remainder unclear.

Concerns were widespread, particularly among DNOs and installer associations, citing digital access gaps, cybersecurity risks, and the risk of inaccurate data. Over half of respondents highlighted high barriers to implementation, including technical challenges, absence of standards, and the need for robust consent mechanisms. Five respondents proposed embedding self-registration within commissioning workflows or enabling it via secure APIs and manufacturer catalogues to improve feasibility and reduce manual data entry.

A recurring theme was the preference for hybrid models, combining installer-led registration with optional self-registration features. This was seen as more practical and scalable, provided alignment with initiatives such as AAR/CAR, Project Mercury and SSES.

Overall, stakeholders agreed that while self-registration could play a complementary role in the future, it should not be the focus of current policy. Near-term efforts should prioritise data integrity, user trust, and interoperability, while laying the groundwork for future enhancements.

3.3.3 Alternative routes to visibility (Questions 15–17)

In this section, we sought views on additional mechanisms and approaches that may support increasing visibility and access to asset data, beyond capturing asset information at the point of installation. This included options such as the innovative use of data, the combination of different asset registers and opportunities to align with the Market Facilitator in growing flexibility markets. We wanted to understand what existing industry data could help increase asset visibility, barriers that impedes innovative use of data, and options for overcoming them. We also sought to understand additional solutions that could improve asset visibility, and how options could be combined.

Question 15: What existing industry data may be used to help increase distributed energy asset visibility, with reference to:

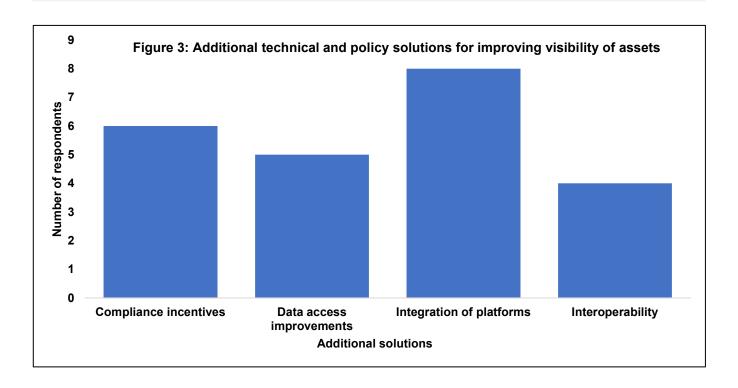
- a. What additional routes to access such data would be considered necessary and why?
- b. What provisions (data safety, security and appropriate access consent) should be put in place to enable the better use of such data within the constraints of protecting critical national infrastructure (CNI) sensitive information?

Of the 28 respondents to part a), 48% referenced the potential of smart meter data, mainly for identifying unregistered assets, but many cautioned it should not replace primary registration. Of those supporting the use of smart meter data, 31% highlighted the need for DNO access to disaggregated consumption data, while others suggested using voltage reads or making data more for accredited parties.

There was strong support for using alternative datasets (74% of respondents to this question), including:

- MCS Installation Database: Useful for certified solar PV, heat pumps, and batteries, but limited to MCS installers and excludes some technologies such as EV charge points.
- FMAR: Expected to complement visibility efforts by tracking assets in the flexibility markets.
- **DNO application data:** From tools such as Connect Direct, though effectiveness varies by region and installer uptake. Some respondents also pointed to the potential of Aldriven analysis, albeit with caveats around the lack of key asset specific details such as capacity and consumption profiles.

Respondents agreed these datasets are valuable when combined, as no single dataset is sufficient. Fragmentation and limited coverage mean existing datasets are most useful for legacy assets, reinforcing the need for timely capture at installation.


On access routes, 44% had no views. Others proposed different options, including:

- Licence changes to allow DNOs access to more granular smart meter consumption data.
- Leveraging existing portals like Connect Direct and FMAR.
- Establishing a core dataset as a single source of truth.
- Developing common APIs to enable interoperability.
- Improving customer and asset owner awareness of the benefits of sharing data, as well as potential incentives to encourage data sharing;

For part b), 84% highlighted GDPR compliance, consumer consent, and robust security measures. Proposals included encryption, role-based access, and strong governance frameworks to protect privacy and critical national infrastructure.

