

Monthly water situation report: South-east England

1 Summary - October 2025

During October, two named storms crossed the South east of England. The first was Storm Amy, which crossed the south east between 3 and 4 of the month and the second was Storm Benjamin which impacted the south coast on 22 October. These storms accounted for 15% and 23% of the monthly total rainfall respectively. In total, the South east of England received 108% of the long term average (LTA) rainfall for October.

The soil moisture deficits (SMD) started the month at significantly greater than the LTA, dropped slightly after Storm Amy, then rose up to a peak on 18 October. However, by the end of the month, the SMDs for Solent and South Downs (SSD) ended the month below the LTA and for Kent and South London (KSL) were close to the end of month LTA. These were significantly lower than the SMDs for both Thames (THM) and Hertfordshire and North London (HNL). There was about a third of the LTA recharge during the month.

The recession during the summer continued for all the flow indicator sites. Despite the rainfall, fifteen of the 21 indicator flow sites were in the normal range for October as their catchments had such high SMDs. The steady decline of groundwater levels continued during the month for most of the indicator sites. Half of the groundwater indicator sites were in the normal category at the end of the month.

1.1 Rainfall

During October, two named storms crossed the South east of England. The first was Storm Amy, which crossed the south east between 3 and 4 of the month and the second was Storm Benjamin which impacted the south coast on 22 October. These storms accounted for 15% and 23% of the monthly total rainfall respectively. In total, the South east of England received 108% of the LTA rainfall for October. However, SSD and KSL were much wetter than the north, with 116% and 123% of the monthly LTA respectively, largely as a result of Storm Benjamin on 22 October. By contrast, THM received 92% and HNL 89% of the LTA for October.

The highest daily rainfall total of 52.7mm was recorded at Brockenhurst (SSD) on 19 October. However, the top 5 daily rainfall totals in KSL were all recorded on 22 October and were greater than 40mm.

On average there were 16 'dry' days (less than 0.2mm rainfall in a day) during the month and the rainfall totals from 19 October to the end of the month accounted for 79% of the monthly total on average.

The 7 months ending in October were the driest since 2003 for both THM and HNL and a number of their areal units, including Cotswolds East, Loddon and Enborne (all THM), and Lee Chalk and Chilterns East (both HNL). Most areal units had their driest 12 month period ending in October since 2022.

1.2 Soil moisture deficit and recharge

The SMDs started the month at significantly greater than the LTA, dropped slightly after Storm Amy, then rose up to a peak on 18 October. They fell in response to the rainfall which followed on the next 5 days, then again in response to the rainfall on 31 October. However, by the end of the month, the SMDs for SSD ended the month below the LTA and for KSL were close to the end of month LTA. Both HNL and THM SMDs remained significantly higher than the LTA. There was about a third of the LTA recharge during the month.

1.3 River flows

The recession during the summer continued for all the flow indicator sites. There was some muted response to the rainfall with the groundwater fed rivers. However, Lymington River at Brockenhurst (SSD) and the Rother at Udiam (KSL) responded quickly to the rainfall at the end of the month as the SMDs had been significantly reduced by the storms. Both these rivers drain impermeable catchments. Despite the rainfall, fifteen of the 21 flow indicator sites were in the normal range for October as their catchments had such high SMDs. The Mimram at Panshanger and the Ver at Colney Street (both HNL) were in the above normal category, still showing the impact of relatively high groundwater levels in the Lee Chalk during the last year. Two fluvial flood alerts were issued during the month.

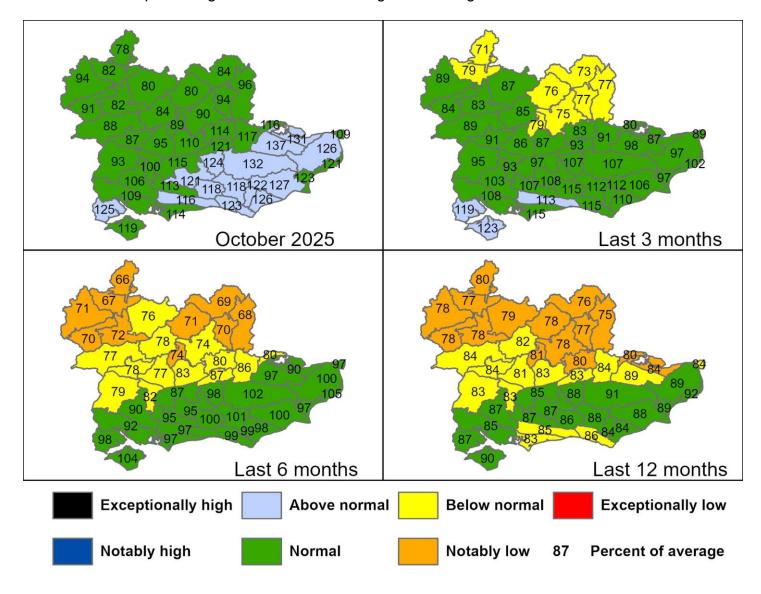
	HNL	тнм	SSD	KSL	Total
Fluvial Alerts	0	1	1	0	2

1.4 Groundwater levels

The steady decline of groundwater levels continued during the month for most of the indicator sites. The exceptions were Jackaments (Oolites, THM), Carisbrooke (Chalk,SSD) and Riddles Lane (Chalk,KSL). Since there has only been on a third of the LTA recharge owing to the high SMDs during October, it is unlikely that the groundwater levels will respond quickly at the slower responding boreholes. Half of the groundwater indicator sites were in the normal category at the end of the month. Rockley (Chalk, THM) levels were exceptionally low for October and both Chilgrove (Chalk,SSD) and Chipstead (Chalk,KSL) were notably low. Four of the groundwater indicator sites were at their lowest levels since 2022, including Chilgrove (SSD) which had the second lowest October level on record.

1.5 Reservoir stocks

Some reservoir stocks have started to increase in response to the rainfall during the month. However, Bough Beech, Bewl and Powdermill (all in KSL) continued to decline during October. All of the reservoirs remained below the LTA for September with the exceptions of Weir Wood (KSL) and the Lee Valley (HNL) which ended the month above the LTA.

