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Executive Summary 

The AI Airlock is the UK’s first regulatory sandbox for Artificial Intelligence as a Medical 

Device (AIaMD), developed and delivered in partnership with the NHS and the Department 

of Health and Social Care (DHSC). The pilot phase was launched in May 2024 and ran 

through to March 2025, aiming to explore the regulatory challenges faced by real-world AI 

medical devices and generate actionable insights to support the development of future 

guidance and regulatory changes. Key insights and recommendations generated through the 

AI Airlock will directly inform and support the work of the National AI Commission, ensuring 

that its outputs are grounded in real-world evidence and regulatory experience.  

Building on emerging global best practice and learnings from already well-established 

regulatory sandboxes in other sectors, we employed the sandbox mechanism to establish a 

safe space for medical device manufacturers to work directly with us.  Manufacturers also 

worked with the programme’s unique expert stakeholder network to design and execute 

bespoke testing plans to address current regulatory challenges associated with their AIaMD 

product. Regulatory sandboxes, like the AI Airlock, take regulators into uncertain areas of 

regulation. These represent the most contemporaneous regulatory problems that need 

urgent exploration, which often cannot be explored within normal business processes. 

Applications and regulatory testing approach 

Candidates were invited to join the AI Airlock via a public call for applications. The 

submissions received during this call were diverse: 31% of applications used generative AI, 

23% used machine learning, 13% predictive AI, and 10% multimodal systems. The most 

common clinical use cases were diagnostics (25%), screening/imaging (19%), and clinical 

decision support (19%). The clinical conditions spanned oncology, women’s health, 

respiratory care, and clinical workflow optimisation. Of the 40 applications received, 5 were 

taken forward to participate in the pilot and 4 successfully completed the full pilot.  

The AI Airlock testing approach was built around a four-stage delivery model: 

1. Orientation: Situation assessment to understand the pilot technologies and relevant 

regulatory context 

2. Plan: Regulatory gap review and test plan development 

3. Test: Testing conducted in different environments, including simulation, virtual, real-

world. Concurrently, in-depth regulatory gap analysis was conducted. 

4. Review: Synthesis of findings and recommendations. 
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The test plans employed 3 testing environments: Simulation, Virtual and Real-World 

Airlocks. Final outputs from each project included test plans, results from testing from 

regulatory gap analyses. 

Testing environments 

Simulation workshops involved experts across different disciplines: regulators, clinicians, 

technical experts, academics, legal representatives, and others. When testing in a virtual 

setting, candidates used a digital testing space built into or around an AI system, such as an 

AI model on a computer. Here, the AI functions were explored safely, allowing testers to 

interact with the AI, feeding it information or questions. They would then check how it 

responded and inspect how its internal processes worked. This mimicked real tasks, so 

teams could assess the accuracy, reliability, and reasoning within the AI itself. The real-world 

environment allowed testing in the setting where the AI product would be used (e.g. a 

hospital). The AI was used alongside doctors and real (anonymised) patient data, following 

the usual clinical processes, but its outputs were not used to make decisions about patients. 

Instead, the AI was observed in practice: how it fit into workflows, how accurate or helpful it 

was, and how safe and reliable it was for standard use.  

Regulatory gap analysis 

Our existing regulatory frameworks provide a strong foundation for ensuring the safety and 

effectiveness of medical technologies. However, AI introduces new characteristics such as 

continuous learning, complex data dependencies, and adaptive behaviour that challenge 

how some of these principles are applied in practice. That means parts of our framework will 

remain highly relevant, while others may need to evolve or be complemented by new 

approaches to ensure patient safety and public trust.  

Regulatory gap analyses are difficult to undertake; such analyses performed in such a novel 

field are particularly challenging. The team enlisted experts from various sectors in an initial 

regulatory mapping activity. This resulted in a collation of relevant regulatory documents and 

a list of associated challenges. To account for limited resource and programme timelines, we 

prioritised 5-10 most relevant regulatory documents for in-depth review per regulatory 

challenge.  

This foundational exercise proved extremely productive. By showing us how broad the term 

“regulatory gaps” could be in the context of novel AI devices, we could account for this in our 

definitions. We therefore used an equally broad definition to capture the gaps. This allowed 

us to capture wording gaps in existing guidance, context gaps in frameworks and even 

legislative loopholes.   

Within the AI Airlock, therefore, the term ‘gap’ is used as a shorthand term for identifying any 

areas of improvement. Recognising that many of the existing parts of the regulatory system 
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must cater for the millions of hardware and software products used in the health and care 

system. It is the objective of the AI Airlock to identify these areas for improvement and 

recommend solutions.   

Regulatory gap key insights and recommendations 

The AI Airlock pilot identified regulatory gaps that currently challenge the safe and effective 

deployment of AIaMD. While the nature of these gaps varied across use cases, some 

recurring themes emerged across all projects, particularly in areas of risk management, 

validation of text-based data from large language models (LLMs), AI errors, inaccuracies and 

non-determinism, explainability, and post-market surveillance. These gaps and challenges 

were explored in collaboration with four innovators: Philips Healthcare, AutoMedica, 

OncoFlow and Newton’s Tree. 

 
Synthetic Data and LLMs 

Current  Medical Device Regulations (MDR) 2002 and associated guidance do not define if / 

how / where synthetic data can be used to provide evidence of compliance. In addition, there 

is no guidance on quality or validation requirements for text-based synthetic data, despite 

the growing use of this data type in AIaMD. Standards such as BS/AAMI 34971 

acknowledge synthetic data as a potential input in AI model development and note the 

importance of managing privacy risks, though specific guidance for its use for privacy 

preservation is limited. During the pilot, we worked closely with the programme investigating 

the Synthetic data for development of AIaMD and therefore our recommendations are 

aligned with the findings of that report published after the AI Airlock pilot closure. The report 

addresses the AI Airlock recommendation for the MHRA to develop best practices for 

synthetic data generation, validation and assessment for fidelity and representativeness – 

particularly where the synthetic data are used to support regulatory submission in AIaMD 

development.  

In collaboration with Philips Healthcare, the AI Airlock explored the generation and 

assessment of 4,000 synthetic radiology reports which were generated using an LLM. While 

evaluation methods, including automated and human reviewers, showed promise in 

assessing quality, they also highlighted key regulatory uncertainties. Notably, the data from 

using an LLM to judge outputs from another LLM raised concerns about the errors and 

biases being reinforced rather than independently checked. This risk of ‘circularity’ means 

the system may not be fully reliable. This highlights the need for independent validation 

standards and more regulatory clarity. Given the limited timeframes of the AI Airlock pilot and 

complexity of the issues, further investigation is needed into AI validation of AI. The MHRA 

should therefore continue to investigate the use of LLMs in synthetic data pipelines (and AI 

evaluation of AI-generated data) with a focus on building an evidence base that can inform 

https://www.legislation.gov.uk/ukdsi/2024/9780348264593/contents
https://knowledge.bsigroup.com/products/application-of-iso-14971-to-machine-learning-in-artificial-intelligence-guide
https://www.phgfoundation.org/wp-content/uploads/2025/07/Synthetic-data-for-development-of-AI-as-a-medical-device.pdf
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future guidance on quality assurance, validation methods, and the acceptability of such data 

in regulatory contexts.   

Hallucinations, Non-Determinism and Risk Management 

The risk management framework underpinning the MDR 2002, and standards such as ISO 

14971, ISO 13485 and IEC 62304, offers a robust foundation for general medical device 

regulation. However, these frameworks were not designed to address the unpredictable and 

dynamic nature of AI systems. There is a lack of consensus on how to account for AI-specific 

risks such as hallucinations, non-determinism or model drift within existing risk management 

approaches. These risks could be viewed as falling within a manufacturer’s performance 

claims; however, outputs incorporated into the medical record are also subject to the Health 

and Social Care Act 2008, regulation 17. This creates a tension between different regulatory 

requirements, where clarity is needed on how performance considerations intersect with 

obligations relating to the accuracy of health records. 

The AI Airlock worked with AutoMedica and their product ‘SmartGuideline’ and explored how 

Retrieval Augmented Generation (RAG), could be used to ground LLM outputs in verified 

sources to reduce such risks. By anchoring responses in trusted clinical content (NICE 

guidelines), RAG added a safety layer to the system. In an experiment where 436 medical 

questions were asked, SmartGuideline (with RAG enabled) produced no hallucinations 

compared to 23 hallucinations from a baseline model. The RAG-based model also 

demonstrated consistent, deterministic outputs – returning highly similar results across 

repeated prompts. These results show how targeted AI design strategies can mitigate known 

risks. Through evidence from virtual testing and the simulation workshop discussions, the AI 

Airlock programme recommend that the MHRA should explore how such techniques could 

be accommodated within existing risk management frameworks. Safety measures such as 

retrieval augmented generation (RAG) should be encouraged in guidance, given the 

demonstrated ability to reduce hallucinations and support safer more explainable outputs. 

Guidance should also emphasise the importance of PMS, including mechanisms like the 

Yellow Card Scheme and Manufacturer’s Online Reporting Environment (MORE) as 

hallucinations may be rare during pre-market testing.   

Explainability and Transparency 

Terms such as explainability, transparency, and interpretability are not considered in the 

MDR 2002 and remain under-specified in current regulatory guidance. While standards such 

as ISO/IEC 22989 and BS/AAMI 34971 reference transparency, they do not outline specific 

explainability expectations for different user groups – such as regulators, clinicians, or 

patients. This lack of clarity is particularly important for AIaMD, which, unlike traditional 

medical devices, may adapt to data or clinical use over time. Such systems carry the risk of 

https://www.iso.org/standard/72704.html
https://www.iso.org/standard/72704.html
https://www.iso.org/standard/59752.html
https://www.iso.org/standard/38421.html
https://yellowcard.mhra.gov.uk/
https://www.gov.uk/guidance/manufacturers-online-reporting-environment-more
https://www.iso.org/standard/74296.html
https://knowledge.bsigroup.com/products/application-of-iso-14971-to-machine-learning-in-artificial-intelligence-guide
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model drift or unanticipated behaviour in situ, making explainability a mechanism to support 

trust, oversight, and safe integration into clinical practice. 

Together with OncoFlow, the AI Airlock explored multiple explainability approaches, 

interpretability and transparency. This work included plain-language explainability 

statements, model rationale outputs, and quantitative techniques for feature attribution. The 

project also tested how explainability requirements differ across stakeholder groups and use 

cases. While these methods showed promise when discussed with a range of stakeholders 

during a simulation workshop, stakeholders agreed that their application would benefit from 

clearer regulatory direction. This is particularly relevant for how explainability should be 

documented, communicated, and tailored to different audiences. The MHRA could usefully 

set out high-level expectations or best practices for explainability in AIaMD, supported by 

examples of appropriate methods and documentation formats tailored to different 

stakeholder needs.  

Post-Market Surveillance (PMS) and Real-Time Monitoring 

The PMS requirements manufacturers must meet are outlined in legislation including the 

Medical Devices (Post-market Surveillance Requirements) which amends the Medical 

Devices Regulations, 2002. Although this legislation came into force after the closure of the 

AI Airlock pilot, the workshop was based on the incoming requirements that are now in 

effect. These regulations are enacted by the MHRA via a vigilance reporting system, which 

includes the Manufacturer’s Online Reporting Environment (MORE). Additionally, the Yellow 

Card Scheme is available for medical device safety reporting more orientated towards 

reports from end users and patients. 

The sandbox confirmed that for PMS, systems such as Yellow Card and MORE offer 

reporting pathways and oversight of corrective action approaches. These are, however, not 

used enough by end users and manufacturers, and there is a clear need for AI-specific 

guidance on ongoing monitoring and preventative action. Risks such as model drift and 

automation bias are often only detected after harm has occurred, if they are detected at all. 

The FAMOS project demonstrated that real-time monitoring dashboards can help to surface 

emerging risks earlier, particularly around user behaviour. During testing, 180 reports were 

reviewed at two hospital sites and continuous real-time monitoring was used to detect data 

quality issues, model drift and automation bias. At one hospital site, the pilot identified a 

pattern of over-reliance on the AIaMD. If unaddressed, such over-reliance could increase the 

risk of harm. In this case, contributing factors included clinician fatigue, time pressure, 

distraction, and experience level. This reinforces the need for guidance on threshold setting, 

risk flagging protocols, and shared responsibilities for monitoring AI-human interaction. The 

MHRA should consider publishing supplementary guidance that supports proactive safety 

measures for AIaMD. This could include expectations on roles and responsibilities for 

monitoring across different settings. 

https://www.legislation.gov.uk/ukdsi/2024/9780348264593
https://www.gov.uk/government/publications/medical-devices-post-market-surveillance-requirements/vigilance-reporting-requirements
https://www.gov.uk/guidance/manufacturers-online-reporting-environment-more
https://yellowcard.mhra.gov.uk/
https://yellowcard.mhra.gov.uk/
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Standards like BS EN 62366-1 and guidance on applying human factors to medical devices, 

cover usability but do not fully address AI-specific challenges such as explainability-driven 

over-reliance, deskilling, or automation bias. The pilot highlighted how clinician context, i.e., 

fatigue, time pressure, and experience, can affect safety outcomes, and that system design 

must account for these variables. Cross-sector collaboration is needed to ensure current 

guidance, training and support for users adequately address these challenges, particularly in 

high-risk environments. 

Next steps 

The AI Airlock pilot has underscored both the potential and the practical challenges of 

developing and deploying AIaMD. This work has culminated in recommendations for 

updates to policy and guidance, some of which have been outlined in this report. By taking 

these forwards, the MHRA can continue to bridge the gap between broad regulatory 

principles and the practical needs of deploying AI safely and effectively in healthcare. Clear, 

accessible guidance plays a crucial role in supporting innovation, safeguarding patient 

safety, and building public trust in AI-driven medical technologies.  

Next, these findings will inform the work of the National AI Commission, ensuring that its 

outputs are grounded in real-world evidence and regulatory experience. In addition, the AI 

Airlock recommendations will inform AIaMD guidance currently in development, and future 

MHRA regulatory policy including those outlined in the Software and AI as a Medical Device 

Change Programme roadmap. Areas requiring further exploration may be taken forward by 

the National Commission and MHRA partners or through the next phase of the AI Airlock 

programme. 

https://www.iso.org/standard/63179.html
https://www.gov.uk/government/publications/guidance-on-applying-human-factors-to-medical-devices
https://www.gov.uk/government/publications/software-and-ai-as-a-medical-device-change-programme/software-and-ai-as-a-medical-device-change-programme-roadmap#introduction
https://www.gov.uk/government/publications/software-and-ai-as-a-medical-device-change-programme/software-and-ai-as-a-medical-device-change-programme-roadmap#introduction
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1. Introduction and Context  

Background  

The independent investigation of the NHS in England highlights the critical state of health 
services. It revealed significant challenges including surging waiting lists, financial 
constraints, and a deteriorating national health profile. Emphasising the importance of 
innovation in medicines and medical devices to solve some of the healthcare system's 
problems and highlighting the potential of software and AI as a Medical Device (AIaMD) to 
enhance patient care. Only if these products are of high quality, safe, reliable, and robust.  
 
In the UK, Software as a Medical Device (SaMD) is regulated under the Medical Devices 
Regulations 2002, AIaMD is a subset of SaMD under IMDRF. Our reform of the medical 
device legislation, including the Software and AI as a Medical Device Change Programme, is 
driven by innovation in the life sciences sector, learnings from the Cumberlege review and a 
growing understanding of AIaMD products. It aims to deliver balanced regulation which 
ensures products meet the necessary standards for patient safety and efficacy, without 
hindering or blocking the path for innovation and growth. balanced regulation which ensures 
products meet the necessary standards for patient safety and efficacy, without hindering or 
blocking the path for innovation and growth.  
 
After all, AIaMDs have the potential to help solve a broad range of challenges facing the 
NHS. In radiology, for example, AIaMDs could analyse x-rays or scans for abnormalities and 
make recommendations, saving clinician time. In surgery, AI-powered robotic systems could 
assist in minimally invasive procedures by analysing real-time imaging to guide surgical 
instruments with sub-millimetre precision, reducing operating times and complications. 
Meanwhile, AI-enabled wearable devices could continuously analyse physiological data, 
detect early signs of disease exacerbation, and provide personalised alerts to patients and 
clinicians, supporting chronic disease management and potentially reducing the need for 
frequent laboratory tests. 
 
These innovative products also hold unique risk profiles. We, alongside AI developers and 
the government, must protect UK citizens from the most significant risks presented 
by AI.  Fostering public trust in the technology and particularly considering the interests of 
marginalised groups. To ensure a safe, efficient, and robust route to market for these 
innovative products, key regulatory challenges need to be identified and addressed 
systematically. 
 
The Government’s AI Opportunities Action Plan sets a clear priority to ensure AI 
development through regulation, safety, and assurance hopes to fuel a fast, wide, and safe 
deployment and adoption of AI. Regulatory frameworks must support the development and 
implementation of these innovative solutions. One of the best ways to deliver safe and 
effective regulatory transformation is through regulatory sandboxes.   
 
The regulatory sandbox model is an internationally recognised mechanism to help address 
novel regulatory challenges in many sectors. These include financial services, data and 
information and healthcare sectors. This mechanism tests innovative products, business 

https://www.gov.uk/government/publications/independent-investigation-of-the-nhs-in-england
https://www.legislation.gov.uk/uksi/2002/618/contents
https://www.legislation.gov.uk/uksi/2002/618/contents
https://www.imdrf.org/documents/machine-learning-enabled-medical-devices-key-terms-and-definitions
https://www.gov.uk/government/publications/implementation-of-the-future-regulation-of-medical-devices/implementation-of-the-future-regulations
https://www.gov.uk/government/publications/implementation-of-the-future-regulation-of-medical-devices/implementation-of-the-future-regulations
https://www.gov.uk/government/publications/software-and-ai-as-a-medical-device-change-programme/software-and-ai-as-a-medical-device-change-programme-roadmap
https://www.gov.uk/government/publications/independent-medicines-and-medical-devices-safety-review-report
https://www.gov.uk/government/publications/ai-opportunities-action-plan/ai-opportunities-action-plan
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services and/or frameworks, often in a virtual environment separate from the market or 
sector they are influencing, ensuring safe and responsible product testing at pace. 
 
