0117 25 10101 info@buildingenergyexperts.co.uk buildingenergyexperts.co.uk | Prepared for: | SF Tebby & Son | |----------------|-------------------------------------| | Project: | Tebby & Son Garage, Highland Square | | Report date: | 05/03/2024 | | Produced by: | Building Energy Experts Ltd. | | Report author: | | | Reviewed: | | #### Contents | Contents | 1 | |--|------------| | 1. Executive Summary | 3 | | Summary of total reduction in carbon emissions | 3 | | 2. Planning Policy Context | 4 | | National Policy Context | 4 | | Regional & Local Policy Context | 4 | | 3. Design Principles to Reduce Energy Consumption and Carbon Emission | ns 7 | | Be "Lean" – Use less energy | 7 | | Be "Clean" – Supply energy efficiently | 8 | | Be "Green" – Renewable energy | 8 | | 4. Sustainable Design and Construction | 9 | | Energy Efficiency | | | Decentralised, Renewable and Low-Carbon Energy Supply Systems | 9 | | Avoiding Responses to Climate Impacts that Lead to Increases in Energy Use and CO ₂ Emissions | 9 | | Encouraging Greener Transport Use | 9 | | Waste and Recycling - During Construction | 9 | | Waste and Recycling - In Operation | 9 | | Building Materials - Type, Life Cycle and Source | 10 | | Pollution | 10 | | 5. Water Management | 11 | | Water Conservation Measures | 11 | | Table 1 - Water Consumption | 11 | | Surface Water Management | 11 | | 6. Selecting Renewables | 12 | | Table 1 – Feasibility Matrix of Appropriate Renewables | 12 | | Table 2 – Feasibility Matrix of Appropriate Renewables | 13 | | Heat Hierarchy | 14 | | Table 3 – Following the Heat Hierarchy | 14 | | Feasibility of Appropriate Renewables – Conclusion | 14 | | Table 4 – Proposed Renewables | 14 | | 7. Baseline 'Threshold Values' Fabric and Services Specification | 15 | | Table 5 – Baseline Compliance | 1 5 | | 8. Proposed Fabric and Services Specification | 16 | |---|----| | Table 6 – Baseline Compliance (Domestic) | 16 | | 9. Conclusion | 17 | | Table 7 – Summary Table Domestic | 17 | | Summary | 18 | | Appendix A – SAP Outputs | 19 | | | 20 | #### 1. Executive Summary This Sustainability and Energy Statement demonstrates how the proposed development of 5 apartments and one 4-bedroom house of multiple occupation (HMO) on land at Tebby and Son Garage, Highland Square, Bristol will comply with the following Bristol City Council (BCC) Policies: - BCS13 Climate Change - BCS14 Sustainable Energy (from the Development Framework Core Strategy) - BCS15 Sustainable Design and Construction - BCS16 Flood Risk and Water Management This statement contains the results of the energy modelling, showing how the proposed development will meet BCC policy requirements to reduce carbon emissions by at least 20% over the building regulation requirements. This is achieved through the use of renewable energy. The energy strategy in this statement has been produced in line with the Energy Hierarchy: - Be "Lean" reduce energy demand. - Be "Clean" supply energy efficiently. - Be "Green" use renewable energy. The SAP calculations have been completed in line with Part L (Volume 1, 2021) of the Building Regulations and the requirements of the SGC to demonstrate a 20% reduction in regulated carbon emissions using the above energy hierarchy. SAP calculations were conducted to adhere to the requirements of Part L (Volume 1, 2021) utilizing SAP10, which established baseline values for energy demand, primary energy rate, and emissions. Then, additional measures were applied to provide 'residual' energy demand, primary energy rate and emissions. Finally, appropriate decentralised renewables were included in the calculations to provide the final energy demand and emissions figures for comparison. More detail is provided in the following sections. The baseline calculation uses a Gas Combi Boiler for heating and hot water in the baseline building - this is an appropriate selection for a baseline calculation as it represents a common heating method for domestic buildings in the area and is included in the notional building specification. To summarise the results, the total reduction in carbon emissions for the proposed development is as follows: #### Summary of total reduction in carbon emissions | | Before Renewables | After Renewables (PV) | |---|-------------------|-----------------------| | Baseline Target Emission Rate (TER) | 5,030.90 | | | Residual Building Emission Rate (DER) | 1,946 | 1,291.44 | | Total CO ₂ Saving on residual energy | 61.32% | 74.34% | | Result | PA | SS | #### 2. Planning Policy Context #### **National Policy Context** National Planning Policy Framework – Encourages the adoption of sustainable development through encouraging local authorities to adopt strategies, policies and targets that mitigate and adapt to climate change. It also recommends the move to low carbon technologies by planning new development in ways to reduce greenhouse gas emissions and adhere to standards established in the Government's zero carbon buildings policy. The government energy policy sets targets for the UK to cut carbon dioxide emissions and become net zero by 2050, as well as setting national targets for the generation of electricity from clean and renewable sources. #### Regional & Local Policy Context Local Policy requirements are set out in both South Gloucestershire Local Plan and Core Strategy. #### Policy BCS13 Development should contribute to both mitigating and adapting to climate change, and to meeting targets to reduce carbon dioxide emissions. Developments should mitigate climate change through measures including: - High standards of energy efficiency, including optimal levels of thermal insulation, passive ventilation and cooling, passive solar design, and the efficient use of natural resources in new buildings. - The use of decentralised, renewable and low-carbon energy supply systems. - Patterns of development which encourage walking, cycling and the use of public transport instead of journeys by private car. Development should adapt to climate change through measures including: - Site layouts and approaches to design and construction that provide resilience to climate change. - Measures to conserve water supplies and minimise the risk and impact of flooding. - · The use of green infrastructure to minimise and mitigate the heating of the urban environment. - Avoiding responses to climate impacts which lead to increases in energy use and carbon dioxide emissions. These measures should be integrated into the design of new development. The new development should demonstrate through this sustainability statement how it would contribute to mitigating and adapting to climate change, and to meeting targets to reduce carbon dioxide emissions by means of the above measures. #### Policy BCS14 Proposals for the utilisation, distribution, and development of renewable and low carbon sources of energy, including large-scale freestanding installations, will be encouraged. In assessing such proposals, the environmental and economic benefits of the proposed development will be afforded significant weight, alongside considerations of public health and safety and impacts on biodiversity, landscape character, the historic environment and the residential amenity of the surrounding area. The development in Bristol should include measures to reduce carbon dioxide emissions arising from energy usage in accordance with the following energy hierarchy: - 1. Minimising energy requirements. - Incorporating renewable energy sources. - 3. Incorporating low-carbon energy sources. Consistent with stage two of the above energy hierarchy, the development will be expected to use sufficient renewable energy sources to reduce carbon dioxide emissions arising from residual energy use by at least 20%. An exception will only be made in the case where a development is necessary, but where it is demonstrated that meeting the required standard would not be feasible. The use of combined heat and power (CHP), combined cooling, heat and power (CCHP), and district heating will be encouraged. Within heat priority areas, major developments will be expected to incorporate, where feasible, infrastructure for district heating, and will be expected to connect to existing systems where available. The new development will be expected to demonstrate that the heating and cooling systems have been selected according to the following heat hierarchy: - 1. Connection to existing CHP/CCHP distribution networks - 2. Site-wide renewable CHP/CCHP - 3. Site-wide gas-fired CHP/CCHP - 4. Site-wide renewable community heating/cooling - 5. Site-wide gas-fired community heating #### Policy BCS15 Sustainable design and construction will be integral to the new development in Bristol. In delivering sustainable design and construction, developments should address the following key issues: - · Maximising energy efficiency and integrating the use of renewable and low carbon energy - Waste and recycling during construction and in operation - · Conserving water resources and minimising vulnerability to flooding - The type, life cycle and source of materials used during construction - Flexibility and adaptability, allowing future modification of use or layout to facilitate future refurbishment and retrofitting - Opportunities to incorporate measures which enhance the biodiversity value of the development, such as green roofs. The new development will be required to demonstrate (as part of the sustainability statement submitted with the planning application) how the above issues have been addressed. For major developments and developments used in healthcare or education, the sustainability statement should include a BREEAM and/or Code for Sustainable Homes assessment. Additionally, in the case of a super-major development, a BREEAM
for Communities assessment will be required. From 2016, residential development will be expected to meet Level 6 of the Code for Sustainable Homes. For non-residential development, also from 2016, a BREEAM "Excellent" rating will be expected. All new development will be required to provide satisfactory arrangements for the storage of refuse and recyclable materials as an integral part of its design. Major developments should include communal facilities for waste collection and recycling where appropriate. New homes and workplaces should allow for high-speed broadband access and facilitate access to Next Generation broadband. Developments in Bristol follow a sequential approach to flood risk management, giving priority to the development of sites with the lowest risk of flooding. The development of sites with a greater risk of flooding will be considered where essential for regeneration, or where necessary to meet the development requirements of the city. Development in areas at risk of flooding will be expected to: - Be resilient to flooding through design and layout, and/or; - Incorporate sensitively designed mitigation measures, which may take the form of on-site flood defence works and a commitment to undertaking off-site measures (where they are necessary) to ensure that the development remains safe from flooding over its lifetime. All developments will also be expected to incorporate water management measures to reduce surface water run-off and ensure that it does not increase flood risks elsewhere. This should include the use of sustainable drainage systems (SUDS). ### 3. Design Principles to Reduce Energy Consumption and Carbon Emissions The energy strategy for the proposed development has been formulated in line with the energy hierarchy. It uses the following approaches to optimise energy usage, supply clean and renewable energy, and reduce embedded carbon emissions while meeting local requirements (figure 1). Figure 1: The Energy Hierarchy #### Be "Lean" - Use less energy The proposed development has been designed with the use of efficient fabric specifications, integrating efficiency into the thermal envelope of the building. The proposed thermal elements meet or go beyond the minimum requirements set out in Approved Document L Volume 1 (2021) for new fabric elements. Target U-values have been specified to achieve or go beyond the U-values found in the national dwelling specification. When possible, the national dwelling values are much lower than the limiting factors (maximum allowed U-values) to create the target rates used in the SAP calculation. The fabric elements and fenestration have been specified using calculated U-values for the intended construction specification for the building. This includes: - External walls that achieve a U-value of at least 0.18 W/m²k. - A ground floor that achieves a U-value of at least 0.13 W/m²k. - An exposed floor that achieves a U-value of at least 0.18 W/m²k. - A flat roof that achieves a U-value of at least 0.11 W/m²k. Careful consideration will be given to the fenestration. Double glazing with low window U-values of 1.31 W/m²k will be utilised to limit heat loss through openings. The glazing design also allows for passive heating into the building. However, to minimise the risk of overheating, the glazing will be openable where practical. Good detailing will help to limit heat losses through the fabric of the proposed development. Where available, all non-repeating thermal bridges (e.g. between the external walls and the roofs) will be specified to enhanced construction details that represent the best practice for the proposed construction. Alternatively, some details will be calculated with target values for the thermal bridging set. This will ensure that heat losses through these junctions are minimised, and the psi values can be utilised in the SAP calculations. The studio flats will be naturally ventilated, with intermittent extractor fans in the bathrooms and a cooker hood in the kitchens. This will reduce the energy demand of active ventilation systems. The proposed building layout has been determined by several factors, such as ownership and site boundaries, relationship to adjacent buildings and site access, as well as internal walls arrangements. The internal room layouts within the resultant footprint have been designed with consideration of recommended zoning and room orientations. The dwellings will have designed air permeability of below $4.5 \text{ m}^3/\text{hr/m}^2$. This is below the requirements of the building regulations $8 \text{ m}^3/\text{hr/m}^2$ and notional value of $5 \text{ m}^3/\text{hr/m}^2$. The design of the dwelling optimises the use of natural lighting, and it is proposed that only energy efficient lighting is installed at the property. This means that all light fittings should have bulbs with a luminous efficacy of greater than 80 lamp lumens per circuit-watt. The proposed building has been designed to allow for cross ventilation where possible, in order to minimise the need for additional mechanical methods of cooling. Windows have been sized and positioned to allow for good internal natural light and allow for solar gains during winter months. Windows will also have a large free opening area to help ensure that the risk of summer overheating is reduced. #### Be "Clean" - Supply energy efficiently The energy that is used in the development has been considered for its efficiency. Local policy supports the connection of proposed developments to heat networks. Local heat and power sources minimise distribution losses and achieve greater efficiency when compared to separate localised energy systems. This section shows the consideration given to the connection of the dwelling to any existing or planned district heating networks in the proximity of the site. There are no existing district heating systems near the development site. The development is not major (under 100 dwellings). This means the use of district heating networks, or a CHP system, would not be selected due to the unnecessary added complexity. This project is also aiming to use very efficient fabric in order to reduce the heating demand and use efficient services to reduce water demand. Therefore, the expected demand for heating and hot water would potentially not be significant enough for CHP systems. #### Be "Green" - Renewable energy Low carbon energy generation and renewable technologies have been assessed for the proposed development, with some considered appropriate. See section 6 for further details regarding the feasibility of each assessed technologies. Based upon the feasibility matrix an air source heat pump (ASHP) and solar PV are deemed appropriate. The solar PV will be used to achieve the 20% reduction over Part L requirements. #### 4. Sustainable Design and Construction #### **Energy Efficiency** The proposed building fabric makes use of high-performance insulation materials. The U-values of the building fabric have been calculated and used in the assessment of the dwelling. The achieved U-values are lower than the limiting factors permitted by Part L, and are substantially less or equal to the U-values used in the notional building. The proposed dwellings would have the potential to achieve a 69.66% total reduction in CO₂ over the baseline Building Regulation measures if low carbon technologies and energy efficiency improvements are used. #### Decentralised, Renewable and Low-Carbon Energy Supply Systems The proposal for the dwelling makes use of two low carbon systems, including an electric air source heat pump for heating and water heating. Solar PV is also proposed to be added to the building to provide onsite renewable generation. This reduces the associated carbon emissions of the development, with solar used to offset the increase in electricity consumption on site. ### Avoiding Responses to Climate Impacts that Lead to Increases in Energy Use and CO₂ Emissions There are no proposals to include artificial cooling. The proposed building has been designed to allow for cross ventilation where possible. Windows have been sized and positioned to allow for good internal natural light, and allow for solar gains during winter months. The building will also include appropriate internal shading, such as blinds and curtains, will be used to mitigate overheating from the sun. The design of the building also includes some external features to provide shading. #### **Encouraging Greener Transport Use** The proposal will include provision for secure cycle storage of 9 bikes. The nearest bus stops are located on Whiteladies Road with buses towards the City Centre, Temple Meads, Long Ashton, Cribbs Causeway and Southmead. The nearest train station is Clifton Down. The nearest supermarket and many more local services, shops and restaurants can be found along Whiteladies Road. The area also has excellent leisure and exercise facilities nearby, with the Downs being a short walk from the proposed site. #### Waste and Recycling - During Construction A site waste management plan (SWMP) will be developed for this project. Waste groups to be monitored will be identified, and targets will be set to identify how waste can be reduced, reused, recycled, or diverted from landfills. Unavoidable waste will be disposed of responsibly. #### Waste and Recycling - In Operation Adequate waste and recycling storage will be provided in the blocks of studio flats. The internal provisions will comply with the local councils recycling and waste collection requirements, so recyclables and waste can be separated before collection. #### Building Materials - Type, Life Cycle and Source Where feasible, local suppliers of materials will be selected to minimise the environmental impact of transportation. Materials will be purchased from sources that minimise carbon emissions and utilise sustainable sources in line with the developers' Environmental policy. Only suppliers with a
certified chain of custody from the Forest Stewardship Council (FSC) or the Programme for the Endorsement of Forest Certification (PEFC) will be used to supply materials. 100% of the timber used will be legally sourced. Material will be sourced from suppliers with an EMS certificate or equivalent. #### **Pollution** An appropriate construction management plan will be prepared to address issues regarding water, waste, noise, vibration, dust, emissions, odours, and ground contamination. The development makes use of natural building materials for the structure of the dwelling. It will also include renewable technologies and nontoxic paints, producing limited impact on air pollution in the local area. The development will also incorporate lighting measures to prevent light pollution. #### 5. Water Management #### **Water Conservation Measures** Internal portable water will be conserved by installing flow restrictors to taps, showers and dual flush toilets. The following schedule provides a suggested specification which has been proven to exceed building regulations requirements for water conservation (Regulation 36 Compliance). Table 1 - Water Consumption | Area | Flow Rate/Capacity | | |---|-----------------------------|--| | Toilet | Dual Flush 6 and 2.6 Liters | | | Basin Taps | 1.7 Litres / Minute | | | Shower | 8 Litres / Minute | | | Kitchen Taps 4 Litres / Minute | | | | Total Water Consumption Litres/person/day | | | #### Surface Water Management The site lies within Flood Zone 1 according to the Bristol City Strategic Flood Risk Assessment. Surface water runoff will be managed through a sustainable urban drainage system (SUDs). #### 6. Selecting Renewables #### Table 1 – Feasibility Matrix of Appropriate Renewables Showing the considerations in choosing a renewable technology for this site. | Solar PV | Water Source Heat Pump | |--|---| | The available installation area and the orientation around the dwelling make Solar PV a suitable renewable option for the scheme. | Not possible in this location. | | Solar Thermal | Biomass | | The hot water demand and installation area would make it possible to use solar thermal. However, to reach the 20% reduction in carbon emissions, a significant number of panels would be required. Therefore, it is more space efficient to use solar PV to reach the 20% reduction. | The proximity of residential dwellings could have an impact on the local air quality. There is not a suitable area for storage to the building. | | Air Source Heat Pump | Combined Heat & Power (CHP) | | An air source heat pump has been deemed appropriate based on the requirement for space for individual heat pumps on the flat roof/terrace of the buildings. | CHP requires a significant electricity demand, which this development does not provide. This makes CHP unviable, unless a site-wide community heating system is proposed. | |
The development is within proximity to residential properties, so wind is not suitable for this site. | |---| #### District Heating The property is not within an existing district heat network, or in proximity to any planned heat network. #### Table 2 – Feasibility Matrix of Appropriate Renewables Showing the considerations in choosing a renewable technology for this site. | Technology | Requirements | Requirements
Met? | Appropriate? | | |--------------------------|--|----------------------|--------------------------------------|--| | | Roof facing east to west (through south) | Yes | | | | Photovoltaic panels | Little/no or modest over shading | Yes | Yes – Selected | | | Photovoitaic paneis | Flat roof or pitched roof not
greater than 45° | Yes | res – Selecteu | | | | Any size development | Yes | | | | Solar thermal | All requirements for photovoltaic panels | Yes | No – Area used for | | | | Hot water tank | Yes | water heating | | | | Suitable external wall or other location on-site for equipment | Yes | | | | Air source heat pumps | Aesthetic considerations | Yes | Yes – Selected | | | | Noise impact | Yes | | | | | Any size development | Yes | | | | | External space for horizontal
trench or vertical borehole | Yes | | | | Ground source heat pumps | Medium to large sized development | Yes | Would require further investigation | | | | Archaeology | Unknown | _ | | | | Best suited to underfloor heating | No | | | | | Space needed for plant, fuel
storage and deliveries | Yes | No - Air pollution, | | | Biomass | Medium to large sized
development | No | storage size and delivery location | | | | Minimal impact on residents (air quality, deliveries) | No | insufficient | | | Combined heat and | Space need for plant access and servicing | Yes | No (development | | | power | Large sized development (large heat demand) | No | intended to have low
heat demand) | | | | Available network | No | | | | District heating | Very large sized development
(Substantial heat demand) | No | No | | #### **Heat Hierarchy** #### Table 3 – Following the Heat Hierarchy Showing how the heat hierarchy can be applied to this site. | Stage | Feasible | Notes | |---|----------|-----------------------| | Connection to existing
CHP/CCHP distribution
networks | No | No network available | | 2. Site-wide renewable
CHP/CCHP | No | No network available | | 3. Site-wide gas-fired CHP/CCHP | No | No network available | | 4. Site-wide renewable community heating/cooling | Yes | No network available | | 5. Site-wide gas-fired community heating/cooling | Yes | No network available | | 6. Individual building renewable heating | Yes | Air Source Heat Pumps | #### Feasibility of Appropriate Renewables – Conclusion The location, size, and type of this development render some renewable technologies appropriate. #### Table 4 – Proposed Renewables Showing renewables added to the specification to further reduce carbon emissions. This includes the use of an air source heat pump and solar PV. The table below shows the array size of the proposed solar PV installation. | Total Array Size | Direct/Landlord's Supply | Orientation | Inclination | Overshading | |------------------|--------------------------|----------------------------|-------------|----------------| | 6.27 kWp | Landlords Supply | Southwest/South east/south | 30 | None or little | ### 7. Baseline 'Threshold Values' Fabric and Services Specification #### Table 5 – Baseline Compliance Showing the minimum specification required to achieve compliance with Part L | Category | ltem | Reference/Source | Value/Details | |-------------------------------|--|------------------|---------------| | | New Walls | L1 | 0.26 | | Building Fabric (W/m2K) | New Roofs | L1 | 0.16 | | | New Floor | L1 | 0.18 | | | Solid Door | L1 | 1.4 | | Fenestration (W/m²K) | Glazed Doors/Windows | L1 | 1.6 | | | Roof Lights | L1 | 2.2 | | Thermal Bridging
(y-value) | Accredited and
Enhanced
Construction Details | Default | Default | | Ventilation | Air Permeability
(m³/hm²) | Assumed | 8 | | | Mechanical Ventilation | Assumed | n/a | | | Primary Heating | Assumed | n/a | | | Controls | Assumed | n/a | | Heating | Heat Distribution | Assumed | n/a | | | Water Heating | Assumed | n/a | | | Secondary Heating | Assumed | None | | | Low Energy Lighting (%) | Assumed | n/a | | | SAP Appendix Q | Assumed | None | | Additional Features | Renewables | Assumed | None | | Additional Features | Regulation 36
Compliance
(litres/person/day) | Assumed | 125 | #### 8. Proposed Fabric and Services Specification #### Table 6 – Baseline Compliance (Domestic) Showing the proposed specification that goes above compliance with Part L | Category | ltem | Reference/Source | Value/Details | |-------------------------------|--|------------------|-------------------------------------| | | New Walls | L1 | 0.18 | | Building Fabric (W/m2K) | New Roofs | L1 | 0.11 | | | New Floor | L1 | 0.13/0.20 | | F | Solid Door | L1 | 1.31 | | Fenestration (W/m²K) | Glazed Doors/Windows | L1 | 1.31 | | Thermal Bridging
(y-value) | Accredited and
Enhanced
Construction Details | Assumed | Enhanced & Calculated
Targets | | Ventilation | Air Permeability
(m³/hm²) | Assumed | 4.5 | | | Mechanical Ventilation | Assumed | n/a | | | Primary Heating | Assumed | ASHP | | | Controls | Assumed | Time & Temperature
Zonal Control | | Heating | Heat Distribution | Assumed | n/a | | | Water Heating | Assumed | From Main Heating | | | Secondary Heating | Assumed | None | | | Low Energy Lighting (%) | Assumed | 100 | | | SAP Appendix Q | Assumed | None | | | Renewables | Assumed | Solar PV | | Additional Features | Waste Water Heat
recovery | Assumed | None | | | Regulation 36
Compliance
(litres/person/day) | Assumed | 125 | #### 9. Conclusion Table 7 – Summary Table Domestic | | Building Regulations
Part L1b compliance
("Baseline" energy
demand and
emissions) | | Be 'Green'
Proposed scheme
after on-site
renewables | Total savings on residual emissions | |---|---|-----------
--|-------------------------------------| | Energy demand
(kWh pa) | 15,130.77 | 14,394.21 | | | | Energy saving
achieved (%) | | 4.87% | | | | Regulated CO2
emissions (kg pa) | 5,030.901 | 1,946 | 1,291.44 | | | Saving achieved on
residual CO2
emissions (%) | | 61.32% | 33.64% | 74.34% | | Dwelling Primary
Energy Rate (kWh
pa) | 26,495.19 | 20,396.04 | 15,028.05 | | | Energy saving achieved (%) | | 26.32% | 43.28% | | #### Summary This report demonstrates that the proposal will result in carbon emissions being reduced by up to 61.62% against Building Regulations Part L1, prior to taking account of the use of energy generation sources. With the renewable energy generation sources proposed within this development (photovoltaic panels) the carbon emissions will be reduced by up to a further 20.95%, culminating in a carbon emission reduction against building regulations of up to 69.66% across the site in total. BCC Policy requires that all residential development will be required to reduce CO2 emissions over and above building regulations requirements by at least 20% via the use of renewable and/or low carbon energy generation sources. As demonstrated, these proposals will achieve at least 20% in accordance with this policy. Appendix A – SAP Outputs #### **Building Regulations England Part L (BREL) Compliance Report** Approved Document L1 2021 Edition, England assessed by Array SAP 10 program, Array Date: Tue 05 Mar 2024 08:41:58 | Project Information | | | | |----------------------------|------------|-----------------|---------------------| | Assessed By | | Building Type | Flat, Semi-detached | | OCDEA Registration | EES/025661 | Assessment Date | 2024-03-05 | | Dwelling Details | | | | |-------------------------|--------------------------------|------------------|-------------------| | Assessment Type | As designed | Total Floor Area | 43 m ² | | Site Reference | Unit 1 | Plot Reference | Residual | | Address | Unit 1 Highland Square, Bristo | ol | | | Client Details | | |----------------|---| | Name | Tebby & Son | | Company | SF Tebby & Son | | Address | Unit 11 Avon Gorge Industrial Estate , Bristol, BS2 9XX | This report covers items included within the SAP calculations. It is not a complete report of regulations compliance. | 1a Target emission rate and dwelling emission | rate | | |---|---|----| | Fuel for main heating system | Electricity | | | Target carbon dioxide emission rate | 15.43 kgCO ₂ /m ² | | | Dwelling carbon dioxide emission rate | 5.54 kgCO ₂ /m ² | OK | | 1b Target primary energy rate and dwelling pri | mary energy | | | Target primary energy | 81.89 kWh _{PE} /m ² | | | Dwelling primary energy | 58.43 kWh _{PE} /m ² | OK | | 1c Target fabric energy efficiency and dwelling | fabric energy efficiency | | | Target fabric energy efficiency | 40.8 kWh/m ² | | | Dwelling fabric energy efficiency | 35.6 kWh/m ² | OK | | 2a Fabric U-values | 2a Fabric U-values | | | | | |----------------------------------|---|----------------------------------|---|-----|--| | Element | Maximum permitted average U-Value [W/m²K] | Dwelling average U-Value [W/m²K] | Element with highest individual U-Value | | | | External walls | 0.26 | 0.18 | Walls (1) (0.18) | OK | | | Party walls | 0.2 | 0 | Party Wall (1) (0) | N/A | | | Curtain walls | 1.6 | 0 | N/A | N/A | | | Floors | 0.18 | 0.12 | Heatloss Floor 1 (0.12) | OK | | | Roofs | 0.16 | N/A | N/A | N/A | | | Windows, doors, and roof windows | 1.6 | 1.31 | W01 (1.31) | OK | | | Rooflights | 2.2 | N/A | N/A | N/A | | | 2b Envelope elements (better than typically expected values are flagged with a subsequent (!)) | | | |--|----------------------------|------------------------------| | Name | Net area [m ²] | U-Value [W/m ² K] | | Exposed wall: Walls (1) | 32.13 | 0.18 | | Exposed wall: Walls (2) | 5.27 | 0.18 | | Party wall: Party Wall (1) | 32.92 | 0 (!) | | Ground floor: Heatloss Floor 1, Heatloss Floor 1 | 43.39 | 0.12 | | 2c Openings (better than typically expected values are flagged with a subsequent (!)) | | | | | |---|------------------------|-------------|--------------|------------------------------| | Name | Area [m ²] | Orientation | Frame factor | U-Value [W/m ² K] | | W01, Windows | 2.24 | North East | 0.7 | 1.31 | | W02, Windows | 2.35 | North East | 0.7 | 1.31 | | W03, Windows | 1.53 | North East | 0.7 | 1.31 | | W04, Windows | 2.26 | North East | 0.7 | 1.31 | | | | ed values are flagged with a subs | | | |-------------------|---|--|---------------------|---------------------| | Building part 1 - | Main Dwelling: Thermal bridging ca | alculated from linear thermal transmit | tances for eac | h junction | | Main element | Junction detail | Source | Psi value
[W/mK] | Drawing / reference | | External wall | E2: Other lintels (including other steel lintels) | Not government-approved scheme | 0.023 (!) | | | External wall | E3: Sill | Calculated by person with suitable expertise | 0.021 (!) | | | | | | | | | Main element | Junction detail | Source | Psi value
[W/mK] | Drawing / reference | |---------------|---|--|---------------------|---------------------| | External wall | E4: Jamb | Calculated by person with suitable expertise | 0.016 (!) | | | External wall | E5: Ground floor (normal) | Calculated by person with suitable expertise | 0.047 | Marmox Spec | | External wall | E7: Party floor between dwellings (in blocks of flats) | Calculated by person with suitable expertise | 0.038 (!) | | | External wall | E22: Basement floor | Calculated by person with suitable expertise | -0.08 | Marmox Spec | | External wall | E19: Ground floor (inverted) | SAP table default | 0.1 | | | Party wall | P1: Ground floor | Calculated by person with suitable expertise | 0.093 | | | Party wall | P3: Intermediate floor between dwellings (in blocks of flats) | SAP table default | 0 (!) | | | External wall | E16: Corner (normal) | Calculated by person with suitable expertise | 0.043 | | | External wall | E17: Corner (inverted - internal area greater than external area) | Calculated by person with suitable expertise | -0.073 | | | External wall | E18: Party wall between dwellings | Calculated by person with suitable expertise | 0.046 | | | 3 Air permeability (better than typically expected values are flagged with a subsequent (!)) | | | |--|--|----| | Maximum permitted air permeability at 50Pa | $8 \text{ m}^3/\text{hm}^2$ | | | Dwelling air permeability at 50Pa | 4.5 m ³ /hm ² , Design value | OK | | Air permeability test certificate reference | | | | 4 Space heating | | |---------------------------------------|---| | Main heating system 1: Heat pump with | radiators or underfloor heating - Electricity | | Efficiency | 219.9% | | Emitter type | Radiators | | Flow temperature | 55°C | | System type | Heat Pump | | Manufacturer | Atlantic | | Model | Logic Air 8kW | | Commissioning | | | Secondary heating system: N/A | | | Fuel | N/A | | Efficiency | N/A | | Commissioning | | | 5 Hot water | | |--------------------------------------|--------------| | Cylinder/store - type: Cylinder | | | Capacity | 150 litres | | Declared heat loss | 2.09 kWh/day | | Primary pipework insulated | Yes | | Manufacturer | | | Model | | | Commissioning | | | Waste water heat recovery system 1 - | type: N/A | | Efficiency | | | Manufacturer | | | Model | | | 6 Controls | | | | | | | | | | | |---|----------------------------|--|--|--|--|--|--|--|--|--| | Main heating 1 - type: Time and temperature zone control by arrangement of plumbing and electrical services | | | | | | | | | | | | Function | | | | | | | | | | | | Ecodesign class | | | | | | | | | | | | Manufacturer | | | | | | | | | | | | Model | | | | | | | | | | | | Water heating - type: Cylinder thermosta | at and HW separately timed | | | | | | | | | | | Manufacturer | | | | | | | | | | | | Model | | | | | | | | | | | | 7 Lighting | | | | |---|-------------------------|--|-------| | Minimum permitted light source efficacy | 75 lm/W | | | | Lowest light source efficacy | 80 lm/W | | OK | | External lights control | N/A | | | | 8 Mechanical ventilation | | | | | System type: N/A | | | | | Maximum permitted specific fan power | N/A | | | | Specific fan power | N/A | | N/A | | Minimum permitted heat recovery | N/A | | 14/74 | | efficiency | | | | | Heat recovery efficiency | N/A | | N/A | | Manufacturer/Model | 1471 | | 1471 | | Commissioning | | | | | 9 Local generation | | | | | N/A | | | | | | | | | | 10 Heat networks | | | | | N/A | | | | | 11 Supporting documentary evidence | | | | | N/A | | | | | 12 Declarations | | | | | a. Assessor Declaration | | | | | | enfirmation that the ac | Intents of this BREL Compliance Report | | | | | Interns of this BREE Compliance Report | | | the purpose of carrying out the "As de | | | | | evidence (SAP Conventions, Appendi | | | | | documentary evidence required) has | | • | | | Compliance Report. | been reviewed in the | course or preparing this bitch | | |
Острианос Кероп. | | | | | | | | | | Signed: | | Assessor ID: | | | | | | | | | | | | | Name: | | Date: | | b. Client Declaration N/A | Property Reference | Uni | t 1 | | | | | | | | Issue | d on Date | 05/ | 05/03/2024 | | | |------------------------------------|--------------------|----------------------|-------------------------------------|-----------------------------|---|----------------------------|--|-----------------------|-----------|--|--|----------------|--|-----------------------|--| | Assessment Reference | Re | sidual | | | | | Pro | р Туре | Ref | Tebby a | and Son G | on Garage | | | | | Property | Uni | t 1, Highla | nd Square | , Bristol | | | | | | | | | | | | | SAP Rating | | | | 83 B | | DER | | 5.54 | 1 | | TER | | 15.43 | | | | Environmental | | | | 97 A | | % DER | ≀ < TER | | | | | | 64.10 | | | | CO ₂ Emissions (t/year) | | | | 0.22 | | DFEE 35.63 | | | | TFEE | | 40.78 | | | | | Compliance Check | | | | See BREL | | % DFE | E < TFE | E | | | | | 12.64 | | | | % DPER < TPER | | | | 28.65 | | DPER | | 58.4 | 43 | | TPER | | 81.89 | | | | Assessor Details | | | <u> </u> | | | | | | | | Assesso | r ID | U367-(| 0001 | | | Client | | | | | | | | | | | | | | | | | SUMMARY FOR INPU | IT DATA F | OR: Nev | v Build (<i>l</i> | As Designe | ed) | | | | | | | | | | | | Orientation | | | | Southwest | | | | | | | | | | | | | Property Tenture | | | | 1 | | | | | | | | | | | | | Transaction Type | | | | 6 | | | | | | | | | | | | | Terrain Type | | | | Urban | | | | | | | | | | | | | 1.0 Property Type | | | | Flat, Semi-D | Detached | | | | | | | | | | | | Position of Flat | | | | Ground-floo | | | | | | | | | | | | | Which Floor | | | | 0 | | | | | | | | | | | | | 2.0 Number of Storeys | | | | 1 | | | | | | | | | | | | | 3.0 Date Built | | | | 2024 | | | | | | | | | | | | | 3.0 Property Age Band | | | | L | | | | | | | | | | | | | 4.0 Sheltered Sides | | | | 3 | | | | | | | | | | | | | 5.0 Sunlight/Shade | | | | Average or u | unknown | | | | | | | | | | | | 6.0 Thermal Mass Parame | ter | | | Precise calc | | | | | | | | | | | | | Thermal Mass | | | | N/A | | | | | | | kJ/m²K | | | | | | 7.0 Electricity Tariff | | | | Standard | | | | | | | | | | | | | Smart electricity meter f | itted | | | No | | | | | | | | | | | | | Smart gas meter fitted | | | | No | | | | | | | | | | | | | 7.0 Measurements | | | | | Basemen | t: | t Loss P o
0.00 n
21.33 | n | er Ir | nternal FI
0.00
43.39 | m² | Avera | 0.00
2.50 | | | | | | | | 1
2r
3
4
5
6 | st Storey nd Storey rd Storey th Storey ith Storey ith Storey ith Storey ith Storey | r:
r:
r:
r:
r: | 0.00 n
0.00 n
0.00 n
0.00 n
0.00 n
0.00 n | n
n
n
n
n | | 0.00
0.00
0.00
0.00
0.00
0.00
0.00 | m ²
m ²
m ²
m ²
m ²
m ² | | 0.00
0.00
0.00
0.00
0.00
0.00 | m
m
m
m
m | | | 8.0 Living Area | | | | 20.51 | | | | | | | m² | | | | | | 9.0 External Walls Description | Туре | Constr | ruction | | | | Kappa
(kJ/m²K) | | Nett Area | Shelter
Res | Shelter | Open | ings Are | a Calculatio | | | Cavity Wall | Cavity Wall | | wall : plasterb
avity, any outsi | oard on dabs, der | nse block, | 0.18 | 150.00 | 40.51 | 32.13 | 0.00 | None | 8.3 | 8 En | er Gross Are | | | Basement Wall | Cavity Wall | Cavity | | oard on dabs, dei | nse block, | 0.18 | 150.00 | 5.27 | 5.27 | 0.00 | None | 0.0 | 0 En | er Gross Are | | | 9.1 Party Walls | | | | | | | | | | | | | | | | | Description | Type | | Construc | tion | | | | | | e Kappa
() (kJ/m²K | | Shelter
Res | , | helter | | | Party Wall 1 | Filled C
Edge S | avity with
ealing | Single pla
cavity | sterboard on | both side | s, dense | cellular | blocks, | 0.00 | 70.00 | 32.92 | 0.00 | | None | | | 9.2 Internal Walls
Description | | | Constructi | ion | | | | | | | | | (appa | Area (m | | | Internal Wall 1 | | | Dense bloo | k, dense plas | ter | | | | | | | | J/m²K)
00.00 | 102.55 | | SAP 10 Online 2.13.11 Page 1 of 4 | 10.1 Party Ceilings
Description | | Constr | | | | | | | | Kappa
(kJ/m²K) | Area (m²) | |---|---|--------------|---|--|--|--|---|------------|-----------------------|--------------------|---| | Party Ceiling 1 | | Precas | t cor | crete planks floor, scre | ed, carpeted | | | | | 30.00 | 43.39 | | 11.0 Heat Loss Floors Description | Туре | Storey Index | | Construction | U- V a | lue | Shelter Code | Sh | elter Kap | pa Area (m²) | | | Heatloss Floor 1 | Ground Floor - Solid | • | | Suspended concrete floor, | (W/m
0.1 | ²K) | None | Fa | ctor (kJ/r
.00 75. | n²K) | | | 12.0 Opening Types | | | | | | | | | | | | | Description | Data Source | Туре | | Glazing | Glazing | Filling | G-value | Frame | Frame | U Value | | | Windows | Manufacturer | Window | | Double Low-E S | oft 0.05 | Gap | Type
Air Filled | 0.63 | Type
Wood | Factor 0.70 | (W/m²K)
1.31 | | 13.0 Openings | | | | | | | | | | | | | Name
W01
W02
W03 | Opening Ty
Windows
Windows
Windows | | Location
Cavity Wall
Cavity Wall
Cavity Wall | Orient
North
North
North | East
East
East | Area (
2.2
2.3
1.5 | 4
5
3 | P | itch
0
0
0 | | | | W04 | Windows | | | Cavity Wall | | North | East | 2.2 | ь | | 0 | | 14.0 Conservatory | | | | None | | | | | | | | | 15.0 Draught Proofing | | | | 100 | | | | % | | | | | 16.0 Draught Lobby | | | No | | | | | | | | | | 17.0 Thermal Bridging | | | | Calculate Bridges | | | | | | | | | 17.1 List of Bridges | | | _ | _ | | | | | | | | | E2 Other lintels (including other steel lintels) E3 Sill E4 Jamb E5 Ground floor (normal) E7 Party floor between dwellings (in blocks of flats) E22 Basement floor E19 Ground floor (inverted) P1 Party wall - Ground floor P3 Party wall - Intermediate floor between dwellings (in blocks of flats) | | | | Irce Type I Gov Approved Scheme pendently assessed ependently assessed ependently assessed ependently assessed ependently assessed ependently assessed le K1 - Default ependently assessed le K1 - Default ependently assessed | Length 4.43 4.43 15.18 16.05 16.05 5.27 5.27 15.07 15.07 | Psi
0.02
0.02
0.05
0.04
-0.08
0.10
0.09
0.00 | 0.02
0.02
0.02
0.05
0.04
-0.08
0.10
0.09
0.00 | Marmox Sp | ec | | Imported No | | E17 Corner (inverted – i
external area) | internal area great | er than | Inde | ependently assessed | -0.07 | -0.07 | | | | No | | | E18 Party wall between | dwellings | | Inde | ependently assessed | 5.00 | 0.05 | 0.05 | | | | No | | Y-value | | | | 0.04 | | | | W/m²K | | | | | 18.0 Pressure Testing | | | | Yes | | | | | | | | | Designed AP ₅₀ | | | | 4.50 | | | | m³/(h.m | ²) @ 50 Pa | a | | | Property Tested? | | | | Yes | | | | | | | | | Test Method | | | | Blower Door | | | | | | | | | 19.0 Mechanical Ventilation | on . | | | | | | | | | | | | Mechanical Ventilation | | | | | | | | | | | | | Mechanical Ventila | ation System Pres | ent | | No | | | | | | | | | 20.0 Fans, Open Fireplace | s, Flues | | | | | | | | | | | | 21.0 Fixed Cooling System | n | | | No | | | | | | | | | 22.0 Lighting No Fixed Lighting | | | | No
Name
Lighting 1 | Efficacy
80.00 | | wer | Capa
12 | | С | ount
5 | | 24.0 Main Heating 1 | | | | Database | | | _ | | | | - | | _ | | | | | | | | <u></u> % | | | | | Percentage of Heat | | | | 100.00 | | | | 70 | | | | | | Database Ref. No. | | | 106764 | | | | | | | | | | Fuel Type | | | | Electricity 0 | | | | | | | | | SAP Code | | | | | | | | | | | | In Winter | | | | 219.89 | | | | | | | | | In Summer | | | | 192.25 | | | | | | | | | Model Name | | | | Logic Air 8kW | | | | | | | | SAP 10 Online 2.13.11 Page 2 of 4 | Manufacturer | Atlantic | 7 | |--|--|-------------------------------------| | | | _
¬ | | System Type | Heat Pump | _ | | Controls SAP Code | 2207 | = | | Delayed Start Stat | No | _ | | HETAS approved System | No | = | | Oil Pump Inside | No | _ | | FI Case | 0.00 | | | Flue Type | None or Unknown | | | Fan Assisted Flue | No | | | Is MHS Pumped | Pump in heated space | | | Heating Pump Age | 2013 or later | | | Heat Emitter | Radiators | _ | | Flow Temperature | Enter value | _ | | Flow Temperature Value | 55.00 | | | Boiler Interlock | No |] | | 25.0 Main Heating 2 | None | | | 26.0 Heat Networks | None | | | Heat Source Fuel Type Heating U | Jse Efficiency Percentage Of Heat Heat Ele | ectrical Fuel Factor Efficiency typ | | | Heat Power
Ratio | | | Heat source 1 None | 1440 | | | Heat source 2 None
Heat source 3 None | | | | Heat source 4 None | | | | Heat source 5 None | | | | 28.0 Water Heating | Main Hanting 4 | | | Water Heating SAP Code | Main
Heating 1 901 | _
_ | | | | _ | | Flue Gas Heat Recovery System | No | ╡ | | Waste Water Heat Recovery Instantaneous System 1 | No | _ | | Waste Water Heat Recovery Instantaneous System 2 | No | _ | | Waste Water Heat Recovery Storage System | No | | | Solar Panel | No | | | Water use <= 125 litres/person/day | Yes | _ | | Summer Immersion | No | | | Cold Water Source | From header tank | | | Bath Count | 0 | | | Supplementary Immersion | No | | | Immersion Only Heating Hot Water | No | | | 28.1 Showers | | | | Description Shower Typ | | Connected Connected To | | 1 Combi boile | r or unvented hot water system 7.00 [kW] | No | | 28.3 Waste Water Heat Recovery System | | | | 29.0 Hot Water Cylinder | Hot Water Cylinder | | | Cylinder Stat | Yes | | | Cylinder In Heated Space | Yes | | | Independent Time Control | Yes | Ī | | Insulation Type | Measured Loss | Ī | | Cylinder Volume | 150.00 | _
│ L | | Loop | 2.00 | 1300-74 | SAP 10 Online 2.13.11 Page 3 of 4 kWh/day 2.09 Loss | Pipes insulation
In Airing Cupboard | Fully insulated primary pipework No | | |---|-------------------------------------|-------------| | 31.0 Thermal Store | None | | | 34.0 Small-scale Hydro | None | | | Electricity Generated | 0.00 | | | Apportioned | 0.00 | kWh/Year | | Connected to dwelling's electricity meter | Yes | | | Electricity Generation | Annual | | | Jan Feb Mar Apr | May Jun Jul Aug Sep | Oct Nov Dec | Recommendations Lower cost measures None Further measures to achieve even higher standards Typical Cost Typical savings per year Solar water heating Typical Cost Typical savings per year SAP rating Environmental Impact 0 0 0 0 0 0 0 0 0 SAP 10 Online 2.13.11 Page 4 of 4 | Property Reference | | Un | it 1 | | | | | | | Issued on Dat | te | 05/03/2024 | 05/03/2024 | | |---|--|---|-------------------------|----------------------------|-------------------------|-------------------------|---|---|--------------------------------------|---|----------------------------------|---|--|--| | Assessment Refe | rence | | sidual | | | | | Prop Type Ref | Te | ebby and Son | Garage | | | | | Property | | Un | it 1, Highland | Square , Bristol | | | | | | | | | | | | SAP Rating | | | | | 83 B | | DER | 5.54 | | TER | | 15.43 | | | | Environmental | | | | | 97 A | | % DER < TEF | ₹ | | | | 64.10 | | | | CO ₂ Emissions (t/ | year) | | | | 0.22 | | DFEE | 35.63 | 3 | TFEE | | 40.78 | | | | Compliance Chec | k | | | | See BREL | | % DFEE < TF | EE | | | | 12.64 | | | | % DPER < TPER | | | | | 28.65 | | DPER | 58.43 | 3 | TPER | | 81.89 | | | | Assessor Details | | | | | | | | | | Asses | sor ID | U367-000 | 11 | | | Client | | | | | | | | | | 710000 | 301 15 | 0307-000 | | | | SAP 10 WORKSHEET
CALCULATION OF I | | | | | | 2022) | | | | | | | | | | 1. Overall dwell | ing charac | cteristics | | | | | |
Area | Store | ey height | | Volume | | | | Ground floor
Total floor area
Dwelling volume | a TFA = (la | a)+(lb)+(lc |)+(ld)+(le |)(ln) | 4 | 3.3900 | | (m2)
43.3900 (| (lb) x
(1)+(3b)+(3c) | (m)
2.5000 (
+(3d)+(3e). | - | (m3)
108.4750
108.4750 | (4) | | | 2. Ventilation r | ate | | | | | | | | | | | | | | | Number of open of
Number of open f
Number of chimme
Number of flues
Number of flues
Number of blocke
Number of intern
Number of fluest
Number of fluest | Tlues ys / flues attached t attached t cd chimneys ittent ext ve vents | to solid fu
to other he
s
tract fans | el boiler | fire | | | | | | | 0 * 20 =
0 * 35 =
0 * 20 = | 0.0000
0.0000
0.0000
0.0000
0.0000
20.0000
0.0000 | (6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b) | | | Infiltration due
Pressure test
Pressure Test Me
Measured/design
Infiltration rat
Number of sides | thod
AP50 | | and fans | = (6a)+(6b) | + (6c) + (6d) + (| 6e)+(6f)+ | (6g)+(7a)+(| 7b)+(7c) = | | | / (5) = | 0.1844
Yes
31ower Door
4.5000
0.4094 | (17) | | | Shelter factor
Infiltration rat | e adjusted | d to includ | e shelter | factor | | | | (| (20) = 1 - | [0.075 x
1) = (18) x | | | | | | Wind speed
Wind factor
Adj infilt rate | Jan
5.1000
1.2750 | Feb
5.0000
1.2500 | Mar
4.9000
1.2250 | | May
4.3000
1.0750 | Jun
3.8000
0.9500 | | | | | Nov
4.5000
1.1250 | | | | | Effective ac | 0.4045 | | | | 0.3411
0.5582 | | | 0.2935
0.5431 | | 0.3411
0.5582 | | | | | | 3. Heat losses a | and heat lo | oss paramet | er | | | | | | | | | | | | | Element | | | | Gross | Openings | Ne | tArea | U-value | Ax | J K- | value | AxK | | | | Windows (Uw = 1.
