

Monthly water situation report: England

1 Summary - November 2025

Rainfall in November was 149% of the long term average (LTA) for England, with three-quarters of hydrological areas receiving higher than average rainfall. Soil moisture deficits (SMD) have continued to decrease across the country, although soils remain slightly drier than expected predominately in parts of south-east England. Monthly mean river flows increased at all our indicator sites, and almost all sites were classed as normal or higher for the time of year. Groundwater levels were mixed at the end of November, with half beginning to see increases in levels, while remaining sites continued to fall. Reservoir storage increased at all reservoirs or reservoir groups we report on, and storage for England was 79.1% after a 14% increase to the end of November.

1.1 Rainfall

During November, England received 138mm of rainfall which represents 149% of the 1991 to 2020 LTA for the time of year. Almost three-quarters of hydrological areas received above average rainfall during November, with areas receiving less than LTA rainfall mainly found in the south-east. The wettest hydrological areas a percentage of LTA was Hull and Humber in north-east England which received 257% (180mm), while Sheppey in south-east England was the driest having seen just 63% (39.7mm) of LTA rainfall in November. Five hydrological areas in the east Midlands and Humberside recorded the wettest November since records began in 1871. (Figure 2.1 and 2.2)

Rainfall was classed as normal or higher for all hydrological areas in November. Forty-one hydrological areas (29% of the total), were classed as normal for the time of year, with almost all of these found in the south-east of England. In south-west England, almost all hydrological areas were above normal, accounting for the majority of the 38 (27%) classed as above normal in November. All remaining hydrological areas were classed as notably or exceptionally high, with central, east and far north-west England seeing most of the exceptionally high totals. (Figure 2.2)

The 3-month cumulative rainfall totals were above normal or higher for more than two-thirds of hydrological areas, with the remaining third classed as normal and mainly found in south-east England. In north-west and north-east England, cumulative rainfall totals were classed as notably or exceptionally high for the 3-month period. This includes the Derwent (north-east), which had the wettest three months ending in November since 1954. Cumulative rainfall over the last 6 months have been normal for much of England. However, parts of the north and west of England have received above normal or higher rainfall with exceptionally high totals in the far north-west. In south-east and east England, hydrological areas around London and into parts of Essex rainfall totals for the period were below normal. Over the past 12-months, cumulative rainfall totals were mixed, ranging from notably low to notably high. In north-west

England, rainfall totals were largely normal, with a handful of above normal and notably high areas in the far north. All other parts of England had a mix of normal, below normal or notably low rainfall totals, with most notably low hydrological areas found in south-east and east England. (Figure 2.2)

At a regional scale, rainfall totals for November were classed as exceptionally high for central, east, north-west and north-east England, with all receiving more than 160% of LTA rainfall in the month. North-east England saw the fourth wettest November since records began in 1871. South-west England was classed as above normal, and south-east England was classed as normal having received 100% of LTA rainfall. England as a whole was classed as notably high for the time of year. (Figure 2.3)

1.2 Soil moisture deficit

SMD continued to decrease across England in November, with SMD in north-west and northeast England almost completely eliminated. Soils in south-east, east and parts of south-west England remain drier, although all saw quick reductions during November. (Figure 3.1)

Despite these notable decreases in SMD across the country, soils remain drier than average for the time of year in south-east and parts of east and south-west England, as the impacts of earlier dry weather continue to be felt. In parts of north-east, central and east England, soils are now slightly wetter than would be expected at the end of November. For the rest of England, SMD are around average for the end of November. (Figure 3.2)

1.3 River flows

Monthly mean river flows increased at all of our indicator sites in November. Almost half of sites were classed as normal for the time of year, most of which were in south-west, south-east and east England. Twelve sites across England were classed as above normal for the time of year. Eleven sites, all in central, north-west and north-east England were classed as notably high. In south-east and east England, five sites were classed as below normal for the time of year, all of which are groundwater fed rivers. (Figure 4.1)

Three regional index sites were classed as normal for the time of year, the Bedford Ouse at Offord in east England, and the Great Stour and River Thames (naturalised at Kingston) in south-east England. The River Exe at Thorverton in south-west England was classed as above normal for the time of year. The River Dove in central England, the South Tyne in north-east England, and the River Lune in the north-west were all classed as notably high in November. For Haydon Bridge on the South Tyne, this marked a quick recovery from below normal flows in October. (Figure 4.2)

1.4 Groundwater levels

The response in groundwater levels to November's rainfall was variable, with half of sites beginning to increase, while the remaining sites continued to decline. Half of our reported sites were classed as normal for the time of year at the end of November. Four sites in central and north-east England were classed as above normal of the time of year. Priors Heyes in the West Cheshire Sandstone reflects how the aquifer is recovering from the effects of historic abstraction, and was exceptionally high at the end of November. Five sites were classed as below normal for the time of year, including Woodyates (Upper Dorset Stour) in south-west England and Grainsby (Northern Chalk) in east England. Tilshead (Upper Hampshire Avon Chalk) in south-west England and Chipstead (Epsom North Downs Chalk) in the south-east were both classed as exceptionally low for the time of year. (Figure 5.1)

This mixed picture was reflected in our major aquifer sites. Jackaments Bottom in the Jurassic Limestone in south-east England, was normal for the time of year, having risen quickly from notably low levels at the end of October. In sandstone aquifers, Skirwith in the Carlisle Basin and Eden Valley sandstone in north-west England was normal for the time of year, while Weir Farm in the Bridgnorth Sandstone in central England was above normal. Chalk aquifer sites were all normal or lower for the time of year. Stonor Park (South West Chilterns) in south-east England and Redlands (Cam and Ely Ouse Chalk) in the east were normal for the time of year, despite both seeing a small decrease in levels at the end of November. Little Bucket in the East Kent Stour Chalk (south-east England) and Dalton Estate Well in the Hull and East Riding Chalk (north-east England) were both below normal. Chilgrove (Chichester Chalk) in the south-east was notably low, after levels began to rise and it recovered from exceptionally low levels last month. (Figure 5.2)

1.5 Reservoir storage

At the end of November, reservoir storage had increased at all reservoirs and reservoir groups that we report on. Four reservoirs or groups increased by more than 30% in the month, with Clatworthy seeing the largest increase of 39%. Increases were generally smaller in south-east and east England, with most reservoirs recording an increase of less than 10%. Just over half of reservoirs were classed as normal for the time of year, including all reservoirs in north-east England. Vyrnwy in Wales which supplies north-west England was completely full at the end of November and was classed as exceptionally high for the time of year. Seven reservoirs or groups were classed as below normal, most of which were in south-west, south-east and east England. Another 6 were classed as notably low for the time of year, including Wimbeball in the south-west, and Ardingly and Bewl in south-east England, which were all less than 50% full. Storage in the Dove Group in central England increased 11% but remains classed as exceptionally low for the time of year. (Figure 6.1)

Reservoir stocks increased in all regions during November. South-west England has the lowest storage at 57.8% having risen 7% in the month. North-east England reservoirs are

90.4% full, after a 17% increase. For England as a whole, storage rose by 14% and was 79.1% at the end of November. (Figure 6.2)

1.6 Forward look

December began with wet weather for many, with particularly wet conditions in south-west and north-west England. All parts have seen some rainfall, but east England has been driest. Storm Bram arrived in the second week of the month, bringing more heavy rain and strong winds to western and northern parts of the country. Moving into the middle of the month, conditions are expected to remain unsettled and changeable, with frontal systems moving in from the Atlantic. Spells of rain, which may be heavy at times, and strong winds are expected, with temperatures remaining quite mild. Towards the end of December some drier, more settled periods of weather are possible, although it is uncertain how long they will last. Otherwise conditions are expected to remain changeable, wet and windy.

