

Foreword

David PeattieGroup Chief Executive Officer

THE MISSION

Ours is one of the most important environmental programmes in the world, protecting people and the planet, decommissioning the UK's early nuclear sites safely, securely and cost effectively with care for people and the environment.

THE MISSION PROGRESS REPORT

The Mission Progress Report aligns with our Strategy (fourth edition) published in 2021. The document continues to demonstrate our approach to reporting progress against the mission, focussing on the four driving themes outlined in our strategy that are common across all sites and that help us to measure our achievements. Our mission delivery over the next five years and beyond will be set out in the fifth iteration of our Strategy, which we have been developing over recent months and is due for publication in the spring of 2026.

Progress continues to be made across the NDA's mission, which will continue well into the next century. With programmes stretching that far into the future, progress needs to be monitored and occasionally activities may need to be adjusted to take account of learning, experience, and new technologies.

This has been a significant year of delivery for the NDA leading up to our 20-year anniversary. We have been consolidating and further maximising the benefits offered by working as a group and enhancing our efficiencies. The emphasis remains to provide maximum value for the UK taxpayer and support the government's plan to strengthen the economy, support growth and ensure long-term financial stability. We remain focussed on delivering our mission and supporting the government in delivering its Plan for Change.

We continue to be trusted to do more in the NDA group and as our mission grows, we will incorporate this additional activity into the Mission Progress Report at the appropriate time.

David Peattie FREng FNucl

Group Chief Executive Officer

HOW TO READ THIS REPORT

This report is structured to illustrate the progress against the strategic objectives outlined in our strategy.

In the first two pages you'll see a very high-level summary of what the mission is and how far we have progressed since 2005.

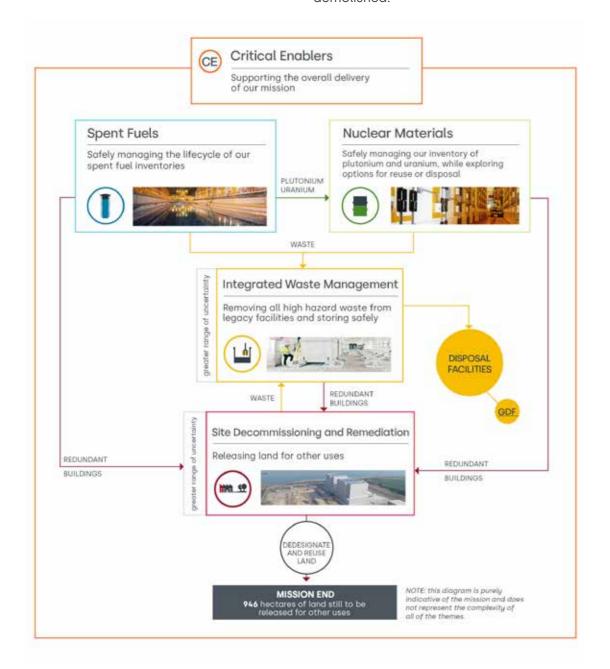
Each of the four themes has an overview page to explain our objectives and the steps we need to take. Each step (or 'strategic outcome') shows the estimated inventory that has to be managed and what capability there is to deliver it.

We continue to build a more accurate picture of work that's still to be completed across our sites. As the data range matures over the next 120+ years, along with the reduction of uncertainty of the inventory, progression in the lifecycle and strategy development, it may well be subject to change. The figures contained within this report are correct up to 31 March 2025.

Excluded from this report are critical enablers, liquid and gaseous discharges, non-NDA liabilities and non-radioactive waste elements of our strategy.

Our strategic approach and themes

We use five strategic themes to describe all the activities needed to deliver the NDA's mission.


The first four strategic themes, spent fuels, nuclear materials, integrated waste management and site decommissioning and remediation relate directly to our clean-up and decommissioning and are known as driving themes. All data in this report relates to those four themes.

The fifth theme describes the important activities needed to support the delivery of our mission and

is known as critical enablers. The diagram below demonstrates how they interplay.

Currently, the most urgent task is dealing with sites' highest hazard materials: spent fuel, nuclear materials and highly-radioactive wastes.

Once the inventory has been made safe, the redundant nuclear facilities can be dismantled and demolished.

Our four driving themes

Spent Fuels

Our strategy defines our approach to managing the diverse range of spent fuels for which we are responsible, which are divided into Magnox, Oxide and Exotic. Once spent fuel is removed from a reactor, it is stored in a pond or dry store until it can be dispatched to Sellafield.

Reprocessing extracts materials (plutonium and uranium) that could potentially be re-used and also generates highly radioactive wastes, or fission products.

The NDA's strategy is to bring the reprocessing programme to an end. The Thermal Oxide Reprocessing Plant (THORP) and the Magnox reprocessing plant are now both closed. All remaining spent fuel will be safely stored until a permanent solution for disposal is available.

Our spent fuel work is separated into 15 strategic outcomes that we must deliver, see p4. For more detail on our spent fuels strategy see NDA Strategy 2021, p46-57.

Nuclear Materials

Our strategy defines our approach to dealing with the inventory of uranics and plutonium currently stored on some of our sites. These nuclear materials are byproducts from different phases of the fuel cycle, either manufacturing or reprocessing. All nuclear materials must be managed safely and securely, by either converting them into new fuel or immobilising and storing them until a permanent UK disposal facility is available.

All of our plutonium is stored at Sellafield. Our uranium is located at a number of our sites and we are continuing to consolidate it at sites which we consider are best suited to its management.

Our nuclear materials work is separated into 10 strategic outcomes that we must deliver, outlined on page 4. For more detail on our nuclear materials strategy see NDA Strategy 2021, p58-67.

Integrated Waste Management

Our strategy considers how we manage all forms of waste arising from operating and decommissioning our sites, including waste retrieved from legacy facilities. Managing the large quantities of radioactive waste from electricity generation, research, the early defence programme and decommissioning is one of the NDA's biggest challenges. Some of this radioactive waste is in a raw (untreated) form, some has been treated and is being interim stored and, in the case of low level

waste, some has already been permanently disposed of. Retrieving, treating and interim storing the radioactive waste from Sellafield's four legacy ponds and silo facilities is the NDA's highest priority.

Our integrated waste management work is separated into 14 strategic outcomes that we must deliver, outlined on page 4. For more detail on our IWM strategy see NDA Strategy 2021, p68-85.

Site Decommissioning and Remediation

Our strategy defines our approach to decommissioning redundant facilities and managing land quality in order that each site can be released for its next planned use.

After the buildings on our sites have been decommissioned, decontaminated and dismantled, the land will be cleaned up to allow it to be released for other uses. At that point, its ownership would transfer to the new user of the land.

The NDA is currently assessing alternatives for the final stages of decommissioning that could lead to earlier release of land, continued employment and opportunities to reuse the land.