Heatloss Floor 1
Cavity Wall
Basement Wall | | 1 -1 | /2 | m2
40.5100
5.2700 | m2
8.3800 | 8
43
32
5 | m2
.3800
.3900
.1300
.2700 | W/m2K
1.2448
0.1200
0.1800
0.1800 | W/I
10.431 | K k
2 | :J/m2K | kJ/K
3254.2500
4819.5000
790.5000 | (27)
(28a)
(29a)
(29a) | | | Total net area of
Fabric heat loss
Party Wall 1
Party Ceiling 1
Internal Wall 1 | | | Mum(A, MZ) | | | 32
43 | .1700
(26)(
.9200
.3900
.5500 | 30) + (32) =
0.0000 | 22.370
0.000 | 0 70
30 | | 2304.4000
1301.7000
10255.0000 | (32b) | | | Heat capacity Cm
Thermal mass par
List of Thermal | cameter (Th | | FA) in kJ/ | m2K | | | | (28) | .(30) + (32) | + (32a) | .(32e) = | 22725.3500
523.7463 | | | | K1 Eleme
E2 Other
E3 Sill
E4 Jamb
E5 Groun
E7 Party | ent
c lintels
nd floor (r | tween dwell | | l lintels)
locks of fla | ts) | | | 4.
4.
15.
16. | 4300
4300
1800
0500
0500 | 0.0230
0.0230
0.0210
0.0160
0.0470
0.0380
-0.0800 | 0.75 | 019
930
429
544
099 | | | SAP 10 Online 2.13.11 Page 1 of 7 | P1 Part
P3 Part
E16 Con
E17 Con | ty wall - I
rner (norma
rner (inver
rty wall be | Fround floor
intermediate
(1)
ted - inter
tween dwell | e floor betw
rnal area gr
lings | reater than | 3) | 15
15
9
5 | .2700
.0750
.0750
.5000
.0000 | 0.1000
0.0930
0.0000
0.0430
-0.0730
0.0460 | 0.52
1.40
0.00
0.40
-0.36
0.23 | 20
000
85
50 | (36) | | | |---|--|---|---------------------------------------|------------------------------|------------------------------|----------------------------|---|---|---|----------------------------------|----------------------------------|--|--------------| | Point Thermal h
Total fabric he | oridges
eat loss | | | | | | | | (| 33) + (36) | (36a) =
+ (36a) = | 0.0000
25.9529 | | | Ventilation hea | Jan
20.8271 | culated mor.
Feb
20.7134 | nthly (38)m
Mar
20.6019 | = 0.33 x (
Apr
20.0783 | 25)m x (5)
May
19.9803 | Jun
19.5243 | Jul
19.5243 | Aug
19.4399 | Sep
19.7000 | Oct
19.9803 | Nov
20.1785 | Dec
20.3857 | (38) | | Heat transfer of
Average = Sum(3 | 46.7800 | 46.6663 | 46.5548 | 46.0312 | 45.9333 | 45.4772 | 45.4772 | 45.3928 | 45.6529 | 45.9333 | 46.1315 | 46.3386
46.0308 | (39) | | HLP
HLP (average) | Jan
1.0781 | Feb
1.0755 | Mar
1.0729 | Apr
1.0609 | May
1.0586 | Jun
1.0481 | Jul
1.0481 | Aug
1.0462 | Sep
1.0522 | Oct
1.0586 | Nov
1.0632 | Dec
1.0680
1.0609 | (40) | | Days in mont | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | | | 4. Water heatin | ng energy r | equirements | g (kWh/year) |) | | | | | | | | | | | Assumed occupar | псу | | | | | | | | | | | 1.4991 | (42) | | Hot water usage | 61.7220 | 60.7771 | 59.3845 | 57.2421 | 55.3227 | 52.6374 | 50.5135 | 52.9964 | 54.2453 | 56.9049 | 59.6748 | 61.6664 | (42a) | | Hot water usage | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (42b) | | Hot water usage
Average daily h | 29.9819 | 28.8917 | 27.8014
/day) | 26.7112 | 25.6209 | 24.5307 | 24.5307 | 25.6209 | 26.7112 | 27.8014 | 28.8917 | 29.9819
84.1592 | | | Daily hot water | Jan
r use | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Energy conte
Energy content | 91.7040
135.0041
(annual) | 89.6688
118.6499 | 87.1859
124.5869 | 83.9533
109.6640 | 80.9436
104.3040 | 77.1680
89.2423 | 75.0441
82.9260 | 78.6174
92.5341 | 80.9564
93.9054 | 84.7064
109.1528
Total = S | 88.5665
119.7005
um(45)m = | 91.6483
134.5923
1314.2622 | | | Distribution lo | 20.2506 | = 0.15 x (4
17.7975 | | 16.4496 | 15.6456 | 13.3863 | 12.4389 | 13.8801 | 14.0858 | 16.3729 | 17.9551 | 20.1888 | (46) | | Store volume a) If manufact Temperature f Enter (49) or | turer decla
factor from | ı Table 2b | actor is kno | own (kWh/d | lay): | | | | | | | 150.0000
2.0900
0.5400
1.1286 | (48)
(49) | | Total storage 1 | | 31.6008 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | | | If cylinder con | 34.9866 | 31.6008 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | 34.9866 | 33.8580 | 34.9866 |
33.8580 | 34.9866 | | | Primary loss
Combi loss | 23.2624
0.0000 | 21.0112
0.0000 | 23.2624 | 22.5120
0.0000 | 23.2624
0.0000 | 22.5120
0.0000 | 23.2624
0.0000 | 23.2624
0.0000 | 22.5120
0.0000 | 23.2624
0.0000 | 22.5120
0.0000 | 23.2624
0.0000 | | | | 193.2531 | 171.2619 | 182.8359 | 166.0340 | 162.5530 | 145.6123 | 141.1750 | 150.7831 | 150.2754 | 167.4018 | 176.0705 | 192.8413 | | | WWHRS
PV diverter | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | 0.0000 | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | 0.0000 | 0.0000 | (63b) | | Solar input
FGHRS
Output from w/h | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | 12Total per yea | 193.2531
ar (kWh/yea | | 182.8359 | 166.0340 | 162.5530 | 145.6123 | 141.1750 | 150.7831
Total p | | 167.4018
h/year) = Si | 176.0705
um(64)m = | 192.8413
2000.0972
2000 | (64) | | Electric shower | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Heat gains from | | | | | al Energy us | | | | | | | 0.0000 | | | | 91.4881 | 81.5407 | 88.0243 | 81.5593 | 81.2803 | 74.7691 | 74.1721 | 77.3668 | 76.3196 | 82.8925 | 84.8964 | 91.3511 | (65) | | 5. Internal gai | | | | | | | | | | | | | | | Metabolic gains | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | (66)m
Lighting gains | (calculate | d in Append | dix L, equat | tion L9 or | | see Table 5 | | | | | 74.9534 | | . , | | Appliances gair | ns (calcula | ited in Appe | endix L, equ | uation L13 | | lso see Tabl | le 5 | | 68.5836 | 66.3712 | | 66.3712 | | | Cooking gains | (calculated | l in Appendi | ix L, equati | ion L15 or | | see Table S | 5 | | | 106.6605 | | | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 30.4953
0.0000 | 30.4953
0.0000 | 30.4953
0.0000 | 30.4953
0.0000 | | | | | | | | -59.9627 | -59.9627 | | | -59.9627 | -59.9627 | -59.9627 | -59.9627 | -59.9627 | -59.9627 | -59.9627 | -59.9627 | (71) | | | 122.9678 | | 118.3123 | 113.2768 | 109.2477 | 103.8459 | 99.6937 | 103.9876 | 105.9994 | 111.4146 | 117.9117 | 122.7838 | (72) | | Total internal | | 371.8029 | 358.2604 | 348.1924 | 332.8055 | 321.0206 | 308.9137 | 311.8572 | 319.4845 | 329.9323 | 347.7872 | 359.0424 | (73) | | 6. Solar gains | | | | | | | | | | | | | | | [Jan] | | | Aı | rea | Solar flux | | g | | FF
data | Acce
fact
Table | ss
or | Gains
W | | | Northeast | | | 8.38 |
300 | w/m2
11.2829 | | | | | 0.77 | | 28.8960 | (75) | | Solar gains | 28.8960 | 58.8187 | 105.9726 | 174.0374 | 233.9405 | 249.4053 | 233.3136 | 186.0003 | 129.1293 | 71.8811 | 36.3587 | 23.5980 | (83) | | Total gains | 393.8647 | 430.6216 | 464.2330 | 522.2298 | 566.7459 | 570.4259 | 542.2273 | 497.8574 | 448.6137 | 401.8134 | 384.1459 | 38Z.6403 | (84) | SAP 10 Online 2.13.11 Page 2 of 7 | 7. Mean intern | al temperat | ture (heati | ng season) | | | | | | | | | | | |--|-------------------------|-------------------------|---------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-----------------------|-------------------------|-------------------------|-------------------------|-----------------------------|--------| | Temperature du | ring heatin | ng periods | in the livi | | | Th1 (C) | | | | | | 21.0000 | (85) | | Utilisation fa | Jan | Feb | ving area, :
Mar
135.5949 | Apr | May
137.4297 | Jun
138.8078 | Jul
138.8078 | Aug
139.0661 | Sep
138.2737 | Oct
137.4297 | Nov
136.8393 | Dec
136.2275 | | | alpha
util living ar | 9.9961
ea | 10.0181 | 10.0397 | 10.1425 | 10.1620 | 10.2539 | 10.2539 | 10.2711 | 10.2182 | 10.1620 | 10.1226 | 10.0818 | | | | 0.9995 | 0.9984 | 0.9926 | 0.9366 | 0.7428 | 0.5100 | 0.3690 | 0.4194 | 0.6964 | 0.9680 | 0.9978 | 0.9996 | (86) | | Living
Non living
24 / 16 | 20.4831
19.4338 | 20.5713
19.5481
0 | 20.7141
19.7298
0 | 20.9094
19.9614
0 | 20.9917
20.0308
0 | 20.9998
20.0434
0 | 21.0000
20.0434
0 | | 20.9966
20.0390
0 | 20.8814
19.9398
0 | 20.6555
19.6643
0 | 20.4714
19.4258 | | | 24 / 9
16 / 9 | 0
3
28 | | 0 | 0 | 0 | | 0 | 0 | 0 | 0 | 0 | | | | MIT
Th 2
util rest of h | 20.7356
20.0187 | 20.5713
20.0209 | 20.7141
20.0230 | 20.9094
20.0329 | 20.9917
20.0348 | 20.9998
20.0434 | 21.0000
20.0434 | 21.0000
20.0450 | 20.9966
20.0401 | 20.8814
20.0348 | | 20.5453
20.0271 | | | MIT 2 | 0.9991
19.7855 | 0.9972
19.5481 | 0.9872
19.7298 | 0.9014
19.9614 | 0.6714
20.0308 | 0.4339
20.0434 | 0.2888
20.0434 | 0.3323
20.0450 | 0.6031
20.0390 | 0.9407
19.9398 | 0.9958
19.6643 | 0.9993
19.5341
0.4727 | (90) | | Living area fr
MIT
Temperature ad | 20.2346 | 20.0317 | 20.1951 | 20.4095 | 20.4850 | 20.4955 | 20.4956 | 20.4964 | 20.4916 | Living are
20.3849 | | 20.0121 | | | adjusted MIT | | 20.0317 | 20.1951 | 20.4095 | 20.4850 | 20.4955 | 20.4956 | 20.4964 | 20.4916 | 20.3849 | 20.1328 | 20.0121 | (93) | | | | | | | | | | | | | | | | | 8. Space heati | | | | | | | | | | | | | | | Utilisation | Jan
0.9992 | Feb
0.9972 | Mar
0.9884 | Apr
0.9167 | May
0.7054 | Jun
0.4699 | Jul
0.3267 | Aug
0.3735 | Sep
0.6476 | Oct
0.9524 | Nov
0.9961 | Dec
0.9993 | (94) | | Useful gains
Ext temp. | 4.3000 | 429.4320
4.9000 | 458.8505
6.5000 | 478.7050
8.9000 | 399.7557
11.7000 | 268.0485
14.6000 | 177.1596
16.6000 | 185.9438
16.4000 | 290.5279
14.1000 | 382.7005
10.6000 | 382.6469
7.1000 | 382.3786
4.2000 | | | Heat loss rate
Space heating | 745.4220 | 706.1422 | 637.5718 | 529.7965 | 403.5234 | 268.1102 | 177.1608 | 185.9485 | 291.7967 | 449.4529 | 601.2233 | 732.7118 | (97) | | Space heating | 261.7938
requirement | | 132.9686
er year (kW | 36.7858
h/year) | 2.8032 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 49.6638 | 157.3750 | 260.6479
1087.9874 | (98a) | | Solar heating
Solar heating | 0.0000 | 0.0000
on - total | 0.0000
per year (ki | 0.0000
Wh/year) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Space heating | kWh
261.7938 | 185.9492 | 132.9686 | 36.7858 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 49.6638 | 157.3750 | 260.6479 | (98c) | | Space heating
Space heating | | arter sor | ar contribu | tion - total | ı per year | (kwn/year) | | | | (98c |) / (4) = | 1087.9874
25.0746 | (99) | | | | | | | | | | | | | | | | | 9a. Energy req | quirements - | - Individua | l heating s | ystems, incl | luding micr | ro-CHP | | | | | | | | | Fraction of sp
Fraction of sp | | | | ntary system | n (Table 11 | 1) | | | | | | 0.0000 | | | Efficiency of
Efficiency of | main space | heating sy | stem 2 (in | 용) | | | | | | | | 219.8872
0.0000 | (207) | | Efficiency of | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | 0.0000
Dec | (208) | | Space heating | requirement | 5 | 132.9686 | 36.7858 | 2.8032 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 49.6638 | 157.3750 | 260.6479 | (98) | | Space heating | 219.8872 | 219.8872 | 219.8872 | | 219.8872 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 219.8872 | 219.8872 | 219.8872 | (210) | | Space heating | 119.0582 | 84.5658 | 60.4713 | 16.7294 | 1.2748 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 22.5860 | 71.5708 | 118.5371 | (211) | | Space heating Space heating | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (212) | | Space heating | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (213) | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating
Water heating | requirement
193.2531 | | 182.8359 | 166.0340 | 162.5530 | 145.6123 | 141.1750 | 150.7831 | 150.2754 | 167.4018 | 176.0705 | 192.8413 | (64) | | Efficiency of (217)m | 192.2472 | 192.2472 | 192.2472 | 192.2472 | 192.2472 | 192.2472 | 192.2472 | 192.2472 | 192.2472 | 192.2472 | 192.2472 | 192.2472
192.2472 | | | Fuel for water | 100.5232 | 89.0842 | 95.1046 | 86.3649 | 84.5542 | 75.7422 | 73.4341 | 78.4319 | 78.1678 | 87.0763 | 91.5855 | 100.3090 | (219) | | Space cooling
(221)m | 0.0000
0.0000 | 0.0000
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Pumps and Fa
Lighting
Electricity ge | 13.7906 | 11.0634 | 9.9613 | 7.2981 | 5.6373 | 4.6057 | 5.1425 | 6.6844 | 8.6824 | 11.3918 | 12.8670 | 0.0000
14.1739 | | | (233a)m
Electricity ge | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (233a) | | (234a)m
Electricity ge | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
itv) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234a) | | (235a)m
Electricity us | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
meneration) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235a) | | (235c)m
Electricity ge | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235c) | | (233b)m
Electricity ge | 0.0000 | 0.0000 | 0.0000 | 0.0000
ix M) (negat | 0.0000 | 0.0000
ty) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (233b) | | (234b)m
Electricity ge | | | | | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | (235b)m
Electricity us | | | | | | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | (235d)m
Annual totals
Space heating | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
494.7935 | | | Space heating
Space heating | fuel - main | n system 2 | | |
| | | | | | | 0.0000 | (213) | | Efficiency of
Water heating | water heate | | | | | | | | | | | 192.2472
1040.3780 | | | Space cooling | | | | | | | | | | | | | (221) | | | | | | | | | | | | | | | | SAP 10 Online 2.13.11 Page 3 of 7 | Energy saving/ge | eneration to | echnologies | (Appendice | es M ,N and | Q) | | | | | | | 0.0000 | (233) | |---|-------------------------|-------------|-------------|------------------|------------------|------------------|------------|--------------------|--------------------------|---------------------|----------------------------------|-------------------------------------|---------------------------| | Wind generation
Hydro-electric | generation | | | | | | | | | | | 0.0000 | (234)
(235a) | | Electricity gene
Appendix Q - spe
Energy saved or | ecial featu | | pendix N) | | | | | | | | | 0.0000 | | | Energy used
Total delivered | | all uses | | | | | | | | | | 0.0000
1646.4697 | (237) | | | | | | | | | | | | | | | | | 12a. Carbon dio | xide emissi | ons - Indiv | idual heati | ng systems | including m | icro-CHP | | | | | | | | | | | | | | | | | Energy
kWh/year | | | | Emissions
kg CO2/year | | | Space heating -
Total CO2 assoc: | iated with | | ystems | | | | | 494.7935 | | 0.1575 | | 77.9501
0.0000 | (261) | | Water heating (of
Space and water | heating | | | | | | | 1040.3780 | | 0.1406 | | 146.2844
224.2345 | (265) | | Pumps, fans and
Energy for light
Total CO2, kg/ye | ting | eep-not | | | | | | 0.0000
111.2982 | | 0.0000
0.1443 | | 0.0000
16.0638
240.2983 | (268) | | EPC Dwelling Car | | Emission | Rate (DER) | | | | | | | | | 5.5400 | | | | | | | | | | | | | | | | | | 13a. Primary end | | | | | | | | | Drimawa | , factor | Decision | manti once | | | Space heating - | | | | | | | | | Primary energy
kg | | rrli | mary energy
kWh/year
783.3654 | | | Total CO2 assoc:
Water heating (| other fuel) | community s | ystems | | | | | 1040.3780 | | 1.5199 | | 0.0000
1581.2685 | (473)
(278) | | Space and water
Pumps, fans and
Energy for light | electric k | eep-hot | | | | | | 0.0000
111.2982 | | 0.0000
1.5338 | | 2364.6339
0.0000
170.7130 | (281) | | Total Primary en | nergy kWh/y | | | | | | | 111.2902 | | 1.5550 | | 2535.3469
58.4300 | (286) | SAP 10 WORKSHEET
CALCULATION OF 1 | | | signed) | (Version 10. | 2, February | 2022) | 1. Overall dwell | Area
(m2) | | y height (m) | | Volume (m3) | | | Ground floor
Total floor area
Dwelling volume | |)+(1b)+(1c) | +(ld)+(le). | (ln) | 4 | 3.3900 | | | (1b) x
3a)+(3b)+(3c)+ | 2.5000
(3d)+(3e) | | | (1b) - (3b)
(4)
(5) | | | | | | | | | | , | , ((, ((,) | (, - (, - | , | | (-) | | | | | | | | | | | | | | | | | 2. Ventilation | rate
 | | | | | | | | | | | | | | Number of open (| chimneys | | | | | | | | | | 0 * 80 = | m3 per hour
0.0000 | | | Number of open in
Number of chimne | flues
eys / flues | | | re | | | | | | | 0 * 20 =
0 * 10 = | 0.0000 | (6b)
(6c) | | Number of flues
Number of flues
Number of blocks | attached to | o other hea | | | | | | | | | 0 * 20 =
0 * 35 =
0 * 20 = | 0.0000 | (6e) | | Number of intern
Number of passiv | mittent ext
ve vents | ract fans | | | | | | | | | 2 * 10 =
0 * 10 = | 20.0000 | (7a)
(7b) | | Number of fluele | | es | | | | | | | | | 0 * 40 = | 0.0000 | (7c) | | Infiltration due
Pressure test | e to chimne | ys, flues a | nd fans = | = (6a)+(6b)+ | (6c)+(6d)+(| 6e)+(6f)+(| 6g)+(7a)+(| 7b)+(7c) = | | | Air change
/ (5) = | es per hour
0.1844
Yes | (8) | | Pressure Test Me
Measured/design | AP50 | | | | | | | | | | 1 | Blower Door
5.0000 | (17) | | Infiltration rat
Number of sides | | | | | | | | | | | | 0.4344
3 | (18)
(19) | | Shelter factor
Infiltration rat | te adjusted | to include | shelter fa | ctor | | | | | (20) = 1 - (21) | | (19)] =
(20) = | | | | | Jan | | Mar | | | Jun | Jul | Aug | | Oct | Nov | | | | Wind speed
Wind factor
Adj infilt rate | | | | 4.4000
1.1000 | 4.3000
1.0750 | 3.8000
0.9500 | | | 4.0000
1.0000 | | 4.5000
1.1250 | | | | Effective ac | 0.4292 | | | 0.3703
0.5686 | | 0.3198
0.5511 | | | 0.3366
0.5567 | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | 3. Heat losses a
Element | | | r
 | Gross | Openings | Mo+1 | Area | U-value | AxU | ν. | -value | AxK | | | TER Opening Type | | 0) | | m2 | m2 | 8.3 | m2
3800 | W/m2K
1.1450 | W/K
9.5954 | 3 | cJ/m2K | kJ/K | (27) | | Heatloss Floor | | | | | | | 3900 | 0.1300 | | | | | (28a) | SAP 10 Online 2.13.11 Page 4 of 7 | Cavity Wall
Basement Wall
Total net area of e
Fabric heat loss, W
Party Wall 1 | | | 40.5100
5.2700 | 8.380 | 5.
89. | .1300
.2700
.1700
(26)(3 | 0.1800
0.1800
30) + (32) =
0.0000 | 5.78
0.94
= 21.96
0.00 | 86
81 | | | (29a)
(29a)
(31)
(33)
(32) | |--|--------------------------------------|-------------------------|-----------------------|------------------------|-------------------------|-----------------------------------|--|---------------------------------|-----------------------|-----------------------|-----------------------|--| | Thermal mass parame | | TFA) in kJ/r | n2K | | | | | | | | 533.7463 | (35) | | List of Thermal Bri
Kl Element | ages | | | | | | | | Psi-value | Tot | | | | E2 Other li
E3 Sill | ntels (including | g other stee | l lintels) | | | | | .4300
.4300 | 0.0500
0.0500 | 0.22
0.22 | | | | E4 Jamb | loor (normal) | | | | | | 15. | .1800
.0500 | 0.0500
0.1600 | 0.75
2.56 | 90 | | | E7 Party fl | oor between dwel | llings (in b | locks of fla | ats) | | | 16. | .0500 | 0.0700 | 1.12 | 35 | | | E22 Basemen
E19 Ground | t floor
floor (inverted) |) | | | | | | .2700
.2700 | 0.0700 | 0.36
0.36 | | | | | ll - Ground floo
ll - Intermediat | | ween dwelli | nas (in blo | cks of flats | s) | | .0750
.0750 | 0.0800 | 1.20 | | | | El6 Corner | (normal) | | | | | - / | 9. | .5000 | 0.0900 | 0.85 | 50 | | | El8 Party w | (inverted - inte
all between dwe) | llings | | | rea) | | | .0000
.0000 | -0.0900
0.0600 | -0.45
0.30 | 00 | | | Thermal bridges (Su
Point Thermal bridg | es | ulated using | Appendix K |) | | | | | | (36a) = | 7.5423
0.0000 | (36) | | Total fabric heat 1 | oss | | | | | | | (| 33) + (36) | + (36a) = | 29.5104 | (37) | | Ventilation heat lo
Ja | | onthly (38)m
Mar | = 0.33 x (| 25)m x (5)
May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | | 1957 21.0677 | 20.9422 | 20.3527 | 20.2424 | 19.7290 | 19.7290 | 19.6339 | 19.9267 | 20.2424 | 20.4655 | 20.6988 | (38) | | 50. | 7061 50.5781 | 50.4526 | 49.8631 | 49.7528 | 49.2394 | 49.2394 | 49.1443 | 49.4372 | 49.7528 | 49.9759 | 50.2092 | (39) | | Average = Sum(39)m | | | | | | | | | | | 49.8626 | | | Ja
HLP 1. | n Feb
1686 1.1657 | Mar
1.1628 | Apr
1.1492 | May
1.1466 | Jun
1.1348 | Jul
1.1348 | Aug
1.1326 | Sep
1.1394 | Oct
1.1466 | Nov
1.1518 | Dec
1.1572 | (40) | | HLP (average)
Days in mont | 31 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 1.1492 | | | - | 4. Water heating en | | | | | | | | | | | | | | Assumed occupancy | | | | | | | | | | | 1.4991 | (42) | | Hot water usage for | | 60 0036 | E0 2204 | E 6 272E | E4 1900 | E2 0470 | E4 2240 | EE 0226 | E0 1770 | 60 9971 | | | | Hot water usage for | | 60.9836 | 58.3304 | 56.3725 | 54.1890 | 52.9479 | 54.3240 | 55.8326 | 58.1770 | 60.8871 | 63.0792 | | | Hot water usage for | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | 29.
Average daily hot w | 9819 28.8917
ater use (litres | | 26.7112 | 25.6209 | 24.5307 | 24.5307 | 25.6209 | 26.7112 | 27.8014 | 28.8917 | 29.9819
85.6369 | | | Ja | n Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Daily hot water use
93. | 3038 91.2619 | 88.7850 | 85.0416 | 81.9934 | 78.7196 | 77.4785 | 79.9450 | 82.5438 | 85.9784 | 89.7788 | 93.0612 | (44) | | Energy conte 147.
Energy content (ann | | 136.4592 | 116.4177 | 110.3789 | 96.7950 | 93.7036 | 98.9886 | 101.7847 | 116.6719
Total = S | 127.9064
um(45)m = | 145.7113
1422.5435 | (45) | | Distribution loss | | | 17.4627 | 16.5568 | 14.5192 | 14.0555 | 14.8483 | 15.2677 | 17.5008 | 19.1860 | 21.8567 | (46) | | Water storage loss:
Store volume | | | | | | | | | | | 150.0000 | | | a) If manufacturer
Temperature facto | | factor is kno | own (kWh/da | ay): | | | | | | | 1.3938
0.5400 | (48) | | Enter (49) or (54) | | | | | | | | | | | 0.7527 | | | | 3325 21.0745 | 23.3325 | 22.5798 | 23.3325 | 22.5798 | 23.3325 | 23.3325 | 22.5798 | 23.3325 | 22.5798 | 23.3325 | (56) | | If cylinder contain
23. | s dedicated sola
3325 21.0745 | ar storage
23.3325 | 22.5798 | 23.3325 | 22.5798 | 23.3325 | 23.3325 | 22.5798 | 23.3325 | 22.5798 | 23.3325 | (57) | | Primary loss 23.
Combi loss 0. | 2624 21.0112
0000 0.0000 | 23.2624
0.0000 | 22.5120
0.0000 | 23.2624
0.0000 | 22.5120
0.0000 | 23.2624
0.0000 | 23.2624
0.0000 | 22.5120
0.0000 | 23.2624
0.0000 | 22.5120
0.0000 | 23.2624
0.0000 | | | Total heat required | for water heat:
3653 172.0415 | ing calculate | ed for each | month
156.9738 | 141.8868 | 140.2985 | 145.5835 | 146.8766 | 163.2668 | 172.9982 | 192.3062 | (62) | | WWHRS -28. PV diverter -0. | 9481 -25.6019 | -26.8089 | -22.1988 | -20.6885 | -17.7033 |
-16.5940 | -17.6461 | -18.3165 | -21.5931 | -24.4624 | -28.4120 | (63a) | | Solar input 0. | 0000 0.0000
0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (63c) | | Output from w/h | | | | | | | | | | | | | | | 4172 146.4396 | 156.2455 | 139.3107 | 130.2053 | 124.1035 | 123.7045 | Total pe | er year (kW | h/year) = Si | um(64)m = | 1702.1872 | (64) | | 12Total per year (k
Electric shower(s) | | | | | | | | | | | 1702 | | | 0.