Overall, stakeholders supported using existing datasets supplement registration data, provided governance and consent frameworks are in place.

Question 16: Beyond the options already outlined, are there any additional policy or technical solutions that could effectively support the achievement of the objective to improve visibility of small-scale distributed energy assets? In your response, please consider opportunities to enhance data collection, storage, and access processes.

Of the 43 responses, 56% proposed new policy or technical solutions. A common theme was building on existing infrastructure rather than creating new frameworks. 14% called for better integration of existing platforms, with several noting that incremental improvements to current systems would deliver faster benefits than entirely new systems.

Seven respondents advocated for a single, authoritative registration platform, citing benefits of centralisation and lessons from AAR / Central Asset Register (CAR) pilots. Five suggested reducing manual data entry through pre-populated fields and linking to authoritative datasets such as the MCS Installation Database, alongside mandatory evidence capture for validation.

16 respondents recommended linking registration compliance to eligibility for grants or market participation. Lifecycle tracking, including decommissioning and ownership transfer, was raised by four respondents to maintain visibility over time. Interoperability was also highlighted by four respondents, with proposals for standardised APIs and data models to avoid silos.

Other suggestions include introducing a 'connection readiness' indicator, improving LV monitoring, and reforming Net Zero Building Metrics to support automated visibility. Overall, responses indicate strong support with policy levers to ensure scalability and adoption.

Question 17: Are there particular groupings or pairings of the proposed options that should be considered jointly to help deliver increased asset visibility?

Of the 43 responses, 47% suggested specific groupings. Table 3 shows the number of responses that mentioned specific options that should be part of a grouped approach.

Table 3: Policy options by number of responses

Option(s)	Number of responses
Digital first approach / Single point of notification	9
Legislation / Installer obligations	7
Single source of truth / asset register	4
Improved processes	3

Respondents highlighted the importance of establishing clear installer registration obligations at the point of installation, underpinned by legislation, as a foundational step toward improving asset visibility. This obligation was frequently paired with the need for a single point of notification which would provide a streamlined registration mechanism that would simplify the process for installers and reduce administrative burden. Responses emphasised measures must be accompanied by a digital first approach, creating user-friendly environment that encourages compliance.

However, some respondents cautioned that imposing obligations alone would not be effective unless the existing DNO application process is improved. They noted that the current system is overly complex and burdensome, and any new requirements must be introduced alongside efforts to simplify and rationalise the LCT application process.

Another theme was the desire for a centralised source of the truth for distributed assets. Respondents expressed concern about the fragmented systems, where multiple registers capture overlapping data. Tools such as FMAR or Connect Direct were mentioned as potential solutions to consolidate asset data into a single, integrated digital solution, helping to avoid duplication and ensure consistency.

Interoperability across different initiatives was also raised by some respondents as a critical requirement, ensuring that data collected in one part of the system can be effectively used elsewhere. Some respondents called for clear policy directives to guarantee that data collected is useful for all authorised parties and can be shared securely.

3.3.4 Assessing the viability of options (Question 18)

Q18: Do you agree with the proposed criteria for assessing future policy options to improve visibility of distributed energy assets, or are there any additional criteria that you feel should be considered?

Stakeholders expressed broad support with the proposed assessment criteria. Of the 43 responses, 53% agreed, including 9 explicitly supported the criteria and 14 who suggested refinements. 5 respondents were neutral, with four offering constructive additions, while 15 did not respond. No respondents disagreed, indicating strong consensus alongside valuable suggestions to improve clarity and scope.

The most common refinement was to reflect timeliness and implementation speed, with seven respondents calling for a criterion prioritising rapid delivery to avoid delays in meeting Clean Power 2030 objectives. Eight respondents recommended adding consumer participation and trust, emphasising transparency and usability. Four respondents highlighted assessing installer burden and installation times, either within efficiency or as a separate measure.