Regulatory sandboxes are increasingly used in the UK. Sandboxes can be utilised by a wide 
range of companies, from early start up developers to large scale organisations. Some 
notable examples include the NHS England test beds programme and the CQC’s using 
machine learning in diagnostic services. The Information Commissioner’s Office offers a 
regulatory sandbox service for products that utilise personal data in innovative ways, and the 
Financial Conduct Authority works with firms that want to test products with real consumers 
in a controlled environment.  
 
Sandbox offerings vary. Operational sandboxes can offer access to virtual controlled 
environments and data sets or alternative routes to market. Regulatory sandboxes bring 
together regulators and organisations to understand regulatory gaps and address 
challenges. The Data Institute published a comprehensive report analysing the use of 
regulatory sandboxes in the complex data space. The report highlights how sandboxes can 
reduce regulatory uncertainty and build capability. Further highlighting the opportunities in 
emerging, cross-border sandboxes, and notes the high resource requirements and 
difficulties to scale.   
 
Regulatory sandboxes provide the opportunity to address challenges often experienced by 
innovations. Naturally, applying an existing regulatory framework to innovative products, 
developers with lower regulatory knowledge, regulators with lower product knowledge, and 
general inexperience regarding the life cycle of innovation makes regulation and product 
development challenging. Regulatory sandboxes are well placed to drive the development of 
well-designed regulation that is proportionate, agile and offers clarity to developers and 
users, a key priority we share with the UK government. The AI Airlock regulatory sandbox 
has been developed to address the regulatory challenges and promote a pro-innovation 
approach to learning and experimentation as outlined in the Pro-innovation regulation of 
technology review .  
 
AI Airlock  

In May 2024, we announced the AI Airlock to test real world products and prototypes of 
innovative AI medical devices, in collaboration with Team AB (a coalition of UK Approved 
Bodies), the NHS AI Lab and Department of Health and Social Care (DHSC). 
 
Team AB brings expertise from Approved Bodies to increase consistency of interpretation of 

GB medical device regulatory requirements. It was integral to collaborate with Team AB on 

the AI Airlock project to uncover and navigate medical device regulatory challenges for 

AIaMD using our collective regulatory knowledge to inform and standardise policy positions 

in this rapidly evolving area. 

The NHS AI Lab provides connections and expertise within our healthcare system. Many 
AIaMD products are deployed via NHS infrastructure making NHS England and the health 
services in the devolved nations crucial to regulatory discussions such as deployment and 
post market surveillance. 
 

https://www.england.nhs.uk/publication/nhs-england-test-beds-programme-evaluation-learning-from-wave-1/
https://www.cqc.org.uk/sites/default/files/20200324%20CQC%20sandbox%20report_machine%20learning%20in%20diagnostic%20services.pdf
https://www.cqc.org.uk/sites/default/files/20200324%20CQC%20sandbox%20report_machine%20learning%20in%20diagnostic%20services.pdf
https://ico.org.uk/for-organisations/advice-and-services/regulatory-sandbox/
https://www.fca.org.uk/firms/innovation/regulatory-sandbox
https://www.thedatasphere.org/wp-content/uploads/2022/05/Sandboxes-for-data-2022-Datasphere-Initiative.pdf
https://assets.publishing.service.gov.uk/media/64118f0f8fa8f555779ab001/Pro-innovation_Regulation_of_Technologies_Review_-_Digital_Technologies_report.pdf
https://assets.publishing.service.gov.uk/media/64118f0f8fa8f555779ab001/Pro-innovation_Regulation_of_Technologies_Review_-_Digital_Technologies_report.pdf
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This pioneering and unique work helps us to further understand the detailed challenges of 
regulating AIaMD products to ensure new regulations and guidance facilitate their rapid and 
safe deployment into the NHS. AI Airlock helps us to support UK innovators achieve 
regulatory compliance. 
 
Purpose of this report 

This report provides the outcomes from the AI Airlock pilot programme that ran between April 
2024 – March 2025. It will offer insights for key audiences across the UK healthcare, 
regulatory and digital technology sectors and international partners. Learnings from the pilot 
fall into 2 main categories:  
 

a) how to implement regulatory sandboxes to investigate and improve regulation  
 
b) suggested changes to the current regulatory framework, both for the MHRA and 

stakeholders across the healthcare system  
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2. Programme Design and Governance  

 The pilot had 4 key objectives for its first year: 

• to work with real world products or prototypes to evidence and investigate regulatory 

challenges with AIaMD  

• to use these case studies to generate recommendations for regulatory framework 

changes 

• to carry out a formal programme evaluation and learn lessons from the regulatory 

sandbox way of working  

• to secure future year funding streams 

To achieve these objectives, the dedicated MHRA programme team was created with two 

main work streams: operational programme management [governance, stakeholder 

management, risk management] and regulatory / technical case management 

Sandbox Design 

The AI Airlock pilot programme was intentionally designed to provide opportunities to explore 

all regulatory challenges for AIaMD, therefore needed to be agile enough to be able to work 

with candidates and products at any stages of their developments.  

The AI Airlock focused primarily on the GB medical devices regulatory framework. This 

framework of legislation and guidance is within the MHRA remit to amend and therefore it 

was a key priority for us to focus the sandbox on this key area where action could be taken 

rapidly.  

The MHRA ran a call for applications to the public, industry and academia for AIaMD 

developers to submit proposals to join the AI Airlock, with key eligibility criteria and testing 

environments used to design the pilot cohort. 

Eligibility Criteria 

Applicants needed to be aiming for the product to be a medical device, as defined by the 

MDR 2002, which utilised AI or Machine Learning. They needed to be a legal entity with the 

rights to market their product in the UK. Most critically, there needed to be a commitment to 

working with us throughout the sandbox testing. All applicants needed to meet these 

conditions for their application to be eligible.  

https://www.gov.uk/government/news/mhra-opens-applications-from-ai-developers-to-join-the-ai-airlock-regulatory-sandbox


 

Page 13 of 77 
 

Further criteria were then applied to the applications to shortlist the most eligible applicants. 

These criteria were: 

- The product has potential to deliver benefits for patients 

- The product or prototype is innovative or a novel application 

- The product presents a regulatory challenge 

- The proposal is ready to be trialled 

These criteria ensured that the candidates selected were most able to deliver results through 
the pilot programme rapidly, an important consideration given the condensed timelines for 
testing. 
 
Sandbox testing environments 
As a result of the broad testing opportunity, we established three key testing environments to 

be used in the sandbox.  

 

 

Simulation Airlock is a workshop or roundtable-based activity used to address focused 

questions and gather various perspectives on a challenge. This type of testing can be 

tailored specifically to a set of key challenge areas. During the pilot the simulation workshops 

begun with a short presentation to set the scene and a facilitate discussion was held along 

with some focused breakout sessions. We looked across our broad stakeholder network and 

brought together a unique cast list of colleagues to bring their unique perspectives to each 

problem area. This type of testing environment is very flexible and can be applied to 

challenges experienced by products maybe at concept or early development stage or those 

without access or the need for data or a testing environment.  

Figure 1 Overview of the three testing environments designed for the AI Airlock pilot: Simulation, Research/Virtual and Real World 
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Virtual Airlock is testing a model with real or synthetic data to address research scenarios 

to gather insights of how the model works. This mechanism is like a “test bed” function used 

to validate and verify AI models and products using specific data access through the testbed. 

During the pilot AI Airlock these virtual environments were provided by the candidates.  

Real world environment involves deploying a product in a hospital or trust without 

impacting patient care, that way it protects clinical pathways while gathering evidence from 

clinicians or hospital deployment. It is imperative that the products testing in the real-world 

sandbox are done so with appropriate oversight in order to protect patient safety and clinical 

pathways.  The real world environment is not a clinical investigation.  

Each of these testing environments have been tested as part of the pilot programme and will 

continue to be refined throughout subsequent phases of the AI Airlock.  

Programme Governance  

To support the AI Airlock pilot programme a new governance structure was established that 

included a Governance Board and Supervisory Committee. Each pilot candidate, upon 

onboarding, formed a project team with a dedicated case manager from the MHRA Airlock 

team. The project teams reported progress against the delivery plan, key technical 

information and regulatory challenges, via their case manager, to the Supervisory 

Committee and Governance Board. 

➢ Governance Board: ensure that a coherent strategic approach is adopted to manage 

successful delivery to time, cost and sufficient quality, of the AI Airlock programme 

outputs. Throughout the design and testing phases of the programme the 

Governance Board also provide a wealth of expert input to the AI Airlock technical 

case studies.  

➢ Supervisory Committee: oversee the operational and technical activity of the AI 

Airlock programme by providing an expert advisory function to the AI Airlock 

programme and the project teams within the cohort. Provide regulatory and scientific 

advice to the AI Airlock project teams in relation to specific regulatory sandbox testing 

plans, through active engagement at the Supervisory Committee meeting and 

correspondence from the AI Airlock technical team. 

https://www.gov.uk/guidance/notify-mhra-about-a-clinical-investigation-for-a-medical-device
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Figure 2 AI Airlock Governance Structure 

All members of these groups were bound by signed confidentiality agreements and 

declarations of interest which increased assurance to the candidates and MHRA of the 

integrity of the sandbox governance. The core team, governance groups and key partners 

enabled multidisciplinary expertise and collaboration from across the MHRA, government 

departments, devolved administrations, Approved Bodies and the wider healthcare sector.   

Timelines and Milestones 
The pilot programme ran in the 2024-2025 financial year. It was publicly announced that the 

MHRA would be developing the regulatory sandbox in May 2024 and work began to rapidly 

design and build the sandbox in parallel to building the team.  

 
Figure 3 Timeline of the AI Airlock pilot activity 

The design of the sandbox involved a comprehensive literature review of current and historic 

regulatory sandboxes. A network of stakeholders and experts from the AI technology and 

healthcare sectors alongside other government departments was established. Following the 

UK general election the AI Airlock held its first public webinar in July and shortly after, 

established its Governance Board and Supervisory Committee. Throughout Autumn 2024, 

we opened the call for applications for industry to join the sandbox, ran an intense and 
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comprehensive sifting and shortlisting mechanism and in November we designated the first 

cohort of candidates.  

Candidates were brought onboard into the AI Airlock, after signing non-legally binding terms 

of engagement and dedicated case managers were assigned.  The teams then worked 

together to design the sandbox testing plan. Throughout the winter, the project teams met at 

least weekly, to discuss the progression and developments of the testing plans in the 

Simulation, Virtual and Real-World testing environments. In March 2025 the pilot testing 

formally concluded, and candidates worked rapidly to produce their case study reports.  

The following chapters of this report will provide additional details behind the AI Airlock, 

candidate selection, regulatory sandbox testing methodologies, insights from the case 

studies including evaluation of lessons learned. 
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3. Candidates and Selection  

Overview of applications 

The call for applications to the AI Airlock was open from 23 September to 7 October 2024. 

Approximately 40 applications were received, assessed and underwent a structured sifting 

process. Of the products applying: 

• 31% used generative AI, 23% used machine learning, 13% used predictive AI  

• The most common clinical uses were diagnostics (25%), screening or imaging (19%), 

and clinical decision support (19%).  

• Clinical areas included oncology (15%), clinical workflows (12%), women’s health 

(9%), chronic respiratory disease (9%), and health monitoring (9%).  

 

Reflecting the complexity and evolving nature of the regulatory landscape for AI 

technologies, applicants identified regulatory challenges across the full product lifecycle, with 

most applications highlighting more than one area of uncertainty. The most cited challenge 

was borderline classification. Determining whether the product’s intended purpose and 

functionality would qualify as a medical device was specifically challenging. Other areas of 

focus included risk classification, product training and validation, bias, explainability, 

reliability, post-market surveillance, and change control. Notably, most applications came 

from the micro and small SME sector, reflecting a strong presence of early-stage innovators, 

or a greater willingness within this group to engage with regulatory challenges. Fewer 

applications were received from large enterprises and academic institutions, perhaps due to 

the more complex and time-consuming internal approval processes typically required in 

these institutions exceeding the short application window. 

 
Figure 4. Applications by organisation size and type. Around 44% of applications were submitted by micro-SMEs with fewer 

than 10 employees, 33% by small SMEs with 10-50 employees, and the remaining 23% were split between medium and 

large enterprises and academia. 

Micro SME <10 
employees: 17Small SME 10-50 

employees: 13

Medium SME >50 -250 
employees: 4

University of academic 
institution: 3

Large Enterprise 
>250 employees: 2

Organisation size and type



 

Page 18 of 77 
 

Application review and sifting 

Each application was assigned to two reviewers from within the AI Airlock programme team: 

a lead reviewer and a second reviewer. The lead reviewer assessed the application against 

the eligibility criteria outlined in the application form, while the second reviewer conducted an 

independent review using the same criteria. If both reviewers agreed that an application met 

the required standards, it progressed to the next stage. If both reviewers agreed it did not, 

the application was deemed unsuccessful. Where there was disagreement between the 

reviewers the application was discussed in a group setting to reach a decision. This could 

result in the candidate being invited for a follow-up interview or being informed that their 

application was unsuccessful.  

 
 

Figure 5. Application review and sifting. Each application was reviewed by members of the AI Airlock team and followed the 

same decision-making process which culminated in progression to interview or an unsuccessful application.  

Aside from the eligibility criteria, other mandatory success criteria were measured. 

Applicants needed access to their own data and testing environment (if utilising a virtual or 

real-world Airlock), and the product had to be ready for testing. Reviewers also considered 

the focus of the regulatory challenge to be explored, the type of technology proposed, and 

the level of resource commitment available from both the applicant and the Airlock team. 

Through this process, a shortlist of nine candidates was selected.  

A final pilot cohort of five candidates were chosen following interviews with the shortlisted 

candidates, considering deeper insight into their technologies, applicant readiness and 

resource availability. This was reduced to four candidates following the withdrawal of one 

participant after the organisation went into administration (an insolvency process).  

The pilot cohort regulatory challenge areas spanned the product lifecycle. The Airlock team 

selected challenges related to data generation for training and validation, AI hallucinations, 

AI explainability, and post-market surveillance. While the majority (three out of four), had 

initially expressed interest in also exploring the borderline qualification question, time and 

resource constraints limited the feasibility of addressing such a broad spectrum of 



 

Page 19 of 77 
 

challenges. The Airlock team, aware that other regulatory partners would be exploring these 

areas in greater depth, decided to prioritise the novel and unexplored challenges.  

Table 1. Overview of candidates, regulatory challenges and key objectives to be explored 

during the pilot programme 

Candidate & 
Product Details Regulatory challenge Key Objectives 

PACS Radiology 
AutoImpression 
Philips Medical Systems 
Large language model 
Radiology 

• Validation of synthetic 
datasets generated by an 
LLM 

• Use of LLMs to validate 
synthetic data 

1. Understand the parameters that 
define good quality synthetic data 

2. Challenges involved in using an 
LLM to generate synthetic data  

3. Use of LLM to validate synthetic 
data  

SmartGuideline 
by AutoMedica 
Large language model 
Clinical workflows 

• Reducing hallucinations and 
non-determinism in LLMs 

4. Evaluate LLM technology to 
establish how retrieval augmented 
generation (RAG) performs in 
reducing hallucinations  

5. Explore how to enhance quality of 
recall 

OncoFlow by OncoFlow 
Large language model 
Oncology 

• Assessing approaches to 
LLM explainability and any 
trade-off with clinical 
performance 

6. Compare clinical performance, and 
explainability of traditional NLP 
models vs LLMs on unstructured 
oncology data 

7. Explore methods to make AI 
models explainable 

Federated AI Monitoring 
Service (FAMOS) 
by Newtons Tree 
Virtual Environment 
Radiology 

• Improving AIaMD safety 
through real-time monitoring 
of key metrics (model drift, 
data quality and automation 
bias) 

8. Assess the effectiveness of a real-
time monitoring system in 
enhancing the monitoring of third-
party AI medical devices to 
improve their safety  

9. Understand reporting 
responsibilities of different 
stakeholders when a trend that 
may lead to harm is identified 
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4. Regulatory Challenges and Projects  

This section of the pilot programme report provides an in-depth look at the approach used to 

address the selected regulatory challenges within the AI Airlock. It is followed by individual 

case studies – Philips AutoImpression, AutoMedica SmartGuideline, OncoFlow, and 

Newton’s Tree FAMOS. Each case study outlines the specific regulatory challenge explored, 

the underlying hypotheses and objectives, the testing methodologies used, and key findings 

from testing in virtual or real-world hospital settings. 

Overview of regulatory challenges and technologies 

Approach and activities overview 

The AI Airlock projects followed a structured four-step delivery approach. 

1. Orientation: Situation assessment to understand the pilot technologies and relevant 

regulatory context 

2. Plan: Regulatory gap review and test plan development 

3. Test: Testing through simulation, virtual, real-world, or hybrid environments; deeper 

regulatory gap analysis conducted 

4. Review: Synthesis of findings and recommendations 

In the first step, the AI Airlock team undertook a situation assessment to understand the 

candidate technologies. Together, the AI Airlock and candidate teams (referred to hereafter 

as project teams) collaboratively examined the current regulatory landscape. This review 

drew on regulatory documents identified by the project teams, and supervisory stakeholders, 

particularly Team AB (Team Approved Body). Once the relevant documents were selected, 

the project teams began selecting the most important ones. At the same time, testing plans 

were co-developed to address each project’s regulatory challenges. These plans defined key 

hypotheses, objectives, methodologies, timelines, and anticipated risks.  