Heat gains from wat | 0000 0.0000 | 0.0000 | Tota | 0.0000
al Energy u | 0.0000
sed by insta | 0.0000
antaneous el | 0.0000
lectric show | 0.0000
ver(s) (kWh | 0.0000
/year) = Su | 0.0000
m(64a)m = | 0.0000
0.0000 | (64a)
(64a) | | Heat gains from wat
86. | er heating, kWh,
4096 76.8789 | /month
82.6486 | 74.7824 | 73.9769 | 68.2578 | 68.4324 | 70.1896 | 69.9169 | 76.0693 | 78.6024 | 85.7249 | (65) | 5. Internal gains (| | | | | | | | | | | | | | Metabolic gains (Ta
Ja | n Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | (66)m 74.
Lighting gains (cal | 9534 74.9534
culated in Apper | 74.9534
ndix L, equa | tion L9 or 1 | L9a), also | see Table 5 | | | 74.9534 | 74.9534 | 74.9534 | 74.9534 | (66) | | 66.
Appliances gains (c | 3712 73.4824
alculated in Apr | 66.3712
pendix L, eq | 68.5836
uation L13 | 66.3712
or L13a), a | 68.5836
lso see Tabl | 66.3712
Le 5 | 66.3712 | 68.5836 | 66.3712 | 68.5836 | 66.3712 | (67) | | 130.
Cooking gains (calc | 1437 131.4941 | 128.0910 | 120.8460 | 111.7006 | 103.1051 | 97.3628 | 96.0123 | 99.4155 | 106.6605 | 115.8059 | 124.4014 | (68) | | 30. | 4953 30.4953
0000 3.0000 | 30.4953 | | 30.4953 | 30.4953 | | 30.4953
0.0000 | | 30.4953
3.0000 | 30.4953
3.0000 | 30.4953
3.0000 | | | Losses e.g. evapora | | values) (Tab | le 5) | | | | | -59.9627 | | -59.9627 | -59.9627 | | | Water heating gains | | | | | | 91.9790 | 94.3409 | | 102.2437 | | 115.2217 | | | Total internal gain | | | | | | | | | | | | | | 301. | | 554.0550 | 541.7000 | 020.5031 | 011.7/16 | 001.1990 | 002.2104 | 010.0313 | 020.7014 | 0.2.0404 | 554.4003 | (.5) | | | | | | | | | | | | | | | 6. Solar gains SAP 10 Online 2.13.11 Page 5 of 7 | [Jan] | | | | rea
m2 | Solar flux
Table 6a
W/m2 | Speci | g
fic data | Specific | FF
data | Acces
facto
Table | or | Gains
W | | |--|----------------------------------|---------------------------------|---------------------------------|----------------------------|--------------------------------|----------------------------|----------------------------------|--------------------------------|----------------------------|-----------------------------|-----------------------------|---------------------------------------|------------------| | Northeast | | | | B00 | 11.2829 | | 0.6300 | 0 | | 0.77 | | 28.8960 | (75) | | Solar gains
Total gains | 28.8960 | 58.8187 | 105.9726 | 174.0374 | 233.9405 | 249.4053 | 233.3136 | 186.0003 | | 71.8811
395.6425 | 36.3587
378.4041 | 23.5980
378.0782 | | | 7. Mean inter | | ure (heatin | ng season) | | | | | | | | | | | | Temperature d | uring heatin | ng periods i | in the livir | ng area fro | m Table 9, I | | | | | | | 21.0000 | (85) | | tau
alpha | Jan
126.8707
9.4580 | Feb
127.1919
9.4795 | | Apr
129.0157
9.6010 | May
129.3017
9.6201 | Jun
130.6500
9.7100 | Jul
130.6500
9.7100 | Aug
130.9027
9.7268 | Sep
130.1273
9.6752 | Oct
129.3017
9.6201 | Nov
128.7244
9.5816 | Dec
128.1264
9.5418 | | | util living a | | 0.9990 | 0.9954 | 0.9602 | 0.8000 | 0.5604 | 0.4053 | 0.4629 | 0.7598 | 0.9811 | 0.9986 | 0.9997 | | | MIT | 20.4061 | 20.4954 | 20.6441 | 20.8593 | 20.9808 | 20.9993 | 21.0000 | 20.9999 | 20.9908 | 20.8316 | 20.5876 | 20.3942 | | | Th 2
util rest of | 19.9452
house
0.9994 | 19.9476 | 19.9499 | 19.9609
0.9330 | 19.9629
0.7238 | 19.9725 | 19.9725 | 19.9743 | 19.9688
0.6558 | 19.9629
0.9620 | 19.9588 | 19.9544 | | | MIT 2
Living area f | 19.2722
raction | 19.3884 | 19.5789 | 19.8434 | 19.9532 | 19.9723 | 19.9725 | 19.9743 | 19.9658
fLA = | 19.8205
Living area | 19.5157
a / (4) = | 19.2646
0.4727 | (90)
(91) | | MIT
Temperature a
adjusted MIT | | | 20.0824 | 20.3236 | 20.4389 | 20.4578 | 20.4582 | 20.4591 | 20.4503 | 20.2984 | 20.0224 | 19.7986
0.0000
19.7986 | | | adjusted HII | 19.0002 | 19.9117 | 20.0024 | 20.3236 | 20.4309 | 20.4576 | 20.4502 | 20.4591 | 20.4503 | 20.2904 | 20.0224 | 19.7906 | (93) | | 8. Space heat | | | | | | | | | | | | | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Utilisation
Useful gains | 389.7796 | 425.8899 | | 0.9440
486.9341 | 425.6374 | | 0.3554
189.9690 | 0.4086
199.4613 | 0.7059
310.3977 | 0.9696
383.6328 | 0.9975
377.4662 | 0.9995
377.8905 | (95) | | Ext temp.
Heat loss rat | | | 6.5000
685.2668 | 8.9000
569.6176 | 11.7000
434.7859 | 14.6000
288.4343 | 16.6000
189.9744 | 16.4000
199.4808 | 14.1000
313.9427 | 10.6000
482.5240 | 7.1000
645.8076 | 4.2000
783.1914 | | | Space heating
Space heating | 295.0553 | 224.0256 | | 59.5322 | 6.8064 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 73.5751 | 193.2058 | 301.5439
1323.9273 | | | Solar heating | kWh
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Solar heating
Space heating | kWh | on - total p
224.0256 | | Wh/year)
59.5322 | 6.8064 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 72 5751 | 193.2058 | 0.0000 | | | Space heating
Space heating | requirement | | | | | | 0.0000 | 0.0000 | 0.0000 | | / (4) = | 1323.9273
30.5123 | | | | | | | | | | | | | | | | | | 9a. Energy re |
guirements - | Individual | l heating sy | vstems, inc | luding micro | | | | | | | | | | Fraction of s | pace heat fr | om secondar | ry/supplemen | | | | | | | | | 0.0000 | | | Fraction of s
Efficiency of
Efficiency of
Efficiency of | main space
main space | heating sys | stem`l´(in 9
stem 2 (in 9 | 8) | | | | | | | | 1.0000
92.3000
0.0000
0.0000 | (206)
(207) | | | | | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating
Space heating | 295.0553 | 224.0256 | | 59.5322 | 6.8064 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 73.5751 | 193.2058 | 301.5439 | (98) | | Space heating | 92.3000
fuel (main | 92.3000
heating sys | 92.3000
stem) | 92.3000 | 92.3000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 92.3000 | 92.3000 | 92.3000 | (210) | | Space heating | efficiency | | ing system 2 | | 7.3742 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 79.7130 | 209.3237 | 326.6998 | | | Space heating | 0.0000
fuel (main
0.0000 | 0.0000
heating sys
0.0000 | 0.0000
stem 2)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Water heating | | | | | | | | | | | | | | | Water heating
Efficiency of | 165.4172 | 146.4396 | 156.2453 | 139.3107 | 136.2853 | 124.1835 | 123.7045 | 127.9374 | 128.5601 | 141.6737 | 148.5358 | 163.8942
79.8000 | | | (217)m
Fuel for wate | 85.3423 | 85.0102 | 84.2518 | 82.2972 | 80.1866 | 79.8000 | 79.8000 | 79.8000 | 79.8000 | 82.6637 | 84.6504 | 85.4081 | | | Space cooling | 193.8278
fuel requir | 172.2612
ement | | 169.2776 | | 155.6185 | 155.0181 | 160.3226 | | 171.3855 | 175.4697 | 191.8953 | | | (221)m
Pumps and Fa
Lighting | 0.0000
7.3041
13.7906 | 0.0000
6.5973
11.0634 | 0.0000
7.3041
9.9613 | 0.0000
7.0685
7.2981 | 0.0000
7.3041
5.6373 | 0.0000
7.0685
4.6057 | 0.0000
7.3041
5.1425 | 0.0000
7.3041
6.6844 | 0.0000
7.0685
8.6824 | 0.0000
7.3041
11.3918 | 0.0000
7.0685
12.8670 | 0.0000
7.3041
14.1739 | (231) | | Electricity g
(233a)m | enerated by
-15.0243 | PVs (Append
-22.0071 | dix M) (nega
-32.8669 | ative quant
-38.4686 | ity)
-42.8374 | -40.5222 | -40.0662 | -37.1717 | -32.2647 | -25.8692 | -16.8220 | -12.8977 | | | Electricity g
(234a)m | enerated by 0.0000 | wind turbin
0.0000 | nes (Appendi
0.0000 | ix M) (nega
0.0000 | tive quantit
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | (234a) | | Electricity g
(235a)m
Electricity u | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235a) | | (235c)m
Electricity g | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235c) | | (233b)m
Electricity g | -6.1529
enerated by | -13.1539
wind turbin | -26.5252
nes (Appendi | -40.3859
ix M) (nega | -53.9128
tive quantit | ·γ) | | | -32.7709 | -18.9480 | -8.2625 | -4.8471 | | | (234b)m
Electricity g | 0.0000
enerated by | 0.0000
hydro-elect | 0.0000
tric generat | 0.0000
tors (Appen | 0.0000
dix M) (nega | 0.0000
ative quant | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | (234b) | | (235b)m
Electricity u
(235d)m | 0.0000
sed or net e
0.0000 | | 0.0000
generated h
0.0000 | | P (Appendix | | 0.0000
ve if net go
0.0000 | 0.0000
eneration)
0.0000 | 0.0000 | 0.0000 | 0.0000 | | (235b)
(235d) | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235U) | | Annual totals
Space heating | | n system 1 | | | | | | | | | | 1434.3741 | (211) | SAP 10 Online 2.13.11 Page 6 of 7 | Space heating fuel - main system 2
Space heating fuel - secondary
Efficiency of water heater
Water heating fuel used
Space cooling fuel | | | 0.0000 (213)
0.0000
(215)
79.8000
2061.5887 (219)
0.0000 (221) | |---|---------------------------------|---|--| | Electricity for pumps and fans:
Total electricity for the above, kWh/year
Electricity for lighting (calculated in Appendix L) | | | 86.0000 (231)
111.2982 (232) | | Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) Appendix Q - special features | | | -714.8865 (233)
0.0000 (234)
0.0000 (235a)
0.0000 (235) | | Energy saved or generated
Energy used
Total delivered energy for all uses | | | -0.0000 (236)
0.0000 (237)
2978.3756 (238) | | | | | | | 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP | | | | | Space heating - main system 1 Total CO2 associated with community systems | Energy
kWh/year
1434.3741 | Emission factor
kg CO2/kWh
0.2100 | Emissions
kg CO2/year
301.2186 (261)
0.0000 (373) | | Water heating (other fuel) | 2061.5897 | 0.2100 | 432.9338 (264) | | Space and water heating | | | 734.1524 (265) | | Pumps, fans and electric keep-hot | 86.0000 | | 11.9293 (267) | | Energy for lighting | 111.2982 | 0.1443 | 16.0638 (268) | | Energy saving/generation technologies | | | | | PV Unit electricity used in dwelling | -356.8179 | | | | PV Unit electricity exported Total | -358.0686 | 0.1255 | -44.9435
-92.6679 (269) | | Total CO2, kg/year
EPC Target Carbon Dioxide Emission Rate (TER) | | | 669.4775 (272)
15.4300 (273) | | | | | | | 13a. Primary energy - Individual heating systems including micro-CHP | | | | | | Energy | Primary energy factor | Primary energy | | Constitution and survey 1 | kWh/year | kg CO2/kWh | kWh/year | | Space heating - main system 1 Total CO2 associated with community systems | 1434.3/41 | kg CO2/kWh
1.1300 | 0.0000 (473) | | Water heating (other fuel) | 2061.5897 | 1.1300 | 2329.5963 (278) | | Space and water heating | | | 3950.4391 (279) | | Pumps, fans and electric keep-hot
Energy for lighting | 86.0000
111.2982 | | 130.1008 (281)
170.7130 (282) | | B | | | | | Energy saving/generation technologies PV Unit electricity used in dwelling | -356.8179 | 1.4943 | -533.1824 | | PV Unit electricity exported | -358.0686 | | -164.9676 | | Total | | | -698.1500 (283) | | Total Primary energy kWh/year | | | 3553.1028 (286) | | Target Primary Energy Rate (TPER) | | | 81.8900 (287) | SAP 10 Online 2.13.11 Page 7 of 7 ### Overview Report | Dwelling Address | Unit 1, Highland Square , Bristol | |------------------------------|-----------------------------------| | Report Date | 05/03/2024 | | Property Type | Flat, Semi-Detached | | Floor Area [m ²] | 43 | This document is not an Energy Performance Certificat EPC) s required by the Energy Performance of Buildings Reg io SAP 10 Online 2.13.11 Page 1 of 4 #### Breakdown of property's energy performance Each feature is assessed as one of the following: | Very Poor | Poor | Average | Good | Very Good | |-----------------------|---|-----------------------|------|-------------------| | | | | | | | Feature | Description | | | gy
Performance | | Walls | Average thermal transmi | ttance 0.18 W/m²K | | Very Good | | Floor | Average thermal transmi | ttance 0.12 W/m²K | | Very Good | | Windows | High performance glazin | g | | Good | | Main heating | Air source heat pump, radiators, electric | | | Average | | Main heating controls | Time and temperature zone control | | | Very Good | | Secondary heating | None | | | | | Hot water | From main system | | | Average | | Lighting | Good lighting e iciency | | | Good | | Air tightness | Air perm ity [AP5 | 4.5 m³/h.m² (assumed) | | Good | #### Primary Energy e The primary ener e for this operty per year is 54 kilowatt hour (kWh) per square metre #### Estimat d C emissions of the dwelling The estimed CO rating rovides an indication of the dwelling's impact on the environment in terms of carbon dio emissio; the higher the rating the less impact it has on the environment. The estimated CO emissions for this dwellings is: 0.2 per year With the recommended measures the potential CO emissions could be: per year SAP 10 Online 2.13.11 Page 2 of 4 #### Recommendations The recommended measures provided below will help to improve the energy efficiency of the dwelling. To reach the dwelling's potential energy rating all of the recommended measures shown below would need t installed. Having these measures installed individually or in any other order may give a different result wh pared w the cumulative potential rating. | Recommended measure | Typical | Potential Rating | lative | Cumulative | |---------------------|---------|-------------------|----------|------------| | | Yearly | after | s | Potential | | | Saving | measure installed | (per yea | Rating | #### Estimated energy use and potential savin s Estimated energy cost for this property over a year £384 Over a year you could save £0 The estimated cost and savings show how much the average househ would spend in this property heating, lighting and hot water. It not based on how energy is ed by the people living at the propert #### Contacting asses or and the accreditation scheme | Assessor contact details | | | | |---------------------------|-----|--|--| | Asse r name | Mr. | | | | Assess accredita n number | | | | | Email Address | | | | SAP 10 Online 2.13.11 Page 3 of 4 | Accreditation scheme contact details | | | | |--------------------------------------|-----------------------------|--|--| | Accreditation scheme | Elmhurst Energy Systems Ltd | | | | Telephone | | | | | Email Address | | | | | Assessment details | | | | |--------------------------|---------------|--|--| | Related party disclosure | No related pa | | | | Date of assessment | 05/03/202 | | | | Date of certificate | 05/03/202 | | | | Type of assessment | SAP w dwellin | | | #### **Building Regulations England Part L (BREL) Compliance Report** Approved Document L1 2021 Edition, England assessed by Array SAP 10 program, Array Date: Tue 05 Mar 2024 08:41:59 | Project Information | | | | |----------------------------|------------|-----------------|---------------------| | Assessed By | | Building Type | Flat, Semi-detached | | OCDEA Registration | EES/025661 | Assessment Date | 2024-03-05 | | Dwelling Details | | | | |-------------------------|--------------------------------|------------------|-------------------| | Assessment Type | As designed | Total Floor Area | 43 m ² | | Site Reference | Unit 1 | Plot Reference | PV | | Address | Unit 1 Highland Square, Bristo | ol | | | Client Details | | |----------------|---| | Name | Tebby & Son | | Company | SF Tebby & Son | | Address | Unit 11 Avon Gorge Industrial Estate , Bristol, BS2 9XX | This report covers items included within the SAP calculations. It is not a complete report of regulations compliance. | 1a Target emission rate and dwelling emission | rate | | | | |--|---|----|--|--| | Fuel for main heating system | Electricity | | | | | Target carbon dioxide emission rate | 15.43 kgCO ₂ /m ² | | | | | Dwelling carbon dioxide emission rate | 3.03 kgCO ₂ /m ² | ОК | | | | 1b Target primary energy rate and dwelling pri | mary energy | | | | | Target primary energy | 81.89 kWh _{PE} /m ² | | | | | Dwelling primary energy | 38.53 kWh _{PE} /m ² | OK | | | | 1c Target fabric energy efficiency and dwelling fabric energy efficiency | | | | | | Target fabric energy efficiency | 40.8 kWh/m ² | | | | | Dwelling fabric energy efficiency | 35.6 kWh/m ² | ОК | | | | 2a Fabric U-values | ; | | | | |----------------------------------|---|----------------------------------|---|-----| | Element | Maximum permitted average U-Value [W/m²K] | Dwelling average U-Value [W/m²K] | Element with highest individual U-Value | | | External walls | 0.26 | 0.18 | Walls (1) (0.18) | OK | | Party walls | 0.2 | 0 | Party Wall (1) (0) | N/A | | Curtain walls | 1.6 | 0 | N/A | N/A | | Floors | 0.18 | 0.12 | Heatloss Floor 1 (0.12) | OK | | Roofs | 0.16 | N/A | N/A | N/A | | Windows, doors, and roof windows | 1.6 | 1.31 | W01 (1.31) | OK | | Rooflights | 2.2 | N/A | N/A | N/A | | 2b Envelope elements (better than typically expected values are flagged with a subsequent (!)) | | | | | |--|----------------------------|------------------------------|--|--| | Name | Net area [m ²] | U-Value [W/m ² K] | | | | Exposed wall: Walls (1) | 32.13 | 0.18 | | | | Exposed wall: Walls (2) | 5.27 | 0.18 | | | | Party wall: Party Wall (1) | 32.92 | 0 (!) | | | | Ground floor: Heatloss Floor 1, Heatloss Floor 1 | 43.39 | 0.12 | | | | 2c Openings (better than typically expected values are flagged with a subsequent (!)) | | | | | | |---|------|------------|-----|------|--| | Name Area [m ²] Orientation Frame factor U-Value [W/m ² l | | | | | | | W01, Windows | 2.24 | North East | 0.7 | 1.31 | | | W02, Windows | 2.35 | North East | 0.7 | 1.31 | | | W03, Windows | 1.53 | North East | 0.7 | 1.31 | | | W04, Windows | 2.26 | North East | 0.7 | 1.31 | | | 2d Thermal bridging (better than typically expected values are flagged with a subsequent (!)) | | | | | | | | |
---|---|--|---------------------|---------------------|--|--|--|--| | Building part 1 - Main Dwelling: Thermal bridging calculated from linear thermal transmittances for each junction | | | | | | | | | | Main element | Junction detail | Source | Psi value
[W/mK] | Drawing / reference | | | | | | External wall | E2: Other lintels (including other steel lintels) | Not government-approved scheme | 0.023 (!) | | | | | | | External wall | E3: Sill | Calculated by person with suitable expertise | 0.021 (!) | | | | | | | | | | | | | | | | | Main element | Junction detail | Source | Psi value
[W/mK] | Drawing / reference | |---------------|---|--|---------------------|---------------------| | External wall | E4: Jamb | Calculated by person with suitable expertise | 0.016 (!) | | | External wall | E5: Ground floor (normal) | Calculated by person with suitable expertise | 0.047 | Marmox Spec | | External wall | E7: Party floor between dwellings (in blocks of flats) | Calculated by person with suitable expertise | 0.038 (!) | | | External wall | E22: Basement floor | Calculated by person with suitable expertise | -0.08 | Marmox Spec | | External wall | E19: Ground floor (inverted) | SAP table default | 0.1 | | | Party wall | P1: Ground floor | Calculated by person with suitable expertise | 0.093 | | | Party wall | P3: Intermediate floor between dwellings (in blocks of flats) | SAP table default | 0 (!) | | | External wall | E16: Corner (normal) | Calculated by person with suitable expertise | 0.043 | | | External wall | E17: Corner (inverted - internal area greater than external area) | Calculated by person with suitable expertise | -0.073 | | | External wall | E18: Party wall between dwellings | Calculated by person with suitable expertise | 0.046 | | | 3 Air permeability (better than typically expected values are flagged with a subsequent (!)) | | | | | | | | |--|--|----|--|--|--|--|--| | Maximum permitted air permeability at 50Pa | $8 \text{ m}^3/\text{hm}^2$ | | | | | | | | Dwelling air permeability at 50Pa | 4.5 m ³ /hm ² , Design value | OK | | | | | | | Air permeability test certificate reference | | | | | | | | | 4 Space heating | | |---------------------------------------|---| | Main heating system 1: Heat pump with | radiators or underfloor heating - Electricity | | Efficiency | 219.9% | | Emitter type | Radiators | | Flow temperature | 55°C | | System type | Heat Pump | | Manufacturer | Atlantic | | Model | Logic Air 8kW | | Commissioning | | | Secondary heating system: N/A | | | Fuel | N/A | | Efficiency | N/A | | Commissioning | | | 5 Hot water | | | | | | | |--------------------------------------|--------------|--|--|--|--|--| | Cylinder/store - type: Cylinder | | | | | | | | Capacity | 150 litres | | | | | | | Declared heat loss | 2.09 kWh/day | | | | | | | Primary pipework insulated | Yes | | | | | | | Manufacturer | | | | | | | | Model | | | | | | | | Commissioning | | | | | | | | Waste water heat recovery system 1 - | type: N/A | | | | | | | Efficiency | | | | | | | | Manufacturer | | | | | | | | Model | | | | | | | | 6 Controls | | | | | | | | |---|----------------------------|--|--|--|--|--|--| | Main heating 1 - type: Time and temperature zone control by arrangement of plumbing and electrical services | | | | | | | | | Function | | | | | | | | | Ecodesign class | | | | | | | | | Manufacturer | | | | | | | | | Model | | | | | | | | | Water heating - type: Cylinder thermosta | at and HW separately timed | | | | | | | | Manufacturer | | | | | | | | | Model | | | | | | | | | 7 Lighting | | | | | | | |---|--------------------------|---|------|--|--|--| | Minimum permitted light source efficacy | 75 lm/W | | | | | | | Lowest light source efficacy | 80 lm/W | | OK | | | | | External lights control | N/A | | | | | | | | | | | | | | | 8 Mechanical ventilation | | | | | | | | System type: N/A | N1/A | | | | | | | Maximum permitted specific fan power | N/A | | NI/A | | | | | Specific fan power | N/A | | N/A | | | | | Minimum permitted heat recovery | N/A | | | | | | | efficiency | | | 1 | | | | | Heat recovery efficiency | N/A | | N/A | | | | | Manufacturer/Model | | | | | | | | Commissioning | | | | | | | | 9 Local generation | | | | | | | | Technology type: Photovoltaic system | (1) | | | | | | | Peak power | 1.045 kWp | | | | | | | Orientation | South West | | | | | | | Pitch | 45° | | | | | | | Overshading | None or very little | | | | | | | Manufacturer | THORIO OF YORY III.IIO | | | | | | | MCS certificate | | | | | | | | | | | | | | | | 10 Heat networks | | | | | | | | N/A | | | | | | | | 11 Supporting documentary evidence | | | | | | | | N/A | | | | | | | | 40 Paulanatiana | | | | | | | | 12 Declarations | | | | | | | | a. Assessor Declaration | offerentiae that the car | atauta af this DDEL Occupions a Danset | | | | | | | | ntents of this BREL Compliance Report | | | | | | | | formation submitted for this dwelling for | | | | | | the purpose of carrying out the "As designed" assessment, and that the supporting documentary | | | | | | | | evidence (SAP Conventions, Appendix 1 (documentary evidence) schedules the minimum | | | | | | | | documentary evidence required) has been reviewed in the course of preparing this BREL | | | | | | | | Compliance Report. | Signed: Assessor ID: | Name: | | Date: | | | | | N/A b. Client Declaration | Property Reference | Unit 1 | | | | | | | | | Issued | on Date | 05/ | 03/202 | 4 | |------------------------------------|---------------------------------------|------------|--|--------------|---|----------|--|---------------------------------|-----------|--|--|------------------------|--|----------------------------| | Assessment Reference | PV | | | | | | Prop | Туре | Ref | Tebby a | Tebby and Son Garage | | | | | Property | Unit 1 | Highland | Square , E | Bristol | | | | | | | | | | | | SAP Rating | | | | 89 B | | DER | | 3.03 | 3 | | TER | | 15.43 | | | Environmental | | | | 98 A | | % DER | < TER | | | | | | 30.36 | | | CO ₂ Emissions (t/year) | | | | 0.11 | | DFEE | | 35.6 | 33 | | TFEE | • | 10.78 | | | Compliance Check | | | | See BREI | L | % DFE | E < TFEE | | | | | | 12.64 | | | % DPER < TPER | | | | 52.95 | | DPER | | 38. | 53 | | TPER | | 31.89 | | | Assessor Details | | | | | | | | | | | Assesso | r ID | J367-0 | 001 | | Client | | | | | | | | | | | | | | | | SUMMARY FOR INPU | IT DATA FOI | R: New E | Build (As | s Desigr | ned) | | | | | | | | | | | Orientation | | | | Southwes | t | | | | | | | | | | | Property Tenture | | | | 1 | | | | | | | | | | | | Transaction Type | | | [| 6 | | | | | | | | | | | | Terrain Type | | | Ī | Urban | | | | | | | | | | | | 1.0 Property Type | | | | Flat, Semi | i-Detached | | | | | | | | | | | Position of Flat | | | | Ground-flo | oor flat | | | | | | | | | | | Which Floor | | | | 0 | | | | | | | | | | | | 2.0 Number of Storeys | | | Ī | 1 | | | | | | | | | | | | 3.0 Date Built | | | [: | 2024 | | | | | | | | | | | | 3.0 Property Age Band | | | Ī | L | | | | | | | | | | | | 4.0 Sheltered Sides | | | [| 3 | | | | | | | | | | | | 5.0 Sunlight/Shade | | | | Average o | or unknown | | | | | | | | | | | 6.0 Thermal Mass Parame | ter | | Ī | Precise ca | alculation | | | | | | | | | | | Thermal Mass | | | | N/A | | | | | | k | J/m²K | | | | | 7.0 Electricity Tariff | | | | Standard | | | | | | | | | | | | Smart electricity meter f | fitted | | | No | | | | | | | | | | | | Smart gas meter fitted | | | | No | | | | | | | | | | | | 7.0 Measurements | | | | | Basement
round floot
1st Storey
2nd Storey
3rd Storey
4th Storey
5th Storey
7th Storey | | 21.33 r
0.00 m
21.33 r
0.00 m
0.00 m
0.00 m
0.00 m
0.00 m
0.00 m | 1
m
1
1
1
1
1 | r in | 0.00 r
0.00 r
0.00 r
0.00 r
0.00 r
0.00 r
0.00 r
0.00 r | n ²
m ²
n ²
n ²
n ²
n ²
n ² | Avera | ge Sto
0.00
2.50
0.00
0.00
0.00
0.00
0.00
0.00 | m
m
m
m
m
m | | 8.0 Living Area | | | : | 20.51 | | | | | | п | 1 ² | | | | | 9.0 External Walls Description | Туре | Construct | ion | | | U-Value | Kappa | Gross | Nett Area | Shelter | Shelter | Openi | ngs Are | a Calculati | | Cavity Wall | Cavity Wall | Cavity wal | : plasterboa | | dense block, | | (kJ/m²K)
150.00 | | | Res 0.00 | None | 8.38 | _ | Type
er Gross Ar | | Basement Wall | Cavity Wall | Cavity wal | /, any outside
I : plasterboa
/, any outside | ard on dabs, | dense block, | 0.18 | 150.00 | 5.27 | 5.27 | 0.00 | None | 0.00 |) Ent | er Gross Ar | | 9.1 Party Walls | | | | | | | | | | | | | | | | Description Party Wall 1 | Type
Filled
Cav
Edge Sea | ty with S | constructi
Single plass
avity | | on both side | s, dense | cellular b | olocks, | | • Kappa
) (kJ/m²K)
70.00 | Area
(m²)
32.92 | Shelter
Res
0.00 | | Shelter
None | | 9.2 Internal Walls | Luge Sea | nny C | avity | | | | | | | | | | | | | Description | | Co | nstructio | n | | | | | | | | | appa
/m²K) | Area (n | | Internal Wall 1 | | De | nse block | , dense pl | aster | | | | | | | | 00.00 | 102.5 | SAP 10 Online 2.13.11 Page 1 of 4 | 10.1 Party Ceilings
Description | | Constr | | | | | | | | Kappa
(kJ/m²K) | Area (m²) | |--|---|-----------------------|---|--|---|--|---|-----------------------------|---------------------|-----------------------|---| | Party Ceiling 1 | Precast concrete planks floor, screed, carpeted | | | | | | | | | 30.00 | 43.39 | | 11.0 Heat Loss Floors Description | Туре | Storey Index | | Construction | | U- V a | lue | Shelter Code | Sh | elter Kap | pa Area (m²) | | Heatloss Floor 1 | Ground Floor - Solid | • | | Suspended concrete floor, | carpeted | (W/m
0.1 | ²K) | None | Fa | ctor (kJ/r
.00 75. | n²K) | | 12.0 Opening Types | | | | | | | | | | | | | Description | Data Source | Туре | | Glazing | | Glazing | Filling | G-value | Frame | Frame | U Value | | Windows | Manufacturer | Window | | Double Low-E S | oft 0.05 | Gap | Type
Air Filled | 0.63 | Type
Wood | Factor 0.70 | (W/m²K)
1.31 | | 13.0 Openings | | | | | | | | | | | | | Name
W01
W02
W03 | Opening Ty
Windows
Windows
Windows | pe | | Location
Cavity Wall
Cavity Wall
Cavity Wall | | Orient
North
North
North | East
East
East | Area (
2.2
2.3
1.5 | 4
5
3 | P | itch
0
0
0 | | W04 | Windows | | | Cavity Wall | | North | East | 2.2 | ь | | 0 | | 14.0 Conservatory | | | | None | | | | | | | | | 15.0 Draught Proofing | | | | 100 | | | | % | | | | | 16.0 Draught Lobby | | | | No | | | | | | | | | 17.0 Thermal Bridging | | | | Calculate Bridges | | | | | | | | | 17.1 List of Bridges | | | _ | _ | | | | | | | | | Bridge Type E2 Other lintels (includir E3 Sill E4 Jamb E5 Ground floor (norma E7 Party floor between of E22 Basement floor E19 Ground floor (invert P1 Party wall - Ground f P3 Party wall - Intermed (in blocks of flats) E16 Corner (normal) | l)
dwellings (in block
ted)
floor
liate floor between | s of flats) dwellings | Non
Inde
Inde
Inde
Inde
Tab
Inde
Tab | Irce Type I Gov Approved Scheme pendently assessed ependently assessed ependently assessed ependently assessed ependently assessed ependently assessed le K1 - Default ependently assessed le K1 - Default ependently assessed | 4.43
15.18
16.05
16.05
5.27
5.27
15.07
15.07 | Psi
0.02
0.02
0.05
0.04
-0.08
0.10
0.09
0.00 | 0.02
0.02
0.02
0.05
0.04
-0.08
0.10
0.09
0.00 | Marmox Sp | ec | | Imported No | | E17 Corner (inverted – i
external area) | internal area great | er than | Inde | ependently assessed | 5.00 | -0.07 | -0.07 | | | | No | | E18 Party wall between | dwellings | | Inde | ependently assessed | 5.00 | 0.05 | 0.05 | | | | No | | Y-value | | | | 0.04 | | | | W/m²K | | | | | 18.0 Pressure Testing | | | | Yes | | | | | | | | | Designed AP ₅₀ | | | | 4.50 | | | | m³/(h.m | ²) @ 50 Pa | a | | | Property Tested? | | | | Yes | | | | | | | | | Test Method | | | | Blower Door | | | | | | | | | 19.0 Mechanical Ventilation | on . | | | | | | | | | | | | Mechanical Ventilation | | | | | | | | | | | | | Mechanical Ventila | ation System Pres | ent | | No | | | | | | | | | 20.0 Fans, Open Fireplace | s, Flues | | | | | | | | | | | | 21.0 Fixed Cooling System | n | | | No | | | | | | | | | 22.0 Lighting No Fixed Lighting | | | | No
Name
Lighting 1 | Efficacy
80.00 | | wer | Capa
12 | | С | ount
5 | | 24.0 Main Heating 1 | | | | Database | | | _ | | | | - | | _ | | | | | | | | <u></u> % | | | | | Percentage of Heat | | | | 100.00 | | | | 70 | | | | | Database Ref. No. | | | | 106764 | | | | | | | | | Fuel Type | | | | Electricity | | | | | | | | | SAP Code | | | | 0 | | | | | | | | | In Winter | | | | 219.89 | | | | | | | | | In Summer | | | | 192.25 | | | | | | | | | Model Name | | | | Logic Air 8kW | | | | | | | | SAP 10 Online 2.13.11 Page 2 of 4 | Manufacturer | Atlantic | 7 | |--|--|-------------------------------------| | | | _
¬ | | System Type | Heat Pump | _ | | Controls SAP Code | 2207 | = | | Delayed Start Stat | No | _ | | HETAS approved System | No | = | | Oil Pump Inside | No | _ | | FI Case | 0.00 | | | Flue Type | None or Unknown | | | Fan Assisted Flue | No | | | Is MHS Pumped | Pump in heated space | | | Heating Pump Age | 2013 or later | | | Heat Emitter | Radiators | _ | | Flow Temperature | Enter value | _ | | Flow Temperature Value | 55.00 | | | Boiler Interlock | No |] | | 25.0 Main Heating 2 | None | | | 26.0 Heat Networks | None | | | Heat Source Fuel Type Heating U | Jse Efficiency Percentage Of Heat Heat Ele | ectrical Fuel Factor Efficiency typ | | | Heat Power
Ratio | | | Heat source 1 None | 1440 | | | Heat source 2 None
Heat source 3 None | | | | Heat source 4 None | | | | Heat source 5 None | | | | 28.0 Water Heating | Main Hanting 4 | | | Water Heating SAP Code | Main Heating 1 901 | _
_ | | | | _ | | Flue Gas Heat Recovery System | No | _ | | Waste Water Heat Recovery Instantaneous System 1 | No | _ | | Waste Water Heat Recovery Instantaneous System 2 | No | _ | | Waste Water Heat Recovery Storage System | No | | | Solar Panel | No | | | Water use <= 125 litres/person/day | Yes | _ | | Summer Immersion | No | | | Cold Water Source | From header tank | | | Bath Count | 0 | | | Supplementary Immersion | No | | | Immersion Only Heating Hot Water | No | | | 28.1 Showers | | | | Description Shower Typ | | Connected Connected To | | 1 Combi boile | r or unvented hot water system 7.00 [kW] | No | | 28.3 Waste Water Heat Recovery System | | | | 29.0 Hot Water Cylinder | Hot Water Cylinder | | | Cylinder Stat | Yes | | | Cylinder In Heated Space | Yes | | | Independent Time Control | Yes | Ī | | Insulation Type | Measured Loss | Ī | | Cylinder Volume | 150.00 | _
☐ L | | Loop | 2.00 | 1300-74 | SAP 10 Online 2.13.11 Page 3 of 4 kWh/day 2.09 Loss | Pipes insulation | on | | | Fully insu | lated prin | nary pipewoi | k | |] | | | |---|-----------------|----------------|-----------|------------|------------|--------------|----------|----------------------|---------------|-------------|-----------------------| | In Airing Cupb | oard | | | No | | | | |] | | | | 31.0 Thermal Sto | re | | | None | | | | |] | | | | 32.0 Photovoltaid | Unit | | | One Dwe | lling | | | | | | | | Export Capab | le Meter? | | | Yes | | | | | | | | | Connected To | Dwelling | | | Yes | | | | |] | | | | Diverter | | | | No | | | | |] | | | | Battery Capac | city [kWh] | | | 0.00 | | | | |] | | | | PV Cell | s kWp | Orientation | Elevation | Over | shading | FGHRS | MCS Cert | ificate Over
Fact | shading
or | Certificate | Panel
Manufacturer | | 1.04 | | South West | 45° | None | Or Little | No | No | 1.00 | | Reference | | | 34.0 Small-scale | Hydro | | | None | | | | |] | | | | Electricity Ger | nerated | | | 0.00 | | | | |] | | | | Apportioned | | | | 0.00 | | | | | kWh/Ye | ear | | | Connected to | dwelling's elec | tricity meter | | Yes | | | | |] | | | | Electricity Ger | neration | | | Annual | | | | |] | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oc | t Nov | Dec | | Recommendation Lower cost m None Further meas | neasures | ve even higher | standards | | | | | | | | | | | Tunical Cost | Tomical cardena accusas | Ratings after improvement | | | | |---------------------|--------------|--------------------------|---------------------------|----------------------|--|--| | | Typical Cost | Typical savings per year | SAP rating | Environmental Impact | | | | Solar water heating | | | 0 | 0 | | | | _ | | | 0 | 0 | | | | | | | 0 | 0 | | | SAP 10 Online 2.13.11 Page 4 of 4 | Property Reference | | Uni | | | | | | | | Issued on Dat | te | 05/03/2024 | | |---|---
--|-------------------------|-------------------|-------------------------|-------------------------|----------------------------------|----------------------------|--------------------------------------|---|----------------------------------|---|--| | Assessment Refer | rence | PV | | | | | | Prop Type Ref | Te | ebby and Son (| Garage | | | | Property | | Uni | it 1, Highland | Square , Bristol | | | | | | | | | | | SAP Rating | | | | | 89 B | | DER | 3.03 | | TER | | 15.43 | | | Environmental | | | | | 98 A | | % DER < TER | t e | | | | 80.36 | | | CO ₂ Emissions (t/) | year) | | | | 0.11 | | DFEE | 35.63 | 3 | TFEE | | 40.78 | | | Compliance Check | k | | | | See BREL | | % DFEE < TF | EE | | | | 12.64 | | | % DPER < TPER | | | | | 52.95 | | DPER | 38.53 | 3 | TPER | | 81.89 | | | Assessor Details | | | | | | | | | | Asses | sor ID | U367-000 | 01 | | Client | | | | | | | | | | | | | | | SAP 10 WORKSHEET
CALCULATION OF D | | | | | | 2022) | | | | | | | | | l. Overall dwell | ling charac | cteristics | | | | | | | | | | | | | Ground floor
Total floor area
Dwelling volume | a TFA = (la | a)+(lb)+(lc) |)+(ld)+(le |)(ln) | 4 | 3.3900 | | Area
(m2)
43.3900 (| | ey height
(m)
2.5000 (
+(3d)+(3e). | | Volume
(m3)
108.4750
108.4750 | (lb) -
(4) | | 2. Ventilation r | rate | | | | | | | | | | | | | | Number of open of
Number of open for
Number of chimne
Number of flues
Number of flues
Number of blocke
Number of interm
Number of passiv
Number of fluele | flues ys / flues attached t attached t ed chimneys ittent ext e vents | to solid fue
to other hea
s
tract fans | el boiler | fire | | | | | | | 0 * 20 =
0 * 35 =
0 * 20 = | 0.0000
0.0000
0.0000
0.0000
0.0000
20.0000
0.0000 | (6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b) | | Infiltration due
Pressure test
Pressure Test Me
Measured/design
Infiltration rat
Number of sides | ethod
AP50
ce | | and fans | = (6a)+(6b) | + (6c) + (6d) + (| 6e)+(6f)+ | (6g)+(7a)+(| 7b)+(7c) = | | | / (5) = | 0.1844
Yes
31ower Door
4.5000
0.4094 | (8) | | Shelter factor
Infiltration rat | ce adjusted | d to include | e shelter : | factor | | | | (| 20) = 1 - (2) | [0.075 x
1) = (18) x | | | | | Wind speed
Wind factor
Adj infilt rate | Jan
5.1000
1.2750 | Feb
5.0000
1.2500 | Mar
4.9000
1.2250 | | May
4.3000
1.0750 | Jun
3.8000
0.9500 | | Aug
3.7000
0.9250 | | | Nov
4.5000
1.1250 | | | | Effective ac | 0.4045 | | | | 0.3411
0.5582 | | | 0.2935
0.5431 | | 0.3411
0.5582 | | | | | 3. Heat losses a | and heat lo | oss paramete | er | | | | | | | | | | | | Element | | | | Gross | Openings | Net | tArea | U-value | Ax | U K- | value | AxK | | | Vindows (Uw = 1. | | | | m2 | m2 | 8. | m2
.3800 | W/m2K
1.2448 | W/I
10.431 | K k
2 | :J/m2K | kJ/K | (27) | | Meatloss Floor 1
Cavity Wall
Basement Wall
Cotal net area o | of external | | Aum (A, m2) | 40.5100
5.2700 | 8.3800 | 32.