Other refinements included clarifying definitions of effectiveness, efficiency, equity, and futureproofing, with one respondent proposing that futureproofing should include innovation. Three respondents stressed the need for criteria on data quality and interoperability, and two suggested evaluating system-level impacts and cost proportionality to ensure interventions deliver whole-system benefits.

Overall, responses show strong support for the criteria, with constructive refinements focused on timeliness, installer burden, consumer trust, and interoperability. Feedback emphasised clarity, proportionality, and responsiveness to practical implementation challenges.

4 Government response and conclusions

4.1 The need for asset visibility

There was consensus from respondents that improving visibility of distributed energy assets is important to delivering Clean Power by 2030, and would deliver further benefits to consumers and the energy sector. Respondents provided detailed information on the benefits of improved visibility across a range of organisations and individuals, in the energy sector and beyond.

There was broad agreement that when visible to DNOs as authorised parties, distributed energy assets can be effectively integrated into a decarbonised, flexible energy system. End consumers may also benefit from improved asset visibility, particularly through reduced energy bills and opportunities for more streamlined access to flexibility markets.

Respondents provided a rich insight into challenges with registering distributed energy assets with DNOs, which was seen as a foundation for broader asset visibility. Core themes included:

- Unclear obligations on installers to register assets with DNOs;
- Inconsistent and fragmented processes for DNO registration;
- The administrative burden of registration on installers;
- Low quality, incomplete and fragmented datasets.

This in turn limits the overall quality and access to distributed energy asset data. As such, a number of use cases are currently hindered due to poor asset visibility data. Some of these use cases, identified in the CfE, include network planning and management, system flexibility and whole system planning. Improving asset visibility data would support these use cases, helping to enhance system resilience, investment efficiency and unlock greater system flexibility.

Responses also supported the notion that improvements to asset visibility may not happen organically, or at the pace that is needed to help achieve Clean Power 2030. The responses gave a strong indication of industry's view of the necessary measures needed, and there was support for a multiple measure approach.

It is our position therefore that the government, Ofgem and industry should take tangible steps to improve asset visibility. There was evidence to indicate that the immediate focus should be on improving the registration of distributed energy assets with DNOs at the point of installation.

4.2 A strategic approach to improving asset visibility

Government's proposed approach to improving asset visibility is built on a set of interdependent options that collectively address the core themes identified in the CfE and the current challenges in the registration of distributed energy assets.

We believe that each option reinforces the other, creating a comprehensive approach that reduces administrative burden and supports installers, strengthens data quality, and enables smarter energy system planning. Figure 4 below provides our view of how the different options can work together to enable improved asset visibility. Each option and government's position is detailed in Section 4.3 below.

Obligations on DNOs to improve connections Workable installer processes addresses systemic obligations provide a barriers to registration, consistent and enforceable Improving Clarifying provides incentive mechanism DNO foundation for improving installer to drive improvements, and processes obligations registration with DNOs. increases the quality of asset data for broader use. **Improving** asset visibility Reducing installer Using Other datasets may help other datasets Registration must be easy to identify legacy or burden to improve for installers or obligations unregistered assets, which will have limited impact. could support overall DNO visibility and enforcement of obligations.

Figure 4: Core themes from the call for evidence responses

4.3 The core themes from the call for evidence responses and our position

4.3.1 Clarifying installer obligations⁷

Key findings from the call for evidence

- **58%** of respondents supported the clarification of installer obligations.
- Of those who supported the clarification of installer obligations, 80% were supportive
 of using legislative means as an appropriate mechanism for implementation.

The responses received have indicated that existing obligations on installers to register assets are complex, poorly understood, and inconsistently followed. Many installers are unaware of their responsibilities and believe that the current process is fragmented and burdensome.