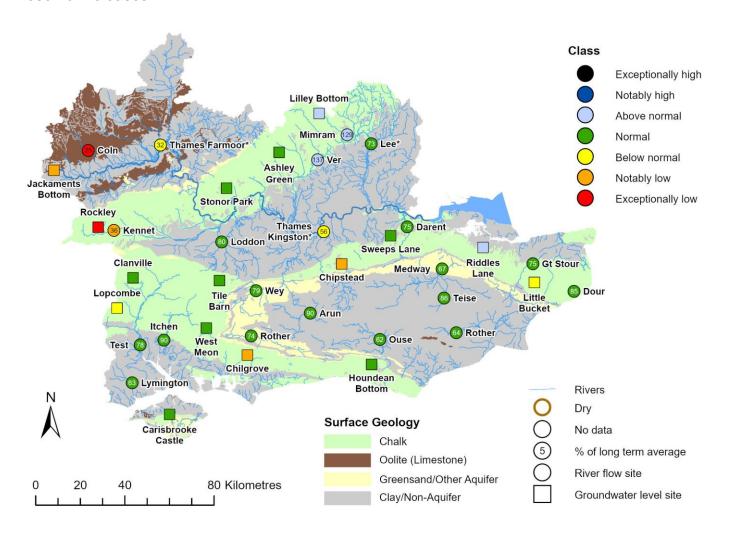

Author: groundwaterhydrology@environment-agency.gov.uk

All data are provisional and may be subject to revision. The views expressed in this document are not necessarily those of the Environment Agency. Its officers, servants or agents accept no liability for any loss or damage arising from the interpretation or use of the information, or reliance upon views contained in this report.

2 Maps

2.1 Rainfall map

Figure 2.1: Total rainfall for hydrological areas for the current month (up to 31 October 2025), the last 3 months, the last 6 months, and the last 12 months, classed relative to an analysis of respective historic totals. Table available in the appendices with detailed information. The numbers refer to percentage of the 1991-2020 long term average.



Rainfall data for 2025, extracted from Environment Agency 1km gridded rainfall dataset derived from Environment Agency intensity rain gauges. (Source: © Ordnance Survey Crown Copyright and Database Rights 2025 AC0000807064). Rainfall data prior to 2025, extracted from Met Office HadUK 1km gridded rainfall dataset derived from registered rain gauges. (Source: Met Office. Crown copyright, 2025).

2.2 River flows and groundwater levels map

Figure 2.2: Monthly mean river flow for indicator sites for October 2025, expressed as a percentage of the respective long term average and classed relative to an analysis of historic October monthly means Table available in the appendices with detailed information. Groundwater levels for indicator sites at the end of October 2025, classed relative to an analysis of respective historic October levels. Table available in the appendices with detailed information.

Flows at gauging stations in the Medway catchment (KSL) might be affected by upstream reservoir releases.

(Source: Environment Agency). © Ordnance Survey Crown Copyright and Database Rights 2025 AC0000807064. Geological map reproduced with kind permission from UK Groundwater Forum, BGS copyright NERC. © Ordnance Survey Crown Copyright and Database Rights 2025 AC0000807064.

3 Rainfall, effective rainfall and soil moisture deficit tables

3.1 Rainfall, effective rainfall and soil moisture deficit table

Figure 3.1: This is a second estimate of areal rainfall, effective rainfall (percolation or runoff) and SMDs for a selection of the hydrological areas across the South-east of England. There may be significant variation within each area which must be considered when interpreting these data. When additional meteorological data is available estimates are revised which will affect the period totals in Figure 3.2.

Number	Hydrological Area	Rainfall (mm) 31 day Total	October % LTA	Effective Rainfall (mm) 31 day total	October % LTA	SMD (mm) Day 31	End Oct LTA
6010TH	Cotswolds - West (A)	82	94%	10	33%	89	41
6070TH	Berkshire Downs (G)	75	88%	9	53%	123	75
6130TH	Chilterns - West (M)	68	84%	8	51%	131	80
6162TH	North Downs - Hampshire (P)	99	100%	13	50%	93	62
6190TH	Wey - Greensand (S)	111	115%	15	57%	87	64
	Thames Average	74	92%	5	31%	123	70
	Thames Catchment Average	78	95%	5	32%	118	70
6140TH	Chilterns - East - Colne (N)	64	81%	8	45%	150	81
6600TH	Lee Chalk	58	84%	7	63%	163	103
6507TH	North London	65	91%	0	0%	145	90
6509TH	Roding	65	96%	0	0%	149	91
	Herts and North London	64	89%	3	32%	151	91
	North Downs - South	400	4000/				
6230TH	London (W)	108	120%	15	62%	98	70
6706So	Darent	90	116%	12	76%	126	89

	North Kent						
6707So	Chalk	113	137%	15	83%	97	82
6708So	Stour	113	125%	15	82%	87	77
6809So	Medway	118	131%	0	0%	38	59
	Kent & South						
	London						
	Average	102	123%	6	41%	92	89
6701So	Test Chalk	89	94%	11	51%	106	68
	East						
	Hampshire						
6702So	Chalk	112	106%	15	46%	56	54
	West Sussex						
6703So	Chalk	126	116%	17	47%	19	48
6804So	Arun	118	121%	0	0%	31	51
6805So	Adur	118	118%	0	0%	6	48
	Solent &						
	South Downs						
	Average	117	116%	8	28%	32	56
	South East						
	Average	94	108%	6	32%	90	73

HadUK rainfall data. (Source: Met Office. Crown copyright, 2025).

EA effective rainfall and soil moisture deficit data (Source EA Soil Moisture Model 2025.)