For the 3-month period from December to February, the chances of a wet or dry season in the UK are around normal, with a normal chance of heavy rain or flooding impacts. However, regional variations in rainfall are to be expected. The chances of the period being mild are greater than normal, but cold weather spells and associated risks could still occur.

1.7 Projections for river flows at key sites

By the end of March 2026, river flows in east England have a greater than normal chance of being below normal or lower. In all other regions river flows are most likely to be normal or higher for the time of year.

By the end of September 2026, river flows in all parts of England are most likely to be normal of higher for the time of year, with above normal or higher flows particularly likely in western and northern rivers.

For scenario based projections of cumulative river flows at key sites by March 2026 see Figure 7.1.

For scenario based projections of cumulative river flows at key sites by September 2026 see Figure 7.2.

For probabilistic ensemble projections of cumulative river flows at key sites by March 2026 see Figure 7.3.

For probabilistic ensemble projections of cumulative river flows at key sites by September 2026 see Figure 7.4

1.8 Projections for groundwater levels in key aquifers

By the end of March 2026, groundwater levels have a greater than normal chance of being below normal or lower in east, and south east England. In north-east England, groundwater levels have a greater than normal chance of being above normal or high for the time of year. In south-west, central and north-west England, groundwater levels are most likely to be normal or higher.

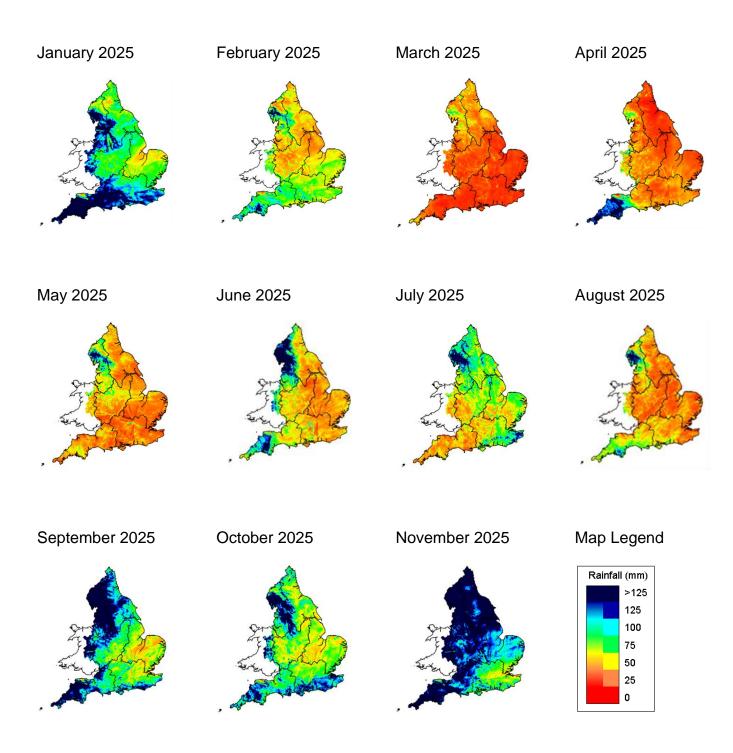
By the end of September 2026, groundwater levels have a greater than normal chance of being below normal or lower in east, south east, central and north east England. In south west and north west England, groundwater levels are most likely to be above normal or higher for the time of year.

For scenario based projections of groundwater levels in key aquifers in March 2026 see Figure 7.5.

For scenario based projections of groundwater levels in key aquifers in September 2026 see Figure 7.6.

For probabilistic ensemble projections of groundwater levels in key aquifers in March 2026 see Figure 7.7.

For probabilistic ensemble projections of groundwater levels in key aquifers in September 2026 see Figure 7.8.


Author: National Water Resources Hydrology Team, nationalhydrology@environment-agency.gov.uk

All data are provisional and may be subject to revision. The views expressed in this document are not necessarily those of the Environment Agency. Its officers, servants or agents accept no liability for any loss or damage arising from the interpretation or use of the information, or reliance upon views contained in this report.

2 Rainfall

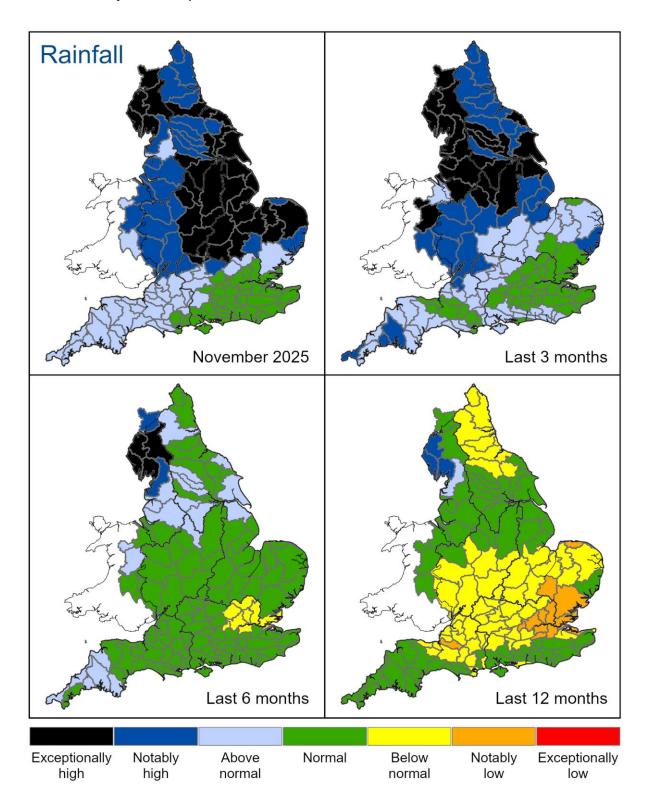
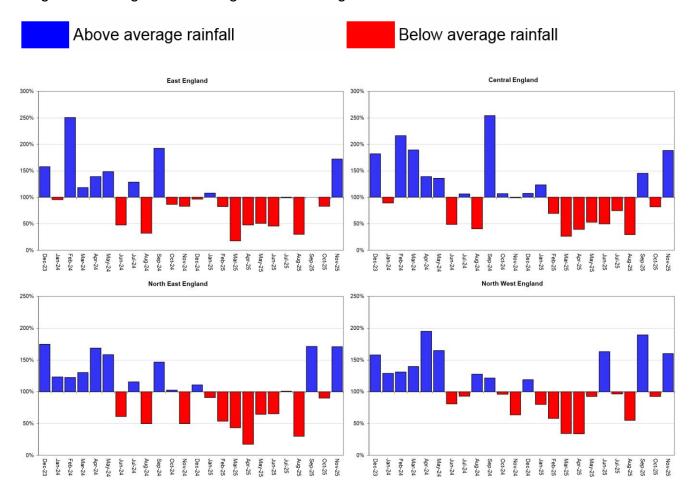
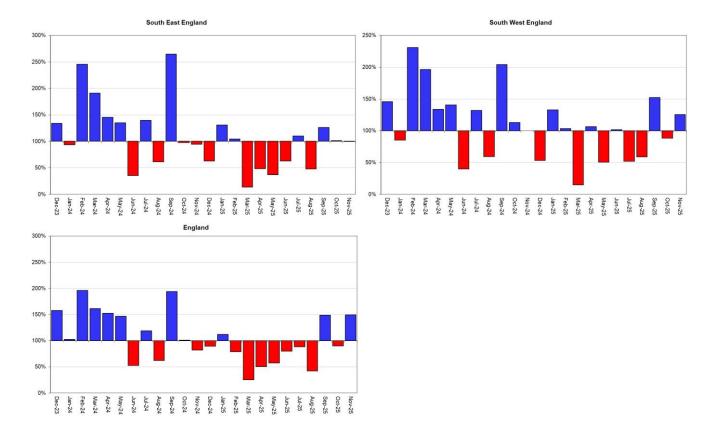

2.1 Rainfall map

Figure 2.1: Monthly rainfall across England and Wales for the past 11 months. UKPP radar data Note: Radar beam blockages in some regions may give anomalous totals in some areas.