Following agreement on the testing plans, projects entered the testing phase. Most were 

conducted through a combination of simulation, virtual and real-world Airlocks. While testing 

was underway, the AI Airlock team continued prioritising regulatory documents, followed by 

a detailed review of the prioritised guidance to identify areas requiring improvement for 

AIaMD regulation. In parallel, the AI Airlock team ran simulation workshops with cross-

disciplinary experts. Insights from these activities were produced to inform the key findings 

and recommendations of the AI Airlock programme. A final meeting with all project teams 

marked the close of the delivery phase, followed by the completion of final reports.  
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Case Study: Philips Healthcare - AutoImpression and the generation, 

assessment and validation of synthetic data  

DISCLAIMER: Methods,results of testing, verification and validation discussed in this report 
are for regulatory science exploration purposes only. They DO NOT imply or confer any 
product deficiency, nor do they imply additional requirements on Philips’ processes or 
products. 
 

Introduction 

Radiologists and healthcare professionals face increased workloads due to staff shortages 

and the growing number of imaging studies. This can lead to burnout, longer wait times for 

patients, delayed diagnoses, and potentially missed diagnoses, compromising patient safety 

and outcomes. Auto Impression leverages Large Language Model (LLM) technology to 

automate the creation of the "Patient Impression" section in radiology reports. This 

automation aims to reduce errors, minimise omissions, and speed up radiology reporting, 

ultimately enhancing productivity for radiologists. The functionality is still at an early 

development stage. 

AIaMDs which perform summarisation of patient health data like Auto Impression require 

testing against a broad spectrum of rich and representative data. Philips aimed to use an 

LLM to generate synthetic radiology reports to improve representation of demographics with 

abnormal radiology findings within the dataset. The synthetic data would then be assessed 

for its suitability in testing an AIaMD, aligning well with the AI Airlock objective to understand 

what constitutes high quality text-based synthetic data from a regulatory perspective, and 

what approaches can be used to assess it.  

The assessment involved confirming that the data was truly synthetic rather than a direct 

reproduction of the original real-world or “ground truth” data. Given the large volume of data 

required, Philips proposed using established automated mathematical methods to carry out 

most of the assessment, complemented by a small sample of human-reviewed data. Once 

the reports were confirmed as synthetic, a “Patient Impression” would be generated by an 

LLM for both the synthetic and real data. These impressions would be evaluated for quality 

against criteria such as clarity, groundedness, accuracy, and completeness. To manage 

scale, an LLM would act as the primary assessor with human validation used on a small 

sample to cross-check the reliability of the LLM’s judgement.  

Regulatory challenges 

Two broad categories of regulatory challenges were considered. The first relates to 

describing regulatory requirements for GenAI-enabled devices. The second, for those 

devices that do fall under regulatory oversight, involves determining the types of valid 

scientific evidence needed to evaluate their safety and effectiveness across the Total 

https://pmc.ncbi.nlm.nih.gov/articles/PMC10441819/
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Product Lifecycle (TPLC). These challenges are particularly relevant for GenAI-enabled 

devices that use open-ended input and output formats. These differ from the more structured 

formats typically found in other AIaMD and may require new evaluation approaches.   

Synthetic data may create a more robust dataset and evaluation if accurate and 

representative. Evaluating that accuracy and representativeness is essential, considering 

elements including:  

• the diversity of the initial clinical dataset (different geographies, modalities, users, etc.) 

• the real world or ground truth data that is adequate for generation of synthetic data 

• how to measure the quality of synthetic text data given the lack of standardised 

evaluation metrics/scores 

• addressing both clinical similarity/differences and linguistic similarity/differences. 

The AI Airlock pilot generated a large volume of data and scoring outputs that were difficult 

for humans to evaluate manually. The Philips and MHRA team worked on the assumption 

that these software enhancements are designed not to replace radiologists, but to improve 

efficiency and support the quality of their work. As such, it was important to strike the right 

balance between automating the analysis of this data and including human evaluation to 

ensure accuracy and clinical alignment. The proportion of automated versus human 

validation should be determined on a case-by-case basis, accounting for the specific use 

case, the associated risk, and the added value of human input. 

 
  

Hypotheses 
 

• There will be no significant difference between synthetic data and real data in the 

quality of impressions generated in Radiology reports 

• There will be no significant difference in the errors identified between synthetic 

and real data using the automated evaluation Evaluation of the performance and 

safety can be performed using LLMs as Judges. 

• An LLM Judge will correctly identify errors introduced into real and generated 

impressions 

• An LLM Judge will correctly ignore nonclinical counterfactual differences between 

reports and their generated impressions. 
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Methods 

Synthetic data generation 

Philips used the MIMIC-IV,  a large, publicly available database of de-identified health data 

from over 280,000 patients who stayed in critical care units at the Beth Israel Deaconess 

Medical Centre between 2008 and 2019. The dataset includes patient measurements, 

orders, diagnoses, procedures, treatments, and free-text clinical notes. MIMIC-IV is widely 

used for research and education, helping to reduce barriers to conducting clinical studies. 

Philips used an LLM to create new, structured reports based on existing examples to support 

the generation of synthetic radiology reports. The goal was to maintain the structure and 

modality and clinical indication of the original reports while introducing new, randomised 

clinical content. A prompt was developed to generate a new structured report that used the 

format of the source (MIMIC report), but with different findings. The generated reports 

excluded introductory or summary text, such as impressions. The model used was 

configured to encourage diverse outputs. The model was chosen for its advanced language 

capabilities and suitability for generating clinically relevant synthetic text. The resulting 

synthetic reports enabled a broader range of testing scenarios while maintaining realism and 

structural consistency. 

Generating synthetic impressions 

To complement the generation of synthetic radiology reports, Philips also focused on 

creating the impression section, a critical component of radiology documentation that 

summarises the key findings and provides clinical interpretation. Care was taken to ensure 

that only reports without existing impressions were selected for generation of a synthetic 

impression. Using tailored prompts, the LLM generated impressions based on either the 

original findings from the MIMIC-IV dataset or the synthetic reports created earlier. The 

prompt used for LLM-generated impressions was designed to promote clarity, conciseness, 

and clinical relevance. It instructed another large language model (with a temperature to 

encourage more focused and deterministic outputs) to read the full body of the report and 

write a corresponding impression. The model was prompted to exclude normal findings and 

instead highlight critical abnormalities, incidental findings, and suggested follow-up actions; 

elements that improve the clinical utility of the output. 

The full reports (including impressions) were processed in batches to ensure scalability and 

consistency across the dataset. These LLM-generated impressions were designed to 

summarise the most important content from each report. They were later assessed using 

another LLM acting as a “judge”, and selected samples were earmarked for further human 

evaluation within the sandbox environment. 

  

https://www.nature.com/articles/s41597-022-01899-x
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Generating reports with counterfactuals 

Philips manually introduced counterfactuals - small, controlled changes - to both original 

(ground truth) and synthetic reports to evaluate how reliably the LLM-judge distinguished 

genuine findings from altered or noisy content.  Twenty representative samples were 

selected, and for each one, five counterfactual variants were generated, resulting in a 

balanced set of altered reports. The goal was not to maintain clinical realism in these 

modified reports, but to introduce noise in a structured way to test the robustness of the 

LLM-judge. 

Seven types of counterfactuals were used, ranging from subtle character-level edits to 

changes in key clinical details such as organ, laterality, or gender references. Some 

counterfactual types relied on specific linguistic features (e.g. anatomical terms or gendered 

language) and could therefore not be applied equally across all samples. As a result, 

counterfactuals involving simple textual modifications were more frequent than those 

requiring specific clinical terminology. Care was taken to apply counterfactuals consistently 

across both synthetic and original reports despite this variation. This allowed for a fair and 

controlled comparison of the LLM-judge's behaviour across the two datasets. 

Generating reports with errors 

Philips manually applied deliberate errors to a consistent set of radiology reports to evaluate 

the reliability of the LLM-judge. Twenty reports were selected from both the original and 

synthetic datasets and five different types of clinically relevant modifications were applied, 

producing a total of 100 altered samples in each dataset. 

Error types considered most clinically relevant were focused upon, following consultation 

with radiologists. These included changes that could meaningfully affect clinical 

interpretation such as laterality swaps, organ swaps, negations, insertions, deletions etc.  

 

 

 

 

 

 

 

 

LLMs can produce slightly different responses each time they are run, even when given 
the same input. To manage this non-determinism and improve the reliability of the LLM-
judge, two strategies were used: 

Measuring consistency: For each evaluation, the same prompt was run 10 times, and the 
standard deviation of the results was calculated. This helped quantify how much the 
model's outputs varied and ensured that the results were stable enough to be trusted. 

Prompt refinement: The prompt given to the LLM-judge was reviewed and adjusted to 
improve performance. By refining the wording and structure of the prompt, the model’s 
responses became more focused and clinically aligned. 

These steps were essential to ensure that the LLM-judge could be used reliably within the 
sandbox setting. More work on mitigating non-determinism can be found in the 
SmartGuideline case study.  
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Comparison of real and synthetic reports: clinical similarity 
Philips used two complementary approaches to assess the clinical similarity between real 

and synthetic radiology findings: ICD-10 code comparison and semantic similarity analysis 

using BioBERT. 

ICD-10 codes are internationally standardised alphanumeric codes, used to classify 

diseases and health conditions in clinical documentation and billing. Maintained by the World 

Health Organisation, each code begins with a letter representing a broad disease category 

(e.g. “E” for endocrine disorders), followed by numbers that specify the diagnosis (e.g. “11” 

for type 2 diabetes), and sometimes a decimal for additional detail (e.g. “.9” for “without 

complications”). To analyse how real and synthetic findings differ, Amazon Comprehend 

Medical Service was used to extract ICD-10 codes from both sets of findings. Philips 

included only codes that Comprehend Medical marked as present in the text (non-negated), 

and with a high confidence in the match (>0.75). 

BioBERT, a deep learning model fine-tuned on biomedical texts, was used to assess clinical 

similarity beyond coded terms, a deep learning model fine-tuned on biomedical texts. Unlike 

general-purpose models, BioBERT is designed specifically for medical and life sciences 

language, allowing it to capture clinical nuance more effectively. It generates vector 

embeddings, a type of mathematical representation, of each findings section. 

Comparison of real and synthetic reports: linguistic similarity & human evaluation 

Linguistic similarity analysis was performed to ensure synthetic reports maintained the same 

linguistic style as original reports. This was evaluated using the following metrics: GLEU, 

ROUGE, Parts-of-Speech Overlap and Automated Readability Index (ARI) (see appendix for 

details). To ensure that the BioBERT, ARI and ROUGE scores effectively evaluated the 

similarity between synthetically generated reports and their original counterparts, a 

calibration step with human expert input was performed as follows: 

1. Data Collection: A diverse subset of 20 original reports and their corresponding 

synthetically generated versions was collected. The dataset covered various topics, 

clinical domains, and writing styles to provide a comprehensive evaluation. 

2. Initial Human Scoring: A set of 2 clinical experts from the Philips Clinical team, with 

experience in reading radiology reports (U.S. board certified Radiologists), blindly 

reviewed each original and synthetic report. They then scored the reports on a Likert 

scale from 1 to 5 for readability and similarity to verify that the linguistic structure, 

grammar, and terminologies used (focusing on clinical terms) were similar to ground 

truth radiology reports. 

For each report, the experts scored the following points: Clinical Content Similarity, Linguistic 
Style Similarity, Understandability compared to the original report.  In addition, an 
independent analysis for each report was carried out. The experts scored the following 
points: Language, Structure, Completeness, Clinical Soundness (see appendix for details) 

https://icd.who.int/browse10/2019/en
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Results 

ICD-10 Code Comparison 

Figure 6 shows the distribution of ICD-10 codes across all real and all synthetic findings. The 

distributions differ noticeably, with several ICD-10 codes appearing only in the synthetic 

dataset. This suggests that the underlying pathologies and clinical content of synthetic 

findings differ from real ones, which aligns with the goal of introducing variation in synthetic 

data generation. 

Figure 6. ICD10 Code Distribution Comparison. This chart compares the distribution of ICD-10 codes in real and synthetic 

findings. The blue dots represent ICD-10 codes from real radiology reports in the MIMIC dataset, while the red dots 

represent codes from the synthetic dataset. The x-axis shows individual ICD-10 codes (not legible due to density), and the 

y-axis indicates the frequency of each code across the respective datasets. 

Semantic Similarity with BioBERT 

Cosine similarity was used, a common measure of how similar two vectors are, to compare 

the embedding of each real finding with its paired synthetic version. Scores close to 1.0 

indicate strong similarity, while scores near 0.0 reflect major differences. Most synthetic 

reports had similarity scores between 0.6 and 0.8, indicating high, but not identical, clinical 

similarity. This moderate distance was taken as a reflection of intentional changes 

introduced through prompting, such as replacing organs or conditions to increase variety. A 

small number of pairs scored extremely high or low. These were often due to very short 

reports, or errors in text parsing or generation. Further investigation of this subset could not 

be investigated due to resource constraints.  
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Human evaluation results 

Once the human evaluation had been carried out, there was a feedback session. One 

observer mentioned that the task was notably easier when dealing with shorter reports. The 

same observer suggested that using a three-level scale would simplify the task, as the 

current five-level scale was challenging and often led them to revisit previous assessments. 

Additionally, one of the observers noted that they could not distinguish between synthetic 

and actual reports. 

 
 
Figure 7. Inter-observer High level Analysis - Frequency distribution of scores for comparative analysis per question. 

 
After further data processing, no significant correlation was found between the grading 

scores of the two observers, with one exception: a statistically significant negative correlation 

of -0.52 (95% CI: -0.78 to -0.11) was observed in their assessments of the professionalism 

of the “Language” used in the original (real-world) MIMIC report. This suggests a notable 

disagreement between the observers on this criterion. 

There are two plausible explanations for these findings: 

• underpowered multiple testing – the number of samples assessed may have been too 

small to detect reliable agreement across multiple dimensions. 

• insufficient rater training and alignment – the observers may not have received 

adequate calibration or guidance on how to apply the scoring criteria consistently prior 

to completing the task. 
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The average score was used for the calibration analysis with the mathematical target 

metrics. 

Table 2 - Correlations in between the objective metrics and observer ratings (see appendix 
for metric descriptions) 

 Question  Metric Correlation Count Lower C.I. Upper C.I. 

1. How similar are 
these two reports are 
in terms of clinical 
content? 

BIOBERT 0.390 20 -0.064 0.710 

2. How similar are 
these two reports are 
in terms of linguistic 
Style? 

ARI MIMIC 
Report 

-0.342 20 -0.681 0.119 

ARI Synthetic 
Report 

-0.069 20 -0.497 0.385 

Difference ARI 
score (Synthetic-
MIMIC) 

-0.315 20 -0.665 0.148 

Average 
sentence length 
MIMIC Report 

-0.481 20 -0.762 -0.049 

Average 
sentence length 
Synthetic Report 

-0.025 20 -0.462 0.422 

3. How similar these 
two reports are in 
terms of 
understandability? 

ROUGE 0.444 20 0.002 0.741 

Missing value handling was conducted using pairwise exclusion, and a 95.0% confidence 
interval was applied. Significance was determined at the 0.05 level, with bold indicating 
significant correlations. 

 

The only statistically significant correlation was found between average sentence length in 

synthetic findings and similarity scores. This indicates that shorter sentences were 

associated with greater similarity, suggesting that simpler and more concise language may 

improve alignment with reference data. Question 3 showed a statistically significant 

correlation with ROUGE scores indicating that reports with similar phrasing have similar 

understandability (see appendix Table s1). 

Question 1 showed a weak positive relationship with BioBERT similarity scores, suggesting 

a possible relationship between this metric and semantic similarity in the findings. This 

relationship was not statistically significant, so it should be interpreted with caution. If the 

relationship is underpinned by an undetected correlation, it would indicate that, when 

radiologists rated pairs of reports as more similar in their clinical context, BioBERT scores 

tended to be higher.  
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Question 2 showed a weak negative relationship with the Automated Readability Index 

(ARI). This relationship was also not statistically significant. If the relationship is underpinned 

by an undetected correlation, it implies that radiologists rated pairs of reports as more similar 

in their linguistic context as readability decreased (i.e. as text becomes more complex).  

 
LLM as a judge results 

To investigate the quality and reliability of the synthetic reports and impressions generated, 

Philips employed LLMs in an evaluative role, referred to as "LLM-as-a-Judge", to investigate 

the accuracy, clarity, groundedness and completeness of the synthetic records and 

impressions generated. These metrics would be used to assess the quality of the synthetic 

reports. The generated content was assessed using four metrics: accuracy, completeness, 

clarity, and groundedness. Each metric was scored on a scale from 0 to 10, accompanied by 

a motivation explaining the given score. Philips used an LLM model with a temperature 

setting of 0.6 for this evaluation. The same system prompt was used for each metric: clarity, 

accuracy, completeness and groundedness. The LLM judge evaluated all impressions, those 

generated by humans, the synthetic impressions based on real reports and synthetic 

impressions based on synthetic reports. 

To assess the quality of impressions generated by the LLM, a human evaluation was 

conducted using a subset of radiology reports. A random sample was selected from two test 

sets: 15 original MIMIC reports with original impressions and 20 original MIMIC reports with 

LLM-generated impressions. Each impression was assessed using four key evaluation 

metrics (see appendix for details): 

• Accuracy: The extent to which the impression is factually correct, including accurate 

values, details, and the absence of errors or misrepresentations. 

• Groundedness: Whether the impression is anchored in the original findings, avoiding 

hallucinations and clearly distinguishing between facts and opinions. 

• Completeness: Whether the impression captures all relevant information, including 

clinical context and necessary detail. 

• Clarity: How well the impression is structured, including the use of appropriate, 

concise, and logically organised language. 

These same metrics were applied by both the LLM Judge and certified radiologists, who 

independently reviewed the same set of impressions. Radiologists also evaluated the LLM 

Judge’s scores, offering a human perspective on the model’s performance. 
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The resulting scores were analysed to compare evaluations from the radiologists and the 

LLM Judge, identifying levels of agreement and pinpointing discrepancies. In addition to 

numerical scoring, qualitative comments from the radiologists were reviewed to uncover 

recurring strengths and weaknesses, offering practical insights into areas where LLM 

evaluation methods either align with or diverge from expert human judgement. 

Agreement between the certified radiologist observers  

Evaluators were asked to grade their agreement with the LLM judge score, for each metric, 

with a binary agree/disagree. All 70 pairs of Report-Impressions and LLM Judge scoring 

were assessed by two blinded certified radiologists.  