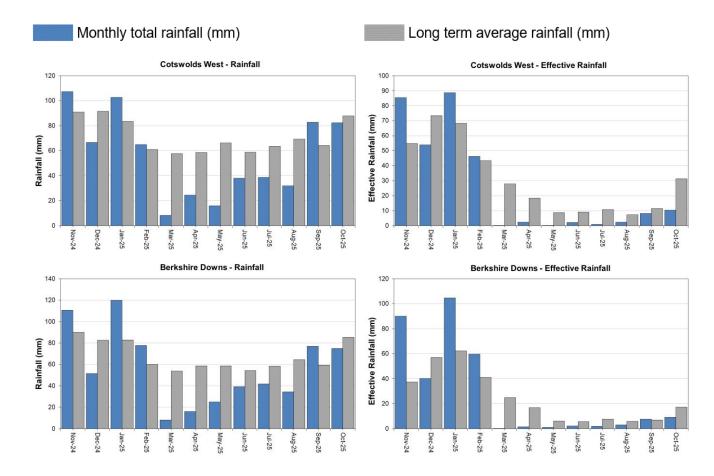
3.2 Seasonal summary table of rainfall and effective rainfall

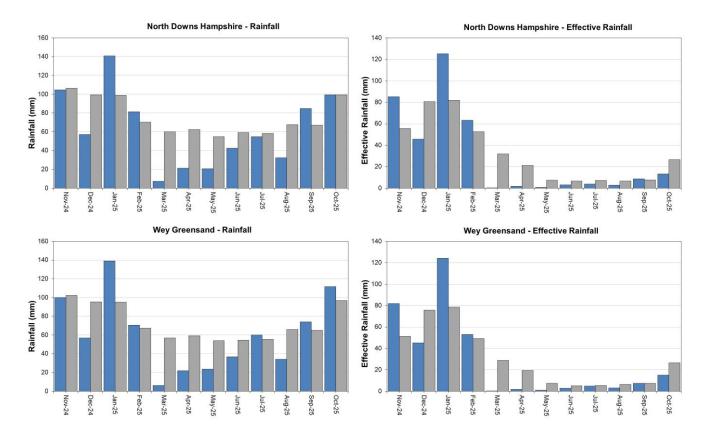
Figure 3.2 This is a seasonal estimate of areal rainfall and effective rainfall (percolation or runoff) for a selection of the hydrological areas across the South-east of England, expressed as totals and as a percentage of the LTA. There may be significant variation within each area which must be considered when interpreting these data. When additional meteorological data is available estimates are revised which will affect the period totals.

Winter period 01/10/2025 to 31/10/2025

Number	Hydrological	Seasonal	Seasonal	Seasonal	Seasonal
	Area	Rainfall (mm)	Rainfall as % LTA	Effective Rainfall	Effective Rainfall as
		Total		(mm)	% LTA
				Total	
	Cotswolds -				
6010TH	West (A)	82	94%	10	33%
6070TH	Berkshire Downs (G)	75	88%	9	53%
6130TH	Chilterns - West (M)	68	84%	8	51%
	North Downs - Hampshire				
6162TH	(P)	99	100%	13	50%
	Wey - Greensand				
6190TH	(S)	111	115%	15	57%
	Thames				
	Average	74	92%	5	31%
	Thames Catchment	70	050/		220/
	Average Chilterns -	78	95%	5	32%
6140TH	East - Colne (N)	64	81%	8	45%
6600TH	Lee Chalk	58	84%	7	63%
6507TH	North London	65	91%	0	0%
6509TH	Roding	65	96%	0	0%
	Herts and North London	64	89%	3	32%
	North Downs - South				
6230TH	London (W)	108	120%	15	61%

6706So	Darent	90	116%	12	76%
	North Kent				
6707So	Chalk	113	137%	15	83%
6708So	Stour	113	125%	15	82%
6809So	Medway	118	131%	0	0%
	Kent & South London	400	4000/		440/
	Average	102	123%	6	41%
6701So	Test Chalk	89	94%	11	51%
6702So	East Hampshire Chalk	112	106%	15	46%
	West Sussex				
6703So	Chalk	126	116%	17	47%
6804So	Arun	118	121%	0	0%
6805So	Adur	118	118%	0	0%
	Solent & South Downs Average	117	116%	8	28%
	South East Average	94	108%	6	32%

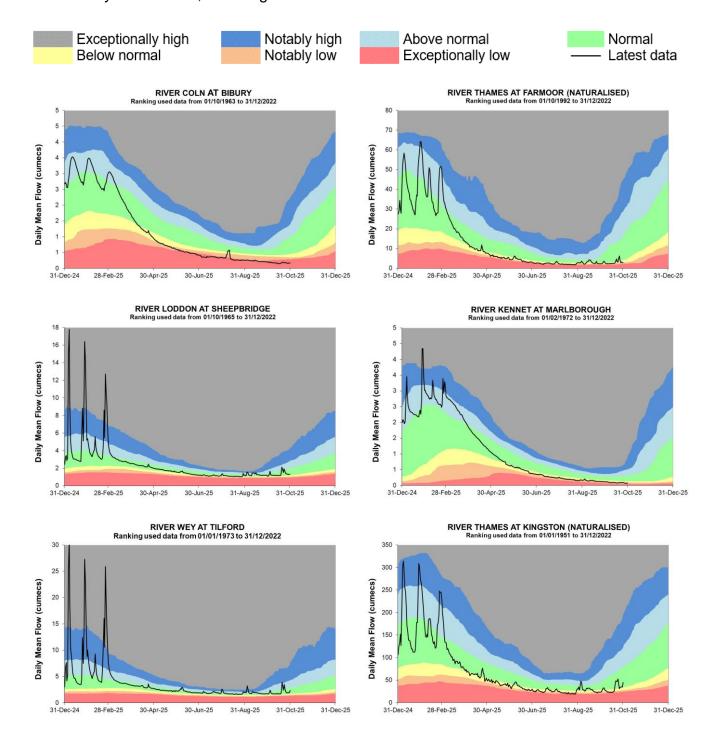

HadUK rainfall data. (Source: Met Office. Crown copyright, 2025).


EA effective rainfall data (Source EA Soil Moisture Model 2025.)