Our site decommissioning and remediation work is separated into eight strategic outcomes that we must deliver, outlined on page 4. For more detail on our SDR strategy see NDA Strategy 2021, p26-45.

3

PROGRESS OF STRATEGIC OUTCOMES - UP TO MARCH 2025

Spent Fuels		Nuclear Materials		Integrated Waste Manage	ment	Site De
SPENT MAGNOX FUEL	2025	PLUTONIUM	2025	LOW LEVEL WASTE	2025	OPERATIONA
1 All sites defueled	100%	16 All plutonium produced	100%	26 All LLW produced	8%	40 All plan
2 All legacy Magnox fuel retrieved	25%	All plutonium consolidated	100%	All LLW treated - to enable diversion or reuse	11%	41 All buil function
3 All Magnox fuel reprocessing completed	100%	A: All plutonium repacked in long-term storag B: All cans not suitable for extended storage repackaged	e 0% 81%	All waste suitable for disposal in NDA facilities	19%	DECOMMISS
All remaining Magnox fuel in interim storage	17%	All plutonium in interim storage	0%	All waste suitable for permitted landfill disposed	5%	42 All buil decom
5 All remaining Magnox fuel disposed	0%	All plutonium reused or disposed	0%	INTERMEDIATE LEVEL WASTE		43 All buil or reus
SPENT OXIDE FUEL		URANIUM		30 All ILW produced	33%	SITES
6 All EDFE oxide fuel received	71%	21) All uranium produced	100%	31 All legacy waste retrieved	10%	44 All land
7 All legacy oxide fuel retrieved	100%	22 All uranium consolidated	83%	32 All ILW treated	10%	45 All land physica
8 All oxide fuel reprocessing completed	100%	23 All uranium treated	4%	33 All ILW in interim storage	16%	46 All land
All remaining oxide fuel in interim storage	68%	24 All uranium in interim storage	61%	34 All ILW disposed	0%	47 All land or reus
All remaining oxide fuel disposed	0%	All uranium reused or disposed	3%	HIGH LEVEL WASTE		0/-
SPENT EXOTIC FUEL		aisposed		35 All HLW produced	64%	740
11 All exotic fuel defueled	77%			36 All HLW treated	76%	
12 All exotic fuel consolidated	62%			All HLW waste in interim storage	84%	
All exotic fuel reprocessing completed	100%			38 All overseas HLW exported	62%	
All remaining exotic fuel in interim storage	84%			39 All HLW disposed	0%	
All remaining exotic fuel disposed	0%					* due to historion be calculated

Site Decommissioning and Remediation

OPE	ERATIONAL AND PLANNED	2025
40	All planned new buildings operational	_*
41	All buildings primary function completed	40%
DEC	COMMISSIONING AND DEMOLITION	
42	All buildings decommissioned	23%
43	All buildings demolished or reused	21%
SITE	ES .	
44	All land delicensed or relicense	ed 9 %
45	All land in End State - all planned physical work complete	44%
46	All land demonstrated as suitable for reuse	9%
47	All land de-designated or reused	9%
9	hectares of land still released for other us	to be

^{*} due to historic data availability % complete cannot be calculated

Spent Magnox Fuel Opening stock

Defueling Legacy Total

2,810te 4,100te 500te 7.410te **Spent Oxide Fuel** Opening stock

3,150te Receiving 5,190te Total 8,340te

Spent Exotic Fuel Opening stock Defueling Total

194te 33te 227te

OBJECTIVE

To ensure safe, secure and cost-effective lifecycle management of our spent fuels - Strategy 2021, p46

WHAT ARE SPENT FUELS?

Fuel from a nuclear reactor is 'spent' once it has been used to generate electricity.

HOW ARE THE FUELS MANAGED?

Spent fuels are consolidated at Sellafield for management. They are placed in safe and secure interim storage in line with regulatory requirements pending a future decision on whether to classify them as waste for disposal in a Geological Disposal Facility (GDF). For planning purposes, we assume that the remaining spent fuels will be disposed of in a GDF.

WHAT HAS HAPPENED SINCE 2005?

THORP completed reprocessing operations of oxide fuels in 2019. The Magnox reactors are now all defueled, with all of the fuel brought to Sellafield for reprocessing. The Magnox reprocessing plant, which was Sellafield's last reprocessing facility finished reprocessing Magnox fuel in July 2022 with plant washout continued until March 2023.

WHAT HAS TO HAPPEN NEXT?

No more spent fuels will be reprocessed. Sellafield continues to receive oxide fuel under commercial contracts with EDF Energy (EDFE). All remaining spent fuel will be placed in interim storage pending a decision whether to classify it as waste for disposal.

STRATEGIC OUTCOMES - steps to achieving our mission

	Progress up to 2025	End date	Completed	Mission End
SPENT MAGNOX FUEL				
1 All sites defueled	100%	2020	COMPLETED	
2 All legacy Magnox fuel retrieved	25%	2045		REUSED/DISPOSAL
3 All Magnox fuel reprocessing completed	100%	2022	COMPLETED	D/DIS
4 All remaining Magnox fuel in interim storage	17%	2045		REUSE
All remaining Magnox fuel disposed	0%	2125		

SPENT OXIDE FUEL

All EDFE oxide fuel received	71%	2033	
7 All legacy fuel retrieved	100%	2016	COMPLETED
All oxide fuel reprocessing completed	100%	2019	COMPLETED
All remaining oxide fuel in interim storage	68%	2033	
All remaining oxide fuel disposed	0%	2125	

SPENT EXOTIC FUEL

11 All exotic fuel defueled	77%	2028	
All exotic fuel consolidated*	62%	2044	
All exotic fuel reprocessing completed	100%	2023	COMPLETED
4 All remaining exotic fuel in interim storage	84%	2044	
15 All remaining exotic fuel disposed	0%	2125	

*irradiated fuel only

To ensure safe, secure and cost-effective lifecycle management of our spent fuels. Strategy 2021, p46

Opening stock 2,810te Defueling 4,100te Legacy 500te Total 7,410te

Spent Magnox Fuel

SPENT MAGNOX FUEL - To ensure safe, secure and cost-effective lifecycle management of spent Magnox fuels. Strategy 2021, p52.

Opening stock 2005

In 2025, work continues to retrieve high hazard fuel from Sellafield and safely store the spent fuel on an interim basis.

2,810te

Defueling 4.100

defueled

Inventory

Capability

Strategic Outcome

4,100 130 still to still to retrieved total retrieve defuel

25% COMPLETE

(te)

100% COMPLETE

All 26 reactors on 11 sites have been defueled

1 All sites defueled by 2020

All of the Magnox power stations are defueled. This strategic outcome is complete.

Legacy fuel retrieval

500 total

First Generation Magnox Storage Pond FGMSP) and Pile Fuel Storage Pond (PFSP) - Sellafield

All legacy Magnox fuel retrieved by 2045

Spent fuel arriving at Sellafield was originally stored in the First Generation Magnox Storage Pond (FGMSP) before transfer for reprocessing. FGMSP is one of the estate's most hazardous facilities. Some fuel was also contained in the Pile Fuel Storage Pond (PFSP). There have been no fuel exports for two years whilst new capabilities are brought into service to allow some of the more challenging fuel bearing materials to be exported, which has led to the forecast date moving out.