(Source: Met Office. Crown copyright, 2025). All rights reserved. Environment Agency, AC0000807064, 2025.

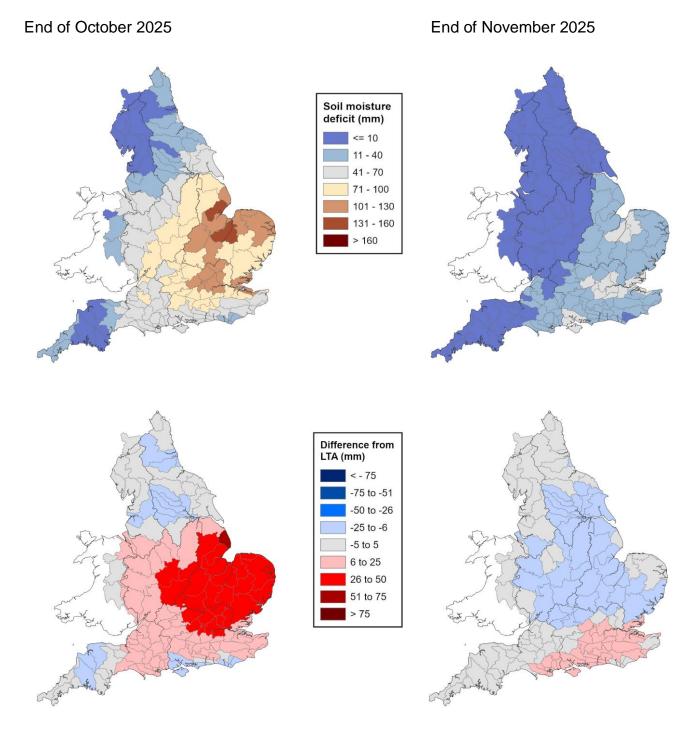

Figure 2.2: Total rainfall for hydrological areas across England for the current month (up to 30 November 2025), the last 3 months, the last 6 months, and the last 12 months, classed relative to an analysis of respective historic totals.



Rainfall data for Jan 2025 onwards, extracted from Environment Agency 1km gridded rainfall dataset derived from Environment Agency intensity rain gauges. (Source: Environment Agency. Crown Copyright, AC0000807064, 2025). Rainfall data prior to Jan 2025, extracted from Met Office HadUK 1km gridded rainfall dataset derived from registered rain gauges (Source: Met Office. Crown copyright, 2025).

2.2 Rainfall charts

Figure 2.3: Monthly rainfall totals for the past 24 months as a percentage of the 1991 to 2020 long term average for each region and for England.

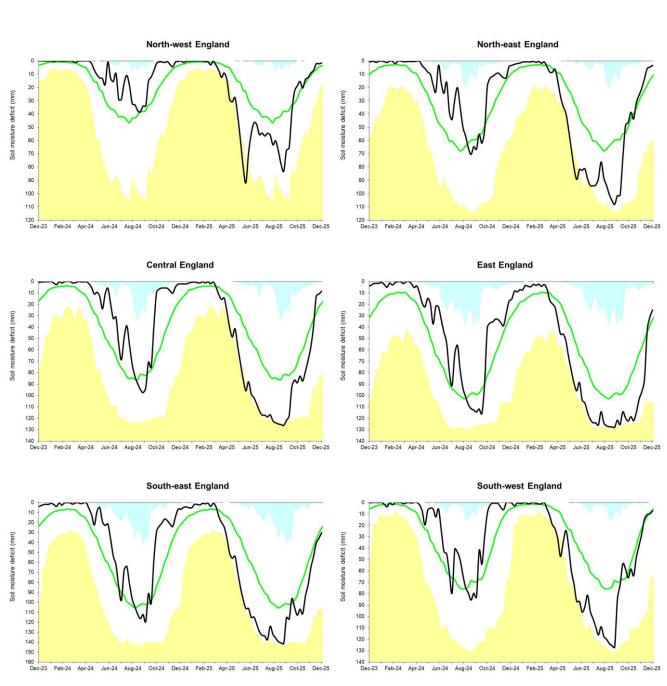


Rainfall data for Jan 2025 onwards, extracted from Environment Agency 1km gridded rainfall dataset derived from Environment Agency intensity rain gauges. (Source: Environment Agency. Crown Copyright, 2025). Rainfall data prior to Jan 2025, extracted from Met Office HadUK 1km gridded rainfall dataset derived from registered rain gauges (Source: Met Office. Crown copyright, 2025).

3 Soil moisture deficit

3.1 Soil moisture deficit map

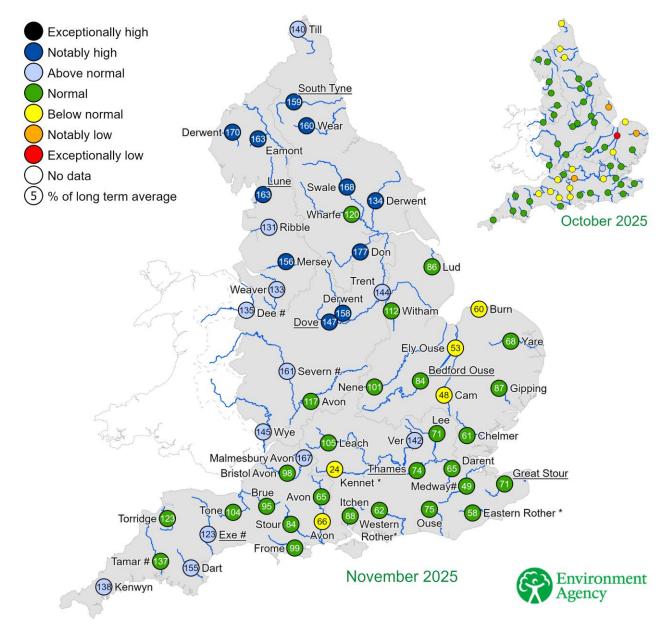

Figure 3.1: Soil moisture deficits for weeks ending, 29 October 2025 (left panel) and 03 December 2025 (right panel). Top row shows actual soil moisture deficits (mm) and bottom row shows the difference (mm) of the actual from the 1991 to 2020 long term average soil moisture deficits. Calculated from MORECS data for real land use.



(Source: Met Office. Crown copyright, 2025). Crown copyright. All rights reserved. Environment Agency, AC0000807064, 2025.

