

AAIB Bulletin

11/2025

Air Accidents Investigation Branch
Farnborough House
Berkshire Copse Road
Aldershot
Hampshire
GU11 2HH
United Kingdom

Tel: 01252 510300 Media enquiries: 01932 440015 (office hours) / 0300 777 7878 (out of hours) www.aaib.gov.uk

AAIB investigations are conducted in accordance with Annex 13 to the ICAO Convention on International Civil Aviation, assimilated EU Regulation No 996/2010 (as amended) and The Civil Aviation (Investigation of Air Accidents and Incidents) Regulations 2018.

The sole objective of the investigation of an accident or incident under these Regulations is the prevention of future accidents and incidents. It is not the purpose of such an investigation to apportion blame or liability.

Accordingly, it is inappropriate that AAIB reports should be used to assign fault or blame or determine liability, since neither the investigation nor the reporting process has been undertaken for that purpose.

AAIB Bulletins and Reports are available on the Internet www.aaib.gov.uk

This bulletin contains facts which have been determined up to the time of compilation.

Extracts may be published without specific permission providing that the source is duly acknowledged, the material is reproduced accurately and it is not used in a derogatory manner or in a misleading context.

Published: 13 November 2025.

Cover picture courtesy of Niall Robertson

© Crown copyright 2025

ISSN 0309-4278

CONTENTS

SPECIAL BULLETINS / INTERIM REPORTS

None

SUMMARIES OF AIRCRAFT ACCIDENT ('FORMAL') REPORTS

None

AAIB FIELD INVESTIGATIONS

COMMERCIAL AIR TRANSPORT

FIXED WING

Boeing 737-8K5 G-TAWB 16-Dec-24 3

ROTORCRAFT

None

GENERAL AVIATION

FIXED WING

Sportstar SLM G-CMGB 1-Sep-24 27

ROTORCRAFT

None

SPORT AVIATION / BALLOONS

None

UNMANNED AIRCRAFT SYSTEMS

None

AAIB CORRESPONDENCE INVESTIGATIONS

COMMERCIAL AIR TRANSPORT

ATR 72-212 A G-IACZ 15-Apr-25 45 Boeing 737-86N G-NPTA 17-May-25 47

GENERAL AVIATION

None

© Crown copyright 2025 j All times are UTC

AAIB Bulletin: 11/2025

CONTENTS Cont

AAIB CORRESPONDENCE INVESTIGATIONS Cont

SPORT AVIATION / BALLOONS

None

UNMANNED AIRCRAFT SYSTEMS

None

RECORD-ONLY INVESTIGATIONS

Record-Only UAS Investigations reviewed August / September 2025 49

MISCELLANEOUS

ADDENDA and CORRECTIONS

Vans RV-8A G-RVBJ 20-Jun-24 55

List of recent aircraft accident reports issued by the AAIB

(ALL TIMES IN THIS BULLETIN ARE UTC)

AAIB Field Investigation Reports

A Field Investigation is an independent investigation in which AAIB investigators collect, record and analyse evidence.

The process may include, attending the scene of the accident or serious incident; interviewing witnesses; reviewing documents, procedures and practices; examining aircraft wreckage or components; and analysing recorded data.

The investigation, which can take a number of months to complete, will conclude with a published report.

Accident

Aircraft Type and Registration: Boeing 737-8K5, G-TAWB

No & Type of Engines: 2 CFM56-7B27E turbofan engines

Year of Manufacture: 2012 (Serial no: 37242)

Date & Time (UTC): 16 December 2024 at 1628 hrs

Location: East Midlands Airport

Type of Flight: Commercial Air Transport

Persons on Board: Crew - 6 Passengers - 125

Injuries: Crew - 1 (Serious) Passengers - None

5 (None)

Nature of Damage: None

Commander's Licence: Airline Transport Pilot's Licence

Commander's Age: 52 years

Commander's Flying Experience: 16,300 hours (of which 12,174 were on type)

Last 90 days - 140 hours Last 28 days - 33 hours

Information Source: AAIB Field Investigation

Synopsis

As the aircraft front passenger door was being closed by the Senior Cabin Crew Member (SCCM), the steps were pushed away from the aircraft. The SCCM was unable to stop herself from falling into the gap created between the steps and the aircraft. She fell onto the ramp and was seriously injured.

The step removal occurred despite the aircraft door being open and a dispatcher still at the top of the steps. There were multiple dispatchers and ramp staff working around the steps and it was not clear who had responsibility for checking that the aircraft door was closed and steps were clear. The presence of one of these dispatchers at the bottom of the steps, with another stepping off the bottom meant the ramp staff moving the steps assumed that the door closure was complete. The process of door closure and step removal had been the subject of a procedural workaround at East Midlands Airport and other UK airports where the ground handling company operated. This procedural workaround had been happening for many years and had not been identified in audits.

Both the ground handling company and the operator took safety action to address issues raised in the investigation.

History of the flight

The crew of G-TAWB were due to operate a scheduled return flight to Arrecife Airport, Lanzarote from East Midlands Airport. The flight had a scheduled departure time of 1510 hrs but the aircraft was running late due to a delay earlier in the day on a previous flight. This delay resulted in a new expected departure time of 1600 hrs. The crew prepared and briefed for the flight before they proceeded to the stand to wait for the aircraft to arrive.

G-TAWB arrived on Stand 9 at the airport at 1538 hrs. In attendance for the flight were a team of four ramp agents led by a team leader. They were responsible for the positioning of equipment including ground power unit, front and rear steps, the offload of the previous flight's baggage before the loading of the baggage for Lanzarote and the pushback for departure once the loading was complete. Also responsible for the turnaround was a dispatcher who was required to plan the aircraft load, provide information on that plan to the team leader and the aircraft commander, and finally to complete the flight paperwork before the flight departure. The dispatcher was accompanied by a trainee dispatcher who was to observe the turnaround as part of his development.

Both front and rear steps were positioned and at 1622 hrs passenger boarding for the flight to Lanzarote was complete and the rear steps were removed. The dispatcher and the trainee dispatcher proceeded up the front steps to liaise with the flight crew and to pass their completed paperwork prior to the aircraft departure. At 1627 hrs the trainee dispatcher proceeded down the front steps from the aircraft with the dispatcher remaining at the top of the steps to complete the aircraft door closing procedure. Another dispatcher who had completed his own flight had arrived to assist and he began to retract the stabiliser legs from the front steps in preparation for their removal.

At 1628 hrs the door closure began with the SCCM releasing the gust lock on the front door and beginning to move it towards the closed position. At the same time two of the ramp agents began to push the steps away from the aircraft. The SCCM fell into the gap created between the aircraft and the steps and was seriously injured. The dispatcher was also on the top of the steps but was able to hang onto the side rail to prevent himself falling.

Accident site

G-TAWB was parked on Stand 9 at East Midlands. After the accident the equipment and aircraft were secured by the airport operator and the passengers disembarked. The steps were examined by the ground handling company, and no faults were identified. The aircraft operator assessed the aircraft door with no faults found.

Recorded information

The event was recorded by the airport's CCTV. The camera which covered the stand was positioned approximately 50 m from the aircraft. With the light conditions at the time of the accident and the distance from the door it was not possible to ascertain exactly where or how the SCCM was positioned prior to the steps being moved away from the aircraft. Whilst the CCTV did allow the investigation to confirm the position of the ramp staff and dispatchers it was also not possible to see where any of the personnel were looking. Screenshots of the CCTV are shown at Figures 5 and 6.

Aircraft and ramp equipment information

Aircraft door

The B737 is fitted with two passenger entry doors and two service doors all of which have the same mechanism for opening and closing. The doors open towards the nose of the aircraft and are fitted with a gust lock to secure the door in the open position. The gust lock on G-TAWB must be depressed to release the door so that it can be closed. On the inside of the door there is an assist handle on the right side as well as a large operating handle. The door is fitted with a viewing window, red warning strap to alert anyone outside the aircraft when the door is armed and an escape slide and its associated equipment. Figure 1 shows the door of G-TAWB from the inside of the aircraft with the door equipment used for closure labelled.

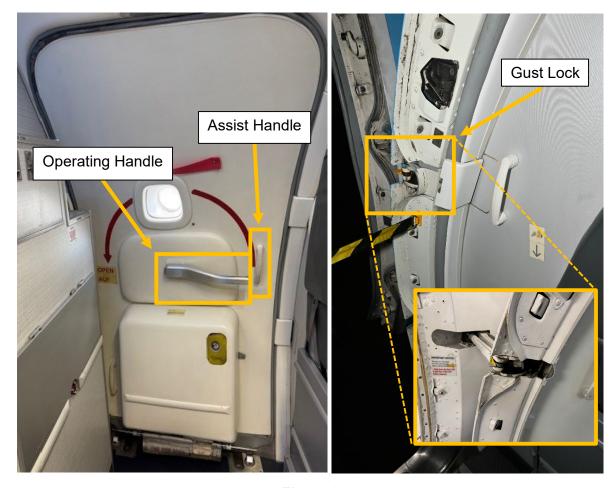


Figure 1
Inside view of front left passenger G-TAWB door closed (left) and open (right)

The aircraft door and surrounds are also equipped with a number of safety handles to assist with door operation. These handles are fitted on the left and right of the door in the cabin as well as a lower handle on the door itself to assist with operation from aircraft airstairs if they are fitted. These handles are shown in Figure 2.

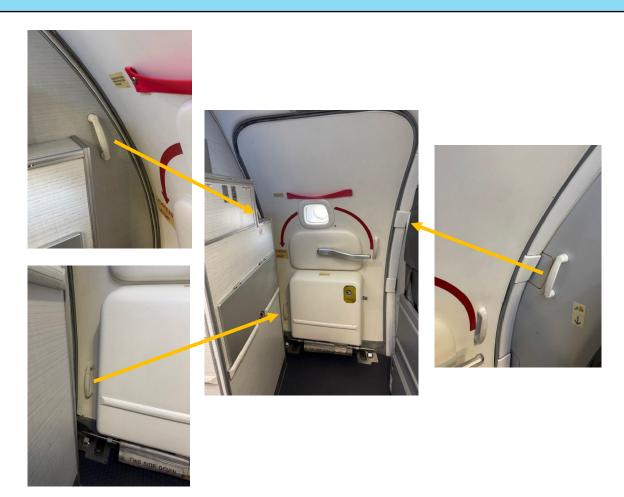
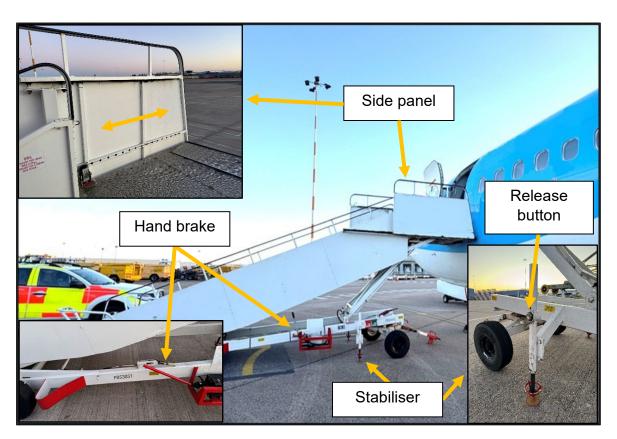


Figure 2

Additional handles fitted the left, right and bottom of the door to assist with operation

The B737-800 front passenger door is between 2.59 and 2.74 m above ground level depending on the aircraft weight¹.

Crew door operation procedures from inside the aircraft


To close the aircraft door the crew must depress the gust lock to disengage it. They then need to hold the assist handle, pulling the door inwards into its frame. Many crew members will use the additional handles fitted inside the door to provide them with additional security during the closure. For the doors on the left of the aircraft this would mean the crew member holding the additional handle to the left of the door frame with their left hand and reaching out with their right hand to the assist handle on the door to pull it closed. Once the door reaches the closed position, the operating handle is rotated forward to the locked position. The operators Safety and Emergency Procedures manual contains a warning that the forward doors will move into the cabin with significant speed and force. Anecdotal evidence suggested that on this aircraft type it could sometimes be necessary for the crew to step outside of the doorway to release the gust lock.