Reprocessing Interim storage (te)

current

17% COMPLETE

inventory

still to

Fuel Handling Plant (FHP) - Sellafield

Interim Storage Facility - Sellafield

All remaining Magnox fuel in

There are some degraded fuels either still

in, or which have been recovered from the legacy ponds, FGMSP and PFSP. To reduce

the risk of managing these fuels some of it

has been transferred to the more modern

pond, Fuel Handling Plant (FHP) for interim

prior to final disposal. The same approach

operations. The forecast date is subject to Magnox fuel being retrieved (SO2).

has been taken with the Maanox fuel remaining following the end of reprocessing

storage. The remainder will be recovered and interim stored in purpose-built containers,

interim storage by 2045

store

6.660 6,660 reprocessed still to total

reprocess

100% COMPLETE

Magnox reprocessing plants Sellafield

All Magnox fuel reprocessing completed in 2022

After 58 years of reprocessing with nearly 55,000 tonnes of Magnox fuel being successfully reprocessed, reprocessing operations were completed in July 2022. Small quantities of remaining Magnox fuel will be interim stored before final waste conditioning and disposal.

STRATEGIC DECISIONS

Outputs

total

Plutonium Uranium

Waste

Redundant

Buildings

Reuse/Disposal

750 volume still to be estimated disposed disposed

0% COMPLETE

750

total

estimated

NO FACILITY CURRENTLY EXISTS Geological Disposal Facility (GDF) and Conditioning Plant

All remaining Magnox fuel disposed of by 2125

Remaining fuel will need to be stored and conditioned prior to transferring to a final disposal solution. Strategic options for this remaining fuel continue to be developed as part of a wider enterprise spent fuel consolidation study.

Defueling activity at one of the Magnox stations

Pile Fuel Storage Pond Sellafield

Magnox Reprocessing Plant -Sellafield

Fuel Handling Plant -Sellafield

Artist's impression of a Geological Disposal Facility

To ensure safe, secure and cost-effective lifecycle management of spent fuels. Strategy 2021, p46

Spent Oxide Fuel

Opening stock 3,150te Receiving 5,190te Total 8,340te

SPENT OXIDE FUEL - To ensure safe, secure and cost-effective lifecycle management of spent oxide fuels. Strategy 2021, p50.

Opening stock 2005 In 2025, we continue to receive fuel from EDF Energy sites. Reprocessing has been completed and we safely store the remaining spent fuel on an interim basis.

STRATEGIC DECISIONS

Outputs

Plutonium Uranium

Waste

Redundant

Buildings

3,150te

Inventory

Capability

Strategic Outcome

Receipts (te)

3,690 1,500 5,190 received still to be total received

71% COMPLETE

Fuel Handling Plant (FHP) Sellafield

6 All EDF oxide fuel received by 2033

The NDA is committed, through commercial contracts, to receiving and managing spent fuel (including 3,150te opening stock) from EDF Energy's (EDFE) seven Advanced Gas-cooled Reactor (AGR) power stations in England and Scotland. The last of these power stations is due to close in 2030.

Legacy fuel retrieval (te)

3 still to retrieved total retrieve

100% COMPLETE

Pile Fuel Storage Pond (PFSP) -Sellafield

7 All legacy fuel retrieved in 2016

Early spent oxide fuel was consigned to the PFSP and has all been removed for storage in more modern facilities.

Reprocessing

3,610 3.610 reprocessed still to total reprocess

100% COMPLETE

THORP Reprocessing Plant Sellafield

All oxide fuel reprocessing completed in 2019

The NDA, after studying options over a number of years, concluded in 2012 that THORP should close following completion of the current contracts. To ensure this remains the most viable and cost-effective option, the NDA has identified how to provide sufficient capacity at THORP to store all remaining fuel that is not reprocessed. This total included the opening stock of 3,150te.

Interim storage

3,230 1,500 4.730 still to current estimated inventory store

68% COMPLETE

(te)

THORP Receipt and Storage Pond Sellafield

All remaining oxide fuel in interim storage by 2033

Our strategy is to consolidate all spent AGR fuel from the EDFE AGR stations in a single pond in the THORP facility at the Sellafield site, and interim store all oxide fuels pending a future decision on whether to classify the fuel as waste for disposal in

Reuse/Disposal

disposed disposed

volume still to be estimated

0% COMPLETE

NO FACILITY CURRENTLY EXISTS Geological Disposal Facility (GDF) and Conditioning Plant

All remaining oxide fuel disposed of by 2125

Remaining fuel will need to be conditioned prior to transferring to a final disposal solution. Strategic options are currently being developed for the final management of this fuel.

Hinkley Point A and the EDFE owned (B) station

Shearing operations - Sellafield

THORP - Sellafield

Sellafield

THORP Receipt and Storage Pond - Artist's impression of a Geological Disposal Facility

Defueling

defueled

77% COMPLETE

still to

defuel

Dounreay Fast Reactor (DFR)

11 All exotic fuel defueled by 2028

To ensure safe, secure and cost-effective lifecycle management of spent fuels. Strategy 2021, p46

Spent Exotic Fuel

(te)

140

total

estimated

still to

THORP Receipt and Storage Pond

All remaining exotic fuel in interim

store

Opening stock 194te Defueling 33te Total 227te

SPENT EXOTIC FUEL - To ensure safe, secure and cost-effective lifecycle management of spent exotic fuels. Strategy 2021, p54.

Opening stock 2005

In 2025, work continues to defuel the Dounreay Fast Reactor and consolidate exotic fuel at Sellafield.

Consolidation (irradiated)

194te

Inventory

Capability

Strategic Outcome

(te) 56 34 consolidated still to total consolidate

62% COMPLETE

(te)

33

total

Consolidated stocks at Sellafield

12 All exotic fuel consolidated by 2044

A number of very early experimental reactors Spent exotic fuel (irradiated) is being consolidated at Sellafield. A variety of spent tested novel kinds of fuel, producing spent fuel with distinctive characteristics. There exotic fuel was already at Sellafield in 2005 from earlier consolidation activities and is a much smaller quantity of these diverse, historic overseas reprocessing contracts. non-standard types compared to oxide and Magnox fuels, and they are collectively known Plans for the consolidation of the balance of exotic fuel have been updated. DFR fuel is as Spent exotic fuels. Only one reactor still planned to be consolidated at Sellafield as contains exotic fuel - the DFR. The forecast soon as practicable. Other Dounrey exotic date of 2028 is informed by our learning fuels are consolidated following a revised from the successful defueling undertaken to schedule which takes into account wider date and reflects the technical challenges in priorities on our sites. removing the last of the fuel.