There was broad support for adjusting the existing legislative framework associated with installer obligations, and a range of views about the route. Overall, there was no clear

⁷ Refer to questions 8 and 9 in Section 3 for the analysis of the call for evidence response on clarifying installer obligations 26

preferred approach between primary legislation or secondary legislation from those that supported adjusting the legislative framework.

It is our view that effective installer obligations would help to meet certain outcomes, including:

- Clarity on the person obligated to register installations with DNOs
- Clarity on the process for registering installations with DNOs
- Flexibility on scope to accommodate new technologies as necessary
- Have an effective monitoring and enforcement regime
- Have proportionate penalties for non-compliance

Government commitment 1: The government will seek primary legislation at a suitable legislative opportunity to clarify installer obligations to register installations of distributed energy assets with DNOs.

We will also consider approaches to update the existing obligations in the Electricity Safety, Quality and Continuity Regulations (ESQCR) as necessary to avoid duplication.

In order for new obligations to be effective, the impact on administrative burden for installers must continue to be considered, including measures to streamline registration processes. We address this in Section 4.3.3 and are committed to working with stakeholders across government, regulation and industry to drive improvement in the registration process for installers so that they can comply with ease.

4.3.2 Improving DNO processes8

Key findings from the call for evidence

- **60%** of respondents agreed that improvements to smaller connections process would encourage asset registration and increase visibility.
- 65% of respondents raised concerns about fragmented processes and lack of integration.

There was broad consensus that improving DNO processes would help to improve asset registration rates and increase asset visibility across the energy system.

Improving the DNO smaller connections process is important for unlocking the potential of distributed energy resources. The current application process is considered complex and burdensome. Streamlining this process is critical not only to reduce installer burden but also to enhance registration compliance and confidence among installers.

The government understands the importance of improving the existing smaller connections processes. We agree that Ofgem's connections end-to-end review next steps and consultation, published on the 8th December 2025, should identify the challenges with the existing process

⁸ Refer to questions 5, 6, 7 and 17 in Section 3 for the analysis of the call for evidence response on improving DNO processes 27

for resolution. Subsequent actions should lead to improving the installer experience and help to support compliance with existing registration requirements. We will continue to engage with Ofgem on these processes, and their monitoring of progress on DNO performance.

There was broad support for improvements to DNO asset registers. Current registers are fragmented and incomplete, leading to poor data quality and duplication. Respondents called for standardised data formats, interoperability with platforms such as the MCS Installation Database and FMAR, and efficient validation processes to improve accuracy. We agree that better storage of asset data will lead to positive impacts on network planning, flexibility services, and forecasting, and may also offer practical benefits to installers, such as assisting with assessments of local capacity. Better DNO asset data was also seen as useful for supporting local authority energy plans and wider decarbonisation strategies.

Ofgem launched a consultation on 12th December 2025 on common approaches to DNO asset registration, including on new DNO licence requirements to maintain asset registers which support data exchange. We support Ofgem's consultation and envisage that this should help to improve DNO asset registers, completeness of asset data, and sharing of asset data.

These steps could provide incentives and means for DNOs to improve their processes, which should be complementary to clarifying obligations on installers, measures to reduce burden, and improving the overall completeness and quality of asset data.

4.3.3 Reducing installer burden⁹

Key findings from the call for evidence

- **72**% of respondents raised concerns about installer burden in practice, including duplicative, manual and complex processes.
- 47% of respondents supported the development of a single point of notification

Respondents provided strong evidence that streamlining installer notification processes will have a positive impact on asset registration, by reducing administrative burden. A user-friendly, digital first approach was often highlighted as important to achieve a streamlined notification process that encourages compliance.

The government agrees that minimising installer burden is crucial for increasing asset registration, and improving asset visibility. We support the use of digital tools, and note that there are existing industry solutions that support installers with the process. We believe it is most efficient to build on these solutions.

There was support in the CfE responses for a 'single point of notification' for all installer notifications (including DNO registration). Theoretically, this would allow installers to submit the

⁹ Refer to questions 5, 10, 11, 12, 13, 17 in Section 3 for the analysis of the call for evidence response on installer burden and single point of notification

necessary data for all notifications once, with relevant information securely shared with appropriate parties such as DNOs, MCS, manufacturers, and for government grant schemes.