Footnote

The greatest height is when the aircraft is at its operating empty weight which excludes payload and fuel, the lowest when the aircraft is at its maximum design taxi weight. The variations account for loading, oleo and tyre pressure, centre of gravity etc.

Step type

The ground handling company had several different types of steps available at East Midlands suitable for use with the front and rear doors of a B737. The main differences between the types are related to the safety barriers and available power sources. The steps positioned at the front of G-TAWB were the most basic available and were a set of Skway Towable Passenger Stairs (Figure 3).

Figure 3Features of Skyway Towable Passenger Stairs

The step model has an operating platform height of 1.98 m to 4.14 m and weighs 1,700 kg. They are equipped with a manually operated hydraulic system to raise the upper platform, four "kickdown" type stabilisers, a handbrake operating on the rear wheels and a steerable towbar. The upper platform has sliding side panels which are operated by depressing a foot pedal which withdraws a pin from a panel and allows it to slide backwards and forwards. Releasing the foot pedal allows the pin to engage into one of a series of holes. It is necessary to retract one of the sliding side panels on the steps to allow the passenger entry and service doors of the B737 to be closed.

To remove the steps, the (aircraft) forward side panel is slid back to allow the aircraft door to close and once secure, the aft side panel is also withdrawn. The ramp staff member then descends the steps and lifts the four stabilisers by kicking the release buttons. With the hand brake released, the steps are pushed by two ramp staff away from the aircraft to allow

a small tractor to be hitched up and then towed to the airside step storage area. If the steps are fitted with a motor, once the interlock safety barriers are in place, the motor can be used to drive the steps away from the aircraft instead of being pushed.

The ground handling company has other step types available which have features such an electrically operated hydraulic system, electrical lighting or electrical or diesel-powered drive systems (to move the steps up to or away from the aircraft). Most of these other step types are fitted with additional safety barriers with interlocks to the drive system which prevents the steps being moved if the safety barriers are not closed. Before the accident the ground handling company had committed to replacing all the basic steps with steps fitted with interlocked safety barriers and were aiming to complete this by the end of 2025.

Figure 4
Steps featuring interlocking safety barriers

Step removal procedures

The ground handling company's Ground Operations Manual (GOM) contains the required procedures for the movement of ground equipment including steps. There are two specific procedures that are applicable to the investigation. The first is the one for the closure of cabin door and a further procedure for the withdrawal of the steps from the aircraft.

The procedure for the closing of the cabin door by the aircraft crew member states:

- 'a. Notify crew that equipment needs to be removed or repositioned (as applicable) and that the cabin access door needs to be closed.
- b. Receive confirmation from the crew that the cabin access door will be closed.

- c. Visually inspect the exterior of cabin access door and surrounding areas for signs of damage, debris or obstructions.
- d. Retract equipment safety rails and canopy (where fitted) where necessary to close the door.
- e. Assist cabin crew when required, with moving the door to the fully closed position.
- f. When using passenger stairs or PBB², remain on the platform until the door is fully closed.
- g. Where using elevating equipment (e.g., catering truck or medical loader) retreat from the platform prior to the door being closed.
- h. Check that the cabin access door is closed and that the door and handle are flush with the surrounding fuselage.
- i. Descend passenger stairs before they are moved.'

The second procedure sets out in detail how the ground crew should remove the steps from the aircraft. It includes the following instruction:

'After the cabin access door has been closed, confirm that there are no personnel on the stairs prior to retracting stabilizers. [sic]'

The procedure also includes a warning box which states 'Ensure no one is remaining on the stair.'

The clearest view of the steps is from the bottom of the steps themselves but any ramp staff who are about to move the steps are often positioned under the top platform and need to move a considerable distance away from the steps to have a complete view of whether they are clear and safe to move. The procedures contained no guidance on who was responsible for confirming that the door was closed and the steps were clear, nor how this task was to be performed.

As part of the investigation the AAIB reviewed 12 months records of safety reports (December 2023 – December 2024) from the UK bases. A text search for the word 'step' in the 473 events showed eight other events where steps were prepared for movement or moved with people on them or the aircraft door open.

Airfield information

All the Rescue and Firefighting Service (RFFS) staff at East Midlands are First Response Emergency Care Level 3 (FREC 3) trained. FREC 3 is a nationally recognised qualification. It is designed to equip individuals with the knowledge and practical skills required to deal with pre-hospital emergencies and life-threatening situations as first responders. The

Footnote

² Passenger Boarding Bridge.

training covers high risk environments and complex scenarios. The RFFS do not provide minor injury cover for the airport or its passengers as this is not their primary role and doing so would disrupt airport operations significantly. The declaration of an emergency by an aircraft would automatically involve the RFFS.

The airport provides first aid cover for its own staff in accordance with regulations and also cover for anyone at the airport on a 24-hour basis when requested. A number of staff, both those employed by the airport and those from the ground handling company, had first aid training.

Survivability

The SCCM suffered serious injuries in the fall. The injuries included multiple broken bones with a significant period of recovery. She was immediately attended to by various members of the ground handling company and airport personnel who were first aid trained.

Having been informed of the fall by the remaining cabin crew member at the front of the aircraft, the commander instructed the co-pilot to call ATC for medical assistance. The co-pilot called at 1628:50 hrs which was around 30 seconds after the SCCM had fallen. The co-pilot stated "ONE OF OUR CREW MEMBERS HAS FALLEN OVER FROM THE STAIRS, ARE YOU ABLE TO CALL OUT AN AMBULANCE TO OUR POSITION, STAND 9". This call was acknowledged by ATC who after clarifying whether the casualty was inside or outside the aircraft, passed the request for an ambulance to the airport who called the ambulance at 1631 hrs. The co-pilot then requested first aid assistance which was also acknowledged by ATC. ATC again rang the airport to ask for the airport RFFS to attend. The RFFS watch manager was called at 1632 hrs and they began to deploy at 1636 hrs. They arrived at the aircraft at 1639 hrs. The ambulance arrived at the airport at 1652 hrs and was escorted to the aircraft, arriving at 1653 hrs.

A report by the airport into the response time concluded that ATC did not realise the seriousness of the incident, so a lower grade of response than might have been appropriate was initiated. They could not see the incident area from the tower and did not appreciate that the SCCM had fallen from the aircraft door to the ramp. Had a higher level of emergency been declared, the RFFS would have been mobilised more rapidly in response although it likely would have made no difference to the arrival time of the ambulance.

Pilots are trained to use the distress (MAYDAY) and urgency (PAN PAN) prefixes when an aircraft emergency occurs, but these are rarely employed by crews on the ground. ATC are also trained in their use and have procedures to be followed once they hear them on the frequency. The CAA Radiotelephony Manual³, although providing no guidance on emergencies on the ground does state:

'It is invariably preferable for pilots believing themselves to be facing emergency situations to declare them as early as possible and then cancel later if they decide the situation allows.'

Footnote

3 CAA CAP 413 Radiotelephony Manual (CAP 413) [Accessed March 2025].

Personnel

Cabin crew

There were four cabin crew on board the aircraft. All were experienced with the operator and the aircraft type. The SCCM had been flying for over 36 years with the operator and had been a SCCM for over 30 years. The operator has been using variants of the B737 since 1968. Of the three other cabin crew, two were also qualified as SCCMs.

The SCCM noted that a dispatcher (later identified as the trainee) had been into the flight deck to complete the flight paperwork. After he had left the flight deck, he proceeded out the passenger door. The SCCM then walked into the flight deck herself to complete her checks with the commander before closing the flight deck door in preparation for departure. She released the gust lock on the passenger door and began to close it. At the same time as the door began to move, the steps began to move rapidly away. The gap got wider, and she shouted out as did the dispatcher but to no avail. She was unable to stop herself from falling.

Two of the cabin crew members were at the back of the aircraft. The other cabin crew member was at the front, but at the opposite side to the cabin manager. The cabin crew member at the front was facing away from the door and did not see the cabin manager fall but was alerted by shouts and turned around to see the steps had moved and that the cabin manager was no longer standing at the door.

Dispatchers

Each flight is allocated a dispatcher who the ground handling company specifies is responsible for managing the entire arrival and departure process. The dispatcher should oversee all activities both to ensure a safe working environment and achieve an on-time departure.

The primary dispatcher for the flight had been with the ground handling company for eight months and had completed his training for the role six months previously. With the dispatcher there was also a trainee, who was observing as part of his training. The trainee dispatcher had been working for the handling company for seven months although initially in a different role and was in the process of becoming a dispatcher. He had completed some of his classroom-based training for his new role.

Having completed the aircraft loading, including the passenger boarding, both the trainee dispatcher and the primary dispatcher proceeded up the steps and into the aircraft. The primary dispatcher waited at the front of the aircraft whilst the trainee dispatcher went into the flight deck to complete the paperwork with the commander. The trainee dispatcher then left the aircraft and descended the steps before going over to the team leader to complete some paperwork. The primary dispatcher then confirmed with the cabin manager that the paperwork was complete before leaving the aircraft to wait for the cabin manager to close the door. When the accident occurred, the primary dispatcher was at the top of the steps either on the top platform or the next step down. He recalled that he saw the SCCM step her left foot on the steps, with her right foot on the aircraft with the gust lock released when the steps began to move. He shouted for the movement to stop but it did not, and the

SCCM could not position herself back into the aircraft before the gap was sufficient for her to fall between the steps and the aircraft. He saw her try to hang onto the door, but she was unable to do so. The trainee dispatcher did not see the steps move or the fall as he had his back to the aircraft.

During the final part of the turnaround a third dispatcher attended the aircraft. He had been working for the ground handling company for eight months and had completed his role training around six months previously. He had finished dispatching another flight at a neighbouring stand and was passing G-TAWB on his way back to the crewroom. He decided to assist if he could before proceeding back to the crewroom with the two other dispatchers. He arrived before the passenger boarding began and chatted with both other dispatchers. Once the boarding was complete, he saw both the dispatcher and the trainee dispatcher go up the steps into the aircraft. Once he saw them returning to the aircraft door, he approached the bottom of the steps and saw the trainee dispatcher proceeding down to the ramp. He began to release the stabiliser feet of the steps in preparation for their movement. He was aware that the dispatcher was still at the top of the steps. Once he had released the final stabiliser leg, he moved a short distance away from the steps and then heard the dispatcher shouting and looked around to see the cabin manager falling from the aircraft.

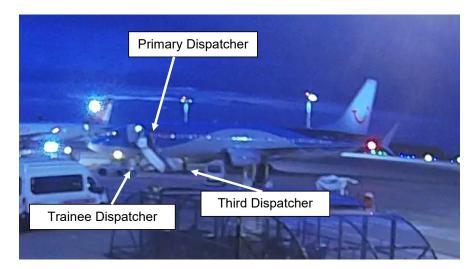


Figure 5
A screenshot of the CCTV showing the position of the dispatchers when the steps were moved

Ramp staff

There were four ramp staff working on the flight led by a team leader. The team leader is responsible for supervising and allocating tasks within their ramp staff team during the turnaround. They are also responsible for the compliance of the team to all operating procedures. The ramp staff and team leader position loading equipment (including steps, belt loaders and baggage carts) to the aircraft as well as unloading and loading of the aircraft holds. The team leader holds a short brief for the ramp team before the turnaround commences in which tasks are allocated to the team including the responsibility for the movement of steps.

The team leader had been employed on the ramp at East Midlands by the ground handling company for nearly 10 years and had been a team leader for two of those. He was standing in front of the aircraft with his back to the steps talking to a colleague from another ramp team about taking the steps to another stand. He heard what he thought was probably the dispatcher at the top of the steps shouting "no stop no" and when he turned around, he saw the cabin manager lying on the ramp and the steps away from the aircraft. He immediately radioed ramp control to request the emergency services.

The second member of the ramp team, who had been working as a ground handler at East Midlands for 22 years, was sitting in the aircraft tug ready for the pushback. The tug was right hand drive, so he had a view of the steps and the front door of the aircraft although he was looking elsewhere when the steps started to move. He was alerted by hearing what he thought was the towing arm of the steps scraping the tarmac and a shout although he did not know from who. He looked up at the aircraft and saw the steps away from the door and the SCCM hanging out the aircraft door before she fell to the ramp.

