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Introduction 
Retrieval-augmented generation (RAG) is an AI Framework that complements AI 
models, and more specifically language models, by combining information retrieval 
techniques for context-specific information from varied external sources with the 
generation of multi-model content. This framework allows the models to improve the 
accuracy and the new generated results to increase relevance, reduce hallucinations 
and extend their capabilities beyond their trained data. RAG framework does not 
change the underlying learnt model and its weights; instead, it supplements the learnt 
model with additional external knowledge. 

By combining retrieval (R) and generation (G) into a unified system, the RAG framework 
enables large language models (LLMs) to access a larger pool of knowledge beyond 
their static training data. The framework adds a semantic search capability by 
dynamically fetching data from relevant sources at query time using search algorithms, 
which serves as contextual information for the AI models. This approach mitigates 
knowledge limitations, improves factual accuracy, and enhances the adaptability of AI 
models, such as LLMs. We will focus on the RAG systems for LLMs for  this article. 

As LLMs continue to evolve, RAG represents a fundamental shift in how language 
models interact with knowledge, particularly for systems that are relied upon for precise, 
reliable, and domain-specific responses, for example government information websites. 

What is RAG? 

AI models are trained on static datasets, so they suffer from an inherent limitation of 
knowledge newness and domain-specific context. RAG framework is a powerful 
approach to enhancing the customisation and transparency of LLMs with the contextual 
relevance of AI-generated responses. RAG also complements LLMs by seamlessly 
integrating real-time information retrieval with their dynamic text generation capabilities. 

RAG allows the underlying AI model to produce answers that are not only coherent and 
contextually relevant but also grounded in up-to-date, accurate information. Most 
importantly, because RAG retrieves new data dynamically while using it during the 
model inference, such as in the process of using a trained LLM to generate new text or 
other outputs based on a given input, this reduces the need to retrain the entire model 
whenever new information becomes available. As a result, the system is more 
adaptable, maintainable and cost effective. 



 

RAG operates by combining user queries and documents into a shared semantic space, 
allowing the efficient retrieval of relevant external information through similarity 
matching using 3 basic principles. 

Retrieval (or R) 

The Retrieval functions by obtaining relevant information from a knowledge repository, 
such as data sources and documents, in response to a specific query which is usually 
applicable to the business processes or internal organisation data. This data is 
converted into numerical representations called embeddings or vector embeddings 
using an embedding model. Embeddings are represented as points in a 
multi-dimensional vector space, where similar data points are closer together to capture 
the semantic meaning and relationships within the data. Embeddings link the data’s 
semantic similarity to the user query, allowing AI models to understand and process it 
effectively.   

Augmentation (or A) 

Augmentation improves the input query or prompt by incorporating relevant semantic 
details collected from the retrieved sources to enrich the model’s understanding with 
additional context for the inference and generation of the output response. 

Generation (or G) 

Generation creates a more informed, contextually relevant, and precise response by 
utilising the generative capabilities of the model enhanced by the augmented input. 

However, on top of these 3 basic principles, RAG-based systems involve additional 
steps while implementing effective and engaging AI-powered solutions, such as data 
preprocessing, vectorisation and indexing, query preprocessing, query embedding, and 
post-processing.    

Retrieved data undergoes pre-processing, such as data tokenisation and stemming for 
LLMs. Data tokenisation is the process of breaking down retrieved text data into smaller, 
manageable units called tokens used for embeddings, and stemming, is a natural 
language technique used to reduce words to their base form, also known as the root 
form, to prepare it for the LLM.  

LLMs typically have token limits, such as 35,000 tokens in GPT-4o, for the maximum 
number of combined input and output tokens known as context windows. This restricts 
the amount of text that the underlying model can process at one time. To tackle this, you 
need to  break down significant raw text inputs into smaller, manageable pieces using a 
technique called chunking. Chunking is crucial for token management, semantic 
accuracy, context preservation for coherence, and processing efficiency. 



 

Chunks are converted into embeddings and stored in the vector database. This enables 
the retrieval system to compare and retrieve relevant information quickly. 

The benefits of RAG 
One of the most significant advantages of RAG is its ability to reduce hallucinations. 
Since traditional models operate on fixed training data, they may fabricate facts when 
faced with unfamiliar queries, producing fully coherent and believable responses which 
are factually incorrect. The RAG system improves upon this issue by grounding the 
LLM’s responses in authoritative knowledge sources without human annotation or 
intervention. 

Conventional LLMs require frequent retraining to incorporate new knowledge, a process 
that is computationally expensive and time consuming. RAG eliminates this bottleneck 
by fetching relevant information on demand and allowing AI systems to process vast 
amounts of data without extensive retraining. This makes RAG an ideal solution for 
applications where information is constantly evolving, as it can seamlessly adapt to new 
data sources and ensure that its responses remain relevant over time, capturing 
real-time use cases. Cost-effective scalability is another key benefit of RAG.  