Table 3 - Count of agreements and disagreement for the observers on the LLM judge scores 

per metric. 

Metric Decision 

Observers count of agreement / disagreement with LLM judge 

Obs1 Obs2 Total 

Accuracy 

Agree 52 53 105 

Disagree 18 17 35 

Clarity 

Agree 63 54 117 

Disagree 7 16 23 

Groundedness 

Agree 53 56 109 

Disagree 17 14 31 

Completeness 

Agree 46 45 91 

Disagree 24 25 49 

Agreement in between Human scores and LLM judge score 

Evaluators were asked to grade their assessment on a scale from 0-10 for each metric 

across all 70 reports-Impressions pairs. Overall, Observer 2 had higher agreements to LLM 

scoring than Observer 1 for all metrics, ranging from fair to good. Observer 1 had fair 

agreements with the LLM scoring. Weighted kappa demonstrated higher agreement (all fair) 

between the two Observers, suggesting that the 10-point scale was too granular, and should 

be reduced to 5 or 3 levels. 
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Feedback on Observers Recommendations  

The radiologists stated that some recommendations were deemed valuable and could be 

incorporated by a human radiologist; however, others were inappropriate. Recommendations 

for surgery, for example, were seen as beyond the scope of what a radiologist would 

typically suggest. 

The LLM Judge scored higher when the impressions included recommendations, regardless 

of their appropriateness. It may be necessary to fine tune the LLM Judge to avoid favouring 

recommendations that are deemed incorrect or irrelevant by human experts. 

Conclusion 

When generating synthetic radiology reports for evaluation purposes, it important to preserve 

linguistic similarity to real reports while introducing sufficient clinical variation. Metrics such 

as BioBERT similarity and ICD-10 distribution effectively captured clinical differences, while 

ROUGE-L, POS tag overlap, and ARI scores helped confirm stylistic alignment. Together, 

these metrics provided a practical framework for assessing the quality of synthetic data. 

Linguistic similarity is important for using synthetic data to supplement real clinical data; 

without it, the rationale for supplementation may be weakened. 

This case study also offers insights into the evaluation of generated impressions by both 

human radiologists and an LLM Judge. Human observers aligned reasonably well with each 

other and with the LLM Judge, with Observer 2 showing stronger agreement. The LLM 

Judge applied less granularity in scoring, however, consistently favouring high scores (e.g., 

9). Agreement metrics such as weighted kappa helped compensate for these differences 

and supported the overall validity of comparisons. 

A key issue identified was the interpretation of “groundedness” and “completeness”. The 

LLM Judge tended to conflate the two, treating omissions as a failure of groundedness.  

whereas radiologists interpreted groundedness as the extent to which impressions are 

derived from report content, with omissions affecting completeness instead. This divergence 

likely contributed to lower agreement scores and highlights the need for clearer definitions 

and evaluator guidance. 

While the LLM Judge shows promise in assessing radiology impressions, its interpretation 

and evaluation of groundedness, completeness, and recommendation relevance requires 

improvement, especially when distinguishing between human- and machine-generated 

reports. Future work should prioritise the refinement of scoring frameworks, clearer 

evaluation definitions, and more detailed guidance for automated evaluators to support 

consistency, interpretability, and alignment with clinical reasoning in the assessment of 

synthetic radiology data.  
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Case Study: AutoMedica – SmartGuideline and mitigating risks of 

LLM hallucination and non-determinism 

Introduction 

Guideline adherence improves health outcomes by promoting interventions with proven 

benefit, discouraging ineffective ones, and supporting greater consistency in care.  Clinicians 

deviate from guidelines due to several factors: lack of access to guidelines at the point of 

care; awareness and access; clinician perception that their own experience outweighs 

guideline recommendations; lengthy, complex, or ambiguous guidelines.   

SmartGuideline is an AI clinical decision support (CDS) tool designed to help healthcare 

professionals in both primary and secondary care follow best-practice recommendations. It is 

designed to provide real-time access to summarised clinical guidelines, answering 

management questions quickly and referencing the original guideline sources. The tool has 

potential to offer support across the full spectrum of clinical decision-making: diagnosis, drug 

selection, dosing, contraindications, investigations, treatments, and referral criteria.  

SmartGuideline aims to reduce unwarranted variation in care, improve safety, and increase 

clinician productivity by making guideline information more accessible and usable at the 

point of care. 

Large language models (LLMs) are a type of AI algorithm that predict the next most likely 

word or part of a word based on previous context. This is achieved through creating 

mathematical representations of words and training the deep learning algorithms on huge 

volumes of textual data that pre-compute probabilities for the next most likely word. This 

means that AI produces plausible-sounding output but does not guarantee factual accuracy 

(i.e. the ground truth) which can result in plausible sounding inaccuracies (known as 

hallucinations or fabrications). LLMs are becoming more common in healthcare, from 

summarising clinical encounters and patient records to supporting clinical decisions. While 

this technology has great potential, the associated risks present key regulatory challenges. 

Even well-trained AI systems that use LLMs can confidently generate these plausible 

sounding inaccuracies, which in healthcare could lead to patient harm. The Medical Device 

Regulations 2002, which apply in Great Britain, require the benefits of the product to 

outweigh known and reasonably foreseeable risk. These risks should be mitigated primarily 

through safety by design.  Retrieval-Augmented Generation (RAG) is a technique that 

enhances LLMs by grounding their outputs in curated external knowledge sources. By 

combining the conversational fluency of LLMs with the factual accuracy of retrieved content, 

RAG aims to address AI hallucinations. In this architecture, the LLM generates outputs using 

information drawn from a validated knowledge base, bridging “retrieval” and “generation.” 

AutoMedica’s clinical decision support tool applies an adaptation of RAG in a healthcare 

context. Built using a curated knowledge graph, it applies its proprietary Tree-anchored 

Graph-RAG (TaG-RAG) to a structured database of National Institute for Health and Care 

https://pmc.ncbi.nlm.nih.gov/articles/PMC9827241/
https://www.techtarget.com/whatis/definition/large-language-model-LLM
https://www.datacamp.com/blog/ai-hallucination
https://www.nature.com/articles/s44222-025-00279-5
https://transform.england.nhs.uk/information-governance/guidance/artificial-intelligence/
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Excellence (NICE) resources, including clinical guidelines, knowledge summaries, patient 

leaflets, and a selection of medications from the British National Formulary (BNF). 

Regulatory hypotheses & challenges 

The team identified four primary regulatory hurdles that currently limit the safe and effective 

use of LLMs in regulated healthcare applications: 

• Hallucination: The model may generate plausible sounding but factually incorrect or 

clinically unsafe content 

• Non-determinism: Given the same input, LLMs can produce different outputs, which 

can undermine consistency and predictability 

 
In addition to exploring how these risks can be mitigated, the AI Airlock programme 

examined how SmartGuideline is positioned within the broader UK regulatory landscape. A 

further key objective was to assess the clinical relevance of SmartGuideline through 

engagement with a group of practising clinicians.  

 

 
Methodology 

To evaluate the safety and performance of SmartGuideline, AutoMedica tested the tool in 
the AI Airlock sandbox.  

AutoMedica obtained test licences and data access from NICE, the Pharmaceutical Press, 
and the Medusa database. This allowed SmartGuideline to be built and tested using 
authoritative UK guidance, including the BNF, BNFC and NICE clinical guidelines. 

• Training data and bias: The quality and representativeness of training data affect 

how well the model performs across different populations. Poor or 

unrepresentative data can lead to harmful inequities. More work on assessing and 

validating training data can be found in the Philips AutoImpression case study. 

• Explainability: Regulatory expectations increasingly require AI systems to 

demonstrate how they reach a conclusion. A lack of transparency can reduce trust 

in AI-generated advice. More work on explainability can be found in the OncoFlow 

case study. 

Hypothesis 
 

The AI Airlock programme set out to test the hypothesis that key regulatory 
concerns surrounding the use of large language models (LLMs) in medical devices 
could be addressed through a safety-by-design approach by using RAG.  
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Testing took place in three phases. First, SmartGuideline’s responses were compared 
directly to the baseline model (ChatGPT-4o), to assess hallucination and omission rates. 
Next, reproducibility was tested by running 1,000 clinical queries through the model ten 
times each (n=10,000), allowing the developers to evaluate the consistency of responses. 
Finally, 19 GP trainees from Surrey participated in a live session where they explored the 
tool’s usability, trustworthiness, and how it handled clinical complexity. 

SmartGuideline usability 

During the development of SmartGuideline, two detailed rounds of patient and public 

involvement (PPI) were undertaken with 30 healthcare professionals from Imperial College 

London and Imperial College healthcare trust. Sessions were recorded and a qualitative 

analysis was undertaken which highlighted several key themes: clinical utility, usability, staff 

compatibility and guideline comprehensiveness.  

It was highlighted that to be a truly useful tool for doctors, local trust guidance must also be 
incorporated. Usability was addressed by redesigning the user interface during the AI 
Airlock. 

Virtual and real-world Airlock testing 

Two versions of the system were evaluated: an early proof-of-concept (PoC) version, was 
tested in a virtual environment to identify technical risks, and an alpha version, tested in a 
real-world setting Airlock. The study was designed to simulate real-world clinical scenarios 
and involved licensed UK medical doctors. Each doctor was randomly assigned a clinical 
question derived from NICE guidance or the BNF and provided an answer using either 
SmartGuideline or a baseline model, without being told which system they were using. 

The core safety question was: how often does the model generate a clinically meaningful 
error?  

The primary efficacy outcome was the rate of accurate query responses, and the primary 
safety outcome was the rate of hallucination .Hallucinations were classified as either major 
or minor, depending on whether they could or could not influence diagnosis or treatment 
decisions (as described in the CREOLA framework). Any major hallucination automatically 
triggered a root cause analysis, ensuring that lessons could be drawn to further improve the 
system. 

Omissions were documented as a secondary outcome, in which the model failed to produce 
a response.  

Non-determinism tests 

The reproducibility of SmartGuideline was measured across a dataset of 1,000 queries, each 

submitted 10 times. This amounted to 10,000 responses, analysed using a range of natural 

language processing similarity metrics. These included BLEU and ROUGE (which assess 

word and phrase similarity for models with short textual outputs), and BERT and SBERT 

(which capture semantic meaning for longer outputs). The goal was to understand how 

variable the model was in its output, and whether such variability might pose a risk in a 

clinical setting. Initial results showed high internal consistency, with most variation occurring 

in phrasing rather than content. 

https://www.nature.com/articles/s41746-025-01670-7
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Clinician workshop 

Beyond technical performance, user trust and usability were also explored. In a live 

workshop, 19 GP trainees interacted directly with the model, using real clinical queries and 

assessing the tool’s usefulness in real-time. Participants were asked to comment on 

explainability, potential biases, and overall user experience. Their feedback helped identify 

areas where SmartGuideline’s interface and response style could be improved, for example, 

summarising information more succinctly or highlighting where decisions were based on 

national vs local guidance 

While time and resource constraints limited full evaluation of all metrics, comprehensive 

analysis was completed for the primary outcome and overall response quality. Bias and 

explainability were assessed qualitatively in the GP trainee session, and reproducibility was 

evaluated across the full test dataset. 

The study was conducted in February 2025, with statistical analysis and reporting finalised in 

March. The study was powered using the primary safety outcome; from pilot work, no 

hallucinations were expected with SmartGuideline and about 5% from chatGPT-4o. Using a 

power of 90% at an alpha of 0.05, a minimum of 406 responses (203) in each arm were 

required. 

Results 

PoC testing results 

In 493 tests, all of which were manually evaluated (n=413 SmartGuideline vs n=80 

chatGPT4o) there were no (0%) hallucinations with SmartGuideline vs 6 (7.5%) major 

hallucinations with chatGPT4o (P<0.0001). 

In the PoC model, there was limited question rephrasing and access was restricted to NICE 

guidelines alone. Many of the clinical questions posed related to drug prescribing or adverse 

effects. As a result, once a subset of drug data from the BNF was incorporated, performance 

improved significantly. Moreover, to ensure the SmartGuideline model gave consistent 

answers, it always chose the most likely next word (a method called greedy decoding).  

Strong safety rules meant the model struggled to understand slightly different wording, which 

led to higher omission rates with SmartGuideline. Omissions were defined as failure to 

generate any response, or the model stating it does not have adequate information for a 

response when all the information needed for a response is present. Table 4 demonstrates 

comparative omission and hallucination rates with the SmartGuideline PoC and the baseline 

model. SmartGuideline omissions were significantly higher (P<0.001) whilst rates of 

hallucination were significantly lower (P<0.001) in the PoC testing.   
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Table 4 - Comparative omission and hallucination rates with the SmartGuideline PoC and 
chatGPT4o  

Hallucinations Omissions 

SmartGuideline 0/413 

(0.0%) 

35/413 

(8.5%) 

ChatGPT-4o 6/80 

(7.5%) 

0/80 

(0.0%) 

Alpha testing results 

A total of 872 manual human evaluations were undertaken on the outputs of SmartGuideline 

(n=436) vs baseline GPT (n=436). There were no hallucinations and 5 omissions with 

SmartGuideline. There were 3 omissions (failures to generate a response) with the Chat 

GPT4o model, and 23 (5.3%) hallucinations. Root cause analysis divided the sources of 

these hallucinations as follows: n=12 faithfulness hallucinations (correct information but 

untrue based on underlying source material); n=7 factuality hallucinations; n=8 incorrect 

guideline sources. These categories were not mutually exclusive, multiple types of 

hallucination were present in some responses. 

There were no differences in the rates of omission (P=0.725). SmartGuideline displayed 

statistically significant lower rates of hallucination (P<0.0001) (Table 5). Some 

SmartGuideline omissions were dependent on the phrasing of the question. For example, 

the model performed well when asking “signs that indicate need for referral for venous leg 

ulcer disease” but generated no response (omission) when asked about the “referral criteria 

for venous leg ulcer disease”. Strategies to mitigate these residual omission events are in 

development.  

Table 5 - SmartGuideline alpha testing vs baseline GPT 

  Hallucinations Omissions 

SmartGuideline 0/436 

(0.0%) 

5/436 

(1.1%) 

ChatGPT-4o 23/436 

(5.3%) 

3/436 

(0.7%) 

In all omission cases, no data were generated by the models, meaning there was no 

information available on which to base a clinical decision and, therefore, no associated 

clinical risk. The omission rates for SmartGuideline and the baseline model (1.1% and 0.7% 

respectively) were considered to be of low likelihood, with a likelihood score of 2 and a 

severity score of 1, according to ISO 14971. 
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The rate of hallucinations with SmartGuideline was (0), resulting in both a likelihood and 

severity score of 1. In contrast, hallucinations generated by ChatGPT included both 

faithfulness hallucinations - where information was broadly correct despite referencing non-

existent sources - and factuality hallucinations, which were assessed as having a moderate 

severity (score = 3). Given an observed hallucination rate of 5%, the likelihood was also 

scored as moderate (score = 3). 

When combining hallucinations and omissions, the maximum scores for likelihood and 

severity were used. ChatGPT's outputs resulted in an aggregate risk score of 9 (3 x 3), 

constituting high clinical risk. By comparison, SmartGuideline achieved an aggregate risk 

score of 2 (2 x 1), indicating low clinical risk for the primary outcome measure. 

Table 6 – table of total risk score, using likelihood and severity as per ISO 14971.  

 

Non-determinism 

Consistency in responses is critical for AI healthcare models. 

Semantic entropy was relatively high at 7, indicating low exact word match consistency. 

However, the BLEU score (short phrase lexical similarity) was 0.58 (high), the ROUGE score 

(long phrase lexical similarity) was 0.69 (very high), and the BERT and SBERT scores 

(which assess semantic similarity) were 94% and 97% respectively. For SmartGuideline, 

generating ten outputs per input was judged sufficient to capture variability in a meaningful 

and efficient way. The range of benchmarking scores reported here provides a promising 

foundation for standardising reproducibility metrics for regulatory consideration. 

Secondary outcomes (Goodness of response, training data, bias and explainability) 

The primary method for reducing poor-quality training data and bias within the model was 

the use of a proprietary information retrieval graph structure, combined with high-quality, 

information sources, to generate responses. 
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Explainability and the potential for bias were assessed during in-person user testing with 19 

GP trainees. For a subset of SmartGuideline responses, participants evaluated the system 

using structured criteria. All (100%) of participants felt the SmartGuideline answers were 

moderately or strongly supported by scientific and clinical consensus; 94% felt that answers 

demonstrated understanding of the proposed clinical question; 100% felt that answers 

demonstrated correct knowledge recall; 83% felt there was moderate or strong explainability 

within the answers presented; 72% felt that the model answers contained unbiased 

information, (i.e., 28% felt there was potential for bias). Qualitative insights gathered through 

group discussion indicated that these concerns were less about the model itself and more 

about the underlying clinical guidelines, which participants felt were not always 

representative of diverse populations. 

Importantly, this evaluation did not establish a definitive threshold for explainability required 

for clinician trust. The findings do suggest that perceptions of "sufficient" explainability are 

likely to vary between individuals, depending on their baseline clinical knowledge, familiarity 

with the patient in question, and comfort with digital tools. This variability underscores the 

importance of designing AI systems that offer layered or customisable levels of explanation 

to meet diverse user needs.  

Conclusion 
 
This case study highlights the value of structured, real-world testing to assess the clinical 

safety, reliability, and usability of AI tools designed to support clinical decision-making. It 

particularly demonstrates how targeted evaluation methods – such as hallucination rate 

assessment, deterministic decoding, and ISO 14971-based clinical risk scoring – can be 

applied in practice to interrogate system behaviour in a controlled environment. 

The use of comparative testing against baseline models provided a clear framework for 

identifying specific safety gains (e.g. hallucination reduction) and trade-offs (e.g. increased 

omission rates). This underlines the importance of context-specific evaluation: techniques 

that improve safety may impact completeness or usability, and decisions on deployment 

should consider these trade-offs explicitly. The application of semantic similarity, 

BLEU/ROUGE scores, and risk-adjusted metrics enabled a multi-dimensional view of 

performance, which is likely to be more informative than any single indicator. These 

techniques could inform future guidance on performance benchmarking and validation. 

