
​ ​ ​ ​ ​ ​

AI Insights

RAG Systems

Introduction​ 3
What is RAG?​ 3
The benefits of RAG​ 4
Challenges and limitations​ 4

Retrieval quality​ 5
Hallucinations​ 5
Model alignment​ 5
Latency and scalability​ 6
Security and privacy​ 6

Advanced RAG systems​ 6
Multimodal RAG systems​ 7
RAG evaluation​ 7
Conclusion​ 8

Introduction
Retrieval-augmented generation (RAG) is an AI Framework that complements AI
models, and more specifically language models, by combining information retrieval
techniques for context-specific information from varied external sources with the
generation of multi-model content. This framework allows the models to improve the
accuracy and the new generated results to increase relevance, reduce hallucinations
and extend their capabilities beyond their trained data. RAG framework does not
change the underlying learnt model and its weights; instead, it supplements the learnt
model with additional external knowledge.

By combining retrieval (R) and generation (G) into a unified system, the RAG framework
enables large language models (LLMs) to access a larger pool of knowledge beyond
their static training data. The framework adds a semantic search capability by
dynamically fetching data from relevant sources at query time using search algorithms,
which serves as contextual information for the AI models. This approach mitigates
knowledge limitations, improves factual accuracy, and enhances the adaptability of AI
models, such as LLMs. We will focus on the RAG systems for LLMs for this article.

As LLMs continue to evolve, RAG represents a fundamental shift in how language
models interact with knowledge, particularly for systems that are relied upon for precise,
reliable, and domain-specific responses, for example government information websites.

What is RAG?

AI models are trained on static datasets, so they suffer from an inherent limitation of
knowledge newness and domain-specific context. RAG framework is a powerful
approach to enhancing the customisation and transparency of LLMs with the contextual
relevance of AI-generated responses. RAG also complements LLMs by seamlessly
integrating real-time information retrieval with their dynamic text generation capabilities.

RAG allows the underlying AI model to produce answers that are not only coherent and
contextually relevant but also grounded in up-to-date, accurate information. Most
importantly, because RAG retrieves new data dynamically while using it during the
model inference, such as in the process of using a trained LLM to generate new text or
other outputs based on a given input, this reduces the need to retrain the entire model
whenever new information becomes available. As a result, the system is more
adaptable, maintainable and cost effective.

RAG operates by combining user queries and documents into a shared semantic space,
allowing the efficient retrieval of relevant external information through similarity
matching using 3 basic principles.

Retrieval (or R)

The Retrieval functions by obtaining relevant information from a knowledge repository,
such as data sources and documents, in response to a specific query which is usually
applicable to the business processes or internal organisation data. This data is
converted into numerical representations called embeddings or vector embeddings
using an embedding model. Embeddings are represented as points in a
multi-dimensional vector space, where similar data points are closer together to capture
the semantic meaning and relationships within the data. Embeddings link the data’s
semantic similarity to the user query, allowing AI models to understand and process it
effectively.

Augmentation (or A)

Augmentation improves the input query or prompt by incorporating relevant semantic
details collected from the retrieved sources to enrich the model’s understanding with
additional context for the inference and generation of the output response.

Generation (or G)

Generation creates a more informed, contextually relevant, and precise response by
utilising the generative capabilities of the model enhanced by the augmented input.

However, on top of these 3 basic principles, RAG-based systems involve additional
steps while implementing effective and engaging AI-powered solutions, such as data
preprocessing, vectorisation and indexing, query preprocessing, query embedding, and
post-processing.

Retrieved data undergoes pre-processing, such as data tokenisation and stemming for
LLMs. Data tokenisation is the process of breaking down retrieved text data into smaller,
manageable units called tokens used for embeddings, and stemming, is a natural
language technique used to reduce words to their base form, also known as the root
form, to prepare it for the LLM.

LLMs typically have token limits, such as 35,000 tokens in GPT-4o, for the maximum
number of combined input and output tokens known as context windows. This restricts
the amount of text that the underlying model can process at one time. To tackle this, you
need to break down significant raw text inputs into smaller, manageable pieces using a
technique called chunking. Chunking is crucial for token management, semantic
accuracy, context preservation for coherence, and processing efficiency.

Chunks are converted into embeddings and stored in the vector database. This enables
the retrieval system to compare and retrieve relevant information quickly.

The benefits of RAG
One of the most significant advantages of RAG is its ability to reduce hallucinations.
Since traditional models operate on fixed training data, they may fabricate facts when
faced with unfamiliar queries, producing fully coherent and believable responses which
are factually incorrect. The RAG system improves upon this issue by grounding the
LLM’s responses in authoritative knowledge sources without human annotation or
intervention.