3.2 Soil moisture deficit charts

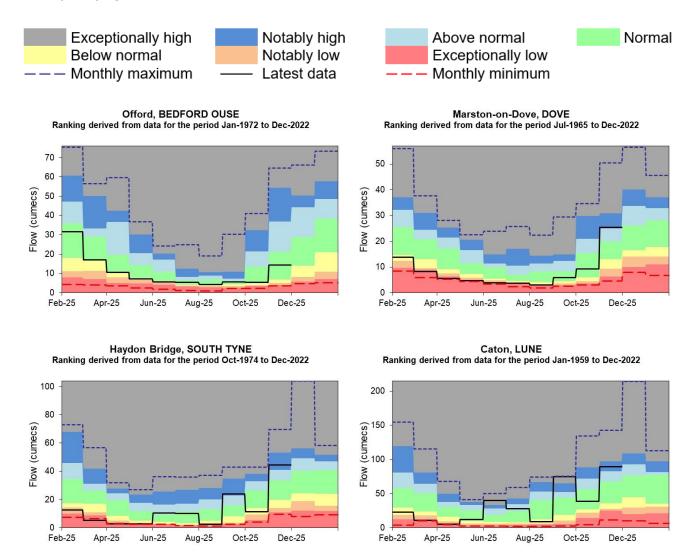
Figure 3.2: Latest soil moisture deficits for all geographic regions compared to 1991 to 2020 long term average, and historic maximums and minimums (1961 to 2022). Weekly MORECS data for real land use.

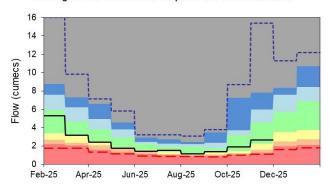

(Source: Met Office. Crown copyright, 2025).

4 River flows

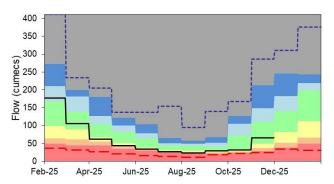
4.1 River flow map

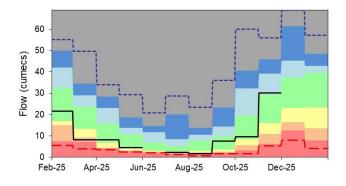
Figure 4.1: Monthly mean river flow for indicator sites for October 2025 and November 2025, expressed as a percentage of the respective long term average and classed relative to an analysis of historic October and November monthly means. Table available in the appendices with detailed information. Regional index sites are underlined and shown in the hydrographs in Figure 4.2.


Naturalised flows are provided for the River Thames and the River Lee. +/- Monthly mean flow is the highest/lowest on record for the current month (note that record length varies between sites). *Flows may be overestimated at these sites – data should be treated with caution. # Flows may be impacted at these sites by water releases from upstream reservoirs.


(Source: Environment Agency). Crown copyright. All rights reserved. Environment Agency, AC0000807064, 2025.

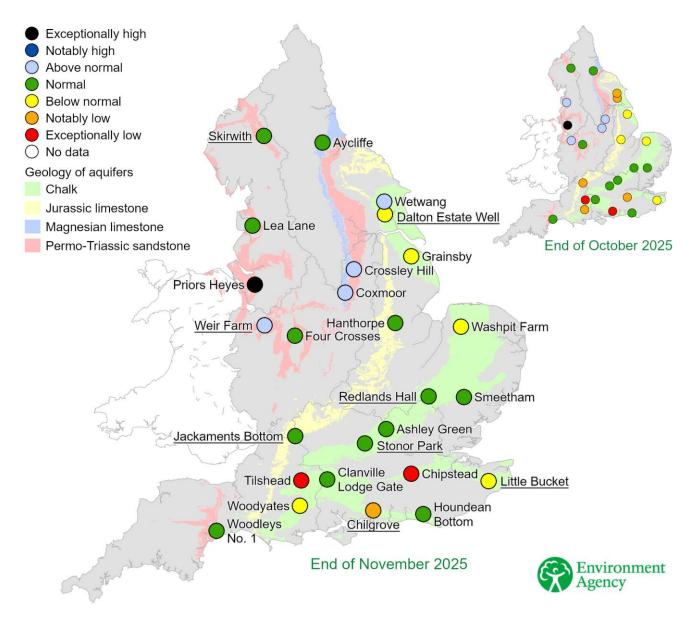
4.2 River flow charts


Figure 4.2: Monthly mean river flow for index sites over the past year for each geographic region, compared to an analysis of historic monthly mean flows, and long term maximum and minimum flows.


Horton, GREAT STOUR Ranking derived from data for the period Oct-1964 to Dec-2022

Kingston (naturalised), THAMES Ranking derived from data for the period Jan-1951 to Dec-2022

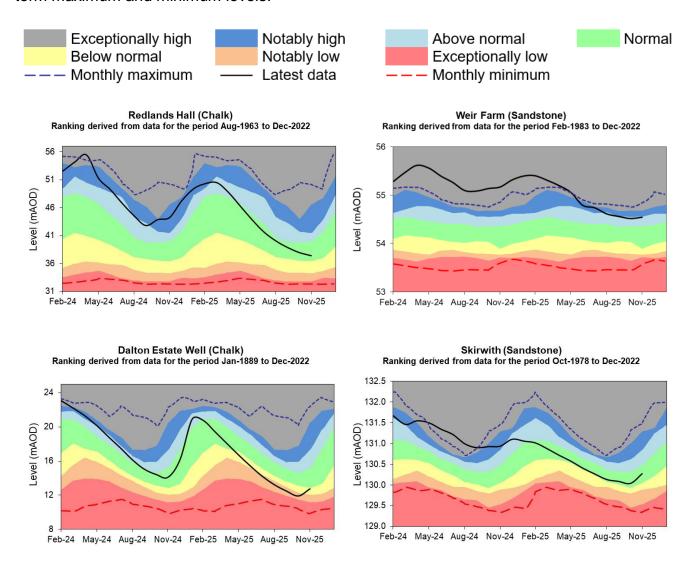
Thorverton, EXE Ranking derived from data for the period Apr-1956 to Dec-2022

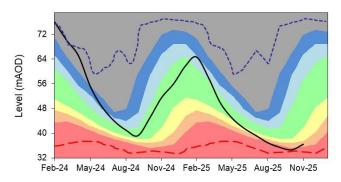

(Source: Environment Agency).

5 Groundwater levels

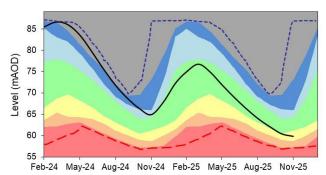
5.1 Groundwater levels map

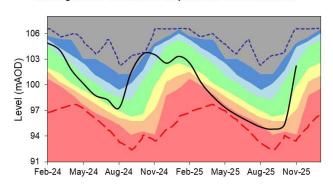
Figure 5.1: Groundwater levels for indicator sites at the end of October 2025 and November 2025, classed relative to an analysis of respective historic October and November levels. Major aquifer index sites are underlined and shown in groundwater level charts in Figure 5.2.

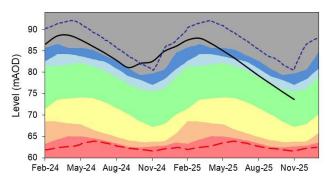

Levels at Priors Heyes remain high compared to historic levels because the aquifer is recovering from the effects of historic abstraction. # Levels at Washpit Farm have been estimated from a nearby site. +/- End of month groundwater level is the highest/lowest on record for the current month (note that record length varies between sites).


(Source: Environment Agency). Geological map reproduced with kind permission from UK Groundwater Forum, BGS copyright NERC. Crown copyright. All rights reserved. Environment Agency, AC0000807064, 2025.

5.2 Groundwater level charts


Figure 5.2: End of month groundwater levels at index groundwater level sites for major aquifers. Past 22 months compared to an analysis of historic end of month levels and long term maximum and minimum levels.