The third member of the ramp team had been working on the ramp at East Midlands for nearly four years. He had done the door closure procedure on the rear door and removed the rear steps, which were powered by a small diesel engine so could be moved away from the aircraft by a single staff member. He then took these steps to the equipment store using an electric baggage tractor before returning to the stand. When he arrived back at the aircraft, he saw a dispatcher releasing the stabilisers of the front steps. He took this to mean that activities in the aircraft were complete and that the cabin door was closed. He moved under the steps onto the side of the rear of the aircraft. He looked up and could not see any light coming from the cabin and so he felt sure that the door was closed. He released the steps' hand brake and together with the fourth member of the ramp team began to push the steps away from the aircraft. He heard what he thought was the team leader shouting to stop and he turned around to see the SCCM laying on the ramp and the passenger door open.

The fourth member of the ramp team had also completed nearly four years on the ramp at the airport. He was intended to be on the headset with the flight deck for the pushback so once the rear steps had been removed, he commenced his walkaround of the aircraft in preparation. He waited by the front of the aircraft for the boarding to be complete and around five minutes later saw a dispatcher releasing the stabilisers of the front steps. He understood this to be the dispatcher from the aircraft and therefore the door closure must be complete. He then moved under the steps on the nose side of the aircraft and together with his colleague began to push the steps once the brake was released. He heard a sound and turned around to see the SCCM laying on the ramp.

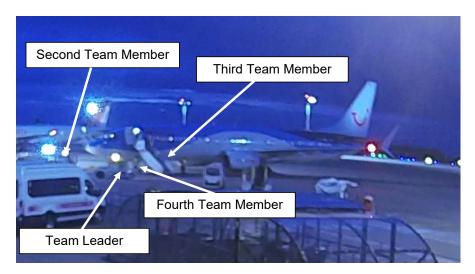


Figure 6

A screenshot of the CCTV showing the position of the ramp team when the steps were moved

Organisational information - operator

The aircraft operator uses the same ground handling company at many of the airports within the UK and Ireland from which it operates. The relationship between the two companies was described by the operator as "good and constructive". They regularly share safety data and reports, as well as meeting to monitor safety and performance. The operator also completes regular safety assurance audits throughout the network looking at procedures both in the terminal and on the ramp. The operator conducted an audit of the ground handling company at East Midlands in January 2024. The audit found only four lower-level non-conformities, none of which were considered as unsafe conditions. None of these four related to the operation of steps or any other ground handling equipment. All the non-conformities were closed to the satisfaction of the operator within four months of the audit.

The operator sets a minimum turnaround time for the B737 of 50 minutes when the aircraft is off schedule as was the case with G-TAWB due to its late arrival. In the case of the flight on which the accident occurred, the aircraft had arrived on stand at 1538 hrs and would therefore have been due out at 1628 hrs.

Organisational information - ground handling company

All information in this section is based on evidence collected from the ground handling company. The following sources of evidence were examined:

- Interviews with a sample of staff with a variety of roles and years of experience.
- Documents containing policies and procedures.
- Relevant data from the SMS and employee engagement survey.

- Visit to the airside facilities at East Midlands.
- Meetings with senior managers at the ground handing company.

Operation of steps

The ground handling company sets out the operational procedures for the handling of all equipment as well as the tasks involved during the turnaround. At the time of the accident, procedures only permitted qualified staff to operate the steps (including moving the rails at the top). Qualification required training on the steps which was given to ramp staff but had also historically been given to some dispatchers. Some long serving dispatchers across the company had received training on step operation and so at many bases there were both qualified and non-qualified dispatchers. The three dispatchers involved with the turnaround of G-TAWB had not been trained and were not qualified to operate any part of the steps. It was not possible for ramp staff to readily identify whether a dispatcher was qualified to operate the steps.

At the end of the turnaround the dispatcher would enter the aircraft to complete the final paperwork with the flight crew. As a result, the dispatcher would usually be the last person from the ground handling company to leave the aircraft which would then be ready to depart. The investigation revealed that it was common practice for the dispatcher to complete the door closure procedure, including moving the side rails at the top of the steps whether they were qualified or not. Some staff who had been working at the base for over 30 years had never known a different practice. New dispatchers were taught by dispatchers with longer service, and this perpetuated the workaround.

Some of the staff interviewed stated they were aware that dispatchers should not operate any part the steps without training but, prior to the accident, this was not something that had ever been challenged by other staff or supervisors. In the data reviewed, there were no records of safety reports raised regarding unqualified people operating the steps. The ground handling company conducted regular audits on turnarounds. The audits did not include questions about who was operating the steps nor whether they were qualified to do so. Therefore, the audits did not pick up that there was a common procedural workaround.

There was no formal exchange of information from the dispatcher to the team leader or ramp staff to confirm that the door closure procedure was complete and the staff were off the steps. The ramp team relied on visually seeing a dispatcher leaving the bottom of the steps. Whilst this was more commonly seen on the front steps, some staff had also seen the dispatchers operating the rear steps, especially if the ramp team were busy and the aircraft was running late. It was rarer for the dispatchers to operate the stabilisers. The dispatcher usually interacted with the team leader during the turnaround but not the other ramp team members. Therefore, when ramp team members were looking for the visual cue of a dispatcher leaving the steps, they relied on seeing the dispatch branded safety clothing rather than recognising a specific individual who was allocated to that turnaround. It was not possible for the ramp crew to tell if a dispatcher was under training or not.

After the accident the ground handling company issued a safety alert setting out that only qualified ramp staff are to interact with the steps and that dispatchers are not permitted to position or retract the side rails or adjust the stabilisers. This was followed with updated safety alerts issued to all employees, ramp staff and dispatchers which contained appropriate details for each group. The process of amending the GOM to reflect these changes is in progress. The ground handling company now require the aircraft dispatcher to attend the team leader's short briefing to the ramp team before the turnaround begins so that all ramp team members are aware of who the dispatcher is for that flight. If additional ramp staff or dispatchers come to the stand to offer assistance, they are now required to introduce themselves to the team leader before they do anything. The team leader will then inform the other ramp team members of any additional staff. Trainee dispatch staff now wear different colour high visibility clothing to qualified dispatchers allowing them to be recognised easily by all staff on the ramp.

Training of dispatchers

The ground handling company detailed the training process that new dispatchers had to follow before they were qualified and could operate on their own. This included a period of classroom study. Once this was completed, the new staff were encouraged to follow another dispatcher and observe the turnarounds to gain some exposure to the role before starting their on-the-job training. There was no formal process for these observations laid out by the ground handling company nor any detail about the level of experience or qualifications for the dispatcher being observed. During this observation the trainee dispatcher was not permitted to complete the live flight paperwork, and the turnaround must be managed by a qualified dispatcher. The trainee might be given a set of 'dummy paperwork' to fill in for experience purposes. The roll of observations or 'shadowing' a qualified dispatcher whilst waiting for the on-the-job training to start is being reviewed by the ground handling company.

On-the-job training would be completed with a qualified dispatcher trainer approved to supervise the trainee during the turnaround and with paperwork required. At the end of this training the trainee must pass an assessment to qualify as a dispatcher.

Safety and delay reporting, investigation and just culture

The ground handling company operated a safety reporting system that was open for anyone to report safety concerns. The use of the safety reporting system was actively encouraged by leaders at various levels in the organisation. The contract also requires the ground handling company to meet a minimum standard including a target for on-time performance. Should a flight be delayed, the reasons will be explored by the operator and the ground handling company. To do this, front-line staff may be required to answer questions from their managers and provide written statements.

Ramp staff and dispatchers were aware of how to report safety concerns. There was a preference for reporting verbally via a supervisor or manager rather than directly into the safety management system. Staff reported they were comfortable to report things such as hazards and equipment problems and were generally confident that appropriate action would be taken.

There was evidence that staff were concerned about being blamed for causing safety events or delays, particularly in the ramp team. Some staff had experienced or witnessed a more punitive culture in the past but none of these examples were recent. There was concern amongst the staff that the investigation process for both delays and safety occurrences was perceived as onerous, intrusive and something they wanted to avoid. Factors that contributed to this perception were the need for written statements and a lack of spaces airside where investigation conversations could take place in private.

The ground handling company had a just culture policy in place. It stated:

'Just culture is a culture in which front-line colleagues or other members of staff are not punished for actions, omissions or decisions taken by them that are commensurate with their experience and training, but where gross negligence, wilful violations and destructive acts are not tolerated. A just culture facilitates reporting, as staff do not fear being blamed for the facts they report.

No action will be taken against any staff members who discloses a safety concern through the reporting system, unless such disclosure reveals, beyond any reasonable doubt, an illegal act, gross negligence, or a deliberate or wilful disregard of regulations or standards.'

In the 12 months prior to the accident there were 17 events where one or more of the individuals involved were eventually dismissed from the business. Events that led to dismissal were usually gross misconduct (eg aggression towards colleagues or passengers), repeated breaches of safety rules or attempting to conceal things that had gone wrong. No cases of dismissal were recorded in response to an aircraft being delayed.

A sample of 47 of the events which did not result in dismissal were reviewed. Seven of these described a person involved being subject to a disciplinary process. In most other cases where the report concerned an error or undesired behaviour by an individual, the recorded response by the ground handing organisation was additional briefing or training for individuals, often accompanied by wider briefing or memos for other relevant staff.

The language used in the safety reports and conclusions suggested a focus on individual actions and in determining whether someone was at fault. For example, the root cause coding commonly featured 'operated unsafely', 'deviated from procedure', 'horseplay' complacency', 'situation awareness - failure to identify hazards'. As an illustrative example, in one case, no action was taken because there was 'no conclusive evidence of any wrongdoing by the push back team.'

Leadership and staff engagement

The ground handling company had an active programme in place to improve front-line leadership and staff engagement. This had various elements including:

• A one-day training package for front-line leaders. This had been delivered to most of the front-line leaders at East Midlands.

- Promoting 'six commitments to safety', one of which was 'I always prioritise safety performance over on-time performance.'
- A monthly employee engagement survey which had been running since December 2024.
- A mobile application used to promote safety information and to recognise staff for achievements and good performance.

The data from the employee engagement survey showed an improving score in the months between January 2025 – March 2025. Interviews conducted by the AAIB in April 2025 showed that some of these initiatives were not yet well embedded at East Midlands despite the training. Most dispatchers and ramp staff that AAIB spoke to could not remember the 'six commitments' and were not using the mobile application.

When asked who influences how they do their work, ramp staff and dispatchers reported it was their immediate managers and supervisors who are based airside with them. Interviews showed there were good relationships in general between ramp staff and dispatchers and their managers and supervisors. Any managers of airside staff that were not based airside were considered to only appear in response to problems, to not understand the pressures of the job, to focus on negative issues and not to recognise staff for the work that they do. Both dispatch and ramp teams were very supportive of their own team members and would often offer assistance to others if they had capacity or time.

The dispatch team benefitted from what they described as a highly effective manager who was based airside. This team appeared to have good cohesion and high morale. In contrast, the equivalent ramp team manager was based landside in a different building. The crew room for the ramp team was observed to be in a poor state of repair. Some members of the ramp team were reluctant to engage with management, felt undervalued and had generally low morale.

CCTV observations

As part of the investigation the AAIB sought CCTV from various airports around the UK that captured the turnarounds of the same operator using the same ground handling company. These turnarounds occurred in the two weeks before or after the accident. The aim of this was to see if dispatchers were regularly involved with the door closure and operations of the steps. The investigation looked at 12 turnarounds from five different airports. Of the 12 turnrounds, 11 had dispatcher involvement with the door closure and the step removal process. In the twelfth turnaround, it was not possible to tell due to the quality of the CCTV. In a majority of the observed turnarounds, more than one dispatcher seemed to be involved at the time of the step removal. It is impossible to determine if the dispatchers observed operating the steps were qualified to do so. However, it was evident that after the door was closed the dispatcher(s) came down the steps and left the area without any discussions with the ramp team who were waiting to remove the steps.

Another CCTV observation exercise using the same five airports was carried out in March and April 2025. This was to ascertain whether the changes to the Standard Operating Procedure (SOP) made by the ground handling company were being adhered to. The investigation received footage of 12 turnarounds in which it was possible to see the top of the steps clearly. The analysis showed that whilst the new procedures were adhered to on four of the turnarounds, in the other eight, dispatchers were observed still completing the door closure.