Conventional LLMs require frequent retraining to incorporate new knowledge, a process
that is computationally expensive and time consuming. RAG eliminates this bottleneck
by fetching relevant information on demand and allowing AI systems to process vast
amounts of data without extensive retraining. This makes RAG an ideal solution for
applications where information is constantly evolving, as it can seamlessly adapt to new
data sources and ensure that its responses remain relevant over time, capturing
real-time use cases. Cost-effective scalability is another key benefit of RAG.

RAG enables quick experimentation, benchmarking and comparison of various LLMs for
your specific use case and data, eliminating the need for initial data training. This also
helps avoid the expense and intricacy of pre-training or fine-tuning the LLMs while
exposing them to your own context and proprietary data in a controlled environment.

RAG is particularly valuable in domain-specific applications. General-purpose LLMs
often struggle to provide precise or reliable answers in specialised fields such as law,
medicine, finance, and research due to their limited exposure to expert knowledge.

By enabling real-time access to domain-specific knowledge bases, RAG empowers
LLMs to generate responses that align with expert insights and adhere to industry
standards. This capability enhances the overall trust and reliability of LLM-based
systems, which makes them more effective in complex and domain-specific
environments.

RAG offers better control over the organisation's data and knowledge that the model is
exposed to. You can easily accommodate your company's changing data policies and
customers data changes. Unlearning a piece of data from a pre-trained model is
expensive. With RAG, it is much easier to remove data points from the knowledge your
LLM is exposed to.

RAG System Workflow
The standard workflow for a basic RAG system has 10 steps.

1.​ Data ingestion

Data (structured or unstructured) is ingested using a Data pipeline. The ingested
data is preprocessed to encode it as text, if required. Preprocessing steps in the
data pipeline are highly dependent on the underlying data type. For instance,
audio data needs a transcription pipeline to convert the audio data into text, while
ingestion of PDF documents or image files requires corresponding preprocessing
techniques.

2.​ Index process

Data is chunked and converted into embeddings. The original chunks and
embeddings are then indexed and saved in a vector database. Splitting methods
and the chunk size may affect the performance and context relevance, while the
underlying data type drives the chunking strategy. During this step, the selection
of the underlying embedding method is also crucial, as altering the chunking as
well as the embedding strategy necessitates re-indexing all chunks. The
embedding should be chosen for its capacity to retrieve accurate responses
semantically, a decision influenced by chunk size, expected question types,
content structure, and the application domain.

Initial input (prompt + query)A user provides an initial prompt + query to the
system. This is the starting point for the user interaction.

3.​ Query rewriter

The query is preprocessed, or rewritten, to include a general context specific to
the user, including their previous questions and specific interactions using an
LLM.

4.​ Query embedding for relevant information

An embedding is calculated for the rewritten query part of the initial input and is
sent to a ‘search relevant information retriever component.

5.​ Retriever and reranker

The retriever queries knowledge sources, which are represented by the
organisations' internal documents and a database or data store saved in the form
of a vector database. Relevant information for enhanced context is retrieved
based on the query. Top-k similar documents are retrieved using a similarity
method such as cosine similarity. Top-k then instructs the model to consider the
top k most likely tokens when making a prediction, as opposed to the entire
database vocabulary. Retrieved documents are re-ranked to prioritise the most
relevant chunks.

6.​ Consolidator

The consolidator processes these chunks to overcome limitations of LLMs, such
as the token limit and rate limit. Due to token limits, a reduction strategy might be
used to chain prompts and extract an answer. Rate limits on online services like
OpenAI can impact system latency, prompting engineers to consider trade-offs in
RAG system design.

7.​ Enriched input for LLM

The original prompt + rewritten query is combined with the enhanced context (the
relevant information retrieved in the previous step). This creates a more
comprehensive input for the LLM.

8.​ LLM processing and response generation

The combined prompt + rewritten query + enhanced context is sent to a large
language model endpoint. The LLM processes this enriched input and generates
a generated text response.

9.​ Response

This generated text response is then presented back to the user or the
originating system.

Challenges and limitations
While RAG systems complement LLMs, they also introduce several challenges and
limitations. These factors impact the RAG system’s effectiveness, efficiency, and
reliability in real-world applications.

Understanding and addressing these limitations is essential for developing robust and
scalable systems.

Retrieval quality
One of the primary challenges of RAG is the quality of the retrieved knowledge. The
system's ability to fetch relevant and accurate information depends on the effectiveness
of the retriever.

Poorly-indexed documents, noisy data, or weak similarity measures can lead to the
retrieval of irrelevant or misleading information. If the retrieved content lacks precision,
the model generates incorrect responses, despite its overall generative strengths.

Hallucinations
Hallucinations remain a concern even in RAG-enhanced models. If the retriever returns
incomplete or contradictory sources, the generative component may still fabricate
details to produce a coherent response.