Chilgrove (Chalk)
Ranking derived from data for the period Feb-1836 to Dec-2022


Little Bucket (Chalk)
Ranking derived from data for the period Jan-1971 to Dec-2022

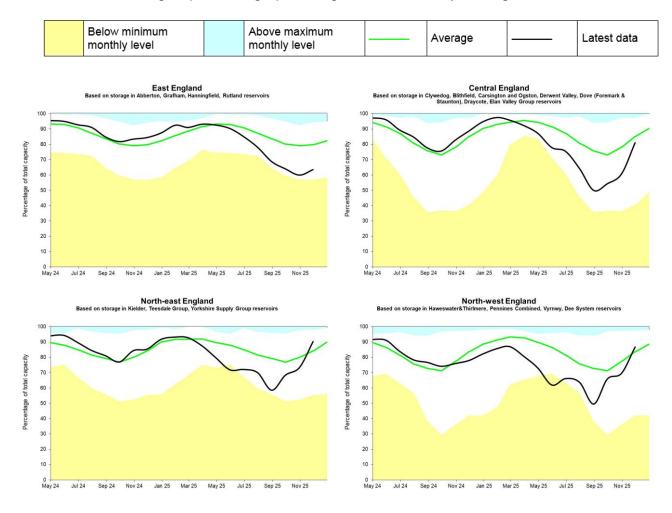
Jackaments Bottom (Jurassic Limestone) Ranking derived from data for the period Jan-1974 to Dec-2022

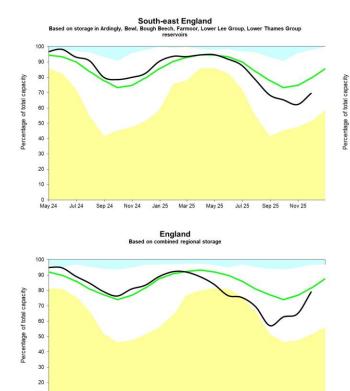
Stonor Park (Chalk)
Ranking derived from data for the period May-1961 to Dec-2022

(Source: Environment Agency, 2025)

6 Reservoir storage

6.1 Reservoir storage map


Figure 6.1: Reservoir stocks at key individual and groups of reservoirs at the end of October 2025 and November 2025 as a percentage of total capacity and classed relative to an analysis of historic October and November values respectively. Note: Classes shown may not necessarily relate to control curves or triggers for drought actions. As well as for public water supply, some reservoirs are drawn down to provide flood storage, river compensation flows or for reservoir safety inspections. In some cases, current reservoir operating rules may differ from historic ones. The Dee system has been drawn down as part of reservoir safety works which are expected to continue until 2025. Kielder levels are lower than historical levels due to a new flood alleviation control curve. Welsh reservoirs marked with a 2 provide water resources to north-west and central England.



(Source: water companies). Crown copyright. All rights reserved. Environment Agency, AC0000807064, 2025

6.2 Reservoir storage charts

Figure 6.2: Regional reservoir stocks. End of month reservoir stocks compared to long term maximum, minimum and average stocks. Note: Historic records of individual reservoirs/reservoir groups making up the regional values vary in length.

Jul 24 Sep 24 Nov 24 Jan 25 Mar 25 May 25 Jul 25 Sep 25 Nov 25

South-west England
Based on storage in Blagdon, Chew Yalley, Cataworthy, Colliford, Roadford, Stithians, Wimbleball reservoirs

Jan 25

Nov 24

Mar 25 May 25

Jul 25

Sep 25

70

60

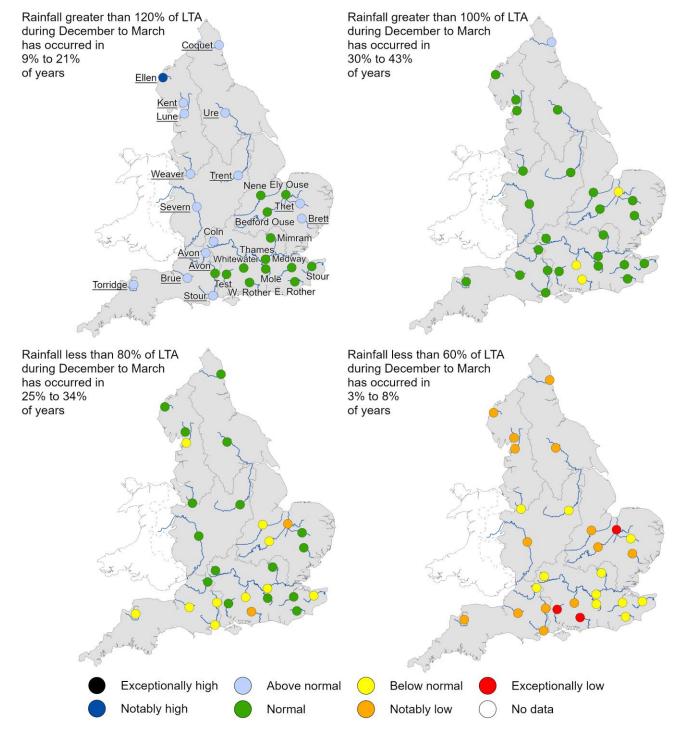
50

40

30

20

10


Jul 24

(Source: Water Companies).

7 Forward look

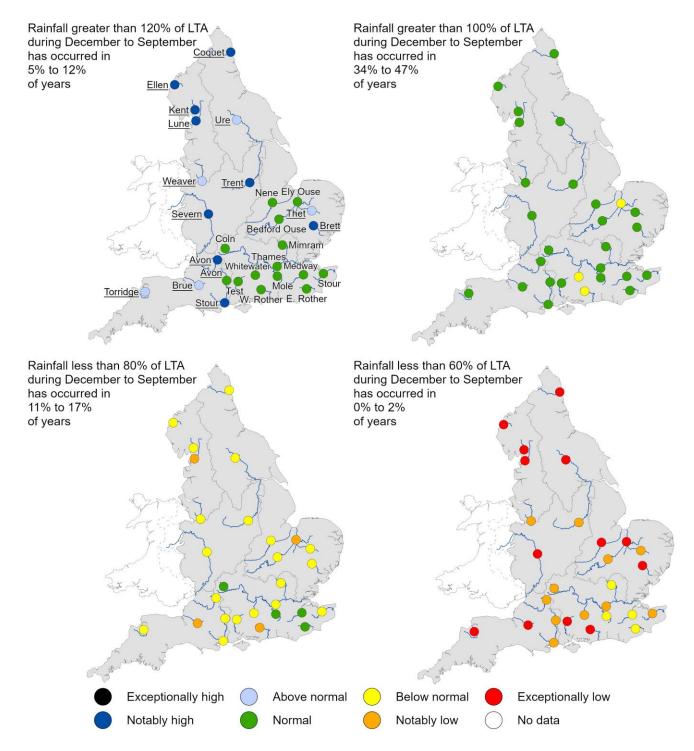

7.1 River flow

Figure 7.1: Projected river flows at key indicator sites up until the end of March 2026. Projections based on four scenarios: 120%, 100%, 80% and 60% of long term average rainfall between December 2025 and March 2026. Rainfall statistics based on occurrence in the historic record since 1871. Projections for underlined sites produced by CEH.