4 Thames

4.1 Thames Rainfall and effective rainfall charts

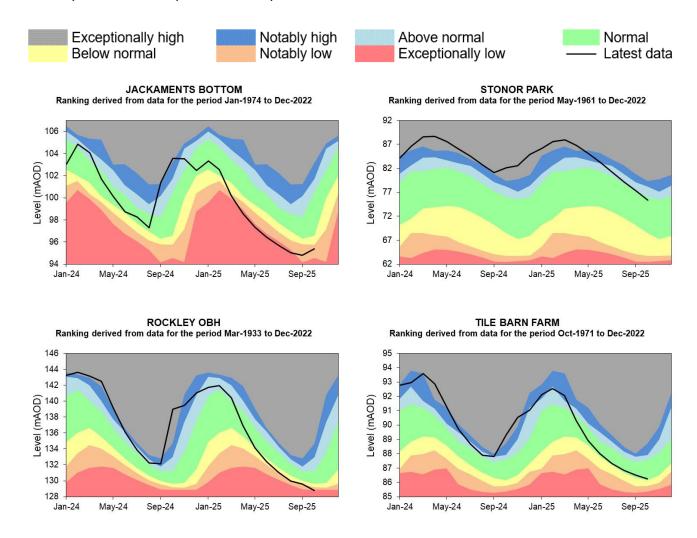
Figure 4.1: Monthly rainfall and effective rainfall totals for the past 24 months compared to the 1991 to 2020 long term average for a selection of areal units.



HadUK rainfall data. (Source: Met Office. Crown copyright, 2025).

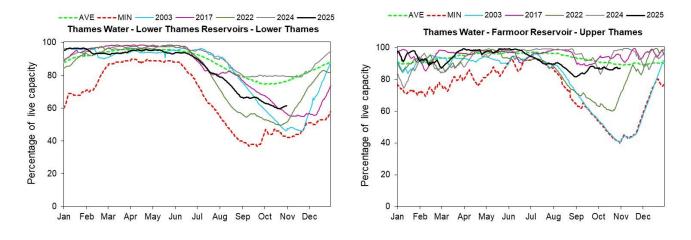
EA effective rainfall data (Source EA Soil Moisture Model, 2025).

4.2 Thames River flow charts


Figure 4.2: Daily mean river flow for index sites over the past year, compared to an analysis of historic daily mean flows, and long term maximum and minimum flows.

Source: Environment Agency. 2025

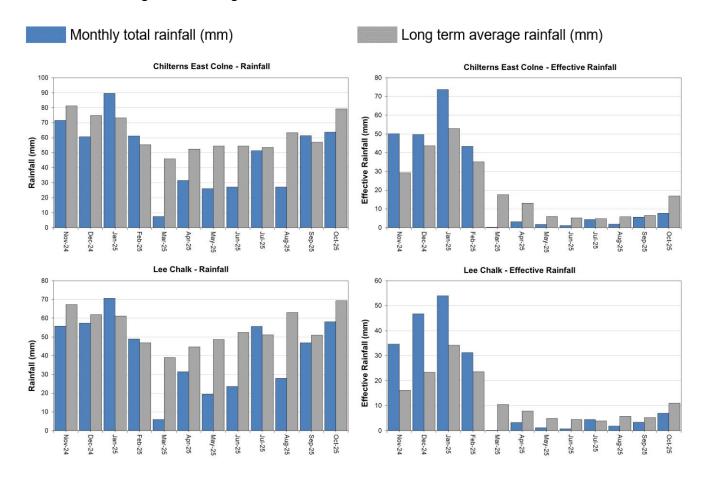
4.3 Thames Groundwater level charts


Figure 4.3: End of month groundwater levels at index groundwater level sites for major aquifers. 22 months compared to an analysis of historic end of month levels and long term maximum and minimum levels. Tile Barn Farm data has been estimated from 2 local sites since April 2022. A replacement is planned.

Source: Environment Agency, 2025.

4.4 Thames Reservoir stocks

Figure 4.4: End of month regional reservoir stocks compared to long term maximum, minimum and average stocks. Note: Historic records of individual reservoirs and reservoir groups making up the regional values vary in length.



(Source: water companies).

5 Hertfordshire and North London (HNL)

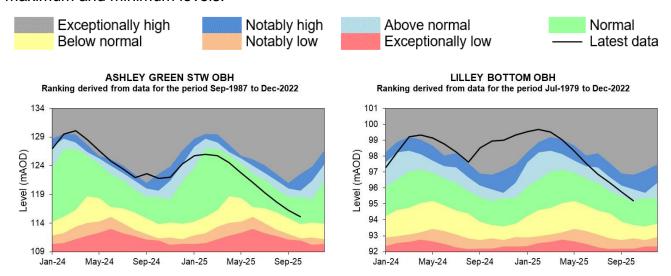
5.1 HNL Rainfall and Effective rainfall charts

Figure 5.1: Monthly rainfall and effective rainfall totals for the past 24 months compared to the 1991 to 2020 long term average for a selection of areal units.

HadUK rainfall data. (Source: Met Office. Crown copyright, 2025).

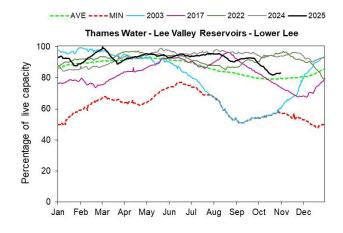
EA effective rainfall data (Source EA Soil Moisture Model, 2025).

5.2 HNL River flow charts


Figure 5.2 Daily mean river flow for index sites over the past year, compared to an analysis of historic daily mean flows, and long term maximum and minimum flows.