5. | .3900
.1300
.2700
.1700 | 0.1200
0.1800
0.1800 | 5.206
5.783
0.948 | 8 75
4 150
6 150 | .0000
.0000 | 3254.2500
4819.5000
790.5000 | (31) | | Fabric heat loss
Party Wall 1
Party Ceiling 1
Internal Wall 1 | o, w/K = St | unt (AXU) | | | | 43. | (26)(
.9200
.3900
.5500 | 30) + (32) =
0.0000 | 22.370
0.000 | 0 70
30 | | 2304.4000
1301.7000
10255.0000 | (32b) | | Meat capacity Cm
Thermal mass par | | | FA) in laTh | m2K | | | | (28) | . (30) + (32) |) + (32a) | .(32e) = | 22725.3500
523.7463 | | | List of Thermal K1 Eleme E2 Other E3 Sill E4 Jamb E5 Groun E7 Party | Bridges
ent
r lintels
and floor (r | (including of the control con | other stee | | ts) | | | 4.
4.
15.
16. | 4300
4300
1800
0500
0500 | si-value
0.0230
0.0210
0.0160
0.0470
0.0380
-0.0800 | 0.79 | tal
019
930
429
544
099 | (55) | SAP 10 Online 2.13.11 Page 1 of 7 | P1 Part
P3 Part
E16 Cor
E17 Cor | y wall - I
ner (norma
ner (inver
ty wall be | round floor
ntermediate
1)
ted - inter
tween dwell | e floor betw
mal area gr
Lings | reater than | ngs (in bloomer) external and | | 3) | 15
15
9
5 | .2700
.0750
.0750
.5000
.0000 | 0.1000
0.0930
0.0000
0.0430
-0.0730
0.0460 | 0.52
1.40
0.00
0.40
-0.36
0.23 | 20
00
85
50 | (36) | |---|--|--|--------------------------------------|------------------------------|--------------------------------|------------------------------|------------------------------|------------------------------|---|---|---|--|---------------| | Point Thermal b | ridges | rsi, carcar | acca asing | Appendia i | •1 | | | | (| 33) + (36) | (36a) =
+ (36a) = | 0.0000
25.9529 | | | Ventilation hea
(38)m
Heat transfer o | Jan
20.8271 | culated mon
Feb
20.7134 | thly (38)m
Mar
20.6019 | = 0.33 x (
Apr
20.0783 | 25)m x (5)
May
19.9803 | Jun
19.5243 | Jul
19.5243 | Aug
19.4399 | Sep
19.7000 | Oct
19.9803 | Nov
20.1785 | Dec
20.3857 | (38) | | Average = Sum(3 | 46.7800 | 46.6663 | 46.5548 | 46.0312 | 45.9333 | 45.4772 | 45.4772 | 45.3928 | 45.6529 | 45.9333 | 46.1315 | 46.3386
46.0308 | (39) | | HLP
HLP (average)
Days in mont | Jan
1.0781
31 | Feb
1.0755 | Mar
1.0729 | Apr
1.0609 | May
1.0586 | Jun
1.0481
30 | Jul
1.0481
31 | Aug
1.0462
31 | Sep
1.0522 | Oct
1.0586 | Nov
1.0632 | Dec
1.0680
1.0609
31 | (40) | | Days III MOIIC | 31 | 20 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | | | 4. Water heatin | g energy r | equirements | (kWh/year) | | | | | | | | | 1 4001 | (40) | | Assumed occupan
Hot water usage | | showers
60.7771 | 59.3845 | 57.2421 | 55.3227 | 52.6374 | 50.5135 | 52.9964 | 54.2453 | 56.9049 | 59.6748 | 1.4991 | | | Hot water usage | for baths
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Hot water usage
Average daily h | 29.9819 | 28.8917 | 27.8014
(day) | 26.7112 | 25.6209 | 24.5307 | 24.5307 | 25.6209 | 26.7112 | 27.8014 | 28.8917 | 29.9819
84.1592 | | | Daily hot water | Jan
use | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Energy conte
Energy content | 91.7040
135.0041
(annual) | 89.6688
118.6499 | 87.1859
124.5869 | 83.9533
109.6640 | 80.9436
104.3040 | 77.1680
89.2423 | 75.0441
82.9260 | 78.6174
92.5341 | 80.9564
93.9054 | 84.7064
109.1528
Total = S | 88.5665
119.7005
um(45)m = | 91.6483
134.5923
1314.2622 | | | Distribution lo
Water storage 1 | 20.2506 | = 0.15 X (4
17.7975 | | 16.4496 | 15.6456 | 13.3863 | 12.4389 | 13.8801 | 14.0858 | 16.3729 | 17.9551 | 20.1888 | (46) | | Store volume a) If manufact Temperature f Enter (49) or (| urer decla
actor from | Table 2b | actor is kno | own (kWh/d | lay): | | | | | | | 150.0000
2.0900
0.5400
1.1286 | (48)
(49) | | Total storage 1 | oss
34.9866 | 31.6008 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | | | If cylinder con
Primary loss
Combi loss | 34.9866
23.2624
0.0000 | 31.6008
21.0112
0.0000 | 34.9866
23.2624
0.0000 |
33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | (59) | | Total heat requ | 193.2531
0.0000 | 171.2619
0.0000 | 182.8359
0.0000 | 166.0340
0.0000 | 162.5530
0.0000 | 145.6123
0.0000 | 141.1750
0.0000 | 150.7831
0.0000 | 150.2754
0.0000 | 167.4018
0.0000 | 176.0705
0.0000 | 192.8413
0.0000 | (62)
(63a) | | PV diverter
Solar input
FGHRS | -0.0000
0.0000
0.0000 (63c) | | Output from w/h | 193.2531 | | 182.8359 | 166.0340 | 162.5530 | 145.6123 | 141.1750 | 150.7831
Total pe | 150.2754
er year (kW | | 176.0705
um(64)m = | 192.8413
2000.0972
2000 | (64) | | Electric shower | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (64a) | | Heat gains from | | | | | 81.2803 | | | | | | | 0.0000 | | | | 91.4881 | 81.5407 | 88.0243 | 81.5593 | 61.2603 | 74.7691 | 74.1721 | 77.3668 | 76.3196 | 82.8925 | 84.8964 | 91.3511 | (65) | | 5. Internal gai | | | ia) | | | | | | | | | | | | Metabolic gains
(66)m | Jan
74.9534 | Feb
74.9534 | | | May
74.9534 | | | Aug
74.9534 | Sep
74.9534 | Oct
74.9534 | Nov
74.9534 | Dec
74.9534 | (66) | | Lighting gains Appliances gain | 66.3712 | 73.4824 | 66.3712 | 68.5836 | 66.3712 | 68.5836 | 66.3712 | 66.3712 | 68.5836 | 66.3712 | 68.5836 | 66.3712 | (67) | | | 130.1437 | 131.4941 | 128.0910 | 120.8460 | 111.7006 | 103.1051 | 97.3628 | 96.0123 | 99.4155 | 106.6605 | 115.8059 | 124.4014 | (68) | | Pumps, fans | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 30.4953
0.0000 | 30.4953
0.0000 | 30.4953
0.0000 | 30.4953
0.0000 | | | | 30.4953
0.0000 | | | Losses e.g. eva
Water heating g | -59.9627 | -59.9627 | | | -59.9627 | -59.9627 | -59.9627 | -59.9627 | -59.9627 | -59.9627 | -59.9627 | -59.9627 | (71) | | | 122.9678 | | 118.3123 | 113.2768 | 109.2477 | 103.8459 | 99.6937 | 103.9876 | 105.9994 | 111.4146 | 117.9117 | 122.7838 | (72) | | | | 371.8029 | 358.2604 | 348.1924 | 332.8055 | 321.0206 | 308.9137 | 311.8572 | 319.4845 | 329.9323 | 347.7872 | 359.0424 | (73) | | 6. Solar gains | | | | | | | | | | | | | | | [Jan] | | | | rea
m2 | Solar flux
Table 6a
W/m2 | Specif
or 1 | g
fic data
Table 6b | Specific
or Tab | FF
data
le 6c | Acce:
fact:
Table | ss
or
6d | Gains
W | | | Northeast | | | 8.38 | 300 | 11.2829 | | | | | | | 28.8960 | (75) | | Solar gains
Total gains | | | | | | | | | | | | | | SAP 10 Online 2.13.11 Page 2 of 7 | 7. Mean interna | al temperat | ture (heati | ng season) | | | | | | | | | | | |---|----------------------------|----------------------|-------------------------|--------------------|---------------------|---------------------|---------------------|----------------------|---------------------|-----------------------|--------------------|------------------------------|--------| | Temperature du | ring heatin | ng periods | in the livi | | | Th1 (C) | | | | | | 21.0000 | (85) | | Utilisation factau | Jan | Feb | Mar
135.5949 | Apr | May
137.4297 | Jun
138.8078 | Jul
138.8078 | Aug
139.0661 | Sep
138.2737 | Oct
137.4297 | Nov
136.8393 | Dec
136.2275 | | | alpha
util living are | | 10.0181 | 10.0397 | 10.1425 | 10.1620 | 10.2539 | 10.2539 | 10.2711 | 10.2182 | 10.1620 | 10.1226 | 10.0818 | | | Living | 0.9995
20.4831 | 0.9984 | 0.9926
20.7141 | 0.9366
20.9094 | 0.7428 | 0.5100 | 0.3690 | 0.4194 | 0.6964 | 0.9680
20.8814 | 0.9978
20.6555 | 0.9996 | (86) | | Non living | | | 19.7298 | 19.9614
0 | 20.0308 | 20.0434 | 20.0434 | 20.0450
0 | 20.0390 | 19.9398
0 | 19.6643
0 | 19.4258 | | | 16 / 9 | 28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 0
10 | | | | 20.7356
20.0187
ouse | 20.5713
20.0209 | 20.7141
20.0230 | 20.9094
20.0329 | 20.9917
20.0348 | 20.9998
20.0434 | 21.0000
20.0434 | 21.0000
20.0450 | 20.9966
20.0401 | 20.8814
20.0348 | 20.6555
20.0310 | 20.5453
20.0271 | | | MIT 2 | 0.9991
19.7855 | 0.9972
19.5481 | 0.9872
19.7298 | 0.9014
19.9614 | 0.6714
20.0308 | 0.4339
20.0434 | 0.2888
20.0434 | 0.3323
20.0450 | 0.6031
20.0390 | 0.9407
19.9398 | 0.9958 | 0.9993
19.5341
0.4727 | (90) | | Living area fra
MIT
Temperature ad | 20.2346 | 20.0317 | 20.1951 | 20.4095 | 20.4850 | 20.4955 | 20.4956 | 20.4964 | 20.4916 | Living are
20.3849 | | 20.0121 | | | adjusted MIT | | 20.0317 | 20.1951 | 20.4095 | 20.4850 | 20.4955 | 20.4956 | 20.4964 | 20.4916 | 20.3849 | 20.1328 | 20.0121 | (93) | | | | | | | | | | | | | | | | | 8. Space heatin | | | | | | | | | | | | | | | Utilisation | Jan
0.9992 | Feb
0.9972 | Mar
0.9884 | Apr
0.9167 | May
0.7054 | Jun
0.4699 | Jul
0.3267 | Aug
0.3735 | Sep
0.6476 | Oct
0.9524 | Nov
0.9961 | Dec
0.9993 | (94) | | Useful gains
Ext temp. | 4.3000 | 429.4320
4.9000 | 458.8505
6.5000 | 478.7050
8.9000 | 399.7557
11.7000 | 268.0485
14.6000 | 177.1596
16.6000 | 185.9438
16.4000 | 290.5279
14.1000 | 382.7005
10.6000 | 382.6469
7.1000 | 382.3786
4.2000 | | | Heat loss rate Space heating 1 | 745.4220 | 706.1422 | 637.5718 | 529.7965 | 403.5234 | 268.1102 | 177.1608 | 185.9485 | 291.7967 | 449.4529 | 601.2233 | 732.7118 | (97) | | Space heating | 261.7938
requirement | | 132.9686
er year (kW | 36.7858
h/year) | 2.8032 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 49.6638 | 157.3750 | 260.6479
1087.9874 | (98a) | | Solar heating (| 0.0000 | 0.0000
on - total | 0.0000
per year (ki | 0.0000
Wh/year) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Space heating 1 | kWh
261.7938 | 185.9492 | 132.9686 | 36.7858 | 2.8032 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 49.6638 | 157.3750 | 260.6479
1087.9874 | (98c) | | Space heating page 5 | | , alter sol | ar contribu | cion - cocai | . per year | (KWII/Year) | | | | (98c |) / (4) = | 25.0746 | (99) | | | | | | | | | | | | | | | | | 9a. Energy requ | uirements - | - Individua | l heating s | ystems, incl | uding micr | ro-CHP | | | | | | | | | Fraction of spa
Fraction of spa | ace heat fr | com main sy | stem(s) | | (Table 11 | 1) | | | | | | 0.0000
1.0000 | (202) | | Efficiency of r
Efficiency of r
Efficiency of s | main space | heating sy | stem 2 (in | 웅) | | | | | | | | 219.8872
0.0000
0.0000 | (207) | | Lillerency of . | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | (200) | | Space heating : | 261.7938 | 185.9492 | 132.9686 | 36.7858 | 2.8032 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 49.6638 | 157.3750 | 260.6479 | (98) | | Space heating e | 219.8872 | 219.8872 | 219.8872 | | 219.8872 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 219.8872 | 219.8872 | 219.8872 | (210) | | | 119.0582 | 84.5658 | 60.4713 | 16.7294 | 1.2748 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 22.5860 | 71.5708 | 118.5371 | (211) | | Space heating of Space heating is | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (212) | | Space heating i | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (213) | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating
Water heating | requirement
193.2531 | | 182.8359 | 166.0340 | 162.5530 | 145.6123 | 141.1750 | 150.7831 | 150.2754 | 167.4018 | 176.0705 | 192.8413 | (64) | | | 192.2472 | 192.2472 | 192.2472 | 192.2472 | 192.2472 | 192.2472 | 192.2472 | 192.2472 | 192.2472 | 192.2472 | 192.2472 | 192.2472
192.2472 | | | Fuel for water | 100.5232 | 89.0842 | 95.1046 | 86.3649 | 84.5542 | 75.7422 | 73.4341 | 78.4319 | 78.1678 | 87.0763 | 91.5855 | 100.3090 | (219) | | Space cooling (221)m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Pumps and Fa
Lighting | 0.0000
13.7906 | 0.0000
11.0634 | 0.0000
9.9613 | 0.0000
7.2981 | 0.0000
5.6373 | 0.0000
4.6057 | 0.0000
5.1425 | 0.0000
6.6844 | 0.0000
8.6824 | 0.0000
11.3918 | 0.0000
12.8670 | 0.0000
14.1739 | | | | -19.3527 | -28.9497 | -43.6155 | -50.2036 | -55.5668 | | -51.8109 | -48.1887 | -41.2895 | -33.2584 | -21.6905 | -16.5374 | (233a) | | Electricity ger
(234a)m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234a) | | Electricity ger
(235a)m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235a) | | Electricity use
(235c)m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235c) | | Electricity ger
(233b)m
Electricity ger | -5.5111 | -12.3325 | -26.1162 | -42.3787 | -58.0267 | | -58.2088 | -48.4648 | -35.0681 | -19.3610 | -7.7611 | -4.2966 | (233b) | | (234b)m
Electricity ger | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
itv) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234b) | | (235b)m
Electricity use | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
eneration) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235b) | | (235d)m
Annual totals 1 | 0.0000
kWh/year | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating in
Space heating in | fuel – main | n system 2 | | | | | | | | | | 494.7935
0.0000 | (213) | | Space heating in
Efficiency of w | water heate | | | | | | | | | | | 0.0000
192.2472 | | | Water heating i | fuel used | | | | | | | | | | | 1040.3780
0.0000 | | | Electricity for
Total
electric
Electricity for | ity for the | above, kW | | ix L) | | | | | | | | 0.0000
111.2982 | | SAP 10 Online 2.13.11 Page 3 of 7 | Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses | -839.3408 (233)
0.0000 (234)
0.0000 (235a)
0.0000 (235)
-0.0000 (236)
0.0000 (237)
807.1289 (238) | |---|--| | 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP | | | Energy Emission factor | Emissions | | Emily Emilsion Retter Ref C02/kWh | | | Total CO2 associated with community systems Water heating (other fuel) 1040.3780 0.1406 | 0.0000 (373) | | Space and water heating Pumps, fans and electric keep-hot 0.0000 0.0000 | 224.2345 (265) | | Energy for lighting 111.2982 0.1443 | | | Energy saving/generation technologies PV Unit electricity used in dwelling -463.0509 0.1338 PV Unit electricity exported -376.2900 0.1242 Total CO2, kg/year | -61.9635
-46.7419
-108.7054 (269)
131.5929 (272) | | EPC Dwelling Carbon Dioxide Emission Rate (DER) | 3.0300 (273) | | | | | 13a. Primary energy - Individual heating systems including micro-CHP | | | Energy Primary energy factor
kWh/year kg CO2/kWh | Primary energy
kWh/year | | Space heating - main system 1 494.7935 1.5832 Total CO2 associated with community systems | 783.3654 (275)
0.0000 (473) | | Water heating (other fuel) 1040.3780 1.5199 Space and water heating | | | Pumps, fans and electric keep-hot 0.0000 0.0000 Energy for lighting 111.2982 1.5338 | 0.0000 (281)
170.7130 (282) | | Energy saving/generation technologies PV Unit electricity used in dwelling -463.0509 1.4945 PV Unit electricity exported -376.2900 0.4559 | -692.0394
-171.5539 | | Total Total Primary energy kWh/year Dwelling Primary energy Rate (DPER) | -863.5933 (283)
1671.7536 (286)
38.5300 (287) | | DWEITING FIRMARY ENERGY RACE (DFER) | 30.3300 (207) | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS | | | 1. Overall dwelling characteristics | Volume | | 1. Overall dwelling characteristics | (4) | | 1. Overall dwelling characteristics Area (m2) (m) Ground floor (10) (10) (10) (10) (10) (10) (10) (10) | (m3)
2b) = 108.4750 (1b) - (3b)
(4) | | 1. Overall dwelling characteristics Area Storey height (m2) (m) (3a)+(3b)+(3c)+(3d)+(3e) Storey height (m2) (m) (3a)+(3b)+(3c)+(3d)+(3e) (3a)+(3b)+(3c)+(3d)+(3e) | (m3)
2b) = 108.4750 (1b) - (3b)
(4) | | 1. Overall dwelling characteristics Area Storey height (m2) (m) Ground floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 43.3900 (lb) x 2.5000 (2 (3a)+(3b)+(3c)+(3d)+(3e) 2. Ventilation rate Number of open chimneys Number of pen flues Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of blocked chimneys Number of blocked chimneys Number of intermittent extract fans Number of passive vents | (m3)
2b) = 108.4750 (1b) - (3b)
(4)
(3n) = 108.4750 (5) | | 1. Overall dwelling characteristics Area Storey height (m2) (m) (3.3900 (lb) x 2.5000 (2.7000 (lo) (3.3900 (lo) (lo) (lo) (3.3900 (lo) (lo) (lo) (lo) (lo) (lo) (lo) (lo) | (m3) 2b) = 108.4750 (1b) - (3b) (4)(3n) = 108.4750 (5) m3 per hour 0 * 80 = 0.0000 (6a) 0 * 20 = 0.0000 (6b) 0 * 20 = 0.0000 (6d) 0 * 20 = 0.0000 (6d) 0 * 20 = 0.0000 (6f) 2 * 10 = 20.0000 (7a) 0 * 10 = 0.0000 (7c) Air changes per hour | | 1. Overall dwelling characteristics Area (m2) (m2) (m3) (m3) (m4) (m2) (m3) (m3) (m4) (m4) (m2) (m4) (m4) (m4) (m4) (m4) (m4) (m4) (m4 | (m3) 2b) = 108.4750 (1b) - (3b) (4)(3n) = 108.4750 (5) m3 per hour 0 * 80 = 0.0000 (6a) 0 * 20 = 0.0000 (6b) 0 * 20 = 0.0000 (6d) 0 * 20 = 0.0000 (6d) 0 * 20 = 0.0000 (6f) 2 * 10 = 20.0000 (7a) 0 * 10 = 0.0000 (7b) 0 * 40 = 0.0000 (7c) Air changes per hour / (5) = Yes Blower Door 5.0000 (17) 0.4344 (18) 3 (19) (19)] = 0.7750 (20) | | 1. Overall dwelling characteristics | (m3) 2b) = 108.4750 (1b) - (3b) (4)(3n) = 108.4750 (5) m3 per hour 0 * 80 = 0.0000 (6a) 0 * 20 = 0.0000 (6b) 0 * 20 = 0.0000 (6d) 0 * 20 = 0.0000 (6d) 0 * 20 = 0.0000 (6f) 2 * 10 = 20.0000 (7a) 0 * 10 = 0.0000 (7b) 0 * 40 = 0.0000 (7c) Air changes per hour / (5) = Yes Blower Door 5.0000 (17) 0.4344 (18) 3 (19) (19)] = 0.7750 (20) | SAP 10 Online 2.13.11 Page 4 of 7 | Heat losses and heat losses | | | | | | | | | | | | | |---|---|--|---|---|--------------------------|--|---|--|--|---|---|---------------------------------| | Element | | | Gross | Openings | | tArea | U-value | Αx | | K-value | AxK | | | TER Opening Type (Uw = 1.2
Heatloss Floor 1
Cavity Wall
Basement Wall | 20) | | m2
40.5100
5.2700 | m2
8.3800 | 8
43
32 | m2
.3800
.3900
.1300
.2700 | W/m2K
1.1450
0.1300
0.1800
0.1800 | W,
9.599
5.640
5.780
0.940 | 54
07
34 | kJ/m2K | kJ/K | (27)
(28a)
(29a)
(29a) | | Total net area of external Fabric heat loss, W/K = St Party Wall 1 | | Aum(A, m2) | | | 89 | .1700 | 0) + (32) =
0.0000 | | 81 | | | (31)
(33)
(32) | | Thermal mass parameter (The List of Thermal Bridges | MP = Cm / 1 | FFA) in kJ/m | 2K | | | | | | | | 533.7463 | (35) | | K1 Element E2 Other lintels E3 Sill E4 Jamb E5 Ground floor (r E7 Party floor bet E22 Basement floor E19 Ground floor P1 Party wall - G P3 Party wall - I E16 Corner (normal E17 Corner (invert E18 Party wall bet Thermal bridges (Sum(L x) | normal) tween dwell r (inverted) round floon ntermediate 1) ted - inter tween dwell | lings (in bl
r
e floor betw
rnal area gr
lings | ocks of fla | ngs (in bloo
external an | | 3) | 4.
44
15.
16.
16.
5.
5.
15.
15. | .4300
.4300
.1800
.0500
.0500
.2700
.2700
.0750 | Psi-value
0.0500
0.0500
0.0500
0.0500
0.0700
0.0700
0.0700
0.0800
0.0900
-0.0900
0.0600 | Tot: 0.22 0.22 0.75 2.56 1.12 0.36 0.36 1.20 0.00 0.85 -0.45 0.30 | 15
15
90
80
335
89
89
60
00
50 | (36) | | Point Thermal bridges
Total fabric heat loss | | | | | | | | (: | 33) + (36) | (36a) =
+ (36a) = | 0.0000
29.5104 | | | Ventilation heat loss cald
Jan | Feb | Mar | Apr | 25)m x (5)
May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | (38)m 21.1957
Heat transfer coeff
50.7061
Average = Sum(39)m / 12 = | 21.0677
50.5781 | 20.9422
50.4526 | 20.3527
49.8631 | 20.2424
49.7528 | 19.7290
49.2394 | 19.7290
49.2394 | 19.6339
49.1443 | 19.9267
49.4372 | 20.2424
49.7528 | | 20.6988
50.2092
49.8626 | (39) | | Jan HLP 1.1686 | Feb
1.1657 | Mar
1.1628 | Apr
1.1492 | May
1.1466 | Jun
1.1348 | Jul
1.1348 | Aug
1.1326 | Sep
1.1394 | Oct
1.1466 | Nov
1.1518 | Dec
1.1572 | (40) | | HLP (average)
Days in mont 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 1.1492
31 | | | | | | | | | | | | | | | | | 4. Water heating energy re | equirements | | | | | | | | | | | | | Assumed occupancy | | ,, | | | | | | | | | 1.4991 | (42) | | Hot water usage for mixer
63.3218 | 62.3702 | 60.9836 | 58.3304 | 56.3725 | 54.1890 | 52.9479 | 54.3240 | 55.8326 | 58.1770 | 60.8871 | 63.0792 | (42a) | | Hot water usage for baths
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (42b) | | Hot water usage for other
29.9819
Average daily hot water us | 28.8917 | 27.8014
/day) | 26.7112 | 25.6209 | 24.5307 | 24.5307 | 25.6209 | 26.7112 | 27.8014 | 28.8917 | 29.9819
85.6369 | | | Jan
Daily hot water use | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | 93.3038
Energy conte 147.7704
Energy content (annual) | 91.2619
129.9558 | | 85.0416
116.4177 | 81.9934
110.3789 | 78.7196
96.7950 | 77.4785
93.7036 | 79.9450
98.9886 | 82.5438
101.7847 | | 89.7788
127.9064
Sum(45)m = | 93.0612
145.7113
1422.5435 | (45) | | Water storage loss: | = 0.15 x (4
19.4934 | | 17.4627 | 16.5568 | 14.5192 | 14.0555 | 14.8483 | 15.2677 | 17.5008 | 19.1860 | 21.8567 | | | Store volume a) If manufacturer declar Temperature factor from Enter (49) or (54) in (55) | Table 2b | actor is kmo |
wn (kWh/da | ay): | | | | | | | 150.0000
1.3938
0.5400
0.7527 | (48)
(49) | | Total storage loss 23.3325 If cylinder contains dedic | | 23.3325 | 22.5798 | 23.3325 | 22.5798 | 23.3325 | 23.3325 | 22.5798 | 23.3325 | 22.5798 | 23.3325 | (56) | | 23.3325 Primary loss 23.2624 Combi loss 0.0000 | 21.0745
21.0112
0.0000 | 23.3325
23.2624
0.0000 | 22.5120
0.0000 | 23.2624
0.0000 | 22.5120 | 23.2624 | 23.3325
23.2624
0.0000 | 22.5120 | 23.2624 | 22.5798
22.5120
0.0000 | 23.3325
23.2624
0.0000 | (59) | | Total heat required for wa
194.3653
WWHRS -28.9481
PV diverter -0.0000
Solar input 0.0000 | 172.0415
-25.6019
-0.0000
0.0000 | 183.0541
-26.8089
-0.0000
0.0000 | 161.5095
-22.1988
-0.0000
0.0000 | 156.9738
-20.6885
-0.0000
0.0000 | -0.0000
0.0000 (63b)
(63c) | | FGHRS 0.0000
Output from w/h
165.4172 | | | 0.0000 | | | | 127.9374 | | 141.6737 | 148.5358 | 163.8942 | (64) | | 12Total per year (kWh/year
Electric shower(s) | r) | | | | | | Total pe | er year (kWl | h/year) = 1 | Sum(64)m = | 1702.1872
1702 | (64)
(64) | | 0.0000 Heat gains from water heat | 0.0000
ting. kWh/m | 0.0000
month | 0.0000
Tota | 0.0000
al Energy us | 0.0000
sed by insta | 0.0000
antaneous el | 0.0000
ectric show | 0.0000
wer(s) (kWh | 0.0000
/year) = S | 0.0000
um(64a)m = | 0.0000 | (64a)
(64a) | | 86.4096 | 76.8789 | 82.6486 | 74.7824 | 73.9769 | 68.2578 | 68.4324 | 70.1896 | 69.9169 | 76.0693 | 78.6024 | 85.7249 | (65) | | | | | | | | | | | | | | | | 5. Internal gains (see Tah | | | | | | | | | | | | | | Jan | Feb | Mar
74.9534 | Apr
74.9534 | May
74.9534 | Jun
74.9534 | Jul
74.9534 | Aug
74.9534 | Sep
74.9534 | Oct
74.9534 | Nov
74.9534 | Dec
74.9534 | (66) | | Lighting gains (calculated 66.3712 | d in Append
73.4824 | dix L, equat
66.3712 | ion L9 or 1
68.5836 | 19a), also s
66.3712 | see Table 5
68.5836 | 66.3712 | 66.3712 | 68.5836 | | | 66.3712 | | | Appliances gains (calculat
130.1437 | ted in Appe
131.4941 | endix L, equ
128.0910 | ation L13 o
120.8460 | or L13a), al
111.7006 | lso see Tab:
103.1051 | le 5
97.3628 | | 99.4155 | 106.6605 | 115.8059 | 124.4014 | | | Cooking gains (calculated 30.4953 Pumps, fans 3.0000 Losses e.g. evaporation (n | 30.4953 | 30.4953
3.0000 | 30.4953 | 30.4953 | 30.4953 | 30.4953 | 30.4953
0.0000 | 30.4953
0.0000 | 30.4953
3.0000 | 30.4953
3.0000 | 30.4953
3.0000 | | SAP 10 Online 2.13.11 Page 5 of 7 | Ustan basting | | -59.9627 | -59.9627 | -59.9627 | -59.9627 | -59.9627 | -59.9627 | -59.9627 | -59.9627 | -59.9627 | -59.9627 | -59.9627 | (71) | |---------------------------------------|--------------------------|------------------------|------------------------------|--|----------------------------|----------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|------------------------------|----------------| | Water heating | 116.1419 | 114.4031 | 111.0869 | 103.8644 | 99.4313 | 94.8025 | 91.9790 | 94.3409 | 97.1068 | 102.2437 | 109.1699 | 115.2217 | (72) | | Total internal | | 367.8656 | 354.0350 | 341.7800 | 325.9891 | 311.9772 | 301.1990 | 302.2104 | 310.5919 | 323.7614 | 342.0454 | 354.4803 | (73) | | | | | | | | | | | | | | | | | 6. Solar gains | | | | | | | | | | | | | | | [Jan] | | | λ, | rea | Solar flux | | g | | FF | Acces | | Gains | | | [vaii] | | | | m2 | Table 6a
W/m2 | Specif
or 1 | fic data
Table 6b | Specific
or Tab | data
le 6c | facto
Table 6 | or | W | | | Northeast | | | | 300 | | | | | | 0.770 | 00 | 28.8960 | (75) | | | | | | | | | | | | | | | | | Solar gains
Total gains | 28.8960
390.0388 | 58.8187
426.6843 | 105.9726
460.0076 | 174.0374
515.8174 | 233.9405
559.9295 | 249.4053
561.3825 | 233.3136
534.5126 | 186.0003
488.2107 | 129.1293
439.7212 | 71.8811
395.6425 | 36.3587
378.4041 | | | | | | | | | | | | | | | | | | | 7. Mean intern | al tempera | ture (heati | ng season) | | | | | | | | | | | | Temperature du | ring heati | ng periods i | in the livin | ng area from | n Table 9, I | | | | | | | 21.0000 | (85) | | Utilisation fa | Jan | Feb
127.1919 | Mar | Apr | May | Jun | Jul
130.6500 | Aug | Sep
130.1273 | Oct
129.3017 | Nov | Dec
128.1264 | | | | 9.4580 | 9.4795 | 9.5006 | 9.6010 | 9.6201 | 9.7100 | 9.7100 | 9.7268 | 9.6752 | 9.6201 | 9.5816 | 9.5418 | | | util living ul | 0.9996 | 0.9990 | 0.9954 | 0.9602 | 0.8000 | 0.5604 | 0.4053 | 0.4629 | 0.7598 | 0.9811 | 0.9986 | 0.9997 | (86) | | MIT
Th 2 | 20.4061
19.9452 | 20.4954
19.9476 | 20.6441
19.9499 | 20.8593
19.9609 | 20.9808
19.9629 | 20.9993
19.9725 | 21.0000
19.9725 | 20.9999
19.9743 | 20.9908
19.9688 | 20.8316
19.9629 | 20.5876
19.9588 | 20.3942
19.9544 | | | util rest of h | 0.9994 | 0.9982 | 0.9918 | 0.9330 | 0.7238 | 0.4711 | 0.3107 | 0.3598 | 0.6558 | 0.9620 | 0.9974 | 0.9995 | | | MIT 2
Living area fr | | | 19.5789 | 19.8434 | 19.9532 | 19.9723 | 19.9725 | 19.9743 | | 19.8205
Living area | | 19.2646 | (91) | | MIT
Temperature ad
adjusted MIT | justment | 19.9117 | 20.0824 | 20.3236 | 20.4389 | 20.4578 | 20.4582 | 20.4591 | 20.4503 | 20.2984 | 20.0224 | 19.7986
0.0000
19.7986 | | | aajastea mii | 13.0002 | 13.3117 | 20.0024 | 20.0200 | 20.4005 | 20.4070 | 20.4002 | 20.4031 | 20.4000 | 20.2304 | 20.0224 | 13.7500 | (55) | | | | | | | | | | | | | | | | | 8. Space heati | | | | | | | | | | | | | | | Utilisation | Jan
0.9993 | Feb
0.9981 | Mar
0.9924 | Apr
0.9440 | May
0.7602 | Jun
0.5134 | Jul
0.3554 | Aug
0.4086 | Sep
0.7059 | Oct
0.9696 | Nov
0.9975 | Dec
0.9995 | (94) | | Useful gains
Ext temp. | 389.7796 | 425.8899 | | 486.9341
8.9000 | | | | 199.4613
16.4000 | 310.3977
14.1000 | 383.6328
10.6000 | | | (95) | | Heat loss rate | W | | | 569.6176 | | 288.4343 | 189.9744 | | 313.9427 | 482.5240 | 645.8076 | 783.1914 | | | Space heating | 295.0553 | 224.0256 | | | 6.8064 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 73.5751 | 193.2058 | 301.5439 | (98a) | | Space heating
Solar heating | kWh | _ | | - | | | | | | | | 1323.9273 | (0.01-) | | Solar heating
Space heating | contributi | 0.0000
on - total p | | 0.0000
Wh/year) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Space heating | 295.0553 | | | 59.5322
tion - total | | 0.0000
(kWh/year) | 0.0000 | 0.0000 | 0.0000 | 73.5751 | 193.2058 | 301.5439
1323.9273 | (98c) | | Space heating | | | | | | | | | | (98c) | / (4) = | 30.5123 | (99) | | | | | | | | | | | | | | | | | 9a. Energy req | uirements · | - Individual | l heating sy | ystems, incl | uding micro | -CHP | | | | | | | | | Fraction of sp
Fraction of sp | ace heat f | rom seconda: | ry/supplemen | | | | | | | | | 0.0000 | | | Efficiency of Efficiency of | main space
main space | heating sys | stem 1 (in 9
stem 2 (in 9 | b) | | | | | | | | 92.3000
0.0000 | (206)
(207) | | Efficiency of | _ | | _ | _ | | _ | | | | | | 0.0000 | (208) | | Space heating | | Feb
t
224.0256 | Mar
170.1830 | Apr
59.5322 | May
6.8064 | Jun
0.0000 | Jul
0.0000 | Aug
0.0000 | Sep
0.0000 | Oct
73.5751 | Nov
193.2058 | Dec
301.5439 | (98) | | Space heating | efficiency | | ing system 1 | L) | 92.3000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 92.3000 | 92.3000 | 92.3000 | | | Space heating | fuel (main | | stem) | | 7.3742 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 79.7130 | | 326.6998 | | | Space heating | efficiency
0.0000 | (main heat:
0.0000 | ing system 2
0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating | 0.0000 | 0.0000 | o.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (213) | | Space heating | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating
Water heating | requiremen | t | | | | | | | | | | | | | Efficiency of | 165.4172
water heat | 146.4396
er | 156.2453 | 139.3107 | 136.2853 | 124.1835 | 123.7045 | 127.9374 | 128.5601 | 141.6737 | 148.5358 | 79.8000 | (216) | | (217)m
Fuel for water | 85.3423
heating, | 85.0102
kWh/month | 84.2518 | 82.2972 | 80.1866 | 79.8000 | 79.8000 | 79.8000 | 79.8000 | 82.6637 | 84.6504 | 85.4081 | (217) | | Space cooling | fuel requi: | rement | | | | | | | | 171.3855 | | | | | (221)m
Pumps and Fa
Lighting | 7.3041 | 6.5973 | 0.0000
7.3041
9.9613 | 0.0000
7.0685
7.2981
ative quanti | 0.0000
7.3041
5.6373 | 7.0685 | 0.0000
7.3041
5.1425 | 0.0000
7.3041
6.6844 | 0.0000
7.0685
8.6824 | 0.0000
7.3041
11.3918 | 0.0000
7.0685
12.8670 | | (231) | | Electricity ge
(233a)m | nerated by | PVs (Append | dix M) (nega | | ty) | | | | | | | | | | Electricity ge
(234a)m | nerated by | wind turbing | nes (Appendi
0.0000 | ix M) (negat
0.0000 | ive quantit | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity ge
(235a)m | nerated by
0.0000 | hydro-elect
0.0000 | 0.0000 | tors (Append | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity us
(235c)m | | | | | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235c) | | | | | | | | | | | | | | | | SAP 10 Online 2.13.11 Page 6 of 7 | Electricity generated by PVs (Appendix M) (negative quantity) (233b)m -6.1529 -13.1539 -26.5252 -40.3859 -53.9128 -54.3187 -53 | 3.6401 -45.1504 | -32.7709 | -18.9480 | -8.2625 | -4.8471 | (233b) |
--|---|-------------|--|---------|---|---| | Electricity generated by wind turbines (Appendix M) (negative quantity) (234b)m 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234b) | | (235b)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | (235b) | | Electricity used or net electricity generated by micro-CHP (Appendix N) (negative if (235d)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235d) | | Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - main system 2 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel | | | | | 1434.3741
0.0000
0.0000
79.8000
2061.5897
0.0000 | (213)
(215)
(219) | | Electricity for pumps and fans:
Total electricity for the above, kWh/year