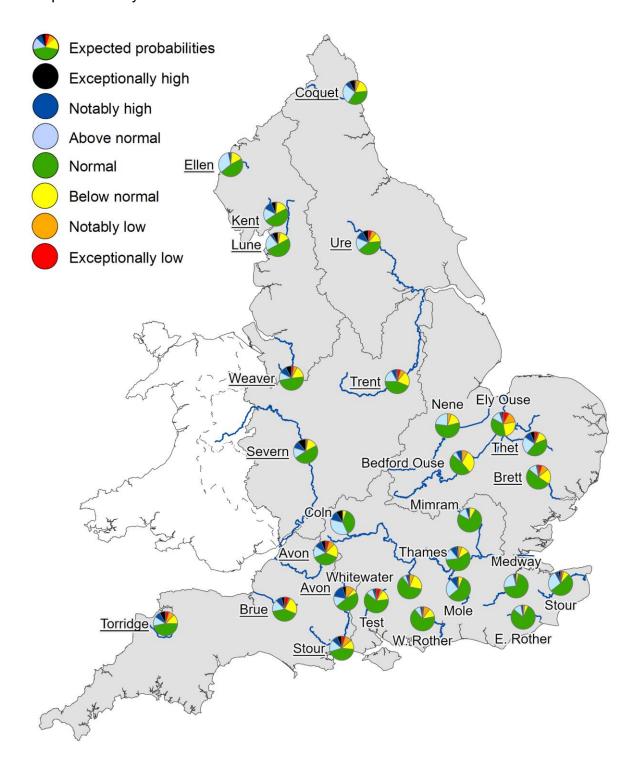

(Source: UK Centre for Ecology and Hydrology, Environment Agency). Crown copyright. All rights reserved. Environment Agency, AC0000807064, 2025.

Figure 7.2: Projected river flows at key indicator sites up until the end of September 2026. Projections based on four scenarios: 120%, 100%, 80% and 60% of long term average rainfall between December 2025 and September 2026. Rainfall statistics based on occurrence in the historic record since 1871. Projections for underlined sites produced by CEH.

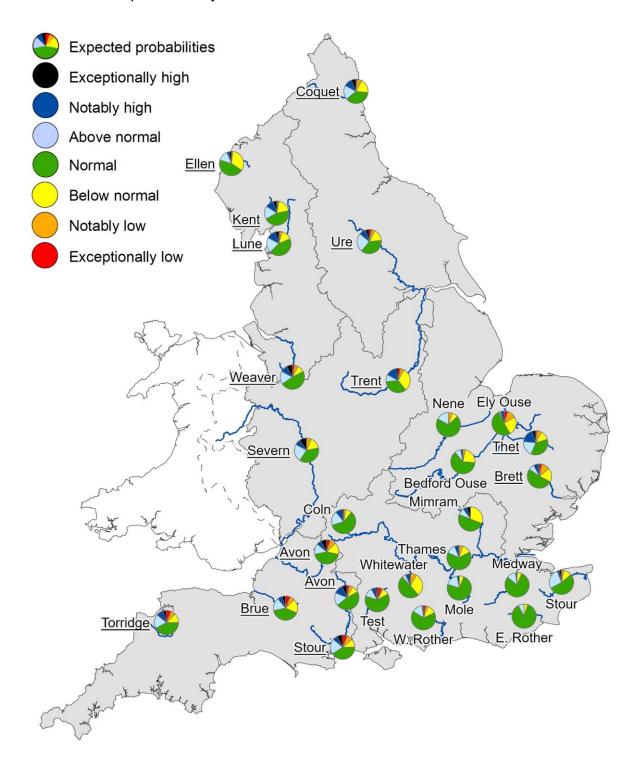
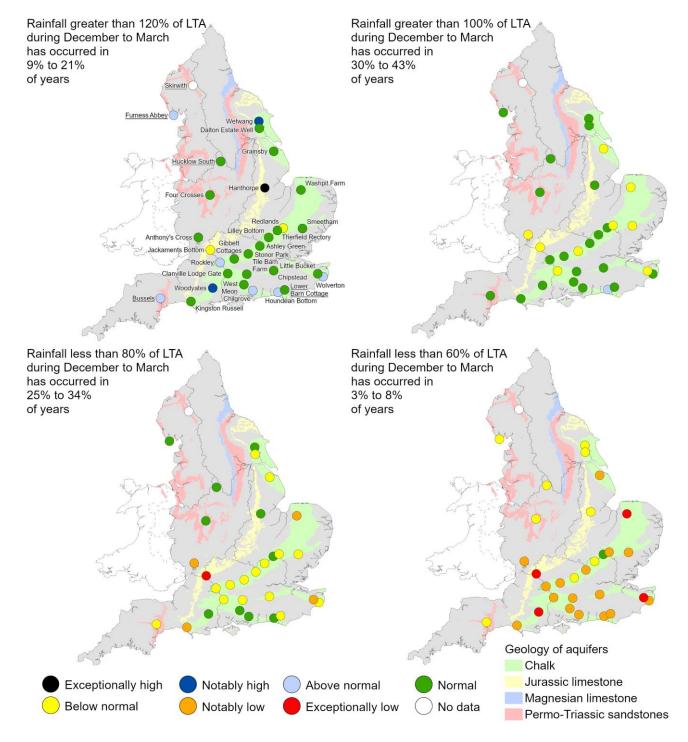

(Source: UK Centre for Ecology and Hydrology, Environment Agency) Crown copyright. All rights reserved. Environment Agency, AC0000807064, 2025.

Figure 7.3: Probabilistic ensemble projections of river flows at key indicator sites up until the end of March 2026. Pie charts indicate probability, based on climatology, of the surface water flow at each site being e.g. exceptionally low for the time of year. Projections for underlined sites produced by CEH.

(Source: UK Centre for Ecology and Hydrology, Environment Agency). Crown copyright. All rights reserved. Environment Agency, AC0000807064, 2025.


Figure 7.4: Probabilistic ensemble projections of river flows at key indicator sites up until the end of September 2026. Pie charts indicate probability, based on climatology, of the surface water flow at each site being e.g. exceptionally low for the time of year. Projections for underlined sites produced by CEH.

(Source: UK Centre for Ecology and Hydrology, Environment Agency). Crown copyright. All rights reserved. Environment Agency, AC0000807064, 2025.

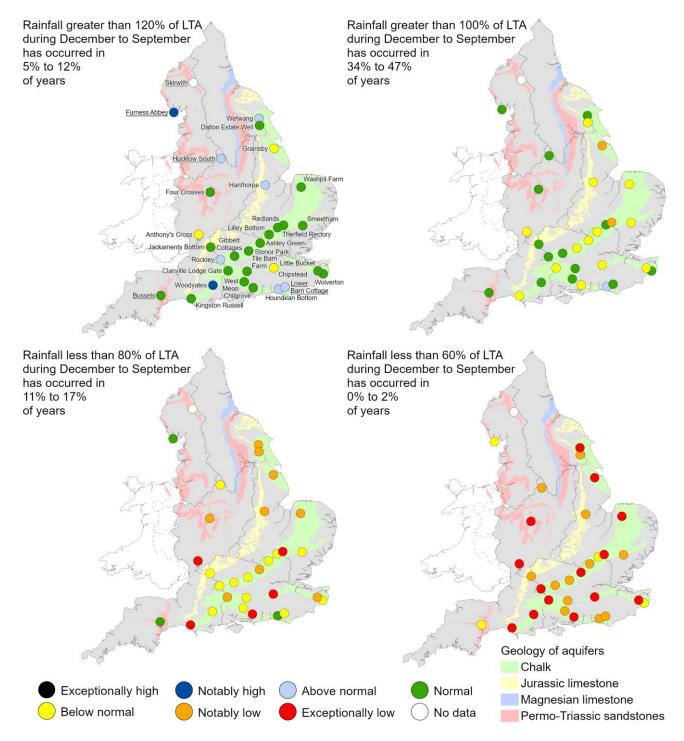

7.2 Groundwater

Figure 7.5: Projected groundwater levels at key indicator sites at the end of March 2026. Projections based on four scenarios: 120%, 100%, 80% and 60% of long term average between December 2025 and March 2026. Rainfall statistics based on occurrence in the historic record since 1871. Projections for underlined sites produced by BGS.