Source: Environment Agency. 2025

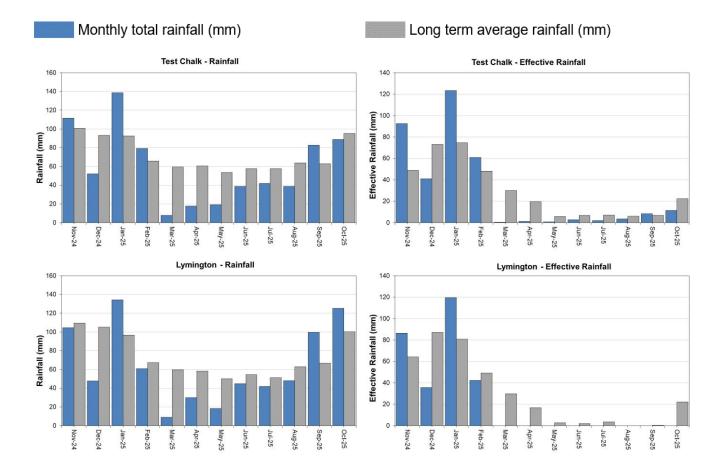
5.3 HNL Groundwater level charts

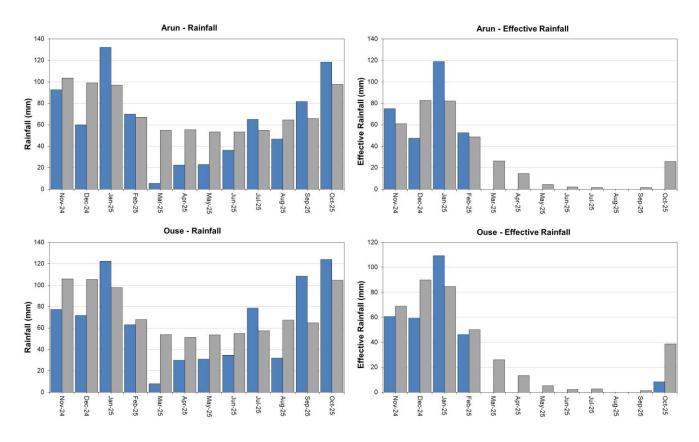

Figure 5.3: End of month groundwater levels at index groundwater level sites for major aquifers. 22 months compared to an analysis of historic end of month levels and long term maximum and minimum levels.

Source: Environment Agency, 2025.

5.4 HNL Reservoir stocks

Figure 5.4: End of month regional reservoir stocks compared to long term maximum, minimum and average stocks. Note: Historic records of individual reservoirs and reservoir groups making up the regional values vary in length.

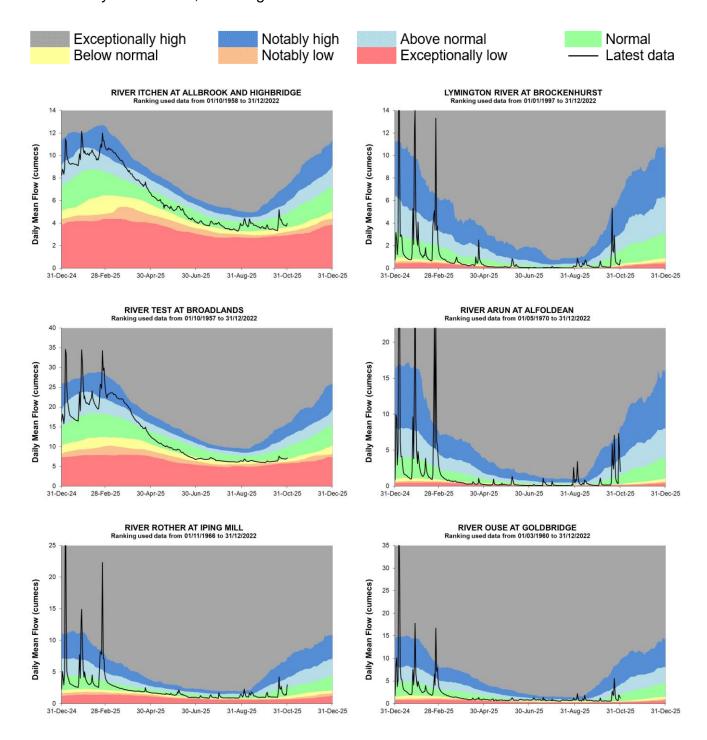



(Source: water companies).

6 Solent and South Downs (SSD)

6.1 SSD Rainfall and Effective Rainfall charts

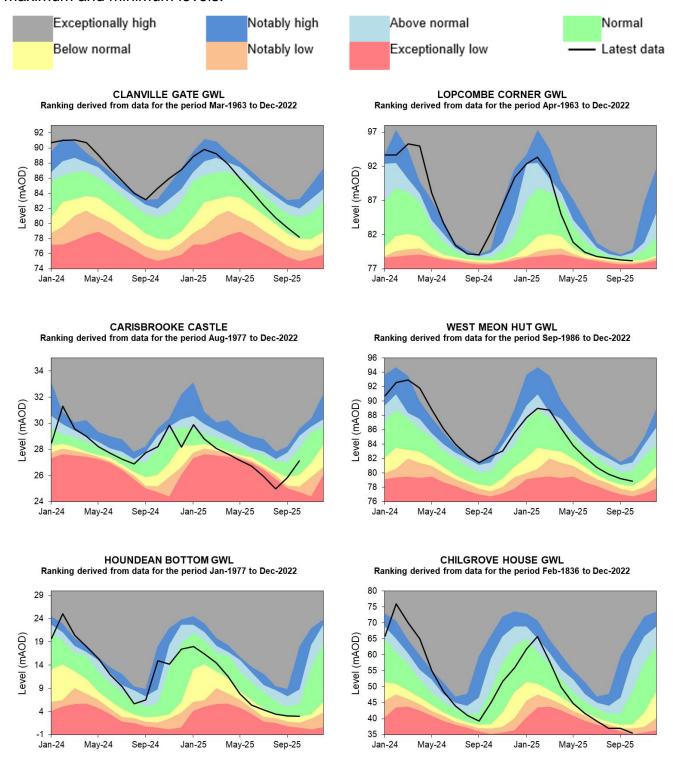
Figure 6.1: Monthly rainfall and effective rainfall totals for the past 24 months as a percentage of the 1991 to 2020 long term average for a selection of areal units.



HadUK rainfall data. (Source: Met Office. Crown copyright, 2025).