Electricity for lighting (calculated in Appendix L) | | | | | 86.0000
111.2982 | | | Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) Appendix Q - special features | | | | | -714.8865
0.0000
0.0000
0.0000 | (234)
(235a) | | Energy saved or generated Energy used Total delivered energy for all uses | | | | | -0.0000
0.0000
2978.3756 | (237) | | | | | | | | | | 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP | | | | | | | | | Energy
kWh/year | | ion factor | 1 | Emissions
g CO2/year | | | Space heating - main system 1 | 1434.3741 | | kg CO2/kWh
0.2100 | ĸ | 301.2186 | (261) | | Total CO2 associated with community systems
Water heating (other fuel) | | | | | 301.2186
0.0000
432.9338 | (261)
(373)
(264) | | Total CO2 associated with community systems | 1434.3741 | | 0.2100 | | 301.2186
0.0000 | (261)
(373)
(264)
(265)
(267) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies | 1434.3741
2061.5897
86.0000
111.2982 | | 0.2100
0.2100
0.1387
0.1443 | | 301.2186
0.0000
432.9338
734.1524
11.9293
16.0638 | (261)
(373)
(264)
(265)
(267) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported | 1434.3741
2061.5897
86.0000 | | 0.2100
0.2100
0.1387 | | 301.2186
0.0000
432.9338
734.1524
11.9293
16.0638 | (261)
(373)
(264)
(265)
(267)
(268) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling | 1434.3741
2061.5897
86.0000
111.2982
-356.8179 | | 0.2100
0.2100
0.1387
0.1443 | | 301.2186
0.0000
432.9338
734.1524
11.9293
16.0638 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year | 1434.3741
2061.5897
86.0000
111.2982
-356.8179
-358.0686 | | 0.2100
0.2100
0.1387
0.1443 | | 301.2186
0.0000
432.9338
734.1524
11.9293
16.0638
-47.7245
-44.9435
-92.6679
669.4775 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) | 1434.3741
2061.5897
86.0000
111.2982
-356.8179
-358.0686 | | 0.2100
0.2100
0.1387
0.1443 | | 301.2186
0.0000
432.9338
734.1524
11.9293
16.0638
-47.7245
-44.9435
-92.6679
669.4775 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) 13a. Primary energy - Individual heating systems including micro-CHP Space heating - main system 1 | 1434.3741 2061.5897 86.0000 111.2982 -356.8175 -358.0686 | Primary ene | 0.2100
0.2100
0.1387
0.1443
0.1338
0.1255 | Prima | 301.2186
0.0000
432.9338
734.1524
11.923
16.0638
-47.7245
-44.9435
-92.6679
669.4775
15.4300 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272)
(273) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total
Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) | 1434.3741 2061.5897 86.0000 111.2982 -356.8179 -358.0686 | Primary ene | 0.2100
0.2100
0.1387
0.1443
0.1338
0.1255 | Prima | 301.2186
0.0000
432.9338
734.1524
11.9293
16.0638
-47.7245
-44.9435
-92.6679
669.4775
15.4300
ary energy
kWh/year
1620.8428
0.0000
2329.5963 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272)
(273)
(273) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot | 1434.3741 2061.5897 86.0000 111.2982 -356.8179 -358.0686 Energy kWh/year 1434.3741 2061.5897 | Primary ene | 0.2100
0.2100
0.1387
0.1443
0.1338
0.1255
ergy factor kg CO2/kWh
1.1300
1.1300
1.5128 | Prima | 301.2186 0.0000 432.9338 734.1524 11.9293 16.0638 -47.7245 -44.9435 -92.6679 669.4775 15.4300 ary energy kWh/year 1620.8428 0.0000 2329.5963 3950.4391 130.1008 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272)
(273)
(273)
(275)
(473)
(278)
(279)
(281) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies FV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Space and water heating | 1434.3741 2061.5897 86.0000 111.2982 -356.8175 -358.0686 | Primary ene | 0.2100
0.2100
0.1387
0.1443
0.1338
0.1255
rgy factor
kg CO2/kWh
1.1300
1.1300 | Prima | 301.2186 0.0000 432.9338 734.1524 11.9223 16.0638 -47.7245 -44.9435 -92.6679 669.4775 15.4300 ary energy kWh/year 1620.8428 0.0000 2329.5963 3950.4391 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272)
(273)
(273)
(275)
(473)
(278)
(279)
(281) | SAP 10 Online 2.13.11 Page 7 of 7 | Dwelling Address | Unit 1, Highland Square , Bristol | |------------------------------|-----------------------------------| | Report Date | 05/03/2024 | | Property Type | Flat, Semi-Detached | | Floor Area [m ²] | 43 | This document is not an Energy Performance Certificat EPC) s required by the Energy Performance of Buildings Reg io SAP 10 Online 2.13.11 Page 1 of 4 #### Breakdown of property's energy performance Each feature is assessed as one of the following: | Very Poor | Poor | Average | Good | Very Good | |-----------------------|--------------------------|-----------------------|------|-------------------| | | | | | | | Feature | Description | | | gy
Performance | | Walls | Average thermal transmi | ttance 0.18 W/m²K | | Very Good | | Floor | Average thermal transmi | ttance 0.12 W/m²K | | Very Good | | Windows | High performance glazin | g | | Good | | Main heating | Air source heat pump, ra | diators, electric | | Average | | Main heating controls | Time and temperature zo | one control | | Very Good | | Secondary heating | None | | | | | Hot water | From main system | | | Average | | Lighting | Good lighting e iciency | | | Good | | Air tightness | Air perm ity [AP5 | 4.5 m³/h.m² (assumed) | | Good | #### Primary Energy e The primary ener e for this operty per year is 34 kilowatt hour (kWh) per square metre #### Estimat d C emissions of the dwelling The estimed CO rating rovides an indication of the dwelling's impact on the environment in terms of carbon dio emissio; the higher the rating the less impact it has on the environment. The estimated CO emissions for this dwellings is: 0.1 per year With the recommended measures the potential CO emissions could be: per year SAP 10 Online 2.13.11 Page 2 of 4 #### Recommendations The recommended measures provided below will help to improve the energy efficiency of the dwelling. To reach the dwelling's potential energy rating all of the recommended measures shown below would need to installed. Having these measures installed individually or in any other order may give a different result who pared work the cumulative potential rating. | Recommended measure | Typical | Potential Rating | lative | Cumulative | |---------------------|---------|-------------------|----------|------------| | | Yearly | after | s | Potential | | | Saving | measure installed | (per yea | Rating | #### Estimated energy use and potential savin s Estimated energy cost for this property over a year £242 Over a year you could save £0 The estimated cost and savings show how much the average househ would spend in this property heating, lighting and hot water. It not based on how energy is ed by the people living at the propert #### Contacting asses or and the accreditation scheme | As | sessor contact details | |---------------------------|------------------------| | Asse r name | | | Assess accredita n number | | | Email Address | | SAP 10 Online 2.13.11 Page 3 of 4 | Accreditation scheme contact details | | | | | | | |--------------------------------------|-----------------------------|--|--|--|--|--| | Accreditation scheme | Elmhurst Energy Systems Ltd | | | | | | | Telephone | | | | | | | | Email Address | | | | | | | | Assessment details | | | |--------------------------|---------------|--| | Related party disclosure | No related pa | | | Date of assessment | 05/03/202 | | | Date of certificate | 05/03/202 | | | Type of assessment | SAP w dwellin | | #### **Building Regulations England Part L (BREL) Compliance Report** Approved Document L1 2021 Edition, England assessed by Array SAP 10 program, Array Date: Tue 05 Mar 2024 08:41:58 | Project Information | | | | |----------------------------|------------|-----------------|---------------------| | Assessed By | | Building Type | Flat, Semi-detached | | OCDEA Registration | EES/025661 | Assessment Date | 2024-03-05 | | Dwelling Details | | | | |-------------------------|--------------------------------|------------------|-------------------| | Assessment Type | As designed | Total Floor Area | 43 m ² | | Site Reference | Unit 2 | Plot Reference | Residual | | Address | Unit 1 Highland Square, Bristo | ol | • | | Client Details | | |----------------|---| | Name | Tebby & Son | | Company | SF Tebby & Son | | Address | Unit 11 Avon Gorge Industrial Estate , Bristol, BS2 9XX | This report covers items included within the SAP calculations. It is not a complete report of regulations compliance. | 1a Target emission rate and dwelling emission | rate | | | |--|---|----|--| | Fuel for main heating system | Electricity | | | | Target carbon dioxide emission rate | 14.62 kgCO ₂ /m ² | | | | Dwelling carbon dioxide emission rate | 5.86 kgCO ₂ /m ² | OK | | | 1b Target primary energy rate and dwelling prin | 1b Target primary energy rate and dwelling primary energy | | | | Target primary energy | 77.71 kWh _{PE} /m ² | | | | Dwelling primary energy | 62.13 kWh _{PE} /m ² | OK | | | 1c Target fabric energy efficiency and dwelling fabric energy efficiency | | | | | Target fabric energy efficiency | 35.8 kWh/m ² | | | | Dwelling fabric energy efficiency | 31.6 kWh/m ² | OK | | | 2a Fabric U-values | | | | | |--------------------|---|----------------------------------|---|-----| | Element | Maximum permitted average U-Value [W/m²K] | Dwelling average U-Value [W/m²K] | Element with highest individual U-Value | | | External walls | 0.26 | 0.18 | Walls (1) (0.18) | OK | | Party walls | 0.2 | 0 | Party Wall (1) (0) | N/A | | Curtain walls | 1.6 | 0 | N/A | N/A | | Floors | 0.18 | 0.12 | Heatloss Floor 1 (0.12) | OK | | Roofs | 0.16 | N/A | N/A | N/A | | Windows, doors, | 1.6 | 1.31 | W01 (1.31) | OK | | and roof windows | | | | | | Rooflights | 2.2 | N/A | N/A | N/A | | 2b Envelope elements (better than typically expected values are flagged with a subsequent (!)) | | | |--|----------------------------|------------------------------| | Name | Net area [m ²] | U-Value [W/m ² K] | | Exposed wall: Walls (1) | 37.82 | 0.18 | | Party wall: Party Wall (1) | 41.54 | 0 (!) | | Ground floor: Heatloss Floor 1, Heatloss Floor 1 | 42.61 | 0.12 | | 2c Openings (better than typically expected values are flagged with a subsequent (!)) | | | | | |---|------------------------|-------------|--------------|------------------------------| | Name | Area [m ²] | Orientation | Frame factor | U-Value [W/m ² K] | | W01, Windows | 1.86 | North East | 0.7 | 1.31 | | W02, Windows | 1.86 | North East | 0.7 | 1.31 | | W03, Windows | 1.86 | South East | 0.7 | 1.31 | | 2d Thermal bridging (better than typically expected values are flagged with a subsequent (!)) | | | | | |---|---|--|---------------------|---------------------| | Building part 1 - | Main Dwelling: Thermal bridging ca | alculated from linear thermal transmit |
tances for eac | h junction | | Main element | Junction detail | Source | Psi value
[W/mK] | Drawing / reference | | External wall | E2: Other lintels (including other steel lintels) | Not government-approved scheme | 0.023 (!) | | | External wall | E3: Sill | Calculated by person with suitable expertise | 0.021 (!) | | | External wall | E4: Jamb | Calculated by person with suitable expertise | 0.016 (!) | | | | | | | | | Main element | Junction detail | Source | Psi value
[W/mK] | Drawing / reference | |---------------|---|--|---------------------|---------------------| | External wall | E5: Ground floor (normal) | Calculated by person with suitable expertise | 0.047 | | | External wall | E7: Party floor between dwellings (in blocks of flats) | Calculated by person with suitable expertise | 0.038 (!) | | | Party wall | P1: Ground floor | Calculated by person with suitable expertise | 0.093 | | | Party wall | P3: Intermediate floor between dwellings (in blocks of flats) | SAP table default | 0 (!) | | | External wall | E16: Corner (normal) | Calculated by person with suitable expertise | 0.043 | | | External wall | E25: Staggered party wall between dwellings | Calculated by person with suitable expertise | 0.036 (!) | | | External wall | E18: Party wall between dwellings | Calculated by person with suitable expertise | 0.046 | | | 3 Air permeability (better than typically expected values are flagged with a subsequent (!)) | | | |--|--|----| | Maximum permitted air permeability at 50Pa | 8 m ³ /hm ² | | | Dwelling air permeability at 50Pa | 5 m ³ /hm ² , Design value | ОК | | Air permeability test certificate reference | | · | | 4 Space heating | | | | |---------------------------------------|---|--|--| | Main heating system 1: Heat pump with | radiators or underfloor heating - Electricity | | | | Efficiency | 216.4% | | | | Emitter type | Radiators | | | | Flow temperature | 55°C | | | | System type | Heat Pump | | | | Manufacturer | Atlantic | | | | Model | Logic Air 8kW | | | | Commissioning | | | | | Secondary heating system: N/A | Secondary heating system: N/A | | | | Fuel | N/A | | | | Efficiency | N/A | | | | Commissioning | | | | | 5 Hot water | | |--------------------------------------|--------------| | Cylinder/store - type: Cylinder | | | Capacity | 150 litres | | Declared heat loss | 2.09 kWh/day | | Primary pipework insulated | Yes | | Manufacturer | | | Model | | | Commissioning | | | Waste water heat recovery system 1 - | type: N/A | | Efficiency | | | Manufacturer | | | Model | | | 6 Controls | | | | | | | | | | |---|----------------------------|--|--|--|--|--|--|--|--| | Main heating 1 - type: Time and temperature zone control by arrangement of plumbing and electrical services | | | | | | | | | | | Function | | | | | | | | | | | Ecodesign class | | | | | | | | | | | Manufacturer | | | | | | | | | | | Model | | | | | | | | | | | Water heating - type: Cylinder thermosta | at and HW separately timed | | | | | | | | | | Manufacturer | | | | | | | | | | | Model | | | | | | | | | | | 7 Lighting | | | |---|---------|----| | Minimum permitted light source efficacy | 75 lm/W | | | Lowest light source efficacy | 80 lm/W | OK | | External lights control | N/A | | | 8 Mechanical ventilation | | | | | | | | | | | |--|-----------------------|---|-----|--|--|--|--|--|--|--| | System type: N/A Maximum permitted specific fan power | N/A | | | | | | | | | | | Specific fan power | N/A | | N/A | | | | | | | | | Minimum permitted heat recovery efficiency | N/A | | IVA | | | | | | | | | Heat recovery efficiency | N/A | | N/A | | | | | | | | | Manufacturer/Model | | | | | | | | | | | | Commissioning | | | | | | | | | | | | 9 Local generation
N/A | | | | | | | | | | | | 10 Heat networks
N/A | | | | | | | | | | | | 11 Supporting documentary evidence N/A | | | | | | | | | | | | 12 Declarations | | | | | | | | | | | | a. Assessor Declaration | | | | | | | | | | | | I - | | ontents of this BREL Compliance Report of this dwelling for | | | | | | | | | | the purpose of carrying out the "As d
evidence (SAP Conventions, Append
documentary evidence required) has
Compliance Report. | dix 1 (documentary ev | | | | | | | | | | | | | | • | | | | | | | | | Signed: | | Assessor ID: | | | | | | | | | | Name: | | Date: | | | | | | | | | b. Client Declaration N/A | Property Reference | Ur | nit 2 | | | | | | | Issued | d on Date | 05/03 | 3/2024 | | |-----------------------------|-----------------------|------------------------|--------------------------------------|---|--|---|------------------|---|--|--|------------------------|--|---------------------------------| | Assessment Reference | e Re | esidual | | | | Prop | Type | Ref | Tebby a | nd Son G | arage | | | | Property | Ur | nit 1, Highla | nd Square | , Bristol | | | | | | | | | | | SAP Rating | | | | 82 B | DER | | 5.86 | 6 | | TER | 14 | 1.62 | | | Environmental | | | | 96 A | % DER | < TER | | | | | 59 | 9.92 | | | CO₂ Emissions (t/year | ·) | | | 0.23 | DFEE | | 31.5 | 57 | | TFEE | 35 | 5.81 | | | Compliance Check | | | | See BREL | % DFE | E < TFEE | | | | | 11 | 1.86 | | | % DPER < TPER | | | | 20.05 | DPER | | 62.1 | 3 | | TPER | 77 | 7.71 | | | Assessor Details | | | | | | | | | | Assesso | r ID U: | 367-00 | 001 | | Client | | | - | | | | | | | | | | | | SUMMARY FOR INF | PUT DATA | FOR: Nev | v Build (<i>F</i> | As Designed) | | | | | | | | | | | Orientation | | | | Southeast | | | | | | | | | | | Property Tenture | | | | 1 | | | | | | | | | | | Transaction Type | | | | 6 | | | | | | | | | | | Terrain Type | | | | Urban | | | | | | | | | | | 1.0 Property Type | | | | Flat, Semi-Detache | ed | | | | | | | | | | Position of Flat | | | | Ground-floor flat | | | | | | | | | | | Which Floor | | | | 0 | | | | | | | | | | | 2.0 Number of Storeys | | | | 1 | | | | | | | | | | | 3.0 Date Built | | | | 2024 | | | | | | | | | | | 3.0 Property Age Band | | | | L | | | | | | | | | | | 4.0 Sheltered Sides | | | | 3 | | | | | | | | | | | 5.0 Sunlight/Shade | | | | Average or unknow | m | | | | | | | | | | 6.0 Thermal Mass Paran | neter | | | Precise calculation | | | | | | | | | | | Thermal Mass | iletei | | | N/A | | | | | k | J/m²K | | | | | 7.0 Electricity Tariff | | | | Standard | | | | | | | | | | | Smart electricity mete | r fitted | | | No | | | | | | | | | | | Smart gas meter fitted | d | | | No | | | | | | | | | | | 7.0 Measurements | | | | | | | | | | | | | | | | | | | Basem
Ground flo
1st Stor
2nd Stor
3rd Stor
4th Stor
5th Stor
7th Stor | ent: por: rey: rey: rey: rey: rey: rey: rey: | 0.00 m
17.36 m
0.00 m
0.00 m
0.00 m
0.00 m
0.00 m
0.00 m
0.00 m | l | r Int | ernal Flo
0.00 r
42.61
0.00 r
0.00 r
0.00 r
0.00 r
0.00 r
0.00 r | n²
m²
n²
n²
n²
n²
n²
n² | Average | 0.00
2.50
0.00
0.00
0.00
0.00
0.00
0.00 | m
m
m
m
m
m
m | | 8.0 Living Area | | | | 21.73 | | | | | n | n² | | | | | 9.0 External Walls | Туре | Constr | ruction | | U-Value | | | Nett Area | | Shelter | Opening | js Area | Calculation | | Description | | | wall : plasterbo
avity, any outsi | oard on dabs, dense block
de structure | (W/m²K) | (kJ/m²K) A | rea(m²)
43.40 | (m²)
37.82 | Res
0.00 | None | 5.58 | | Type
or Gross Are | | Description Cavity Wall | Cavity Wall | filled ca | | | | | | | | | | - | | | Cavity Wall | Cavity Wall Type | Tilled Ca | Construc | tion | | | | U-Value | | Area | Shelter | S | helter | | Cavity Wall | Type
Filled | Cavity with Sealing | | tion
sterboard on both si | des, dense | cellular bl | ocks, | U-Value
(W/m²K)
0.00 | | | Shelter
Res
0.00 | | helter
None | | 9.1 Party Walls Description | Type
Filled | Cavity with
Sealing | Single pla | sterboard on both si | des, dense | cellular bl | ocks, | (W/m^2K) | (kJ/m²K) | (m²) | Res
0.00
Kaj | | | SAP 10 Online 2.13.11 Page 1 of 4 | | Factor |
--|---| | Description Type Storey Index Construction Suspended concrete floor, carpeted Suspended concrete floor, carpeted Suspended concrete f | Factor (KJ/m²K) 0.00 75.00 42.61 Per Frame Factor (W/m²K) 1 0.70 1.31 Pitch 0 0 0 Imported No | | Heatloss Floor 1 Ground Floor - Solid Lowest occupied Suspended concrete floor, carpeted Suspended concrete floor, carpeted Suspended concrete floor, carpeted Color Col | Factor (KJ/m²K) 0.00 75.00 42.61 Per Frame Factor (W/m²K) 1 0.70 1.31 Pitch 0 0 0 Imported No | | 12.0 Opening Types Description Data Source Type Glazing Double Low-E Soft 0.05 Glazing Gap Type O.63 O.63 Type | Pitch 0 0 0 Imported No | | Manufacturer Window Double Low-E Soft 0.05 Gap Type Air Filled 0.63 Wood | Factor | | Name | 0.70 1.31 | | Name Opening Type Location Orientation Area (m²) | Imported No No No No No No No No | | W01 Windows Cavity Wall North East 1.86 W02 Windows Cavity Wall North East 1.86 W03 Windows Cavity Wall South East 1.86 W14.0 Conservatory Independently assessed 17.36 0.05 Independently assessed 17.36 0.04 Independently assessed 17.42 0.09 | Imported No No No No No No No No | | Windows Cavify Wall South East 1.86 14.0 Conservatory None 15.0 Draught Proofing 100 No 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (including other steel lintels) E3 Sill E4 Jamb Independently assessed E5 Ground floor (normal) E7 Party floor between dwellings (in blocks of flats) P1 Party wall - Ground floor None None 100 **Calculate Bridges Calculate Bridges Length Psi Adjusted Reference: 3.41 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0 | Imported
No
No
No
No
No
No | | 14.0 Conservatory 15.0 Draught Proofing 100 No 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (including other steel lintels) E3 Sill E4 Jamb I6.0 Draught Lobby Source Type Non Gov Approved Schemes Independently assessed Independently assessed Independently assessed I7.36 I7.42 Independently assessed I7.42 If I | Imported
No
No
No
No
No
No | | 15.0 Draught Proofing 100 No 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (including other steel lintels) E3 Sill E4 Jamb E4 Jamb E7 Party floor between dwellings (in blocks of flats) E7 Party wall - Ground floor E100 100 No Calculate Bridges Calculate Bridges Length Psi Adjusted Reference: Non Gov Approved Schemes 3.41 0.02 0.02 1.02 0.02 0.02 0.02 0.02 0.0 | No
No
No
No
No
No | | 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (including other steel lintels) E3 Sill Independently assessed I7.36 IT.36 Independently assessed IT.36 Independently assessed IT.36 Independently assessed IT.36 Independently | No
No
No
No
No
No | | 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (including other steel lintels) E3 Sill E4 Jamb E5 Ground floor (normal) E7 Party floor between dwellings (in blocks of flats) P1 Party wall - Ground floor Calculate Bridges Calculate Bridges Length Psi Adjusted Reference: 3.41 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.0 | No
No
No
No
No
No | | 17.1 List of Bridges Bridge Type E2 Other lintels (including other steel lintels) E3 Sill E4 Jamb E5 Ground floor (normal) E7 Party floor between dwellings (in blocks of flats) P1 Party wall - Ground floor Independently assessed Independently assessed Independently assessed Independently assessed Independently assessed I7.36 I7.42 Independently assessed I7.42 Independently assessed I7.42 Independently assessed | No
No
No
No
No
No | | Bridge Type E2 Other lintels (including other steel lintels) Non Gov Approved Schemes E3 Sill Independently assessed E4 Jamb Independently assessed E5 Ground floor (normal) Independently assessed Independently assessed Independently assessed Independently assessed I7.36 Indepe | No
No
No
No
No
No | | E2 Other lintels (including other steel lintels) E3 Sill E4 Jamb E5 Ground floor (normal) E7 Party floor between dwellings (in blocks of flats) E1 Party wall - Ground floor Independently assessed Independently assessed Independently assessed Independently assessed I7.36 | No
No
No
No
No
No | | E4 Jamb Independently assessed 9.84 0.02 0.02 E5 Ground floor (normal) Independently assessed 17.36 0.05 0.05 E7 Party floor between dwellings (in blocks of flats) Independently assessed 17.36 0.04 0.04 P1 Party wall - Ground floor Independently assessed 17.42 0.09 0.09 | No
No
No
No | | E7 Party floor between dwellings (in blocks of flats) Independently assessed 17.36 0.04 0.04 P1 Party wall - Ground floor Independently assessed 17.42 0.09 0.09 | No
No | | P1 Party wall - Ground floor Independently assessed 17.42 0.09 0.09 | | | F3 Fally Wall - Internediate 1001 between dwellings Table NT - Default 17.42 0.00 0.00 | No | | (in blocks of flats) | | | E16 Corner (normal) Independently assessed 5.00 0.04 0.04 E25 Staggered party wall between dwellings Independently assessed 5.00 0.04 0.04 | No
No | | E18 Party wall between dwellings Independently assessed 5.00 0.05 0.05 | No | | Y-value 0.05 W/m²K | | | 18.0 Pressure Testing Yes | | | Designed AP ₅₀ 5.00 m ³ /(h.m ²) @ 50 | Pa | | Property Tested? Yes | | | Test Method Blower Door | | | 19.0 Mechanical Ventilation | | | Mechanical Ventilation | | | Mechanical Ventilation System Present No | | | 20.0 Fans, Open Fireplaces, Flues | | | 21.0 Fixed Cooling System | | | 22.0 Lighting No Fixed Lighting No | | | Name Efficacy Power Capacity Lighting 1 80.00 15 1200 | Count 5 | | 24.0 Main Heating 1 Database | | | Percentage of Heat 100.00 % | | | Database Ref. No. 106764 | | | Fuel Type Electricity | | | SAP Code 0 | | | In Winter 216.41 | | | In Summer 193.00 | | | Model Name Logic Air 8kW | | | Manufacturer Atlantic | | | System Type Heat Pump | | | Controls SAP Code 2207 | | SAP 10 Online 2.13.11 Page 2 of 4 | | | 1 | |---|---|------------------------------------| | Delayed Start Stat | No |] | | HETAS approved System | No |] | | Oil Pump Inside | No |] | | FI Case | 0.00 |] | | Flue Type | None or Unknown |] | | Fan Assisted Flue | No | | | Is MHS Pumped | Pump in heated space | | | Heating Pump Age | 2013 or later | | | Heat Emitter | Radiators | | | Flow Temperature | Enter value | | | Flow Temperature Value | 55.00 | | | Boiler Interlock | No | | | 25.0 Main Heating 2 | None |] | | 26.0 Heat Networks | None | | | Heat Source Fuel Type Heating U Heat source 1 None Heat source 2 None Heat source 3 None Heat source 4 None Heat source 5 None | se Efficiency Percentage Of Heat Heat Ele
Heat Power
Ratio | ctrical Fuel Factor Efficiency typ | | 28.0 Water Heating | | | | Water Heating | Main Heating 1 | | | SAP Code | 901 | | | Flue Gas Heat Recovery System | No |] | | Waste Water Heat Recovery Instantaneous System 1 | No |] | | Waste Water Heat Recovery Instantaneous System 2 | No |] | | Waste Water Heat Recovery Storage System | No |] | | Solar Panel | No |] | | Water use <= 125 litres/person/day | Yes |] | | Summer Immersion | No |] | | Cold Water Source | From header tank |] | | Bath Count | 0 |] | | Supplementary Immersion | No | | | Immersion Only Heating Hot Water | No | | | 28.1 Showers Description Shower Typ 1 Combi boiler | e Flow Rate Rated Power ([[/min] [kW] or unvented hot water system 11.00 | Connected Connected To | | 28.3 Waste Water Heat Recovery System | or anvented not water system 11.00 | 110 | | 29.0 Hot Water Cylinder | Hot Water Cylinder |
1 | | | Yes |] | | Cylinder In Heated Space | |] | | Cylinder In Heated Space | Yes | J
1 | | Independent Time
Control | Yes Magazinad Laga |] | | Insulation Type | Measured Loss |] | | Cylinder Volume | 150.00 |] L | | Loss | 2.09 | kWh/day | | Pipes insulation | Fully insulated primary pipework |] | | In Airing Cupboard | No | | | 31.0 Thermal Store | None |] | SAP 10 Online 2.13.11 Page 3 of 4 | 34.0 Small-scale | Hydro | | | None | | | | |] | | | |------------------|----------------|-----------------|-----|--------|-----|-----|-----|-----|----------|-----|-----| | Electricity Ger | nerated | | | 0.00 | | |] | | | | | | Apportioned | | | | 0.00 | | | | | kWh/Year | | | | Connected to | dwelling's ele | ectricity meter | | Yes | | | | | | | | | Electricity Ger | neration | | | Annual | | | | |] | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Recommendations Lower cost measures None Further measures to achieve even higher standards Ratings after improvement SAP rating Environmental Impact 0 0 0 0 **Typical Cost** Typical savings per year Solar water heating SAP 10 Online 2.13.11 Page 4 of 4 | Property Reference | | Ur | nit 2 | | | | | | | Issued on Da | te | 05/03/2024 | | |--|--|---|-------------------------|----------------|-------------------------|-------------------------|------------------|-------------------------|--|--|--|---|--| | Assessment Refer | rence | Re | esidual | | | | | Prop Type Re | ef | Tebby and Son | Garage | | | | Property | | Ur | nit 1, Highland S | quare, Bristol | | | | | | | | | | | SAP Rating | | | | | 82 B | | DER | 5.8 | 6 | TER | | 14.62 | | | Environmental | | | | | 96 A | | % DER < TER | 0.0 | <u>-</u> | | | 59.92 | | | CO ₂ Emissions (t/) | vear) | | | | 0.23 | | DFEE | 31. | 57 | TFEE | | 35.81 | | | Compliance Check | | | | | See BREL | | % DFEE < TFE | | J1 | | | 11.86 | | | % DPER < TPER | | | | | 20.05 | | DPER | 62. | 12 | TPER | | 77.71 | | | W DFER 4 IFER | | | | | 20.03 | | DELK | 02. | 13 | II LIN | | 11.11 | | | Assessor Details | | | | | | | | | | Asses | sor ID | U367-000 |)1 | | SAP 10 WORKSHEET | | | | | | | | | | | | | | | . Overall dwell | | | OK REGULATION | NS COMPLIAN | | | | | | | | | | | Ground floor
Total floor area
Welling volume | | | :)+(ld)+(le) | (ln) | 4 | 2.6100 | | Area
(m2)
42.6100 | | | (2b) =(3n) = | Volume
(m3)
106.5250 | (4) | | Number of open continued to the state of | chimneys llues eys / flues attached t attached t ed chimneys ittent ext events | to solid fu
to other he
s
tract fans | el boiler | ire | | | | | | | 0 * 80 =
0 * 20 =
0 * 10 =
0 * 20 =
0 * 35 =
0 * 20 =
2 * 10 =
0 * 10 = | 0.0000
0.0000
0.0000
0.0000
0.0000 | (6a)
(6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b) | | infiltration due
ressure test
Pressure Test Me
Measured/design
Infiltration rat
Number of sides | ethod
AP50
ce | eys, flues | and fans : | = (6a)+(6b) | +(6c)+(6d)+(| 6e)+(6f)+(| (6g) + (7a) + (7 | 7b)+(7c) = | | | / (5) = | es per hour
0.1877
Yes
Blower Door
5.0000
0.4377 | (17) | | Shelter factor
Infiltration rat | e adjusted | i to includ | de shelter fa | actor | | | | | (20) = 1 - | - [0.075 x
21) = (18) x | (19)] =
(20) = | 0.7750
0.3393 | | | Wind speed
Wind factor
Adj infilt rate | Jan
5.1000
1.2750 | | Mar
4.9000
1.2250 | | May
4.3000
1.0750 | Jun
3.8000
0.9500 | | Aug
3.7000
0.9250 | | Oct
4.3000
1.0750 | | | | | Effective ac | 0.4326 | | | | 0.3647
0.5665 | | | 0.3138
0.5492 | | 0.3647
0.5665 | | | | | . Heat losses a | and heat lo | ss paramet | er | | | | | | | | | | | | Clement | | | | Gross
m2 | Openings
m2 | Net | Area
m2 | U-value
W/m2K | Ax | U K- | -value | AxK
kJ/K | | | indows (Uw = 1.
eatloss Floor 1
avity Wall | | olem | | | 5.5800 | 5.
42.
37. | 5800 | 1.2448 | 6.94 | 58 | | | (27)
(28a)
(29a) | | otal net area o
abric heat loss
arty Wall 1
arty Ceiling 1
nternal Wall 1 | | | Aum(A, M2) | | | 41.