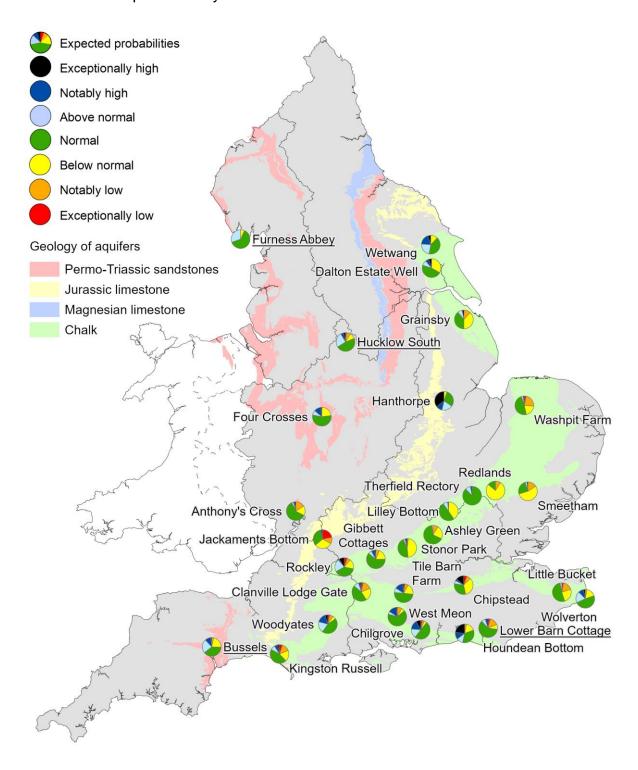

(Source: Environment Agency) Geological map reproduced with kind permission from UK Groundwater Forum BGS © NERC. Crown copyright all rights reserved. Environment Agency AC0000807064, 2025.

Figure 7.6: Projected groundwater levels at key indicator sites at the end of September 2026. Projections based on four scenarios: 120%, 100%, 80% and 60% of long term average rainfall between December 2025 and September 2026. Rainfall statistics based on occurrence in the historic record since 1871. Projections for underlined sites produced by BGS.

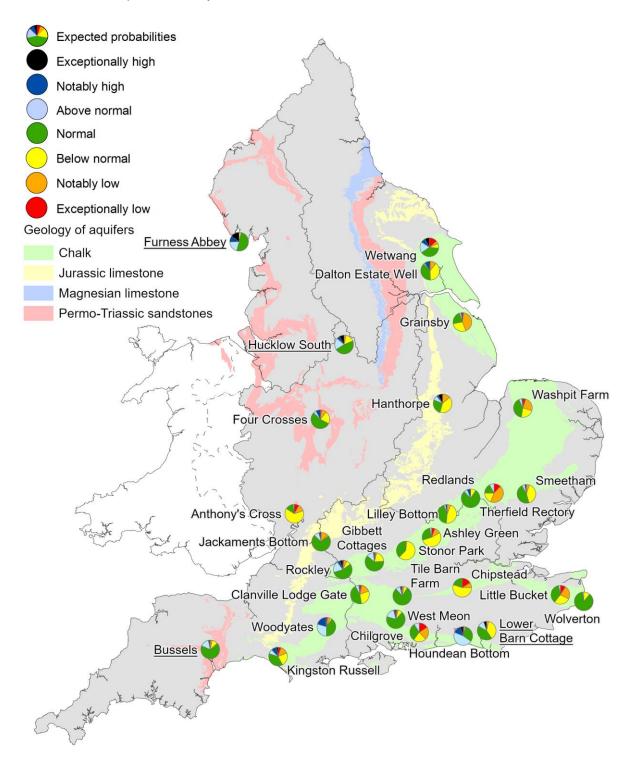

(Source: Environment Agency) Geological map reproduced with kind permission from UK Groundwater Forum BGS © NERC Crown copyright. All rights reserved. Environment Agency AC0000807064 2025.

Figure 7.7: Probabilistic ensemble projections of groundwater levels at key indicator sites at the end of March 2026. Pie charts indicate probability, based on climatology, of the groundwater level at each site being e.g. exceptionally low for the time of year. Projections for underlined sites produced by BGS.

(Source: Environment Agency) Geological map reproduced with kind permission from UK Groundwater Forum, BGS © NERC. Crown copyright. All rights reserved. Environment Agency, AC0000807064, 2025.

Figure 7.8: Probabilistic ensemble projections of groundwater levels at key indicator sites at the end of September 2026. Pie charts indicate probability, based on climatology, of the groundwater level at each site being e.g. exceptionally low for the time of year. Projections for underlined sites produced by BGS.

(Source: Environment Agency) Geological map reproduced with kind permission from UK Groundwater Forum, BGS © NERC. Crown copyright. All rights reserved. Environment Agency, AC0000807064, 2025.

8 Glossary

8.1 Terminology

Aquifer

A geological formation able to store and transmit water.

Areal average rainfall

The estimated average depth of rainfall over a defined area. Expressed in depth of water (mm).

Artesian

The condition where the groundwater level is above ground surface but is prevented from rising to this level by an overlying continuous low permeability layer, such as clay.

Artesian borehole

Borehole where the level of groundwater is above the top of the borehole and groundwater flows out of the borehole when unsealed.

Cumecs

Cubic metres per second (m³s⁻¹ or m³/s).

Effective rainfall

The rainfall available to percolate into the soil or produce river flow. Expressed in depth of water (mm).

Flood alert and flood warning

Three levels of warnings may be issued by the Environment Agency. Flood Alerts indicate flooding is possible. Flood Warnings indicate flooding is expected. Severe Flood Warnings indicate severe flooding.

Groundwater

The water found in an aquifer.

Long term average (LTA)

The arithmetic mean calculated from the historic record, usually based on the period 1991-2020. However, the period used may vary by parameter being reported on (see figure captions for details).

mAOD

Metres above ordnance datum (mean sea level at Newlyn Cornwall).

MORECS

Met Office Rainfall and Evaporation Calculation System. Met Office service providing real time calculation of evapotranspiration, soil moisture deficit and effective rainfall on a 40 x 40 km grid.

Naturalised flow

River flow with the impacts of artificial influences removed. Artificial influences may include abstractions, discharges, transfers, augmentation and impoundments.

NCIC

National Climate Information Centre. NCIC area monthly rainfall totals are derived using the Met Office 5 km gridded dataset, which uses rain gauge observations.

Recharge

The process of increasing the water stored in the saturated zone of an aquifer. Expressed in depth of water (mm).

Reservoir gross capacity

The total capacity of a reservoir.

Reservoir live capacity

The capacity of the reservoir that is normally usable for storage to meet established reservoir operating requirements. This excludes any capacity not available for use (e.g. storage held back for emergency services, operating agreements or physical restrictions). May also be referred to as 'net' or 'deployable' capacity.

Soil moisture deficit (SMD)

The difference between the amount of water actually in the soil and the amount of water the soil can hold. Expressed in depth of water (mm).

8.2 Categories

Exceptionally high: Value likely to fall within this band 5% of the time.

Notably high: Value likely to fall within this band 8% of the time.

Above normal: Value likely to fall within this band 15% of the time.

Normal: Value likely to fall within this band 44% of the time.

Below normal: Value likely to fall within this band 15% of the time.

Notably low: Value likely to fall within this band 8% of the time.

Exceptionally low: Value likely to fall within this band 5% of the time.

8.3 Geographic regions

Throughout this report regions of England are used to group Environment Agency areas together. Below the areas in each region are listed, and Figure 8.1 shows the geographical extent of these regions.

East includes: Cambridgeshire and Bedfordshire, Lincolnshire and Northamptonshire, and Essex, Norfolk and Suffolk areas.

