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Executive Summary

The Al Airlock is the UK's first regulatory sandbox for Artificial Intelligence as a Medical
Device (AlaMD), developed and delivered in partnership with the NHS and the Department
of Health and Social Care (DHSC). The pilot phase was launched in May 2024 and ran
through to March 2025, aiming to explore the regulatory challenges faced by real-world Al
medical devices and generate actionable insights to support the development of future
guidance and regulatory changes. Key insights and recommendations generated through the
Al Airlock will directly inform and support the work of the National Al Commission, ensuring
that its outputs are grounded in real-world evidence and regulatory experience.

Building on emerging global best practice and learnings from already well-established
regulatory sandboxes in other sectors, we employed the sandbox mechanism to establish a
safe space for medical device manufacturers to work directly with us. Manufacturers also
worked with the programme’s unique expert stakeholder network to design and execute
bespoke testing plans to address current regulatory challenges associated with their AlaMD
product. Regulatory sandboxes, like the Al Airlock, take regulators into uncertain areas of
regulation. These represent the most contemporaneous regulatory problems that need
urgent exploration, which often cannot be explored within normal business processes.

Applications and regulatory testing approach

Candidates were invited to join the Al Airlock via a public call for applications. The
submissions received during this call were diverse: 31% of applications used generative Al,
23% used machine learning, 13% predictive Al, and 10% multimodal systems. The most
common clinical use cases were diagnostics (25%), screening/imaging (19%), and clinical
decision support (19%). The clinical conditions spanned oncology, women’s health,
respiratory care, and clinical workflow optimisation. Of the 40 applications received, 5 were
taken forward to participate in the pilot and 4 successfully completed the full pilot.

The Al Airlock testing approach was built around a four-stage delivery model:

1. Orientation: Situation assessment to understand the pilot technologies and relevant
regulatory context

2. Plan: Regulatory gap review and test plan development

3. Test: Testing conducted in different environments, including simulation, virtual, real-
world. Concurrently, in-depth regulatory gap analysis was conducted.

4. Review: Synthesis of findings and recommendations.
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The test plans employed 3 testing environments: Simulation, Virtual and Real-World
Airlocks. Final outputs from each project included test plans, results from testing from
regulatory gap analyses.

Testing environments

Simulation workshops involved experts across different disciplines: regulators, clinicians,
technical experts, academics, legal representatives, and others. When testing in a virtual
setting, candidates used a digital testing space built into or around an Al system, such as an
Al model on a computer. Here, the Al functions were explored safely, allowing testers to
interact with the Al, feeding it information or questions. They would then check how it
responded and inspect how its internal processes worked. This mimicked real tasks, so
teams could assess the accuracy, reliability, and reasoning within the Al itself. The real-world
environment allowed testing in the setting where the Al product would be used (e.g. a
hospital). The Al was used alongside doctors and real (anonymised) patient data, following
the usual clinical processes, but its outputs were not used to make decisions about patients.
Instead, the Al was observed in practice: how it fit into workflows, how accurate or helpful it
was, and how safe and reliable it was for standard use.

Requlatory gap analysis

Our existing regulatory frameworks provide a strong foundation for ensuring the safety and
effectiveness of medical technologies. However, Al introduces new characteristics such as
continuous learning, complex data dependencies, and adaptive behaviour that challenge
how some of these principles are applied in practice. That means parts of our framework will
remain highly relevant, while others may need to evolve or be complemented by new
approaches to ensure patient safety and public trust.

Regulatory gap analyses are difficult to undertake; such analyses performed in such a novel
field are particularly challenging. The team enlisted experts from various sectors in an initial
regulatory mapping activity. This resulted in a collation of relevant regulatory documents and
a list of associated challenges. To account for limited resource and programme timelines, we
prioritised 5-10 most relevant regulatory documents for in-depth review per regulatory
challenge.

This foundational exercise proved extremely productive. By showing us how broad the term
“regulatory gaps” could be in the context of novel Al devices, we could account for this in our
definitions. We therefore used an equally broad definition to capture the gaps. This allowed
us to capture wording gaps in existing guidance, context gaps in frameworks and even
legislative loopholes.

Within the Al Airlock, therefore, the term ‘gap’ is used as a shorthand term for identifying any
areas of improvement. Recognising that many of the existing parts of the regulatory system
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must cater for the millions of hardware and software products used in the health and care
system. It is the objective of the Al Airlock to identify these areas for improvement and
recommend solutions.

Regulatory gap key insights and recommendations

The Al Airlock pilot identified regulatory gaps that currently challenge the safe and effective
deployment of AlaMD. While the nature of these gaps varied across use cases, some
recurring themes emerged across all projects, particularly in areas of risk management,
validation of text-based data from large language models (LLMs), Al errors, inaccuracies and
non-determinism, explainability, and post-market surveillance. These gaps and challenges
were explored in collaboration with four innovators: Philips Healthcare, AutoMedica,
OncoFlow and Newton’s Tree.

Synthetic Data and LLMs

Current Medical Device Regulations (MDR) 2002 and associated guidance do not define if /
how / where synthetic data can be used to provide evidence of compliance. In addition, there
is no guidance on quality or validation requirements for text-based synthetic data, despite
the growing use of this data type in AlaMD. Standards such as BS/AAMI 34971
acknowledge synthetic data as a potential input in Al model development and note the
importance of managing privacy risks, though specific guidance for its use for privacy
preservation is limited. During the pilot, we worked closely with the programme investigating
the Synthetic data for development of AlaMD and therefore our recommendations are
aligned with the findings of that report published after the Al Airlock pilot closure. The report
addresses the Al Airlock recommendation for the MHRA to develop best practices for
synthetic data generation, validation and assessment for fidelity and representativeness —
particularly where the synthetic data are used to support regulatory submission in AlaMD
development.

In collaboration with Philips Healthcare, the Al Airlock explored the generation and
assessment of 4,000 synthetic radiology reports which were generated using an LLM. While
evaluation methods, including automated and human reviewers, showed promise in
assessing quality, they also highlighted key regulatory uncertainties. Notably, the data from
using an LLM to judge outputs from another LLM raised concerns about the errors and
biases being reinforced rather than independently checked. This risk of ‘circularity’ means
the system may not be fully reliable. This highlights the need for independent validation
standards and more regulatory clarity. Given the limited timeframes of the Al Airlock pilot and
complexity of the issues, further investigation is needed into Al validation of Al. The MHRA
should therefore continue to investigate the use of LLMs in synthetic data pipelines (and Al
evaluation of Al-generated data) with a focus on building an evidence base that can inform
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future guidance on quality assurance, validation methods, and the acceptability of such data
in regulatory contexts.

Hallucinations, Non-Determinism and Risk Management

The risk management framework underpinning the MDR 2002, and standards such as ISO
14971, ISO 13485 and |IEC 62304, offers a robust foundation for general medical device
regulation. However, these frameworks were not designed to address the unpredictable and
dynamic nature of Al systems. There is a lack of consensus on how to account for Al-specific
risks such as hallucinations, non-determinism or model drift within existing risk management
approaches. These risks could be viewed as falling within a manufacturer’s performance
claims; however, outputs incorporated into the medical record are also subject to the Health
and Social Care Act 2008, regulation 17. This creates a tension between different regulatory
requirements, where clarity is needed on how performance considerations intersect with
obligations relating to the accuracy of health records.

The Al Airlock worked with AutoMedica and their product ‘SmartGuideline’ and explored how
Retrieval Augmented Generation (RAG), could be used to ground LLM outputs in verified
sources to reduce such risks. By anchoring responses in trusted clinical content (NICE
guidelines), RAG added a safety layer to the system. In an experiment where 436 medical
questions were asked, SmartGuideline (with RAG enabled) produced no hallucinations
compared to 23 hallucinations from a baseline model. The RAG-based model also
demonstrated consistent, deterministic outputs — returning highly similar results across
repeated prompts. These results show how targeted Al design strategies can mitigate known
risks. Through evidence from virtual testing and the simulation workshop discussions, the Al
Airlock programme recommend that the MHRA should explore how such techniques could
be accommodated within existing risk management frameworks. Safety measures such as
retrieval augmented generation (RAG) should be encouraged in guidance, given the
demonstrated ability to reduce hallucinations and support safer more explainable outputs.
Guidance should also emphasise the importance of PMS, including mechanisms like the
Yellow Card Scheme and Manufacturer’s Online Reporting Environment (MORE) as
hallucinations may be rare during pre-market testing.

Explainability and Transparency

Terms such as explainability, transparency, and interpretability are not considered in the
MDR 2002 and remain under-specified in current regulatory guidance. While standards such
as ISO/IEC 22989 and BS/AAMI 34971 reference transparency, they do not outline specific
explainability expectations for different user groups — such as regulators, clinicians, or
patients. This lack of clarity is particularly important for AlaMD, which, unlike traditional
medical devices, may adapt to data or clinical use over time. Such systems carry the risk of
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model drift or unanticipated behaviour in situ, making explainability a mechanism to support
trust, oversight, and safe integration into clinical practice.

Together with OncoFlow, the Al Airlock explored multiple explainability approaches,
interpretability and transparency. This work included plain-language explainability
statements, model rationale outputs, and quantitative techniques for feature attribution. The
project also tested how explainability requirements differ across stakeholder groups and use
cases. While these methods showed promise when discussed with a range of stakeholders
during a simulation workshop, stakeholders agreed that their application would benefit from
clearer regulatory direction. This is particularly relevant for how explainability should be
documented, communicated, and tailored to different audiences. The MHRA could usefully
set out high-level expectations or best practices for explainability in AlaMD, supported by
examples of appropriate methods and documentation formats tailored to different
stakeholder needs.

Post-Market Surveillance (PMS) and Real-Time Monitoring

The PMS requirements manufacturers must meet are outlined in legislation including the
Medical Devices (Post-market Surveillance Requirements) which amends the Medical
Devices Regulations, 2002. Although this legislation came into force after the closure of the
Al Airlock pilot, the workshop was based on the incoming requirements that are now in
effect. These regulations are enacted by the MHRA via a vigilance reporting system, which
includes the Manufacturer’s Online Reporting Environment (MORE). Additionally, the Yellow
Card Scheme is available for medical device safety reporting more orientated towards
reports from end users and patients.

The sandbox confirmed that for PMS, systems such as Yellow Card and MORE offer
reporting pathways and oversight of corrective action approaches. These are, however, not
used enough by end users and manufacturers, and there is a clear need for Al-specific
guidance on ongoing monitoring and preventative action. Risks such as model drift and
automation bias are often only detected after harm has occurred, if they are detected at all.
The FAMOS project demonstrated that real-time monitoring dashboards can help to surface
emerging risks earlier, particularly around user behaviour. During testing, 180 reports were
reviewed at two hospital sites and continuous real-time monitoring was used to detect data
quality issues, model drift and automation bias. At one hospital site, the pilot identified a
pattern of over-reliance on the AlaMD. If unaddressed, such over-reliance could increase the
risk of harm. In this case, contributing factors included clinician fatigue, time pressure,
distraction, and experience level. This reinforces the need for guidance on threshold setting,
risk flagging protocols, and shared responsibilities for monitoring Al-human interaction. The
MHRA should consider publishing supplementary guidance that supports proactive safety
measures for AlaMD. This could include expectations on roles and responsibilities for
monitoring across different settings.
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Standards like BS EN 62366-1 and guidance on applying human factors to medical devices,
cover usability but do not fully address Al-specific challenges such as explainability-driven
over-reliance, deskilling, or automation bias. The pilot highlighted how clinician context, i.e.,
fatigue, time pressure, and experience, can affect safety outcomes, and that system design
must account for these variables. Cross-sector collaboration is needed to ensure current
guidance, training and support for users adequately address these challenges, particularly in
high-risk environments.

Next steps

The Al Airlock pilot has underscored both the potential and the practical challenges of
developing and deploying AlaMD. This work has culminated in recommendations for
updates to policy and guidance, some of which have been outlined in this report. By taking
these forwards, the MHRA can continue to bridge the gap between broad regulatory
principles and the practical needs of deploying Al safely and effectively in healthcare. Clear,
accessible guidance plays a crucial role in supporting innovation, safeguarding patient
safety, and building public trust in Al-driven medical technologies.

Next, these findings will inform the work of the National Al Commission, ensuring that its
outputs are grounded in real-world evidence and regulatory experience. In addition, the Al
Airlock recommendations will inform AlaMD guidance currently in development, and future
MHRA regulatory policy including those outlined in the Software and Al as a Medical Device
Change Programme roadmap. Areas requiring further exploration may be taken forward by
the National Commission and MHRA partners or through the next phase of the Al Airlock
programme.
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1. Introduction and Context

Background

The independent investigation of the NHS in England highlights the critical state of health
services. It revealed significant challenges including surging waiting lists, financial
constraints, and a deteriorating national health profile. Emphasising the importance of
innovation in medicines and medical devices to solve some of the healthcare system's
problems and highlighting the potential of software and Al as a Medical Device (AlaMD) to
enhance patient care. Only if these products are of high quality, safe, reliable, and robust.

In the UK, Software as a Medical Device (SaMD) is regulated under the Medical Devices
Regulations 2002, AlaMD is a subset of SaMD under IMDRFE. Our reform of the medical
device legislation, including the Software and Al as a Medical Device Change Programme, is
driven by innovation in the life sciences sector, learnings from the Cumberlege review and a
growing understanding of AlaMD products. It aims to deliver balanced regulation which
ensures products meet the necessary standards for patient safety and efficacy, without
hindering or blocking the path for innovation and growth. balanced regulation which ensures
products meet the necessary standards for patient safety and efficacy, without hindering or
blocking the path for innovation and growth.

After all, AlaMDs have the potential to help solve a broad range of challenges facing the
NHS. In radiology, for example, AlaMDs could analyse x-rays or scans for abnormalities and
make recommendations, saving clinician time. In surgery, Al-powered robotic systems could
assist in minimally invasive procedures by analysing real-time imaging to guide surgical
instruments with sub-millimetre precision, reducing operating times and complications.
Meanwhile, Al-enabled wearable devices could continuously analyse physiological data,
detect early signs of disease exacerbation, and provide personalised alerts to patients and
clinicians, supporting chronic disease management and potentially reducing the need for
frequent laboratory tests.

These innovative products also hold unique risk profiles. We, alongside Al developers and
the government, must protect UK citizens from the most significant risks presented

by Al. Fostering public trust in the technology and particularly considering the interests of
marginalised groups. To ensure a safe, efficient, and robust route to market for these
innovative products, key regulatory challenges need to be identified and addressed
systematically.

The Government’s Al Opportunities Action Plan sets a clear priority to ensure Al
development through regulation, safety, and assurance hopes to fuel a fast, wide, and safe
deployment and adoption of Al. Regulatory frameworks must support the development and
implementation of these innovative solutions. One of the best ways to deliver safe and
effective regulatory transformation is through regulatory sandboxes.

The regulatory sandbox model is an internationally recognised mechanism to help address
novel regulatory challenges in many sectors. These include financial services, data and
information and healthcare sectors. This mechanism tests innovative products, business
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services and/or frameworks, often in a virtual environment separate from the market or
sector they are influencing, ensuring safe and responsible product testing at pace.

Regulatory sandboxes are increasingly used in the UK. Sandboxes can be utilised by a wide
range of companies, from early start up developers to large scale organisations. Some
notable examples include the NHS England test beds programme and the CQC'’s using
machine learning in diagnostic services. The Information Commissioner’s Office offers a
regulatory sandbox service for products that utilise personal data in innovative ways, and the
Financial Conduct Authority works with firms that want to test products with real consumers
in a controlled environment.

Sandbox offerings vary. Operational sandboxes can offer access to virtual controlled
environments and data sets or alternative routes to market. Regulatory sandboxes bring
together regulators and organisations to understand regulatory gaps and address
challenges. The Data Institute published a comprehensive report analysing the use of
regulatory sandboxes in the complex data space. The report highlights how sandboxes can
reduce regulatory uncertainty and build capability. Further highlighting the opportunities in
emerging, cross-border sandboxes, and notes the high resource requirements and
difficulties to scale.

Regulatory sandboxes provide the opportunity to address challenges often experienced by
innovations. Naturally, applying an existing regulatory framework to innovative products,
developers with lower regulatory knowledge, regulators with lower product knowledge, and
general inexperience regarding the life cycle of innovation makes regulation and product
development challenging. Regulatory sandboxes are well placed to drive the development of
well-designed regulation that is proportionate, agile and offers clarity to developers and
users, a key priority we share with the UK government. The Al Airlock regulatory sandbox
has been developed to address the regulatory challenges and promote a pro-innovation
approach to learning and experimentation as outlined in the Pro-innovation regulation of
technology review .

Al Airlock

In May 2024, we announced the Al Airlock to test real world products and prototypes of
innovative Al medical devices, in collaboration with Team AB (a coalition of UK Approved
Bodies), the NHS Al Lab and Department of Health and Social Care (DHSC).