Finally, qualitative testing with clinicians surfaced important insights into explainability and 

trust, underscoring that user perception of AI tools cannot be separated from technical 

performance, and may vary according to training or expectations. 

Together, these techniques offer a toolkit for regulators and developers seeking to evaluate 

AIaMD products in a way that is robust, transparent, and proportionate to clinical risk. 
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Case Study: OncoFlow – OncoFlow and the trade-off between 

explainability and clinical performance 

Introduction 

OncoFlow aims to transform cancer care by tackling key inefficiencies in clinical workflows, 

especially those surrounding Multi-Disciplinary Teams (MDTs) and their meetings (MDTMs). 

Cancer treatment decisions must bring complex clinical data from multiple sources together 

and align it with the latest medical guidelines and best practices. Any delays in gathering this 

information or inconsistencies in interpreting it can negatively affect patient outcomes and 

delay critical care. 

OncoFlow aims to improve the efficiency, accuracy, and transparency of cancer decision-

making by integrating AI into cancer care workflows. Acting as an AI-powered co-pilot and 

decision-support tool for MDTs, OncoFlow helps clinicians by: 

1. Enhancing consistency and transparency in patient care pathways. 

2. Optimising the time spent discussing complex patient cases. 

3. Ensuring the efficient use of clinical and diagnostic resources to support better 

decisions. 

OncoFlow’s automates key tasks that typically demand considerable clinician time and effort. 

The platform allows oncology teams to concentrate on critical decisions that require their 

expertise by providing clinicians with structured, evidence-based patient information. 

OncoFlow consists of two main AI-driven components: 

• Data Extraction System: This algorithm processes unstructured diagnostic and 

medical reports, converting raw data into clear, structured clinical summaries that can 

be rapidly reviewed and acted upon. 

• Treatment Matching System: This algorithm aligns the extracted clinical data with 

current, evidence-based treatment guidelines, ensuring that MDTs have access to 

personalised and up-to-date treatment options for each patient. 

Designed as a clinical decision-support tool that supports rather than replaces clinicians. 

OncoFlow maintains human oversight and accountability throughout the decision-making 

process.  The platform seeks to enable more effective, personalised, and timely oncology 

care by standardising patient data and treatment pathways, ultimately improving outcomes 

for patients and healthcare systems alike. 

 
 
 
  

https://oncoflow.ai/about
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Regulatory challenges 
 
With AI-powered decision-support tools like OncoFlow operating in an evolving regulatory 

landscape, key regulatory considerations include compliance with the MDR 2002, adherence 

to Good Machine Learning Practice (GMLP) principles, and ensuring strong explainability to 

gain clinician trust and meet regulatory scrutiny. 

A primary challenge for OncoFlow was defining and implementing explainability and 

transparency within its AI systems. Many AI models, particularly those based on LLMs, are 

often described as “black boxes.” This means it can be difficult for clinicians and regulators 

to understand how the AI arrives at specific decisions.  Therefore, OncoFlow had to 

demonstrate how AI models could deliver traceable, evidence-based justifications for 

treatment recommendations. Whilst aligning with current regulatory expectations for safety, 

reliability, and clinical validity of AI medical devices. Successfully addressing these 

challenges was essential for building understanding of structured approaches to improving 

explainability, regulatory compliance, and strategies for clinical validation and trust. 

 

The primary objective of this study was to evaluate and compare the performance, 

explainability and clinical utility of different AI models when applied to unstructured breast 

cancer data, in the context of the OncoFlow use case. Breast cancer was chosen as the 

focus due to the availability of data, high prevalence, and burden within the NHS MDTs, and 

existing expertise within the OncoFlow team. Performance metrics included accuracy, 

precision, recall, F1 score, and computational efficiency (Graphics Processing Unit, (GPU) 

usage). Explainability metrics were focussed on assessing decision traceability, 

transparency in recommendations, and user comprehension. Clinical performance would be 

measured through factors such as ease of use, processing speed, and alignment with 

clinician needs to ensure a more seamless integration into MDT workflows.  

The performance and explainability metrics were selected to ensure that the AI system 

meets the technical, clinical, and regulatory requirements necessary for safe and effective 

use in healthcare settings. 

  

Hypotheses 

• Explainability of an AI system (in this case, OncoFlow) can be verified by 
assessing its ability to provide clear, comprehensible, and consistent justifications 
for its outputs, using predefined explainability metrics and evaluation framework. 

• Simpler models (such as traditional Natural Language Processing, (NLP), 
approaches) may enhance explainability, while more advanced LLM-based 
models may improve clinical performance. 
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Methodology 

 The team explored multiple AI configurations for two key tasks:  

• extracting structured clinical data and  

• matching patient information to treatment guidelines,  

specifically for use in breast cancer MDT meetings.  Three AI approaches were compared: 

• A rule-based NLP system 

• A fine-tuned LLM trained on clinical data 

• A hybrid method, combining rule-based NLP for straightforward data (such as dates 

and patient demographics) with LLMs for more complex clinical features (like lymph 

node status or evidence of metastasis) 

Testing followed a standard train-test-validate cycle. A real-world dataset was sourced from 

Barts Health NHS Trust, containing 9,000 histopathology reports and 3,000 radiology reports 

from breast cancer patients. These reports were extracted from the hospital’s Electronic 

Patient Record (EPR) system, anonymised by the Barts Life Sciences IT team, and clinically 

labelled to establish a ground truth for validation. The dataset was split 80% for training, 10% 

for testing, and 10% for validation.  OncoFlow used current breast cancer guidelines, 

including the NICE Guidelines, ESMO (European Society for Medical Oncology) Guidelines, 

and SACT Protocols from the Clatterbridge Cancer Centre NHS Foundation Trust to guide 

the treatment matching process. 

Performance of each AI approach was assessed using standard metrics: accuracy, 

precision, recall, and F1 score. This formed part of the clinical utility evaluation to determine 

how well each model performed in extracting relevant information and supporting decision-

making. 

Explainiability was tested using SHAP (SHapley Additive exPlanations), SHAP-IQ, and LIME 

(Local Interpretable Model-Agnostic Explanations). These methods helped to visualise which 

parts of the clinical text the AI model focused on when generating its output, essentially 

showing clinicians why the AI reached its conclusions. Outputs were reviewed by clinicians 

to assess whether the extracted information was meaningful, trustworthy, and fit for use in 

real-world practice. This testing was carried out securely on OncoFlow’s AWS Cloud 

infrastructure, simulating the conditions of how OncoFlow would be used during actual MDT 

meetings. This allowed the technical and AI teams to conduct rigorous, controlled 

evaluations in a setting that reflected real-world clinical use.  
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To complement technical testing and model validation, a structured survey was conducted 

with a sample of clinicians to assess attitudes and expectations around explainability in AI-

powered clinical decision support tools. The responses provided critical context for 

simulating how OncoFlow would be perceived and utilised in real-world settings, especially 

within MDT environments. The findings informed the fine-tuning of explainability 

features after initial testing of all the possible explainability approaches in the context of 

OncoFlow  

Results 

Data Extraction: NLP vs. LLMs 

Both traditional NLP methods (e.g., regex-based rule extraction) and advanced LLMs were 

tested (Figure 2) during OncoFlow’s Data Extraction System design. Traditional NLP 

methods worked well for pulling out structured information such as dates and numbers, but 

they struggled with more complex clinical reasoning, for example, linking tumour 

characteristics with diagnostic findings in varied report formats. As such, the NLP model 

performed poorly. The LLM models were better able to interpret these complex relationships, 

adapt to different document styles, and scale across large volumes of data. The final model 

configuration achieved up to 90% accuracy in extracting relevant clinical data information. 

 

Figure 8. Comparative accuracy of NLP and LLM models for data extraction. This chart shows the performance of 

traditional rule-based NLP (Regex) versus multiple instruction-tuned LLMs. The NLP model underperformed significantly, 

while LLMs demonstrated higher accuracy, with DeepSeek R1 emerging as the top-performing model for extracting 

complex clinical information from unstructured texts. 
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A series of pre-defined clinical rules were integrated into the model's prompt design to 

improve the accuracy and consistency of OncoFlow’s Data Extraction System. These rules 

were tailored to help the AI extract essential diagnostic details from unstructured medical 

reports, particularly in radiology and histopathology. Embedding these rules enabled the 

system to exceed the 80% accuracy benchmark, helping to ensure that relevant clinical 

information was correctly identified, interpreted, and standardised across different data 

sources. 

Explainability tools such as SHAP (SHapley Additive exPlanations) and SHAP-IQ helped 

better understand how the AI evaluated inputs. These tests showed that 'distant metastasis' 

and 'HER2 status' were the most influential features affecting AI outputs. Other factors such 

as tumour size, lymphovascular invasion, and the presence of ductal carcinoma in situ (i.e., 

an early form of breast cancer where abnormal cells are found in the milk ducts but have not 

spread into surrounding breast tissue) also had a strong impact, while features like laterality 

(the side of the body) and biomarker presence had a more moderate effect on the system’s 

performance. 

The team observed a significant benefit from incorporating a “reasoning” feature into the 

model, which required the AI to explain the steps taken in generating outputs, thus providing 

insight into the logic used. This approach improved transparency, making it easier to trace 

potential sources of error.  

Treatment Matching: LLM + RAG Architecture 

A traditional NLP approach was initially tested but proved ineffective (Figure 9). An LLM 

integrated with Retrieval-Augmented Generation (RAG) was trialled. This approach was 

necessary to handle the complexity and frequent updates associated with clinical guidelines 

such as ESMO, NICE, and the SACT guidelines used in this case study. A standalone LLM 

(without RAG) posed a higher risk of hallucinations and reduced explainability. The RAG 

configuration ensured that treatment recommendations were explicitly grounded in retrieved 

sections of the guidelines. This improved both the traceability of outputs and alignment with 

regulatory expectations around safety and transparency. Retrieval efficiency was strongly 

influenced by the embedding model and chunking strategy used, both of which affected the 

accuracy and relevance of the content retrieved. The best-performing retrieval method 

combined PubMedBERT embeddings and a vector database (Qdrant) for optimised query 

expansion. The most effective model achieved 92% accuracy in retrieving relevant ESMO 

and NICE guidelines, and 100% accuracy in matching Systemic Anti-Cancer Therapy 

(SACT) protocols. Challenges were observed when guidelines included overlapping 

recommendations or lacked clear criteria for patient sub-groups.  
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Figure 9. Accuracy comparison of language models for Treatment Matching. This chart compares the performance of 

various LLMs and NLP in retrieving and aligning cancer treatment recommendations with clinical guidelines. Traditional 

NLP again failed to handle complex guideline reasoning, while Mistral 7B v0.2 achieved the highest accuracy, 

outperforming other models in the Treatment Matching task. 

 
 

Figure 10. LIME Feature Importance in Response Generation (NICE/ESMO). This chart shows how different clinical 
features influenced AI-generated treatment suggestions, as measured by LIME. Lymph node involvement, location of 
suspicious lymph nodes, and tumour size had the highest impact on decision-making. 

 

 

Clinician testing results 

To complement model testing, a structured survey was conducted with 16 clinicians to 

explore expectations around explainability in AI clinical decision support tools, particularly 

within MDT environments. The survey provided critical context for refining the explainability 

features of OncoFlow based on real-world preferences. 

Despite maintaining a low hallucination rate (3.4%), testing identified overgeneralisation 

risks, particularly when the AI encountered gaps in guideline data. This underscores the 

necessity for clinician validation prior to any final, definitive decisions being made. More 

work on mitigating hallucinations can be found in the SmartGuideline case study. 
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There was a strong consensus on the importance of explainability: 75% of respondents rated 

understanding AI reasoning as “extremely important”, with the remainder identifying it as 

“somewhat important” or “neutral”. Clinicians preferred transparency around 

recommendation generation, with 44% wanting a full breakdown of data inputs and 

algorithmic logic, 38% preferring step-by-step reasoning, and only 19% satisfied with brief 

summaries. Presentation style was also consistent – all respondents preferred a 

combination of text and visuals (e.g., graphs or decision trees) to enhance comprehension. 

Additionally, 94% valued understanding how clinical features were weighted in the model, 

validating the relevance of tools like SHAP and LIME. 

Uncertainty communication was considered essential: 56% preferred detailed explanations 

of uncertainty or limitations, and 44% supported flagging uncertain outputs. None supported 

omitting uncertainty information, indicating that clinicians expect AI to reflect the inherent 

limitations of medical decision-making. Only one respondent was comfortable accepting 

recommendations without supporting reasoning. Most preferred either detailed or partial 

reasoning to maintain transparency and clinical trust. 

Clinicians also favoured a flexible, context-sensitive approach to explainability. Higher levels 

of detail were expected for high-risk or acute scenarios, with lower-stakes settings permitting 

simpler outputs. This supports the use of explainability tiers aligned with risk classification 

(e.g., medical device class I–III). These insights informed the design and refinement of 

explainability features within OncoFlow, including the use of visual aids, confidence 

indicators, and transparent reasoning outputs. They also shaped how explainability was 

simulated in the testing environment to better reflect real-world clinical expectations. 

Conclusion  

In the treatment matching task, traditional NLP tools unable to handle the complexity of 

clinical guidelines. An LLM combined with a RAG approach proved more effective. This 

allowed the AI to find and quote relevant sections of guidelines when making treatment 

suggestions, improving both traceability and alignment with safety expectations. The model 

achieved high accuracy in identifying relevant guidance, although some challenges 

remained in cases where guidelines were ambiguous or overlapping. 

Throughout the study a strong emphasis was placed on explainability. Tools such as SHAP 

and LIME helped to clarify which clinical factors most influenced the AI’s decisions. The 

addition of a “reasoning” feature gave users a clearer view of how the system arrived at its 

outputs. This was especially important in building confidence among clinicians. 

Feedback from a survey of healthcare professionals reinforced this point. Clinicians placed 

high value on transparency, with most wanting detailed explanations of how AI 

recommendations were made. There was broad support for using a mix of text and visuals to 



 

Page 46 of 77 
 

communicate this information, and for adapting the level of explanation based on the clinical 

context. The findings also highlighted the importance of acknowledging uncertainty, 

particularly in higher-risk decisions. 

From a regulatory perspective, this case study highlights several promising techniques for 

improving the safety, reliability, and explainability of AI systems used in clinical settings. It 

also underlines the value of early engagement with users, to ensure that new technologies 

align with the expectations and needs of those who will use them in practice. While the 

results are encouraging, further work is needed to ensure these methods are robust across a 

broader range of clinical scenarios. Continued testing, guidance development, and cross-

disciplinary collaboration will be key to supporting the safe and effective use of AI in 

healthcare. 
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Case Study: Newton’s Tree – FAMOS and continuous, real time post-

market surveillance monitoring 

Introduction 
 
Over time, the performance of an AI system can decline. This may happen due to shifts in 

the environment, such as the introduction of new types of patients, the use of different 

medical scanners, or other unforeseen changes in the clinical environment. This is called 

drift and presents a significant barrier to AI safety, and therefore its uptake.  

A common mitigation strategy for model drift is to involve humans in the loop, for example by 

having clinicians verify AI outputs. Clinicians are, however, susceptible to automation bias, 

which leads them to agreeing with the AI output without thought and makes human-in-the-

loop an ineffective mitigation strategy. To maintain safety, trustworthiness and regulatory 

compliance, continuous monitoring of deployed AI systems is essential. Continuous 

monitoring can detect issues that develop too slowly or too quickly to be captured through 

scheduled reviews and periodic audits. 

The FAMOS Dashboard was designed to support this continuous oversight. It presents three 

real-time metrics to users: each selected through a clinical risk management approach. 

Potential hazards associated with AI use are identified and data are selected to most 

effectively signal those hazards. The three metrics align with ISO guidance on risk 

management for medical devices incorporating machine learning. The three metrics are: 

• Data Input Quality: This metric tracks how the data fed into the AI system changes 

over time, identifying any outliers or anomalies. Ensuring high-quality data input is 

crucial because poor data can lead to inaccurate AI outputs. 

• AI Inference Values: This metric monitors the AI's output over time to detect any drift.  

Detecting drift early helps recalibrate the AI system to maintain its accuracy. 

• AI/Human Agreement: This metric measures how often NHS staff members agree 

with the AI's output. High agreement rates might indicate automation bias, where 

clinicians might accept AI recommendations without critical evaluation. Monitoring this 

helps identify and mitigate this bias. 

Trends in these metrics can be monitored so preventative action can be taken before a 

safety incident occurs. The dashboard can be viewed by three types of organisations: 

• The AI manufacturer can view the anonymised data trends in the dashboard, ensuring 

privacy is maintained. This can be viewed for their products across all sites they are 

deployed. 

https://www.newtonstree.ai/
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• The NHS organisation can view trends across all AI products deployed at their site. 

Additionally, the dashboard provides the ability to drill down into specific data, 

allowing for detailed investigation of particular trends.  

• Oversight bodies, such as the MHRA or NHS England, can view combined trends 

across all AI products and sites. However, like manufacturers, they cannot access 

individual-level data, ensuring that privacy is maintained 

 

The AI Airlock programme aimed to assess how real-time monitoring can enhance a 

product’s risk management strategy by enabling earlier identification of performance or 

safety issues. An unresolved challenge was the lack of clear methods for defining thresholds 

for these monitoring metrics. Without robust, evidence-based thresholds, it is difficult to 

determine when deviations in performance should trigger interventions or regulatory actions. 

Establishing methods for setting these thresholds is crucial to making continuous monitoring 

actionable and compliant and remains a key area for further regulatory and research 

development. 

Regulatory challenge 

Annex 2, clause 3.1 of the Medical Device Directive (1993) placed an obligation on 

manufacturers to conduct post market surveillance (PMS), a key part of the risk 

management strategy. This obligation continues and grows broader as medical device 

regulation is updated with The Medical Devices (Post-market Surveillance Requirements) 

(Amendment) (Great Britain) Regulations 2024. 