The ground handling company then undertook a significant campaign to address the lack of compliance with the new SOP including meeting with their ramp and dispatch teams in 'town hall' style gatherings, increasing their audits and observations as well as manager supervision of individual staff on the ramp. The audits and observations which included over 1,785 inspections (covert and overt) for the two weeks between 6 June 2025 and 20 June 2025 showed that the compliance rate was over 99%.

Other information

Other companies' step removal procedures

The investigation looked at the procedures of several other UK operators. Various procedures and processes were used to try and mitigate the risk of a fall from height either by a crew member or by a ground handler. One company used a 'permit to remove steps' process in which the cabin crew are required to give a completed slip to the person responsible for moving the steps. In this process it is mandatory that the person responsible for removing the steps is the only person who can obtain the permit from the cabin crew and that this person must then remain on the steps until the cabin door is closed. The idea being that if the person removing the steps is at the top then they cannot also be moving the steps.

Another UK operator recommends that a single accountable individual is responsible for visually confirming the aircraft door is closed and authorising the removal of the equipment. The operator's general procedures manual also warns crew that for door operations:

'When opening and closing cabin doors crew members must ensure that both feet are set firmly inside the aircraft, and must utilise the assist handles either side of the door.'

Other operators are in the process of examining whether a 'safety pin' feature could be added to the steps. This pin would be removable and perhaps given to the cabin crew who would retain it until the steps removal point when it is returned to the ground crew. The steps could be designed to prevent movement until the pin is re-inserted by the ground crew.

Post accident actions of the crew

Once the accident had occurred the crew had to remain on the aircraft to manage the passengers and the aircraft. The commander nominated one of the cabin crew from the back of the aircraft as the SCCM which allowed the cabin crew to continue with their duties of looking after the safety and wellbeing of the passengers despite an extremely distressing

accident to their colleague. With three cabin crew remaining on the aircraft, they were all required to remain due to the number of passengers on board and could not be released to assist with their colleague who was seriously injured just below the front door. The commander spoke with the passengers to explain the situation and that there could be a significant delay before they could leave the aircraft. The only crew member that the commander felt could be released to check on the ramp situation was the co-pilot, and as soon as a set of steps was brought to the rear door, he proceeded down to check on the SCCM.

Analysis

As the SCCM was beginning to close the door on G-TAWB ready for departure, the steps were pushed away from the aircraft. The SCCM fell into the gap between the aircraft and the steps, and onto the ramp. She was seriously injured in the fall.

SOP for step removal

The ground handling company had SOP for their staff to follow to remove the steps from the side of the aircraft. These SOP required that the ramp staff check that there were no personnel on the steps before the stabilisers were retracted. The SOP did not set out who was responsible for this final check nor how they were to perform it. To see the steps and the top platform, the staff needed to be out from under the steps and to move a significant distance away. There was no required confirmation that the door closure was complete and that the staff member who had performed this part was off the steps.

In this case, with the extra dispatcher retracting the stabilisers and both ramp staff close to the aircraft or under the steps, it is difficult to see how either of the ramp staff members could have checked the steps effectively. One of the ramp staff looked up and did not see the cabin lights, assuming therefore that the door was closed. Although it was dark, the ramp lights allowed a clear view of the steps. The presence of dispatchers at the bottom of the steps resulted in an assumption that door closure was complete and triggered the movement of the steps.

The SCCM was just beginning to close the door when the steps were pushed away from the aircraft. She could not recall exactly where or how she was standing, and the investigation was not able to determine her position. There is anecdotal evidence that on this aircraft type, crews sometimes need to step out of the doorway in order to release the gust lock although the investigation could not establish if this was the case on this flight. At the time of the accident the operator's SOP for door closure did not specify that the crew member should have both feet inside the aircraft, although other operators did. As a response to the accident on G-TAWB, the operator issued a safety notice to highlight the dangers during step removal. They are also changing their Safety and Emergency Procedures (SEP) manual to specify that both feet will be kept inside the aircraft during the door closing process.

Procedural workaround

The dispatch and ramp staff were using a procedural workaround where the dispatcher was at the top of the steps completing the door closure procedure for which he was not qualified

or approved. The workaround meant that the ramp staff who were qualified to operate the steps were under the platform close to the aircraft rather than one of them completing the door closure at the top of the steps which was the approved procedure.

The workaround had been going on for many years and was not limited to the staff at East Midlands. It occurred on many occasions and as such, it was hardly recognised as a workaround. CCTV analysis of five UK bases showed that dispatchers were involved in the door closure process in the majority of observed turnarounds although some of those dispatchers may have been qualified to do so. Evidence gathered by the investigation indicated that the workaround had been taught to new employees by more senior peers. Some staff members were aware of the requirements for only qualified staff members to operate the steps, but they had no way of knowing whether a dispatcher was qualified or not. The practice was so commonplace that even those who were aware it was not allowed did not see a need to challenge it or report it as a safety concern.

Despite auditing a percentage of turnarounds, the ground handling company did not pick up on this procedural workaround. The audits did not assess whether the procedures for step removal were being complied with nor who was operating the equipment and whether they were qualified or approved to do so. As a result of the accident, the ground handling company introduced a specific audit question in order to ensure that those operating the steps were qualified and approved to do so.

After the accident, the ground handling company updated their SOP and issued safety alerts to allow only the ramp team members to operate any part of the steps. Members of the dispatch team were no longer permitted, whether qualified for steps or not, to complete any part of the door closure or step removal procedure. Despite this change, a CCTV survey carried out four months after the accident showed that dispatchers were still doing so in a significant number of the turnarounds observed. The safety alerts and updated SOP alone were not sufficient to change the embedded practice.

In response, the ground handling company undertook extensive further work after the second CCTV survey to address the issues with compliance. This work included 'town hall' meetings to explain the safety reason for the change, significant covert and overt auditing and observation, as well as individual supervision by local managers. Evidence provided by the ground handling company shows that this comprehensive approach including both engagement and enforcement elements as well as continuous supervision has now achieved compliance across the UK network of over 99%.

The role of multiple dispatchers

The ramp team and dispatch team did not share a crew room or management staff. They were allocated turnarounds independently. Whilst the team leader of the ramp staff would interact with the dispatcher, often the rest of the ramp team would be busy completing their jobs such as unloading or loading bags. This meant that often the ramp team would not know which individual was dispatching the flight.

The ramp team and dispatchers at East Midlands were keen to assist others when they had some spare time, so it was not unusual for extra dispatchers or ramp staff to appear, especially if a flight was running late. In the case of G-TAWB, a dispatcher who had completed his flight came to the stand to offer his assistance. He was in addition to the flight dispatcher and a trainee dispatcher who was observing the turnaround. The addition of multiple dispatchers, and no clarity among the ramp staff about who was the allocated dispatcher for this flight, meant that when one dispatcher released the stabilisers and another dispatcher walked away from the steps, the ramp staff believed that the door closure was complete. They then proceeded to push the steps away from the aircraft.

The aircraft had been late into East Midlands from its previous flight, meaning that the accident flight was also late. However, the operator and ground handling company set a minimum turnaround time when aircraft are off their schedule and G-TAWB was within a few minutes of meeting this time for departure. The time of year meant that it was low season and as a result staff had the capacity to come to assist when they had finished their allocated duties.

Since the accident the ground handling company has amended their procedures to ensure that the allocated dispatcher is now part of the ground staff brief at the stand before the aircraft arrives. If the dispatcher cannot be there for any reason, they are required to make themselves known to the team leader when they arrive on the stand and the team leader will update the rest of the staff. Any additional staff who choose to assist the turnaround team must now report to the team leader so that tasks can be allocated. Trainee dispatchers will be identified with different coloured high visibility clothing to reduce the chance that they can be mistaken for the dispatcher of the flight. These changes are aimed at improving communications and relations between staff and reducing hazards arising from confusion and assumptions. This procedure also additionally supports compliance with the new procedure requirements for only ramp team members to operate the steps.

Dispatcher training

The trainee dispatcher had completed the classroom element of his training and was waiting to begin the practical training. Although there was no formal process to do so, he was encouraged to observe dispatchers completing turnarounds. It was not permitted for him to complete any of the live paperwork or to act as the primary dispatcher. Despite this he did go into the flightdeck alone and confirm the load and figures before proceeding down the steps with the live flight paperwork to complete the process with the team leader. Whilst there is no suggestion that the dispatch paperwork or tasks were not completed correctly, there are significant risks in an unqualified member of staff operating outside of their training and experience.

Equipment

The use of the basic steps rather than those with interlocking barriers meant that the steps could be moved without the cabin door being shut. When using the steps with an interlocking barrier, the ground staff member waits for the aircraft door to be closed. They then retract the remaining safety rail and close the barrier at the top of the steps before descending.

The interlock prevents the steps from being moved until this barrier is closed. Therefore, although they can still be moved when someone is descending, they cannot be moved before the aircraft door is closed which would have prevented the SCCM from falling. The ground handling company was already in the process of replacing the basic steps with those with interlocking barriers when the accident occurred and hopes to have completed this by the end of 2025.

Survivability

The co-pilot did call ATC, telling them that a member of the crew had fallen from the steps, but ATC could not see the aircraft, nor did they have a good understanding of the seriousness of the accident. As a result, the response of the RFFS was not as rapid as it would have been had an emergency been declared although it likely made no difference to the time of ambulance arrival. Whilst CAP413 does not provide any guidance for on-ground emergencies it does suggest that pilots should declare an emergency as early as possible. Crews should consider that if they believe the issue would involve a 999 call if they were at home, then they should think about declaring a formal emergency using the applicable prefix. The response time likely made little difference in this case, but it is possible that it might do in a similar event.

Influence of investigations and just culture

The ground handling company had an active safety culture improvement programme and there was evidence of this having a positive effect in terms of open reporting and trust. However, in the history of the company, a more punitive approach was used, and this was still casting a shadow with some staff afraid of being blamed and punished. The investigation process that was used for safety events and delays was seen as onerous and intrusive. Staff were motivated to avoid this which could be a factor influencing them to attempt to achieve on-time performance, possibly at the expense of safety. Data also suggested that investigations were focused on individual actions which limits the extent to which the ground handling company can learn how to improve the safety and performance of their system. Following the accident, the ground handling company have further developed their policies and training regarding 'just culture' and are piloting people-centred safety training that focuses on decision making, leadership and wellbeing.

Influence of leadership and staff engagement

The action the ground handling company is taking to improve leadership and staff engagement may be starting to have a positive effect, but some elements were not yet well embedded with front-line staff at East Midlands. The front-line leaders who were constantly present airside had the most influence on their staff.

For the ramp team, the poor state of their crew facilities and the lack of connection with their manager contributed to some of them feeling undervalued, disengaged and demotivated. It was not possible to determine if this contributed directly to the accident, but it is a factor that can reduce motivation and result in lower team performance which is a threat to safety.

In addition to the ongoing programme, which was commenced before the accident, the ground handling company has increased the amount of face-to-face contact between the ramp team and their managers, including opportunities for informal conversations when staff are not busy with other tasks. Additional guidance has been prepared for managers across the company concerning safety leader behaviour at different levels of the organisation and how to conduct safety leadership walks. They have also commissioned renovations to the ramp team's facilities.

Conclusion

The SCCM fell from steps as they were pulled away before the aircraft door was closed and the steps vacated. She suffered serious injuries in the fall.

The step removal process was conducted in a way that was not consistent with the written policy and had insufficient safeguards to prevent movement of the steps with people on them or the door still open. This procedural workaround had been used by the staff at the ground handling company for many years at East Midlands and at many other airports in the UK.

The presence of a dispatcher at the bottom on the steps releasing the stabilisers triggered the steps to be moved without an effective check or confirmation that the door was closed and the steps were vacated. The presence of multiple dispatchers, without the ramp team knowing who the official dispatcher was, set the conditions for this event to occur. The step removal procedure required that the ramp staff check that there were no personnel on the steps before the stabilisers were retracted but the procedures did not specify how this was to be performed nor who was responsible for it.