Team AB brings expertise from Approved Bodies to increase consistency of interpretation of
GB medical device regulatory requirements. It was integral to collaborate with Team AB on
the Al Airlock project to uncover and navigate medical device regulatory challenges for
AlaMD using our collective regulatory knowledge to inform and standardise policy positions
in this rapidly evolving area.

The NHS Al Lab provides connections and expertise within our healthcare system. Many
AlaMD products are deployed via NHS infrastructure making NHS England and the health
services in the devolved nations crucial to regulatory discussions such as deployment and
post market surveillance.
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This pioneering and unique work helps us to further understand the detailed challenges of
regulating AlaMD products to ensure new regulations and guidance facilitate their rapid and
safe deployment into the NHS. Al Airlock helps us to support UK innovators achieve
regulatory compliance.

Purpose of this report

This report provides the outcomes from the Al Airlock pilot programme that ran between April
2024 — March 2025. It will offer insights for key audiences across the UK healthcare,
regulatory and digital technology sectors and international partners. Learnings from the pilot
fall into 2 main categories:

a) how to implement regulatory sandboxes to investigate and improve regulation

b) suggested changes to the current regulatory framework, both for the MHRA and
stakeholders across the healthcare system
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2. Programme Design and Governance

The pilot had 4 key objectives for its first year:

to work with real world products or prototypes to evidence and investigate regulatory
challenges with AlaMD

e to use these case studies to generate recommendations for regulatory framework
changes

e to carry out a formal programme evaluation and learn lessons from the regulatory
sandbox way of working

e to secure future year funding streams

To achieve these objectives, the dedicated MHRA programme team was created with two
main work streams: operational programme management [governance, stakeholder
management, risk management] and regulatory / technical case management

Sandbox Design

The Al Airlock pilot programme was intentionally designed to provide opportunities to explore
all regulatory challenges for AlaMD, therefore needed to be agile enough to be able to work
with candidates and products at any stages of their developments.

The Al Airlock focused primarily on the GB medical devices regulatory framework. This
framework of legislation and guidance is within the MHRA remit to amend and therefore it
was a key priority for us to focus the sandbox on this key area where action could be taken
rapidly.

The MHRA ran a call for applications to the public, industry and academia for AlaMD
developers to submit proposals to join the Al Airlock, with key eligibility criteria and testing
environments used to design the pilot cohort.

Eligibility Criteria

Applicants needed to be aiming for the product to be a medical device, as defined by the
MDR 2002, which utilised Al or Machine Learning. They needed to be a legal entity with the
rights to market their product in the UK. Most critically, there needed to be a commitment to
working with us throughout the sandbox testing. All applicants needed to meet these
conditions for their application to be eligible.
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Further criteria were then applied to the applications to shortlist the most eligible applicants.
These criteria were:

- The product has potential to deliver benefits for patients

- The product or prototype is innovative or a novel application
- The product presents a regulatory challenge

- The proposal is ready to be trialled

These criteria ensured that the candidates selected were most able to deliver results through
the pilot programme rapidly, an important consideration given the condensed timelines for
testing.

Sandbox testing environments
As a result of the broad testing opportunity, we established three key testing environments to

be used in the sandbox.

/g\/@\/@\

Simulation Airlock Research/ Virtual Airlock Real world Airlock

Thought experiment, Real world deployment

Virtual environments, real or

focussed roundtable or - environments.
workshop. synthetic data.

. . Depending on the regulatory
Explore potential failures, Testing products within status of the AlaMD product
product “pre-mortem” research scenarios to this may require MHRA

understand novel challenges

prior to real-world powers to assess safety for

Feasibility of addressing pre-market or post-market

these deficiencies is then deployment. issues

explored, refining . . N

investigations further in Similar to a "test bed MHRA maintains continuous
additional sandboxes. function for testing models, oversight to ensure safety.

provided by the candidates

. AN AN /

Figure 1 Overview of the three testing environments designed for the Al Airlock pilot: Simulation, Research/Virtual and Real World

Simulation Airlock is a workshop or roundtable-based activity used to address focused
questions and gather various perspectives on a challenge. This type of testing can be
tailored specifically to a set of key challenge areas. During the pilot the simulation workshops
begun with a short presentation to set the scene and a facilitate discussion was held along
with some focused breakout sessions. We looked across our broad stakeholder network and
brought together a unique cast list of colleagues to bring their unique perspectives to each
problem area. This type of testing environment is very flexible and can be applied to
challenges experienced by products maybe at concept or early development stage or those
without access or the need for data or a testing environment.
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Virtual Airlock is testing a model with real or synthetic data to address research scenarios
to gather insights of how the model works. This mechanism is like a “test bed” function used
to validate and verify Al models and products using specific data access through the testbed.
During the pilot Al Airlock these virtual environments were provided by the candidates.

Real world environment involves deploying a product in a hospital or trust without
impacting patient care, that way it protects clinical pathways while gathering evidence from
clinicians or hospital deployment. It is imperative that the products testing in the real-world
sandbox are done so with appropriate oversight in order to protect patient safety and clinical
pathways. The real world environment is not a clinical investigation.

Each of these testing environments have been tested as part of the pilot programme and will
continue to be refined throughout subsequent phases of the Al Airlock.

Programme Governance

To support the Al Airlock pilot programme a new governance structure was established that
included a Governance Board and Supervisory Committee. Each pilot candidate, upon
onboarding, formed a project team with a dedicated case manager from the MHRA Airlock
team. The project teams reported progress against the delivery plan, key technical
information and regulatory challenges, via their case manager, to the Supervisory
Committee and Governance Board.

» Governance Board: ensure that a coherent strategic approach is adopted to manage
successful delivery to time, cost and sufficient quality, of the Al Airlock programme
outputs. Throughout the design and testing phases of the programme the
Governance Board also provide a wealth of expert input to the Al Airlock technical
case studies.

» Supervisory Committee: oversee the operational and technical activity of the Al
Airlock programme by providing an expert advisory function to the Al Airlock
programme and the project teams within the cohort. Provide regulatory and scientific
advice to the Al Airlock project teams in relation to specific regulatory sandbox testing
plans, through active engagement at the Supervisory Committee meeting and
correspondence from the Al Airlock technical team.
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Figure 2 Al Airlock Governance Structure

All members of these groups were bound by signed confidentiality agreements and
declarations of interest which increased assurance to the candidates and MHRA of the
integrity of the sandbox governance. The core team, governance groups and key partners
enabled multidisciplinary expertise and collaboration from across the MHRA, government
departments, devolved administrations, Approved Bodies and the wider healthcare sector.

Timelines and Milestones
The pilot programme ran in the 2024-2025 financial year. It was publicly announced that the

MHRA would be developing the regulatory sandbox in May 2024 and work began to rapidly
design and build the sandbox in parallel to building the team.

Alrll)oc_:tk General Launch Call for Candidates Simulation and Virtual
vl‘:u:tlz: Election Webinar applications Onboarding Airlock testing
May July July Sept —Oct Nov - Dec February - March
—

. Governance Supervisory . i Testing
Alrloc_lt( teaT Board Committee P“S‘::I::(t)zgn TCatr_ldldl?tes_. completion and
recruitmen Established Established esting begin reporting

April - July November January

August October March - April

Figure 3 Timeline of the Al Airlock pilot activity

The design of the sandbox involved a comprehensive literature review of current and historic
regulatory sandboxes. A network of stakeholders and experts from the Al technology and
healthcare sectors alongside other government departments was established. Following the
UK general election the Al Airlock held its first public webinar in July and shortly after,
established its Governance Board and Supervisory Committee. Throughout Autumn 2024,
we opened the call for applications for industry to join the sandbox, ran an intense and
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comprehensive sifting and shortlisting mechanism and in November we designated the first
cohort of candidates.

Candidates were brought onboard into the Al Airlock, after signing non-legally binding terms
of engagement and dedicated case managers were assigned. The teams then worked
together to design the sandbox testing plan. Throughout the winter, the project teams met at
least weekly, to discuss the progression and developments of the testing plans in the
Simulation, Virtual and Real-World testing environments. In March 2025 the pilot testing
formally concluded, and candidates worked rapidly to produce their case study reports.

The following chapters of this report will provide additional details behind the Al Airlock,
candidate selection, regulatory sandbox testing methodologies, insights from the case
studies including evaluation of lessons learned.
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3. Candidates and Selection

Overview of applications

The call for applications to the Al Airlock was open from 23 September to 7 October 2024.
Approximately 40 applications were received, assessed and underwent a structured sifting
process. Of the products applying:
e 31% used generative Al, 23% used machine learning, 13% used predictive Al
e The most common clinical uses were diagnostics (25%), screening or imaging (19%),
and clinical decision support (19%).
e Clinical areas included oncology (15%), clinical workflows (12%), women’s health
(9%), chronic respiratory disease (9%), and health monitoring (9%).

Reflecting the complexity and evolving nature of the regulatory landscape for Al
technologies, applicants identified regulatory challenges across the full product lifecycle, with
most applications highlighting more than one area of uncertainty. The most cited challenge
was borderline classification. Determining whether the product’s intended purpose and
functionality would qualify as a medical device was specifically challenging. Other areas of
focus included risk classification, product training and validation, bias, explainability,
reliability, post-market surveillance, and change control. Notably, most applications came
from the micro and small SME sector, reflecting a strong presence of early-stage innovators,
or a greater willingness within this group to engage with regulatory challenges. Fewer
applications were received from large enterprises and academic institutions, perhaps due to
the more complex and time-consuming internal approval processes typically required in
these institutions exceeding the short application window.

Organisation size and type

University of academic . ‘\ Large Enterprise

institution: 3 >250 employees: 2

Medium SME >50 -250
employees: 4

Micro SME <10

Small SME 10-50 employees: 17

employees: 13

Figure 4. Applications by organisation size and type. Around 44% of applications were submitted by micro-SMEs with fewer
than 10 employees, 33% by small SMEs with 10-50 employees, and the remaining 23% were split between medium and
large enterprises and academia.
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Application review and sifting

Each application was assigned to two reviewers from within the Al Airlock programme team:
a lead reviewer and a second reviewer. The lead reviewer assessed the application against
the eligibility criteria outlined in the application form, while the second reviewer conducted an
independent review using the same criteria. If both reviewers agreed that an application met
the required standards, it progressed to the next stage. If both reviewers agreed it did not,
the application was deemed unsuccessful. Where there was disagreement between the
reviewers the application was discussed in a group setting to reach a decision. This could
result in the candidate being invited for a follow-up interview or being informed that their
application was unsuccessful.

v Lead reviewer and second PROCEED

reviewer agree to proceed Interview scheduled

Each Lead reviewer
application reviews the Independent .
L : 3 Lead reviewer and
Application form form against review

second reviewer
decisions are
incompatible

Group review

forms - allocated to a eligibility carried out & outcome

received lead and criteria and by second
second makes a reviewer

reviewer decision
E J [ )
J

Figure 5. Application review and sifting. Each application was reviewed by members of the Al Airlock team and followed the
same decision-making process which culminated in progression to interview or an unsuccessful application.

Aside from the eligibility criteria, other mandatory success criteria were measured.
Applicants needed access to their own data and testing environment (if utilising a virtual or
real-world Airlock), and the product had to be ready for testing. Reviewers also considered
the focus of the regulatory challenge to be explored, the type of technology proposed, and
the level of resource commitment available from both the applicant and the Airlock team.
Through this process, a shortlist of nine candidates was selected.

A final pilot cohort of five candidates were chosen following interviews with the shortlisted
candidates, considering deeper insight into their technologies, applicant readiness and
resource availability. This was reduced to four candidates following the withdrawal of one
participant after the organisation went into administration (an insolvency process).

The pilot cohort regulatory challenge areas spanned the product lifecycle. The Airlock team
selected challenges related to data generation for training and validation, Al hallucinations,
Al explainability, and post-market surveillance. While the maijority (three out of four), had
initially expressed interest in also exploring the borderline qualification question, time and
resource constraints limited the feasibility of addressing such a broad spectrum of
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challenges. The Airlock team, aware that other regulatory partners would be exploring these
areas in greater depth, decided to prioritise the novel and unexplored challenges.

Table 1. Overview of candidates, regulatory challenges and key objectives to be explored

during the pilot programme

Candidate &
Product Details

PACS Radiology
Autolmpression

Philips Medical Systems
Large language model
Radiology

SmartGuideline

by AutoMedica

Large language model
Clinical workflows

OncoFlow by OncoFlow
Large language model
Oncology

Federated Al Monitoring
Service (FAMOS)

by Newtons Tree

Virtual Environment
Radiology

Regulatory challenge

Validation of synthetic
datasets generated by an
LLM

Use of LLMs to validate
synthetic data

Reducing hallucinations and
non-determinism in LLMs

Assessing approaches to
LLM explainability and any
trade-off with clinical
performance

Improving AlaMD safety
through real-time monitoring
of key metrics (model drift,
data quality and automation
bias)

Key Objectives

Understand the parameters that
define good quality synthetic data
Challenges involved in using an
LLM to generate synthetic data
Use of LLM to validate synthetic
data

Evaluate LLM technology to
establish how retrieval augmented
generation (RAG) performs in
reducing hallucinations

Explore how to enhance quality of
recall

Compare clinical performance, and
explainability of traditional NLP
models vs LLMs on unstructured
oncology data

Explore methods to make Al
models explainable

. Assess the effectiveness of a real-

time monitoring system in
enhancing the monitoring of third-
party Al medical devices to
improve their safety

Understand reporting
responsibilities of different
stakeholders when a trend that
may lead to harm is identified
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4. Regulatory Challenges and Projects

This section of the pilot programme report provides an in-depth look at the approach used to
address the selected regulatory challenges within the Al Airlock. It is followed by individual
case studies — Philips Autolmpression, AutoMedica SmartGuideline, OncoFlow, and
Newton’s Tree FAMOS. Each case study outlines the specific regulatory challenge explored,
the underlying hypotheses and objectives, the testing methodologies used, and key findings
from testing in virtual or real-world hospital settings.

Overview of regulatory challenges and technologies

Approach and activities overview

The Al Airlock projects followed a structured four-step delivery approach.

1. Orientation: Situation assessment to understand the pilot technologies and relevant
regulatory context

2. Plan: Regulatory gap review and test plan development

3. Test: Testing through simulation, virtual, real-world, or hybrid environments; deeper
regulatory gap analysis conducted

4. Review: Synthesis of findings and recommendations

In the first step, the Al Airlock team undertook a situation assessment to understand the
candidate technologies. Together, the Al Airlock and candidate teams (referred to hereafter
as project teams) collaboratively examined the current regulatory landscape. This review
drew on regulatory documents identified by the project teams, and supervisory stakeholders,
particularly Team AB (Team Approved Body). Once the relevant documents were selected,
the project teams began selecting the most important ones. At the same time, testing plans
were co-developed to address each project’s regulatory challenges. These plans defined key
hypotheses, objectives, methodologies, timelines, and anticipated risks.

Following agreement on the testing plans, projects entered the testing phase. Most were
conducted through a combination of simulation, virtual and real-world Airlocks. While testing
was underway, the Al Airlock team continued prioritising regulatory documents, followed by
a detailed review of the prioritised guidance to identify areas requiring improvement for
AlaMD regulation. In parallel, the Al Airlock team ran simulation workshops with cross-
disciplinary experts. Insights from these activities were produced to inform the key findings
and recommendations of the Al Airlock programme. A final meeting with all project teams
marked the close of the delivery phase, followed by the completion of final reports.
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Case Study: Philips Healthcare - Autolmpression and the generation,
assessment and validation of synthetic data

DISCLAIMER: Methods,results of testing, verification and validation discussed in this report
are for regulatory science exploration purposes only. They DO NOT imply or confer any
product deficiency, nor do they imply additional requirements on Philips’ processes or
products.

Introduction

Radiologists and healthcare professionals face increased workloads due to staff shortages
and the growing number of imaging studies. This can lead to burnout, longer wait times for
patients, delayed diagnoses, and potentially missed diagnoses, compromising patient safety
and outcomes. Auto Impression leverages Large Language Model (LLM) technology to
automate the creation of the "Patient Impression" section in radiology reports. This
automation aims to reduce errors, minimise omissions, and speed up radiology reporting,
ultimately enhancing productivity for radiologists. The functionality is still at an early
development stage.

AlaMDs which perform summarisation of patient health data like Auto Impression require
testing against a broad spectrum of rich and representative data. Philips aimed to use an
LLM to generate synthetic radiology reports to improve representation of demographics with
abnormal radiology findings within the dataset. The synthetic data would then be assessed
for its suitability in testing an AlaMD, aligning well with the Al Airlock objective to understand
what constitutes high quality text-based synthetic data from a regulatory perspective, and
what approaches can be used to assess it.

The assessment involved confirming that the data was truly synthetic rather than a direct
reproduction of the original real-world or “ground truth” data. Given the large volume of data
required, Philips proposed using established automated mathematical methods to carry out
most of the assessment, complemented by a small sample of human-reviewed data. Once
the reports were confirmed as synthetic, a “Patient Impression” would be generated by an
LLM for both the synthetic and real data. These impressions would be evaluated for quality
against criteria such as clarity, groundedness, accuracy, and completeness. To manage
scale, an LLM would act as the primary assessor with human validation used on a small
sample to cross-check the reliability of the LLM’s judgement.