42. | (26) (3 | | = 18.866
0.000 | 00 70
30 | 0.0000
0.0000
0.0000 | 2907.8000
1278.3000
5050.0000 | (32b) | | eat capacity Cm
hermal mass par
ist of Thermal | ameter (TM
Bridges | | FA) in kJ/m | 2K | | | | | (30) + (32 | 2) + (32a) | . (32e) = | 18104.8500
424.8967 | (34) | | E3 Sill
E4 Jamb
E5 Groun
E7 Party
P1 Party | r lintels (
nd floor (n
/ floor bet
/ wall - Gr | normal)
ween dwell | | ocks of fla | ts)
gs (in block | s of flats | s) | 3
9
17
17 | 3.4100
3.4100
9.8400
7.3600
7.3600 | 0.0230
0.0210
0.0210
0.0160
0.0470
0.0380
0.0930
0.0000 | Tot
0.07
0.07
0.15
0.81
0.65
1.62 | 784
716
574
597
801 | | SAP 10 Online 2.13.11 Page 1 of 7 | E25 St
E18 Pa | rty wall be | rty wall bet
etween dwell | | _ | | | | 5 | .0000
.0000
.0000 | 0.0430
0.0360
0.0460 | 0.21
0.18
0.23 | 00
00 | (26) | |---|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------| | Thermal bridge
Point Thermal :
Total fabric h | bridges | Psi) calcul | lated using | Appendix K | 5) | | | | (| 33) + (36) - | (36a) =
+ (36a) = | 4.0281
0.0000
22.8948 | | | Ventilation he | at loss cal | lculated mor | nthly (38)m
Mar | = 0.33 x (| (25)m x (5)
May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | (38)m
Heat transfer | 20.8652 | 20.7375 | 20.6123 | 20.0244 | 19.9144 | 19.4024 | 19.4024 | 19.3075 | 19.5996 | 19.9144 | 20.1369 | 20.3696 | (38) | | Average = Sum(| 43.7600
39)m / 12 = | 43.6323 | 43.5071 | 42.9192 | 42.8092 | 42.2971 | 42.2971 | 42.2023 | 42.4944 | 42.8092 | 43.0317 | 43.2644
42.9187 | (39) | | HLP
HLP (average) | Jan
1.0270 | Feb
1.0240 | Mar
1.0211 | Apr
1.0073 | May
1.0047 | Jun
0.9927 | Jul
0.9927 | Aug
0.9904 | Sep
0.9973 | Oct
1.0047 | Nov
1.0099 | Dec
1.0154
1.0072 | (40) | | Days in mont | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | | | | | | | | | | | | | | | | | | 4. Water heati | ng energy i | requirements | s (kWh/year) | | | | | | | | | | | | Assumed occupa
Hot water usag | ncy | | | | | | | | | | | 1.4773 | (42) | | Hot water usag | 84.2374
e for baths | 82.9478
3 | 81.0472 | 78.1233 | 75.5037 | 71.8388 | 68.9401 | 72.3289 | 74.0333 | 77.6632 | 81.4434 | 84.1615 | | | Hot water usag | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Average daily | 29.7591
hot water i | 28.6769
use (litres | 27.5948
/day) | 26.5126 | 25.4305 | 24.3483 | 24.3483 | 25.4305 | 26.5126 | 27.5948 | 28.6769 | 29.7591
104.7141 | | | Daily hot wate | | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Energy conte | | 111.6247
147.7021 | 108.6419
155.2471 | 104.6360
136.6807 | 100.9342
130.0639 | 96.1872
111.2372 | 93.2885
103.0865 | 97.7593
115.0645 | 100.5459
116.6282 | 105.2579
135.6355 | 110.1203 | 113.9206
167.3007 | | | Energy content
Distribution 1 | | = 0.15 x (4 | 45)m
23.2871 | 20.5021 | 19.5096 | 16.6856 | 15.4630 |
17.2597 | 17.4942 | Total = Si
20.3453 | 22.3247 | 1635.3004
25.0951 | (46) | | Water storage
Store volume
a) If manufac | turer decla | | actor is kno | own (kWh/d | lay): | | | | | | | 150.0000
2.0900 | (48) | | Temperature
Enter (49) or
Total storage | (54) in (55 | | | | | | | | | | | 0.5400
1.1286 | | | If cylinder co | 34.9866
ntains dedi | | | 33.8580 | 34.9866 | 33.8580 | 34.9866 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | | | Primary loss
Combi loss
Total heat req | 34.9866
23.2624
0.0000 | 31.6008
21.0112
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | (59) | | WWHRS | 226.0716
0.0000 | 200.3141
0.0000 | | 193.0507
0.0000 | 188.3129
0.0000 | 167.6072
0.0000 | 161.3355
0.0000 | 173.3135
0.0000 | 172.9982
0.0000 | 193.8845
0.0000 | 205.2013 | 225.5497
0.0000 | | | PV diverter
Solar input | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (63c) | | FGHRS
Output from w/ | 0.0000
h
226.0716 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
161.3355 | 0.0000
173.3135 | 0.0000
172.9982 | 0.0000 | 0.0000 | 0.0000 | | | 12Total per ye | ar (kWh/yea | | | | | | | | er year (kW | | | 2321.1354
2321 | (64) | | Electric showe | 0.0000 | 0.0000 | 0.0000 | 0.0000
Tot | 0.0000
al Energy us | 0.0000 | 0.0000 | 0.0000 | 0.0000
wer(s) (WWh | 0.0000
/wear) = Su | 0.0000
m(64a)m = | 0.0000 | | | Heat gains from | m water hea
102.4002 | ating, kWh/r
91.2005 | month
98.2189 | 90.5423 | 89.8455 | 82.0824 | 80.8755 | 84.8582 | 83.8749 | 91.6980 | 94.5824 | 102.2267 | | | | | | | | | | | | | | | | | | 5. Internal ga | ins (see Ta | able 5 and 5 | | | | | | | | | | | | | Metabolic gain | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | (66)m
Lighting gains | (calculate | ed in Append | dix L, equat | tion L9 or | 73.8652
L9a), also s
70.3680 | see Table 5 | | 73.8652
70.3680 | | 73.8652
70.3680 | 73.8652
72.7136 | | | | Appliances gai | ns (calcula | ated in Appe | endix L, eq | ation L13 | or L13a), al
109.9886 | so see Tab | le 5 | 94.5408 | | 105.0258 | | 70.3680 | | | Cooking gains | (calculated
30.3865 | d in Appendi
30.3865 | ix L, equat: 30.3865 | ion L15 or
30.3865 | L15a), also
30.3865 | see Table : 30.3865 | 5
30.3865 | 30.3865 | 30.3865 | 30.3865 | 30.3865 | 30.3865 | (69) | | Pumps, fans
Losses e.g. ev | aporation | (negative va | alues) (Tabi | le 5) | | | | | 0.0000 | | | | | | Water heating | gains (Tabl | le 5) | | | -59.0922
120.7600 | | | | -59.0922
116.4929 | -59.0922 | | -59.0922
137.4015 | | | Total internal | gains | | | | 346.2762 | 6. Solar gains | | | | | | | | | | | | | | | [Jan] | | | | rea
m2 | Solar flux
Table 6a
W/m2 | Speci
or | g
fic data
Table 6b | Specific
or Tab | FF
data
le 6c | Acce
facto
Table | ss
or
6d | Gains
W | | | Northeast
Southeast | | | 3.72
1.80 | 200
500 | 11.2829
36.7938 | | 0.6300
0.6300 | 0 | .7000
.7000 | 0.77
0.77 | 00
00 | 12.8274
20.9151 | (75)
(77) | | Solar gains
Total gains | | | | | | | | | | | | | | | 7. Mean intern | al temperat | ture (heatin | ng season) | | | | | | | | | | | SAP 10 Online 2.13.11 Page 2 of 7 | Temperature du
Utilisation fa | actor for ga | ains for li | ving area, n | nil,m (see T | Cable 9a) | | | | | | | 21.0000 | (85) | |--|---|--|---|------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|----------------------------------|--------------------------------|---|-------------------------| | tau
alpha
util living ar | Jan
114.9252
8.6617 | Feb
115.2615
8.6841 | Mar
115.5931
8.7062 | Apr
117.1766
8.8118 | May
117.4777
8.8318 | Jun
118.8999
8.9267 | Jul
118.8999
8.9267 | Aug
119.1671
8.9445 | Sep
118.3480
8.8899 | Oct
117.4777
8.8318 | Nov
116.8702
8.7913 | Dec
116.2417
8.7494 | | | util living al | 0.9968 | 0.9924 | 0.9793 | 0.9140 | 0.7500 | 0.5286 | 0.3810 | 0.4165 | 0.6570 | 0.9268 | 0.9894 | 0.9974 | (86) | | Living
Non living
24 / 16
24 / 9 | 20.4788
19.4774
0
3 | 20.5792
19.6060
0
0 | 20.7186
19.7800
0
0 | 20.8978
19.9920
0
0 | 20.9839
20.0701
0
0 | 20.9993
20.0892
0
0 | 21.0000
20.0895
0
0 | 20.9999
20.0913
0
0 | 20.9957
20.0839
0
0 | 20.9003
20.0006
0
0 | 20.6739
19.7354
0 | 20.4666
19.4698
0 | | | 16 / 9
MIT
Th 2
util rest of h | 28
20.7334
20.0609 | 20.5792
20.0634 | 20.7186
20.0658 | 20.8978
20.0773 | 20.9839
20.0794 | 20.9993
20.0895 | 21.0000
20.0895 | 20.9999
20.0913 | 20.9957
20.0856 | 20.9003
20.0794 | 20.6739
20.0751 | 10
20.5412
20.0706 | | | MIT 2
Living area fr | 0.9951
19.8283 | 0.9885
19.6060 | 0.9687
19.7800 | 0.8782
19.9920 | 0.6842
20.0701 | 0.4539
20.0892 | 0.3022
20.0895 | 0.3343
20.0913 | 0.5732
20.0839
fLA = | 0.8878
20.0006
Living area | 0.9831
19.7354
a / (4) = | 0.9960
19.5781
0.5100 | (90) | | MIT
Temperature ac
adjusted MIT | | 20.1023 | 20.2586 | 20.4539 | 20.5361 | 20.5533 | 20.5538 | 20.5547 | 20.5489 | 20.4594 | 20.2141 | 20.0692
0.0000
20.0692 | | | | | | | | | | | | | | | | | | 8. Space heati | ing requirem | nent | | | | | | | | | | | | | **** | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Utilisation Useful gains Ext temp. Heat loss rate | 4.3000 | 0.9887
444.8991
4.9000 | 0.9713
455.9742
6.5000 | 0.8941
447.2852
8.9000 | 0.7177
371.5924
11.7000 | 0.4921
251.5790
14.6000 | 0.3424
167.2263
16.6000 | 0.3762
175.3195
16.4000 | 0.6161
272.5521
14.1000 | 0.9056
375.9118
10.6000 | 0.9842
398.0864
7.1000 | 0.9960
402.1897
4.2000 | (95) | | Space heating | 699.7161 | 663.3118 | 598.5985 | 495.8843 | 378.2663 | 251.8087 | 167.2340 | 175.3370 | 274.0424 | 422.0737 | 564.3203 | 686.5728 | (97) | | Space heating
Solar heating | 213.1605
requirement | | 106.1124
er year (kW) | 34.9914
n/year) | 4.9654 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 34.3445 | 119.6884 | 211.5810
871.6171 | (98a) | | Solar heating
Space heating | 0.0000
contributio | 0.0000
on - total p | 0.0000
per year (ki | 0.0000
Wh/year) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Space heating
Space heating | requirement | 146.7733
t after sol | | 34.9914
cion - total | 4.9654
per year | 0.0000
(kWh/year) | 0.0000 | 0.0000 | 0.0000 | 34.3445
(98c) | 119.6884 | 211.5810
871.6171
20.4557 | | | | | | | | | | | | | | | | | | 9a. Energy red | quirements - | - Individua | l heating sy | stems, incl | luding micr | ro-CHP | | | | | | | | | Fraction of sp
Fraction of sp
Efficiency of
Efficiency of
Efficiency of | pace heat fr
main space
main space | rom main sy:
heating sy:
heating sy: | stem(s)
stem 1 (in 9
stem 2 (in 9 | b) | n (Table 11 |) | | | | | | 0.0000
1.0000
216.4148
0.0000
0.0000 | (202)
(206)
(207) | | | Jan | Feb | Mar |
Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating | 213.1605 | 146.7733 | | 34.9914 | 4.9654 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 34.3445 | 119.6884 | 211.5810 | (98) | | Space heating | 216.4148 | 216.4148 | 216.4148 | | 216.4148 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 216.4148 | 216.4148 | 216.4148 | (210) | | Space heating | 98.4963 | 67.8204 | 49.0320 | 16.1687 | 2.2944 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 15.8697 | 55.3051 | 97.7664 | (211) | | Space heating Space heating | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (212) | | Space heating | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (213) | | Space heating | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating
Water heating | 226.0716 | 200.3141 | 213.4961 | 193.0507 | 188.3129 | 167.6072 | 161.3355 | 173.3135 | 172.9982 | 193.8845 | 205.2013 | 225.5497 | | | Efficiency of (217)m | 192.9954 | 192.9954 | 192.9954 | 192.9954 | 192.9954 | 192.9954 | 192.9954 | 192.9954 | 192.9954 | 192.9954 | 192.9954 | 192.9954
192.9954 | | | Fuel for water
Space cooling | 117.1384 | 103.7922 | 110.6224 | 100.0287 | 97.5738 | 86.8452 | 83.5955 | 89.8019 | 89.6385 | 100.4607 | 106.3245 | 116.8679 | (219) | | (221)m
Pumps and Fa | 0.0000
0.0000 | 0.0000
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Lighting
Electricity ge | 14.6211 | 11.7296 | 10.5612 | 7.7376 | 5.9767 | 4.8830 | 5.4522 | 7.0869 | 9.2052 | 12.0778 | 13.6418 | 15.0274 | | | (233a)m
Electricity ge | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (233a) | | (234a)m
Electricity ge | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234a) | | (235a)m
Electricity us | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
eneration) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235a) | | (235c)m
Electricity ge | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235c) | | (233b)m
Electricity ge | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (233b) | | (234b)m
Electricity ge | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234b) | | (235b)m
Electricity us | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
eneration) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235b) | | (235d)m
Annual totals | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235d) | | Space heating
Space heating
Space heating
Efficiency of
Water heating
Space cooling | fuel - mair
fuel - mair
fuel - seco
water heate
fuel used | n system 2
ondary | | | | | | | | | | 402.7529
0.0000
0.0000
192.9954
1202.6898
0.0000 | (213)
(215)
(219) | | Electricity for Total electricity for Electric | or pumps and | e above, kW | | ix L) | | | | | | | | 0.0000
118.0005 | (231) | | Energy saving/
PV generation | generation/ | technologi | es (Appendio | ces M ,N and | i Q) | | | | | | | 0.0000 | (233) | SAP 10 Online 2.13.11 Page 3 of 7 | Wind generation Hydro-electric generation (Appendix N Electricity generated - Micro CHP (Ap Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses | | | | | | | | | 0.0000
0.0000
0.0000
-0.0000
0.0000
1723.4432 | (235a)
(235)
(236)
(237) | |--|---|--------------------------|--|----------------|---|------------------|---|--------------------------------------|--|---| | 12a. Carbon dioxide emissions - Indiv | idual heating systems | including m | icro-CHP | | Fnarau | Emission | factor | | Emissions | | | Space heating - main system 1 Total CO2 associated with community s Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Total CO2, kg/year EPC Dwelling Carbon Dioxide Emission | - | | | | Energy
kWh/year
402.7529
1202.6898
0.0000
118.0005 | kg (| 1actor
C02/kWh
0.1576
0.1407
0.0000
0.1443 | k | Emissions
g CO2/year
63.4683
0.0000
169.2707
232.7390
0.0000
17.0311
249.7702
5.8600 | (261)
(373)
(264)
(265)
(267)
(268)
(272) | | 13a. Primary energy - Individual heat | ing systems including | micro-CHP | | | | | | | | | | Space heating - main system 1 Total CO2 associated with community s Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Total Primary energy kWh/year Dwelling Primary energy Rate (DPER) | - | | | | kWh/year
402.7529
1202.6898
0.0000
118.0005 | | | | ary energy
kWh/year
637.7116
0.0000
1828.5813
2466.2929
0.0000
180.9931
2647.2860
62.1300 | (275)
(473)
(278)
(279)
(281)
(282)
(286) | | SAP 10 WORKSHEET FOR New Build (As De CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics | signed) (Version 10 | .2, February | 2022) | | Area | Storey | height | | Volume | | | Ground floor Total floor area TFA = (la)+(lb)+(lc) Dwelling volume 2. Ventilation rate | +(ld)+(le)(ln) | 4 | 2.6100 | | (m2)
42.6100
(3 | _ | (m)
2.5000 (2) | | (m3)
106.5250 | (1b) - (3b)
(4) | | | | | | | | | | m | 3 per hour | | | Number of open chimneys
Number of open flues
Number of chimneys / flues attached t
Number of flues attached to solid fue
Number of flues attached to other hea
Number of blocked chimneys
Number of intermittent extract fans
Number of passive vents
Number of flueless gas fires | l boiler | | | | | | 0
0
0
0
0
2
0 | * 20 =
* 35 =
* 20 =
* 10 = | 0.0000 | (6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b) | | Infiltration due to chimneys, flues a
Pressure test
Pressure Test Method
Measured/design AP50
Infiltration rate
Number of sides sheltered | nd fans = (6a)+(6b) | +(6c)+(6d)+(| 6e)+(6f)+(6g | y) + (7a) + (7 | 7b)+(7c) = | | | (5) = | s per hour
0.1877
Yes
lower Door
5.0000
0.4377
3 | (8) | | Shelter factor
Infiltration rate adjusted to include | shelter factor | | | | | (20) = 1 - (21) | [0.075 x (
= (18) x | | 0.7750
0.3393 | | | Wind speed 5.1000 5.0000 Wind factor 1.2750 1.2500 Adj infilt rate 0.4326 0.4241 Effective ac 0.5936 0.5899 | Mar Apr
4.9000 4.4000
1.2250 1.1000
0.4156 0.3732
0.5864 0.5696 | 1.0750 | 0.9500 | 0.9500 | 0.9250 | 4.0000
1.0000 | 1.0750 | 1.1250 | 1.1750 | (22a)
(22b) | | 3. Heat losses and heat loss paramete | | | | | | | | | | | | Element TER Opening Type (Uw = 1.20) Heatloss Floor 1 Cavity Wall Total net area of external elements A | Gross
m2
43.4000 | Openings
m2
5.5800 | NetAr
5.58
42.61
37.82
86.01 | .00
200 | U-value
W/m2K
1.1450
0.1300
0.1800 | 5.5393 | kJ. | alue
/m2K | A x K
kJ/K | | SAP 10 Online 2.13.11 Page 4 of 7 | Fabric heat loss, W/K = Sum (A x U) Party Wall 1 | | 41. | (26)(3
5400 | 30) + (32) =
0.0000 | = 18.73
0.00 | | | | (33)
(32) | |--|---|---|---|---|---|---|--|---|-------------------------| | Thermal mass parameter (TMP = Cm / TFA) in kJ/m2K List of Thermal Bridges Kl Element E2 Other lintels (including other steel lint E3 Sill E4 Jamb E5 Ground floor (normal) E7 Party floor between dwellings (in blocks P1 Party wall - Ground floor P3 Party wall - Intermediate floor between d E16 Corner (normal) E25 Staggered party wall between dwellings E18 Party wall between dwellings | of flats)
twellings (in bloc | cks of flats | Length 3.4100 3.4100 9.8400 17.3600 17.3600 17.4200 5.0000 5.0000 | | Psi-value Tot 0.0500 0.17 0.0500 0.17 0.0500 0.45 0.1600 2.77 0.0700 1.21 0.0800 1.38 0.0000 0.00 0.0900 0.45 0.0600 0.36 | | 05
05
20
76
52
36
00
00
00 | | | | Thermal bridges (Sum(L x Psi) calculated using Appen
Point Thermal bridges
Total fabric heat loss | dix K) | | | | (| 33) + (36) + | (36a) =
+ (36a) = | 7.2694
0.0000
26.0056 | | | | | Jun
19.4024 | Jul
19.4024 |
Aug
19.3075 | Sep
19.5996 | Oct
19.9144 | Nov
20.1369 | Dec
20.3696 | (38) | | Heat transfer coeff
46.8708 46.7431 46.6180 46.
Average = Sum(39)m / 12 = | 0300 45.9200 | 45.4080 | 45.4080 | 45.3131 | 45.6052 | 45.9200 | 46.1426 | 46.3752
46.0295 | (39) | | Jan Feb Mar Ap
HLP 1.1000 1.0970 1.0941 1. | or May
0803 1.0777 | Jun
1.0657 | Jul
1.0657 | Aug
1.0634 | Sep
1.0703 | Oct
1.0777 | Nov
1.0829 | Dec
1.0884
1.0803 | (40) | | Days in mont 31 28 31 | 30 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | | | | | | | | | | | | | | 4. Water heating energy requirements (kWh/year) | | | | | | | | | | | Assumed occupancy
Hot water usage for mixer showers
62.8515 61.9070 60.5306 57. | 8972 55.9538 | 53.7865 | 52.5546 | 53.9206 | 55.4179 | 57.7449 | 60.4349 | 1.4773
62.6107 | | | Hot water usage for baths | 0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Hot water usage for other uses 29.7591 28.6769 27.5948 26. Average daily hot water use (litres/day) | 5126 25.4305 | 24.3483 | 24.3483 | 25.4305 | 26.5126 | 27.5948 | 28.6769 | 29.7591
85.0007 | (42c) | | Jan Feb Mar Ap
Daily hot water use | or May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | 92.6106 90.5839 88.1254 84.
Energy conte 146.6726 128.9903 135.4455 115.
Energy content (annual) | 4098 81.3842
5528 109.5588 | 78.1348
96.0759 | 76.9029
93.0074 | 79.3510
98.2532 | 81.9305
101.0285 | 85.3397
115.8051
Total = St | 89.1118
126.9562
um(45)m = | 92.3698
144.6288
1411.9751 | | | | 3329 16.4338 | 14.4114 | 13.9511 | 14.7380 | 15.1543 | 17.3708 | 19.0434 | 21.6943 | (46) | | Water storage loss:
Store volume
a) If manufacturer declared loss factor is known (
Temperature factor from Table 2b
Enter (49) or (54) in (55) | kWh/day): | | | | | | | 150.0000
1.3938
0.5400
0.7527 | (48)
(49) | | | 5798 23.3325 | 22.5798 | 23.3325 | 23.3325 | 22.5798 | 23.3325 | 22.5798 | 23.3325 | (56) | | Primary loss 23.2624 21.0112 23.2624 22. | 5798 23.3325
5120 23.2624
0000 0.0000 | 22.5798
22.5120
0.0000 | 23.3325
23.2624
0.0000 | 23.3325
23.2624
0.0000 | 22.5798
22.5120
0.0000 | 23.3325
23.2624
0.0000 | 22.5798
22.5120
0.0000 | 23.3325
23.2624
0.0000 | (59) | | WHRS -28.7331 -25.4118 -26.6098 -22.
PV diverter -0.0000 -0.0000 -0.
Solar input 0.0000 0.0000 0.0000 0. | 6447 156.1537
0339 -20.5348
0000 -0.0000
0000 0.0000 | 141.1677
-17.5718
-0.0000
0.0000 | 139.6023
-16.4708
-0.0000
0.0000 | 144.8481
-17.5150
-0.0000
0.0000 | 146.1204
-18.1805
-0.0000
0.0000 | 162.4000
-21.4328
-0.0000
0.0000 | | 191.2237
-28.2010
-0.0000
0.0000 | (63a)
(63b)
(63c) | | FGHRS 0.0000 0.0000 0.0000 0.
Output from w/h
164.5344 145.6642 155.4306 138. | 0000 0.0000
6107 135.6189 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
163.0227 | | | 12Total per year (kWh/year)
Electric shower(s) | | | | Total pe | er year (kW | h/year) = Si | um(64)m = | 1693.6166
1694 | | | 0.0000 0.0000 0.0000 0. | 0000 0.0000
Total Energy us | 0.0000
sed by insta | 0.0000
intaneous el | 0.0000
lectric show | 0.0000
ver(s) (kWh | 0.0000
/year) = Sur | 0.0000
m(64a)m = | 0.0000 | | | Heat gains from water heating, kWh/month
86.0446 76.5579 82.3115 74. | 4948 73.7042 | 68.0187 | 68.2009 | 69.9451 | 69.6655 | 75.7811 | 78.2864 | 85.3650 | (65) | | | | | | | | | | | | | 5. Internal gains (see Table 5 and 5a) Metabolic gains (Table 5), Watts | | | | | | | | | | | Jan Feb Mar Ap
(66)m 73.8652 73.8652 73.8652 73. | r May
8652 73.8652 | Jun
73.8652 | Jul
73.8652 | Aug
73.8652 | Sep
73.8652 | Oct
73.8652 | Nov
73.8652 | Dec
73.8652 | (66) | | Lighting gains (calculated in Appendix L, equation L
70.3680 77.9074 70.3680 72. | .9 or L9a), also s
7136 70.3680 | see Table 5
72.7136 | 70.3680 | | 72.7136 | 70.3680 | 72.7136 | 70.3680 | (67) | | Appliances gains (calculated in Appendix L, equation 128.1491 129.4788 126.1278 118. | 9939 109.9886 | 101.5249 | 95.8706 | 94.5408 | 97.8919 | 105.0258 | 114.0311 | 122.4948 | (68) | | Cooking gains (calculated in Appendix L, equation L1 30.3865 30.3865 30.3865 30.
Pumps, fans 3.0000 3.0000 3.0000 3. | 3865 30.3865 | 30.3865 | 30.3865
0.0000 | | 30.3865 | 30.3865
3.0000 | | 30.3865
3.0000 | | | Losses e.g. evaporation (negative values) (Table 5) -59.0922 -59.0922 -59.0922 -59.0922 | | | | | | -59.0922 | | | | | Water heating gains (Table 5)
115.6513 113.9254 110.6338 103. | | | 91.6679 | 94.0122 | | 101.8564 | | | | | Total internal gains 362.3279 369.4712 355.2892 343. | | | | | | | | | | | 6. Solar gains | | | | | | | | | | | | | | | | P.F. | _ | | | | | [Jan] Area m2 | Solar flux
Table 6a
W/m2 | Specif
or T | g
ic data
able 6b | Specific
or Tabl | FF
data
Le 6c | Acces
facto
Table (| or | Gains
W | | SAP 10 Online 2.13.11 Page 5 of 7 | Northeast
Southeast | | | 3.72
1.86 | | 11.2829
36.7938 | | 0.6300
0.6300 | | .7000
.7000 | 0.770
0.770 | | 12.8274
20.9151 | | |---|--|--|---|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|---|-------------------------| | Solar gains
Total gains | | | | | | 177.8758
491.7443 | | | | 71.2835
396.6932 | 41.1916
384.8269 | | | | 7. Mean inter | nal temperat | ture (heatin | g season) | | | | | | | | | | | | Temperature d | uring heatin | ng periods i | n the livin | g area from | n Table 9, | | | | | | | 21.0000 | (85) | | Utilisation f | Jan | Feb | Mar | Apr
111.8289 | May | Jun
113.3608 | Jul
113.3608 | Aug | Sep
112.8706 | Oct
112.0967 | Nov
111.5561 | Dec
110.9965 | | | alpha
util living a | 8.3215 | 8.3415 | 8.3612 | 8.4553 | 8.4731 | 8.5574 | 8.5574 | 8.5732 | 8.5247 | 8.4731 | 8.4371 | 8.3998 | | | - | 0.9983 | 0.9959 | 0.9884 | 0.9474 | 0.8130 | 0.5883 | 0.4237 | 0.4670 | 0.7282 | 0.9575 | 0.9946 | 0.9987 | | | MIT
Th 2
util rest of | 20.3815
20.0008
house | 20.4839
20.0033 | 20.6323
20.0057 | 20.8379
20.0170 | 20.9659
20.0191 | 20.9979
20.0290 | 20.9999
20.0290 | 20.9997
20.0308 | 20.9889
20.0252 | 20.8436
20.0191 | 20.5862
20.0148 | 20.3677
20.0103 | | | MIT 2 | 0.9973
19.3024 | 0.9936
19.4344 | 0.9817
19.6228 | 0.9197
19.8746 | 0.7452
19.9983 | 0.5006
20.0283 | 0.3303
20.0290 | 0.3689
20.0308 | 0.6342
20.0207 | 0.9288
19.8875 | 0.9910
19.5743 | 0.9979
19.2925 | (90) | | Living area f | 19.8527 | 19.9696 | 20.1376 | 20.3659 | 20.4917 | 20.5227 | 20.5241 | 20.5249 | fLA =
20.5145 | Living area
20.3750 | | 19.8408 | | | Temperature a adjusted MIT | | 19.9696 | 20.1376 | 20.3659 | 20.4917 | 20.5227 | 20.5241 | 20.5249 | 20.5145 | 20.3750 | 20.0904 | 0.0000
19.8408 | (93) | | | | | | | | | | | | | | | | | 8. Space heat | ing requires | ment | | | | | | | | | | | | | Utilisation
Useful gains
Ext temp. | | | Mar
0.9828
443.3315
6.5000 | Apr
0.9308
447.6961
8.9000 | May
0.7793
388.9424
11.7000 | Jun
0.5455
268.2411
14.6000 | Jul
0.3779
178.1587
16.6000 | Aug
0.4190
186.8500
16.4000 | Sep
0.6826
288.4993
14.1000 | Oct
0.9409
373.2316
10.6000 | Nov
0.9914
381.5000
7.1000 | Dec
0.9977
383.2653
4.2000 | (95) | | Heat loss rat | 728.9678 | 704.4007 | 635.7579 | 527.7739 | 403.7174 | 268.9400 | 178.1855 | 186.9128 | 292.5324 | 448.8706 | 599.4086 | 725.3459 | (97) | | Space heating
Space heating | 248.5186 | 185.4793 | | 57.6560
(vear) | 10.9926 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 56.2754 | 156.8942 | 254.5080
1113.4893 | | | Solar heating | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Solar heating
Space heating | kWh
248.5186 | 185.4793 | 143.1652 | 57.6560 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 56.2754 | 156.8942 | 254.5080 | (98c) | | Space heating
Space heating | | after sola | r contribut | ion - total | per year | (kWh/year) | | | | (98c) | / (4) = | 1113.4893
26.1321 | (99) | | 9a. Energy re | | | | | | | | | | | | | | | Fraction of s
Fraction of s
Efficiency of
Efficiency of
Efficiency of | pace heat fr
pace heat fr
main space
main space | rom secondar
rom main sys
heating sys
heating sys | y/supplementem(s)
tem(s)
tem 1 (in %
tem 2 (in % | tary system | | | | | | | | 0.0000
1.0000
92.3000
0.0000
0.0000 | (202)
(206)
(207) | | Space heating | Jan
requirement | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating | efficiency | | ng system l | .) | 10.9926 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | 254.5080 | | | Space heating | | | | 92.3000
62.4659 | 92.3000
11.9096 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 92.3000 | 92.3000 | 92.3000 | | | Space heating | | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 275.7400
0.0000 | | | Space heating | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating Water heating requirement | | | | | | | | | | | | | | |
Efficiency of | water heate | | | 138.6107
82.2488 | 135.6189 | 123.5959 | 123.1316 | 127.3331 | 127.9399 | 140.9673 | 147.7673 | 163.0227
79.8000 | (216) | | (217)m
Fuel for wate | | 84.6028
Wh/month
172.1743 | 83.8759
185.3103 | 168.5261 | 80.4111
168.6571 | 79.8000
154.8821 | 79.8000
154.3002 | 79.8000
159.5652 | 79.8000
160.3257 | 82.1763
171.5426 | 84.1944
175.5072 | 85.0546
191.6683 | | | Space cooling
(221)m | fuel requir
0.0000 | rement
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (221) | | Pumps and Fa
Lighting
Electricity g | 14.6211 | 6.5973
11.7296 | 7.3041
10.5612 | 7.0685
7.7376 | 7.3041
5.9767 | 7.0685
4.8830 | 7.3041
5.4522 | 7.3041
7.0869 | 7.0685
9.2052 | 7.3041
12.0778 | 7.0685
13.6418 | 7.3041
15.0274 | | | (233a)m
Electricity g | -14.7805 | -21.6607 | -32.3614 | -37.8882 | -42.1984 | | -39.4789 | -36.6317 | -31.7939 | -25.4780 | -16.5556 | -12.6876 | (233a) | | (234a)m
Electricity g | 0.0000
enerated by | 0.0000
hydro-elect | 0.0000
ric generat | 0.0000
ors (Append | 0.0000
dix M) (neg | 0.0000
ative quant: | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | (234a) | | (235a)m
Electricity u | | 0.0000
electricity
0.0000 | | | | | | | 0.0000 | 0.0000 | 0.0000 | | (235a) | | (235c)m
Electricity g
(233b)m | | | | | | 0.0000
-53.2149 | 0.0000
-52.5429 | 0.0000
-44.2105 | 0.0000
-32.0726 | 0.0000
-18.5336 | 0.0000
-8.0780 | -4.7381 | (235c)
(233b) | | Electricity g
(234b)m | enerated by 0.0000 | wind turbin
0.0000 | es (Appendi
0.0000 | x M) (negat
0.0000 | ive quanti
0.0000 | ty)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | (234b) | | Electricity g
(235b)m | 0.0000 | hydro-elect
0.0000 | ric generat
0.0000 | ors (Append
0.0000 | iix M) (neg
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | (235b) | | Electricity u
(235d)m
Annual totals | 0.0000 | 0.0000 | generated h
0.0000 | y micro-CHE
0.0000 | ? (Appendix
0.0000 | N) (negative 0.0000 | ve if net ge
0.0000 | eneration)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235d) | | Space heating
Space heating
Space heating
Efficiency of | fuel - mair
fuel - mair
fuel - seco | n system 2
ondary | | | | | | | | | | 1206.3806
0.0000
0.0000
79.8000
2056.0695 | (213)
(215) | SAP 10 Online 2.13.11 Page 6 of 7 | Space cooling fuel | | | 0.0000 (221) | |---|--|------------------|---| | Electricity for pumps and fans:
Total electricity for the above, kWh/year
Electricity for lighting (calculated in Appendix L) | | | 86.0000 (231)
118.0005 (232) | | Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) Appendix Q - special features | | | -702.0353 (233)
0.0000 (234)
0.0000 (235a)
0.0000 (235) | | Energy saved or generated Energy used Total delivered energy for all uses | | | -0.0000 (236)
0.0000 (237)
2764.4153 (238) | | 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP | | | | | Space heating - main system 1 Total CO2 associated with community systems | Energy
kWh/year
1206.3806 | 0.2100 | Emissions
kg CO2/year
253.3399 (261)
0.0000 (373) | | Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting | 2056.0695
86.0000
118.0005 | | 431.7746 (264)
685.1145 (265)
11.9293 (267)
17.0311 (268) | | Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) | -351.4360
-350.5993 | | -47.0017
-44.0019
-91.0037 (269)
623.0712 (272)
14.6200 (273) | | 13a. Primary energy - Individual heating systems including micro-CHP | | | | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting | Energy P:
kWh/year
1206.3806
2056.0695
86.0000
118.0005 | 1.1300 | kWh/year
1363.2101 (275)
0.0000 (473)
2323.3586 (278)
3686.5686 (279)
130.1008 (281) | | Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total Primary energy kWh/year Target Primary Energy Rate (TPER) | -351.4360
-350.5993 | 1.4942
0.4607 | -525.1295
-161.5115
-686.6411 (283)
3311.0215 (286)
77.7100 (287) | SAP 10 Online 2.13.11 Page 7 of 7 | Dwelling Address | Unit 1, Highland Square , Bristol | |------------------------------|-----------------------------------| | Report Date | 05/03/2024 | | Property Type | Flat, Semi-Detached | | Floor Area [m ²] | 43 | This document is not an Energy Performance Certificat EPC) s required by the Energy Performance of Buildings Reg io SAP 10 Online 2.13.11 Page 1 of 4 #### Breakdown of property's energy performance Each feature is assessed as one of the following: | Very Poor | Poor | Average | Good | Very Good | |-----------------------|---|-----------------------|------|-------------------| | | | | | | | Feature | Description | | | gy