This issue undermines the reliability of LLM-driven responses, particularly in domains
where factual accuracy is crucial, such as medicine and finance.

Model alignment
Model alignment and bias present additional challenges. The retrieved knowledge must
align with the intended use case, but existing biases in training data or indexed sources
can lead to skewed or unfair outputs.

If the retriever model prioritises sources with specific perspectives, the generated
responses may reinforce pre-existing biases rather than provide balanced, objective
insights. Addressing these biases requires careful curation of data sources and ongoing
monitoring of LLM behaviour.

Latency and scalability
Latency and scalability present another significant limitation. RAG requires real-time
information retrieval, which can cause delays in generating responses.

Querying large datasets and ranking relevant content require computational resources,
which makes the system slower in comparison to LLM models alone. As the system’s
external knowledge grows, maintaining efficiency without sacrificing response times
becomes increasingly complex, particularly for large-scale deployments.

Security and privacy
Security and privacy concerns can arise with RAG implementations. Since the system
retrieves external knowledge dynamically, as with any other database, there is a risk of
exposing sensitive or proprietary information.

If retrieval sources include unverified or malicious content, this may lead to the
generation of harmful or deceptive responses. Protecting user data, ensuring secure
access to knowledge bases, and minimising the risk of data leakage are crucial
considerations for a safe deployment.

Advanced RAG systems
The transition towards the latest version of RAG (also known as RAG 2.0) reflects a
broader trend in LLM development, where system components become more dynamic,
context-aware, and capable of integrating structured knowledge.

By incorporating fully trainable RAG systems, contextual retrieval, and Hypothetical
Document Embeddings (HyDE), which is a retrieval method that uses fake documents
to improve generated answers, advanced RAG methods promise to elevate the
performance and reliability of AI systems.

Multimodal RAG systems
Multimodal RAG expands traditional RAG systems by integrating multiple data types,
including text, images, audio, video, and structured data.

While classic RAG systems combine text retrieval with language generation, the
multimodal approach enables the LLM to generate richer and more informative
responses by leveraging a diverse array of knowledge sources.

Unlike text, multimedia inputs require specialised processing techniques, such as image
recognition, audio transcription, and video analysis.

During the retrieval, the system evaluates which modalities are most relevant to the
query and combines information from multiple sources to construct a comprehensive
response that maintains consistency and relevance.

This component offers significant opportunities for enhancing AI-driven interactions by
making responses more dynamic and versatile. In practical applications, such as virtual
assistants or professional tools, the system can provide multimedia-rich responses that
improve accessibility and understanding.

RAG evaluation
Evaluating RAG systems involves assessing both the retrieval and generation
components separately, as well as the overall performance of the integrated system.
RAG systems present unique testing challenges. Often, there's a lack of existing test
data designed explicitly for RAG evaluation. Testing typically involves an experimental
approach, with the discovery of appropriate test cases happening through 2 different
methods. The generation of synthetic data enables the system to be piloted with
minimal initial testing and iteratively refined based on the results. At the same time,
retrieval accuracy is measured through metrics such as precision and recall. It focusses
on how well the retriever identifies relevant documents from the knowledge base.

In contrast, the accuracy of the LLM can be evaluated using generation metrics such as
bilingual evaluation understudy (BLEU), Recall-Oriented Understudy for Gisting
Evaluation (ROUGE) or Metric for Evaluation of Translation with Explicit Ordering
(METEOR), which assess the quality, coherence, and contextual relevance of the
AI-generated responses based on the retrieved information.
Retrieval benchmarks such as RAGBench, CLAPNQ, and TriviaQA provide
standardised datasets that help compare RAG systems across different scenarios.

These benchmarks highlight how effectively the retriever component performs in
sourcing relevant data across varied query types and domains.

Conclusion
RAG is more than just a helpful function - it empowers language models to dynamically
adapt responses based on external insights to ensure domain-specific accuracy and
relevance.

By dynamically retrieving information at query time, RAG complements the LLM’s
capacity to provide contextually aware answers that adapt to evolving knowledge
landscapes without the need for frequent retraining.

While RAG introduces its own set of challenges, such as retrieval quality, latency, model
alignment, and security considerations, most of these obstacles can be effectively
mitigated through careful system design and implementation.

Furthermore, the development of advanced RAG systems enables models to maintain
factual accuracy, reduce hallucinations, and ensure that an AI systems’ output is aligned
with recent and relevant information.

As LLMs continue to evolve, RAG systems are poised to play an essential role in
delivering more grounded and trustworthy AI systems.

	
	
	Introduction
	What is RAG?
	The benefits of RAG
	RAG System Workflow
	Challenges and limitations
	Retrieval quality
	Hallucinations
	Model alignment
	Latency and scalability
	Security and privacy

	Advanced RAG systems
	Multimodal RAG systems
	RAG evaluation
	Conclusion