Reprocessing

87 87 reprocessed still to total reprocess

(te)

100% COMPLETE

THORP and Magnox reprocessing plants - Sellafield

All exotic fuel reprocessing completed by 2023

The majority of spent exotic fuel has already been reprocessed at Sellafield's THORP and Magnox reprocessing plants. The strategy for remaining DFR fuel at Dounreay remains to consolidate at Sellafield as part of the overall spent fuel consolidation programme.

STRATEGIC DECISIONS

Outputs

Uranium

Waste

Buildings

NO FACILITY CURRENTLY EXISTS Geological Disposal Facility (GDF) and Conditioning Plant

All remaining exotic fuel disposed of by 2125

Remaining fuel will need to be conditioned prior to transferring to a final disposal solution. Strategic options are currently being developed for the final management of this fuel.

Dounreay Fast Reactor

Transporting exotic fuel to Sellafield

Magnox Reprocessing Plant - Sellafield

Interim storage

118

84% COMPLETE

current

inventory

Sellafield

storage by 2044

A variety of exotic fuels will remain in

interim storage at Sellafield. They will

management of this fuel are developed.

consolidation receipts from Dounreay

remain in storage whilst options for

The forecast date is subject to

(SO12).

- Sellafield

THORP Receipt and Storage Pond Artist's impression of a Geological Disposal Facility

Plutonium

Opening stock Produced Total

104te | 0 37te | F

141te

Uranium
Opening stock 63,000te

Produced 7,000te Total 70,000te

OBJECTIVE

To ensure safe, secure and cost-effective lifecycle management of our nuclear materials - Strategy 2021, p58

WHAT ARE NUCLEAR MATERIALS?

The NDA owns an inventory of plutonium and uranium. Known collectively as 'nuclear materials', all are by-products from different phases of the fuel cycle, including the reprocessing of spent fuel.

HOW ARE THE MATERIALS MANAGED?

All nuclear materials are stored safely and securely under stringent management arrangements, in accordance with the requirements of the International Atomic Energy Agency (IAEA), as well as UK law, which are overseen by the independent Office for Nuclear Regulation (ONR) who are responsible for regulating safety and security across the UK.

WHAT HAS HAPPENED SINCE 2005?

The NDA is working with UK government and suppliers on options to put plutonium beyond reach. The NDA has largely completed uranium production and consolidation.

WHAT HAS TO HAPPEN NEXT?

All nuclear materials will be stored until an immobilisation process is available which will put the material beyond reach. The material will be disposed of to a geological repository when it becomes available. Consolidation of plutonium at Sellafield is now complete. Consolidation of uranium remains ongoing. Some uranium must be treated and repackaged for interim storage. Plutonium at Sellafield will be repackaged in a form suitable for long term storage. The NDA will support the UK government to develop a policy for plutonium and then implement that policy.

STRATEGIC OUTCOMES - steps to achieving our mission

	Progress up to 2024	End date	Completed	Mission End
PLUTONIUM				
16 All Plutonium produced	100%	2023	COMPLETED	ب
All Plutonium consolidated	100%	2019	COMPLETED	SPOSA
A: All plutonium repacked in long term storage B: All cans not suitable for extended storage	0%	2060		REUSED/DISPOSAL
repackaged	81%	2060		REL
19 All Plutonium in interim storage	0%	2060		
20 All Plutonium reused or disposed	0%	2120		

URANIUM

21 All Uranium produced	100%	2023	COMPLETED
22 All Uranium consolidated	83%	2028	
23 All Uranium treated	4%	2055	
24 All Uranium in interim storage	61%	2055	
25 All Uranium reused or disposed	3%	2120	

Nuclear Materials

To ensure safe, secure and cost-effective lifecycle management of our nuclear materials. Strategy 2021, p58

Plutonium

Opening stock 104te Produced Total

37te 141te

PLUTONIUM

- To ensure the safe and secure management of separated plutonium held by the NDA and to work with the UK government to develop a long-term solution. Strategy 2021, p60

Opening stock 2005

In 2025, work continues to provide the capability and capacity to treat and store plutonium at Sellafield.

STRATEGIC DECISIONS Outputs

Waste

Redundant

Buildings

104te

Inventory

Capability

Strategic Outcome Quantities produced

37 still to be quantity total produced produced 100% COMPLETE

Magnox and THORP reprocessing

16 All plutonium produced by 2023

When the NDA was established, 104 tonnes of plutonium had already been produced from reprocessing. Magnox reprocessing has now finished and there will be no more large quantities of plutonium produced. There will possibly be a small amount of plutonium produced as part of the remaining Post Operational Clean Out (POCO) work. The amount produced is unlikely to change the value, with a final inventory of 140 tonnes.

Consolidation

Consolidated stocks at Sellafield

17 All plutonium consolidated by 2019

The NDA took the decision to consolidate all plutonium in new storage at Sellafield and this consolidation is complete. The plutonium inventory will however need repacking into long-term storage containers.

Repacking

140 140 still to repack repacked total 18A 0% COMPLETE 18B 81% COMPLETE

NO FACILITY CURRENTLY EXISTS SPRS Re-treatment Plant (SRP) currently n construction phase - Sellafield

A: All plutonium repacked in long-term storage by 2060 B: All cans not suitable for extended storage repackaged by 2060

18a - Our aim is to gradually transfer all plutonium into modern facilities over the next few decades. To ensure that the plutonium packages can be safely stored in SPRS, they will be repackaged and, where appropriate, some plutonium will be treated to stabilise it for long-term storage. A major new facility, SRP, is being constructed, to repackage materials to support this strategy.

18b - Some older packages are to be repacked in existing plants to ensure their safe management. After this repackaging campaign completes, ongoing care of these packages will be needed until SRP has treated them and they are moved from interim to long term storage in SPRS.

Interim storage

140 current still to estimated inventory store total

0% COMPLETE

Product and Residue Stores - Sellafield

All plutonium in interim storage 19 by 2060

Following repacking, all containers will be stored in the modern storage facilities pending availability of an immobilisation process. New store capacity in future years will be required to store the immobilised product.

Reuse/Disposal

141 140

still to be volume estimated reused reused or total disposed

0% COMPLETE

NO FACILITY CURRENTLY EXISTS Geological Disposal Facility (GDF)

All plutonium reused or disposed of by 2120

The plutonium reused reflects plutonium that was made into MOX fuel in the Sellafield MOX Plant, before the plant closed in 2011, and returned to overseas customers for use in their Light Water Reactors. Following the recent policy announcement from UK government, all remaining plutonium will be immobilised and stored safely and securely pending availability of a GDF for final disposal.