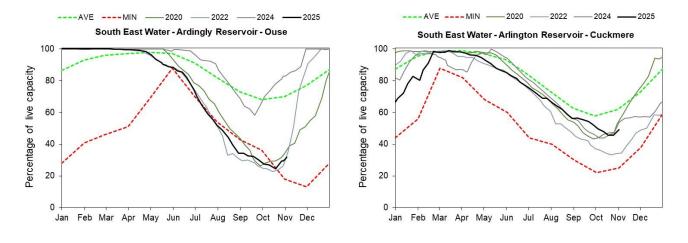
EA effective rainfall data (Source EA Soil Moisture Model, 2025).

6.2 SSD River flow charts


Figure 6.2: Daily mean river flow for index sites over the past year, compared to an analysis of historic daily mean flows, and long term maximum and minimum flows.

Source: Environment Agency. 2025

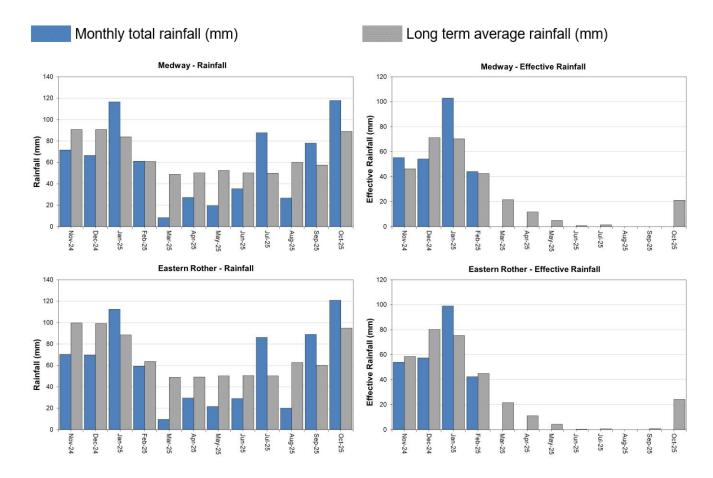
6.3 SSD Groundwater levels

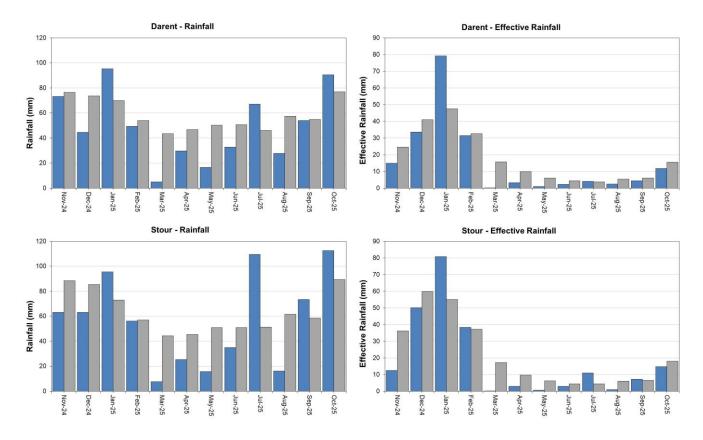

Figure 6.3: End of month groundwater levels at index groundwater level sites for major aquifers. 22 months compared to an analysis of historic end of month levels and long term maximum and minimum levels.

Source: Environment Agency, 2025.

6.4 SSD Reservoir stocks

Figure 6.4: End of month regional reservoir stocks compared to long term maximum, minimum and average stocks. Note: Historic records of individual reservoirs and reservoir groups making up the regional values vary in length.

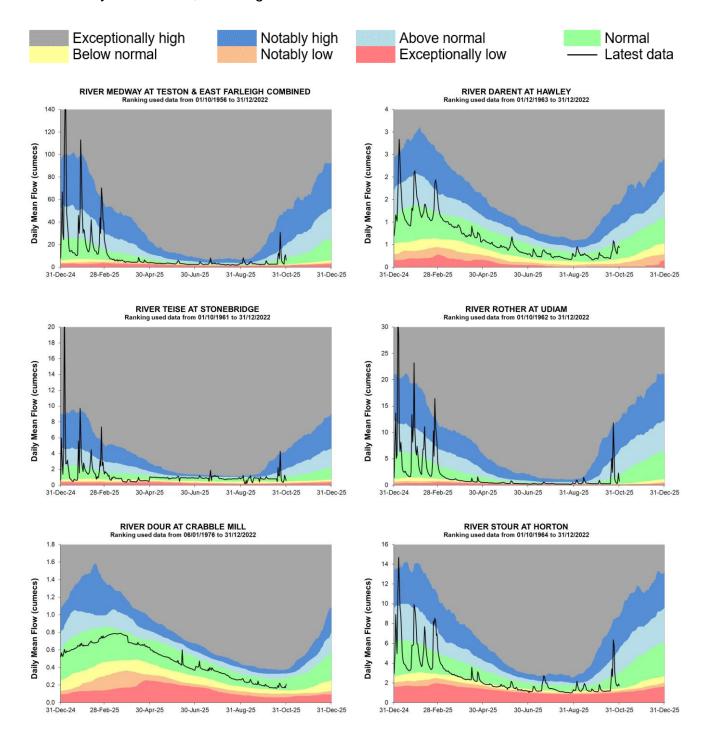



(Source: water companies).

7 Kent and South London (KSL)

7.1 KSL Rainfall and Effective Rainfall charts

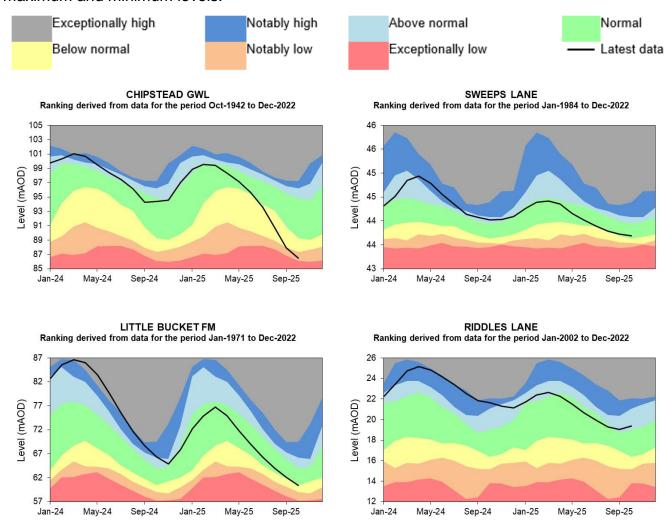
Figure 7.1: Monthly rainfall and effective rainfall totals for the past 24 months compared to the 1991 to 2020 long term average for a selection of areal units.