RAG enables quick experimentation, benchmarking and comparison of various LLMs for 
your specific use case and data, eliminating the need for initial data training. This also 
helps avoid the expense and intricacy of pre-training or fine-tuning the LLMs while 
exposing them to your own context and proprietary data in a controlled environment. 

RAG is particularly valuable in domain-specific applications. General-purpose LLMs 
often struggle to provide precise or reliable answers in specialised fields such as law, 
medicine, finance, and research due to their limited exposure to expert knowledge. 

By enabling real-time access to domain-specific knowledge bases, RAG empowers 
LLMs to generate responses that align with expert insights and adhere to industry 
standards. This capability enhances the overall trust and reliability of LLM-based 
systems, which makes them more effective in complex and domain-specific 
environments. 

RAG offers better control over the organisation's data and knowledge that the model is 
exposed to. You can easily accommodate your company's changing data policies and 
customers data changes. Unlearning a piece of data from a pre-trained model is 
expensive. With RAG, it is much easier to remove data points from the knowledge your 
LLM is exposed to. 

RAG System Workflow 
The standard workflow for a basic RAG system has 10 steps. 

1.​ Data ingestion 



 

Data (structured or unstructured) is ingested using a Data pipeline. The ingested 
data is preprocessed to encode it as text, if required. Preprocessing steps in the 
data pipeline are highly dependent on the underlying data type. For instance, 
audio data needs a transcription pipeline to convert the audio data into text, while 
ingestion of PDF documents or image files requires corresponding preprocessing 
techniques.   

2.​ Index process 

Data is chunked and converted into embeddings. The original chunks and 
embeddings are then indexed and saved in a vector database. Splitting methods 
and the chunk size may affect the performance and context relevance, while the 
underlying data type drives the chunking strategy. During this step, the selection 
of the underlying embedding method is also crucial,  as altering the chunking as 
well as the embedding strategy necessitates re-indexing all chunks. The 
embedding should be chosen for its capacity to retrieve accurate responses 
semantically, a decision influenced by chunk size, expected question types, 
content structure, and the application domain. 

Initial input (prompt + query)A user provides an initial prompt + query to the 
system. This is the starting point for the user interaction. 

3.​ Query rewriter 

The query is preprocessed, or rewritten, to include a general context specific to 
the user, including their previous questions and specific interactions using an 
LLM.  

4.​ Query embedding for relevant information 

An embedding is calculated for the rewritten query part of the initial input and is 
sent to a ‘search relevant information retriever component. 

5.​ Retriever and reranker 

The retriever queries knowledge sources, which are represented by the 
organisations' internal documents and a database or data store saved in the form 
of a vector database. Relevant information for enhanced context is retrieved 
based on the query. Top-k similar documents are retrieved using a similarity 
method such as cosine similarity. Top-k then instructs the model to consider the 
top k most likely tokens when making a prediction, as opposed to the entire 
database vocabulary. Retrieved documents are re-ranked to prioritise the most 
relevant chunks. 



 

6.​ Consolidator 

The consolidator processes these chunks to overcome limitations of LLMs, such 
as the token limit and rate limit. Due to token limits, a reduction strategy might be 
used to chain prompts and extract an answer. Rate limits on online services like 
OpenAI can impact system latency, prompting engineers to consider trade-offs in 
RAG system design. 

7.​ Enriched input for LLM 

The original prompt + rewritten query is combined with the enhanced context (the 
relevant information retrieved in the previous step). This creates a more 
comprehensive input for the LLM. 

8.​ LLM processing and response generation 

The combined prompt + rewritten query + enhanced context is sent to a large 
language model endpoint. The LLM processes this enriched input and generates 
a generated text response. 

9.​ Response 

This generated text response is then presented back to the user or the 
originating system. 

Challenges and limitations 
While RAG systems complement LLMs, they also introduce several challenges and 
limitations. These factors impact the RAG system’s effectiveness, efficiency, and 
reliability in real-world applications. 

Understanding and addressing these limitations is essential for developing robust and 
scalable systems. 

Retrieval quality 
One of the primary challenges of RAG is the quality of the retrieved knowledge. The 
system's ability to fetch relevant and accurate information depends on the effectiveness 
of the retriever.  

Poorly-indexed documents, noisy data, or weak similarity measures can lead to the 
retrieval of irrelevant or misleading information. If the retrieved content lacks precision, 
the model generates incorrect responses, despite its overall generative strengths. 



 

Hallucinations 
Hallucinations remain a concern even in RAG-enhanced models. If the retriever returns 
incomplete or contradictory sources, the generative component may still fabricate 
details to produce a coherent response.  

This issue undermines the reliability of LLM-driven responses, particularly in domains 
where factual accuracy is crucial, such as medicine and finance. 

Model alignment 
Model alignment and bias present additional challenges. The retrieved knowledge must 
align with the intended use case, but existing biases in training data or indexed sources 
can lead to skewed or unfair outputs. 