SO20 – All plutonium put beyond reach and then disposed

Magnox Reprocessing Plant

One of the NTS fleet of nuclear transport ships

THORP Product Store - Sellafield

Plutonium containers

Artist's impression of a Geological Disposal Facility

NOTE - On 24 January 2025 the UK Government announced a policy decision to immobilise the UK's inventory of civil separated plutonium at Sellafield. The following proposed strategic outcomes have been included in our latest Strategy which is due for publication March 2026. SO18 (A,B merged) - All cans not suitable for extended storage repackaged

Nuclear Materials

To ensure safe, secure and cost-effective lifecycle management of our nuclear materials. Strategy 2021, p58

Uranium

68,000

estimated

Opening stock 63,000te Produced 7,000te 70,000te Total

URANIUM - To continue safe and secure storage of our uranium inventory, to support its reuse where cost-effective and to ensure its final disposition. Strategy 2021, p63

Opening stock 2005

63,000te

Inventory

Capability

Strategic Outcome In 2025, work continues to consolidate uranics at Capenhurst.

7,000

total

Consolidation

15,000 12,000 3,000 consolidated still to total consolidate

83% COMPLETE

Consolidated stocks at Capenhurst

22 All uranium consolidated by 2028

The NDA has consolidated the majority of uranium stock at Capenhurst. Work is underway to consolidate the remaining quantity of uranium on stock from the completed Magnox fuel reprocessing at Sellafield, as well as relatively small quantities of uranium from Dounreay,

Magnox sites and Springfields to

Capenhurst.

Treatment

4% COMPLETE

27,000 still to treated total treat

NO FACILITY CURRENTLY EXISTS

Re-cylindering facility (in initiation) and deconversion facility (existing Tail Management Facility) Capenhurst

23 All uranium treated by 2055

Uranium hexaflouride (HEX) is a chemically hazardous by-product of uranium enrichment. The NDA is seeking to put in place the capability to re-cylinder and treat 26,000tU of HEX at Capenhurst to ensure that the cylinders and their content are within the input specifications of the downstream facilities. After re-cylindering, the HEX will either be re-used or deconverted into a stable oxide form to remove the chemical hazard, so that it can be interim stored pending disposal.

STRATEGIC DECISIONS

Outputs

Waste

Redundant

Buildings

Reuse/Disposal

2,000 68,000 70,000

re-used/ still to be estimated disposed re-used/ total disposed

3% COMPLETE

NO FACILITY CURRENTLY EXISTS Geological Disposal Facility (GDF)

> All uranium reused or disposed of by 2120

Remaining uranium may need to be conditioned prior to transferring to a final disposal solution. Strategic options are currently being developed for the final management of this nuclear material.

Quantities produced

still to be

produced

Magnox reprocessing - Sellafield

100% COMPLETE

21 All uranium produced by 2023

No further uranium will be produced as

spent fuel reprocessing at Sellafield has

quantity

completed.

produced

Magnox Reprocessing Plant

Capenhurst

Current uranium storage at Capenhurst

Interim storage

in interim

storage

61% COMPLETE

by 2055

of it.

42,000 26,000

store

Uranium store - Capenhurst

All uranium in interim storage

Uranium (NDA-owned and NDA customer

Capenhurst and Sellafield until it can be

re-used or a decision is taken to dispose

material) will be interim stored at

THORP Product Store - Sellafield

inventory still to

Part of the uranium inventory at Capenhurst

Artist's impression of a Geological Disposal Facility

Low Level Waste

Raw waste 4,124,000m³ Packaged waste 272,000m³ Intermediate Level Waste

192,000m³ Packaged waste 471,000m³ **High Level Waste**

Raw waste 4.570m³ Packaged waste 1,450m³

OBJECTIVE

To ensure that wastes are managed in a manner that protects people and the environment, now and in the future, and in ways that comply with government policies and provide value for money - Strategy 2021, p68

WHAT IS INTEGRATED WASTE MANAGEMENT?

Large quantities of diverse radioactive waste have been produced since the 1950s, and will continue to arise for decades to come. Managing these radioactive wastes, along with conventional waste, is one of the NDA's biggest challenges.

HOW ARE THE WASTES MANAGED?

Wastes are characterised and treated appropriately as informed by radiological, chemical and physical properties and associated handling requirements, before being packaged for long-term storage and/or transport and disposal. Low Level Waste (LLW) is managed in two main ways; diverted into the supply chain for treatment and/or recycling or is disposed of and Intermediate Level Waste (ILW) and High Level Waste (HLW) stored pending development of a final disposal route. Effective and optimised waste management is an essential requirement for the delivery of the mission and is a significant part of the programme.

WHAT HAS HAPPENED SINCE 2005?

Since 2005 considerable progress has been made with our preparations for retrievals of radioactive waste from legacy facilities, which has now commenced. The NDA has taken the decision to consolidate some waste at regional stores, avoiding the need to construct a store at each site. We are repackaging material where necessary and investigating more sustainable treatments for all waste categories. We've put in place a range of waste management services that has preserved capacity at the Low Level Waste Repository (LLWR). We are nearing completion of our bulk HLW vitrification programme, although the handover from operations to decommissioning is expected to take more than a decade. The NDA advocates a risk-informed strategy where radioactive wastes are managed according to the nature of the waste (radiological, physical and chemical) rather than simply the radioactive waste category they fall into. We have published our Treatment Strategic Position to clearly articulate why waste treatment is an important part of the NDA mission and why we invest significant time and effort on it. We provide industry guidance on an integrated approach to the interim storage of HLW and ILW packages with the next version available in 2026.

WHAT HAS TO HAPPEN NEXT?

A key aim for the NDA is to secure continuous retrieval operations at our highest priority legacy facilities, which will take a number of decades to complete. We will make best use of existing and future treatment and storage capability across the NDA estate as well as continuing to use off-site supply chain capability as appropriate. Permanent disposal facilities must be constructed for our highest hazard radioactive waste. The NDA's risk-informed radioactive waste strategy supports near-surface disposal for some of the ILW inventory where the case can be made. Such a risk-informed approach is now an expectation set in the managing radioactive substances and nuclear decommissioning policies update published in May 2024.

STRATEGIC OUTCOMES - steps to achieving our mission

Raw waste

	Progress up to 2024	End date	Completed	Missior End
LOW LEVEL WASTE	up to 2024	date	oomptotod	Liid
All LLW produced	8%	2127		
All LLW treated - to enable diversion or reuse	11%	2127		LLWR + LANDFILL
All waste suitable for disposal in NDA facilities	19%	2127		LLWR-
All waste suitable for permitted landfill disposed	5%	2127		_
NTERMEDIATE LEVEL WASTE				
All ILW produced	33%	2120		
All legacy waste retrieved	10%	2059		ب
2 All ILW treated	10%	2120		DISPOSAL
All ILW in interim storage	16%	2120		DIS
All II W disposed	0%	2379		

HIGH LEVEL WASTE

35	All HLW produced	64%	2039	
36	All HLW treated	76%	2039	١٢
37	All HLW in interim storage	84%	2039	SPOSA
38	All overseas HLW exported	62%	2031	DIS
39	All HLW disposed	0%	2104	

Inventory

Capability

Strategic

Outcome

Integrated Waste Management

To ensure that wastes are managed in a manner that protects people and the environment, now and in the future, and in ways that comply with government policies and provide value for money. Strategy 2021, p68

Low Level Waste

Raw waste 4,124,000m³ Packaged waste 272,000m³

LOW LEVEL WASTE

To manage radioactive waste and dispose of it where possible, or place it in safe, secure and suitable storage, ensuring that we implement the policies of UK government and the devolved administrations - Strategy 2021, p72

In 2025, work continues to divert LLW away from the Low Level Waste Repository prolonging the life of the facility.