HadUK rainfall data. (Source: Met Office. Crown copyright, 2025).

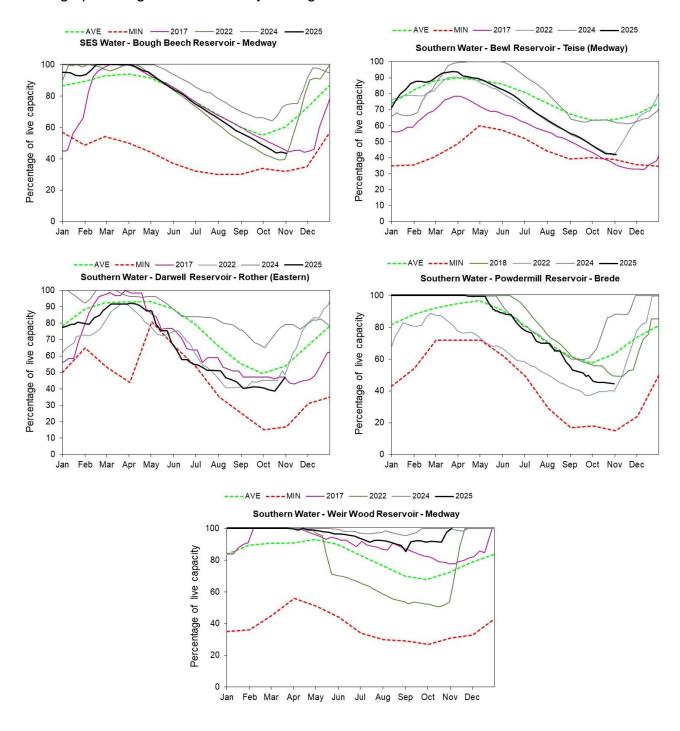
EA effective rainfall data (Source EA Soil Moisture Model, 2025).

7.2 KSL River flow charts


Figure 7.2: Daily mean river flow for index sites over the past year, compared to an analysis of historic daily mean flows, and long term maximum and minimum flows.

Source: Environment Agency. 2025

7.3 KSL Groundwater levels


Figure 7.3: End of month groundwater levels at index groundwater level sites for major aquifers. 22 months compared to an analysis of historic end of month levels and long term maximum and minimum levels.

Source: Environment Agency. 2025

7.4 KSL Reservoir stocks

Figure 7.4: End of month regional reservoir stocks compared to long term maximum, minimum and average stocks. Note: Historic records of individual reservoirs and reservoir groups making up the regional values vary in length.

(Source: water companies).

8 Glossary

8.1 Terminology

Aquifer

A geological formation able to store and transmit water.

Areal average rainfall

The estimated average depth of rainfall over a defined area. Expressed in depth of water (mm).

Artesian

The condition where the groundwater level is above ground surface but is prevented from rising to this level by an overlying continuous low permeability layer, such as clay.

Artesian borehole

Borehole where the level of groundwater is above the top of the borehole and groundwater flows out of the borehole when unsealed.

Cumecs

Cubic metres per second (m³s⁻¹).

Effective rainfall

The rainfall available to percolate into the soil or produce river flow. Expressed in depth of water (mm).

Flood alert and flood warning

Three levels of warnings may be issued by the Environment Agency. Flood alerts indicate flooding is possible. Flood warnings indicate flooding is expected. Severe flood warnings indicate severe flooding.

Groundwater

The water found in an aquifer.

Long term average (LTA)

The arithmetic mean calculated from the historic record, usually based on the period 1991 to 2020. However, the period used may vary by parameter being reported on (see figure captions for details).

mAOD

Metres above ordnance datum (mean sea level at Newlyn Cornwall).

MORECS

Met Office Rainfall and Evaporation Calculation System. Met Office service providing real time calculation of evapotranspiration, soil moisture deficit and effective rainfall on a 40 by 40 km grid.

Naturalised flow

River flow with the impacts of artificial influences removed. Artificial influences may include abstractions, discharges, transfers, augmentation and impoundments.

NCIC

National Climate Information Centre. NCIC area monthly rainfall totals are derived using the Met Office 5 km gridded dataset, which uses rain gauge observations.

Recharge

The process of increasing the water stored in the saturated zone of an aquifer. Expressed in depth of water (mm).

Reservoir gross capacity

The total capacity of a reservoir.

Reservoir live capacity

The capacity of the reservoir that is normally usable for storage to meet established reservoir operating requirements. This excludes any capacity not available for use (for example, storage held back for emergency services, operating agreements or physical restrictions). May also be referred to as 'net' or 'deployable' capacity.

Soil moisture deficit (SMD)

The difference between the amount of water actually in the soil and the amount of water the soil can hold. Expressed in depth of water (mm).

8.2 Categories

Exceptionally high

Value likely to fall within this band 5% of the time.

Notably high

Value likely to fall within this band 8% of the time.

Above normal

Value likely to fall within this band 15% of the time.

Normal

Value likely to fall within this band 44% of the time.

Below normal

Value likely to fall within this band 15% of the time.

Notably low

Value likely to fall within this band 8% of the time.

Exceptionally low

Value likely to fall within this band 5% of the time.