Safety actions

Ground handling company

Some relevant safety improvement actions were already in progress prior to the accident. These include phasing out basic steps; an active programme to improve staff engagement; safety leadership training for team leaders and supervisors and planned renovation of the ramp crew facilities.

The ground handling company took several further safety actions because of this accident that address various areas of learning highlighted in this report.

Procedures and practice:

- Safety alerts and ground operating notices were issued to clarify that only qualified ramp staff should interact with steps and to emphasise the importance of checks that the aircraft door is closed and no one is on the steps before they are moved.
- Improved briefing by ramp team leaders was introduced before each flight to allocate roles and identify the dispatchers and any trainees.

- Trainee dispatchers are now identified by different coloured high visibility clothing.
- Any member of staff who joins a turnaround team to assist must first speak to the team leader to be allocated tasks.

Safety assurance:

- Audit criteria were updated to check that only qualified ramp staff interact with steps.
- Covert inspections were introduced to observe procedural compliance in terms of the step removal procedure.

Safety culture and the investigation of delays and safety events:

- The investigation process was reviewed with the involvement of staff and input of other similar companies and changes were introduced to the statement form.
- The just culture policy and the accompanying training material was updated.
- A new kind of safety training will be piloted at East Midlands that is peoplecentred and focuses on decision making, leadership and wellbeing.

Staff engagement

- The amount of face-to-face contact between ramp staff and their managers was increased.
- Additional guidance has been prepared for managers across the company concerning safety leader behaviour at different levels of the organisation and how to conduct safety leadership walks.

Dispatch training:

- Improved rostering of dispatch on-the-job trainers so that an appropriately qualified trainer is always available.
- The process of trainee dispatchers observing or shadowing during their training was reviewed.
- Trainee dispatchers now have a second set of shadow paperwork that they can work on whilst training.

Cross industry collaboration:

- The Ground Handling Operations Safety Team (GHOST)⁴, established by the CAA, have produced a video on fall from height risk which the ground handling company will share with their staff.
- The ground handling company and operator will deliver a collaborative presentation regarding this accident at a GHOST meeting.

Operator

The operator took the following action after the accident:

- A safety notice was issued to highlight the dangers to crew during step removal.
- The operator has amended the next revision of its SEP manual to stipulate that both feet will be kept inside the aeroplane during the door closing procedure.

The operator will also initiate a collaborative review across industry to develop a redesigned passenger stairs procedure.

Published: 25 September 2025.

Footnote

⁴ https://www.caa.co.uk/ghost/ [Accessed July 2025].

Accident

Aircraft Type and Registration: Sportstar SLM, G-CMGB

No & Type of Engines: 1 Rotax 912iS piston engine

Year of Manufacture: 2022 (Serial no: 2022-2205)

Date & Time (UTC): 1 September 2024 at 0804 hrs

Location: Chesterfield, Derbyshire

Type of Flight: Private

Persons on Board: Crew - 1 Passengers - None

Injuries: Crew - 1 (Fatal) Passengers - N/A

Nature of Damage: Destroyed

Commander's Licence: UK National Private Pilot's Licence

Commander's Age: 71 years

Commander's Flying Experience: 390 hours (of which 181 were on type)

Last 90 days - 46 hours Last 28 days - 26 hours

Information Source: AAIB Field Investigation

Synopsis

After departing Coal Aston Airfield, the pilot of G-CMGB encountered weather that was not compatible with flight under VFR. Following a series of descending orbits overhead Chesterfield, the aircraft departed from controlled flight and struck the ground, fatally injuring the pilot.

History of the flight

G-CMGB, based at Clench Common Airfield in Wiltshire and owned by the pilot, had flown to Coal Aston Airfield (also known as Apperknowle Airstrip) on Thursday 29 August 2024. The pilot planned to return to Clench Common on Sunday 1 September. A friend dropped him off at Coal Aston at approximately 0646 hrs on 1 September, where CCTV recorded him walking to his aircraft. Although the pilot had originally scheduled a departure at 1000 hrs, he did not notify the airfield owner of his intent to leave earlier; a change he mentioned to his friend was due to thunderstorms that had been forecast on the route south later that morning. Earlier, while driving to Coal Aston, and passing an area west of the airfield (which was 264 ft higher in elevation), the pilot remarked that due to the poor weather and visibility, he would have to "sit it out" if conditions at the airfield were similar and delay his departure until they improved.

CCTV recorded the pilot inspecting his aircraft and loading a bag into the cockpit at 0725 hrs. He was seen to look in the direction of the takeoff path of Runway 11 and interacting with a handheld mobile device. G-CMGB started at 0750 hrs, taxied at 0754 hrs and then

took off from Runway 11 at 0756 hrs. From the CCTV recording, the AAIB assessed the visibility as 400 m to the north-east and 600 m to the east in the direction of takeoff. The height of the cloud base in the area could not be determined from the recording.

After takeoff, the aircraft entered a climbing turn to the right, followed by four right-hand orbits to the south of the airfield (Figure 1). Altitude varied during the turns but trended upward toward 2,000 ft amsl. An eyewitness in Unstone, 1.8 km south-west of Coal Aston, reported hearing and seeing a light aircraft circling several times before losing sight of it as it entered cloud.

G-CMGB then climbed on a meandering southerly track towards Chesterfield, reaching 2,500 ft amsl (2,330 ft agl). At Chesterfield, it flew two more right-hand orbits, descending to a minimum of 700 ft agl before climbing back up to 1,200 ft agl (Figure 1).

A witness located approximately one km to the east of Sheepbridge Industrial Estate, heard and then saw a "light-coloured" aircraft emerge from the clouds to their west. The aircraft, which appeared to be "about the same height as the houses", continued briefly before turning right, towards the industrial estate, and then started to climb "at a really steep angle", until it "disappeared into cloud again".

A further witness near the accident site heard an aircraft but could not see it due to "thick cloud". Moments later, they saw a yellow and red aircraft that "just fell out of the clouds... spiralling out of control, straight down towards the ground". Witnesses variously described hearing a "bang", or an "explosion", followed by smoke rising from the direction of the sound.

CCTV footage from the industrial estate¹ showed G-CMGB appearing from an easterly direction in a steep descent, rotating to the right and striking the ground at 0804 hrs. An intense fire started 13 seconds later. Emergency services arrived on scene at 0813 hrs. The pilot was fatally injured when the aircraft struck the ground.

Accident site

The accident site was in an industrial estate, with the aircraft coming to rest upright on a concrete hardstanding. A post-accident fire melted parts of the aircraft structure and no fuel remained onboard.

The wings and tail remained attached to the fuselage and compression damage on the wing leading edges indicated that the aircraft was in a steep nose-down attitude at impact. The canopy and windscreen had shattered, and items from the cockpit were ejected throughout the accident site. All three propeller blades were found inside the perimeter of the industrial estate with the furthest being approximately 25 m from the main wreckage. Burned documents indicated that an aircraft logbook and a pilot's personal logbook had been onboard. Handwritten notes for a flight between Coal Aston and Clench Common were also found in the aircraft.

The aircraft was recovered to the AAIB for further examination.

Footnote

¹ CCTV from two sources recorded video and audio; one recorded video only.

Recorded information

The aircraft was fitted with an ADS-B Out avionics device and its broadcasts of GPS position were recorded on ground stations that were in line of sight of the aircraft. Figure 1 illustrates the recorded track of the aircraft from Coal Aston airfield to a point approximately 400 ft above the accident site just under eight minutes later.

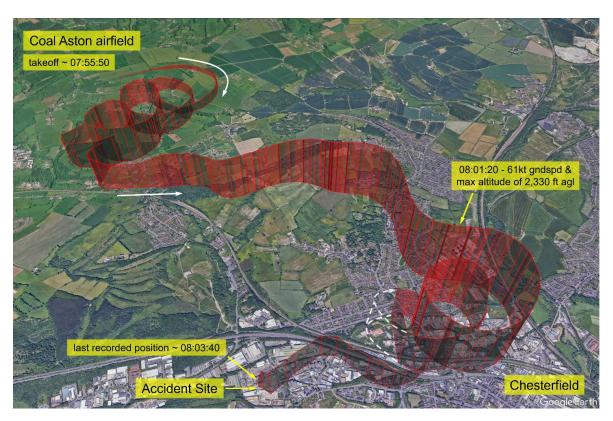
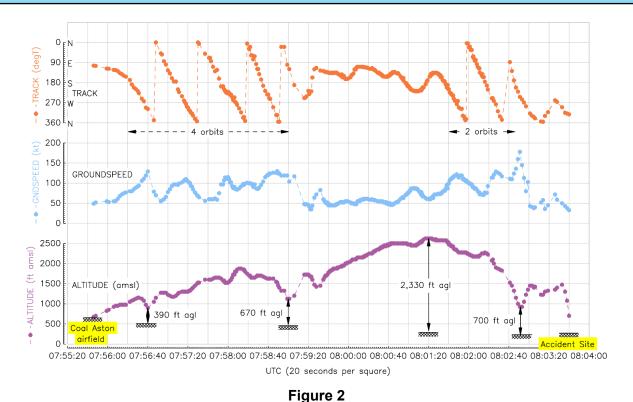



Figure 1
GPS track of the flight

Figure 2 plots altitude and data derived from the GPS positions. Both figures show the aircraft initially climbing and descending in a series of right orbits to the south of the airfield. During the first orbit the aircraft descended to about 390 ft agl and then climbed away at over 3,000 ft/min. On the fourth orbit the aircraft descended to about 670 ft agl at a similar rate. Groundspeed varied between 50 and 130 kt. The aircraft then headed towards Chesterfield, on lower ground to the south, in a series of turns and climbing to a maximum altitude for the flight of 2,330 ft agl.

GPS derived data for accident flight with some ground elevations illustrated

Above Chesterfield the aircraft made two descending right orbits over a period of about 90 seconds, during which the aircraft accelerated to a groundspeed of 178 kt (Figure 3). The descent rate peaked at 5,250 ft/min. The minimum altitude in the descent was 700 ft agl before the aircraft climbed a little over 500 ft at a similar rate.

Over the next 30 seconds, the aircraft turned left through 90° towards the north, descending and climbing 200 ft before descending towards the ground in a right turn. The last recorded point positioned the aircraft about 400 ft above the ground in a steep dive.

CCTV footage recorded the aircraft descending nose first towards the ground banked slightly to the right. The descent rate was in excess of 11,200 ft/min at 110 kt. During this descent, the sound of the engine was captured on the audio channel of the CCTV.

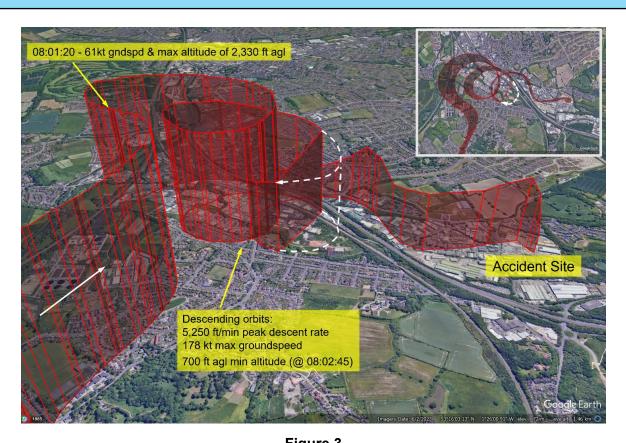


Figure 3
GPS track of aircraft over Chesterfield with descending orbits highlighted

Aircraft information

The Evektor Sportstar SLM is a two-seat microlight designed in the Czech Republic (Figure 4).

Figure 4
G-CMGB (image used with permission)

G-CMGB

G-CMGB was built in the UK in 2022. It had accrued about 137 flying hours when the Permit to Fly was renewed in July 2024.

The aircraft had a Rotax 912iS engine and a fixed pitch, three-bladed, composite propeller. It had a Dynon electronic primary flight display and a two-axis (pitch and roll) autopilot. The autopilot was prohibited from use below 1,000 ft agl, and the aircraft was only permitted to fly in daylight, VFR conditions. The aircraft was not equipped with an optional ballistic parachute recovery system.