Following the existing methods for PMS, which relies on NHS data sharing and reporting, 

which may not provide enough data. One potential solution is a path that automates the 

sharing of information whilst preserving privacy. Further, for AI as a Medical Device, such a 

path could enable manufacturers to meet the 10th Good Machine Learning Practice (GMLP) 

principle, produced by the International Medical Device Regulators Forum (IMDRF): 

“deployed models are monitored for performance”, and the 7th GMLP principle “Focus is 

placed on the performance of the human-AI team”. 

FAMOS offers automated continuous monitoring of AI and its (and other such platforms) use 

may offer a means for meeting these regulatory requirements.  

https://www.imdrf.org/
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Methodology 

The study involved a retrospective observational trial employing federated evaluation of AI 

models. FAMOS was implemented at two NHS hospitals: Leeds Teaching Hospitals NHS 

Trust and Greater Glasgow and Clyde Health Board. The AI technologies evaluated included 

chest X-ray algorithms from Qure.ai and Annalise. 

A stratified random sampling method was required to ensure a representative sample of the 

hospital’s patient population while meeting the study’s data requirements. The sample size 

was predicted to be close to 3,000 patients across both sites. For the statistical analysis a 

two-sided p-value of less than 0.05 will be considered statistically significant. 

For the primary objective: 

Descriptive statistics summarised the number and percentage of chest X-rays successfully 

monitored by FAMOS at each site to evaluate the effectiveness of FAMOS in monitoring AI 

performance across different hospitals. Metrics including data capture rate (proportion of 

eligible chest X-rays monitored), timeliness (mean and median time delays in data capture), 

and monitoring accuracy (comparison of FAMOS-monitored data with source data) were 

calculated. 

Comparative analyses between sites were conducted using chi-squared tests for proportions 

and t-tests or Mann-Whitney U tests for continuous variables, depending on data distribution. 

Visualisation tools such as flowcharts and bar charts will illustrate data flow and data capture 

rates. The effectiveness of FAMOS was assessed based on its ability to provide effective 

and timely monitoring and any discrepancies or delays in data capture.  

  

Hypotheses 

A real-time monitoring system can improve product safety by providing trends that can 
be fed into an organisation’s Risk Management System. By identifying variations in data 
quality, AI performance and human agreement, risk can be mitigated enabling regulatory 
compliance. 

• Trends can reliably be presented in a real-time monitoring dashboard. 

• Trends exist that indicate risk. 

• There is a place for trends in a risk management system. 

• There is a way to address the risks identified by trends. 
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Results 

 

At the time of writing, the final analysis was still ongoing; however, an interim analysis had 

produced some early findings. 

Data attributes 

At NHS Greater Glasgow and Clyde (GGC) and Leeds Teaching Hospitals (LTH), chest X-

rays were processed. The data attributes included comparable age ranges across the two 

sites, similar male-to-female ratios, and similar proportions of winter versus non-winter 

patient data; however, the Glasgow site had twice as many image artefacts in X-rays 

compared with Leeds. There was minimal time delay between image processing and display 

on the monitoring dashboard, supporting the first AI Airlock hypothesis: that trends can be 

reliably presented through a real-time monitoring dashboard. 

An initial review identified that dataset outliers were primarily associated with: 

• image artefacts (e.g. jewellery worn by the patient) 

• variations in patient positioning 

• differences in image orientation (e.g. posteroanterior vs lateral view) 

At NHS Greater Glasgow and Clyde, four distinct data clusters were observed. This likely 

reflects the fact that GGC receives data from four separate hospital sites. These clusters 

highlight heterogeneity in the data, which could influence AI performance and suggests that 

further principal component analysis is needed to confirm the source and characteristics of 

each cluster. 

Human-AI agreement 

To ensure robust comparisons, the study design included a matched case mix across sites: 

there was equal distribution of normal and abnormal findings, and a balanced demographic 

profile (gender and age, above and below 60). Each site employed four readers, two per 

target disease, and used multiple AI vendors. Most major identified confounders were 

controlled for, such that the only meaningful differences between sites were the reader skill 

mix and the conditions under which readings were conducted.  

Results showed that reader agreement with AI suggestions at NHS Greater Glasgow and 

Clyde increased over time, while remaining relatively stable at Leeds Teaching Hospital. The 

increase in positive findings over time observed in Glasgow was statistically significant 

compared to Leeds and may suggest a susceptibility to automation bias. This may be 

attributable to differences in reader experience. At Leeds Teaching Hospital, Newton’s Tree 
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recruited three reporting radiographers (each with over 10 years of experience) and one 

radiology trainee (ST3). However, at NHS Greater Glasgow and Clyde, Newton’s Tree 

recruited four radiology trainees. Furthermore, Leeds reading sessions took place during 

standard working hours (9am–5pm), whereas Glasgow sessions were spread across 

irregular hours, including night shifts and early mornings - conditions more prone to fatigue, 

distraction, and time pressure. These are known contributors to automation bias; however, 

aggregating results by site or by disease may mask individual effects. It is plausible, for 

example, that a single reader could be disproportionately influencing overall trends, 

reinforcing the importance of scrutinising individual-level data for aberrant patterns. These 

early results support the hypotheses that trends exist that indicate risk and that trends can 

reliably be presented in a real-time monitoring dashboard.   

Conclusion 

This case study explored the use of real-time monitoring techniques to assess the 

performance of AI in medical imaging across two NHS sites. The study aimed to test the 

hypothesis that useful insights about AI performance and risk can be surfaced by monitoring 

data trends in real-time. 

Initial findings suggest this is both possible and practical. The study was able to monitor AI 

performance across hospital sites with different infrastructure and staff profiles, capturing 

trends in data quality and human-AI agreement. It showed how differences in staffing, 

experience levels, and working conditions can shape how AI is used and interpreted – 

factors often missed in controlled testing environments. These insights underscore the value 

of techniques like federated evaluation, structured sampling, and human-AI agreement 

monitoring in post-deployment settings. The study also highlighted the need to look beyond 

headline metrics and examine underlying trends, including at the level of individual users, to 

identify potential risks or changes in behaviour over time. 

While the analysis is ongoing, early results suggest that real-time monitoring methods can 

surface subtle patterns that may inform both safety surveillance and product improvement. 

Further work is needed to explore how these methods might be used in practice, including 

how to respond to emerging risks and what infrastructure would be required to scale these 

approaches more broadly. 
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5. Simulations and regulatory gap analysis  

In parallel with testing conducted by candidates in virtual and real-world hospital settings, the 
Airlock team undertook a regulatory mapping and gap analysis exercise. This was 
complemented by a series of simulation workshops, which brought together stakeholders 
from across sectors and disciplines – including clinicians, regulators, academics, technical 
specialists, and innovators – to explore key regulatory challenges identified through the AI 
Airlock. This section outlines the methodology used and summarises the key findings from 
both the regulatory analysis and simulation activities.  

Regulatory mapping and gap analysis  

Regulatory gap analyses are difficult; such analyses performed in such a novel field are 

doubly difficult. The team enlisted experts from various sectors in an initial regulatory 

mapping activity. This resulted in a collation of regulatory documents and associated 

challenges. To account for limited resource and programme timelines, we prioritised 5-10 

most relevant regulatory documents for in-depth review per regulatory challenge.  

This foundational exercise proved extremely productive. By showing us how broad the term 

“regulatory gaps” could be in the context of novel AI devices, we could account for this in our 

definitions. We therefore used an equally broad definition to capture the gaps. This allowed 

us to capture wording gaps in existing guidance, context gaps in frameworks and even 

legislative loopholes.   

Within AI Airlock, therefore, the term ‘gap’ is used as a shorthand term for identifying any 

areas of improvement, recognising that many of the existing parts of the regulatory system 

must cater for the millions of hardware and software products used in the health and care 

system. It is the objective of the AI Airlock to identify these areas for improvement and 

recommend solutions.   

The AI Airlock pilot identified regulatory gaps that currently challenge the safe and effective 

deployment of AIaMD. While the nature of these gaps varied across use cases, some 

recurring themes emerged across all projects, particularly in areas of validation of text-based 

data from large language models (LLMs), risk management, non-determinism, explainability, 

and post-market surveillance (PMS). These gaps and challenges were explored in 

collaboration with four innovators: Philips Healthcare, AutoMedica, OncoFlow and Newton’s 

Tree. 

Methodology 

 

The scope of the review was primarily GB-focused, referencing the MDR 2002 and 

supplementary guidance either authored in the UK or developed through UK collaboration 

with international partners. Relevant international standards were also considered. 



 

Page 53 of 77 
 

The process began with regulatory mapping. Each challenge was broken down into 

subcomponents / questions for consideration. Next, a broad range of relevant documents 

were identified  specific to each regulatory question explored in each project. This list was 

expanded in collaboration with stakeholders, including members of the supervisory 

committee, Team AB, and the candidate organisations. This initial mapping resulteds in 

approx. 30 to 40 documents mapped per project. Where regulatory information was scarce, 

such as text-based synthetic data, the broader topic (synthetic data) was considered. 

Following this initial mapping, the documents were reviewed at a high level and a subset of 5 

to 10 documents was selected for in-depth analysis. Prioritisation was based on relevance to 

the specific regulatory challenges being addressed, as well as practical considerations such 

as availability and scope. Once selected, the documents were reviewed in detail, with 

relevant clauses and sections extracted and evaluated against the needs and risk profiles of 

AIaMD. 

This deeper review focused on identifying areas where existing guidance may need to 

improve. These included where there were missing provisions related to challenges, 

insufficient detail, and unclear expectations for managing risk in adaptive, continuously 

learning systems. The analysis also considered whether existing guidance provided clear, 

enforceable requirements for real-world performance monitoring and the safe deployment of 

AI in dynamic clinical environments. 

Figure 13. Regulatory mapping and gap analysis process 

Where relevant, the identified gaps were thematically grouped and considered in terms of 

their likely regulatory impact. Particular attention was given to instances where regulations 

do not adequately address emerging risks or are impractical to implement. In doing so, the 

analysis sought not only to highlight gaps, but to build a clearer picture of where current 

regulation may require strengthening to ensure that AIaMD can be developed and deployed 

safely and effectively. 
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The analysis compared the coverage provided by existing documents against the level of 

detail needed to manage AI-specific risks in clinical settings for each challenge. Where gaps 

were identified, either through absence of guidance or insufficient detail, these were flagged 

for further consideration. 

Findings from the MHRA and candidate teams were discussed collaboratively over a series 

of virtual meetings before being consolidated into final project reports. This process helped 

highlight shared gaps across projects and areas where future regulatory development or 

clarification may be required to ensure AI medical devices can be safely and effectively 

managed in real-world environments. 

Results: Identification of key themes and gaps 

The regulatory gaps identified in this pilot vary depending on the challenge being explored. 

Most gaps apply across different candidates, given the overlaps in technology types and 

challenges.  

For the synthetic data case study, the primary focus was on unstructured text data. Synthetic 

data and the use of LLMs are not adequately addressed within current regulatory 

frameworks, including PCCP guidance and existing risk management standards, While 

documents, such as BS/AAMI 34971 acknowledge the potential of synthetic data to address 

privacy concerns and provide some guidance on its use and quality evaluation, there 

remains no clear direction on when the synthetic data should be generated, what 

prerequisites must be met beforehand, or how such data should be validated. In addition, 

there is ambiguity surrounding how “ground truth” should be determined, what metrics are 

appropriate for evaluating synthetic data, and when human validation is required. These 

issues are particularly relevant when synthetic data are used in place of real data for testing 

or training purposes. Additionally, the boundaries between synthetic and real-world data 

need clearer definition to determine whether synthetic datasets are exempt from GDPR and 

to ensure they cannot be linked back to individuals. For validating unstructured text data, 

there is a need for regulatory clarity on the use of LLMs in generating and validating such 

data. This includes the quality criteria that must be met for such data to support regulatory 

and clinical decisions.  

Thiry-one documents were identified in the regulatory gap analysis exploring challenges 

posed by AIaMDs that are prone to errors such as hallucinations. Of these, six were 

prioritised for in-depth review based on relevance and access. These included the MDR 

2002, ISO13485, ISO14971, AAMI/BS 34971:2003, IEC62304, IEC62366-1. While these 

documents provide a foundational framework, the analysis identified notable gaps relating to 

hallucinations, non-determinism and explainability, indicating that current regulations can be 

bolstered by additional guidance to support the safe and effective deployment of AIaMD. 

Several standards, including ISO14971 and ISO13485 were not developed with the dynamic 
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and opaque nature of AI in mind. Guidance around specific approaches for detecting and 

managing unpredictable outputs and validation of non-deterministic behaviour are needed. 

Including AI specific guidance, companion standards or best practice frameworks to bridge 

the gap between high level regulatory expectations and demands of implementing AI safely 

in healthcare. In addition, risks such as hallucinations could be viewed as falling within a 

manufacturer’s performance claims; however, outputs incorporated into the medical record 

are also subject to the Health and Social Care Act 2008, regulation 17. This creates a 

tension between different regulatory requirements, where clarity is needed on how 

performance considerations intersect with obligations relating to the accuracy of health 

records. 

Testing and simulation workshops consistently highlighted the critical importance of 

explainability in AIaMD, while also revealing persistent gaps in the current regulatory 

guidance. It was noted that many medical devices currently in use, including some in high-

risk settings, are not fully explainable yet are accepted within existing frameworks. This 

underscores that explainability requirements cannot be considered in isolation, but rather in 

relation to device type, risk classification, and intended use. During the AI Airlock pilot, 

explainability was therefore explored more holistically, including different stakeholder 

expectations and the absence of clear criteria for selecting appropriate metrics. While some 

relevant direction exists in standards such as ISO 13485, ISO/IEC 22989, and BS/AAMI 

34971, these do not define explainability requirements for AIaMD. Questions around the role 

of human involvement, the risks posed by non-explainable outputs, implications for usability, 

and appropriate approaches to transparency remain largely unresolved. Importantly, these 

standards do not cover the tailored approach required for different stakeholders such as 

clinicians, regulators, developers, patients, and others. Similarly, methods for implementing 

traceability and transparency to ensure usability need to be covered. Some of these 

regulatory gaps were addressed through virtual testing.  OncoFlow, for example, introduced 

confidence scoring, traffic light indicators, and human-in-the-loop validation to help clinicians 

understand and validate outputs. In addition, traceability was enabled by logging AI 

recommendations, interactions, and source documents, each with unique identifiers. 

Simulation testing also demonstrated the varying explainability needs of different users, 

reinforcing the importance of intended use in designing explainability approaches.  

 

 

 

 

 
Figure 14. Example regulatory mapping and gap analysis results 
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Collaboration between the MHRA and OncoFlow led to the development of an explainability 

statement outlining the product’s functionality, risks, and underlying AI. Guidance on content 

and structure for such documentation is still needed for innovators and products for which 

such statements are relevant. The approaches implemented as part of AI Airlock can be 

used by other AIaMD manufacturers, depending on the context of their product, its risks, 

intended use and intended population.  

A regulatory gap analysis was conducted to identify areas needing additional support for 

AIaMD PMS. The reviewed documents included the MDR 2002 PMS SI 2024 (since updated 

to The Medical Devices (Post-market Surveillance Requirements) (Amendment) (Great 

Britain) Regulations 2024 amends the Medical Devices Regulations (MDR) 2002)), Yellow 

Card system, MORE system, ISO14971, ISO13485, AAMI/BS34971, BS EN62366-1, 

ISO27001. The analysis highlighted the need to additional AI specific guidance addressing 

changes in AI model performance over time and potential for preventative action to be taken 

before patient harm has occurred. In addition, there is a need to address shifts in human 

performance and reliance on AI when interacting with AIaMD. While the existing frameworks 

provide a good foundation, and the new PMS legislation addresses many of the gaps 

surrounding trend detection and the potential for AI model drift, specific guidance would help 

strengthen current regulations. When reviewing risk management frameworks such as 

ISO14971 and AAMI/BS34971, detailed requirements and threshold setting guidance were 

lacking. BS EN 62366-1 does not fully address the usability challenges introduced by AI 

systems such as explainability and how that could feed into over-reliance or automation bias.  

An overarching challenge is the focus on corrective, reactive actions across regulatory 

documents. There is limited support for trend analysis which leads to early intervention and 

prevents an incident occurring. During testing in the AI Airlock pilot, continuous real-time 

monitoring was used to detect trends in data quality, model drift and automation bias. At one 

hospital site, the pilot identified a pattern of over-reliance on AIaMD. Given that AIaMD can 

produce errors, such over-reliance could lead to patient harm in a real-world setting.  If 

trends are detected early, by contrast, there is potential to investigate and take preventative 

or corrective action, such as patient recall. Further analysis revealed that in this case study 

example, contributing factors to automation bias included clinician fatigue, distraction, time 

pressure, and level of experience. These findings highlight the need for AI-specific 

supplementary guidance on proactive safety measures, including best practices for 

threshold-setting, monitoring AI-human behaviour, and assigning reporting responsibilities. 

Simulations methodology 

Simulation workshops gathered cross-functional input on the regulatory challenges 

associated with AIaMD. These sessions provided a forum for discussion and collaboration, 

allowing participants to explore different perspectives and work towards consensus on 

complex issues. The workshops centred on three primary themes:  

https://www.gov.uk/government/publications/medical-devices-post-market-surveillance-requirements/requirements-of-the-manufacturers-pms-system#:~:text=The%20new%20set%20of%20regulations,including%20in%20vitro%20diagnostic%20(IVD)
https://www.gov.uk/government/publications/medical-devices-post-market-surveillance-requirements/requirements-of-the-manufacturers-pms-system#:~:text=The%20new%20set%20of%20regulations,including%20in%20vitro%20diagnostic%20(IVD)
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1) evaluating current risk management frameworks regarding LLM-specific risks e.g. 

hallucinations 

2) evaluating the explainability needs of diverse stakeholders and negative 

consequences of limited explainability  

3) evaluating the responsibilities surrounding continuous monitoring of AIaMD in real-

world settings. 