Outputs

Quantities produced

produced

(raw waste vol.m³)

4,124,000 auantities estimated to

estimated be produced total

8% COMPLETE

LLW produced from NDA operations and decommissioning

All LLW produced by 2127

LLW and Very Low Level Waste (VLLW) (a sub category of LLW) are produced from the maintenance, operation and decommissioning of facilities across the NDA group; and are reported as aggregated totals here since 2021. These wastes are the largest volume radioactive waste arisings in the NDA group, but account for < 0.0001% of the overall radioactivity. We continue to progress the mission across all areas, noting a slight reduction in overall volume, due to waste processing and re-classification of waste.

Diversion

(raw waste vol.m³)

683,000

605,000

estimated estimated still to divert total

11% COMPLETE

Diversion capabilities include - metal treatment and incineration

All LLW treated - to enable diversion or reuse by 2127

National policy and NDA Strategy promotes the application of the waste hierarchy to all radioactive waste, including LLW management to ensure that the group makes the best use of available disposal capacity. Waste diversion performance has remained high in 2024/25, with cross group diversion rates in excess of 98%, indicating that application of the waste hierarchy is business as usual across the NDA

Disposal (NDA Facilities)

(packaged waste vol.m³)

272,000

50,000 222.000

LLW disposed LLW estimated estimated still to dispose total

19% COMPLETE

x2 sites Low Level Waste Repository and Dounreay

All waste suitable for disposal in NDA facilities by 2127

Solid LLW is disposed of at two facilities - the Low Level Waste Repository (the UK's primary LLW disposal facility) and the Dounreay Low Level Waste Disposal Facility, adjacent to the Dounreay site (which only manages waste arisings from Dounreay and the neighbouring Vulcan site). There is a slight reduction in forecast volumes as we have seen predictions of a greater level of waste being diverted away from the LLWR site to alternative treatment, recycling and disposal routes (circa. 98% being diverted), reinforcing our application of the waste hierarchy.

Disposal (Landfill)

(imported vol.m³)

153,000 3,009,000 3,162,000

VLLW estimated estimated disposed still to dispose total

5% COMPLETE

A number of on site and off site licensed disposal routes.

Buildings

Redundant

All waste suitable for permitted landfill disposed by 2127

VLLW is the lowest hazard LLW, mainly consisting of soils, spoil and rubble. It's principally disposed of at appropriately permitted landfill sites and some on-site facilities in the NDA group. Good progress on managing VLLW arisings has been maintained during 2024/25, with successful management of ~6,000m3, again showing the benefit of applying our waste

LLW Repository

Metal melting - one of the ways of treating LLWR at Dounreay LLW

Appropriate landfill sites can be used for **VLLW**

Integrated Waste Management

To ensure that wastes are managed in a manner that protects people and the environment, now and in the future, and in ways that comply with government policies and provide value for money. Strategy 2021, p68

Intermediate Level Waste

Disposal

0% COMPLETE

192,000m³ Raw waste Packaged waste 471,000m³

INTERMEDIATE LEVEL WASTE

- To manage radioactive waste and dispose of it where possible, or place it in safe, secure and suitable storage, ensuring that we implement the policies of UK government and the devolved administrations - Strategy 2021, p72

Opening stock 2005

In 2025, ILW continues to be produced with a focus on retrieving waste from legacy ponds and silos.

STRATEGIC DECISIONS

(packaged waste vol.m³)

471.000 471,000

Outputs

10,800m³ raw waste in store 2005

Inventory

Capability

Strategic Outcome

Quantities produced

(raw waste vol.m³)

quantity

112,000 167,000 still to be estimated produced produced total

33% COMPLETE

Waste from operations and decommissioning

All ILW produced by 2120

ILW - waste exceeding the upper boundary for LLW that is not significantly heat generating - takes a variety of forms including: redundant nuclear reactor components, reactor core graphite, sludges from radioactive liquid effluent treatment, redundant plant equipment and some building fabric. As the NDA group projects and programmes mature, the volume of ILW will be subject to change as we reduce uncertainty in the inventory.

Legacy ponds and silos

(raw waste vol.m³)

19.000 21,000 still to estimated since 2005 retrieve total

0% COMPLETE

New technology and capability projects to retrieve legacy waste

All legacy waste retrieved by 2059

The Sellafield Legacy Ponds and Silos (LP&S) represent some of the most complex and difficult alobal decommissioning challenges and are a key priority for the NDA group. Despite initial challenges waste exports from Pile Fuel Cladding Silo have continued as well as the retrievals of sludge and solids from the First Generation Magnox Storage Pond to interim storage facilities. However, overall retrieval rates remain below the rates required to deliver the current completion of bulk retrieval dates. In the Magnox Swarf Storage Silos, retrievals are still in the early ramp up and learning phase and the focus has been on installing additional capabilities to support completion of bulk retrievals by 2059. Residual waste now forms part of the work required to deliver interim state which falls under the requirements for delivering SO42.

Treatment

(raw waste vol.m³)

total

20,000 172,000 192,000 still to estimated treat

10% COMPLETE

New capability required

All ILW treated by 2120

Different forms of ILW are treated in number of ways so they can be safely stored until a disposal facility is available. ILW treatment is ongoing using the many available treatment plants across the NDA group and work is ongoing to design, build and commission new treatment facilities that are needed to complete this important stage of the ILW lifecycle.

Interim storage

(packaged waste vol.m³)

59,000 313,000 **372,000** still to current estimated inventory store total

16% COMPLETE

New capability required

NO FACILITY CURRENTLY EXISTS Geological Disposal Facility (GDF)

disposed still to be estimated

disposed total

Buildings

Redundant

All ILW in interim storage by 2120

Retrieved and packaged ILW undergoes safe storage until appropriate disposal facilities are available. 16% of the total packaged ILW to be produced over the lifetime of the NDA group is currently in safe storage. Further new stores will be required to enable safe storage of the remaining inventory at Sellafield and for NDA sites in Scotland.

Final disposal of ILW arisings from the NDA group is reliant on the availability of the right disposal facilities. The NDA group is working with UK Government, local communities, regulators and technical specialists to identify a site for construction of a GDF for ILW arisings in England and Wales. A new policy framework for managing radioactive substances and nuclear decommissioning has been published, which supports the development of near surface facilities for the safe disposal of less hazardous ILW, in England and Wales. The policy in Scotland is for near-site, near-surface management.