If the retriever model prioritises sources with specific perspectives, the generated 
responses may reinforce pre-existing biases rather than provide balanced, objective 
insights. Addressing these biases requires careful curation of data sources and ongoing 
monitoring of LLM behaviour. 

Latency and scalability 
Latency and scalability present another significant limitation. RAG requires real-time 
information retrieval, which can cause delays in generating responses.  

Querying large datasets and ranking relevant content require computational resources, 
which makes the system slower in comparison to LLM models alone. As the system’s 
external knowledge grows, maintaining efficiency without sacrificing response times 
becomes increasingly complex, particularly for large-scale deployments. 

Security and privacy 
Security and privacy concerns can arise with RAG implementations. Since the system 
retrieves external knowledge dynamically, as with any other database, there is a risk of 
exposing sensitive or proprietary information.  

If retrieval sources include unverified or malicious content, this may lead to the 
generation of harmful or deceptive responses. Protecting user data, ensuring secure 
access to knowledge bases, and minimising the risk of data leakage are crucial 
considerations for a safe deployment. 

Advanced RAG systems 
The transition towards the latest version of RAG (also known as RAG 2.0) reflects a 
broader trend in LLM development, where system components become more dynamic, 
context-aware, and capable of integrating structured knowledge.  



 

By incorporating fully trainable RAG systems, contextual retrieval, and Hypothetical 
Document Embeddings (HyDE), which is a retrieval method that uses fake documents 
to improve generated answers, advanced RAG methods promise to elevate the 
performance and reliability of AI systems.  

Multimodal RAG systems 
Multimodal RAG expands traditional RAG systems by integrating multiple data types, 
including text, images, audio, video, and structured data.  
 
While classic RAG systems combine text retrieval with language generation, the 
multimodal approach enables the LLM to generate richer and more informative 
responses by leveraging a diverse array of knowledge sources.  
 
Unlike text, multimedia inputs require specialised processing techniques, such as image 
recognition, audio transcription, and video analysis.  
 
During the retrieval, the system evaluates which modalities are most relevant to the 
query and combines information from multiple sources to construct a comprehensive 
response that maintains consistency and relevance. 
 
This component offers significant opportunities for enhancing AI-driven interactions by 
making responses more dynamic and versatile. In practical applications, such as virtual 
assistants or professional tools, the system can provide multimedia-rich responses that 
improve accessibility and understanding. 

RAG evaluation 
Evaluating RAG systems involves assessing both the retrieval and generation 
components separately, as well as the overall performance of the integrated system. 
RAG systems present unique testing challenges. Often, there's a lack of existing test 
data designed explicitly for RAG evaluation. Testing typically involves an experimental 
approach, with the discovery of appropriate test cases happening through 2 different 
methods. The generation of synthetic data enables the system to be piloted with 
minimal initial testing and iteratively refined based on the results. At the same time, 
retrieval accuracy is measured through metrics such as precision and recall. It focusses 
on how well the retriever identifies relevant documents from the knowledge base. 
 
In contrast, the accuracy of the LLM can be evaluated using generation metrics such as 
bilingual evaluation understudy (BLEU), Recall-Oriented Understudy for Gisting 
Evaluation (ROUGE) or Metric for Evaluation of Translation with Explicit Ordering 
(METEOR), which assess the quality, coherence, and contextual relevance of the 
AI-generated responses based on the retrieved information. 
Retrieval benchmarks such as RAGBench, CLAPNQ, and TriviaQA provide 
standardised datasets that help compare RAG systems across different scenarios.  



 

 
These benchmarks highlight how effectively the retriever component performs in 
sourcing relevant data across varied query types and domains. 
 

Conclusion 
RAG is more than just a helpful function - it empowers language models to dynamically 
adapt responses based on external insights to ensure domain-specific accuracy and 
relevance. 
 
By dynamically retrieving information at query time, RAG complements the LLM’s 
capacity to provide contextually aware answers that adapt to evolving knowledge 
landscapes without the need for frequent retraining. 
 
While RAG introduces its own set of challenges, such as retrieval quality, latency, model 
alignment, and security considerations, most of these obstacles can be effectively 
mitigated through careful system design and implementation. 
 
Furthermore, the development of advanced RAG systems enables models to maintain 
factual accuracy, reduce hallucinations, and ensure that an AI systems’ output is aligned 
with recent and relevant information. 
 
As LLMs continue to evolve, RAG systems are poised to play an essential role in 
delivering more grounded and trustworthy AI systems. 


	 
	 
	Introduction 
	What is RAG? 
	The benefits of RAG 
	RAG System Workflow 
	Challenges and limitations 
	Retrieval quality 
	Hallucinations 
	Model alignment 
	Latency and scalability 
	Security and privacy 

	Advanced RAG systems 
	Multimodal RAG systems 
	RAG evaluation 
	Conclusion 