There were mixed views on the scope of a potential single point of notification, including which existing industry solutions should be built upon, and which notifications should be prioritised. The next steps should be to set out a minimum viable product (MVP) design for a single point of notification, to enhance current capability at the least cost, and potential models for delivery. Existing and forthcoming solutions frequently mentioned in responses included Connect Direct, MCS Installation Database, Benchmark Online, FMAR, and LCT Connect from the AAR programme.

We support the publication of the Automatic Asset Registration (AAR) programme outputs on the Energy Systems Catapult's website, which provides industry stakeholders with key insights into building effective digital tools that could support asset visibility as a whole. The AAR programme ended in March 2025.¹⁰

Government commitment 2: The government will oversee the launch of an industry asset visibility task and finish group, with the objective of delivering an MVP specification, delivery proposal, and MVP for a single point of notification tool, which should build on existing tools. This should be delivered by the end of 2026. This group should be led by the ENA and MCS, attended by key stakeholders as determined by government, and should build on existing industry solutions. The principles of the group should be development of a suitable solution for industry that reduces installer burden and increases the registration of distributed energy assets¹¹.

4.3.4 Using other datasets to improve visibility¹²

Key findings from the call for evidence

- 75% of respondents to question 15 supported the use of alternative industry datasets to help increase visibility.
- 48% of respondents mentioned smart meter data as a valuable source, with 31% noting that this would require DNO access to disaggregated consumption data.

The CfE responses showed support across stakeholders for the use of alternative industry datasets to enhance visibility of distributed energy assets on the network. These datasets were seen as valuable tools to supplement, rather than replace, primary registration data collected through installer notifications at the point of installation.

¹⁰ These publications reflect the views of the consortium that delivered the AAR programme, and is not government policy.

¹¹ Please refer to Page 10 of the call for evidence for our definition of distributed energy assets. Available here.

¹² Refer to question 15 in Section 3 for the analysis of the call for evidence response on using other datasets to improve visibility

The MCS Installation Data was recognised as a useful source for certified solar PV, heat pumps, and batteries, although its coverage is limited to certain technologies and MCS-certified installers. FMAR, once operational, was expected to complement visibility efforts by tracking assets in flexibility markets. DNO application data from tools like Connect Direct was also noted as helpful, though its effectiveness may vary by region and installer uptake. Some respondents highlighted the potential of Al-driven analysis, though limitations of the approach in understanding asset capacity and consumption profile details were recognised. Regarding smart meter data, stakeholder views were mixed and inconsistent. Smart meter data was generally seen as a supplementary source of data that can support the identification of unregistered distributed energy assets through analysis of consumption patterns.

Central smart meter data repository

Theoretically, a central repository for smart meter and broader energy system data could be used as a supplementary dataset to enhance asset visibility. For example, this repository could hold anonymised smart meter data and make it available to DNOs to support network planning activities and improve understanding of distributed energy assets. This could leverage learnings and work already done as part of government's Smart Meter Energy Data Repository (SMEDR) programme. Scope and next steps for this programme are still to be decided.

Additionally, Elexon's proposed Smart Data Repository (SDR) could play a role in providing access to smart meter data. It is based on the new Settlement Systems being developed under the Market-wide Half-Hourly Settlement (MHHS) programme.

Considerations around consumer consent, data protection, and security must be addressed as proposals evolve.

DNO access to disaggregated smart meter consumption data

Access to more disaggregated smart meter consumption data could help DNOs identify unregistered assets on the low-voltage network and support network planning. The government acknowledges the potential benefits but also recognises risks and regulatory changes needed to provide this access. We encourage DNOs to explore the value further through innovation projects, to help quantify the benefits and justify any changes to current licence conditions and access restrictions.

5 Next Steps

In summary, government's proposed approach to improving asset visibility is built on a set of interdependent activities that collectively address the core themes identified in the CfE and the current challenges in the registration of distributed energy assets.