Progress has been made with Community

Partnerships for the GDF.

All ILW disposed by 2379

ILW Magnox fuel cladding swarf

Retrieving waste from the legacy ponds

ILW Treatment and Storage at Sellafield

Trawsfynydd ILW Store

Artist's impression of a Geological Disposal Facility (GDF)

Inventory

Capability

Strategic

Outcome

Integrated Waste Management

To ensure that wastes are managed in a manner that protects people and the environment, now and in the future, and in ways that comply with government policies and provide value for money. Strategy 2021, p68

High Level Waste

Raw waste 4,570m³ Packaged waste 1,450m³

HIGH LEVEL WASTE


- To manage radioactive waste and dispose of it where possible, or place it in safe, secure and suitable storage, ensuring that we implement the policies of UK government and the devolved administrations. Strategy 2021, p72

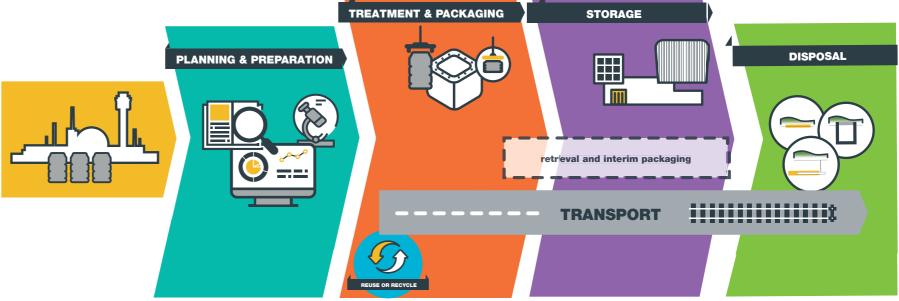
In 2025, work will continue to treat and store HLW on an interim basis. Outputs CONDENSE Disposal/Export LIQUID **Quantities produced** Interim storage Treatment (packaged vol.m³) (raw waste vol.m³) (raw waste vol.m³) (packaged vol.m³) 1,450 1,670 240 1,450 4,570 567 747 1.630 181 exported/ current still to estimated still to treat estimated still to be total still to total treated *quantities* disposed inventory exported or total store produce total produced disposed 13% COMPLETE 38 62% COMPLETE 130 exported still to export total Redundant Highly Active Storage Tanks Waste Vitrification Plant Vitrified Product Store (VPS) Buildings 1,320 1,320 disposed still to dispose total NO FACILITY CURRENTLY EXISTS All HLW produced by 2039 All HLW treated by 2039 All HLW in interim storage by 2039 Geological Disposal Facility (GDF) (including post operational clean out) All overseas HLW exported by 2031 Highly Active Liquor (HAL) is a highly radioactive HAL is converted into a solid form for storage and The vitrified High Level Waste is stored in a 9 All HLW disposed by 2104 by-product of nuclear fuel reprocessing at the disposal through a process called vitrification. In this purpose-built store - the Sellafield Vitrified Product process, the liquor is mixed with crushed glass in a Sellafield site. The liquor is concentrated through Store(s) - until a UK disposal facility for HLW becomes evaporation and is stored in specially engineered furnace to produce a solid, stable glass which is available UK HLW disposal is pending the availability of a GDF; Highly Active Storage Tanks prior to treatment. With poured into stainless steel cannisters. and the NDA group is working with government, local reprocessing at Sellafield now complete, the remaining communities, regulators, and other stakeholders to quantities to produce will come from management of make progress on delivering this essential capability. those historic facilities culminating in post operational Sellafield returns reprocessed spent fuel to overseas clean out. customers in line with contractual requirements. The end date is driven by commercial contract schedules with overseas customers.

HLW containers

Waste Vitrification Plant

Vitrified Product Store - Sellafield

Artist's impression of a Geological Disposal Facility


Integrated Waste Management - Waste Management Lifecycle Summary

This page introduces the Waste Management Lifecycle. The summary compliments the Integrated Waste Management pages which are split by waste hierarchy and should be read in conjunction with these pages.

The Waste Management Lifecycle (SO26-39)

Waste management on our sites is changing as our mission moves away from operations to decommissioning, site remediation (see Site Decommissioning and Remediation) and safe and secure management of those wastes that require interim storage. This means we will generate larger volumes of lower activity radioactive and non-radioactive wastes, with an associated increase in opportunities for waste minimisation, reuse and recycling. We expect our Site Licence

Companies (SLCs) to apply the Waste Hierarchy and we challenge them to ensure they derive as much value as practicable from the waste management system and appropriately manage the environmental impacts. However, we need to ensure that retrievals of legacy wastes (SO31) are managed promptly and effectively pending the availability of disposal routes.

Buildings (radioactive) Lifetime stock Planned new

builds 109 Total 1.306 Land (ha) Opening stock

1.040ha Land de-designated/reused 94ha Still to be de-designated/reused 946ha Total

1.040ha

OBJECTIVE

To decommission and remediate our designated sites, and release them for other uses - Strategy 2021, p26

WHAT IS SITE DECOMMISSIONING AND REMEDIATION?

The NDA is responsible for the cleaning up of each site safely and cost-effectively so that land can be released for other uses. This requires all facilities to be decommissioned and the land remediated, including, where appropriate, the removal of wastes and demolition of structures.

WHAT HAS TO BE DONE?

The NDA defines the final condition (site end state) for each site including any remaining structures, infrastructure such as roads or services and the land itself, and must ensure the decommissioning strategies, in terms of the pace and timing of work, balance the benefits and detriments of each option so that the greatest net benefit is delivered. This influences future plans and near-term work targets, and shapes current

WHAT HAS HAPPENED SINCE 2005?

Some structures have already been dismantled and demolished, and land released. The NDA is assessing alternatives for the final stages of decommissioning, earlier release of land and the potential for future employment opportunities when sites are released. The assumed end-states for each of our sites are being reviewed to ensure that they remain appropriate and end-state delivery is in line with regulatory guidance and stakeholder concerns. Consequently, initial opportunities for on-site disposal of low activity radioactive waste is being explored at two of our sites (Trawsfynydd and Winfrith) and learning from these will inform approaches at our other sites in due course. The NDA Strategy published in 2021 established a move to a Rolling Programme of Decommissioning at our Nuclear Restoration Services (NRS) Reactor sites. Work to implement this is underway with initial consideration being given to prompt decommissioning at our 'lead and learn' site at Trawsfynydd.

WHAT HAS TO HAPPEN NEXT?