A witness told the AAIB that the aircraft owner had recently mentioned an anomaly where the electric pitch trim had operated to its maximum extent of travel without selection. They discussed how the system operated, and the owner said that he would do his own troubleshooting.

Aircraft examination

The aircraft was subjected to a detailed examination but as it had been extensively damaged in the accident and fire, this prevented a full assessment of its condition before the accident.

Structure

There was no evidence of a structural failure before the accident.

Flying controls

The rudder control cables were intact and connected.

The aileron and pitch control systems had been extensively damaged, and parts of the metal control rods had melted. It was, however, possible to confirm that the bolted connections between the control rods and their associated levers remained intact.

The flaps were damaged in the accident and further disrupted by the fire. The flap selector lever in the cockpit had broken from the operating mechanism and the selected flap position could not be established from the wreckage.

The electric servomotor for the pitch trim system indicated that the pitch trim was set at an intermediate, unremarkable, position.

Cockpit instrument panel

The cockpit instrument panel was badly disrupted and burned. The only instruments that were identified were the broken remains of the airspeed indicator and the altimeter, both of which had been ejected from the cockpit. Several electrical switches were found but their condition prevented any meaningful analysis.

Engine and propeller

The engine sustained significant impact and fire damage. The cylinders were distorted, and the propeller reduction gearbox, oil pump, oil filter and oil tank had all broken off. The ignition system and fuel injection system were extensively damaged preventing any meaningful analysis.

Two of the propeller blades had detached from the propeller hub, and both blades had broken in two. The third blade was still attached to the remains of the propeller hub and part of the reduction gearbox. The damage sustained by the propeller blades, and the distance from the main wreckage, indicated that the propeller was turning at high speed at impact.

Survivability

The accident was not survivable.

Airfield information

Coal Aston is a privately owned and unlicensed airfield located nine km south of Sheffield at an elevation of 720 ft amsl (Figure 5). Beyond the threshold of Runway 29 there is a copse of trees, The Brushes, that are 106 ft agl, measured at the threshold of Runway 11 (Figure 6), and 600 m from the airfield office (Border Force Office).

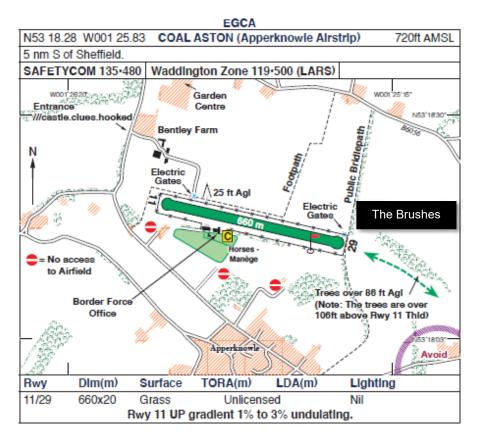


Figure 5
Coal Aston Airfield

Figure 6
Coal Aston Airfield looking along Runway 11 towards The Brushes

Flight planning

The AAIB recovered handwritten notes from the wreckage that contained details of planning² for the flight from Coal Aston to Clench Common, which the pilot expected to take 1 hour and 40 minutes. The first note evident is,

'DON'T FLY OUT BEFORE 11 AM ON SUNDAY - rain?!'

This is followed by a further note referencing the arrival at Clench Common:

'RAIN ?!

CHECK CLOUD BASE; IT MAY BE ONLY 2000 FT

LANDING IN CLENCH AFTER 4 PM'

Later in the notes there appears to be an amendment to timings and weather³:

'COAL ASTON – LIKELY RAIN [0845 hrs onwards]

VISIBILITY GOOD [to 1130 hrs]

LOW CLOUD BASE [then] 2000 FT FROM 7 AM

CLENCH COMMON - 10 -13 FINE

VISIBILITY - VG [very good] FROM 11

CLOUD BASE - GOOD UNTIL 1 PM

MUST LEAVE BEFORE 9 AM'

It was not possible to determine which source(s) the pilot used to obtain meteorological information.

- ² All times noted are believed to be local times.
- 3 Text in square brackets is AAIB comment drawn from annotations in the notes and is included for clarity.

Meteorology

Forecast conditions

The Surface Analysis Chart published by the Met Office, valid for 1200 hrs on Sunday 1 September 2024 (Figure 7), showed an area of low pressure over northern France with a light easterly airflow across the planned route. There was a weakening warm frontal system heading north, slowly clearing the area of Coal Aston.

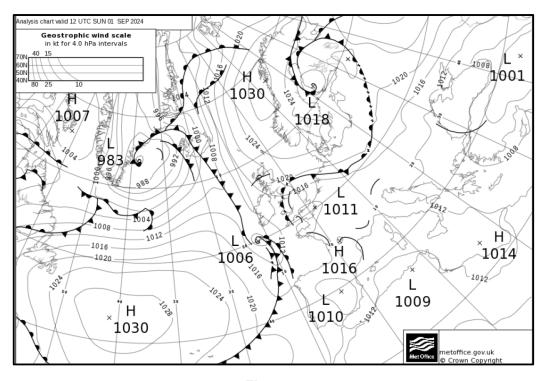


Figure 7

Surface Analysis Chart valid 1200 hrs Sunday 01 September 2024

The Met Office published a Low Level Significant Weather Chart (Form 215 – Figure 8) at 0314 hrs on Sunday 1 September 2024 (valid for 0800 to 1700 hrs). The flight was planned to be conducted within Area D.

The forecast conditions in Area D were for generally good visibility with no cloud below 5,000 ft amsl. Isolated (ISOL)⁴ showers (SHRA) were forecast becoming more frequent (FRQ)⁵ near troughs. These would reduce the visibility to 7 km with the cloud base lowering to between 1,500 and 4,000 ft. In addition to these showers there was a risk of isolated heavy showers or thunderstorms (+SHRA/+TSRA). This would reduce the visibility to around 3,000 m with isolated embedded (EMBD) cumulonimbus cloud between 2,000 and 7,000 ft. Isolated hill fog was expected inland associated with cloud bases between 300 and 600 ft until 1000 hrs.

- 4 Isolated: implies isolated conditions occurring randomly and which can easily be avoided. < 25% of the area affected.</p>
- ⁵ Frequent: implies conditions affecting many places which would be difficult to avoid. Used to describe convective types of cloud only. >50% of the area affected.

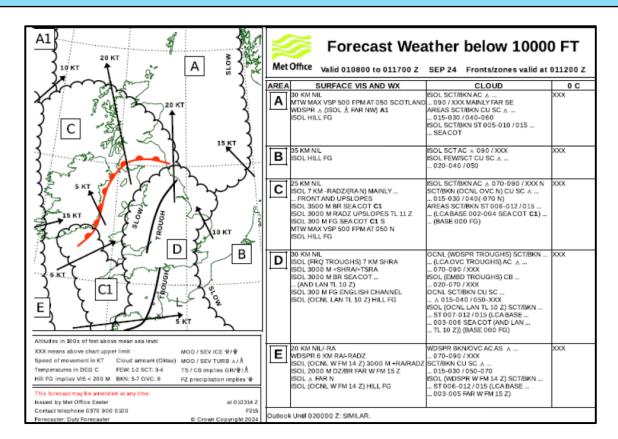


Figure 8

F215 Low Level Significant Weather Chart for 0800 to 1700 hrs 1 September 2024

The forecast at East Midlands Airport⁶, 54 km to the south of Coal Aston, showed that low cloud was expected across the area and was forecast to bring a cloud base of 1,200 ft until 1100 hrs, with a 30% risk of lowering to 900 ft. There was a 30% risk of thunderstorms and cumulonimbus cloud after 1100 hrs.

Actual conditions

Humberside Airport reported scattered or broken cloud between 700 and 1,000 ft aal until 1150 hrs, when the cloud lifted to become few at 1,200 ft.

East Midlands reported scattered or broken cloud between 600 and 1,000 ft aal through the morning, lifting to become broken at 1,500 ft by 1220 hrs.

An automatic weather station at Leek, 43 km south-west of Coal Aston at an elevation of 977 ft amsl, reported overcast cloud at 200 ft agl at 0800 hrs, which lowered to 100 ft by 0900 hrs. The cloud then lifted to 9,000 ft amsl by 1100 hrs.

Weather conditions at airfields surrounding Clench Common varied throughout the day. Oxford Airport experienced improving visibility with cloud scattered or broken between 3,500 ft and 4,500 ft aal after 1020 hrs, and cumulonimbus clouds developing after

⁶ East Midland Airport elevation is 305 ft amsl.

1520 hrs. Boscombe Down maintained good visibility with brief outbreaks of light rain between 1550 and 1620 hrs. Cloud was initially reported as broken or overcast between 3,500 ft and 4,000 ft aal, breaking with largely clear skies between 1050 hrs and 1350 hrs. Lower cloud moved across the area at around 5,000 ft lowering to broken at 3,200 ft at times later in the afternoon. RAF Fairford also had consistently good visibility with broken cloud at 4,500 ft aal that lifted and cleared but partially returned in the afternoon before breaking again later.

Met Office summary

The Met Office provided the following summary of the conditions on Sunday 1 September 2024:

'The morning of the 1st of September 2024 would see a weakening warm front heading north, slowly clearing the departure area. A moist easterly flow would initially be present with low cloud covering the area with a base of approximately 1000 ft amsl with some light precipitation, as evidenced by the observations from Humberside Airport and the synoptic observations from Leek automatic station. As the flight proceeded south, they would gradually enter clearer skies as per the observations from Oxford Airport. However, some heavy showers started to develop from 1500 hrs near Clench Common although they generally remained west of the route.'

Actual conditions at Coal Aston

CCTV showed the following conditions at Coal Aston at the time of takeoff (Figure 9):

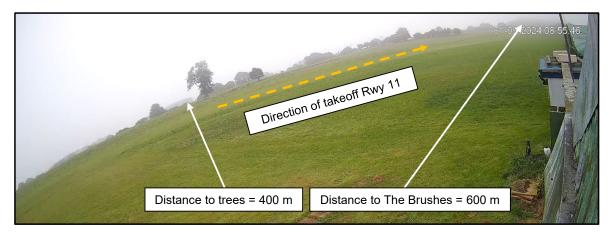


Figure 9
Coal Aston Airfield conditions at time of takeoff

Flight in accordance with VFR

Regulations governing flight in accordance with VFR are contained in the UK Standardised Rules of the Air Regulation⁷. To provide General Aviation pilots with practical guidance on safety and regulatory topics relevant to their flying, the CAA publishes the Skyway Code⁸, which states on page 39 that:

'For operations in class G airspace, the VFR minima may allow an in-flight visibility as low as 1,500 m, provided you remain clear of cloud. The cloud height is often the limiting factor – in conditions of 1,500 m visibility, the cloud height would normally force you to fly dangerously low. The legal minima are not a good reference point for decision making because safe VFR flight normally ceases to be possible long before the visibility is that poor. They are limits not targets.'

On page 40, the Skyway Code offers the following advice regarding VFR flight with a cloud ceiling of 1,500 ft agl or less:

'VFR flight with a cloud ceiling of 1,500 ft or less above ground level (AGL) requires particular attention to terrain and obstacles. <u>Flight below 1,000 ft AGL</u> is normally only suitable for circuits around the aerodrome or local flying in areas you are familiar with.'

and that,

'VFR flight when the surface visibility is being reported as less than 5 km is not recommended. You are unlikely to have a clear horizon to control the aircraft, and navigating visually will be difficult.'

Following a fatal accident in 2021⁹, where the pilot inadvertently encountered IMC, the AAIB issued a safety recommendation to the CAA to publish guidance for general aviation pilots on responding to unexpected weather deterioration. In response, the CAA published Safety Sense Leaflet 33: 'VFR Flight Into IMC', on 7 May 2024¹⁰, advising pilots on how to avoid and respond to unintended IMC entry. Of note, on page 3, the leaflet warns pilots:

'If you are not adequately trained and qualified in instrument flying, you will struggle to control the aircraft in a VFR into IMC scenario. Flight with sole reference to the instruments is an additional skill above that required for VFR flight and without the correct training, the loss of visual references will likely cause spatial disorientation. You may suffer a loss of control accident'.