Requlatory challenges

Two broad categories of regulatory challenges were considered. The first relates to

describing regulatory requirements for GenAl-enabled devices. The second, for those
devices that do fall under regulatory oversight, involves determining the types of valid
scientific evidence needed to evaluate their safety and effectiveness across the Total
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Product Lifecycle (TPLC). These challenges are particularly relevant for GenAl-enabled
devices that use open-ended input and output formats. These differ from the more structured
formats typically found in other AlaMD and may require new evaluation approaches.

Synthetic data may create a more robust dataset and evaluation if accurate and
representative. Evaluating that accuracy and representativeness is essential, considering
elements including:

the diversity of the initial clinical dataset (different geographies, modalities, users, etc.)
the real world or ground truth data that is adequate for generation of synthetic data

how to measure the quality of synthetic text data given the lack of standardised
evaluation metrics/scores

addressing both clinical similarity/differences and linguistic similarity/differences.

The Al Airlock pilot generated a large volume of data and scoring outputs that were difficult
for humans to evaluate manually. The Philips and MHRA team worked on the assumption
that these software enhancements are designed not to replace radiologists, but to improve
efficiency and support the quality of their work. As such, it was important to strike the right
balance between automating the analysis of this data and including human evaluation to
ensure accuracy and clinical alignment. The proportion of automated versus human
validation should be determined on a case-by-case basis, accounting for the specific use
case, the associated risk, and the added value of human input.

Hypotheses

There will be no significant difference between synthetic data and real data in the
quality of impressions generated in Radiology reports

There will be no significant difference in the errors identified between synthetic
and real data using the automated evaluation Evaluation of the performance and
safety can be performed using LLMs as Judges.

An LLM Judge will correctly identify errors introduced into real and generated
impressions

An LLM Judge will correctly ignore nonclinical counterfactual differences between
reports and their generated impressions.
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Methods
Synthetic data generation

Philips used the MIMIC-IV, a large, publicly available database of de-identified health data
from over 280,000 patients who stayed in critical care units at the Beth Israel Deaconess
Medical Centre between 2008 and 2019. The dataset includes patient measurements,
orders, diagnoses, procedures, treatments, and free-text clinical notes. MIMIC-1V is widely
used for research and education, helping to reduce barriers to conducting clinical studies.

Philips used an LLM to create new, structured reports based on existing examples to support
the generation of synthetic radiology reports. The goal was to maintain the structure and
modality and clinical indication of the original reports while introducing new, randomised
clinical content. A prompt was developed to generate a new structured report that used the
format of the source (MIMIC report), but with different findings. The generated reports
excluded introductory or summary text, such as impressions. The model used was
configured to encourage diverse outputs. The model was chosen for its advanced language
capabilities and suitability for generating clinically relevant synthetic text. The resulting
synthetic reports enabled a broader range of testing scenarios while maintaining realism and
structural consistency.

Generating synthetic impressions

To complement the generation of synthetic radiology reports, Philips also focused on
creating the impression section, a critical component of radiology documentation that
summarises the key findings and provides clinical interpretation. Care was taken to ensure
that only reports without existing impressions were selected for generation of a synthetic
impression. Using tailored prompts, the LLM generated impressions based on either the
original findings from the MIMIC-IV dataset or the synthetic reports created earlier. The
prompt used for LLM-generated impressions was designed to promote clarity, conciseness,
and clinical relevance. It instructed another large language model (with a temperature to
encourage more focused and deterministic outputs) to read the full body of the report and
write a corresponding impression. The model was prompted to exclude normal findings and
instead highlight critical abnormalities, incidental findings, and suggested follow-up actions;
elements that improve the clinical utility of the output.

The full reports (including impressions) were processed in batches to ensure scalability and
consistency across the dataset. These LLM-generated impressions were designed to
summarise the most important content from each report. They were later assessed using
another LLM acting as a “judge”, and selected samples were earmarked for further human
evaluation within the sandbox environment.
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Generating reports with counterfactuals

Philips manually introduced counterfactuals - small, controlled changes - to both original
(ground truth) and synthetic reports to evaluate how reliably the LLM-judge distinguished
genuine findings from altered or noisy content. Twenty representative samples were
selected, and for each one, five counterfactual variants were generated, resulting in a
balanced set of altered reports. The goal was not to maintain clinical realism in these
modified reports, but to introduce noise in a structured way to test the robustness of the
LLM-judge.

Seven types of counterfactuals were used, ranging from subtle character-level edits to
changes in key clinical details such as organ, laterality, or gender references. Some
counterfactual types relied on specific linguistic features (e.g. anatomical terms or gendered
language) and could therefore not be applied equally across all samples. As a result,
counterfactuals involving simple textual modifications were more frequent than those
requiring specific clinical terminology. Care was taken to apply counterfactuals consistently
across both synthetic and original reports despite this variation. This allowed for a fair and
controlled comparison of the LLM-judge's behaviour across the two datasets.

Generating reports with errors

Philips manually applied deliberate errors to a consistent set of radiology reports to evaluate
the reliability of the LLM-judge. Twenty reports were selected from both the original and
synthetic datasets and five different types of clinically relevant modifications were applied,
producing a total of 100 altered samples in each dataset.

Error types considered most clinically relevant were focused upon, following consultation
with radiologists. These included changes that could meaningfully affect clinical
interpretation such as laterality swaps, organ swaps, negations, insertions, deletions etc.

LLMs can produce slightly different responses each time they are run, even when given
the same input. To manage this non-determinism and improve the reliability of the LLM-
Jjudge, two strategies were used:

Measuring consistency: For each evaluation, the same prompt was run 10 times, and the
standard deviation of the results was calculated. This helped quantify how much the
model's outputs varied and ensured that the results were stable enough to be trusted.

Prompt refinement: The prompt given to the LLM-judge was reviewed and adjusted to
improve performance. By refining the wording and structure of the prompt, the model’s
responses became more focused and clinically aligned.

These steps were essential to ensure that the LLM-judge could be used reliably within the
sandbox setting. More work on mitigating non-determinism can be found in the
SmartGuideline case study.
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Comparison of real and synthetic reports: clinical similarity
Philips used two complementary approaches to assess the clinical similarity between real

and synthetic radiology findings: ICD-10 code comparison and semantic similarity analysis
using BioBERT.

ICD-10 codes are internationally standardised alphanumeric codes, used to classify
diseases and health conditions in clinical documentation and billing. Maintained by the World
Health Organisation, each code begins with a letter representing a broad disease category
(e.g. “E” for endocrine disorders), followed by numbers that specify the diagnosis (e.g. “11”
for type 2 diabetes), and sometimes a decimal for additional detail (e.g. “.9” for “without
complications”). To analyse how real and synthetic findings differ, Amazon Comprehend
Medical Service was used to extract ICD-10 codes from both sets of findings. Philips
included only codes that Comprehend Medical marked as present in the text (non-negated),
and with a high confidence in the match (>0.75).

BioBERT, a deep learning model fine-tuned on biomedical texts, was used to assess clinical
similarity beyond coded terms, a deep learning model fine-tuned on biomedical texts. Unlike
general-purpose models, BioBERT is designed specifically for medical and life sciences
language, allowing it to capture clinical nuance more effectively. It generates vector
embeddings, a type of mathematical representation, of each findings section.

Comparison of real and synthetic reports: linguistic similarity & human evaluation

Linguistic similarity analysis was performed to ensure synthetic reports maintained the same
linguistic style as original reports. This was evaluated using the following metrics: GLEU,
ROUGE, Parts-of-Speech Overlap and Automated Readability Index (ARI) (see appendix for
details). To ensure that the BioBERT, ARl and ROUGE scores effectively evaluated the
similarity between synthetically generated reports and their original counterparts, a
calibration step with human expert input was performed as follows:

1. Data Collection: A diverse subset of 20 original reports and their corresponding
synthetically generated versions was collected. The dataset covered various topics,
clinical domains, and writing styles to provide a comprehensive evaluation.

2. Initial Human Scoring: A set of 2 clinical experts from the Philips Clinical team, with
experience in reading radiology reports (U.S. board certified Radiologists), blindly
reviewed each original and synthetic report. They then scored the reports on a Likert
scale from 1 to 5 for readability and similarity to verify that the linguistic structure,
grammar, and terminologies used (focusing on clinical terms) were similar to ground
truth radiology reports.

For each report, the experts scored the following points: Clinical Content Similarity, Linguistic
Style Similarity, Understandability compared to the original report. In addition, an
independent analysis for each report was carried out. The experts scored the following
points: Language, Structure, Completeness, Clinical Soundness (see appendix for details)
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Results
ICD-10 Code Comparison

Figure 6 shows the distribution of ICD-10 codes across all real and all synthetic findings. The
distributions differ noticeably, with several ICD-10 codes appearing only in the synthetic
dataset. This suggests that the underlying pathologies and clinical content of synthetic
findings differ from real ones, which aligns with the goal of introducing variation in synthetic
data generation.

Frequency of ICD-10 Codes

ICD10 codes in REAL FINDINGS
ICD10 codes in SYNTHETIC FINDINGS
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Figure 6. ICD10 Code Distribution Comparison. This chart compares the distribution of ICD-10 codes in real and synthetic
findings. The blue dots represent ICD-10 codes from real radiology reports in the MIMIC dataset, while the red dots
represent codes from the synthetic dataset. The x-axis shows individual ICD-10 codes (not legible due to density), and the
y-axis indicates the frequency of each code across the respective datasets.

Semantic Similarity with BioBERT

Cosine similarity was used, a common measure of how similar two vectors are, to compare
the embedding of each real finding with its paired synthetic version. Scores close to 1.0
indicate strong similarity, while scores near 0.0 reflect major differences. Most synthetic
reports had similarity scores between 0.6 and 0.8, indicating high, but not identical, clinical
similarity. This moderate distance was taken as a reflection of intentional changes
introduced through prompting, such as replacing organs or conditions to increase variety. A
small number of pairs scored extremely high or low. These were often due to very short
reports, or errors in text parsing or generation. Further investigation of this subset could not
be investigated due to resource constraints.
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Human evaluation results

Once the human evaluation had been carried out, there was a feedback session. One
observer mentioned that the task was notably easier when dealing with shorter reports. The
same observer suggested that using a three-level scale would simplify the task, as the
current five-level scale was challenging and often led them to revisit previous assessments.
Additionally, one of the observers noted that they could not distinguish between synthetic
and actual reports.

H Observer 1 Observer 2
14

12

10

Report count
[<)]

H

N

1 2 3 4 5 1 2 3 4 5

Score

How similar are these two reports
in terms of understandability?

How similar are these two reports
in terms of clinical context?

How similar are these two reports
in terms of linguistic style?

Figure 7. Inter-observer High level Analysis - Frequency distribution of scores for comparative analysis per question.

After further data processing, no significant correlation was found between the grading
scores of the two observers, with one exception: a statistically significant negative correlation
of -0.52 (95% CI: -0.78 to -0.11) was observed in their assessments of the professionalism
of the “Language” used in the original (real-world) MIMIC report. This suggests a notable
disagreement between the observers on this criterion.

There are two plausible explanations for these findings:

e underpowered multiple testing — the number of samples assessed may have been too
small to detect reliable agreement across multiple dimensions.

« insufficient rater training and alignment — the observers may not have received
adequate calibration or guidance on how to apply the scoring criteria consistently prior
to completing the task.
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The average score was used for the calibration analysis with the mathematical target

metrics.

Table 2 - Correlations in between the objective metrics and observer ratings (see appendix
for metric descriptions)

Question Correlation Count Lower C.l. UpperC.l.
1. How similar are
these two reports are | g, pe g 0.390 20 |-0064  |0.710
in terms of clinical
content?
ARI MIMIC -0.342 20 -0.681 0.119
Report
ARI Synthetic -0.069 20 -0.497 0.385
Report
2. How similar are Difference ARI.
: score (Synthetic- | -0.315 20 -0.665 0.148
these two reports are MIMIC)
in terms of linguistic
Style? Average
sentence length | -0.481 20 -0.762 -0.049
MIMIC Report
Average
sentence length -0.025 20 -0.462 0.422
Synthetic Report
3. How similar these
L0 [EPOIRS E1EE (1 ROUGE 0.444 20 0.002 0.741
terms of
understandability?
Missing value handling was conducted using pairwise exclusion, and a 95.0% confidence
interval was applied. Significance was determined at the 0.05 level, with bold indicating
significant correlations.

The only statistically significant correlation was found between average sentence length in
synthetic findings and similarity scores. This indicates that shorter sentences were
associated with greater similarity, suggesting that simpler and more concise language may
improve alignment with reference data. Question 3 showed a statistically significant
correlation with ROUGE scores indicating that reports with similar phrasing have similar

understandability (see appendix Table s1).

Question 1 showed a weak positive relationship with BioBERT similarity scores, suggesting
a possible relationship between this metric and semantic similarity in the findings. This
relationship was not statistically significant, so it should be interpreted with caution. If the
relationship is underpinned by an undetected correlation, it would indicate that, when
radiologists rated pairs of reports as more similar in their clinical context, BioBERT scores

tended to be higher.
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Question 2 showed a weak negative relationship with the Automated Readability Index
(ARI). This relationship was also not statistically significant. If the relationship is underpinned
by an undetected correlation, it implies that radiologists rated pairs of reports as more similar
in their linguistic context as readability decreased (i.e. as text becomes more complex).

LLM as a judge results

To investigate the quality and reliability of the synthetic reports and impressions generated,
Philips employed LLMs in an evaluative role, referred to as "LLM-as-a-Judge”, to investigate
the accuracy, clarity, groundedness and completeness of the synthetic records and
impressions generated. These metrics would be used to assess the quality of the synthetic
reports. The generated content was assessed using four metrics: accuracy, completeness,
clarity, and groundedness. Each metric was scored on a scale from 0 to 10, accompanied by
a motivation explaining the given score. Philips used an LLM model with a temperature
setting of 0.6 for this evaluation. The same system prompt was used for each metric: clarity,
accuracy, completeness and groundedness. The LLM judge evaluated all impressions, those
generated by humans, the synthetic impressions based on real reports and synthetic
impressions based on synthetic reports.

To assess the quality of impressions generated by the LLM, a human evaluation was
conducted using a subset of radiology reports. A random sample was selected from two test
sets: 15 original MIMIC reports with original impressions and 20 original MIMIC reports with
LLM-generated impressions. Each impression was assessed using four key evaluation
metrics (see appendix for details):

e Accuracy: The extent to which the impression is factually correct, including accurate
values, details, and the absence of errors or misrepresentations.

e Groundedness: Whether the impression is anchored in the original findings, avoiding
hallucinations and clearly distinguishing between facts and opinions.

e Completeness: Whether the impression captures all relevant information, including
clinical context and necessary detail.

e Clarity: How well the impression is structured, including the use of appropriate,
concise, and logically organised language.

These same metrics were applied by both the LLM Judge and certified radiologists, who
independently reviewed the same set of impressions. Radiologists also evaluated the LLM
Judge’s scores, offering a human perspective on the model’s performance.
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The resulting scores were analysed to compare evaluations from the radiologists and the
LLM Judge, identifying levels of agreement and pinpointing discrepancies. In addition to
numerical scoring, qualitative comments from the radiologists were reviewed to uncover
recurring strengths and weaknesses, offering practical insights into areas where LLM

evaluation methods either align with or diverge from expert human judgement.

Agreement between the certified radiologist observers

Evaluators were asked to grade their agreement with the LLM judge score, for each metric,
with a binary agree/disagree. All 70 pairs of Report-Impressions and LLM Judge scoring

were assessed by two blinded certified radiologists.

Table 3 - Count of agreements and disagreement for the observers on the LLM judge scores

per metric.
Observers count of agreement / disagreement with LLM judge
Metric Decision
Obs1 Obs2 Total
Agree 52 53 105
Accuracy
Disagree 18 17 35
Agree 63 54 117
Clarity
Disagree 7 16 23
Agree 53 56 109
Groundedness
Disagree 17 14 31
Agree 46 45 91
Completeness
Disagree 24 25 49

Agreement in between Human scores and LLM judge score

Evaluators were asked to grade their assessment on a scale from 0-10 for each metric
across all 70 reports-Impressions pairs. Overall, Observer 2 had higher agreements to LLM
scoring than Observer 1 for all metrics, ranging from fair to good. Observer 1 had fair
agreements with the LLM scoring. Weighted kappa demonstrated higher agreement (all fair)
between the two Observers, suggesting that the 10-point scale was too granular, and should
be reduced to 5 or 3 levels.

Page 30 of 77




Feedback on Observers Recommendations

The radiologists stated that some recommendations were deemed valuable and could be
incorporated by a human radiologist; however, others were inappropriate. Recommendations
for surgery, for example, were seen as beyond the scope of what a radiologist would
typically suggest.

The LLM Judge scored higher when the impressions included recommendations, regardless
of their appropriateness. It may be necessary to fine tune the LLM Judge to avoid favouring
recommendations that are deemed incorrect or irrelevant by human experts.