In response to government's proposal to amend primary legislation and enable more streamlined regulation during the final stages of decommissioning, the NDA is working with regulators, SLCs and other stakeholders on the end state for each site. The NDA has worked with its OpCos and the ONR to support the development of revised regulatory guidance – to consider the implications of the Energy Act 2023 amendments for our sites and to consider what further, secondary legislation, might be required to establish a more proportionate regulatory regime for final stage decommissioning and clean-up. The NDA is also working with local authorities on their development plans, to ensure proposed end states and development plans are aligned. Associated with this, the NDA is also working with Government to consider opportunities within Planning regimes that might better support nuclear decommissioning and clean-up. An initial site-specific decommissioning strategy, for Trawsfynydd, is being developed and learning from this will inform a review of site-specific strategies across our other NRS Reactor sites. The NDA is supporting NRS, working with EDF, to enable the timely transfer of the AGR fleet of reactors and to consider the implications of this, especially at A and B sites, for our decommissioning strategies. Our focus is currently on Hunterston A and the transfer of the site in April 2026.

STRATEGIC OUTCOMES - steps to achieving our mission

	Progress up to 2024	End date	Completed	Mission End
OPERATIONAL AND PLANNED				
40 All planned new buildings operational	-*	2101		NGS
41 All buildings primary function completed	40%	2127		BUILDINGS
DECOMMISSIONING AND DEMOLITION				ONED SHED D
42 All buildings decommissioned	23%	2131		MISSIC EMOLIS REUSE
43 All buildings demolished or reused	21%	2133		DECOM AND DE OR
SITES				
44 All land delicensed or relicensed	9%	2135		
				REUSED
45 All land in End State - all planned physical work complete	44%	2134		OR REU
46 All land demonstrated as suitable				
for reuse	9%	2135		DEDESIGNATED
47 All land de-designated or reused	9%	2380		DE

^{*} due to historic data availability % complete cannot be calculated

Site Decommissioning and Remediation

To decommission and remediate our designated sites, and release them for other uses. Strategy 2021, p26

Buildings (radioactive)

Lifetime stock Planned new

builds 109 1,306 Total

DECOMMISSIONING (radioactive buildings)

- To deliver site end states as soon as reasonably practicable with a progressive reduction of risk and hazard. Strategy 2021, p32

Lifetime stock

1,197 No.of radioactive buildings (not including new builds)

Inventory

Strategic Outcome

NDA sites are making good progress decommissioning buildings that are no longer required, and a number of new builds are still required to deliver the mission.

STRATEGIC DECISION

Operational and planned

519 678 currently

completed primary function since 2005

40% COMPLETED PRIMARY FUNCTION

109

builds

planned new

All planned new buildings operational by 2101

All buildings primary function completed by 2127

operational

When a nuclear installation or facility is nearing the end of their operational life, a phase of work begins to transition it from operations to decommissioning. This phase normally starts well before operations finish and includes post operational clean out (POCO) which removes most of the nuclear inventory, such as fissile material. New facilities are still to be built to support the decommissioning mission, for example to package and temporarily store waste and ultimately, these will be decommissioned once their operational life is complete. The change to the SO40 date is driven by encapsulation capability at Sellafield.

Decommissioning

total

in post

23% COMPLETED DECOMMISSIONING

operational

42 All buildings decommissioned by 2131

clean out

(No.)

since 2005

decommissioning

deferred

301 completed . decommissioning

301 available for total demolition or reuse

Demolition or reuse

demolished or reused demolition since 2005

276

(No.)

21% DEMOLISHED OR REUSED

43 All buildings demolished or reused by 2133

Decommissioning is the final phase in the asset lifecycle where dismantling is completed to an agreed end state. The final stages of dismantling include demolition which is dominated by non-nuclear risks. Deconstruction typically generates large volumes of waste, a proportion of which may be contaminated with radioactivity.

In line with UK Government strategy, NDA strategy is for nuclear facilities to be decommissioned immediately after cessation of operations. Sometimes however a decision might be taken to defer all or part of decommissioning in order to realise specific benefits such as radioactive decay or to manage a constraint (e.g. restricted access, a lack of waste management infrastructure or limited resources).

in decommissioning

(decontamination

and dismantling)

Turbine hall being cleared at Sizewell A

Demolition work at Harwell

Demolition work at Oldbury

Site Decommissioning and Remediation

To decommission and remediate our designated sites, and release them for other uses. Strategy 2021, p26

ESTIMATED LIFETIME INVENTORY - 2005 TO MISSION END

Land hectares (ha)

Opening stock Land de-designated/reused Still to be de-designated/reused

land

94ha 946ha

1,040ha

1,040ha

946

or reuse

total still to

be de-designated

(ha)

LAND QUALITY MANAGEMENT AND LAND USE (sites) - To optimise the reuse of NDA sites. Strategy 2021, p44

Opening stock 2005

1.040* hectares (ha)

1.030 licensed & designated 10 Dounreay LLW facility

Inventory

Strategic Outcome

consists of 1,030 hectares of licensed and designated land and 10 hectares of land adjacent to the Dounreav nuclear licensed site that is used for the Dounreay LLW facility. Once all LLW has been removed from the Dounreay site the vaults will be sealed and the surface restored. The LLW facility site will then be monitored for 300 years, by which time 95% of the radioactivity will have decayed.

The NDA Mission is not complete until all Designated Directions associated with the land have been removed. Since 2005 we have completed 9% of the mission.

Licensing status of land

(ha)

1.030

total licensed

total de/relicensed

9% LAND DELICENSED SINCE 2005

44 All land delicensed or relicensed by 2135

Each NDA site operates under a nuclear site licence granted to the relevant Site License Company (SLC) by the Office for Nuclear Regulation (ONR). We continue to work with regulators and SLCs to secure opportunities for earlier delicensing.

1.030

45 All land in End State - all planned physical work complete by 2134

49% LAND WHERE CHARACTERISATION IS COMPLETE SINCE 2005

44% LAND WHERE PHYSICAL WORK IS COMPLETE SINCE 200 9% LAND DEMONSTRATED AS SUITABLE FOR REUSE SINCE 2005

46 All land demonstrated as suitable for reuse by 2135

Land quality management (assessment)

524 land to be characterised

506 land characterisation

awaitina remediation

576

physical work in progress

355 1.030 all physical demonstrated complete as suitable

(delivery)

total

9% COMPLETE

(ha)

47 All land dedesignated or reused by 2380

Dedesignated or reused

The NDA continues to support UK Government's plans to amend the legislative framework that applies to nuclear sites which will enable more proportionate regulation during the latter stages of dismantling. The amendments will enable site operators to determine end states on a site by site basis. With this in mind, the NDA is working with SLCs and other stakeholders on the end state for each site. The NDA is also working with local authorities to ensure that site end states and statements on the next planned use of sites are consistent with local waste and development plans.

In 2005, the NDA was given responsibility for land, under a 'designating' order by the Secretary of State. 'De-designating' this order signifies that the NDA's mission is complete. Parts of Berkeley are now a college campus while land at Harwell and Winfrith has been developed as business parks. In 2024 we dedesignated 1.21 hectares of land at Sizewell.

MISSION END

total

land

reused

Bradwell in care and maintenance

Harwell

Winfrith