9 Appendices

9.1 Rainfall table

Hydrological area	Oct 2025 rainfall % of long term average 1991 to 2020	Oct 2025 band	Aug 2025 to October cumulative band	May 2025 to October cumulative band	Nov 2024 to October cumulative band
Cotswold West	94	Normal	Normal	Notably low	Notably low
Cotswold East	82	Normal	Below normal	Notably low	Notably low
Berkshire Downs	88	Normal	Normal	Below normal	Below normal
Chilterns West	84	Normal	Normal	Below normal	Below normal
Chilterns East Colne	80	Normal	Below normal	Notably low	Notably low
North Downs - Hampshire	100	Normal	Normal	Below normal	Below normal
North Downs - South London	121	Normal	Normal	Below normal	Below normal
Upper Thames	91	Normal	Normal	Notably low	Notably low
Upper Cherwell	78	Normal	Below normal	Notably low	Notably low

	ı		I		
Thame	80	Normal	Normal	Below normal	Notably low
Loddon	95	Normal	Normal	Below normal	Below normal
Lower Wey	110	Normal	Normal	Below normal	Below normal
Upper Mole	124	Above Normal	Normal	Normal	Normal
Lower Lee	94	Normal	Below normal	Notably low	Notably low
North London	90	Normal	Below normal	Below normal	Notably low
South London	114	Normal	Normal	Below normal	Notably low
Roding	96	Normal	Below normal	Notably low	Notably low
Ock	82	Normal	Normal	Notably low	Notably low
Enborne	87	Normal	Normal	Below normal	Below normal
Cut	89	Normal	Below normal	Notably low	Notably low
Lee Chalk	84	Normal	Below normal	Notably low	Notably low
River Test	93	Normal	Normal	Below normal	Below normal
East Hampshire Chalk	106	Normal	Normal	Normal	Normal
West Sussex Chalk	116	Above Normal	Above normal	Normal	Below normal
East Sussex Chalk	123	Above Normal	Normal	Normal	Below normal

Sw Isle Of Wight	119	Normal	Above normal	Normal	Normal
River Darent	117	Normal	Normal	Below normal	Below normal
North Kent Chalk	137	Above Normal	Normal	Normal	Below normal
Stour	126	Above Normal	Normal	Normal	Normal
Dover Chalk	121	Normal	Normal	Normal	Normal
Thanet Chalk	109	Normal	Normal	Normal	Below normal
Western Rother Greensand	113	Normal	Normal	Normal	Normal
Hampshire Tertiaries	109	Normal	Normal	Normal	Normal
Lymington River Avon Water And O	125	Above Normal	Above normal	Normal	Normal
Sussex Coast	114	Normal	Normal	Normal	Below normal
River Arun	121	Above Normal	Normal	Normal	Normal
River Adur	118	Above Normal	Normal	Normal	Normal
River Ouse	119	Above Normal	Normal	Normal	Normal

Cuckmere River	122	Above Normal	Normal	Normal	Normal
Pevensey Levels	126	Above Normal	Normal	Normal	Normal
River Medway	132	Above Normal	Normal	Normal	Normal
Eastern Rother	128	Above Normal	Normal	Normal	Normal
Romney Marsh	123	Normal	Normal	Normal	Normal
North West Grain	116	Normal	Normal	Below normal	Notably low
Sheppy	131	Above Normal	Normal	Normal	Notably low

9.2 River flows table

Site name	River	Catchment	Oct 2025 band	Sep 2025 band
Colney Street_hansteads		Colne	Above normal	Notably high
Feildes Weir (nat)	Lee (middle)	Lee	Normal	Normal
Panshanger	Mimram	Lee	Above normal	Notably high
Crabble Mill Gs	Dour	Little Stour	Normal	Normal
Hawley Gs	Darent	Darent and Cray	Normal	Normal
Horton Gs	Great Stour	Stour Kent	Normal	Normal
Stonebridge Gs	Teise	Teise	Normal	Normal
Teston Farleigh Combined	Medway100	Medway Estuary	Normal	Normal
Udiam Gs	Rother	Rother Kent Lower	Normal	Normal
Alfoldean Gs	Arun	Arun	Normal	Above normal
Allbrook Gs And Highbridge	Itchen (so)	Itchen	Normal	Normal
Broadlands	Test	Test Lower	Normal	Normal
Brockenhurst Gs	Lymington	New Forest	Normal	Normal
Goldbridge Gs	Ouse (so)	Ouse Sussex	Normal	Normal

Iping Mill Gs	Rother	West Rother	Normal	Normal
Farmoor (naturalised)	River Thames	Thames	Below normal	Below normal
Kingston (naturalised)	River Thames	Thames North Bank	Below normal	Normal
Marlborough	River Kennet	Kennet	Notably low	Below normal
Sheepbridge	River Loddon	Loddon	Normal	Normal
Tilford	River Wey	Wey Addleston Bourne	Normal	Normal

9.3 Groundwater table

Site name	Aquifer	End of Oct 2025 band	End of Sep 2025 band
Ashley Green Stw	Mid-chilterns Chalk	Normal	Normal
Lilley Bottom	Upper Lee Chalk	Above normal	Above normal
Little Bucket Fm	East Kent Chalk - Stour	Below normal	Normal
Chipstead Gwl	Epsom North Downs Chalk	Notably low	Below normal
Riddles Lane	North Kent Swale Chalk	Above normal	Above normal
Sweeps Lane Gwl	West Kent Chalk	Normal	Normal
Houndean Bottom Gwl	Brighton Chalk Block	Normal	Normal
Chilgrove House Gwl	Chichester- worthing- portsdown Chalk	Notably low	Notably low
Carisbrooke Castle	Isle Of Wight Central Downs Chalk	Normal	Below normal
West Meon Hut Gwl	River Itchen Chalk	Normal	Normal

Clanville Gate Gwl	River Test Chalk	Normal	Normal
Lopcombe Corner Gwl	River Test Chalk	Below normal	Normal
Tile Barn Farm	Basingstoke Chalk	Normal	Normal
Rockley Obh	Berkshire Downs Chalk	Exceptionally low	Below normal
Jackaments Bottom Obh	Burford Oolitic Limestone (inferior)	Notably low	Notably low
Stonor Estate	South-west Chilterns Chalk	Normal	Above normal

9.4 South-east England areal units for reference

Some features of this map are based on digital spatial data licensed from the Centre for Ecology and Hydrology, © CEH. Includes material based on Ordnance Survey 1:50 000 maps with the permission of the controller of His Majesty's Stationery Office © Crown copyright. All rights reserved. Environment Agency, 100026380, 2025.