Conclusion

When generating synthetic radiology reports for evaluation purposes, it important to preserve
linguistic similarity to real reports while introducing sufficient clinical variation. Metrics such
as BioBERT similarity and ICD-10 distribution effectively captured clinical differences, while
ROUGE-L, POS tag overlap, and ARI scores helped confirm stylistic alignment. Together,
these metrics provided a practical framework for assessing the quality of synthetic data.
Linguistic similarity is important for using synthetic data to supplement real clinical data;
without it, the rationale for supplementation may be weakened.

This case study also offers insights into the evaluation of generated impressions by both
human radiologists and an LLM Judge. Human observers aligned reasonably well with each
other and with the LLM Judge, with Observer 2 showing stronger agreement. The LLM
Judge applied less granularity in scoring, however, consistently favouring high scores (e.g.,
9). Agreement metrics such as weighted kappa helped compensate for these differences
and supported the overall validity of comparisons.

A key issue identified was the interpretation of “groundedness” and “completeness”. The
LLM Judge tended to conflate the two, treating omissions as a failure of groundedness.
whereas radiologists interpreted groundedness as the extent to which impressions are
derived from report content, with omissions affecting completeness instead. This divergence
likely contributed to lower agreement scores and highlights the need for clearer definitions
and evaluator guidance.

While the LLM Judge shows promise in assessing radiology impressions, its interpretation
and evaluation of groundedness, completeness, and recommendation relevance requires
improvement, especially when distinguishing between human- and machine-generated
reports. Future work should prioritise the refinement of scoring frameworks, clearer
evaluation definitions, and more detailed guidance for automated evaluators to support
consistency, interpretability, and alignment with clinical reasoning in the assessment of
synthetic radiology data.
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Case Study: AutoMedica — SmartGuideline and mitigating risks of
LLM hallucination and non-determinism

Introduction

Guideline adherence improves health outcomes by promoting interventions with proven
benefit, discouraging ineffective ones, and supporting greater consistency in care. Clinicians
deviate from guidelines due to several factors: lack of access to guidelines at the point of
care; awareness and access; clinician perception that their own experience outweighs
guideline recommendations; lengthy, complex, or ambiguous guidelines.

SmartGuideline is an Al clinical decision support (CDS) tool designed to help healthcare
professionals in both primary and secondary care follow best-practice recommendations. It is
designed to provide real-time access to summarised clinical guidelines, answering
management questions quickly and referencing the original guideline sources. The tool has
potential to offer support across the full spectrum of clinical decision-making: diagnosis, drug
selection, dosing, contraindications, investigations, treatments, and referral criteria.
SmartGuideline aims to reduce unwarranted variation in care, improve safety, and increase
clinician productivity by making guideline information more accessible and usable at the
point of care.

Large language models (LLMs) are a type of Al algorithm that predict the next most likely
word or part of a word based on previous context. This is achieved through creating
mathematical representations of words and training the deep learning algorithms on huge
volumes of textual data that pre-compute probabilities for the next most likely word. This
means that Al produces plausible-sounding output but does not guarantee factual accuracy
(i.e. the ground truth) which can result in plausible sounding inaccuracies (known as
hallucinations or fabrications). LLMs are becoming more common in healthcare, from
summarising clinical encounters and patient records to supporting clinical decisions. While
this technology has great potential, the associated risks present key regulatory challenges.
Even well-trained Al systems that use LLMs can confidently generate these plausible
sounding inaccuracies, which in healthcare could lead to patient harm. The Medical Device
Regulations 2002, which apply in Great Britain, require the benefits of the product to
outweigh known and reasonably foreseeable risk. These risks should be mitigated primarily
through safety by design. Retrieval-Augmented Generation (RAG) is a technique that
enhances LLMs by grounding their outputs in curated external knowledge sources. By
combining the conversational fluency of LLMs with the factual accuracy of retrieved content,
RAG aims to address Al hallucinations. In this architecture, the LLM generates outputs using
information drawn from a validated knowledge base, bridging “retrieval” and “generation.”

AutoMedica’s clinical decision support tool applies an adaptation of RAG in a healthcare
context. Built using a curated knowledge graph, it applies its proprietary Tree-anchored
Graph-RAG (TaG-RAG) to a structured database of National Institute for Health and Care
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Excellence (NICE) resources, including clinical guidelines, knowledge summaries, patient
leaflets, and a selection of medications from the British National Formulary (BNF).

Requlatory hypotheses & challenges

The team identified four primary regulatory hurdles that currently limit the safe and effective
use of LLMs in regulated healthcare applications:

¢ Hallucination: The model may generate plausible sounding but factually incorrect or
clinically unsafe content

¢ Non-determinism: Given the same input, LLMs can produce different outputs, which
can undermine consistency and predictability

e Training data and bias: The quality and representativeness of training data affect
how well the model performs across different populations. Poor or
unrepresentative data can lead to harmful inequities. More work on assessing and
validating training data can be found in the Philips Autolmpression case study.

o Explainability: Regulatory expectations increasingly require Al systems to
demonstrate how they reach a conclusion. A lack of transparency can reduce trust
in Al-generated advice. More work on explainability can be found in the OncoFlow

case study.

In addition to exploring how these risks can be mitigated, the Al Airlock programme
examined how SmartGuideline is positioned within the broader UK regulatory landscape. A
further key objective was to assess the clinical relevance of SmartGuideline through
engagement with a group of practising clinicians.

Hypothesis

The Al Airlock programme set out to test the hypothesis that key regulatory
concerns surrounding the use of large language models (LLMs) in medical devices
could be addressed through a safety-by-design approach by using RAG.

Methodology

To evaluate the safety and performance of SmartGuideline, AutoMedica tested the tool in
the Al Airlock sandbox.

AutoMedica obtained test licences and data access from NICE, the Pharmaceutical Press,
and the Medusa database. This allowed SmartGuideline to be built and tested using
authoritative UK guidance, including the BNF, BNFC and NICE clinical guidelines.
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Testing took place in three phases. First, SmartGuideline’s responses were compared
directly to the baseline model (ChatGPT-40), to assess hallucination and omission rates.
Next, reproducibility was tested by running 1,000 clinical queries through the model ten
times each (n=10,000), allowing the developers to evaluate the consistency of responses.
Finally, 19 GP trainees from Surrey participated in a live session where they explored the
tool’s usability, trustworthiness, and how it handled clinical complexity.

SmartGuideline usability

During the development of SmartGuideline, two detailed rounds of patient and public
involvement (PPI) were undertaken with 30 healthcare professionals from Imperial College
London and Imperial College healthcare trust. Sessions were recorded and a qualitative
analysis was undertaken which highlighted several key themes: clinical utility, usability, staff
compatibility and guideline comprehensiveness.

It was highlighted that to be a truly useful tool for doctors, local trust guidance must also be
incorporated. Usability was addressed by redesigning the user interface during the Al
Airlock.

Virtual and real-world Airlock testing

Two versions of the system were evaluated: an early proof-of-concept (PoC) version, was
tested in a virtual environment to identify technical risks, and an alpha version, tested in a
real-world setting Airlock. The study was designed to simulate real-world clinical scenarios
and involved licensed UK medical doctors. Each doctor was randomly assigned a clinical
question derived from NICE guidance or the BNF and provided an answer using either
SmartGuideline or a baseline model, without being told which system they were using.

The core safety question was: how often does the model generate a clinically meaningful
error?

The primary efficacy outcome was the rate of accurate query responses, and the primary
safety outcome was the rate of hallucination .Hallucinations were classified as either major
or minor, depending on whether they could or could not influence diagnosis or treatment
decisions (as described in the CREOLA framework). Any major hallucination automatically
triggered a root cause analysis, ensuring that lessons could be drawn to further improve the
system.

Omissions were documented as a secondary outcome, in which the model failed to produce
a response.

Non-determinism tests

The reproducibility of SmartGuideline was measured across a dataset of 1,000 queries, each
submitted 10 times. This amounted to 10,000 responses, analysed using a range of natural
language processing similarity metrics. These included BLEU and ROUGE (which assess
word and phrase similarity for models with short textual outputs), and BERT and SBERT
(which capture semantic meaning for longer outputs). The goal was to understand how
variable the model was in its output, and whether such variability might pose a risk in a
clinical setting. Initial results showed high internal consistency, with most variation occurring
in phrasing rather than content.
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Clinician workshop

Beyond technical performance, user trust and usability were also explored. In a live
workshop, 19 GP trainees interacted directly with the model, using real clinical queries and
assessing the tool’s usefulness in real-time. Participants were asked to comment on
explainability, potential biases, and overall user experience. Their feedback helped identify
areas where SmartGuideline’s interface and response style could be improved, for example,
summarising information more succinctly or highlighting where decisions were based on
national vs local guidance

While time and resource constraints limited full evaluation of all metrics, comprehensive
analysis was completed for the primary outcome and overall response quality. Bias and
explainability were assessed qualitatively in the GP trainee session, and reproducibility was
evaluated across the full test dataset.

The study was conducted in February 2025, with statistical analysis and reporting finalised in
March. The study was powered using the primary safety outcome; from pilot work, no
hallucinations were expected with SmartGuideline and about 5% from chatGPT-40. Using a
power of 90% at an alpha of 0.05, a minimum of 406 responses (203) in each arm were
required.

Results

PoC testing results

In 493 tests, all of which were manually evaluated (n=413 SmartGuideline vs n=80
chatGPT40) there were no (0%) hallucinations with SmartGuideline vs 6 (7.5%) major
hallucinations with chatGPT40 (P<0.0001).

In the PoC model, there was limited question rephrasing and access was restricted to NICE
guidelines alone. Many of the clinical questions posed related to drug prescribing or adverse
effects. As a result, once a subset of drug data from the BNF was incorporated, performance
improved significantly. Moreover, to ensure the SmartGuideline model gave consistent
answers, it always chose the most likely next word (a method called greedy decoding).
Strong safety rules meant the model struggled to understand slightly different wording, which
led to higher omission rates with SmartGuideline. Omissions were defined as failure to
generate any response, or the model stating it does not have adequate information for a
response when all the information needed for a response is present. Table 4 demonstrates
comparative omission and hallucination rates with the SmartGuideline PoC and the baseline
model. SmartGuideline omissions were significantly higher (P<0.001) whilst rates of
hallucination were significantly lower (P<0.001) in the PoC testing.
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Table 4 - Comparative omission and hallucination rates with the SmartGuideline PoC and
chatGPT4o

Hallucinations Omissions
SmartGuideline 0/413 35/413
(0.0%) (8.5%)
ChatGPT-40 6/80 0/80
(7.5%) (0.0%)

Alpha testing results

A total of 872 manual human evaluations were undertaken on the outputs of SmartGuideline
(n=436) vs baseline GPT (n=436). There were no hallucinations and 5 omissions with
SmartGuideline. There were 3 omissions (failures to generate a response) with the Chat
GPT40 model, and 23 (5.3%) hallucinations. Root cause analysis divided the sources of
these hallucinations as follows: n=12 faithfulness hallucinations (correct information but
untrue based on underlying source material); n=7 factuality hallucinations; n=8 incorrect
guideline sources. These categories were not mutually exclusive, multiple types of
hallucination were present in some responses.

There were no differences in the rates of omission (P=0.725). SmartGuideline displayed
statistically significant lower rates of hallucination (P<0.0001) (Table 5). Some
SmartGuideline omissions were dependent on the phrasing of the question. For example,
the model performed well when asking “signs that indicate need for referral for venous leg
ulcer disease” but generated no response (omission) when asked about the “referral criteria
for venous leg ulcer disease”. Strategies to mitigate these residual omission events are in
development.

Table 5 - SmartGuideline alpha testing vs baseline GPT

Hallucinations Omissions
SmartGuideline 0/436 5/436
(0.0%) (1.1%)
ChatGPT-40 23/436 3/436
(5.3%) (0.7%)

In all omission cases, no data were generated by the models, meaning there was no
information available on which to base a clinical decision and, therefore, no associated
clinical risk. The omission rates for SmartGuideline and the baseline model (1.1% and 0.7%
respectively) were considered to be of low likelihood, with a likelihood score of 2 and a
severity score of 1, according to ISO 14971.
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The rate of hallucinations with SmartGuideline was (0), resulting in both a likelihood and
severity score of 1. In contrast, hallucinations generated by ChatGPT included both
faithfulness hallucinations - where information was broadly correct despite referencing non-
existent sources - and factuality hallucinations, which were assessed as having a moderate
severity (score = 3). Given an observed hallucination rate of 5%, the likelihood was also
scored as moderate (score = 3).

When combining hallucinations and omissions, the maximum scores for likelihood and
severity were used. ChatGPT's outputs resulted in an aggregate risk score of 9 (3 x 3),
constituting high clinical risk. By comparison, SmartGuideline achieved an aggregate risk
score of 2 (2 x 1), indicating low clinical risk for the primary outcome measure.

Table 6 — table of total risk score, using likelihood and severity as per ISO 14971.

Consequence
Likelihood | Insignificant Minor Moderate Major Severe
Almost Certain Medium High High
Likely Medium Medium High
Possible Medium Medium High
Unlikely Low Medium Medium High High
Rare Low Low Medium High High

Non-determinism
Consistency in responses is critical for Al healthcare models.

Semantic entropy was relatively high at 7, indicating low exact word match consistency.
However, the BLEU score (short phrase lexical similarity) was 0.58 (high), the ROUGE score
(long phrase lexical similarity) was 0.69 (very high), and the BERT and SBERT scores
(which assess semantic similarity) were 94% and 97% respectively. For SmartGuideline,
generating ten outputs per input was judged sufficient to capture variability in a meaningful
and efficient way. The range of benchmarking scores reported here provides a promising
foundation for standardising reproducibility metrics for regulatory consideration.

Secondary outcomes (Goodness of response, training data, bias and explainability)

The primary method for reducing poor-quality training data and bias within the model was
the use of a proprietary information retrieval graph structure, combined with high-quality,
information sources, to generate responses.
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Explainability and the potential for bias were assessed during in-person user testing with 19
GP trainees. For a subset of SmartGuideline responses, participants evaluated the system
using structured criteria. All (100%) of participants felt the SmartGuideline answers were
moderately or strongly supported by scientific and clinical consensus; 94% felt that answers
demonstrated understanding of the proposed clinical question; 100% felt that answers
demonstrated correct knowledge recall; 83% felt there was moderate or strong explainability
within the answers presented; 72% felt that the model answers contained unbiased
information, (i.e., 28% felt there was potential for bias). Qualitative insights gathered through
group discussion indicated that these concerns were less about the model itself and more
about the underlying clinical guidelines, which participants felt were not always
representative of diverse populations.

Importantly, this evaluation did not establish a definitive threshold for explainability required
for clinician trust. The findings do suggest that perceptions of "sufficient" explainability are
likely to vary between individuals, depending on their baseline clinical knowledge, familiarity
with the patient in question, and comfort with digital tools. This variability underscores the
importance of designing Al systems that offer layered or customisable levels of explanation
to meet diverse user needs.

Conclusion

This case study highlights the value of structured, real-world testing to assess the clinical
safety, reliability, and usability of Al tools designed to support clinical decision-making. It
particularly demonstrates how targeted evaluation methods — such as hallucination rate
assessment, deterministic decoding, and ISO 14971-based clinical risk scoring — can be
applied in practice to interrogate system behaviour in a controlled environment.

The use of comparative testing against baseline models provided a clear framework for
identifying specific safety gains (e.g. hallucination reduction) and trade-offs (e.g. increased
omission rates). This underlines the importance of context-specific evaluation: techniques
that improve safety may impact completeness or usability, and decisions on deployment
should consider these trade-offs explicitly. The application of semantic similarity,
BLEU/ROUGE scores, and risk-adjusted metrics enabled a multi-dimensional view of
performance, which is likely to be more informative than any single indicator. These
techniques could inform future guidance on performance benchmarking and validation.

Finally, qualitative testing with clinicians surfaced important insights into explainability and
trust, underscoring that user perception of Al tools cannot be separated from technical
performance, and may vary according to training or expectations.

Together, these techniques offer a toolkit for regulators and developers seeking to evaluate
AlaMD products in a way that is robust, transparent, and proportionate to clinical risk.
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Case Study: OncoFlow — OncoFlow and the trade-off between
explainability and clinical performance

Introduction

OncoFlow aims to transform cancer care by tackling key inefficiencies in clinical workflows,
especially those surrounding Multi-Disciplinary Teams (MDTs) and their meetings (MDTMs).
Cancer treatment decisions must bring complex clinical data from multiple sources together
and align it with the latest medical guidelines and best practices. Any delays in gathering this
information or inconsistencies in interpreting it can negatively affect patient outcomes and
delay critical care.

OncoFlow aims to improve the efficiency, accuracy, and transparency of cancer decision-
making by integrating Al into cancer care workflows. Acting as an Al-powered co-pilot and
decision-support tool for MDTs, OncoFlow helps clinicians by:

1. Enhancing consistency and transparency in patient care pathways.
2. Optimising the time spent discussing complex patient cases.