 
Figure 15. Simulations methodology illustration 

Participants were selected based on their subject-matter expertise. The invitee list included 

technical experts from the NHS AI team, academic researchers, clinicians, representatives 

from approved bodies, and regulators from organisations such as the MHRA and DHSC. It 

also included clinical safety officers, data specialists from the CPRD, representatives from 

NICE with expertise in health technology assessment, and data governance experts from the 

ICO. 

Each workshop began with a set of introductory presentations to ensure that all attendees 

shared a common understanding of the AI topic under discussion and the relevant regulatory 

landscape. These presentations outlined the current regulatory frameworks, including 

applicable laws, standards and guidance. A structured discussion was then facilitated to 

address specific regulatory challenges and known gaps. The aim was to explore these 

challenges from multiple angles and to identify areas where further regulatory clarity, 

development or alignment might be needed. 

The workshops were not recorded to encourage open and candid dialogue.  MHRA team 

members took detailed notes throughout the discussions. These notes formed the basis for 

the simulation reports and informed the final synthesis of findings from the AI Airlock 

programme. These workshops have been published as an output from AI Airlock and the 

recommendations incorporated with those from virtual and real-world testing during the pilot 

programme. The simulation reports, including an overview of the key discussion points and 

insights have been published separately.  

Simulations summary results 

Considerations for hallucination evaluation  

The group explored hallucinations as a key safety risk in medical settings. Severity depends 

on both the nature of the error and its clinical context, with high-impact settings like 
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diagnosis or emergency care requiring particular scrutiny. To strengthen risk management in 

the deployment of AI, some members of the group suggested a three-tiered approach to 

categorising its use.  

At the highest level, "No-Go Areas" were identified as contexts deemed too high-risk for 

autonomous use LLMs. These could include use cases where the consequences of errors 

could be severe. In such cases, the group advised that AI should not operate without human 

oversight. In the middle tier, "Caution Zones," the group highlighted use cases such as 

clinical documentation and summarisation as areas where LLMs could be used under 

human supervision. These use cases carry moderate risk and require close human 

monitoring to ensure safety and reliability. Finally, the group defined "Safe Zones" as 

applications where the risk is relatively low, and the benefits of AI adoption are potentially 

high. These include administrative support, assistance with clinical research, and patient 

engagement, where LLMs can provide meaningful efficiencies with minimal risk to patient 

safety. This risk-based approach would help prioritise regulatory attention and clarify where 

autonomous vs. supervised AI use is appropriate based on the risks associated. 

This could help guide regulatory focus and clarify the need for human supervision. The 

group emphasised that AI should support, not replace, clinical judgement, with explainability 

features (e.g. uncertainty scores, data citations) seen as important safeguards. 

Detecting hallucinations is challenging; even clinicians may miss subtle errors. A hybrid 

approach combining explainability tools with human review was recommended, alongside 

improved awareness of reporting systems like Yellow Card and MORE. Participants also 

raised the issue of "faithfulness hallucinations", factually correct outputs outside the AI’s 

intended use. Faithfulness hallucinations are difficult to identify and can still influence clinical 

decisions or documentation, even when the AI system is not qualifying as a medical device. 

This revealed a potential regulatory blind spot with the group calling for clearer guidance on 

“function creep” and how users can identify the boundaries of appropriate use. 

Current standards (e.g. ISO 14971) provide a base safety framework, but tailored metrics for 

hallucinations are needed. These should consider not just frequency, but detectability and 

clinical impact. The group also highlighted a key trade-off: reducing hallucinations too 

aggressively could increase omission risk. Model cards summarising known failure modes 

were suggested to support informed use. 

Explainability requirements for different stakeholders 

The group agreed that different stakeholders need different types of explanations: 

developers need to debug systems, regulators need evidence of safety, clinicians need to 

judge whether to trust a recommendation, and patients need reassurance in plain language. 

The group supported tailoring explainability to each user’s needs, distinguishing between 
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global explanations (for understanding overall model behaviour) and local ones (for 

individual decisions). Too much or too little detail can both be unhelpful – interactive, layered 

explanations may offer a balanced solution. 

Current standards such as BS/AAMI 34971 and GMLP offer a foundation, but the group 

called for clearer criteria specific to different roles. They also highlighted challenges: 

complex models are hard to explain, some explainability methods add confusion, and 

simpler models may be both interpretable and effective. 

Explainability supports safety, accountability, and early error detection, especially critical 

where clinicians rely on AI. However, explainability must be human-interpretable. The group 

warned against relying on AI to check other AI, especially where models are too complex for 

meaningful human oversight. 

Participants explored techniques to improve understanding of how AI tools generate outputs, 

both for clinicians and regulators. Three core approaches were discussed: explainability 

statements, model reasoning, and quantitative methods. 

Explainability statements aim to clarify how a tool works in plain language. Participants noted 

that many current examples lack detail on how users interpret or act on outputs. A shared 

template, tailored by audience (e.g. patient, regulator), could improve consistency. Model 

reasoning, such as showing the steps a model takes from input to output, was seen as 

valuable for understanding edge cases and building clinician trust. It must be aligned with 

intended use and supported by post-market surveillance. Interfaces should offer layered 

access to detail depending on user needs. Quantitative approaches like SHAP and LIME 

can highlight which inputs most influenced an output. However, they require users to 

interpret both the model, and the method used. Participants emphasised that in most cases, 

these tools should supplement – not replace – clinical judgement. Familiar visual formats 

and summaries could support usability and trust. 

Across all methods, participants stressed the importance of surfacing missing context (e.g. 

patient preferences or lifestyle) and maintaining transparency about model limitations. 

Finally, the group stressed that insufficient explainability can lead to blind trust, automation 

bias, or unsafe decisions. Tools like model cards and confidence scores could help users 

understand what the model considered - and what it didn’t. Upskilling users and designing 

for varied levels of AI literacy were seen as essential to safe deployment. 

Post-market surveillance roles and responsibilities 

Effective post-market surveillance (PMS) of AI-enabled medical devices depends on strong 

collaboration between manufacturers and clinical teams. Understanding how these systems 

perform over time, or how they might be affected by changes in their environment, requires 

input from both those who design the technology and those who use it day-to-day in clinical 
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settings. While there is broad support for this kind of collaboration in theory, in practice it 

often falls short. Manufacturers and healthcare providers both report frustration about a lack 

of engagement from the other side. 

One area where this becomes especially important is in automating parts of the risk 

management process. AI dashboards can flag potential issues, but uncertainty around roles 

and responsibilities means it’s not always clear who should act on these signals. This 

creates a risk that problems may go unaddressed – not because they aren’t seen, but 

because it’s unclear who is accountable for responding. 

As data volumes grow, these systems could provide even greater insight into performance 

and safety. But making good use of that data requires skilled analysts and carefully 

calibrated thresholds to help distinguish important warning signs from background noise. 

Without this, there is a real possibility that existing safety reporting systems could be 

overwhelmed with low-value alerts, making it harder to identify real issues or take meaningful 

action. Crucially, monitoring alone isn’t enough. When concerns are flagged, there must be 

clear and timely follow-up. There must be agreed protocols in place so that when 

performance dips or safety risks arise, there is a shared understanding of what steps to take 

– both to prevent harm and to ensure regulatory reporting requirements are met. 

Finally, there remains uncertainty around what kinds of issues involving AI tools should be 

formally reported. Manufacturers are required to report incorrect diagnostic outputs. 

Healthcare professionals are encouraged to flag concerns through systems like the Yellow 

Card Scheme. Some are concerned that disagreements between clinicians and AI systems, 

especially if they become frequent, could flood these reporting systems – making it more 

difficult to focus on the most important risks. 
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6. Limitations and challenges  

Throughout the AI Airlock programme, a range of limitations and challenges were identified 

by both the candidates and the Airlock team. This section focuses on those relating 

specifically to the regulatory gap analysis, simulation workshops, and technical testing. 

Broader programme-level challenges are addressed in the evaluation section that follows. 

Gap analysis 

The regulatory gap analysis followed a pragmatic rather than predefined approach, with 

documents selected based on team and stakeholder input. While not systematic in the 

formal sense, the method was informed by expert judgement and evolved iteratively as the 

most relevant materials and techniques became clearer. Philips, AutoMedica, OncoFlow, 

Newton’s Tree and the MHRA reviewed different sets of documents, so some divergence in 

findings was anticipated. Prioritising a subset of the regulatory mapping documents is a 

limitation, as it may have led to the omission of relevant information in the gap analysis. 

Simulation workshops 

The simulation workshops generated useful insights, but due to the absence of a structured 

analytic framework, findings should be treated as exploratory. Time constraints prevented 

non-determinism simulation or exploration, despite the able assembled stakeholders. 

Virtual testing 

The Airlock team did not review candidate technical files. In several cases, these were not 

yet available due to the early development stage of the products. Given the exploratory 

nature of the Airlock, this was considered consistent with the programme’s objectives. 

The Airlock team did not access the datasets used for testing and therefore could not verify 

whether they met the definition of appropriate clinical data under the MDR 2002. As the 

purpose of the Airlock was to surface regulatory challenges and generate insights rather 

than to assess conformity, this approach was regarded as appropriate. 

Philips AutoImpression 
 
The regulatory mapping revealed significant gaps, as no specific guidance, standards, or 

acceptance criteria were found for generative AI, synthetic data, or large language models 

(LLMs). A notable limitation was the overlap in data use: the MIMIC-IV dataset served both 

as training data for the Claude Sonnet 3.5 LLM and as the basis for testing synthetic reports 

and impressions, contravening best practices that require strict separation of training and 

validation datasets. The clinical accuracy of the “Auto Impression” feature was not assessed 
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due to time constraints and the volume of data, restricting insights into its safety and real-

world performance. 

The LLM judge demonstrated challenges when evaluating low-quality human-written text. 

Resulting in inconsistent scoring, and its assessment methods needing refinement to better 

identify clinically significant errors. While the LLM judge showed promise, the findings must 

be validated by human experts to ensure reliability, particularly in comparing synthetic and 

real data and detecting errors. Finally, the evaluation primarily focused on the quality of 

summarisation rather than clinical correctness, meaning the potential for harmful errors in 

generated impressions remains insufficiently explored. 

SmartGuideline 

The SmartGuideline model supported only limited simultaneous users, and clinicians 

stressed that speed is essential for decision support tools designed for point-of-care use. 

The short timeframe and limited resources of the AI Airlock programme meant the team were 

unable to test economic evaluation, whether this approach works across different AI models, 

or compare the tool with manual clinical workflows. Planned semantic similarity testing using 

GPT-4o was also deferred due to cost but is intended for future work. 

The clinician sample was skewed towards trainees, which may limit generalisability. More 

experienced practitioners may interact with AI outputs differently, affecting results and 

revealing different patterns of trust or bias. 

OncoFlow 

Explainability testing of the OncoFlow AI models revealed several important challenges. The 

data extraction model, which pulls information from different clinical documents, sometimes 

produced unclear outputs when those documents contained conflicting or incomplete data.  

For example, if a radiology report suggested metastasis but the pathology report did not 

confirm it, the AI might struggle to interpret the case. When key information like tumour 

grade was missing, the system chose not to infer values, instead marking them as “Not 

Reported.” While this avoided incorrect assumptions, it also reduced the completeness of 

summaries. 

The treatment matching model information retrieval from clinical guidelines was one of the 

main challenges. If documents were poorly structured, the AI could miss key 

recommendations. In cases where retrieval failed or data was sparse – such as rare tumour 

types or experimental treatments – the model risked generating confident but unsupported 

suggestions. To reduce this risk, uncertain outputs were flagged for human review, rather 

than presented as clinical recommendations. Stakeholders also suggested allowing the 
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system to "learn" from difficult or unusual cases discussed in multidisciplinary team (MDT) 

meetings. 

Several mitigation strategies were proposed. These included traffic-lighting low-confidence 

outputs, improving how guidelines are broken into searchable sections, and using 

explainability tools like SHAP and LIME to help users understand how AI decisions were 

made. Clinicians remained in full control, with the AI acting only as a support tool. All 

decisions made with AI assistance were logged and traceable, ensuring a clear audit trail. 

Understanding which explainability approach would be optimally aligned with end-user 

needs, particularly in the live, fast-paced MDT settings remains an ongoing challenge. 

OncoFlow addressed this as part of a formal feedback discussion and simulation session 

with end-users to further inform regulatory frameworks for AI-assisted decision support 

systems. 

FAMOS 

The sample size may not provide sufficient power to detect small effects as a feasibility 

study. Results may not be generalisable beyond the participating sites due to potential site-

specific factors. Limitations inherent to retrospective studies, such as selection bias and 

missing data, may affect the findings. 

 

. 
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7. Evaluation Approach and Key Insights  

Evaluation Approach 

The University of Nottingham were commissioned to independently evaluate the AI Airlock 

pilot programme, working closely with the MHRA to understand the practices, strategies and 

challenges of conducting the pilot. The evaluation was led by Professor Carl Macrae. The 

evaluation was designed to be constructive and continuous, enabling periodic feedback to 

the AI Airlock team throughout the pilot. This chapter summarises key insights and findings 

from the independent evaluation, reflecting the MHRA’s commitment to ongoing learning and 

improvement from the AI Airlock pilot.  

Multiple sources of data were used throughout the evaluation including observations and 

attendance at governance board meetings, supervisory committee meetings, simulations 

and other events. It includes analysis of AI Airlock documentation and event feedback 

surveys. Evaluation evidence also includes the notes and feedback generated from an in-

person evaluation workshop during the Airlock Connect event.  

The data also includes detailed set of interviews conducted with many of the participants 

involved in the AI Airlock. These interviews allowed participants to feedback and report on 

experiences constructively and anonymously. 29 interview sessions were conducted 

throughout the process, engaging with a total of 25 individuals who were involved in the AI 

Airlock in different roles. These interviews were primarily conducted in two phases: towards 

the end of the testing design work, and towards the end of the AI Airlock pilot. Three focus 

groups were conducted with the MHRA AI Airlock team, supplemented by individual 

interviews with each team member. Interviews were conducted with each candidate 

organisation at two time points and included two members of each AI Airlock candidate 

organisation. Wider stakeholders were interviewed including representatives from Team AB, 

the governance board, the supervisory committee, and attendees at the simulation 

workshops.  

A key commitment of the formative evaluation is to create a safe and protected space to 

gather feedback and insight from all of those involved in the process of the AI Airlock. All 

feedback has therefore been suitably anonymised during the evaluation process.  

Insights have been themed into four broad areas;  

• Motivations, Expectations and Experiences,  

• Engagement, Exploration and Collaboration,  

• Outputs, Impact and Value and  

• Management of the Sandbox.   
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Evaluation Findings and Key Insights  

Motivations, Expectations and Experiences 

Expectations going into the novel pilot AI Airlock varied. Candidates had different 

assumptions but were all motivated by the aim of deepening their understanding of 

regulation, regulatory challenges whilst engaging with regulators and technical experts 

directly in a meaningful way. Many candidates shared a commitment to safety and risk 

management with a strong commitment to build safe technologies and systems whilst 

utilising the opportunity to engage with the regulator on shaping future regulation in this 

sector. Motivations were often linked to organisation and strategic goals, including building 

regulatory knowledge, developing robust assurance processes, and building organisational 

legitimacy. Candidates indicated that the regulatory sandbox model allowed them to engage 

in a unique process of regulatory science, by rigorously and scientifically generating new 

knowledge in a challenging and novel area with the regulator.  

The application process was seen as fair, as was the emphasis in the selection process on 

‘Airlock readiness’ which included access to data sets, virtual environments and real-world 

deployments, as required for the testing plan execution. This emphasis was driven by the 

need to identify candidates that could participate effectively with the time constrained pilot.  It 

was also evident that these candidates were already well developed in their thinking and 

capability to address a regulatory challenge and, if there had been more time available for 

the pilot testing, would have welcomed more ambitious projects.  

Some candidates found the development of testing plans more time-consuming than 

originally expected. All understood the need to focus on clearly defined regulatory 

challenges given the compressed timeline. Clearer guidance on the expectations of the 

important stages of candidate onboarding would enhance the experience for candidates. 

 

Time and resource demands were challenging and at times constrained candidates’ 

ambition for the depth of testing. They were broadly considered manageable and 

proportionate to the benefits of insight, learning, and influence on future regulatory thinking. 

It was highlighted that the testing and development activities carried out in the AI Airlock 

were well aligned with activities the candidate organisations would have expected to conduct 

at some point, and the programme accelerated and prioritised this work with associated 

accountability, resource and time commitments. The AI Airlock regulatory sandbox 

mechanism can both accelerate important regulatory work and provide structure to maintain 

focus and attention on otherwise deprioritised issues.  

“Yes, it's difficult and time consuming, but I suppose the second part is it's something we 

need to do anyway and it's sort of gives us a focus on where we spend that time” 

(candidate interview) 
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Engagement, Exploration and Collaboration  

Candidates and stakeholders consistently reported that the AI Airlock created a constructive 

environment for exploring and understanding the key regulatory challenges associated with 

AI medical devices. The AI Airlock process was generally experienced as open, exploratory, 

and highly collaborative. Candidates were actively engaged, proactive and aligned with the 

programme objectives throughout. Sandbox activities were experienced as genuinely 

collaborative, and this approach which was viewed as essential to delivering a successful AI 

Airlock pilot.  

Candidates particularly valued the range of expertise and stakeholder input facilitated by the 

AI Airlock, though many would have welcomed closer and deeper interaction with the 

broader expert network, particularly through in-person or direct conversations. The diversity 

of perspectives was widely recognised as one of the key strengths of the AI Airlock. 

Candidates felt that the short timescales limited the depth of exploration, and several 

candidates felt the involvement had prepared them for more in-depth work in future but had 

not provided the length of time or exploration that was truly needed to develop their analyses 

and address the regulatory challenge fully. 

Simulation events were understood as a learning opportunity given the high stakeholder 

engagement involved. Candidates and stakeholders felt they were the centre piece of the 

testing noting these events were especially useful because they enabled candidates to 

present detailed work and explore practical cases with diverse stakeholders and experts.  