- UK Regulation (EU) No 923/2012, available at https://regulatorylibrary.caa.co.uk/923-2012-pdf/PDF.pdf [accessed June 2025].
- Available at https://www.caa.co.uk/general-aviation/safety-topics/the-skyway-code/ page 39 [accessed June 2025].
- 9 Available at https://www.gov.uk/aaib-reports/aaib-investigation-to-mudry-cap-10b-g-bxbu [accessed June 2025]
- ¹⁰ Available at https://www.caa.co.uk/publication/download/21918 [accessed June 2025].

Sensory illusions and spatial disorientation

The body's vestibular system senses both linear and rotational movements about three axes, helping the brain interpret motion in relation to the surrounding visual environment. In an aircraft, all these motions can occur, but when flying in cloud or in a degraded visual environment, there are few or no external visual references. Without a clear view of the horizon, pilots cannot reliably interpret the aircraft's orientation or movement and are subject to sensory illusions.

The lack of visual cues, combined with potentially erroneous sensory perception, can lead to spatial disorientation, where pilots may misinterpret the aircraft's motion and make incorrect control inputs. If a pilot is not trained to rely on flight instruments in these conditions, there is a significant risk of losing control of the aircraft. To prevent this, pilots must be properly trained to use the flight instruments, and the aircraft must be equipped with the appropriate instruments designed for flying without external visual references.

In its report into a fatal accident in 2021¹¹ where the pilot inadvertently encountered IMC, the ATSB highlighted the following research findings:

'Research on spatial disorientation indicates that, for pilots who are not instrument rated, loss of control will likely occur between about 60 seconds (Benson, 1988 in Gibb, Gray and Scharff, 2010) and 178 seconds on average (Bryan, Stonecipher, & Aron, 1954) after the loss of visual reference'. 12

Pilot Information

The pilot held a UK National Private Pilot's Licence (NPPL) issued in 2016, with an endorsement for microlights. He had flown approximately 390 hours, of which around 181 hours were in G-CMGB. He purchased G-CMGB in July 2022 and conducted 10 hours of differences training in August 2022. He last flew with an instructor on 1 June 2024. Logbook evidence available to the investigation contained no entries for IFR or night flying and the pilot did not hold an instrument rating.

The CAA PPL(A) syllabus includes one flight exercise where students are introduced to basic instrument flying skills. The PPL skills test includes simulated entry into IMC, following which the student must perform a 180° turn to escape to VMC.

In contrast, the NPPL microlight syllabus does not require the teaching of basic instrument flying skills.

- Available at https://www.atsb.gov.au/sites/default/files/media/5779485/ao-2020-004-final.pdf [accessed July 2025].
- Gibb, R, Gray, R and Scharff, L, 2010, Aviation Visual Perception: Research, Misperceptions and Mishaps, Ashgate Publishing Limited, Surrey, United Kingdom.
 Bryan, L.A, Stonecipher, J.W and Aron, K, 1954, 180-degree turn experiment, Aeronautics Bulletin No.11, University of Illinois Institute of Aviation, USA.

Medical

Pilot medical declaration

The pilot submitted a Pilot Medical Declaration in October 2022, which was valid until October 2025.

Post-mortem report

Post-mortem examination of the pilot revealed no evidence of incapacitation before the accident or the presence of carbon monoxide. Injuries sustained during the impact were not survivable.

Analysis

Overview

The accident sequence began when the aircraft entered meteorological conditions that were less than those required for flight in accordance with VFR. It is likely that when the pilot recognised the situation and was attempting to regain visual references, the aircraft departed from controlled flight. The pilot died from injuries sustained when the aircraft struck the ground. The post-mortem examination determined that there was no indication of medical impairment or incapacitation of the pilot before the aircraft struck the ground.

The accident

CCTV footage and associated audio recordings revealed that the aircraft was structurally intact with the engine operating up until the point of impact. Additionally, damage to the propeller blades indicated that the propeller was rotating at high speed when the aircraft struck the ground in a steep nose-down attitude.

An examination of the wreckage did not identify any pre-existing faults in the flight controls, making loss of control due to such issues very unlikely.

After takeoff at Coal Aston, the aircraft entered a climbing turn to the right, followed by four right-hand orbits south of the airfield. It is likely that, upon encountering meteorological conditions worse than anticipated, the pilot was attempting to regain visual references. An eyewitness in Unstone, 1.8 km south-west of Coal Aston, reported hearing and seeing a light aircraft circling several times before losing sight of it as it entered cloud.

Upon reaching Chesterfield, the pilot made two descending right-hand orbits. During these manoeuvres, the aircraft accelerated to a groundspeed of 178 kt with a peak descent rate of 5,250 ft/min. The aircraft then climbed from a low point of approximately 700 ft agl to just over 1,200 ft agl. A witness in the area observed an aircraft emerging from the clouds, turning towards the industrial estate, and then climbing at a steep angle until it disappeared back into clouds. It is likely that, on gaining visual contact with the ground after the descending orbits and being confronted with a built-up area and rising terrain, the pilot attempted to increase separation by initiating a rapid climb.

Over the next 30 seconds, the aircraft turned left through 90° towards the north, descending and climbing 200 ft before descending towards the ground in a right turn. The last recorded

point positioned the aircraft about 400 ft above the ground in a steep dive. A witness near the accident site observed the aircraft emerging from cloud, spiralling out of control, straight down towards the ground.

Witness observations of the aircraft appearing below cloud near Coal Aston and Chesterfield are consistent with recorded data and a cloud base of approximately 1,000 ft amsl as detailed by the Met Office aftercast (Figure 10).

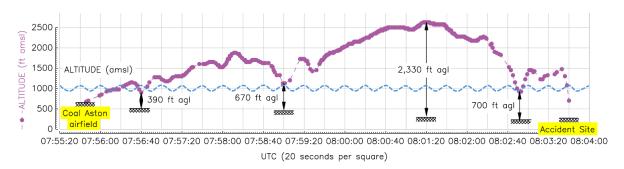


Figure 10

Aircraft altitude (extract from Figure 2) against a 1,000 ft amsl cloud base

Spatial disorientation

After orbiting south of Coal Aston and then climbing to approximately 2,500 ft amsl towards Chesterfield, it appears that the pilot was able to maintain some control of the aircraft, possibly aided by intermittent layers, or breaks in the cloud cover. However, on reaching Chesterfield, the pilot flew a series of descending right-hand orbits at high speed and with a high rate of descent. The final abrupt climb and turn reversal, performed without adequate visual references, likely resulted in the pilot becoming spatially disorientated.

Manually flying an aircraft in IMC is a skill that requires both training and recent practice to perform safely, but the pilot did not hold an instrument rating. Without the necessary training and recent experience, it is likely that the pilot lacked the skills required to safely control the aircraft on encountering IMC. Studies have demonstrated that in such conditions loss of control is likely to occur after 60 to 178 seconds, on average.

Planning and decision to fly

The investigation found that the pilot had amended his planned departure time from 1000 hrs, bringing it forward by approximately two hours. Witness evidence suggested this was partly influenced by forecasts of thunderstorms along the route later that morning. The pilot's notes indicated that he anticipated a low cloud base at Coal Aston initially, which he expected to lift to 2,000 ft amsl from 0600 hrs. He also noted that the visibility and cloud base at Clench Common would allow a suitable landing window between 1000 and 1200 hrs. His final note emphasized the importance of departing Coal Aston before 0800 hrs.

Analysis by the Met Office revealed that the area was experiencing a weakening warm front, which was slowly clearing to the north. The initial low cloud lifted throughout the morning

with clearer skies developing near the destination. Heavy showers began to develop from 1500 hrs but remained to the west of the route.

CCTV footage showed that at the time of takeoff from Coal Aston, visibility was between 400 and 600 m. The tops of the trees beyond the threshold of Runway 29 (The Brushes) appeared to be obscured by cloud. While it was not possible to determine the extent of cloud cover in the surrounding area from the footage, it is likely that, in the direction of takeoff, the cloud base was only 100 ft above the runway.

The investigation did not reveal evidence that the pilot had other pressing reasons to depart when he did, apart from his belief that, if he kept to his original plan, the weather conditions might not be suitable for reaching Clench Common. It is evident that, despite deciding to leave earlier and telling his friend during the drive to Coal Aston that he might have to wait for the weather to improve, the conditions he encountered were not perceived as sufficiently poor to cause him to postpone his departure.

The pilot's decision to depart in conditions significantly below VMC suggests he might have misjudged how poor the conditions were or underestimated the risks of flying in unsuitable weather. While his planning demonstrated some awareness of weather-related hazards, he likely lacked the knowledge and experience needed to accurately assess the conditions he encountered.

The CAA publishes comprehensive guidance on flight under VFR in the Skyway Code and highlights the key hazard that even when weather conditions are close to published limits:

'The legal minima are not a good reference point for decision making because safe VFR flight normally ceases to be possible long before the visibility is that poor. They are limits not targets.'

Conclusion

The accident occurred when the aircraft struck the ground after departing from controlled flight. This resulted from the aircraft entering meteorological conditions that were incompatible with flight under VFR and exceeded the pilot's experience and capabilities.

Meteorological forecasts had indicated that conditions were likely to improve during the morning of the flight, with a low probability of thunderstorms developing along the planned route. The pilot amended his original departure time to avoid what he perceived as poor flying conditions to arrive at his destination before the weather deteriorated.

However, the weather conditions at the time of departure were below the minimum required for flight under VFR. The pilot was not qualified to fly in IMC and the evidence indicated that he subsequently lost control of the aircraft.

Examination of the aircraft did not identify any pre-existing defects or anomalies that may have contributed to the accident.

Published: 2 October 2025.

AAIB Bulletin: 11/2025

AAIB Correspondence Reports

These are reports on accidents and incidents which were not subject to a Field Investigation.

They are wholly, or largely, based on information provided by the aircraft commander in an Aircraft Accident Report Form (AARF) and in some cases additional information from other sources.

The accuracy of the information provided cannot be assured.

Serious Incident

Aircraft Type and Registration: ATR 72-212 A, G-IACZ

No & Type of Engines: 2 Pratt & Whitney Canada PW127M turboprop

engines

Year of Manufacture: 2018 (Serial no: 1482)

Date & Time (UTC): 15 April 2025 at 1940 hrs

Location: On approach to Cornwall Airport, Newquay

Type of Flight: Commercial Air Transport (Passenger)

Persons on Board: Crew - 4 Passengers - 38

Injuries: Crew - None Passengers - None

Nature of Damage: None reported

Commander's Licence: Airline Transport Pilot's Licence

Commander's Age: 62 years

Commander's Flying Experience: 13,547 hours (of which 1,298 were on type)

Last 90 days - 76 hours Last 28 days - 45 hours

Information Source: Aircraft Accident Report Form submitted by the

pilot and further enquiries made by the AAIB

Synopsis

The flaps could not be deployed to full extension for landing and the commander decided to perform a go-around. Weather conditions were unfavourable so after initially declaring a MAYDAY, the aircraft diverted to Exeter Airport where landing flap was achieved. The landing was uneventful, but several unrelated anomalies were reported to have occurred during the subsequent ground taxi.

History of the flight

The plan was to fly two sectors as a return service between Newquay and London Gatwick. The crew rejected the initial aircraft because of water ingress on the flight deck, but they accepted G-IACZ as an alternative airframe.

The return sector to Newquay proceeded normally with the commander electing to fly the approach because the weather conditions were described as challenging. When the flaps were selected to 30 degrees for landing, the cockpit indications showed that they remained at 15° and the cabin crew confirmed that the flaps had not extended. Recycling the flap lever had no effect, and the commander decided to perform a go-around. As the aircraft climbed away there was an intermittent airframe de-ice fault and a "MAYDAY" was declared. The crew decided to divert to Exeter, where the flaps extended normally.

Investigation

The operator tested the flap system on the ground and no faults were apparent. The AAIB downloaded the Flight Data Recorder, which showed an anomaly with the flap command signal during the approach to Newquay. This information was passed to the operator, who released the aircraft for further flight after functional testing was complete. The aircraft completed several flights without recurrence, until the flaps stopped responding to selections again. The operator sought advice from the aircraft manufacturer, who recommended installing a replacement flap selector switch. This was completed and no further flap problems have been reported on G-IACZ.