3. Ensuring the efficient use of clinical and diagnostic resources to support better
decisions.

OncoFlow’s automates key tasks that typically demand considerable clinician time and effort.
The platform allows oncology teams to concentrate on critical decisions that require their
expertise by providing clinicians with structured, evidence-based patient information.

OncoFlow consists of two main Al-driven components:

« Data Extraction System: This algorithm processes unstructured diagnostic and
medical reports, converting raw data into clear, structured clinical summaries that can
be rapidly reviewed and acted upon.

« Treatment Matching System: This algorithm aligns the extracted clinical data with
current, evidence-based treatment guidelines, ensuring that MDTs have access to
personalised and up-to-date treatment options for each patient.

Designed as a clinical decision-support tool that supports rather than replaces clinicians.
OncoFlow maintains human oversight and accountability throughout the decision-making
process. The platform seeks to enable more effective, personalised, and timely oncology
care by standardising patient data and treatment pathways, ultimately improving outcomes
for patients and healthcare systems alike.
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Requlatory challenges

With Al-powered decision-support tools like OncoFlow operating in an evolving regulatory
landscape, key regulatory considerations include compliance with the MDR 2002, adherence
to Good Machine Learning Practice (GMLP) principles, and ensuring strong explainability to
gain clinician trust and meet regulatory scrutiny.

A primary challenge for OncoFlow was defining and implementing explainability and
transparency within its Al systems. Many Al models, particularly those based on LLMs, are
often described as “black boxes.” This means it can be difficult for clinicians and regulators
to understand how the Al arrives at specific decisions. Therefore, OncoFlow had to
demonstrate how Al models could deliver traceable, evidence-based justifications for
treatment recommendations. Whilst aligning with current regulatory expectations for safety,
reliability, and clinical validity of Al medical devices. Successfully addressing these
challenges was essential for building understanding of structured approaches to improving
explainability, regulatory compliance, and strategies for clinical validation and trust.

Hypotheses

o Explainability of an Al system (in this case, OncoFlow) can be verified by
assessing its ability to provide clear, comprehensible, and consistent justifications
for its outputs, using predefined explainability metrics and evaluation framework.

e Simpler models (such as traditional Natural Language Processing, (NLP),
approaches) may enhance explainability, while more advanced LLM-based
models may improve clinical performance.

The primary objective of this study was to evaluate and compare the performance,
explainability and clinical utility of different Al models when applied to unstructured breast
cancer data, in the context of the OncoFlow use case. Breast cancer was chosen as the
focus due to the availability of data, high prevalence, and burden within the NHS MDTs, and
existing expertise within the OncoFlow team. Performance metrics included accuracy,
precision, recall, F1 score, and computational efficiency (Graphics Processing Unit, (GPU)
usage). Explainability metrics were focussed on assessing decision traceability,
transparency in recommendations, and user comprehension. Clinical performance would be
measured through factors such as ease of use, processing speed, and alignment with
clinician needs to ensure a more seamless integration into MDT workflows.

The performance and explainability metrics were selected to ensure that the Al system
meets the technical, clinical, and regulatory requirements necessary for safe and effective
use in healthcare settings.
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Methodology

The team explored multiple Al configurations for two key tasks:
e extracting structured clinical data and
¢ matching patient information to treatment guidelines,
specifically for use in breast cancer MDT meetings. Three Al approaches were compared:

e Arule-based NLP system
e A fine-tuned LLM trained on clinical data

e A hybrid method, combining rule-based NLP for straightforward data (such as dates
and patient demographics) with LLMs for more complex clinical features (like lymph
node status or evidence of metastasis)

Testing followed a standard train-test-validate cycle. A real-world dataset was sourced from
Barts Health NHS Trust, containing 9,000 histopathology reports and 3,000 radiology reports
from breast cancer patients. These reports were extracted from the hospital's Electronic
Patient Record (EPR) system, anonymised by the Barts Life Sciences IT team, and clinically
labelled to establish a ground truth for validation. The dataset was split 80% for training, 10%
for testing, and 10% for validation. OncoFlow used current breast cancer guidelines,
including the NICE Guidelines, ESMO (European Society for Medical Oncology) Guidelines,
and SACT Protocols from the Clatterbridge Cancer Centre NHS Foundation Trust to guide
the treatment matching process.

Performance of each Al approach was assessed using standard metrics: accuracy,
precision, recall, and F1 score. This formed part of the clinical utility evaluation to determine
how well each model performed in extracting relevant information and supporting decision-
making.

Explainiability was tested using SHAP (SHapley Additive exPlanations), SHAP-IQ, and LIME
(Local Interpretable Model-Agnostic Explanations). These methods helped to visualise which
parts of the clinical text the Al model focused on when generating its output, essentially
showing clinicians why the Al reached its conclusions. Outputs were reviewed by clinicians
to assess whether the extracted information was meaningful, trustworthy, and fit for use in
real-world practice. This testing was carried out securely on OncoFlow’s AWS Cloud
infrastructure, simulating the conditions of how OncoFlow would be used during actual MDT
meetings. This allowed the technical and Al teams to conduct rigorous, controlled
evaluations in a setting that reflected real-world clinical use.
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To complement technical testing and model validation, a structured survey was conducted
with a sample of clinicians to assess attitudes and expectations around explainability in Al-
powered clinical decision support tools. The responses provided critical context for
simulating how OncoFlow would be perceived and utilised in real-world settings, especially
within MDT environments. The findings informed the fine-tuning of explainability

features after initial testing of all the possible explainability approaches in the context of
OncoFlow

Results

Data Extraction: NLP vs. LLMs

Both traditional NLP methods (e.g., regex-based rule extraction) and advanced LLMs were
tested (Figure 2) during OncoFlow’s Data Extraction System design. Traditional NLP
methods worked well for pulling out structured information such as dates and numbers, but
they struggled with more complex clinical reasoning, for example, linking tumour
characteristics with diagnostic findings in varied report formats. As such, the NLP model
performed poorly. The LLM models were better able to interpret these complex relationships,
adapt to different document styles, and scale across large volumes of data. The final model
configuration achieved up to 90% accuracy in extracting relevant clinical data information.

100

80

NLP: total fail

Accuracy

Top performing model

Figure 8. Comparative accuracy of NLP and LLM models for data extraction. This chart shows the performance of
traditional rule-based NLP (Regex) versus multiple instruction-tuned LLMs. The NLP model underperformed significantly,
while LLMs demonstrated higher accuracy, with DeepSeek R1 emerging as the top-performing model for extracting
complex clinical information from unstructured texts.
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A series of pre-defined clinical rules were integrated into the model's prompt design to
improve the accuracy and consistency of OncoFlow’s Data Extraction System. These rules
were tailored to help the Al extract essential diagnostic details from unstructured medical
reports, particularly in radiology and histopathology. Embedding these rules enabled the
system to exceed the 80% accuracy benchmark, helping to ensure that relevant clinical
information was correctly identified, interpreted, and standardised across different data
sources.

Explainability tools such as SHAP (SHapley Additive exPlanations) and SHAP-IQ helped
better understand how the Al evaluated inputs. These tests showed that 'distant metastasis'
and 'HER2 status' were the most influential features affecting Al outputs. Other factors such
as tumour size, lymphovascular invasion, and the presence of ductal carcinoma in situ (i.e.,
an early form of breast cancer where abnormal cells are found in the milk ducts but have not
spread into surrounding breast tissue) also had a strong impact, while features like laterality
(the side of the body) and biomarker presence had a more moderate effect on the system’s
performance.

The team observed a significant benefit from incorporating a “reasoning” feature into the
model, which required the Al to explain the steps taken in generating outputs, thus providing
insight into the logic used. This approach improved transparency, making it easier to trace
potential sources of error.

Treatment Matching: LLM + RAG Architecture

A traditional NLP approach was initially tested but proved ineffective (Figure 9). An LLM
integrated with Retrieval-Augmented Generation (RAG) was trialled. This approach was
necessary to handle the complexity and frequent updates associated with clinical guidelines
such as ESMO, NICE, and the SACT guidelines used in this case study. A standalone LLM
(without RAG) posed a higher risk of hallucinations and reduced explainability. The RAG
configuration ensured that treatment recommendations were explicitly grounded in retrieved
sections of the guidelines. This improved both the traceability of outputs and alignment with
regulatory expectations around safety and transparency. Retrieval efficiency was strongly
influenced by the embedding model and chunking strategy used, both of which affected the
accuracy and relevance of the content retrieved. The best-performing retrieval method
combined PubMedBERT embeddings and a vector database (Qdrant) for optimised query
expansion. The most effective model achieved 92% accuracy in retrieving relevant ESMO
and NICE guidelines, and 100% accuracy in matching Systemic Anti-Cancer Therapy
(SACT) protocols. Challenges were observed when guidelines included overlapping
recommendations or lacked clear criteria for patient sub-groups.
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Figure 9. Accuracy comparison of language models for Treatment Matching. This chart compares the performance of
various LLMs and NLP in retrieving and aligning cancer treatment recommendations with clinical guidelines. Traditional
NLP again failed to handle complex guideline reasoning, while Mistral 7B v0.2 achieved the highest accuracy,
outperforming other models in the Treatment Matching task.

Feature Importance in Response Generation (LIME-Based)
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Figure 10. LIME Feature Importance in Response Generation (NICE/ESMO). This chart shows how different clinical
features influenced Al-generated treatment suggestions, as measured by LIME. Lymph node involvement, location of
suspicious lymph nodes, and tumour size had the highest impact on decision-making.

Despite maintaining a low hallucination rate (3.4%), testing identified overgeneralisation
risks, particularly when the Al encountered gaps in guideline data. This underscores the
necessity for clinician validation prior to any final, definitive decisions being made. More
work on mitigating hallucinations can be found in the SmartGuideline case study.

Clinician testing results

To complement model testing, a structured survey was conducted with 16 clinicians to
explore expectations around explainability in Al clinical decision support tools, particularly
within MDT environments. The survey provided critical context for refining the explainability
features of OncoFlow based on real-world preferences.
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There was a strong consensus on the importance of explainability: 756% of respondents rated
understanding Al reasoning as “extremely important”, with the remainder identifying it as
“somewhat important” or “neutral”. Clinicians preferred transparency around
recommendation generation, with 44% wanting a full breakdown of data inputs and
algorithmic logic, 38% preferring step-by-step reasoning, and only 19% satisfied with brief
summaries. Presentation style was also consistent — all respondents preferred a
combination of text and visuals (e.g., graphs or decision trees) to enhance comprehension.
Additionally, 94% valued understanding how clinical features were weighted in the model,
validating the relevance of tools like SHAP and LIME.

Uncertainty communication was considered essential: 56% preferred detailed explanations
of uncertainty or limitations, and 44% supported flagging uncertain outputs. None supported
omitting uncertainty information, indicating that clinicians expect Al to reflect the inherent
limitations of medical decision-making. Only one respondent was comfortable accepting
recommendations without supporting reasoning. Most preferred either detailed or partial
reasoning to maintain transparency and clinical trust.

Clinicians also favoured a flexible, context-sensitive approach to explainability. Higher levels
of detail were expected for high-risk or acute scenarios, with lower-stakes settings permitting
simpler outputs. This supports the use of explainability tiers aligned with risk classification
(e.g., medical device class I-Ill). These insights informed the design and refinement of
explainability features within OncoFlow, including the use of visual aids, confidence
indicators, and transparent reasoning outputs. They also shaped how explainability was
simulated in the testing environment to better reflect real-world clinical expectations.

Conclusion

In the treatment matching task, traditional NLP tools unable to handle the complexity of
clinical guidelines. An LLM combined with a RAG approach proved more effective. This
allowed the Al to find and quote relevant sections of guidelines when making treatment
suggestions, improving both traceability and alignment with safety expectations. The model
achieved high accuracy in identifying relevant guidance, although some challenges
remained in cases where guidelines were ambiguous or overlapping.

Throughout the study a strong emphasis was placed on explainability. Tools such as SHAP
and LIME helped to clarify which clinical factors most influenced the Al's decisions. The
addition of a “reasoning” feature gave users a clearer view of how the system arrived at its
outputs. This was especially important in building confidence among clinicians.

Feedback from a survey of healthcare professionals reinforced this point. Clinicians placed
high value on transparency, with most wanting detailed explanations of how Al
recommendations were made. There was broad support for using a mix of text and visuals to
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communicate this information, and for adapting the level of explanation based on the clinical
context. The findings also highlighted the importance of acknowledging uncertainty,
particularly in higher-risk decisions.

From a regulatory perspective, this case study highlights several promising techniques for
improving the safety, reliability, and explainability of Al systems used in clinical settings. It
also underlines the value of early engagement with users, to ensure that new technologies
align with the expectations and needs of those who will use them in practice. While the
results are encouraging, further work is needed to ensure these methods are robust across a
broader range of clinical scenarios. Continued testing, guidance development, and cross-
disciplinary collaboration will be key to supporting the safe and effective use of Al in
healthcare.
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Case Study: Newton’s Tree — FAMOS and continuous, real time post-
market surveillance monitoring

Introduction

Over time, the performance of an Al system can decline. This may happen due to shifts in
the environment, such as the introduction of new types of patients, the use of different
medical scanners, or other unforeseen changes in the clinical environment. This is called
drift and presents a significant barrier to Al safety, and therefore its uptake.

A common mitigation strategy for model drift is to involve humans in the loop, for example by
having clinicians verify Al outputs. Clinicians are, however, susceptible to automation bias,
which leads them to agreeing with the Al output without thought and makes human-in-the-
loop an ineffective mitigation strategy. To maintain safety, trustworthiness and regulatory
compliance, continuous monitoring of deployed Al systems is essential. Continuous
monitoring can detect issues that develop too slowly or too quickly to be captured through
scheduled reviews and periodic audits.

The FAMOS Dashboard was designed to support this continuous oversight. It presents three
real-time metrics to users: each selected through a clinical risk management approach.
Potential hazards associated with Al use are identified and data are selected to most
effectively signal those hazards. The three metrics align with ISO guidance on risk
management for medical devices incorporating machine learning. The three metrics are:

e Data Input Quality: This metric tracks how the data fed into the Al system changes
over time, identifying any outliers or anomalies. Ensuring high-quality data input is
crucial because poor data can lead to inaccurate Al outputs.

¢ Al Inference Values: This metric monitors the Al's output over time to detect any drift.
Detecting drift early helps recalibrate the Al system to maintain its accuracy.

e Al/Human Agreement: This metric measures how often NHS staff members agree
with the Al's output. High agreement rates might indicate automation bias, where
clinicians might accept Al recommendations without critical evaluation. Monitoring this
helps identify and mitigate this bias.

Trends in these metrics can be monitored so preventative action can be taken before a
safety incident occurs. The dashboard can be viewed by three types of organisations:

e The Al manufacturer can view the anonymised data trends in the dashboard, ensuring
privacy is maintained. This can be viewed for their products across all sites they are
deployed.

Page 47 of 77


https://www.newtonstree.ai/

e The NHS organisation can view trends across all Al products deployed at their site.
Additionally, the dashboard provides the ability to drill down into specific data,
allowing for detailed investigation of particular trends.

e Oversight bodies, such as the MHRA or NHS England, can view combined trends
across all Al products and sites. However, like manufacturers, they cannot access
individual-level data, ensuring that privacy is maintained

The Al Airlock programme aimed to assess how real-time monitoring can enhance a
product’s risk management strategy by enabling earlier identification of performance or
safety issues. An unresolved challenge was the lack of clear methods for defining thresholds
for these monitoring metrics. Without robust, evidence-based thresholds, it is difficult to
determine when deviations in performance should trigger interventions or regulatory actions.
Establishing methods for setting these thresholds is crucial to making continuous monitoring
actionable and compliant and remains a key area for further regulatory and research
development.

Regulatory challenge

Annex 2, clause 3.1 of the Medical Device Directive (1993) placed an obligation on
manufacturers to conduct post market surveillance (PMS), a key part of the risk
management strategy. This obligation continues and grows broader as medical device
regulation is updated with The Medical Devices (Post-market Surveillance Requirements)
(Amendment) (Great Britain) Regulations 2024.

Following the existing methods for PMS, which relies on NHS data sharing and reporting,
which may not provide enough data. One potential solution is a path that automates the
sharing of information whilst preserving privacy. Further, for Al as a Medical Device, such a
path could enable manufacturers to meet the 10th Good Machine Learning Practice (GMLP)
principle, produced by the International Medical Device Regulators Forum (IMDRF):

“deployed models are monitored for performance”, and the 7t GMLP principle “Focus is
placed on the performance of the human-Al team’.

FAMOS offers automated continuous monitoring of Al and its (and other such platforms) use
may offer a means for meeting these regulatory requirements.
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Hypotheses

A real-time monitoring system can improve product safety by providing trends that can
be fed into an organisation’s Risk Management System. By identifying variations in data
quality, Al performance and human agreement, risk can be mitigated enabling regulatory
compliance.

e Trends can reliably be presented in a real-time monitoring dashboard.
e Trends exist that indicate risk.
e There is a place for trends in a risk management system.

e There is a way to address the risks identified by trends.