We have made two key commitments in this document. These are:

- 1. **Government commitment 1:** The government will seek primary legislation at a suitable legislative opportunity to clarify installer obligations to register installations of distributed energy assets with DNOs.
- 2. **Government commitment 2**: The government will oversee the launch of an industry asset visibility task and finish group, with the objective of delivering an MVP specification, delivery proposal, and MVP for a single point of notification tool, which should build on existing tools. This should be delivered by the end of 2026. This group should be led by the ENA and MCS, attended by key stakeholders as determined by government, and should build on existing industry solutions. The principles of the group should be development of a suitable solution for industry that reduces installer burden and increases the registration of distributed energy assets.

We will continue to work with stakeholders to determine the best approach and timelines to deliver these commitments.

Annex A: Call for evidence questions

- 1. What are your views on:
 - a. The definition of assets relevant for consumer flexibility, network planning or other benefits of asset visibility?
 - b. Who do you think will need to have visibility of these assets?
 - c. What information about these assets will be most relevant?
- 2. To what extent do you agree with the benefits and use cases for asset data visibility and access set out in section 2, and how might they support increased system flexibility?
- What level of asset registration (the minimum rate of registration of all installed assets, by asset type) do you believe is necessary to support effective network planning and operation? Please explain your reasoning.
- 4. Do you have a view of the comprehensiveness of the distributed energy asset visibility landscape set out in this call for evidence, or are there any other pertinent components, actors, gaps, barriers or duplication which should be considered?
- 5. Do you have a view of the efficiency of the current asset visibility landscape?
- 6. Do you agree that the improvements to the minor connections process Ofgem has consulted on will encourage asset registration by installers, increasing asset visibility with DNOs?
- 7. What use cases or practical applications do you see for improved DNO registers of small-scale distributed energy assets and what industry actors would require access? Please reference and where possible quantify benefits, as well as relevant access arrangements that would be required.
- 8. Do you have a view of the completeness of installer obligations to register assets with DNOs as set out in section 4.2? Are there obligations and existing requirements that have not been covered, but relevant in providing visibility of assets to DNOs?
- 9. Which installer obligation clarification and streamlining option(s) would you support for increasing the registration of assets with DNOs? Please explain your view.
- 10. How effectively could enhancements to existing digital tools (such as Connect Direct), or the development of new solutions, streamline the notification and registration process for installers, particularly in the context of minor connections processes and asset visibility objectives?
- 11. Which existing notification and data provision requirements across distributed energy asset installation processes could be consolidated or streamlined and in what priority order? What evidence supports the benefits of such consolidation in reducing installer burden and/or improving asset visibility?

- 12. What delivery routes would you see as appropriate for streamlining and consolidating of installer notification requirements, given that it would involve coordination across multiple recipient organisations? Please consider cost and implementation feasibility for market participants in providing your views.
- 13. How could the usage of digital tools and solutions be encouraged, making them desirable in reducing administrative burden on installers?
- 14. To what extent do you consider asset self-registration to be a desirable approach in this context? In addition to the considerations outlined in Section 4.2, are there any other factors you believe are relevant to assessing the feasibility of this option?
- 15. What existing industry data may be used to help increase distributed energy asset visibility, with reference to:
 - a. What additional routes to access such data would be considered necessary and why?
 - b. What provisions (data safety, security and appropriate access consent) should be put in place to enable the better use of such data within the constraints of protecting critical national infrastructure (CNI) sensitive information?
- 16. Beyond the options already outlined, are there any additional policy or technical solutions that could effectively support the achievement of the objective to improve visibility of small-scale distributed energy assets? In your response, please consider opportunities to enhance data collection, storage, and access processes.
- 17. Are there particular groupings or pairings of the proposed options that should be considered jointly to help deliver increased asset visibility?
- 18. Do you agree with the proposed criteria for assessing future policy options to improve visibility of distributed energy assets, or are there any additional criteria that you feel should be considered?