Serious Incident

Aircraft Type and Registration: Boeing 737-86N, G-NPTA

No & Type of Engines: 2 CFM56-7B24 turbofan engines

Year of Manufacture: 2004 (Serial no: 32740)

Date & Time (UTC): 17 May 2025 at 0600 hrs

Location: Approaching Edinburgh Airport

Type of Flight: Commercial cargo flight

Persons on Board: Crew - 2 Passengers - None

Injuries: Crew - None Passengers - N/A

Nature of Damage: None reported

Commander's Licence: Airline Transport Pilot's Licence

Commander's Age: 37 years

Commander's Flying Experience: 3,701 hours (of which 3,248 were on type)

Last 90 days - 117 hours Last 28 days - 43 hours

Information Source: Aircraft Accident Report Form submitted by the

pilot

The aircraft was flying between East Midlands (EMA) and Edinburgh (EDI) Airports. Due to the quantity of dry ice forming part of the cargo load, the operator's procedures required the aircraft's air conditioning pack control switches to be in the HIGH position for the flight. The commander described this as "an unusual [pack] configuration."

Approaching top of descent the cabin altitude warning sounded, prompting the flight crew to don oxygen masks and execute an emergency descent. After levelling off, the commander checked the overhead panel and found both pack switches were selected OFF. Switching them back on restored pressurisation and the flight continued into EDI.

The commander was convinced they left EMA with the packs operating and had not noticed any switches out of place when conducting a scan of the overhead panel at the top of climb. He concluded the switches must have been selected OFF during flight, however neither he nor the co-pilot recalled doing so. The commander considered it possible the switches had initially been in the normal ON position and that the wrong "unusual configuration" (ie OFF rather than HIGH) had been selected to "correct what [they] perceived as a mistake."

AAIB Bulletin: 11/2025

AAIB Record-Only Investigations

This section provides details of accidents and incidents which were not subject to a Field or full Correspondence Investigation.

They are wholly, or largely, based on information provided by the aircraft commander at the time of reporting and in some cases additional information from other sources.

The accuracy of the information provided cannot be assured.

Record-only UAS investigations reviewed: August - September 2025

4 Aug 2025 ARC Aerosystems Finmere Airfield, Buckinghamshire S5M-001

About 23 seconds into the test flight, during the transition from hover to cruise flight, the unmanned aircraft pitched up and rolled right, before flying into the ground in an inverted nose-down attitude. From flight logs it was determined that onboard pitch attitude tracking was insufficient to react to the deviation in pitch without sending an 'out-of-range' command to one of the pitch motors, which powered down. This then triggered a similar effect on another motor.

6 Aug 2025 MA glider Dundonald, Ayrshire

The model aircraft was unable to turn to the right and rudder control was intermittent. The pilot lost sight of the model behind trees and it was not recovered.

13 Aug 2025 DJI M300 Wokingham, Berkshire

The UA had flown normally on an initial flight and returned to the remote operator uneventfully. When it was launched for the second time, it flew to the location at which it had previously operated but, after approximately two minutes, an overheat error developed and the UA descended vertically into trees.

15 Aug 2025 Skymagic Royal Chelsea Hospital, London

During the seventh test flight involving a swarm of 700 UA's, the 'start show' command was sent. 17 vehicles had not received the command and so a second command was sent. This introduced a delay in the start time for those 17 UA's. During the show 16 vehicles collided and fell into the safety zone and 10 returned to the start point. Although the radio frequency (RF) environment had previously been assessed as good and previous test flights had been successful, data logs from the 17 UA's indicated that a degraded RF environment prevented them from receiving the original start command. The operator planned to use an auto start timer for future rehearsals and shows and to use a larger antenna for command transmissions.

23 Aug 2025 DJI M30T Aldershot, Hampshire

The UA was being operated within a cordon to record a road traffic collision. The UA made contact with the cordon tape, causing the UA to become tangled and fall to the ground leading to damage to the rotors and rotor arm.

Record-only UAS investigations reviewed: August - September 2025 cont

24 Aug 2025 MA E-flight Bromley, Kent apprentice

The small model aircraft was being flown in a public park. Connection was lost between the controller and the aircraft, causing the aircraft to continue to fly beyond a tree line and was not recovered.

28 Aug 2025 DJI Matrice 300 Brandon, Durham

Without warning, the UA fell from the sky and struck the ground in a controlled area. It was reported that the UA had not collided with anything whilst airborne, and the remote pilot did not observe any warnings on the controller.

Miscellaneous

This section contains Addenda, Corrections and a list of the ten most recent Aircraft Accident ('Formal') Reports published by the AAIB.

The complete reports can be downloaded from the AAIB website (www.aaib.gov.uk).

Bulletin Addendum

Aircraft Type and Registration: Rans RV-8A, G-RVBJ

Date & Time (UTC): 20 June 2024 0832 hrs

Location: Bolthead airfield, Devon

Information Source: Aircraft Accident Report Form

AAIB Bulletin No 10/2025, page 29 refers

It was subsequently found that the throttle control cable was restricted such that when the throttle lever was moved aft, it stopped about an inch from the fully closed position.

The text should read:

The pilot landed on grass Runway 11 having used the windsock near the threshold to assess the wind as "a few knots" from the south. After a normal touchdown, the pilot began braking but became aware that the aircraft was still moving quickly. He applied maximum braking and subsequently shut down the engine, but the aircraft veered left just before the end of the runway, struck a fence and came to rest. After securing the aircraft, the pilot noticed that the windsock at the eastern end of the airfield indicated a tailwind of approximately four to six knots. Subsequently, it was found that the throttle control cable was restricted such that when the throttle lever was moved aft, it stopped "about an inch" from the fully closed position. The pilot considered that there would have been residual power from the engine that contributed to the difficulty experienced in slowing the aircraft.

The online version of this report was corrected when published on 9 October 2025.

TEN MOST RECENTLY PUBLISHED FORMAL REPORTS ISSUED BY THE AIR ACCIDENTS INVESTIGATION BRANCH

- 3/2015 Eurocopter (Deutschland) EC135 T2+, G-SPAO Glasgow City Centre, Scotland on 29 November 2013. Published October 2015.
- 1/2016 AS332 L2 Super Puma, G-WNSB on approach to Sumburgh Airport on 23 August 2013.

 Published March 2016.
- 2/2016 Saab 2000, G-LGNO approximately 7 nm east of Sumburgh Airport, Shetland on 15 December 2014.

 Published September 2016.
- 1/2017 Hawker Hunter T7, G-BXFI near Shoreham Airport on 22 August 2015.

 Published March 2017.
- 1/2018 Sikorsky S-92A, G-WNSR
 West Franklin wellhead platform,
 North Sea
 on 28 December 2016.
 Published March 2018.

- 2/2018 Boeing 737-86J, C-FWGH Belfast International Airport on 21 July 2017.Published November 2018.
- 1/2020 Piper PA-46-310P Malibu, N264DB 22 nm north-north-west of Guernsey on 21 January 2019.

 Published March 2020.
- 1/2021 Airbus A321-211, G-POWN London Gatwick Airport on 26 February 2020. Published May 2021.
- 1/2023 Leonardo AW169, G-VSKP King Power Stadium, Leicester on 27 October 2018.
 Published September 2023.
- 2/2023 Sikorsky S-92A, G-MCGY
 Derriford Hospital, Plymouth,
 Devon
 on 4 March 2022.
 Published November 2023.

Unabridged versions of all AAIB Formal Reports, published back to and including 1971, are available in full on the AAIB Website

http://www.aaib.gov.uk

GLOSSARY OF ABBREVIATIONS

	ah aya airfiald layal	1.4	lon a h/a \
aal	above airfield level	kt	knot(s)
ACAS	Airborne Collision Avoidance System	lb . –	pound(s)
ACARS	Automatic Communications And Reporting System	LP	low pressure
ADF	Automatic Direction Finding equipment	LAA	Light Aircraft Association
AFIS(O)	Aerodrome Flight Information Service (Officer)	LDA	Landing Distance Available
agl	above ground level	LPC	Licence Proficiency Check
AIC	Aeronautical Information Circular	m	metre(s)
amsl	above mean sea level	mb	millibar(s)
AOM	Aerodrome Operating Minima	MDA	Minimum Descent Altitude
APU	Auxiliary Power Unit	METAR	a timed aerodrome meteorological report
ASI	airspeed indicator	min	minutes
ATC(C)(O)	Air Traffic Control (Centre)(Officer)	mm	millimetre(s)
ATIS	Automatic Terminal Information Service	mph	miles per hour
ATPL	Airline Transport Pilot's Licence	MTWA	Maximum Total Weight Authorised
BMAA	•	N	Newtons
	British Microlight Aircraft Association		
BGA	British Gliding Association	N_R	Main rotor rotation speed (rotorcraft)
BBAC	British Balloon and Airship Club	${f N}_{{f g}}$	Gas generator rotation speed (rotorcraft)
BHPA	British Hang Gliding & Paragliding Association		engine fan or LP compressor speed
CAA	Civil Aviation Authority	NDB	Non-Directional radio Beacon
CAVOK	Ceiling And Visibility OK (for VFR flight)	nm	nautical mile(s)
CAS	calibrated airspeed	NOTAM	Notice to Airmen
CC	cubic centimetres	OAT	Outside Air Temperature
CG	Centre of Gravity	OPC	Operator Proficiency Check
cm	centimetre(s)	PAPI	Precision Approach Path Indicator
CPL	Commercial Pilot's Licence	PF	Pilot Flying
°C,F,M,T	Celsius, Fahrenheit, magnetic, true	PIC	Pilot in Command
CVR	Cockpit Voice Recorder	PM	Pilot Monitoring
DME	Distance Measuring Equipment	POH	Pilot's Operating Handbook
EAS	equivalent airspeed	PPL	Private Pilot's Licence
EASA	European Union Aviation Safety Agency		
		psi QFE	pounds per square inch
ECAM	Electronic Centralised Aircraft Monitoring	QFE	altimeter pressure setting to indicate height above
EGPWS	Enhanced GPWS	0.111	aerodrome
EGT	Exhaust Gas Temperature	QNH	altimeter pressure setting to indicate elevation amsl
EICAS	Engine Indication and Crew Alerting System	RA	Resolution Advisory
EPR	Engine Pressure Ratio	RFFS	Rescue and Fire Fighting Service
ETA	Estimated Time of Arrival	rpm	revolutions per minute
ETD	Estimated Time of Departure	RTF	radiotelephony
FAA	Federal Aviation Administration (USA)	RVR	Runway Visual Range
FDR	Flight Data Recorder	SAR	Search and Rescue
FIR	Flight Information Region	SB	Service Bulletin
FL	Flight Level	SSR	Secondary Surveillance Radar
ft	feet	TA	Traffic Advisory
ft/min	feet per minute	TAF	Terminal Aerodrome Forecast
g	acceleration due to Earth's gravity	TAS	true airspeed
GNSS	Global Navigation Satellite System	TAWS	Terrain Awareness and Warning System
GPS	Global Positioning System	TCAS	Traffic Collision Avoidance System
GPWS	Ground Proximity Warning System	TODA	Takeoff Distance Available
	hours (clock time as in 1200 hrs)		
hrs	` ,	UA	Unmanned Aircraft
HP	high pressure	UAS	Unmanned Aircraft System
hPa	hectopascal (equivalent unit to mb)	USG	US gallons
IAS	indicated airspeed	UTC	Co-ordinated Universal Time (GMT)
IFR	Instrument Flight Rules	V	Volt(s)
ILS	Instrument Landing System	V_{1}	Takeoff decision speed
IMC	Instrument Meteorological Conditions	V_2	Takeoff safety speed
IP	Intermediate Pressure	V_R	Rotation speed
IR	Instrument Rating	V_{DEF}	Reference airspeed (approach)
ISA	International Standard Atmosphere	V _{NE}	Never Exceed airspeed
kg	kilogram(s)	VÄSI	Visual Approach Slope Indicator
KCAS	knots calibrated airspeed	VFR	Visual Flight Rules
KIAS	knots indicated airspeed	VHF	Very High Frequency
KTAS	knots true airspeed	VMC	Visual Meteorological Conditions
km	kilometre(s)	VOR	VHF Omnidirectional radio Range