South east includes: Solent and South Downs, Hertfordshire and North London, Thames, and Kent and South London areas.

South west includes: Devon and Cornwall, and Wessex areas.

Central includes: Shropshire, Herefordshire, Worcestershire and Gloucestershire, Staffordshire, Warwickshire and West Midlands, and Derbyshire, Nottinghamshire and Leicestershire areas.

North west includes: Cumbria and Lancashire, and Greater Manchester, Merseyside and Cheshire areas.

North east includes: Yorkshire, and Northumberland Durham and Tees areas.

Figure 8.1: Geographic regions

Crown copyright. All rights reserved. Environment Agency, 100024198, 2025.

9 Appendices

9.1 Rainfall table

Region	Nov 2025 rainfall % of long term average 1991 to 2020	Nov 2025 band	Sep 2025 to November 2025 cumulative band	Jun 2025 to November 2025 cumulative band	Dec 2024 to November 2025 cumulative band
East England	172	Exceptionally High	Above normal	Normal	Below normal
Central England	188	Exceptionally High	Notably high	Normal	Below normal
North East England	171	Exceptionally High	Notably high	Normal	Normal
North West England	160	Exceptionally High	Exceptionally high	Notably high	Above normal
South East England	100	Normal	Normal	Normal	Below normal
South West England	125	Above Normal	Above normal	Normal	Normal
England	149	Notably High	Notably high	Normal	Normal

9.2 River flows table

Geographic area	Site name	River	Nov 2025 band	Oct 2025 band
East	Burnham	Burn	Below normal	Below normal
East	Claypole	Upper Witham	Normal	Normal
East	Colney	Yare	Normal	Notably low
East	Denver	Ely Ouse	Below normal	Exceptionally low
East	Dernford	Cam	Below normal	Below normal
East	Louth Weir	Lud	Normal	Notably low
East	Offord	Bedford Ouse	Normal	Normal
East	Springfield	Chelmer	Normal	Normal
East	Stowmarket	Gipping	Normal	Normal
East	Upton Mill	Nene	Normal	Normal
Central	Bewdley	Severn	Above normal	Normal
Central	Derby St. Marys	Derwent	Notably high	Normal
Central	Evesham	Avon	Normal	Normal
Central	Marston-on-dove	Dove	Notably high	Normal
Central	North Muskham	Trent	Above normal	Normal
North East	Buttercrambe	Derwent	Notably high	Normal
North East	Crakehill Topcliffe	Swale	Notably high	Normal

Geographic area	Site name	River	Nov 2025 band	Oct 2025 band
North East	Heaton Mill	Till	Above normal	Below normal
North East	Doncaster	Don	Notably high	Normal
North East	Haydon Bridge	South Tyne	Notably high	Below normal
North East	Tadcaster	Wharfe	Normal	Normal
North East	Witton Park	Wear	Notably high	Below normal
North West	Ashton Weir	Mersey	Notably high	Normal
North West	Caton	Lune	Notably high	Normal
North West	Ouse Bridge	Derwent	Notably high	Normal
North West	Pooley Bridge	Eamont	Notably high	Normal
North West	Samlesbury	Ribble	Above normal	Normal
North West	Ashbrook	Weaver	Above normal	Normal
South East	Allbrook & Highbridge	Itchen	Normal	Normal
South East	Ardingley	Ouse	Normal	Normal
South East	Feildes Weir	Lee	Normal	Normal
South East	Hansteads	Ver	Above normal	Above normal
South East	Hawley	Darent	Normal	Normal
South East	Horton	Great Stour	Normal	Normal
South East	Kingston (naturalised)	Thames	Normal	Below normal

Geographic area	Site name	River	Nov 2025 band	Oct 2025 band
South East	Lechlade	Leach	Normal	Below normal
South East	Marlborough	Kennet	Below normal	Notably low
South East	Princes Marsh	Rother	Normal	Normal
South East	Teston & Farleigh	Medway	Normal	Normal
South East	Udiam	Rother	Normal	Normal
South West	Amesbury	Upper Avon	Normal	Below normal
South West	Austins Bridge	Dart	Above normal	Normal
South West	Bathford	Avon	Normal	Below normal
South West	Bishops Hull	Tone	Normal	Below normal
South West	East Stoke	Frome	Normal	Normal
South West	Great Somerford	Avon	Above normal	Normal
South West	Gunnislake	Tamar	Normal	Normal
South West	Hammoon	Middle Stour	Normal	Below normal
South West	East Mills	Middle Avon	Below normal	Below normal
South West	Lovington	Upper Brue	Normal	Below normal
South West	Thorverton	Exe	Above normal	Normal
South West	Torrington	Torridge	Normal	Normal
South West	Truro	Kenwyn	Above normal	Normal

Geographic area	Site name	River	Nov 2025 band	Oct 2025 band
NRW	Manley Hall	Dee	Above normal	Normal
NRW	Redbrook	Wye	Above normal	Normal

9.3 Groundwater table

Geographic area	Site name	Aquifer	End of Nov 2025 band	End of Oct 2025 band
East	Grainsby	Grimsby Ancholme Louth Chalk	Below normal	Below normal
East	Redlands Hall	Cam Chalk	Normal	Normal
East	Hanthorpe	Limestone (Cornbrash Formation)	Normal	Below normal
East	Smeetham Hall Cott.	North Essex Chalk	Normal	Normal
East	Washpit Farm Rougham	North West Norfolk Chalk	Notably low	Below normal
Central	Four Crosses	Grimsby Ancholme Louth Limestone	Normal	Normal
Central	Weir Farm	Bridgnorth Sandstone Formation	Above normal	Above normal
Central	Coxmoor	Permo Triassic Sandstone	Above normal	Above normal
Central	Crossley Hill	Permo Triassic Sandstone	Above normal	Above normal
North East	Dalton Estate Well	Hull and East Riding Chalk	Below normal	Notably low
North East	Aycliffe Nra2	Skerne Magnesian Limestone	Normal	Normal
North East	Wetwang	Hull and East Riding Chalk	Above normal	Notably low
North West	Priors Heyes	West Cheshire Permo- Triassic Sandstone	Exceptionally high	Exceptionally high

Geographic area	Site name	Aquifer	End of Nov 2025 band	End of Oct 2025 band
North West	Skirwith	Eden Valley and Carlisle Basin Permo- Triassic Sandstone	Normal	Normal
North West	Lea Lane	Fylde Permo-Triassic Sandstone	Normal	Above normal
South East	Chilgrove	Chichester-Worthing- Portsdown Chalk	Notably low	Exceptionally low
South East	Clanville Gate Gwl	River Test Chalk	Normal	Normal
South East	Houndean Bottom Gwl	Brighton Chalk Block	Normal	Normal
South East	Little Bucket	East Kent Chalk - Stour	Below normal	Below normal
South East	Jackaments Bottom	Burford Oolitic Limestone (Inferior)	Normal	Notably low
South East	Ashley Green Stw Obh	Mid-Chilterns Chalk	Normal	Normal
South East	Stonor Park	South-West Chilterns Chalk	Normal	Normal
South East	Chipstead Gwl	Epsom North Downs Chalk	Exceptionally low	Notably low
South West	Tilshead	Upper Hampshire Avon Chalk	Exceptionally low	Exceptionally low
South West	Woodleys No1	Otterton Sandstone Formation	Normal	Normal
South West	Woodyates	Dorset Stour Chalk	Below normal	Notably low

9.4 Reservoir table

Geographic region	% Full	Average comparison
East	64	Below average
Central	81	Below average
North-east	90	Above average
North-west	87	Above average
South-east	70	Below average
South-west	58	Below average
England	79	Below average