Methodology

The study involved a retrospective observational trial employing federated evaluation of Al
models. FAMOS was implemented at two NHS hospitals: Leeds Teaching Hospitals NHS
Trust and Greater Glasgow and Clyde Health Board. The Al technologies evaluated included
chest X-ray algorithms from Qure.ai and Annalise.

A stratified random sampling method was required to ensure a representative sample of the
hospital’s patient population while meeting the study’s data requirements. The sample size
was predicted to be close to 3,000 patients across both sites. For the statistical analysis a
two-sided p-value of less than 0.05 will be considered statistically significant.

For the primary objective:

Descriptive statistics summarised the number and percentage of chest X-rays successfully
monitored by FAMOS at each site to evaluate the effectiveness of FAMOS in monitoring Al
performance across different hospitals. Metrics including data capture rate (proportion of
eligible chest X-rays monitored), timeliness (mean and median time delays in data capture),
and monitoring accuracy (comparison of FAMOS-monitored data with source data) were
calculated.

Comparative analyses between sites were conducted using chi-squared tests for proportions
and t-tests or Mann-Whitney U tests for continuous variables, depending on data distribution.
Visualisation tools such as flowcharts and bar charts will illustrate data flow and data capture
rates. The effectiveness of FAMOS was assessed based on its ability to provide effective
and timely monitoring and any discrepancies or delays in data capture.
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Results

At the time of writing, the final analysis was still ongoing; however, an interim analysis had
produced some early findings.

Data attributes

At NHS Greater Glasgow and Clyde (GGC) and Leeds Teaching Hospitals (LTH), chest X-
rays were processed. The data attributes included comparable age ranges across the two
sites, similar male-to-female ratios, and similar proportions of winter versus non-winter
patient data; however, the Glasgow site had twice as many image artefacts in X-rays
compared with Leeds. There was minimal time delay between image processing and display
on the monitoring dashboard, supporting the first Al Airlock hypothesis: that trends can be
reliably presented through a real-time monitoring dashboard.

An initial review identified that dataset outliers were primarily associated with:
e image artefacts (e.g. jewellery worn by the patient)
e variations in patient positioning
o differences in image orientation (e.g. posteroanterior vs lateral view)

At NHS Greater Glasgow and Clyde, four distinct data clusters were observed. This likely
reflects the fact that GGC receives data from four separate hospital sites. These clusters
highlight heterogeneity in the data, which could influence Al performance and suggests that
further principal component analysis is needed to confirm the source and characteristics of
each cluster.

Human-Al agreement

To ensure robust comparisons, the study design included a matched case mix across sites:
there was equal distribution of normal and abnormal findings, and a balanced demographic
profile (gender and age, above and below 60). Each site employed four readers, two per
target disease, and used multiple Al vendors. Most major identified confounders were
controlled for, such that the only meaningful differences between sites were the reader skill
mix and the conditions under which readings were conducted.

Results showed that reader agreement with Al suggestions at NHS Greater Glasgow and
Clyde increased over time, while remaining relatively stable at Leeds Teaching Hospital. The
increase in positive findings over time observed in Glasgow was statistically significant
compared to Leeds and may suggest a susceptibility to automation bias. This may be
attributable to differences in reader experience. At Leeds Teaching Hospital, Newton’s Tree
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recruited three reporting radiographers (each with over 10 years of experience) and one
radiology trainee (ST3). However, at NHS Greater Glasgow and Clyde, Newton’s Tree
recruited four radiology trainees. Furthermore, Leeds reading sessions took place during
standard working hours (9am—-5pm), whereas Glasgow sessions were spread across
irregular hours, including night shifts and early mornings - conditions more prone to fatigue,
distraction, and time pressure. These are known contributors to automation bias; however,
aggregating results by site or by disease may mask individual effects. It is plausible, for
example, that a single reader could be disproportionately influencing overall trends,
reinforcing the importance of scrutinising individual-level data for aberrant patterns. These
early results support the hypotheses that trends exist that indicate risk and that trends can
reliably be presented in a real-time monitoring dashboard.

Conclusion

This case study explored the use of real-time monitoring techniques to assess the
performance of Al in medical imaging across two NHS sites. The study aimed to test the
hypothesis that useful insights about Al performance and risk can be surfaced by monitoring
data trends in real-time.

Initial findings suggest this is both possible and practical. The study was able to monitor Al
performance across hospital sites with different infrastructure and staff profiles, capturing
trends in data quality and human-Al agreement. It showed how differences in staffing,
experience levels, and working conditions can shape how Al is used and interpreted —
factors often missed in controlled testing environments. These insights underscore the value
of techniques like federated evaluation, structured sampling, and human-Al agreement
monitoring in post-deployment settings. The study also highlighted the need to look beyond
headline metrics and examine underlying trends, including at the level of individual users, to
identify potential risks or changes in behaviour over time.

While the analysis is ongoing, early results suggest that real-time monitoring methods can
surface subtle patterns that may inform both safety surveillance and product improvement.
Further work is needed to explore how these methods might be used in practice, including
how to respond to emerging risks and what infrastructure would be required to scale these
approaches more broadly.
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5. Simulations and regulatory gap analysis

In parallel with testing conducted by candidates in virtual and real-world hospital settings, the
Airlock team undertook a regulatory mapping and gap analysis exercise. This was
complemented by a series of simulation workshops, which brought together stakeholders
from across sectors and disciplines — including clinicians, regulators, academics, technical
specialists, and innovators — to explore key regulatory challenges identified through the Al
Airlock. This section outlines the methodology used and summarises the key findings from
both the regulatory analysis and simulation activities.

Regulatory mapping and gap analysis

Regulatory gap analyses are difficult; such analyses performed in such a novel field are
doubly difficult. The team enlisted experts from various sectors in an initial regulatory
mapping activity. This resulted in a collation of regulatory documents and associated
challenges. To account for limited resource and programme timelines, we prioritised 5-10
most relevant regulatory documents for in-depth review per regulatory challenge.

This foundational exercise proved extremely productive. By showing us how broad the term
“regulatory gaps” could be in the context of novel Al devices, we could account for this in our
definitions. We therefore used an equally broad definition to capture the gaps. This allowed
us to capture wording gaps in existing guidance, context gaps in frameworks and even
legislative loopholes.

Within Al Airlock, therefore, the term ‘gap’ is used as a shorthand term for identifying any
areas of improvement, recognising that many of the existing parts of the regulatory system
must cater for the millions of hardware and software products used in the health and care
system. It is the objective of the Al Airlock to identify these areas for improvement and
recommend solutions.

The Al Airlock pilot identified regulatory gaps that currently challenge the safe and effective
deployment of AlaMD. While the nature of these gaps varied across use cases, some
recurring themes emerged across all projects, particularly in areas of validation of text-based
data from large language models (LLMs), risk management, non-determinism, explainability,
and post-market surveillance (PMS). These gaps and challenges were explored in
collaboration with four innovators: Philips Healthcare, AutoMedica, OncoFlow and Newton’s
Tree.

Methodology

The scope of the review was primarily GB-focused, referencing the MDR 2002 and
supplementary guidance either authored in the UK or developed through UK collaboration
with international partners. Relevant international standards were also considered.
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The process began with regulatory mapping. Each challenge was broken down into
subcomponents / questions for consideration. Next, a broad range of relevant documents
were identified specific to each regulatory question explored in each project. This list was
expanded in collaboration with stakeholders, including members of the supervisory
committee, Team AB, and the candidate organisations. This initial mapping resulteds in
approx. 30 to 40 documents mapped per project. Where regulatory information was scarce,
such as text-based synthetic data, the broader topic (synthetic data) was considered.

Following this initial mapping, the documents were reviewed at a high level and a subset of 5
to 10 documents was selected for in-depth analysis. Prioritisation was based on relevance to
the specific regulatory challenges being addressed, as well as practical considerations such
as availability and scope. Once selected, the documents were reviewed in detail, with
relevant clauses and sections extracted and evaluated against the needs and risk profiles of
AlaMD.

This deeper review focused on identifying areas where existing guidance may need to
improve. These included where there were missing provisions related to challenges,
insufficient detail, and unclear expectations for managing risk in adaptive, continuously
learning systems. The analysis also considered whether existing guidance provided clear,
enforceable requirements for real-world performance monitoring and the safe deployment of
Al in dynamic clinical environments.

Document L -
V selection 9= Approach A Limitations

Based on team,
stakeholder and
candidate input

Iterative, evolved through
feedback

Qualitative and exploratory

5-10 documents per
challenge prioritised based
on relevance

Constrained by short
timelines

No formal analytic
framework (e.g., no
scoring or coding)

Inclusion criteria based
on the regulatory
challenge

Cross sector selections

Findings are indicative,
rather than exhaustive

Clause-by-clause review of
regulatory documents

Thematic gaps identified as
areas where uncertainty and
ambiguity remain

Figure 13. Regulatory mapping and gap analysis process

Where relevant, the identified gaps were thematically grouped and considered in terms of
their likely regulatory impact. Particular attention was given to instances where regulations
do not adequately address emerging risks or are impractical to implement. In doing so, the
analysis sought not only to highlight gaps, but to build a clearer picture of where current
regulation may require strengthening to ensure that AlaMD can be developed and deployed
safely and effectively.
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The analysis compared the coverage provided by existing documents against the level of
detail needed to manage Al-specific risks in clinical settings for each challenge. Where gaps
were identified, either through absence of guidance or insufficient detail, these were flagged
for further consideration.

Findings from the MHRA and candidate teams were discussed collaboratively over a series
of virtual meetings before being consolidated into final project reports. This process helped
highlight shared gaps across projects and areas where future regulatory development or
clarification may be required to ensure Al medical devices can be safely and effectively
managed in real-world environments.

Results: Identification of key themes and gaps

The regulatory gaps identified in this pilot vary depending on the challenge being explored.
Most gaps apply across different candidates, given the overlaps in technology types and
challenges.

For the synthetic data case study, the primary focus was on unstructured text data. Synthetic
data and the use of LLMs are not adequately addressed within current regulatory
frameworks, including PCCP guidance and existing risk management standards, While
documents, such as BS/AAMI 34971 acknowledge the potential of synthetic data to address
privacy concerns and provide some guidance on its use and quality evaluation, there
remains no clear direction on when the synthetic data should be generated, what
prerequisites must be met beforehand, or how such data should be validated. In addition,
there is ambiguity surrounding how “ground truth” should be determined, what metrics are
appropriate for evaluating synthetic data, and when human validation is required. These
issues are particularly relevant when synthetic data are used in place of real data for testing
or training purposes. Additionally, the boundaries between synthetic and real-world data
need clearer definition to determine whether synthetic datasets are exempt from GDPR and
to ensure they cannot be linked back to individuals. For validating unstructured text data,
there is a need for regulatory clarity on the use of LLMs in generating and validating such
data. This includes the quality criteria that must be met for such data to support regulatory
and clinical decisions.

Thiry-one documents were identified in the regulatory gap analysis exploring challenges
posed by AlaMDs that are prone to errors such as hallucinations. Of these, six were
prioritised for in-depth review based on relevance and access. These included the MDR
2002, 1S0O13485, 1SO14971, AAMI/BS 34971:2003, IEC62304, IEC62366-1. While these
documents provide a foundational framework, the analysis identified notable gaps relating to
hallucinations, non-determinism and explainability, indicating that current regulations can be
bolstered by additional guidance to support the safe and effective deployment of AlaMD.
Several standards, including ISO14971 and ISO13485 were not developed with the dynamic
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and opaque nature of Al in mind. Guidance around specific approaches for detecting and
managing unpredictable outputs and validation of non-deterministic behaviour are needed.
Including Al specific guidance, companion standards or best practice frameworks to bridge
the gap between high level regulatory expectations and demands of implementing Al safely
in healthcare. In addition, risks such as hallucinations could be viewed as falling within a
manufacturer’s performance claims; however, outputs incorporated into the medical record
are also subject to the Health and Social Care Act 2008, regulation 17. This creates a
tension between different regulatory requirements, where clarity is needed on how
performance considerations intersect with obligations relating to the accuracy of health
records.

Testing and simulation workshops consistently highlighted the critical importance of
explainability in AlaMD, while also revealing persistent gaps in the current regulatory
guidance. It was noted that many medical devices currently in use, including some in high-
risk settings, are not fully explainable yet are accepted within existing frameworks. This
underscores that explainability requirements cannot be considered in isolation, but rather in
relation to device type, risk classification, and intended use. During the Al Airlock pilot,
explainability was therefore explored more holistically, including different stakeholder
expectations and the absence of clear criteria for selecting appropriate metrics. While some
relevant direction exists in standards such as ISO 13485, ISO/IEC 22989, and BS/AAMI
34971, these do not define explainability requirements for AlaMD. Questions around the role
of human involvement, the risks posed by non-explainable outputs, implications for usability,
and appropriate approaches to transparency remain largely unresolved. Importantly, these
standards do not cover the tailored approach required for different stakeholders such as
clinicians, regulators, developers, patients, and others. Similarly, methods for implementing
traceability and transparency to ensure usability need to be covered. Some of these
regulatory gaps were addressed through virtual testing. OncoFlow, for example, introduced
confidence scoring, traffic light indicators, and human-in-the-loop validation to help clinicians
understand and validate outputs. In addition, traceability was enabled by logging Al
recommendations, interactions, and source documents, each with unique identifiers.
Simulation testing also demonstrated the varying explainability needs of different users,
reinforcing the importance of intended use in designing explainability approaches.

Regulatory mapping results Overarching regulatory gaps in explainability for AlaMD
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Figure 14. Example regulatory mapping and gap analysis results
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Collaboration between the MHRA and OncoFlow led to the development of an explainability
statement outlining the product’s functionality, risks, and underlying Al. Guidance on content
and structure for such documentation is still needed for innovators and products for which
such statements are relevant. The approaches implemented as part of Al Airlock can be
used by other AlaMD manufacturers, depending on the context of their product, its risks,
intended use and intended population.

A regulatory gap analysis was conducted to identify areas needing additional support for
AlaMD PMS. The reviewed documents included the MDR 2002 PMS SI 2024 (since updated
to The Medical Devices (Post-market Surveillance Requirements) (Amendment) (Great
Britain) Regulations 2024 amends the Medical Devices Regulations (MDR) 2002)), Yellow
Card system, MORE system, 1ISO14971, 1SO13485, AAMI/BS34971, BS EN62366-1,
ISO27001. The analysis highlighted the need to additional Al specific guidance addressing
changes in Al model performance over time and potential for preventative action to be taken
before patient harm has occurred. In addition, there is a need to address shifts in human
performance and reliance on Al when interacting with AlaMD. While the existing frameworks
provide a good foundation, and the new PMS legislation addresses many of the gaps
surrounding trend detection and the potential for Al model drift, specific guidance would help
strengthen current regulations. When reviewing risk management frameworks such as
ISO14971 and AAMI/BS34971, detailed requirements and threshold setting guidance were
lacking. BS EN 62366-1 does not fully address the usability challenges introduced by Al
systems such as explainability and how that could feed into over-reliance or automation bias.

An overarching challenge is the focus on corrective, reactive actions across regulatory
documents. There is limited support for trend analysis which leads to early intervention and
prevents an incident occurring. During testing in the Al Airlock pilot, continuous real-time
monitoring was used to detect trends in data quality, model drift and automation bias. At one
hospital site, the pilot identified a pattern of over-reliance on AlaMD. Given that AlaMD can
produce errors, such over-reliance could lead to patient harm in a real-world setting. If
trends are detected early, by contrast, there is potential to investigate and take preventative
or corrective action, such as patient recall. Further analysis revealed that in this case study
example, contributing factors to automation bias included clinician fatigue, distraction, time
pressure, and level of experience. These findings highlight the need for Al-specific
supplementary guidance on proactive safety measures, including best practices for
threshold-setting, monitoring Al-human behaviour, and assigning reporting responsibilities.

Simulations methodology

Simulation workshops gathered cross-functional input on the regulatory challenges
associated with AlaMD. These sessions provided a forum for discussion and collaboration,
allowing participants to explore different perspectives and work towards consensus on
complex issues. The workshops centred on three primary themes:
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1) evaluating current risk management frameworks regarding LLM-specific risks e.g.
hallucinations

2) evaluating the explainability needs of diverse stakeholders and negative
consequences of limited explainability

3) evaluating the responsibilities surrounding continuous monitoring of AlaMD in real-

world settings.
N Case study
» @ presentation &
discussions

Participants were selected based on their subject-matter expertise. The invitee list included
technical experts from the NHS Al team, academic researchers, clinicians, representatives
from approved bodies, and regulators from organisations such as the MHRA and DHSC. It
also included clinical safety officers, data specialists from the CPRD, representatives from
NICE with expertise in health technology assessment, and data governance experts from the
ICO.

o9
ra Group Discussion

Presentation

overview of topic

Figure 15. Simulations methodology illustration

Each workshop began with a set of introductory presentations to ensure that all attendees
shared a common understanding of the Al topic under discussion and the relevant regulatory
landscape. These presentations outlined the current regulatory frameworks, including
applicable laws, standards and guidance. A structured discussion was then facilitated to
address specific regulatory challenges and known gaps. The aim was to explore these
challenges from multiple angles and to identify areas where further regulatory clarity,
development or alignment might be needed.