Features such as real-world examples, small-group discussions, and relevant expertise were 

viewed as being particularly supportive of learning. The importance of balancing the breadth 

and depth of the simulation workshops was highlighted. As was the need for carefully 

curating the knowledge, expertise and representation for each activity, ensuring there is 

space for everyone to have an effective voice and avoid discussion tangents.  

There was a general preference for in-person, or single modality, meetings to support 

learning and relationship-building, though it was appreciated that the compressed timelines 

made this challenging.  

Outputs, Impact and Value  

“With some workshops… it seemed to be a very open invitation. There were a lot of 

people, but not all people were contributing. So again, being clear about — do you want 

people who are interested, or just curious about it? Is that the right thing for them to be 

invited to these workshops? Or is it that you want people who are representing different 

groups? Because if you have too many, then maybe some people had relevant things to 

say, but maybe they didn't” (Stakeholder interview)  
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The regulatory challenges addressed within the AI Airlock were viewed by candidates and 

stakeholders as important and relevant, and represented priority areas for regulatory 

attention.  It was understood that the scope of these problems was necessarily constrained 

by the AI Airlock’s tight timelines, meaning there was a focus on feasible aspects of these 

problems. Participants recognised this as a pragmatic trade-off. Some stakeholders believed 

that it would be valuable to define a key focus area or agenda for future Airlock phases to 

clarify a set of priorities from the outset and to inform the cohort design. Future Airlocks 

could be streamlined by supporting the ‘economies of attention’ that can result from all 

candidates focusing on a particular technology, application or set of closely related 

regulatory challenges. It was also noted that there may be benefit in bringing other 

regulators across the system into discussions in a more detailed and structured way, noting 

that the challenges often span multiple regulators.  

There was widespread agreement that the key outputs of the AI Airlock should be regulatory 

guidance that is practical, public, and informative. Outputs should take a range of engaging 

formats and both articulate future regulatory principles and share the regulatory sandboxing 

methods and insights so that these can be learnt from and built on by others. Stakeholders 

indicated that the outputs needed to balance being general and widely applicable, while also 

being detailed enough to move the field forward and contribute to a clearer understanding of 

the regulatory problems being addressed. Interest was shown in the sharing of the key 

regulatory challenge areas that the MHRA may look to prioritise and transparency of the 

current regulatory gaps that the MHRA would be addressing in future Airlocks or change 

programmes.  

Candidates reported a range of broader benefits of their involvement in the AI Airlock, 

including increased knowledge and deeper understanding around regulatory gaps, 

strengthened approaches to assurance and validation, and secondary gains such as raised 

public profile and enhanced legitimacy. Candidates noted that engaging in the sandbox had 

helped their organisations expand and develop their thinking and practices, particularly 

regarding the developing systematic approaches to safety testing and evaluation.. The AI 

Airlock testing allowed them to learn more clearly about which problems they should be 

approaching and how clarifying these questions and the areas of uncertainty, with a wide 

range of experts and stakeholders, was viewed as beneficial. 

Management of the Sandbox  

Managing and organising the AI Airlock required a broad skillset and at times involved 

managing an intensive workload. The AI Airlock team was able to effectively embed 

information sharing mechanisms, ongoing cycles of learning and iterative improvements 

throughout the process. This iteratively improved processes and created a collaborative 

“…the goal was to expose the challenges and needs, and it did so” (Candidate interview). 
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environment that facilitated mutual learning among all stakeholders. Several stakeholders 

and candidates highlighted the AI Airlock’s openness to learning and improvement and 

emphasised the constructive sense of experimentation that was perceived to exist 

throughout the process.  

 

The AI Airlock team needed to carefully manage and facilitate relationships between 

stakeholders and candidates, and there was a focus on ongoing two-way learning between 

the Airlock team and candidates, with support and input from expert stakeholders. Significant 

effort was put into building and maintaining relationships with key stakeholders such as 

Team AB. As with many regulatory sandbox initiatives, there were inherent tensions in 

balancing working on specific cases and organisations, with the wider aim of generating 

broadly applicable regulatory insights. Managing these tensions of critical independence and 

constructive guidance is key to an effective regulatory sandbox.  

 

These findings illustrate the importance of the MHRA’s AI Airlock management approach 

and the styles of interaction that supported and encouraged learning, that should be carried 

forward into future Airlocks: building a space for learning within a regulatory sandbox 

requires regulators themselves to acknowledge and engage in learning processes and 

acknowledge and accept uncertainties.  

“often what regulators do is, they know the law and then they will paraphrase law in all 

their guidance… and that’s not that helpful, it doesn’t really fill in the grey areas, and it’s a 

very safe playing field for the regulator, and what’s nice about this is that we can actually 

venture into the grey, and think about, ok, what is a good method?” (Candidate interview)  

 

“We have an Airlock firewall between us and the companies in the form of the committee, 

in the form of the Airlock group themselves, which I think has been important that's 

allowed us to maintain independence” (Stakeholder interview)  
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8. Policy Implications and Recommendations  

Approach to recommendations 

The following recommendations draw on findings from the AI Airlock pilot and are intended 

to inform the MHRA’s development of targeted regulatory guidance for AIaMD, as well as 

contribute evidence to the National AI Commission. They reflect recurring challenges 

observed across multiple projects and highlight areas where existing regulation could benefit 

from greater clarity. 

Each recommendation was developed through a structured process that involved: 

• Assessing the underlying evidence and the level of confidence in that evidence – for 

example, insights supported by candidate testing data from virtual or real-world 

settings, and by simulation workshop discussions had high confidence. 

• Determining whether the recommendation related to updates in existing policy or 

identified an area for future research or collaboration with AI Airlock partners. 

The recommendations cover key regulatory challenges, including: 

• AI generation and validation of synthetic unstructured text data 

• Managing risks associated with AI inaccuracies such as hallucinations and omissions 

• Reducing misuse and mistrust through explainability 

• Mitigating patient harm through proactive monitoring and intervention 

Addressing these areas will support the MHRA in advancing a regulatory framework that 

promotes the safe, effective, and trustworthy development and deployment of AIaMD. 

Product development: Data validation 

• Develop guidance on expectations for good quality synthetic data and how it should 

be assessed during development and regulatory evaluation. Guidance is also needed 

on the responsible use of synthetic data in the validation of AIaMD. This should 

include outlining appropriate use cases, minimum quality requirements for synthetic 

data in terms of fidelity, utility, and relevance of data features. These validation 

techniques may also be applicable to verifying reliability of text-based LLM outputs. 

• Introduce guidance for the use of LLMs in training and testing AIaMD. Consider 

covering best practices for using open-source LLMs and the quality of prompts used 

during development. Guidance should outline approaches for prompt safety, for 

example having pass/fail criteria for prompts in case significant clinical errors have 

been generated by the LLM (rather than only scoring the quality of the outputs). 
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• Form a position on approaches to evaluating the quality of text outputs, including 

considerations when outputs statistically significantly differ from human written reports 

but have been scored as better than human written reports (mathematical or human). 

Risk management: hallucinations and omissions 

• Provide clear guidance on evaluating and mitigating LLM risks such as hallucinations 

and omissions in AIaMD. This should include support for end users with clear 

information on identifying and reporting safety events. Guidance should also 

emphasise the importance of PMS, including mechanisms like the Yellow Card 

scheme and MORE as hallucinations may be rare during pre-market testing.  

• Encourage, in guidance, safety measures such as retrieval augmented generation 

(RAG) given the potential to reduce hallucinations and support safer, more 

explainable outputs. As part of this guidance, it is important to highlight the 

importance of holistic safety testing after any model adjustments in case other errors, 

e.g., omissions, increase. 

Risk management: Explainability 

• Emphasise in regulatory guidance the importance of developers adopting context-

aware explainability approaches that account for the clinical question, associated risk 

and time constraints on the end user. Different stakeholder groups may require 

different types of explanations: global explanations may be most useful for regulators 

and policymakers while local case-specific explanations may be more important for 

clinicians and patients. 

• Strengthen in guidance transparency and training requirements for AIaMD and warn 

against the risks of insufficient user training. Structured outputs such as confidence 

indicators or other visual aids should be encouraged. Context-specific clarity around 

the human-AI teaming expectations should be promoted to improve shared decision-

making. Training should be implemented with clear accessible user-facing 

communication about AI-specific risks. 

• Emphasise, in guidance, the importance of explainability in conjunction with good 

machine learning principles and other safety and risk management approaches. 

Where appropriate, AI models should communicate both what has informed a 

decision and what has been excluded to reduce the risk of automation bias, defensive 

medicine, and risks to patient safety. Developers can implement various approaches 

such as model reasoning and model cards to make these factors transparent to the 

end user.  

Post-market surveillance 
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• Promote greater awareness and use of reporting tools such as MORE and Yellow 

Card among clinicians, patients, and the obligations on manufacturers. This should be 

supported by educational initiatives and stronger collaboration between 

manufacturers and healthcare organisations to improve reporting and ensure PMS 

data are complete and meaningful. 

• Provide guidance which supports the development and implementation of continuous 

monitoring for AIaMD. These mechanisms should track key metrics to detect issues 

such as automation bias. Proactive monitoring enables early detection of safety 

concerns and should be accompanied by clear follow-up protocols for investigation 

and action. 

• Develop guidance which provides examples of approaches for threshold setting for 

continuous monitoring. Manufacturers should determine thresholds through a socio-

technical approach, combining clinical and technical expertise which balance early 

warnings with minimising false alarms. A tiered system may be useful for triggering 

additional monitoring before requiring intervention. 

• Emphasise the importance of follow-up protocols for threshold breaches in the post-

market surveillance process. Monitoring alone may be insufficient to ensure safety; 

breaches should be investigated and where appropriate acted upon. Guidance needs 

to be clear on regulatory requirements for reporting preventative and corrective action 

taken.  
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9. Conclusion and Next Steps 

The AI Airlock pilot explored the potential and the practical challenges of developing and 

deploying AIaMD. Our synthetic radiology case study demonstrated that large language 

models can generate diverse, clinically relevant text data, provided that rigorous automated 

and human evaluation methods are employed to confirm data fidelity, clarity, accuracy and 

completeness. The standardisation of these evaluation methods needs to be outlined in 

guidance.  

Our data extraction and treatment-matching studies demonstrated that retrieval-augmented 

architectures and rule-based prompting can be effective while maintaining high accuracy on 

complex tasks. Holistic testing helped to minimise omissions and other safety risks. 

Explainability mechanisms enhanced user trust and understanding, though these must be 

complemented by ongoing user education and continuous monitoring. Our real-time 

surveillance case study demonstrated that a monitoring dashboard can be effective at 

identifying trends in data quality, model drift and automation bias, enabling early intervention 

before patient harm could occur. Our regulatory gap analyses and simulation workshops 

identified key areas where AI-specific supplementary guidance is needed to strengthen 

existing frameworks. 

Through the AI Airlock pilot, we have identified a series of key challenges that illustrate the 

novel regulatory considerations posed by AI in healthcare. This work has culminated in 40 

recommendations, covering both areas for immediate implementation and those requiring 

further exploration. These findings will inform the AIaMD guidance currently in development, 

as well as future MHRA policy. 

The AI Airlock directly supports the work of the National AI Commission in establishing a 

credible, international regulatory framework for the safe and effective use of AI in health. The 

pilot will provide the practical evidence base and operational insights needed to address 

complex regulatory questions. 

Building on this foundation, the next phase of the Airlock will generate further evidence and 

test solutions to these challenges. Its findings will be fed directly into the Commission’s work, 

ensuring that the Commission’s recommendations are informed by robust, real-world 

evidence and implementation experience. 

Plans for the next phase 

The government confirmed in its Regulatory Action Plan on 17 March 2025 that the AI 

Airlock will continue into Phase 2 for the FY 25/26.  

Our strategy for Phase 2 will have two main missions: Unlock and Expand. 
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Our Unlock mission includes the sharing of the learnings from the pilot phase, both 

regulatory and the use of sandboxes. We are also developing a programme of activity to 

boost the impact of the insights in the sector alongside policy changes.  

Our Expand mission involves our work with a new cohort and looking to identify areas across 

the MHRA, healthcare academic and international regulatory sectors for collaboration 

opportunities to expand the scope of regulatory challenges the AI Airlock can investigate.  

Phase 2 will run until end of March 2026. We will work with a new cohort of candidates and 

test a new set of regulatory challenges for these innovative devices to improve regulations, 

guidance and, ultimately, patient outcomes.  
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10. Appendices  

AI Airlock Candidates  
 
Philips Healthcare: Results 
 
Linguistic similarity 

 
To make sure that the synthetic reports maintained the same linguistic style as original 
reports, Philips evaluated linguistic similarity using the following metrics: GLEU, ROUGE, 
Parts-of-Speech Overlap and Automated Readability Index (ARI). 
 
Table s1. Linguistic similarity metrics 
 

Metric What it 
measures 

What it means for 
comparing radiology 
reports 

Limitations 

GLEU Balanced n-
gram precision & 
recall 

Could be used to 
measure sentence-level 
similarity of real and 
synthetic reports 

Sentence-level metric, not 
informative for texts with 
multiple sentences and no 
direct sentence-to-
sentence mapping  

ROUGE-L Longest 
common 
sequence (LCS) 
overlap 

High ROUGE score 
indicates that reports 
have similar phrasing but 
slight variations 

Doesn’t capture deep 
semantics 

POS Tag 
Overlap 

Part-of-speech 
usage 

Ensuring similar 
grammatical structure 

Doesn’t capture semantics 

ARI Automated 
Readability 
Index (ARI)** 
estimates 
understandability 
of English texts 
based on 
evaluating 
chars/words and 
words/sentences 
ratios. 

Similar ARI scores 
indicate that real and 
synthetic findings have 
similar length of words 
and sentences => have 
similar writing style.  

Non-robust with respect to 
slight variations in 
punctuation and numbers 

 

For each report, the experts scored the following points: Clinical Content Similarity, Linguistic 
Style Similarity, Understandability compared to the original report.   
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Evaluation dimensions of the Impression section using LLM as a judge 
 
The Impression section was evaluated against four metrics: accuracy (faithfulness to the 
content of the findings), completeness (coverage of important findings), clarity (readability 
and interpretability of the test), and groundedness (ensuring statements are justified by 
underlying findings).  
 

Accuracy was measured as alignment between “Findings” and “Impression,” quantified on a 
0-10 scale, and justified with structured text explanations. 

 

• Definition of accuracy: whether the IMPRESSION section correctly reflects the key 
findings and conclusions from the clinical report. 

• Scoring method: LLM judge was asked to give a numerical score from 0 to 10. 

o A score of 0 is required if there is no IMPRESSION section at all. 

o Other scores (1–10) depend on how well the IMPRESSION matches the 
findings. 

• Justification: the LLM judge must provide two kinds of written reasoning: 

o "motivation" ➔ general reasoning. 

o "scoremotivation" ➔ reasoning tied to why that specific score was given. 

• Format: output must be structured JSON with the fields "motivation", 
"scoremotivation", and "score", following strict formatting rules. 

 

Completeness was measured as coverage of all relevant findings in the IMPRESSION, 
expressed on a 0-10 scale, with structured justifications. 

• Definition of completeness: whether the IMPRESSION section contains all relevant 
information from the findings and does not leave out any critical details. 

• Scoring method: the LLM judge must assign a numerical score between 0 and 10. 

o A score of 0 must be given if there is no IMPRESSION section at all. 

o Scores 1-10 reflect the extent to which the IMPRESSION covers all key details. 

• Justification: the LLM judge must provide written reasoning in two parts: 

o "motivation" ➔ overall explanation. 

o "scoremotivation" ➔ specific justification for the chosen score. 

• Format: output must be structured JSON with the fields "motivation", 
"scoremotivation", and "score", following strict formatting rules. 

 

Clarity was measured as how understandable and well-written the IMPRESSION is, 
expressed on a 0–10 scale, with structured justifications. 

• Definition of clarity: whether the IMPRESSION section is clearly written and easy to 
understand. 
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• Scoring method: the LLM judge must assign a numerical score from 0 to 10. 

o A score of 0 is required if no IMPRESSION section is present. 

o Scores 1-10 indicate the degree to which the text is understandable and clearly 
expressed. 

• Justification: the LLM judge must provide explanations in two fields: 

o "motivation" ➔ general explanation of the assessment. 

o "scoremotivation" ➔ specific reasoning for the numerical score chosen. 

• Format: output must be structured JSON with the fields "motivation", 
"scoremotivation", and "score", following strict formatting rules. 

 

Groundedness was measured as the extent to which the IMPRESSION is supported by 
evidence in the findings, expressed on a 0-10 scale with structured justifications. 

• Definition of groundedness: whether the IMPRESSION section is based on, and 
supported by, the evidence and findings in the clinical report. 

• Scoring method: the LLM judge must assign a numerical score between 0 and 10. 

o A score of 0 is mandatory if there is no IMPRESSION section. 

o Scores 1-10 reflect how well the IMPRESSION is tied to the underlying findings 
(e.g., not introducing unsupported statements). 

• Justification: the LLM judge must explain their assessment in two fields: 

o "motivation" ➔ general explanation of their reasoning. 

o "scoremotivation" ➔ specific justification tied to the numerical score. 

• Format constraint: assessment must be returned in JSON with the required fields, 
following strict formatting rules.  
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Table s2. Example of scoring system for comparative analysis 
 

 Not 
similar at 

all 

Slightly 
similar 

Moderately 
similar 

Very 
similar 

Extremely 
similar 

 1 2 3 4 5 

Clinical Content Similarity      

Linguistic Style Similarity      

Understandability      

 
In addition, an independent analysis for each report was carried out. The experts scored the 
following points: Language, Structure, Completeness, Clinical Soundness 
The scale for the reports was as follows: 

 
0: Not Professional / Not Expected in Radiology Report 
1: Minimally Professional / Below Clinical Standards 
2: Somewhat Professional / Needs Improvement 
3: Moderately Professional / Meets Basic Clinical Standards 
4: Professional / Above Clinical Standards 
5: Highly Professional / Fully Expected in Radiology Report  

 