Performance | | Walls | Average thermal transmi | ttance 0.18 W/m²K | | Very Good | | Floor | Average thermal transmi | ttance 0.12 W/m²K | | Very Good | | Windows | High performance glazing | | | Good | | Main heating | Air source heat pump, radiators, electric | | | Average | | Main heating controls | Time and temperature zone control | | | Very Good | | Secondary heating | None | | | | | Hot water | From main system | | | Average | | Lighting | Good lighting e iciency | | | Good | | Air tightness | Air perm ity [AP5 | 5.0 m³/h.m² (assumed) | | Good | #### Primary Energy e The primary ener e for this operty per year is 58 kilowatt hour (kWh) per square metre #### Estimat d C emissions of the dwelling The estimed CO rating rovides an indication of the dwelling's impact on the environment in terms of carbon dio emissio; the higher the rating the less impact it has on the environment. The estimated CO emissions for this dwellings is: 0.2 per year With the recommended measures the potential CO emissions could be: per year SAP 10 Online 2.13.11 Page 2 of 4 #### Recommendations The recommended measures provided below will help to improve the energy efficiency of the dwelling. To reach the dwelling's potential energy rating all of the recommended measures shown below would need to installed. Having these measures installed individually or in any other order may give a different result who pared work the cumulative potential rating. | Recommended measure | Typical | Potential Rating | lative | Cumulative | |---------------------|---------|-------------------|----------|------------| | | Yearly | after | s | Potential | | | Saving | measure installed | (per yea | Rating | #### Estimated energy use and potential savin s Estimated energy cost for this property over a year £408 Over a year you could save £0 The estimated cost and savings show how much the average househ would spend in this property heating, lighting and hot water. It not based on how energy is ed by the people living at the propert #### Contacting asses or and the accreditation scheme | Assessor contact details | | | | | | |---------------------------|--|--|--|--|--| | Asse r name | | | | | | | Assess accredita n number | | | | | | | Email Address | | | | | | SAP 10 Online 2.13.11 Page 3 of 4 | Accreditation scheme contact details | | | | |--|--|--|--| | Accreditation scheme Elmhurst Energy Systems Ltd | | | | | Telephone | | | | | Email Address | | | | | Assessment details | | | | | |-------------------------------|---------------|--|--|--| | Related party disclosure | No related pa | | | | | Date of assessment | 05/03/202 | | | | | Date of certificate 05/03/202 | | | | | | Type of assessment | SAP w dwellin | | | | SAP 10 Online 2.13.11 Page 4 of 4 #### **Building Regulations England Part L (BREL) Compliance Report** Approved Document L1 2021 Edition, England assessed by Array SAP 10 program, Array Date: Tue 05 Mar 2024 08:41:59 | Project Information | | | | | | |---------------------|------------|-----------------|---------------------|--|--| | Assessed By | | Building Type | Flat, Semi-detached | | | | OCDEA Registration | EES/025661 | Assessment Date | 2024-03-05 | | | | Dwelling Details | | | | | |------------------|--------------------------------|------------------|-------------------|--| | Assessment Type | As designed | Total Floor Area | 43 m ² | | | Site Reference | Unit 2 | Plot Reference | PV | | | Address | Unit 1 Highland Square, Bristo | ol . | | | | Client Details | | | |----------------|---|--| | Name | Tebby & Son | | | Company | SF Tebby & Son | | | Address | Unit 11 Avon Gorge Industrial Estate , Bristol, BS2 9XX | | This report covers items included within the SAP calculations. It is not a complete report of regulations compliance. | 1a Target emission rate and dwelling emission rate | | | | | |--|---|----|--|--| | Fuel for main heating system | Electricity | | | | | Target carbon dioxide emission rate | 14.62 kgCO ₂ /m ² | | | | | Dwelling carbon
dioxide emission rate | 3.31 kgCO ₂ /m ² | OK | | | | 1b Target primary energy rate and dwelling primary energy | | | | | | Target primary energy | 77.71 kWh _{PE} /m ² | | | | | Dwelling primary energy | 41.74 kWh _{PE} /m ² | OK | | | | 1c Target fabric energy efficiency and dwelling fabric energy efficiency | | | | | | Target fabric energy efficiency | 35.8 kWh/m² | | | | | Dwelling fabric energy efficiency | 31.6 kWh/m ² | OK | | | | 2a Fabric U-values | | | | | | | |--------------------|---|----------------------------------|---|-----|--|--| | Element | Maximum permitted average U-Value [W/m²K] | Dwelling average U-Value [W/m²K] | Element with highest individual U-Value | | | | | External walls | 0.26 | 0.18 | Walls (1) (0.18) | OK | | | | Party walls | 0.2 | 0 | Party Wall (1) (0) | N/A | | | | Curtain walls | 1.6 | 0 | N/A | N/A | | | | Floors | 0.18 | 0.12 | Heatloss Floor 1 (0.12) | OK | | | | Roofs | 0.16 | N/A | N/A | N/A | | | | Windows, doors, | 1.6 | 1.31 | W01 (1.31) | OK | | | | and roof windows | | | | | | | | Rooflights | 2.2 | N/A | N/A | N/A | | | | 2b Envelope elements (better than typically expected values are flagged with a subsequent (!)) | | | | | |--|----------------------------|------------------------------|--|--| | Name | Net area [m ²] | U-Value [W/m ² K] | | | | Exposed wall: Walls (1) | 37.82 | 0.18 | | | | Party wall: Party Wall (1) | 41.54 | 0 (!) | | | | Ground floor: Heatloss Floor 1, Heatloss Floor 1 | 42.61 | 0.12 | | | | 2c Openings (better than typically expected values are flagged with a subsequent (!)) | | | | | | | |---|------|------------|-----|------|--|--| | Name Area [m²] Orientation Frame factor U-Value [W/m²K] | | | | | | | | W01, Windows | 1.86 | North East | 0.7 | 1.31 | | | | W02, Windows | 1.86 | North East | 0.7 | 1.31 | | | | W03, Windows | 1.86 | South East | 0.7 | 1.31 | | | | 2d Thermal brid | dging (better than typically expect | ted values are flagged with a subse | equent (!)) | | |-------------------|-------------------------------------|--|-----------------|------------| | Building part 1 - | Main Dwelling: Thermal bridging ca | alculated from linear thermal transmit | tances for eacl | h junction | | Main element | Junction detail | Source | Psi value | Drawing / | | | | | [W/mK] | reference | | External wall | E2: Other lintels (including other | Not government-approved | 0.023 (!) | | | | steel lintels) | scheme | | | | External wall | E3: Sill | Calculated by person with suitable | 0.021 (!) | | | | | expertise | | | | External wall | E4: Jamb | Calculated by person with suitable | 0.016 (!) | | | | | expertise | | | | | | | | | | Main element | Junction detail | Source | Psi value
[W/mK] | Drawing / reference | |---------------|---|--|---------------------|---------------------| | External wall | E5: Ground floor (normal) | Calculated by person with suitable expertise | 0.047 | | | External wall | E7: Party floor between dwellings (in blocks of flats) | Calculated by person with suitable expertise | 0.038 (!) | | | Party wall | P1: Ground floor | Calculated by person with suitable expertise | 0.093 | | | Party wall | P3: Intermediate floor between dwellings (in blocks of flats) | SAP table default | 0 (!) | | | External wall | E16: Corner (normal) | Calculated by person with suitable expertise | 0.043 | | | External wall | E25: Staggered party wall between dwellings | Calculated by person with suitable expertise | 0.036 (!) | | | External wall | E18: Party wall between dwellings | Calculated by person with suitable expertise | 0.046 | | | 3 Air permeability (better than typically expected values are flagged with a subsequent (!)) | | | | | | | | | |--|--|----|--|--|--|--|--|--| | Maximum permitted air permeability at 50Pa | 8 m ³ /hm ² | | | | | | | | | Dwelling air permeability at 50Pa | 5 m ³ /hm ² , Design value | OK | | | | | | | | Air permeability test certificate reference | | · | | | | | | | | 4 Space heating | | | | | | | | | |---|---------------|--|--|--|--|--|--|--| | Main heating system 1: Heat pump with radiators or underfloor heating - Electricity | | | | | | | | | | Efficiency | 216.4% | | | | | | | | | Emitter type | Radiators | | | | | | | | | Flow temperature | 55°C | | | | | | | | | System type | Heat Pump | | | | | | | | | Manufacturer | Atlantic | | | | | | | | | Model | Logic Air 8kW | | | | | | | | | Commissioning | | | | | | | | | | Secondary heating system: N/A | | | | | | | | | | Fuel | N/A | | | | | | | | | Efficiency | N/A | | | | | | | | | Commissioning | | | | | | | | | | 5 Hot water | | | | | | | | |--------------------------------------|--------------|--|--|--|--|--|--| | Cylinder/store - type: Cylinder | | | | | | | | | Capacity | 150 litres | | | | | | | | Declared heat loss | 2.09 kWh/day | | | | | | | | Primary pipework insulated | Yes | | | | | | | | Manufacturer | | | | | | | | | Model | | | | | | | | | Commissioning | | | | | | | | | Waste water heat recovery system 1 - | type: N/A | | | | | | | | Efficiency | | | | | | | | | Manufacturer | | | | | | | | | Model | | | | | | | | | 6 Controls | | | | | | | | |---|----------------------------|--|--|--|--|--|--| | Main heating 1 - type: Time and temperature zone control by arrangement of plumbing and electrical services | | | | | | | | | Function | | | | | | | | | Ecodesign class | | | | | | | | | Manufacturer | | | | | | | | | Model | | | | | | | | | Water heating - type: Cylinder thermosta | at and HW separately timed | | | | | | | | Manufacturer | | | | | | | | | Model | | | | | | | | | 7 Lighting | | | |---|---------|----| | Minimum permitted light source efficacy | 75 lm/W | | | Lowest light source efficacy | 80 lm/W | OK | | External lights control | N/A | | | 8 Mechanical ventilation | | | | |--|----------------------|--|-----| | System type: N/A | | | | | Maximum permitted specific fan power | N/A | | | | Specific fan power | N/A | | N/A | | Minimum permitted heat recovery | N/A | | | | efficiency | | | | | Heat recovery efficiency | N/A | | N/A | | Manufacturer/Model | | | | | Commissioning | | | | | O Local manageries | <u>'</u> | | | | 9 Local generation | (4) | | | | Technology type: Photovoltaic system Peak power | 1.045 kWp | | | | Orientation | South West | | | | Pitch | 45° | | | | Overshading | None or very little | | | | Manufacturer | None of very little | | | | MCS certificate | | | | | MC3 certificate | | | | | 10 Heat networks | | | | | N/A | | | | | 11 Supporting documentary evidence | • | | | | N/A | • | | | | | | | | | 12 Declarations | | | | | a. Assessor Declaration | | | | | | | ontents of this BREL Compliance Report | | | | | nformation submitted for this dwelling for | | | | | and that the supporting documentary | | | evidence (SAP Conventions, Append | | | | | documentary evidence required) has | been reviewed in the | course of preparing this BREL | | | Compliance Report. | | | | | | | | | | | | | | | Signed: | | Assessor ID: | | | | | | | | Name | | Date | | | Name: | | Date: | | b. Client Declaration N/A | Property Reference | Uni | t 2 | | | | | | | Issued | on Date | 05/03 | /2024 | |---|-----------------------------|------------------|--|--|------------------------------|--|--------------------------|-------------------------------------|--|---|------------------------------------|---| | Assessment Reference | e PV | | | | | Prop 1 | Type F | Ref | Tebby an | d Son G | arage | | | Property | Uni | t 1, Highla | nd Square , | Bristol | | | | | | | | | | SAP Rating | | | | 88 B | DER | | 3.31 | | Т | ER | 14 | .62 | | Environmental | | | | 98 A | % DER | < TER | | | | | 77 | .36 | | CO₂ Emissions (t/year |) | | | 0.12 | DFEE | | 31.5 | 7 | T | FEE | 35 | .81 | | Compliance Check | | | | See BREL | % DFEE | < TFEE | | | | | 11. | .86 | | % DPER < TPER | | | | 46.29 | DPER | | 41.7 | 4 | Т | PER | 77 | .71 | | Assessor Details | | | | | | | | | A | ssessor | · ID U3 | 67-0001 | | Client | | | | | | | | | | | | | | SUMMARY FOR INF | UT DATA F | OR: Nev | v Build (A | s Designed) | | | | | | | | | | Orientation | | | | Southeast | | | | | | | | | | Property Tenture | | | | 1 | | | | | | | | | | Transaction Type | | | | 6 | | | | | | | | | | Terrain Type | | | | Urban | | | | | | | | | | 1.0 Property Type | | | | Flat, Semi-Detache | d | | | | | | | | | Position of Flat | | | | Ground-floor flat | | | | | | | | | | Which Floor | | | | 0 | | | | | | | | | | 2.0 Number of Storeys | | | | 1 | | | | | | | | | | 3.0 Date Built | | | | 2024 | | | | | | | | | | 3.0 Property Age Band | | | | L | | | | | | | | | | 4.0 Sheltered Sides | | | | 3 | | | | | | | | | | 5.0 Sunlight/Shade | | | | Average or unknow | n
 | | | | | | | | 6.0 Thermal Mass Paran | neter | | | Precise calculation | | | | | | | | | | Thermal Mass | | | | N/A | | | | | kJ | /m²K | | | | 7.0 Electricity Tariff | | | | Standard | | | | | | | | | | Smart electricity mete | r fitted | | | No | | | | | | | | | | Smart gas meter fitted | l | | | No | | | | | | | | | | 7.0 Measurements | | | | | | | | | | | | | | | | | | Baseme
Ground flo
1st Store
2nd Store
3rd Store | nt:
or:
ey:
ey: | Loss Peri
0.00 m
17.36 m
0.00 m
0.00 m
0.00 m | meter | · Int | ternal Floo
0.00 m
42.61 n
0.00 m
0.00 m
0.00 m | 2
11 ²
2
2
2
2
2 | | Storey Heig
0.00 m
2.50 m
0.00 m
0.00 m
0.00 m
0.00 m
0.00 m | | | | | | 4th Store
5th Store
6th Store
7th Store | eý:
ey: | 0.00 m
0.00 m
0.00 m
0.00 m | | | 0.00 m
0.00 m
0.00 m | 2 | | 0.00 m
0.00 m | | 8.0 Living Area | | | | 5th Store | eý:
ey: | 0.00 m
0.00 m | | | 0.00 m
0.00 m | 2
2 | | 0.00 m | | | Туре | Constr | ruction | 5th Store
6th Store
7th Store | ey:
ey:
ey:
U-Value | 0.00 m
0.00 m
0.00 m | | Nett Area | 0.00 m
0.00 m
0.00 m | 2
2 | | 0.00 m
0.00 m | | 9.0 External Walls | Type
Cavity Wall | Cavity | | 5th Store
6th Store
7th Store
21.73 | U-Value
(W/m²K) | 0.00 m
0.00 m
0.00 m | | | 0.00 m
0.00 m
0.00 m | 2
2
2 | | 0.00 m
0.00 m | | 9.0 External Walls Description Cavity Wall | | Cavity | wall : plasterbo | 5th Store
6th Store
7th Store
21.73 | U-Value
(W/m²K) | 0.00 m
0.00 m
0.00 m | r ea(m²)
43.40 | (m²)
37.82 | 0.00 m
0.00 m
0.00 m | 2
2
Shelter | Openings | 0.00 m
0.00 m
s Area Calculat
Type | | 9.0 External Walls Description Cavity Wall | Cavity Wall Type | Cavity filled ca | wall : plasterbo
avity, any outsion | 5th Store
6th Store
7th Store
21.73 | U-Value
(W/m²K) | 0.00 m
0.00 m
0.00 m | ea(m²)
43.40 | (m²)
37.82
U-Value | 0.00 m
0.00 m
0.00 m | Shelter | Opening:
5.58 | 0.00 m
0.00 m
s Area Calculat
Type
Enter Gross A | | 9.0 External Walls Description Cavity Wall 9.1 Party Walls Description | Cavity Wall Type Filled C | Cavity filled ca | wall : plasterbo
avity, any outsion
Construct
Single plas | 5th Store 6th Store 7th Store 21.73 and on dabs, dense block le structure sterboard on both sice | U-Value
(W/m²K) | 0.00 m
0.00 m
0.00 m | ea(m²)
43.40 | (m²)
37.82
U-Value
(W/m²K) | 0.00 m
0.00 m
0.00 m
m
Shelter
Res
0.00 | Shelter None Area (m²) | Opening:
5.58
Shelter
Res | S Area Calculat Type Enter Gross A Shelter None | SAP 10 Online 2.13.11 Page 1 of 4 | Description Party Ceiling 1 | | Constr
Precasi | | on
ocrete planks floor, scree | ed, carpete | ed | | | | | Kap
(kJ/n
30. | n²K) | Area (m²)
42.61 | |---|--|--------------------------|--|--|--|---|---|--|-------------------------------|---------------|------------------------------------|------------------|---| | 11.0 Heat Loss Floors | | | | | | | | | | | | | | | Description | Туре | Storey Index | | Construction | | | U-Valı
(W/m² | | Shelter Code | | nelter
actor | Kappa
(kJ/m²k | Area (m²) | | Heatloss Floor 1 | Ground Floor - Solid | Lowest occup | oied | Suspended concrete floor, o | carpeted | | 0.12 | | None | | 0.00 | 75.00 | | | 12.0 Opening Types Description | Data Source | Туре | | Glazing | | | Glazing
Gap | Filling
Type | G-value | Frame
Type | | ame
ctor | U Value
(W/m²K) | | Windows | Manufacturer | Window | | Double Low-E So | oft 0.05 | | | Air Filled | 0.63 | Wood | | .70 | 1.31 | | 13.0 Openings
Name
W01
W02 | Opening Ty
Windows
Windows | pe | | Location
Cavity Wall
Cavity Wall | | | Orienta
North E
North E | East
East | Area (
1.86
1.86 |)
} | | Pito
0
0 | | | W03 | Windows | | | Cavity Wall | | | South | East | 1.86 | <u> </u> | | 0 | | | 14.0 Conservatory | | | | None | | | | | | | | | | | 15.0 Draught Proofing | | | | 100 | | | | | % | | | | | | 16.0 Draught Lobby | | | | No | | | | | | | | | | | 17.0 Thermal Bridging
17.1 List of Bridges | | | | Calculate Bridges | | | | | | | | | | | Bridge Type E2 Other lintels (include E3 Sill E4 Jamb E5 Ground floor (norm E7 Party floor between P1 Party wall - Ground P3 Party wall - Intermet (in blocks of flats) E16 Comer (normal) E25 Staggered party w E18 Party wall between | al)
n dwellings (in block:
I floor
ediate floor between
vall between dwellin | s of flats)
dwellings | Non
Inde
Inde
Inde
Inde
Tab | orce Type In Gov Approved Scheme ependently assessed ependently assessed ependently assessed ependently assessed ependently assessed ependently assessed le K1 - Default ependently assessed | Len
3.4
3.4
9.8
17.
17.
17.
17.
5.0
5.0 | 41
41
84
.36
.36
.42
.42
.42 | Psi
0.02
0.02
0.02
0.05
0.04
0.09
0.00
0.04
0.04 | Adjusted 0.02 0.02 0.02 0.05 0.04 0.09 0.00 0.04 0.04 0.05 | Reference: | | | | Imported No | | Y-value | g - | | | 0.05 | | | | | W/m²K | | | | | | 18.0 Pressure Testing | | | | Yes | | | | | | | | | | | Designed AP₅o | | | | 5.00 | | | | | m³/(h.m² | ²) @ 50 P | a | | | | Property Tested? | | | | Yes | | | | | = ` | , 0 | | | | | Test Method | | | | Blower Door | | | | | \exists | | | | | | 19.0 Mechanical Ventilati | ion | | | | | | | | | | | | | | Mechanical Ventilation | | | | | | | | | | | | | | | Mechanical Vent | ilation System Prese | ent | | No | | | | | | | | | | | 20.0 Fans, Open Fireplac | es, Flues | | | | | | | | | | | | | | 21.0 Fixed Cooling Syste | em | | | No | | | | | | | | | | | 22.0 Lighting | | | | | | | | | | | | | | | No Fixed Lighting | | | | No Name Lighting 1 | Efficacy
80.00 | | Pov
1 | | Capa
120 | city | | Cou
5 | | | 24.0 Main Heating 4 | | | | | 00.00 | | | | | | | | • | | 24.0 Main Heating 1 | | | | Database | | | | | | | | | | | Percentage of Heat | | | | 100.00 | | | | | <u>%</u> | | | | | | Database Ref. No. | | | | 106764 | | | | | \exists | | | | | | Fuel Type | | | | Electricity | | | | | \exists | | | | | | SAP Code | | | | 0 | | | | | | | | | | | In Winter | | | | 216.41 | | | | | \exists | | | | | | In Summer | | | | 193.00 | | | | | \exists | | | | | | Model Name | | | | Logic Air 8kW | | | | | \exists | | | | | | Manufacturer | | | | Atlantic | | | | | _ | | | | | | System Type | | | | Heat Pump | | | | | _ | | | | | | Controls SAP Code | | | | 2207 | | | | | | | | | | SAP 10 Online 2.13.11 Page 2 of 4 | | | 1 | |---|---|------------------------------------| | Delayed Start Stat | No |] | | HETAS approved System | No |] | | Oil Pump Inside | No |] | | FI Case | 0.00 |] | | Flue Type | None or Unknown |] | | Fan Assisted Flue | No | | | Is MHS Pumped | Pump in heated space | | | Heating Pump Age | 2013 or later | | | Heat Emitter | Radiators | | | Flow Temperature | Enter value | | | Flow Temperature Value | 55.00 | | | Boiler Interlock | No | | | 25.0 Main Heating 2 | None |] | | 26.0 Heat Networks | None | | | Heat Source Fuel Type Heating U Heat source 1 None Heat source 2 None Heat source 3 None Heat source 4 None Heat source 5 None | se Efficiency Percentage Of Heat Heat Ele
Heat Power
Ratio | ctrical Fuel Factor Efficiency typ | | 28.0 Water Heating | | | | Water Heating | Main Heating 1 | | | SAP Code | 901 | | | Flue Gas Heat Recovery System | No |] | | Waste Water Heat Recovery Instantaneous System 1 | No |] | | Waste Water Heat Recovery Instantaneous System 2 | No |] | | Waste Water Heat Recovery Storage System | No |] | | Solar Panel | No |] | | Water use <= 125 litres/person/day | Yes |] | | Summer Immersion | No |] | | Cold Water Source | From header tank |] | | Bath Count | 0 |] | | Supplementary Immersion | No | | | Immersion Only Heating Hot Water | No | | | 28.1 Showers Description Shower Typ 1 Combi boiler | e Flow Rate Rated Power ([[/min] [kW] or unvented hot water system 11.00 | Connected Connected To | | 28.3 Waste Water Heat Recovery System | or anvented not water system 11.00 | 110 | | 29.0 Hot Water Cylinder | Hot Water Cylinder |
1 | | | Yes |] | | Cylinder In Heated Space | |] | | Cylinder In Heated Space | Yes | J
1 | | Independent Time Control | Yes Magazinad Laga |] | | Insulation Type | Measured Loss |] | | Cylinder Volume | 150.00 |] L | | Loss | 2.09 | kWh/day | | Pipes insulation | Fully insulated primary pipework |] | | In Airing Cupboard | No | | | 31.0 Thermal Store | None |] | SAP 10 Online 2.13.11 Page 3 of 4 | 32.0 Photovoltai | ic Unit | | | One Dwelli | ng | | | | | | |
--|----------------------------|-----------------|-----------|-------------|-----------|---------------|-----------------|------------------|---------------|---------------------------------|----------------------------| | Export Capab | ole Meter? | | | Yes | | | | | | | | | Connected To | Dwelling | | | Yes | | | | | | | | | Diverter | | | | No | | | | | | | | | Battery Capa | city [kWh] | | | 0.00 | | | | | | | | | PV Cel | ls kWp | Orientation | Elevation | Oversi | hading | FGHRS | MCS Certificate | e Overs
Facto | shading
or | MCS
Certificate
Reference | Panel
Manufacturer | | 1.04 | | South West | 45° | None (| Or Little | No | No | 1.00 | | reference | | | 34.0 Small-scale | Hydro | | | None | | | | | | | | | Electricity Ge | nerated | | | 0.00 | | | | | | | | | Apportioned | | | | 0.00 | | | | | kWh/Ye | ear | | | Connected to | dwelling's ele | ctricity meter | | Yes | | | | | | | | | Electricity Ge | neration | | | Annual | | | | | | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oc | t Nov | Dec | | Recommendation Lower cost rown None Further mean | neasures
sures to achie | eve even higher | | ypical Cost | | Typical savin | gs per year | SAP ra | | fter improvem
Environi | ent
nental Impact
() | | | Solar water | er heating | | | | | | 0 | - | | | SAP 10 Online 2.13.11 Page 4 of 4 | D | | | 7.0 | | | | | | | | | arm | | |--|--|---|-------------------------|-----------------|-------------------------|-------------------------|--------------|-------------------------------------|--|--|--|---|--| | Property Reference | | | nit 2 | | | | | | | Issued on Da | | 05/03/2024 | | | Assessment Refer | rence | P۱ | | | | | | Prop Type Re | ef | ebby and Son | Garage | | | | Property | | Ur | nit 1, Highland S | quare , Bristol | | | | | | | | | | | SAP Rating | | | | | 88 B | | DER | 3.3 | 1 | TER | | 14.62 | | | Environmental | | | | | 98 A | | % DER < TER | O.C | | | | 77.36 | | | CO ₂ Emissions (t/) | vear) | | | | 0.12 | | DFEE | 31. | 57 | TFEE | | 35.81 | | | Compliance Check | | | | | See BREL | | % DFEE < TFE | | J1 | | | 11.86 | | | % DPER < TPER | N. | | | | 46.29 | | DPER | 41. | 74 | TPER | | 77.71 | | | // DPER < IPER | | | | | 40.29 | | DFLIX | 41. | 14 | IFLIX | | 11.11 | | | Assessor Details | | | | | | | | | | Asses | sor ID | U367-000 |)1 | | SAP 10 WORKSHEET | FOR New B | Build (As D | esigned) | Version 10 | | | | | | | | | | | CALCULATION OF D | DWELLING EM | MISSIONS FO | | | | | | | | | | | | | 1. Overall dwell Ground floor Total floor area Dwelling volume | | | :)+(ld)+(le) | (ln) | 4 | 2.6100 | | Area
(m2)
42.6100 | | | (2b) =(3n) = | Volume
(m3)
106.5250 | (4) | | Number of open c
Number of open f
Number of chimne
Number of flues
Number of flues
Number of blocke
Number of interm
Number of passiv
Number of fluele | chimneys llues eys / flues attached t attached t ed chimneys ittent ext events | to solid fu
to other he
s
tract fans | el boiler | re | | | | | | | 0 * 80 =
0 * 20 =
0 * 10 =
0 * 20 =
0 * 35 =
0 * 20 =
2 * 10 =
0 * 10 = | 0.0000
0.0000
0.0000
0.0000
0.0000 | (6a)
(6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b) | | nfiltration due
ressure test
Yressure Test Me
leasured/design
nfiltration rat
Number of sides | ethod
AP50
ce | eys, flues | and fans = | = (6a)+(6b) | +(6c)+(6d)+(| 6e)+(6f)+(| 6g)+(7a)+(7 | 7b)+(7c) = | | | / (5) = | es per hour
0.1877
Yes
3lower Door
5.0000
0.4377 | (17) | | Shelter factor
Infiltration rat | ce adjusted | i to includ | e shelter fa | actor | | | | | (20) = 1 - (2 | [0.075 x
(1) = (18) 2 | (19)] =
(20) = | 0.7750
0.3393 | | | Wind speed
Wind factor
Adj infilt rate | Jan
5.1000
1.2750 | | Mar
4.9000
1.2250 | | May
4.3000
1.0750 | Jun
3.8000
0.9500 | | Aug
3.7000
0.9250 | | Oct
4.3000
1.0750 | | | | | Effective ac | 0.4326 | | | | 0.3647
0.5665 | | | 0.3138
0.5492 | | 0.3647
0.5665 | | | | | . Heat losses a | and heat lo | ss paramet | er | | | | | | | | | | | | lement | | | | Gross | Openings | Net | Area | U-value | Αx | U K- | -value | AxK | | | indows (Uw = 1.
eatloss Floor 1
avity Wall | | -1 | | m2
43.4000 | m2
5.5800 | 5.
42.
37. | 6100
8200 | W/m2K
1.2448
0.1200
0.1800 | 6.945 | 8 | | kJ/K
3195.7500
5673.0000 | (27)
(28a)
(29a) | | otal net area o
abric heat loss
arty Wall 1
arty Ceiling 1
nternal Wall 1 | | | Aum(A, MZ) | | | 41.
42. | | | = 18.866
0.000 | 10 70
30 | 0.0000
0.0000
0.0000 | 2907.8000
1278.3000
5050.0000 | (32b) | | eat capacity Cm
hermal mass par
ist of Thermal | ameter (TM
Bridges | | FA) in kJ/m2 | îK | | | | | (30) + (32 | (32a). | . (32e) = | 18104.8500
424.8967 | (34) | | K1 Eleme
E2 Other
E3 Sill
E4 Jamb
E5 Groun
E7 Party
P1 Party | ent
: lintels (
nd floor (n
/ floor bet
/ wall - Gr | normal)
ween dwell | | ocks of fla | ts)
gs (in block | s of flats | ·) | 3
9
17
17 | 3.4100
3.4100
9.8400
7.3600
7.3600 | 0.0230
0.0210
0.0210
0.0160
0.0470
0.0380
0.0930
0.0000 | Tot
0.07
0.07
0.15
0.81
0.65
1.62 | 784
716
574
159
597 | | SAP 10 Online 2.13.11 Page 1 of 7 | E25 St
E18 Pa | rty wall be | rty wall bet
etween dwell | | _ | | | | 5 | .0000
.0000
.0000 | 0.0430
0.0360
0.0460 | 0.21
0.18
0.23 | 00 | (25) | |---|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|----------------| | Thermal bridge
Point Thermal :
Total fabric h | bridges | Psi) calcul | lated using | Appendix K | 5) | | | | (| 33) + (36) - | (36a) =
+ (36a) = | 4.0281
0.0000
22.8948 | | | Ventilation he | at loss cal | lculated mor | nthly (38)m
Mar | = 0.33 x (| (25)m x (5)
May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | (38)m
Heat transfer | 20.8652 | 20.7375 | 20.6123 | 20.0244 | 19.9144 | 19.4024 | 19.4024 | 19.3075 | 19.5996 | 19.9144 | 20.1369 | 20.3696 | (38) | | Average = Sum(| 43.7600
39)m / 12 = | 43.6323 | 43.5071 | 42.9192 | 42.8092 | 42.2971 | 42.2971 | 42.2023 | 42.4944 | 42.8092 | 43.0317 | 43.2644
42.9187 | (39) | | HLP
HLP (average) | Jan
1.0270 | Feb
1.0240 | Mar
1.0211 | Apr
1.0073 | May
1.0047 | Jun
0.9927 | Jul
0.9927 | Aug
0.9904 | Sep
0.9973 | Oct
1.0047 | Nov
1.0099 | Dec
1.0154
1.0072 | (40) | | Days in mont | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | | | | | | | | | | | | | | | | | | 4. Water heati | ng energy i | requirements | s (kWh/year) | | | | | | | | | | | | Assumed occupa
Hot water usag | ncy | | | | | | | | | | | 1.4773 | (42) | | Hot water usag | 84.2374
e for baths | 82.9478
3 | 81.0472 | 78.1233 | 75.5037 | 71.8388 | 68.9401 | 72.3289 | 74.0333 | 77.6632 | 81.4434 | 84.1615 | | | Hot water usag | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Average daily | 29.7591
hot water u | 28.6769
use (litres | 27.5948
/day) | 26.5126 | 25.4305 | 24.3483 | 24.3483 | 25.4305 | 26.5126 | 27.5948 | 28.6769 | 29.7591
104.7141 | | | Daily hot wate | | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Energy conte | | 111.6247
147.7021 | 108.6419
155.2471 | 104.6360
136.6807 | 100.9342
130.0639 | 96.1872
111.2372 | 93.2885
103.0865 | 97.7593
115.0645 | 100.5459
116.6282 | 105.2579
135.6355 | 110.1203 | 113.9206
167.3007 | | | Energy content
Distribution 1 | | = 0.15 x (4 | 45)m
23.2871 | 20.5021 | 19.5096 | 16.6856 | 15.4630 | 17.2597 | 17.4942 | 20.3453 | um(45)m = 22.3247 | 1635.3004
25.0951 | (46) | | Water storage
Store volume
a) If manufac | | ared loss fa | actor is kno | own (kWh/d | lay): | | | | | | | 150.0000
2.0900 | | | Temperature
Enter (49) or
Total storage | (54) in (55 | | | | | | | | | | | 0.5400
1.1286 | | | If cylinder co | 34.9866 | 31.6008
icated solar | 34.9866
r storage | 33.8580 | 34.9866 | 33.8580 | 34.9866 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | (56) | | Primary loss
Combi loss | 34.9866
23.2624
0.0000 | 31.6008
21.0112
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | (59) | | Total heat req | 0.0000 | | 213.4961
0.0000 | 193.0507
0.0000 | 188.3129
0.0000 | 167.6072
0.0000 | 161.3355
0.0000 | 173.3135
0.0000 | 172.9982
0.0000 | 193.8845
0.0000 | 205.2013 | 225.5497
0.0000 | | | PV diverter
Solar input | -0.0000
0.0000 (63b)
(63c) | | FGHRS
Output from w/
| 0.0000
h
226.0716 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
161.3355 | 0.0000
173.3135 | 0.0000
172.9982 | 0.0000 | 0.0000 | 0.0000 | | | 12Total per ye | ar (kWh/yea | | | | | | | | er year (kW | | | 2321.1354
2321 | (64) | | Electric showe | 0.0000 | 0.0000 | 0.0000 | 0.0000
Tot | 0.0000
al Energy us | 0.0000 | 0.0000 | 0.0000 | 0.0000
wer(s) (WWh | 0.0000
/wear) = Su | 0.0000
m(64a)m = | 0.0000 | | | Heat gains from | m water hea
102.4002 | ating, kWh/r
91.2005 | month
98.2189 | 90.5423 | 89.8455 | 82.0824 | 80.8755 | 84.8582 | 83.8749 | 91.6980 | 94.5824 | 102.2267 | | | | | | | | | | | | | | | | | | 5. Internal ga | ins (see Ta | able 5 and 5 | | | | | | | | | | | | | Metabolic gain | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | (66)m
Lighting gains | (calculate | ed in Append | dix L, equat | tion L9 or | 73.8652
L9a), also s
70.3680 | see Table 5 | | 73.8652
70.3680 | | 73.8652
70.3680 | 73.8652
72.7136 | | | | Appliances gai | ns (calcula | ated in Appe | endix L, eq | ation L13 | or L13a), al
109.9886 | lso see Tab | le 5 | 94.5408 | | 105.0258 | | 70.3680 | | | Cooking gains | (calculated
30.3865 | d in Appendi
30.3865 | ix L, equat: 30.3865 | ion L15 or
30.3865 | L15a), also
30.3865 | see Table : 30.3865 | 5
30.3865 | 30.3865 | 30.3865 | 30.3865 | 30.3865 | 30.3865 | (69) | | Pumps, fans
Losses e.g. ev | aporation | (negative va | alues) (Tabi | le 5) | | | | | 0.0000 | | | | | | Water heating | gains (Tabl | le 5) | | | -59.0922
120.7600 | | | | -59.0922
116.4929 | -59.0922 | | -59.0922
137.4015 | | | Total internal | gains | | | | 346.2762 | 6. Solar gains | | | | | | | | | | | | | | | [Jan] | | | | rea
m2 | Solar flux
Table 6a
W/m2 | Speci
or | g
fic data
Table 6b | Specific
or Tab | FF
data
le 6c | Acce
fact
Table | ss
or
6d | Gains
W | | | Northeast
Southeast | | | 3.77
1.80 | 200
500 | 11.2829
36.7938 | | 0.6300
0.6300 | 0 | .7000
.7000 | 0.77
0.77 | 00
00 | 12.8274
20.9151 | (75)
(77) | | Solar gains
Total gains | | | | | | | | | | | | | | | 7. Mean intern | al temperat | ture (heatin | ng season) | | | | | | | | | | | SAP 10 Online 2.13.11 Page 2 of 7 | Temperature du
Utilisation fa | | | | | | Thl (C) | | | | | | 21.0000 | (85) | |--|--|--|---|------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-----------------------------------|---------------------------------|---|-------------------------| | tau
alpha | Jan
114.9252
8.6617 | Feb
115.2615
8.6841 | Mar
115.5931
8.7062 | Apr
117.1766
8.8118 | May
117.4777
8.8318 | Jun
118.8999
8.9267 | Jul
118.8999
8.9267 | Aug
119.1671
8.9445 | Sep
118.3480
8.8899 | Oct
117.4777
8.8318 | Nov
116.8702
8.7913 | Dec
116.2417
8.7494 | | | util living ar | ea
0.9968 | 0.9924 | 0.9793 | 0.9140 | 0.7500 | 0.5286 | 0.3810 | 0.4165 | 0.6570 | 0.9268 | 0.9894 | 0.9974 | (86) | | Living
Non living
24 / 16
24 / 9 | 20.4788
19.4774
0 | 20.5792
19.6060
0 | 20.7186
19.7800
0 | 20.8978
19.9920
0 | 20.9839
20.0701
0 | 20.9993
20.0892
0 | 21.0000
20.0895
0 | 20.9999
20.0913
0 | 20.9957
20.0839
0 | 20.9003
20.0006
0 | 20.6739
19.7354
0 | 20.4666
19.4698
0 | | | 16 / 9
MIT
Th 2 | 28
20.7334
20.0609 | 0
20.5792
20.0634 | 20.7186
20.0658 | 0
20.8978
20.0773 | 20.9839
20.0794 | 0
20.9993
20.0895 | 0
21.0000
20.0895 | 0
20.9999
20.0913 | 0
20.9957
20.0856 | 20.9003
20.0794 | 0
20.6739
20.0751 | 10
20.5412
20.0706 | (87) | | util rest of h | 0.9951 | 0.9885 | 0.9687 | 0.8782 | 0.6842 | 0.4539 | 0.3022 | 0.3343 | 0.5732 | 0.8878 | 0.9831 | 0.9960 | | | MIT 2
Living area fr
MIT | 19.8283
action
20.2899 | 19.6060 | 19.7800
20.2586 | 19.9920
20.4539 | 20.0701 | 20.0892 | 20.0895 | 20.0913 | 20.0839
fLA =
20.5489 | 20.0006
Living area
20.4594 | 19.7354
a / (4) =
20.2141 | 19.5781
0.5100
20.0692 | (91) | | Temperature ad | | 20.1023 | 20.2586 | 20.4539 | 20.5361 | 20.5533 | 20.5538 | 20.5547 | 20.5489 | 20.4594 | 20.2141 | 0.0000
20.0692 | | | , | | | | | | | | | | | | | (/ | | 8. Space heati | ng requirem | ment | | | | | | | | | | | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Utilisation Useful gains Ext temp. Heat loss rate | 0.9956
413.2100
4.3000 | 0.9887 | 0.9713
455.9742
6.5000 | 0.8941
447.2852
8.9000 | 0.7177
371.5924
11.7000 | 0.4921
251.5790
14.6000 | 0.3424
167.2263
16.6000 | 0.3762
175.3195
16.4000 | 0.6161
272.5521
14.1000 | 0.9056
375.9118
10.6000 | 0.9842
398.0864
7.1000 | 0.9960
402.1897