The workshops were not recorded to encourage open and candid dialogue. MHRA team
members took detailed notes throughout the discussions. These notes formed the basis for
the simulation reports and informed the final synthesis of findings from the Al Airlock
programme. These workshops have been published as an output from Al Airlock and the
recommendations incorporated with those from virtual and real-world testing during the pilot
programme. The simulation reports, including an overview of the key discussion points and
insights have been published separately.

Simulations summary results

Considerations for hallucination evaluation

The group explored hallucinations as a key safety risk in medical settings. Severity depends
on both the nature of the error and its clinical context, with high-impact settings like
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diagnosis or emergency care requiring particular scrutiny. To strengthen risk management in
the deployment of Al, some members of the group suggested a three-tiered approach to
categorising its use.

At the highest level, "No-Go Areas" were identified as contexts deemed too high-risk for
autonomous use LLMs. These could include use cases where the consequences of errors
could be severe. In such cases, the group advised that Al should not operate without human
oversight. In the middle tier, "Caution Zones," the group highlighted use cases such as
clinical documentation and summarisation as areas where LLMs could be used under
human supervision. These use cases carry moderate risk and require close human
monitoring to ensure safety and reliability. Finally, the group defined "Safe Zones" as
applications where the risk is relatively low, and the benefits of Al adoption are potentially
high. These include administrative support, assistance with clinical research, and patient
engagement, where LLMs can provide meaningful efficiencies with minimal risk to patient
safety. This risk-based approach would help prioritise regulatory attention and clarify where
autonomous vs. supervised Al use is appropriate based on the risks associated.

This could help guide regulatory focus and clarify the need for human supervision. The
group emphasised that Al should support, not replace, clinical judgement, with explainability
features (e.g. uncertainty scores, data citations) seen as important safeguards.

Detecting hallucinations is challenging; even clinicians may miss subtle errors. A hybrid
approach combining explainability tools with human review was recommended, alongside
improved awareness of reporting systems like Yellow Card and MORE. Participants also
raised the issue of "faithfulness hallucinations", factually correct outputs outside the Al's
intended use. Faithfulness hallucinations are difficult to identify and can still influence clinical
decisions or documentation, even when the Al system is not qualifying as a medical device.
This revealed a potential regulatory blind spot with the group calling for clearer guidance on
“function creep” and how users can identify the boundaries of appropriate use.

Current standards (e.g. ISO 14971) provide a base safety framework, but tailored metrics for
hallucinations are needed. These should consider not just frequency, but detectability and
clinical impact. The group also highlighted a key trade-off: reducing hallucinations too
aggressively could increase omission risk. Model cards summarising known failure modes
were suggested to support informed use.

Explainability requirements for different stakeholders

The group agreed that different stakeholders need different types of explanations:
developers need to debug systems, regulators need evidence of safety, clinicians need to
judge whether to trust a recommendation, and patients need reassurance in plain language.
The group supported tailoring explainability to each user’s needs, distinguishing between
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global explanations (for understanding overall model behaviour) and local ones (for
individual decisions). Too much or too little detail can both be unhelpful — interactive, layered
explanations may offer a balanced solution.

Current standards such as BS/AAMI 34971 and GMLP offer a foundation, but the group
called for clearer criteria specific to different roles. They also highlighted challenges:
complex models are hard to explain, some explainability methods add confusion, and
simpler models may be both interpretable and effective.

Explainability supports safety, accountability, and early error detection, especially critical
where clinicians rely on Al. However, explainability must be human-interpretable. The group
warned against relying on Al to check other Al, especially where models are too complex for
meaningful human oversight.

Participants explored techniques to improve understanding of how Al tools generate outputs,
both for clinicians and regulators. Three core approaches were discussed: explainability
statements, model reasoning, and quantitative methods.

Explainability statements aim to clarify how a tool works in plain language. Participants noted
that many current examples lack detail on how users interpret or act on outputs. A shared
template, tailored by audience (e.g. patient, regulator), could improve consistency. Model
reasoning, such as showing the steps a model takes from input to output, was seen as
valuable for understanding edge cases and building clinician trust. It must be aligned with
intended use and supported by post-market surveillance. Interfaces should offer layered
access to detail depending on user needs. Quantitative approaches like SHAP and LIME
can highlight which inputs most influenced an output. However, they require users to
interpret both the model, and the method used. Participants emphasised that in most cases,
these tools should supplement — not replace — clinical judgement. Familiar visual formats
and summaries could support usability and trust.

Across all methods, participants stressed the importance of surfacing missing context (e.g.
patient preferences or lifestyle) and maintaining transparency about model limitations.
Finally, the group stressed that insufficient explainability can lead to blind trust, automation
bias, or unsafe decisions. Tools like model cards and confidence scores could help users
understand what the model considered - and what it didn’t. Upskilling users and designing
for varied levels of Al literacy were seen as essential to safe deployment.

Post-market surveillance roles and responsibilities

Effective post-market surveillance (PMS) of Al-enabled medical devices depends on strong
collaboration between manufacturers and clinical teams. Understanding how these systems
perform over time, or how they might be affected by changes in their environment, requires
input from both those who design the technology and those who use it day-to-day in clinical
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settings. While there is broad support for this kind of collaboration in theory, in practice it
often falls short. Manufacturers and healthcare providers both report frustration about a lack
of engagement from the other side.

One area where this becomes especially important is in automating parts of the risk
management process. Al dashboards can flag potential issues, but uncertainty around roles
and responsibilities means it's not always clear who should act on these signals. This
creates a risk that problems may go unaddressed — not because they aren’t seen, but
because it's unclear who is accountable for responding.

As data volumes grow, these systems could provide even greater insight into performance
and safety. But making good use of that data requires skilled analysts and carefully
calibrated thresholds to help distinguish important warning signs from background noise.
Without this, there is a real possibility that existing safety reporting systems could be
overwhelmed with low-value alerts, making it harder to identify real issues or take meaningful
action. Crucially, monitoring alone isn’t enough. When concerns are flagged, there must be
clear and timely follow-up. There must be agreed protocols in place so that when
performance dips or safety risks arise, there is a shared understanding of what steps to take
— both to prevent harm and to ensure regulatory reporting requirements are met.

Finally, there remains uncertainty around what kinds of issues involving Al tools should be
formally reported. Manufacturers are required to report incorrect diagnostic outputs.
Healthcare professionals are encouraged to flag concerns through systems like the Yellow
Card Scheme. Some are concerned that disagreements between clinicians and Al systems,
especially if they become frequent, could flood these reporting systems — making it more
difficult to focus on the most important risks.
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6. Limitations and challenges

Throughout the Al Airlock programme, a range of limitations and challenges were identified
by both the candidates and the Airlock team. This section focuses on those relating
specifically to the regulatory gap analysis, simulation workshops, and technical testing.
Broader programme-level challenges are addressed in the evaluation section that follows.

Gap analysis

The regulatory gap analysis followed a pragmatic rather than predefined approach, with
documents selected based on team and stakeholder input. While not systematic in the
formal sense, the method was informed by expert judgement and evolved iteratively as the
most relevant materials and techniques became clearer. Philips, AutoMedica, OncoFlow,
Newton’s Tree and the MHRA reviewed different sets of documents, so some divergence in
findings was anticipated. Prioritising a subset of the regulatory mapping documents is a
limitation, as it may have led to the omission of relevant information in the gap analysis.

Simulation workshops

The simulation workshops generated useful insights, but due to the absence of a structured
analytic framework, findings should be treated as exploratory. Time constraints prevented
non-determinism simulation or exploration, despite the able assembled stakeholders.

Virtual testing

The Airlock team did not review candidate technical files. In several cases, these were not
yet available due to the early development stage of the products. Given the exploratory
nature of the Airlock, this was considered consistent with the programme’s objectives.

The Airlock team did not access the datasets used for testing and therefore could not verify
whether they met the definition of appropriate clinical data under the MDR 2002. As the
purpose of the Airlock was to surface regulatory challenges and generate insights rather
than to assess conformity, this approach was regarded as appropriate.

Philips Autolmpression

The regulatory mapping revealed significant gaps, as no specific guidance, standards, or
acceptance criteria were found for generative Al, synthetic data, or large language models
(LLMs). A notable limitation was the overlap in data use: the MIMIC-IV dataset served both
as training data for the Claude Sonnet 3.5 LLM and as the basis for testing synthetic reports
and impressions, contravening best practices that require strict separation of training and
validation datasets. The clinical accuracy of the “Auto Impression” feature was not assessed
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due to time constraints and the volume of data, restricting insights into its safety and real-
world performance.

The LLM judge demonstrated challenges when evaluating low-quality human-written text.
Resulting in inconsistent scoring, and its assessment methods needing refinement to better
identify clinically significant errors. While the LLM judge showed promise, the findings must
be validated by human experts to ensure reliability, particularly in comparing synthetic and
real data and detecting errors. Finally, the evaluation primarily focused on the quality of
summarisation rather than clinical correctness, meaning the potential for harmful errors in
generated impressions remains insufficiently explored.

SmartGuideline

The SmartGuideline model supported only limited simultaneous users, and clinicians
stressed that speed is essential for decision support tools designed for point-of-care use.

The short timeframe and limited resources of the Al Airlock programme meant the team were
unable to test economic evaluation, whether this approach works across different Al models,

or compare the tool with manual clinical workflows. Planned semantic similarity testing using

GPT-40 was also deferred due to cost but is intended for future work.

The clinician sample was skewed towards trainees, which may limit generalisability. More
experienced practitioners may interact with Al outputs differently, affecting results and
revealing different patterns of trust or bias.

OncoFlow

Explainability testing of the OncoFlow Al models revealed several important challenges. The
data extraction model, which pulls information from different clinical documents, sometimes
produced unclear outputs when those documents contained conflicting or incomplete data.
For example, if a radiology report suggested metastasis but the pathology report did not
confirm it, the Al might struggle to interpret the case. When key information like tumour
grade was missing, the system chose not to infer values, instead marking them as “Not
Reported.” While this avoided incorrect assumptions, it also reduced the completeness of
summaries.

The treatment matching model information retrieval from clinical guidelines was one of the
main challenges. If documents were poorly structured, the Al could miss key
recommendations. In cases where retrieval failed or data was sparse — such as rare tumour
types or experimental treatments — the model risked generating confident but unsupported
suggestions. To reduce this risk, uncertain outputs were flagged for human review, rather
than presented as clinical recommendations. Stakeholders also suggested allowing the
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system to "learn" from difficult or unusual cases discussed in multidisciplinary team (MDT)
meetings.

Several mitigation strategies were proposed. These included traffic-lighting low-confidence
outputs, improving how guidelines are broken into searchable sections, and using
explainability tools like SHAP and LIME to help users understand how Al decisions were
made. Clinicians remained in full control, with the Al acting only as a support tool. All
decisions made with Al assistance were logged and traceable, ensuring a clear audit trail.

Understanding which explainability approach would be optimally aligned with end-user
needs, particularly in the live, fast-paced MDT settings remains an ongoing challenge.
OncoFlow addressed this as part of a formal feedback discussion and simulation session
with end-users to further inform regulatory frameworks for Al-assisted decision support
systems.

FAMOS

The sample size may not provide sufficient power to detect small effects as a feasibility
study. Results may not be generalisable beyond the participating sites due to potential site-
specific factors. Limitations inherent to retrospective studies, such as selection bias and
missing data, may affect the findings.
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7. Evaluation Approach and Key Insights

Evaluation Approach

The University of Nottingham were commissioned to independently evaluate the Al Airlock
pilot programme, working closely with the MHRA to understand the practices, strategies and
challenges of conducting the pilot. The evaluation was led by Professor Carl Macrae. The
evaluation was designed to be constructive and continuous, enabling periodic feedback to
the Al Airlock team throughout the pilot. This chapter summarises key insights and findings
from the independent evaluation, reflecting the MHRA’s commitment to ongoing learning and
improvement from the Al Airlock pilot.

Multiple sources of data were used throughout the evaluation including observations and
attendance at governance board meetings, supervisory committee meetings, simulations
and other events. It includes analysis of Al Airlock documentation and event feedback
surveys. Evaluation evidence also includes the notes and feedback generated from an in-
person evaluation workshop during the Airlock Connect event.

The data also includes detailed set of interviews conducted with many of the participants
involved in the Al Airlock. These interviews allowed participants to feedback and report on
experiences constructively and anonymously. 29 interview sessions were conducted
throughout the process, engaging with a total of 25 individuals who were involved in the Al
Airlock in different roles. These interviews were primarily conducted in two phases: towards
the end of the testing design work, and towards the end of the Al Airlock pilot. Three focus
groups were conducted with the MHRA Al Airlock team, supplemented by individual
interviews with each team member. Interviews were conducted with each candidate
organisation at two time points and included two members of each Al Airlock candidate
organisation. Wider stakeholders were interviewed including representatives from Team AB,
the governance board, the supervisory committee, and attendees at the simulation
workshops.

A key commitment of the formative evaluation is to create a safe and protected space to
gather feedback and insight from all of those involved in the process of the Al Airlock. All
feedback has therefore been suitably anonymised during the evaluation process.
Insights have been themed into four broad areas;

e Motivations, Expectations and Experiences,

e Engagement, Exploration and Collaboration,

e Outputs, Impact and Value and

e Management of the Sandbox.
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Evaluation Findings and Key Insights

Motivations, Expectations and Experiences

Expectations going into the novel pilot Al Airlock varied. Candidates had different
assumptions but were all motivated by the aim of deepening their understanding of
regulation, regulatory challenges whilst engaging with regulators and technical experts
directly in a meaningful way. Many candidates shared a commitment to safety and risk
management with a strong commitment to build safe technologies and systems whilst
utilising the opportunity to engage with the regulator on shaping future regulation in this
sector. Motivations were often linked to organisation and strategic goals, including building
regulatory knowledge, developing robust assurance processes, and building organisational
legitimacy. Candidates indicated that the regulatory sandbox model allowed them to engage
in a unique process of regulatory science, by rigorously and scientifically generating new
knowledge in a challenging and novel area with the regulator.

The application process was seen as fair, as was the emphasis in the selection process on
‘Airlock readiness’ which included access to data sets, virtual environments and real-world
deployments, as required for the testing plan execution. This emphasis was driven by the
need to identify candidates that could participate effectively with the time constrained pilot. It
was also evident that these candidates were already well developed in their thinking and
capability to address a regulatory challenge and, if there had been more time available for
the pilot testing, would have welcomed more ambitious projects.

Some candidates found the development of testing plans more time-consuming than
originally expected. All understood the need to focus on clearly defined regulatory
challenges given the compressed timeline. Clearer guidance on the expectations of the
important stages of candidate onboarding would enhance the experience for candidates.

“Yes, it's difficult and time consuming, but | suppose the second part is it's something we
need to do anyway and it's sort of gives us a focus on where we spend that time”

(candidate interview)

Time and resource demands were challenging and at times constrained candidates’
ambition for the depth of testing. They were broadly considered manageable and
proportionate to the benefits of insight, learning, and influence on future regulatory thinking.
It was highlighted that the testing and development activities carried out in the Al Airlock
were well aligned with activities the candidate organisations would have expected to conduct
at some point, and the programme accelerated and prioritised this work with associated
accountability, resource and time commitments. The Al Airlock regulatory sandbox
mechanism can both accelerate important regulatory work and provide structure to maintain
focus and attention on otherwise deprioritised issues.
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Engagement, Exploration and Collaboration

Candidates and stakeholders consistently reported that the Al Airlock created a constructive
environment for exploring and understanding the key regulatory challenges associated with
Al medical devices. The Al Airlock process was generally experienced as open, exploratory,
and highly collaborative. Candidates were actively engaged, proactive and aligned with the
programme objectives throughout. Sandbox activities were experienced as genuinely
collaborative, and this approach which was viewed as essential to delivering a successful Al
Airlock pilot.

Candidates particularly valued the range of expertise and stakeholder input facilitated by the
Al Airlock, though many would have welcomed closer and deeper interaction with the
broader expert network, particularly through in-person or direct conversations. The diversity
of perspectives was widely recognised as one of the key strengths of the Al Airlock.
Candidates felt that the short timescales limited the depth of exploration, and several
candidates felt the involvement had prepared them for more in-depth work in future but had
not provided the length of time or exploration that was truly needed to develop their analyses
and address the regulatory challenge fully.

Simulation events were understood as a learning opportunity given the high stakeholder
engagement involved. Candidates and stakeholders felt they were the centre piece of the
testing noting these events were especially useful because they enabled candidates to
present detailed work and explore practical cases with diverse stakeholders and experts.

Features such as real-world examples, small-group discussions, and relevant expertise were
viewed as being particularly supportive of learning. The importance of balancing the breadth
and depth of the simulation workshops was highlighted. As was the need for carefully
curating the knowledge, expertise and representation for each activity, ensuring there is
space for everyone to have an effective voice and avoid discussion tangents.

“With some workshops... it seemed to be a very open invitation. There were a lot of
people, but not all people were contributing. So again, being clear about — do you want
people who are interested, or just curious about it? Is that the right thing for them to be
invited to these workshops? Or is it that you want people who are representing different
groups? Because if you have too many, then maybe some people had relevant things to

say, but maybe they didn't” (Stakeholder interview)

There was a general preference for in-person, or single modality, meetings to support
learning and relationship-building, though it was appreciated that the compressed timelines
made this challenging.

Outputs, Impact and Value

Page 66 of 77



The regulatory challenges addressed within the Al Airlock were viewed by candidates and
stakeholders as important and relevant, and represented priority areas for regulatory
attention. It was understood that the scope of these problems was necessarily constrained
by the Al Airlock’s tight timelines, meaning there was a focus on feasible aspects of these
problems. Participants recognised this as a pragmatic trade-off. Some stakeholders believed
that it would be valuable to define a key focus area or agenda for future Airlock phases to
clarify a set of priorities from the outset and to inform the cohort design. Future Airlocks
could be streamlined by supporting the ‘economies of attention’ that can result from all
candidates focusing on a particular technology, application or set of closely related
regulatory challenges. It was also noted that there may be benéefit in bringing other
regulators across the system into discussions in a more detailed and structured way, noting
that the challenges often span multiple regulators.

There was widespread agreement that the key outputs of the Al Airlock should be regulatory
guidance that is practical, public, and informative. Outputs should take a range of engaging
formats and both articulate future regulatory principles and share the regulatory sandboxing
methods and insights so that these can be learnt from and built on by others. Stakeholders
indicated that the outputs needed to balance being general and widely applicable, while also
being detailed enough to move the field forward and contribute to a clearer understanding of
the regulatory problems being addressed. Interest was shown in the sharing of the key
regulatory challenge areas that the MHRA may look to prioritise and transparency of the
current regulatory gaps that the MHRA would be addressing in future Airlocks or change
programmes.

“...the goal was to expose the challenges and needs, and it did so” (Candidate interview).

Candidates reported a range of broader benefits of their involvement in the Al Airlock,
including increased knowledge and deeper understanding around regulatory gaps,
strengthened approaches to assurance and validation, and secondary gains such as raised
public profile and enhanced legitimacy. Candidates noted that engaging in the sandbox had
helped their organisations expand and develop their thinking and practices, particularly
regarding the developing systematic approaches to safety testing and evaluation.. The Al
Airlock testing allowed them to learn more clearly about which problems they should be
approaching and how clarifying these questions and the areas of uncertainty, with a wide
range of experts and stakeholders, was viewed as beneficial.

Management of the Sandbox

Managing and organising the Al Airlock required a broad skillset and at times involved
managing an intensive workload. The Al Airlock team was able to effectively embed
information sharing mechanisms, ongoing cycles of learning and iterative improvements
throughout the process. This iteratively improved processes and created a collaborative
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environment that facilitated mutual learning among all stakeholders. Several stakeholders
and candidates highlighted the Al Airlock’s openness to learning and improvement and
emphasised the constructive sense of experimentation that was perceived to exist
throughout the process.

“often what regulators do is, they know the law and then they will paraphrase law in all
their guidance... and that’s not that helpful, it doesn’t really fill in the grey areas, and it’s a
very safe playing field for the regulator, and what’s nice about this is that we can actually

venture into the grey, and think about, ok, what is a good method?” (Candidate interview)

The Al Airlock team needed to carefully manage and facilitate relationships between
stakeholders and candidates, and there was a focus on ongoing two-way learning between
the Airlock team and candidates, with support and input from expert stakeholders. Significant
effort was put into building and maintaining relationships with key stakeholders such as
Team AB. As with many regulatory sandbox initiatives, there were inherent tensions in
balancing working on specific cases and organisations, with the wider aim of generating
broadly applicable regulatory insights. Managing these tensions of critical independence and
constructive guidance is key to an effective regulatory sandbox.

“We have an Airlock firewall between us and the companies in the form of the committee,
in the form of the Airlock group themselves, which | think has been important that's

allowed us to maintain independence” (Stakeholder interview)

These findings illustrate the importance of the MHRA'’s Al Airlock management approach
and the styles of interaction that supported and encouraged learning, that should be carried
forward into future Airlocks: building a space for learning within a regulatory sandbox
requires regulators themselves to acknowledge and engage in learning processes and
acknowledge and accept uncertainties.

Page 68 of 77



8. Policy Implications and Recommendations

Approach to recommendations

The following recommendations draw on findings from the Al Airlock pilot and are intended
to inform the MHRA's development of targeted regulatory guidance for AlaMD, as well as
contribute evidence to the National Al Commission. They reflect recurring challenges
observed across multiple projects and highlight areas where existing regulation could benefit
from greater clarity.

Each recommendation was developed through a structured process that involved:

e Assessing the underlying evidence and the level of confidence in that evidence — for
example, insights supported by candidate testing data from virtual or real-world
settings, and by simulation workshop discussions had high confidence.

e Determining whether the recommendation related to updates in existing policy or
identified an area for future research or collaboration with Al Airlock partners.

The recommendations cover key regulatory challenges, including:
o Al generation and validation of synthetic unstructured text data
e Managing risks associated with Al inaccuracies such as hallucinations and omissions
e Reducing misuse and mistrust through explainability
« Mitigating patient harm through proactive monitoring and intervention

Addressing these areas will support the MHRA in advancing a regulatory framework that
promotes the safe, effective, and trustworthy development and deployment of AlaMD.

Product development: Data validation

o Develop guidance on expectations for good quality synthetic data and how it should
be assessed during development and regulatory evaluation. Guidance is also needed
on the responsible use of synthetic data in the validation of AlaMD. This should
include outlining appropriate use cases, minimum quality requirements for synthetic
data in terms of fidelity, utility, and relevance of data features. These validation
techniques may also be applicable to verifying reliability of text-based LLM outputs.

e Introduce guidance for the use of LLMs in training and testing AlaMD. Consider
covering best practices for using open-source LLMs and the quality of prompts used
during development. Guidance should outline approaches for prompt safety, for
example having pass/fail criteria for prompts in case significant clinical errors have
been generated by the LLM (rather than only scoring the quality of the outputs).
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« Form a position on approaches to evaluating the quality of text outputs, including
considerations when outputs statistically significantly differ from human written reports
but have been scored as better than human written reports (mathematical or human).

Risk management: hallucinations and omissions

e Provide clear guidance on evaluating and mitigating LLM risks such as hallucinations
and omissions in AlaMD. This should include support for end users with clear
information on identifying and reporting safety events. Guidance should also
emphasise the importance of PMS, including mechanisms like the Yellow Card
scheme and MORE as hallucinations may be rare during pre-market testing.

e Encourage, in guidance, safety measures such as retrieval augmented generation
(RAG) given the potential to reduce hallucinations and support safer, more
explainable outputs. As part of this guidance, it is important to highlight the
importance of holistic safety testing after any model adjustments in case other errors,
e.g., omissions, increase.

Risk management: Explainability

« Emphasise in regulatory guidance the importance of developers adopting context-
aware explainability approaches that account for the clinical question, associated risk
and time constraints on the end user. Different stakeholder groups may require
different types of explanations: global explanations may be most useful for regulators
and policymakers while local case-specific explanations may be more important for
clinicians and patients.

« Strengthen in guidance transparency and training requirements for AlaMD and warn
against the risks of insufficient user training. Structured outputs such as confidence
indicators or other visual aids should be encouraged. Context-specific clarity around
the human-Al teaming expectations should be promoted to improve shared decision-
making. Training should be implemented with clear accessible user-facing
communication about Al-specific risks.

« Emphasise, in guidance, the importance of explainability in conjunction with good
machine learning principles and other safety and risk management approaches.
Where appropriate, Al models should communicate both what has informed a
decision and what has been excluded to reduce the risk of automation bias, defensive
medicine, and risks to patient safety. Developers can implement various approaches
such as model reasoning and model cards to make these factors transparent to the
end user.

Post-market surveillance
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Promote greater awareness and use of reporting tools such as MORE and Yellow
Card among clinicians, patients, and the obligations on manufacturers. This should be
supported by educational initiatives and stronger collaboration between
manufacturers and healthcare organisations to improve reporting and ensure PMS
data are complete and meaningful.

Provide guidance which supports the development and implementation of continuous
monitoring for AlaMD. These mechanisms should track key metrics to detect issues
such as automation bias. Proactive monitoring enables early detection of safety
concerns and should be accompanied by clear follow-up protocols for investigation
and action.

Develop guidance which provides examples of approaches for threshold setting for
continuous monitoring. Manufacturers should determine thresholds through a socio-
technical approach, combining clinical and technical expertise which balance early
warnings with minimising false alarms. A tiered system may be useful for triggering
additional monitoring before requiring intervention.

Emphasise the importance of follow-up protocols for threshold breaches in the post-
market surveillance process. Monitoring alone may be insufficient to ensure safety;
breaches should be investigated and where appropriate acted upon. Guidance needs
to be clear on regulatory requirements for reporting preventative and corrective action
taken.
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9. Conclusion and Next Steps

The Al Airlock pilot explored the potential and the practical challenges of developing and
deploying AlaMD. Our synthetic radiology case study demonstrated that large language
models can generate diverse, clinically relevant text data, provided that rigorous automated
and human evaluation methods are employed to confirm data fidelity, clarity, accuracy and
completeness. The standardisation of these evaluation methods needs to be outlined in
guidance.

Our data extraction and treatment-matching studies demonstrated that retrieval-augmented
architectures and rule-based prompting can be effective while maintaining high accuracy on
complex tasks. Holistic testing helped to minimise omissions and other safety risks.
Explainability mechanisms enhanced user trust and understanding, though these must be
complemented by ongoing user education and continuous monitoring. Our real-time
surveillance case study demonstrated that a monitoring dashboard can be effective at
identifying trends in data quality, model drift and automation bias, enabling early intervention
before patient harm could occur. Our regulatory gap analyses and simulation workshops
identified key areas where Al-specific supplementary guidance is needed to strengthen
existing frameworks.

Through the Al Airlock pilot, we have identified a series of key challenges that illustrate the
novel regulatory considerations posed by Al in healthcare. This work has culminated in 40
recommendations, covering both areas for immediate implementation and those requiring
further exploration. These findings will inform the AlaMD guidance currently in development,
as well as future MHRA policy.

The Al Airlock directly supports the work of the National Al Commission in establishing a
credible, international regulatory framework for the safe and effective use of Al in health. The
pilot will provide the practical evidence base and operational insights needed to address
complex regulatory questions.

Building on this foundation, the next phase of the Airlock will generate further evidence and
test solutions to these challenges. Its findings will be fed directly into the Commission’s work,
ensuring that the Commission’s recommendations are informed by robust, real-world
evidence and implementation experience.

Plans for the next phase

The government confirmed in its Regulatory Action Plan on 17 March 2025 that the Al
Airlock will continue into Phase 2 for the FY 25/26.

Our strategy for Phase 2 will have two main missions: Unlock and Expand.

Page 72 of 77



Our Unlock mission includes the sharing of the learnings from the pilot phase, both
regulatory and the use of sandboxes. We are also developing a programme of activity to
boost the impact of the insights in the sector alongside policy changes.

Our Expand mission involves our work with a new cohort and looking to identify areas across
the MHRA, healthcare academic and international regulatory sectors for collaboration
opportunities to expand the scope of regulatory challenges the Al Airlock can investigate.

Phase 2 will run until end of March 2026. We will work with a new cohort of candidates and
test a new set of regulatory challenges for these innovative devices to improve regulations,
guidance and, ultimately, patient outcomes.
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10. Appendices

Al Airlock Candidates

Philips Healthcare: Results

Linguistic similarity

To make sure that the synthetic reports maintained the same linguistic style as original
reports, Philips evaluated linguistic similarity using the following metrics: GLEU, ROUGE,
Parts-of-Speech Overlap and Automated Readability Index (ARI).

Table s1. Linguistic similarity metrics

Metric

GLEU

ROUGE-L

POS Tag
Overlap

ARI

What it
measures

Balanced n-
gram precision &
recall

Longest
common
sequence (LCS)
overlap

Part-of-speech
usage

Automated
Readability
Index (ARI)**
estimates
understandability
of English texts
based on
evaluating
chars/words and
words/sentences
ratios.

What it means for
comparing radiology
reports

Could be used to
measure sentence-level
similarity of real and
synthetic reports

High ROUGE score
indicates that reports
have similar phrasing but
slight variations

Ensuring similar
grammatical structure

Similar ARI scores
indicate that real and
synthetic findings have
similar length of words
and sentences => have
similar writing style.

Limitations

Sentence-level metric, not
informative for texts with
multiple sentences and no
direct sentence-to-
sentence mapping

Doesn’t capture deep
semantics

Doesn’t capture semantics

Non-robust with respect to
slight variations in
punctuation and numbers

For each report, the experts scored the following points: Clinical Content Similarity, Linguistic
Style Similarity, Understandability compared to the original report.
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Evaluation dimensions of the Impression section using LLM as a judge

The Impression section was evaluated against four metrics: accuracy (faithfulness to the
content of the findings), completeness (coverage of important findings), clarity (readability
and interpretability of the test), and groundedness (ensuring statements are justified by
underlying findings).

Accuracy was measured as alignment between “Findings” and “Impression,” quantified on a
0-10 scale, and justified with structured text explanations.

¢ Definition of accuracy: whether the IMPRESSION section correctly reflects the key
findings and conclusions from the clinical report.

e Scoring method: LLM judge was asked to give a numerical score from 0 to 10.
o A score of 0 is required if there is no IMPRESSION section at all.

o Other scores (1-10) depend on how well the IMPRESSION matches the
findings.

e Justification: the LLM judge must provide two kinds of written reasoning:
o "motivation" =» general reasoning.
o "scoremotivation" =» reasoning tied to why that specific score was given.

e Format: output must be structured JSON with the fields "motivation",
"scoremotivation”, and "score", following strict formatting rules.

Completeness was measured as coverage of all relevant findings in the IMPRESSION,
expressed on a 0-10 scale, with structured justifications.

¢ Definition of completeness: whether the IMPRESSION section contains all relevant
information from the findings and does not leave out any critical details.

e Scoring method: the LLM judge must assign a numerical score between 0 and 10.

o A score of 0 must be given if there is no IMPRESSION section at all.

o Scores 1-10 reflect the extent to which the IMPRESSION covers all key details.
e Justification: the LLM judge must provide written reasoning in two parts:

o "motivation" =» overall explanation.

o "scoremotivation" = specific justification for the chosen score.

e Format: output must be structured JSON with the fields "motivation”,
"scoremotivation”, and "score", following strict formatting rules.

Clarity was measured as how understandable and well-written the IMPRESSION is,
expressed on a 0—-10 scale, with structured justifications.

o Definition of clarity: whether the IMPRESSION section is clearly written and easy to
understand.
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Scoring method: the LLM judge must assign a numerical score from 0 to 10.

o A score of 0 is required if no IMPRESSION section is present.

o Scores 1-10 indicate the degree to which the text is understandable and clearly
expressed.

Justification: the LLM judge must provide explanations in two fields:

o "motivation" =» general explanation of the assessment.
o "scoremotivation" = specific reasoning for the numerical score chosen.

Format: output must be structured JSON with the fields "motivation",
"scoremotivation”, and "score", following strict formatting rules.

Groundedness was measured as the extent to which the IMPRESSION is supported by
evidence in the findings, expressed on a 0-10 scale with structured justifications.

Definition of groundedness: whether the IMPRESSION section is based on, and
supported by, the evidence and findings in the clinical report.

Scoring method: the LLM judge must assign a numerical score between 0 and 10.
o A score of 0 is mandatory if there is no IMPRESSION section.

o Scores 1-10 reflect how well the IMPRESSION is tied to the underlying findings
(e.g., not introducing unsupported statements).

Justification: the LLM judge must explain their assessment in two fields:
o "motivation" =» general explanation of their reasoning.
o "scoremotivation" =» specific justification tied to the numerical score.

Format constraint: assessment must be returned in JSON with the required fields,
following strict formatting rules.
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Table s2. Example of scoring system for comparative analysis

. NOt Slightly | Moderately Very Extremely
similar at e . e .
all similar similar similar similar
1 2 3 4 5

Clinical Content Similarity
Linguistic Style Similarity
Understandability

In addition, an independent analysis for each report was carried out. The experts scored the
following points: Language, Structure, Completeness, Clinical Soundness
The scale for the reports was as follows:

: Not Professional / Not Expected in Radiology Report

: Minimally Professional / Below Clinical Standards

: Somewhat Professional / Needs Improvement

: Moderately Professional / Meets Basic Clinical Standards
: Professional / Above Clinical Standards

: Highly Professional / Fully Expected in Radiology Report

abhwdN-_20
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