4.2000 | (95) | | Space heating | 699.7161 | 663.3118 | 598.5985 | 495.8843 | 378.2663 | 251.8087 | 167.2340 | 175.3370 | 274.0424 | 422.0737 | 564.3203 | 686.5728 | (97) | | Space heating
Solar heating | 213.1605
requirement
kWh | _ | - ' | | 4.9654 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 34.3445 | 119.6884 | 211.5810
871.6171 | | | Solar heating
Space heating | | 0.0000
on - total p | 0.0000
per year (kV | 0.0000
Wh/year) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Space heating
Space heating | 213.1605
requirement | 146.7733
t after sol | | 34.9914
tion - tota | 4.9654
l per year | 0.0000
(kWh/year) | 0.0000 | 0.0000 | 0.0000 | 34.3445
(98c) | 119.6884 | 211.5810
871.6171
20.4557 | | | | | | | | | | | | | | | | | | 9a. Energy req | uirements - | - Individua | l heating sy | ystems, inc | luding micr | o-CHP | | | | | | | | | Fraction of sp
Fraction of sp
Efficiency of
Efficiency of | ace heat fr
main space
main space | rom main sy:
heating sy:
heating sy: | stem(s)
stem 1 (in 9
stem 2 (in 9 | b)
b) | m (Table 11 |) | | | | | | 0.0000
1.0000
216.4148
0.0000 | (202)
(206)
(207) | | Efficiency of | | | | | | | 7 | | 2 | 0 | ¥ | 0.0000 | (208) | | Space heating | | Feb
t
146.7733 | Mar | Apr
34.9914 | May
4.9654 | Jun
0.0000 | Jul
0.0000 | Aug
0.0000 | Sep
0.0000 | Oct
34.3445 | Nov
119.6884 | Dec
211.5810 | (98) | | Space heating | efficiency | (main heat | | L) | 216.4148 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 216.4148 | 216.4148 | 216.4148 | | | Space heating | | | | 16.1687 | 2.2944 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 15.8697 | 55.3051 | 97.7664 | | | Space heating | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (212) | | Space heating | 0.0000 | 0.0000 | stem 2)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (213) | | Space heating | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating
Water heating | | | | | | | | | | | | | | | Efficiency of | water heate | | | 193.0507
192.9954 | 188.3129
192.9954 | 167.6072
192.9954 | 161.3355 | 173.3135
192.9954 | 172.9982
192.9954 | 193.8845 | 205.2013 | 225.5497
192.9954 | (216) | | (217)m
Fuel for water | heating, h | 192.9954
kWh/month
103.7922 | 192.9954 | 192.9954 | 97.5738 | 86.8452 | 192.9954
83.5955 | 89.8019 | 89.6385 | 192.9954 | 192.9954
106.3245 | 192.9954
116.8679 | | | Space cooling (221)m | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Pumps and Fa
Lighting | 0.0000
14.6211 | 0.0000
11.7296 | 0.0000
10.5612 | 0.0000
7.7376 | 0.0000
5.9767 | 0.0000
4.8830 | 0.0000
5.4522 | 0.0000
7.0869 | 0.0000
9.2052 | 0.0000
12.0778 | 0.0000
13.6418 | 0.0000
15.0274 | (231) | | Electricity ge
(233a)m | -19.3185 | -28.8947 | -43.6943 | -50.8931 | -56.6273 | | -52.6553 | -49.0010 | -41.9125 | -33.4240 | -21.6612 | -16.5092 | (233a) | | Electricity ge
(234a)m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234a) | | Electricity ge
(235a)m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235a) | | Electricity us
(235c)m
Electricity ge | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235c) | | (233b)m
Electricity ge | -5.5454 | -12.3875 | -26.0373 | -41.6892 | -56.9661 | | -57.3644 | -47.6525 | -34.4452 | -19.1954 | -7.7904 | -4.3248 | (233b) | | (234b)m
Electricity ge | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
itv) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234b) | | (235b)m
Electricity us | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
eneration) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235b) | | (235d)m
Annual totals | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235d) | | Space heating
Space heating
Space heating
Efficiency of
Water heating
Space cooling | fuel - mair
fuel - seco
water heate
fuel used | n system 2
ondary | | | | | | | | | | 402.7529
0.0000
0.0000
192.9954
1202.6898
0.0000 | (213)
(215)
(219) | | Electricity fo
Total
electric
Electricity fo | or pumps and | e above, kW | | ix L) | | | | | | | | 0.0000
118.0005 | (231) | | Energy saving/
PV generation | generation | technologi | es (Appendio | ces M ,N and | d Q) | | | | | | | -839.3408 | (233) | SAP 10 Online 2.13.11 Page 3 of 7 | Wind generation
Hydro-electric (
Electricity gene
Appendix Q - spe
Energy saved or
Energy used
Total delivered | generation (/
erated - Micr
ecial feature
generated | ro CHP (Ap | | | | | | | | | | 0.0000
0.0000
0.0000
-0.0000
0.0000
884.1024 | (235a)
(235)
(236)
(237) | |--|--|---|---|--|-----------------------------------|-------------------------|-------------------------|--------------------------|-----------------------------------|--|--|--|---| | 12a. Carbon diox | vide emission | ns - India | ridual heati | na erreteme | including | micro-CHP | | | | | | | | | | | | | | | | | Energy | Emissic | n factor | | Emissions | | | | | | | | | | | kWh/year | kg | CO2/kWh | | kg CO2/year | | | Space heating -
Total CO2 associ | iated with co | | ystems | | | | | 402.7529 | | 0.1576 | | 63.4683
0.0000 | (373) | | Water heating (o
Space and water | | | | | | | 1 | 202.6898 | | 0.1407 | | 169.2707
232.7390 | | | Pumps, fans and
Energy for light | | ep-hot | | | | | | 0.0000
118.0005 | | 0.0000
0.1443 | | 0.0000
17.0311 | | | Energy saving/o | _ | echnologie | • 9 | | | | | | | | | | . , | | PV Unit electric | city used in | dwelling | .5 | | | | | 468.0970
371.2438 | | 0.1337
0.1244 | | -62.5842
-46.1715 | | | Total | | u | | | | | _ | 3/1.2430 | | 0.1244 | | -108.7557 | (269) | | Total CO2, kg/ye
EPC Dwelling Car | | Emission | Rate (DER) | | | | | | | | | 141.0145
3.3100 | 13a. Primary ene | ergy - Indiv | idual heat | ing systems | including | micro-CHP | | | | | | | | | | | | | | | | | | | Primary energ | | | | | | Space heating - | | | | | | | | kWh/year
402.7529 | kg | 1.5834 | | kWh/year
637.7116 | (275) | | Total CO2 associ | other fuel) | ommunity s | ystems | | | | 1 | 202.6898 | | 1.5204 | | 0.0000
1828.5813 | (278) | | Space and water
Pumps, fans and | | ep-hot | | | | | | 0.0000 | | 0.0000 | | 2466.2929
0.0000 | | | Energy for light | | | | | | | | 118.0005 | | 1.5338 | | 180.9931 | | | Energy saving/g | | | :5 | | | | | 468.0970 | | 1.4941 | | -699.3757 | | | PV Unit electric | | | | | | | | 371.2438 | | 0.4565 | | -169.4603 | | | Total
Total Primary er | nergy kWh/yea | ar | | | | | | | | | | -868.8359
1778.4501 | (286) | | Dwelling Primary | y energy Rate | e (DPER) | | | | | | | | | | 41.7400 | (287) | | SAP 10 WORKSHEET
CALCULATION OF 1 | | |
esigned) (| Version 10. | 2, Februar | y 2022) | 1. Overall dwell | ling characte | eristics | Area
(m2) | Store | y height | | | | | Ground floor | - TEN (1-) | . (15) . (1-) | . (14) . (1-) | (1-) | | | | (1112) | | | | Volume | (1b) - (3b) | | Total floor area
Dwelling volume | | +(1D)+(1C) | +(1a)+(1e). | | | 40 (100 | | 42.6100 | (lb) x | (m)
2.5000 | (2b) = | (m3) | (4)
(5) | | | | | | , | | 42.6100 | | | (1b) x
3a)+(3b)+(3c)+ | 2.5000 | | (m3)
106.5250 | | | | | | | ,, | | 42.6100 | | | | 2.5000 | | (m3)
106.5250 | | | | | | | , | | 42.6100 | | | | 2.5000 | | (m3)
106.5250 | | | 2. Ventilation |
rate | | | | | 42.6100 | | | | 2.5000 | | (m3)
106.5250 | | | 2. Ventilation 1 | | | | | | 42.6100 | | | | 2.5000 | (3n) = | (m3)
106.5250
106.5250 | | | | | | | | | 42.6100 | | | | 2.5000 | (3n) = | (m3)
106.5250
106.5250
m3 per hour | | | Number of open of | chimneys
flues | | | | | 42.6100 | | | | 2.5000 | 0 * 80 =
0 * 20 = | (m3)
106.5250
106.5250
m3 per hour
0.0000
0.0000 | (6a)
(6b) | | Number of open of
Number of open in
Number of chimned
Number of flues | chimneys
flues
eys / flues a
attached to | solid fue | l boiler | | | 42.6100 | | | | 2.5000 | 0 * 80 =
0 * 20 =
0 * 20 =
0 * 20 = | (m3)
106.5250
106.5250
m3 per hour
0.0000
0.0000
0.0000 | (6a)
(6b)
(6c)
(6d) | | Number of open of
Number of open in
Number of chimmen
Number of flues
Number of flues
Number of blocke | chimneys
flues
eys / flues a
attached to
attached to
ed chimneys | solid fue
other hea | l boiler | | | 42.6100 | | | | 2.5000 | 0 * 80 =
0 * 20 =
0 * 20 =
0 * 35 =
0 * 20 = | (m3)
106.5250
106.5250
m3 per hour
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | (6a)
(6b)
(6c)
(6d)
(6e) | | Number of open of
Number of open in
Number of chimme
Number of flues
Number of flues | chimneys
flues
eys / flues a
attached to
attached to
ed chimneys
mittent extra | solid fue
other hea | l boiler | | | 42.6100 | | | | 2.5000 | 0 * 80 =
0 * 20 =
0 * 10 =
0 * 35 = | (m3)
106.5250
106.5250
m3 per hour
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | (6a)
(6b)
(6c)
(6d)
(6e)
(6f)
(7a) | | Number of open of
Number of open in
Number of chimne
Number of flues
Number of blocke
Number of inter | chimneys flues eys / flues a attached to attached to ed chimneys mittent extra | solid fue
other hea
act fans | l boiler | | | 42.6100 | | | | 2.5000 | 0 * 80 = 0 * 20 = 0 * 10 = 0 * 35 = 0 * 20 = 2 * 10 = 2 * 10 = 2 | m3) 106.5250
106.5250
106.5250
m3 per hour
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | (6a)
(6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b) | | Number of open of
Number of open in
Number of chimme
Number of flues
Number of flues
Number of blocket
Number of intern
Number of passiv
Number of fluele | chimneys flues eys / flues a attached to attached to ed chimneys mittent extra ve vents ess gas fires | solid fue
other hea
act fans | el boiler
eter | re | | | 6a) + (7a) + (7h | (: | 3a)+(3b)+(3c)+ | 2.5000
(3d)+(3e) | 0 * 80 = 0 * 10 = 0 * 20 = 0 * 20 = 2 * 10 = 0 * 20 = 2 * 10 = 0 * 40 = Air change | (m3)
106.5250
106.5250
m3 per hour
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | (6a)
(6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b)
(7c) | | Number of open of Number of open in Number of chimne Number of flues Number of flues Number of intern Number of passis Number of fluele | chimneys flues eys / flues a attached to attached to ed chimneys mittent extra ve vents ess gas fires | solid fue
other hea
act fans | el boiler
eter | re | | | 6g) + (7a) + (7b | (: | 3a)+(3b)+(3c)+ | 2.5000
(3d)+(3e) | 0 * 80 =
0 * 20 =
0 * 10 =
0 * 20 =
0 * 35 =
0 * 20 =
2 * 10 =
0 * 40 =
Air change | m3) 106.5250 106.5250 106.5250 m3 per hour 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | (6a)
(6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b)
(7c) | | Number of open of
Number of open in
Number of open in
Number of chimme
Number of flues
Number of block
Number of intern
Number of passiv
Number of fluels
Infiltration due
Pressure test
Pressure test
Measured/design | chimneys flues eys / flues a attached to attached to ed chimneys mittent extra ve vents ess gas fires e to chimneys ethod AP50 | solid fue
other hea
act fans | el boiler
eter | re | | | 6g) + (7a) + (7b | (: | 3a)+(3b)+(3c)+ | 2.5000
(3d)+(3e) | 0 * 80 =
0 * 20 =
0 * 10 =
0 * 20 =
0 * 35 =
0 * 20 =
2 * 10 =
0 * 40 =
Air change | m3 per hour 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 20.0000 0.0000 0.0000 85 per hour 0.1877 Yes Blower Door | (6a)
(6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b)
(7c) | | Number of open of Number of open of Number of chimme Number of flues Number of flues Number of passis Number of passis Number of flueld Infiltration due Pressure test Merce Number Number test Merce Number test Merce Number test Merce Number test N | chimneys flues eys / flues a attached to attached to ed chimneys we vents ess gas fires e to chimneys ethod AP50 te | solid fue
other hea
act fans | el boiler
eter | re | | | 6g) + (7a) + (7b | (: | 3a)+(3b)+(3c)+ | 2.5000
(3d)+(3e) | 0 * 80 =
0 * 20 =
0 * 10 =
0 * 20 =
0 * 35 =
0 * 20 =
2 * 10 =
0 * 40 =
Air change | m3) 106.5250 106.5250 106.5250 m3 per hour 0.0000 | (6a)
(6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b)
(7c) | | Number of open of
Number of open of
Number of chimne
Number of flues
Number of flues
Number of inter
Number of passiv
Number of fluele
Infiltration due
Pressure test
Pressure Test Me
Measured/design
Infiltration rat | chimneys flues eys / flues a attached to attached to ed chimneys we vents ess gas fires e to chimneys ethod AP50 te | solid fue
other hea
act fans | el boiler
eter | re | | | 6g) + (7a) + (7b | (: | 3a)+(3b)+(3c)+ | 2.5000
(3d)+(3e) | 0 * 80 =
0 * 20 =
0 * 10 =
0 * 20 =
0 * 35 =
0 * 20 =
2 * 10 =
0 * 40 =
Air change | m3) 106.5250 106.5250 106.5250 m3 per hour 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | (6a)
(6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b)
(7c)
(8) | | Number of open of Number of open in Number of chimne Number of flues Number of flues Number of intern Number of intern Number of intern Number of fluele Infiltration due Pressure test Pressure test Pressure Test Measured/design Infiltration rat Number of sides | chimneys flues eys / flues a attached
to attached to ed chimneys mittent extra eve vents ess gas fires e to chimneys ethod AP50 te sheltered | solid fue
other hea
act fans
s
s, flues a | l boiler
ter | re: (6a)+(6b)+ | | | 6g) + (7a) + (7b | (: | (20) = 1 - | 2.5000
(3d)+(3e)
20.0000 | 0 * 80 =
0 * 20 =
0 * 10 =
0 * 20 =
0 * 35 =
0 * 20 =
2 * 10 =
0 * 40 =
Air change | (m3)
106.5250
106.5250
106.5250
m3 per hour
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.00000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.00000
0.00000
0.00000
0.00000
0.0000
0.0000 | (6a)
(6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b)
(7c)
(8)
(17)
(18)
(19) | | Number of open of Number of open of Number of chimme Number of flues Number of flues Number of blocke Number of passis Number of fluele Infiltration due Pressure test Pressure Test Me Measured/design Infiltration rat Number of sides Shelter factor | chimneys flues eys / flues a attached to attached to ed chimneys mittent extra ve vents ess gas fire: e to chimneys ethod AP50 te sheltered te adjusted i | solid fue other hea act fans s s, flues a | el boiler
ter
and fans = | re: (6a)+(6b)+ | | (6e)+(6f)+(| | (;
 | (20) = 1 - (21) | 2.5000
(3d)+(3e)
20.0000
(0.075) = (18) | 0 * 80 = 0 * 20 = 0 * 20 = 0 * 20 = 2 * 10 = 0 * 40 = Air change / (5) = x (19)] = x (20) = | (m3)
106.5250
106.5250
106.5250
m3 per hour
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.00000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.00000
0.00000
0.00000
0.00000
0.0000
0.0000 | (6a)
(6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b)
(7c)
(8)
(17)
(18)
(19) | | Number of open of Number of open of Number of chimne Number of flues Number of flues Number of passiv Number of passiv Number of flueld Infiltration due Pressure test Measured/design Infiltration rat Number of sides Shelter factor Infiltration rat Wind speed | chimneys flues eys / flues a attached to attached to ed chimneys ex verts es gas fires e to chimneys ethod AP50 te sheltered te adjusted to | solid fue other hea act fans s s, flues a to include | el boiler
ter
and fans =
shelter fa
Mar
4.9000 | re (6a)+(6b)+ ctor Apr 4.4000 | (6c)+(6d)+
May
4.3000 | (6e)+(6f)+(| Jul
3.8000 | (:
 | (20) = 1 - (21) Sep 4.0000 | 2.5000
(3d)+(3e)
20.0000
(0.075 2)
) = (18)
Oct
4.3000 | 0 * 80 =
0 * 20 =
0 * 10 =
0 * 20 =
0 * 35 =
0 * 20 =
2 * 10 =
0 * 40 =
Air change
0 / (5) =
(19)] =
x (20) = | (m3) 106.5250 106.5250 106.5250 m3 per hour 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 | (6a)
(6b)
(6c)
(6c)
(6d)
(6e)
(7a)
(7b)
(7c)
(8)
(17)
(18)
(19)
(20)
(21) | | Number of open of Number of open in Number of chimne Number of flues Number of flues Number of intern Number of intern Number of intern Number of intern Number of fluels Infiltration dust Pressure test Pressure test Pressure Test Measured/design Infiltration rat Number of sides Shelter factor Infiltration rat | chimneys flues eys / flues a attached to attached to ed chimneys mittent extra ve vents ess gas fires e to chimneys ethod AP50 te sheltered te adjusted 1 Jan 5.1000 1.2750 | solid fue other hea act fans s s, flues a to include Feb 5.0000 1.2500 | e shelter fa |
re (6a)+(6b)+ ctor Apr 4.4000 1.1000 | May
4.3000
1.0750 | Jun
3.8000
0.9500 | Jul
3.8000
0.9500 | Aug 3.7000 0.9250 | (20) = 1 - (21) Sep 4.0000 1.0000 | 2.5000
(3d)+(3e)
20.0000
[0.075 x]
) = (18)
Oct
4.3000
1.0750 | 0 * 80 =
0 * 20 =
0 * 10 =
0 * 20 =
0 * 35 =
0 * 20 =
2 * 10 =
0 * 40 =
Air change
0 / (5) =
1
1
1
1
1
1
1
1
1
1
1
1
1 | (m3) 106.5250 106.5250 106.5250 m3 per hour 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 | (6a)
(6b)
(6c)
(6c)
(6d)
(6e)
(7a)
(7b)
(7c)
(8)
(17)
(18)
(19)
(20)
(21) | | Number of open of Number of open of Number of open of Number of chimme Number of flues Number of blocke Number of passiv Number of passiv Number of flueld Infiltration due Pressure test Measured/design Infiltration rat Number of sides Shelter factor Infiltration rat Wind speed Wind speed Wind factor | chimneys flues eys / flues a attached to attached to ed chimneys mittent extra eve vents ess gas fires e to chimneys ethod AP50 te sheltered te adjusted 1 Jan 5.1000 1.2750 0.4326 | solid fue other hea act fans s s, flues a to include Feb 5.0000 1.2500 0.4241 | el boiler
ter
and fans =
shelter fa
Mar
4.9000 | re (6a)+(6b)+ ctor Apr 4.4000 1.1000 0.3732 | May
4.3000
1.0750
0.3647 | (6e)+(6f)+(| Jul
3.8000 | Aug 3.7000 0.9250 0.3138 | (20) = 1 - (21) Sep 4.0000 1.0000 | 2.5000
(3d)+(3e)
20.0000
(0.075 x)
) = (18)
Oct
4.3000
1.0750
0.3647 | 0 * 80 = 0 * 20 = 0 * 20 = 0 * 35 = 0 * 10 = 0 * 10 = 0 * 40 = 0 * | (m3) 106.5250 106.5250 106.5250 m3 per hour 0.0000 0.00 | (6a)
(6b)
(6c)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b)
(7c)
(8)
(17)
(18)
(19)
(20)
(21)
(22)
(22a)
(22b) | SAP 10 Online 2.13.11 Page 4 of 7 | 3. Heat losses | and best 1 | ogg naramot |
ter | | | | | | | | | | | |--|--|---
--|--|--|---|---|---|---|--|---
--|--| | 3. Heat losses
 | | | | Gross | Openings | | tArea | U-value | Ах | J K | -value | АхК | | | TER Opening Typ | pe (Uw = 1. | 20) | | m2 | openings
m2 | 2 | m2
.5800 | W/m2K
1.1450 | W/I
6.389 | K | kJ/m2K | kJ/K | | | Heatloss Floor
Cavity Wall | 1 | 1 | | 43.4000 | 5.5800 | 42 | .6100
.8200 | 0.1300
0.1800 | 5.5393
6.807 | 3 | | | (28a)
(29a) | | Total net area
Fabric heat lo | | | | | | 86 | .0100
(26)(| 30) + (32) | = 18.7362 | 2 | | | (31)
(33) | | Party Wall 1 | | | | | | 41 | .5400 | 0.0000 | 0.000 | 0 | | 40.555 | (32) | | Thermal mass pa | l Bridges | MP = Cm / T | rrA) in kJ/r | n2K | | | | _ | | -1 -r-1: | _ | 434.8967 | (35) | | K1 Eler
E2 Othe
E3 Sil | er lintels | (including | other stee | l lintels) | | | | 3 | | 0.0500
0.0500 | Tot
0.17
0.17 | 05 | | | E4 Jami | | normal) | | | | | | 9 | 9.8400
7.3600 | 0.0500
0.0500
0.1600 | 0.17
0.49
2.77 | 20 | | | E7 Par | ty floor be
ty wall - G | tween dwell | | locks of fl | ats) | | | 17 | 7.3600
7.3600
7.4200 | 0.0700 | 1.21
1.39 | 52 | | | P3 Part
E16 Co: | ty wall - I
rner (norma | ntermediate
1) | e floor bet | | ngs (in bloo | cks of flat | 3) | 17 | 7.4200
5.0000 | 0.0000 | 0.00
0.45 | 00 | | | E25 Sta
E18 Pa: | aggered par
rty wall be | ty wall bet
tween dwell | lings | | | | | 5 | 5.0000
5.0000 | 0.0600
0.0600 | 0.30
0.30 | 00 | | | Thermal bridges | bridges | Psi) calcul | lated using | Appendix K | i) | | | | | 2) | (36a) = | 7.2694 | | | Total fabric he | | milated mor | nth]; /20\- | - 0 22 1 | 25\m = /5\ | | | | (3: | 3) + (36) | + (36a) = | 26.0056 | (37) | | Ventilation hea | at 1088 cal
Jan
20.8652 | Feb
20.7375 | Mar
20.6123 | = 0.33 X (
Apr
20.0244 | 25) m x (5)
May
19.9144 | Jun
19.4024 | Jul
19.4024 | Aug
19.3075 | Sep
19.5996 | Oct
19.9144 | Nov
20.1369 | Dec
20.3696 | (38) | | (38)M
Heat transfer (| coeff | 46.7431 | 46.6180 | 46.0300 | 45.9200 | 45.4080 | 45.4080 | 45.3131 | 45.6052 | 45.9200 | 46.1426 | 46.3752 | | | Average = Sum(| | | | 10.0000 | 20.5200 | .0.4000 | 10.4000 | .5.5151 | .0.0002 | .0.5200 | | 46.0295 | | | HLP | Jan
1.1000 | Feb
1.0970 | Mar
1.0941 | Apr
1.0803 | May
1.0777 | Jun
1.0657 | Jul
1.0657 | Aug
1.0634 | Sep
1.0703 | Oct
1.0777 | Nov
1.0829 | Dec
1.0884 | | | HLP (average)
Days in mont | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 1.0803
31 | 4. Water heatin | | | | | | | | | | | | | | | Assumed occupat
Hot water usage | e for mixer | | | | | | | _ | | | | 1.4773 | | | Hot water usage | e for baths | | 60.5306 | 57.8972 | 55.9538 | 53.7865 | 52.5546 | 53.9206 | 55.4179 | 57.7449 | 60.4349 | 62.6107 | | | Hot water usage | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Average daily h | 29.7591
hot water u | 28.6769
se (litres/ | | 26.5126 | 25.4305 | 24.3483 | 24.3483 | 25.4305 | 26.5126 | 27.5948 | 28.6769 | 29.7591
85.0007 | | | | Jan | Feb | Mar | 3 | | T | | _ | | _ | | _ | | | Daily hot water | r use | | PIGL | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Energy conte | r use
92.6106
146.6726 | 90.5839 | 88.1254 | 84.4098
115.5528 | 81.3842
109.5588 | 78.1348
96.0759 | Jul
76.9029
93.0074 | 79.3510
98.2532 | 81.9305 | 85.3397
115.8051 | 89.1118
126.9562 | 92.3698
144.6288 | (45) | | _ | r use
92.6106
146.6726
(annual)
oss (46)m | 90.5839
128.9903
= 0.15 x (4 | 88.1254
135.4455
45)m | 84.4098
115.5528 | 81.3842
109.5588 | 78.1348
96.0759 | 76.9029
93.0074 | 79.3510
98.2532 | 81.9305
101.0285 | 85.3397
115.8051
Total = S | 89.1118
126.9562
um(45)m = | 92.3698
144.6288
1411.9751 | (45) | | Energy conte
Energy content
Distribution 10 | r use
92.6106
146.6726
(annual)
oss (46)m
22.0009 | 90.5839
128.9903 | 88.1254
135.4455
45)m | 84.4098 | 81.3842 | 78.1348 | 76.9029 | 79.3510 | 81.9305
101.0285 | 85.3397
115.8051 | 89.1118
126.9562 | 92.3698
144.6288
1411.9751
21.6943 | (45) | | Energy conte
Energy content
Distribution 10
Water storage :
Store volume
a) If manufact | r use
92.6106
146.6726
(annual)
oss (46)m
22.0009
loss:
turer decla | 90.5839
128.9903
= 0.15 x (4
19.3485 | 88.1254
135.4455
45)m
20.3168 | 84.4098
115.5528
17.3329 | 81.3842
109.5588
16.4338 | 78.1348
96.0759 | 76.9029
93.0074 | 79.3510
98.2532 | 81.9305
101.0285 | 85.3397
115.8051
Total = S | 89.1118
126.9562
um(45)m = | 92.3698
144.6288
1411.9751
21.6943
150.0000
1.3938 | (45)
(46)
(47)
(48) | | Energy conte
Energy content
Distribution 10
Water storage :
Store volume | r use
92.6106
146.6726
(annual)
oss (46)m
22.0009
loss:
turer decla
factor from
(54) in (55 | 90.5839
128.9903
= 0.15 x (4
19.3485
red loss fa | 88.1254
135.4455
45)m
20.3168 | 84.4098
115.5528
17.3329 | 81.3842
109.5588
16.4338 | 78.1348
96.0759 | 76.9029
93.0074 | 79.3510
98.2532 | 81.9305
101.0285 | 85.3397
115.8051
Total = S | 89.1118
126.9562
um(45)m = | 92.3698
144.6288
1411.9751
21.6943
150.0000 | (45)
(46)
(47)
(48)
(49) | | Energy conte
Energy content
Distribution 10
Water storage:
Store volume
a) If manufact
Temperature:
Enter (49) or
Total storage:
If cylinder con | r use 92.6106 146.6726 (annual) oss (46)m 22.0009 loss: turer decla factor from (54) in (55 loss 23.3325 prains dedi | 90.5839
128.9903
= 0.15 x (4
19.3485
red loss fa
Table 2b) | 88.1254
135.4455
45)m
20.3168
actor is known | 84.4098
115.5528
17.3329
own (kWh/d | 81.3842
109.5588
16.4338
(ay): | 78.1348
96.0759
14.4114 | 76.9029
93.0074
13.9511
23.3325 | 79.3510
98.2532
14.7380 | 81.9305
101.0285
15.1543 | 85.3397
115.8051
Total = S
17.3708 | 89.1118
126.9562
um(45)m =
19.0434 | 92.3698
144.6288
1411.9751
21.6943
150.0000
1.3938
0.5400
0.7527
23.3325 | (45)
(46)
(47)
(48)
(49)
(55)
(56) | | Energy conte
Energy content
Distribution 10
Water storage:
Store volume
a) If manufact
Temperature:
Enter (49) or
Total storage:
If cylinder con | r use 92.6106 146.6726 (annual) oss (46)m 22.0009 loss: turer decla factor from (54) in (55 loss 23.3325 prains dedi | 90.5839
128.9903
= 0.15 x (4
19.3485
red loss fa
Table 2b) | 88.1254
135.4455
45)m
20.3168
actor is known | 84.4098
115.5528
17.3329
own (kWh/d | 81.3842
109.5588
16.4338
(ay): | 78.1348
96.0759
14.4114 | 76.9029
93.0074
13.9511
23.3325 | 79.3510
98.2532
14.7380 | 81.9305
101.0285
15.1543 | 85.3397
115.8051
Total = S
17.3708 | 89.1118
126.9562
um(45)m =
19.0434 | 92.3698
144.6288
1411.9751
21.6943
150.0000
1.3938
0.5400
0.7527
23.3325 | (45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59) | | Energy conte
Energy content
Distribution 10
Water storage:
Store volume
a) If manufac:
Temperature:
Enter (49) or
Total storage:
If cylinder con
Primary loss
Combi loss
Total heat requ | r use 92.6106 146.6726 (annual) oss (46)m 22.0009 loss: turer decla factor from (54) in (55 loss 23.3325 ntains dedi 23.3325 23.2624 0.0000 uired for w | 90.5839
128.9903
= 0.15 x (4
19.3485
red loss fa
Table 2b
)
21.0745
cated solar
21.0745
21.0112
0.0000
ater heatin | 88.1254
135.4455
45)m
20.3168
actor is knot
23.3325
r storage
23.3325
23.2624
0.0000
ng calculati | 84.4098
115.5528
17.3329
own (kWh/d
22.5798
22.5798
22.5120
0.0000
ed for each | 81.3842
109.5588
16.4338
aay):
23.3325
23.3252
23.2624
0.0000
month | 78.1348
96.0759
14.4114
22.5798
22.5798
22.5120
0.0000 | 76.9029
93.0074
13.9511
23.3325
23.3325
23.2624
0.0000 | 79.3510
98.2532
14.7380
23.3325
23.3325
23.2624
0.0000 | 81.9305
101.0285
15.1543
22.5798
22.5798
22.5120
0.0000 | 85.3397
115.8051
Total = S
17.3708
23.3325
23.3325
23.32624
0.0000 | 89.1118 126.9562 um(45) m = 19.0434 22.5798 22.5798 22.5798 22.5120 0.0000 | 92.3698
144.6288
1411.9751
21.6943
150.0000
1.3938
0.5400
0.7527
23.3325
23.3325
23.2624
0.0000 | (45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59)
(61) | | Energy conte
Energy content
Distribution 10
Water storage:
Store volume
a) If manufact
Temperature:
Enter (49) or
Total storage:
If cylinder con
Primary loss
Combi loss
Total heat requ | r use 92.6106 146.6726 (annual) oss (46)m 22.0009 loss: turer decla factor from (54) in (55) loss 23.3325 ntains dedi 23.3325 23.2624 0.0000 uig3.2675 | 90.5839
128.9903
= 0.15 x (4
19.3485
red loss fa
Table 2b
)
21.0745
cated solar
21.0745
21.0112
0.0000
ater heatin
171.0760 | 88.1254
135.4455
45)m
20.3168
actor is knot
23.3325
r storage
23.3325
r 23.2624
0.0000
ng calculatt
182.0404 | 84.4098
115.5528
17.3329
own
(kWh/d
22.5798
22.5798
22.5120
0.0000
ed for each
160.6447 | 81.3842
109.5588
16.4338
aay):
23.3325
23.2624
0.0000
month
156.1537 | 78.1348
96.0759
14.4114
22.5798
22.5798
22.5120
0.0000
141.1677 | 76.9029
93.0074
13.9511
23.3325
23.3325
23.2624
0.0000
139.6023 | 79.3510
98.2532
14.7380
23.3325
23.3325
23.2624
0.0000
144.8481 | 81.9305
101.0285
15.1543
22.5798
22.5798
22.5120
0.0000
146.1204 | 85.3397
115.8051
Total = S
17.3708
23.3325
23.3325
23.2624
0.0000 | 89.1118 126.9562 um(45) m = 19.0434 22.5798 22.5798 22.5798 22.5120 0.0000 172.0480 | 92.3698
144.6288
1411.9751
21.6943
150.0000
1.3938
0.5400
0.7527
23.3325
23.3325
23.2624
0.0000 | (45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59)
(61) | | Energy conte
Energy content
Distribution 16
Water storage:
Store volume
a) If manufact
Temperature:
Enter (49) or
Total storage:
If cylinder con
Primary loss
Combi loss
Total heat required | r use 92.6106 146.6726 (annual) oss (46)m 22.0009 loss: turer decla factor from (54) in (55 loss 23.3325 ntains dedi 23.3325 23.2624 0.0000 uired for w 193.2675 -28.7331 -0.0000 0.00000 | 90.5839
128.9903
= 0.15 x (4
19.3485
red loss fa
Table 2b
)
21.0745
cated solar
21.0745
21.0112
0.0000
ater heatin
171.0760
-25.4118
-0.0000
0.00000 | 88.1254
135.4455
45)m
20.3168
actor is known
23.3325
r storage
23.3325
23.2624
0.0000
ng calculatt
182.0404
-26.6098
-0.0000
0.00000 | 84.4098
115.5528
17.3329
own (kWh/d
22.5798
22.5798
22.5120
0.0000
ed for each
160.6447
-22.0339
-0.0000
0.0000 | 81.3842
109.5588
16.4338
ay):
23.3325
23.2624
0.0000
month
156.1537
-20.5348
-0.0000 | 78.1348
96.0759
14.4114
22.5798
22.5798
22.5120
0.0000
141.1677
-17.5718
-0.0000
0.0000 | 76.9029
93.0074
13.9511
23.3325
23.2624
0.0000
139.6023
-16.4708
-0.0000
0.00000 | 79.3510
98.2532
14.7380
23.3325
23.3325
23.2624
0.0000
144.8481
-17.5150
-0.0000
0.0000 | 81.9305
101.0285
15.1543
22.5798
22.5798
22.5120
0.0000
146.1204
-18.1805
-0.0000
0.0000 | 85.3397
115.8051
Total = S
17.3708
23.3325
23.3325
23.2624
0.0000
162.4000
-21.4328
-0.0000
0.0000 | 89.1118 126.9562 um(45) m = 19.0434 22.5798 22.5798 22.5798 22.5120 0.0000 172.0480 -24.2807 -0.0000 0.0000 | 92.3698
144.6288
1411.9751
21.6943
150.0000
1.3938
0.5400
0.7527
23.3325
23.3255
23.2624
0.0000
191.2237
-28.2010
-0.0000
0.0000 | (45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59)
(61)
(62)
(63a)
(63b)
(63b)
(63c) | | Energy conte
Energy content
Distribution 10
Water storage:
Store volume
a) If manufact
Temperature:
Enter (49) or
Total storage:
If cylinder con
Primary loss
Combi loss
Total heat required
WWHRS
PV diverter
Solar input
FGRNS
Output from w/1 | r use 92.6106 146.6726 (annual) 0ss (46)m 22.0009 loss: turer decla factor from (54) in (55) 10ss 23.3325 ntains dedi 23.3325 23.2624 0.0000 uired for w 193.2675 -28.7331 -0.0000 0.0000 h | 90.5839
128.9903
= 0.15 x (4
19.3485
red loss fa
Table 2b
)
21.0745
cated solar
21.0745
21.0112
0.0000
ater heatin
171.0760
-25.4118
-0.0000
0.0000
0.0000 | 88.1254 135.4455 45)m 20.3168 actor is known | 84.4098
115.5528
17.3329
own (kWh/d
22.5798
22.5798
22.5120
0.0000
ed for each
160.6447
-22.0339
-0.0000
0.0000
0.0000 | 81.3842
109.5588
16.4338
aay):
23.3325
23.3325
23.2624
0.0000
month
156.1537
-20.5348
-0.0000
0.0000
0.0000 | 78.1348
96.0759
14.4114
22.5798
22.5798
22.5120
0.0000
141.1677
-17.5718
-0.0000
0.0000
0.0000 | 76.9029
93.0074
13.9511
23.3325
23.3325
23.2624
0.0000
139.6023
-16.4708
-0.0000
0.0000
0.0000 | 79.3510
98.2532
14.7380
23.3325
23.2624
0.0000
144.8481
-17.5150
-0.0000
0.0000
0.0000 | 81.9305
101.0285
15.1543
22.5798
22.5798
22.5120
0.0000
146.1204
-18.1805
-0.0000
0.0000
0.0000 | 85.3397
115.8051
Total = S
17.3708
23.3325
23.3325
23.2624
0.0000
162.4000
-21.4328
-0.0000
0.0000
0.0000 | 89.1118 126.9562 um(45) m = 19.0434 22.5798 22.5798 22.5120 0.0000 172.0480 -24.2807 -0.0000 0.0000 0.0000 | 92.3698 144.6288 1411.9751 21.6943 150.0000 1.3938 0.5400 0.7527 23.3325 23.3325 23.2624 0.0000 191.2237 -28.2010 -0.0000 0.0000 0.0000 | (45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59)
(61)
(62)
(63a)
(63b)
(63c)
(63d) | | Energy conte
Energy content
Distribution 10
Water storage:
Store volume
a) If manufact
Temperature:
Enter (49) or
Total storage:
If cylinder con
Primary loss
Combi loss
Total heat required
WWHRS
PV diverter
Solar input
FGRNS
Output from w/1 | r use 92.6106 146.6726 (annual) oss (46)m . 22.0009 loss: turer decla factor from (54) in (55) loss 23.3325 ntains dedi 23.3325 23.2624 0.0000 uired for w 193.2675 -28.7331 -0.0000 0.0000 h 164.5344 | 90.5839
128.9903
= 0.15 x (4
19.3485
red loss fa
Table 2b
)
21.0745
cated solar
21.0745
21.0112
0.0000
ater heatin
171.0760
-25.4118
-0.0000
0.0000
145.6642 | 88.1254 135.4455 45)m 20.3168 actor is known | 84.4098
115.5528
17.3329
own (kWh/d
22.5798
22.5798
22.5120
0.0000
ed for each
160.6447
-22.0339
-0.0000
0.0000
0.0000 | 81.3842
109.5588
16.4338
aay):
23.3325
23.3325
23.2624
0.0000
month
156.1537
-20.5348
-0.0000
0.0000
0.0000 | 78.1348
96.0759
14.4114
22.5798
22.5798
22.5120
0.0000
141.1677
-17.5718
-0.0000
0.0000
0.0000 | 76.9029
93.0074
13.9511
23.3325
23.3325
23.2624
0.0000
139.6023
-16.4708
-0.0000
0.0000
0.0000 | 79.3510
98.2532
14.7380
23.3325
23.3325
23.2624
0.0000
144.8481
-17.5150
-0.0000
0.0000
127.3331 | 81.9305
101.0285
15.1543
22.5798
22.5798
22.5120
0.0000
146.1204
-18.1805
-0.0000
0.0000 | 85.3397
115.8051
Total = S
17.3708
23.3325
23.3325
23.2624
0.0000
162.4000
-21.4328
-0.0000
0.0000
0.0000 | 89.1118 126.9562 um(45) m = 19.0434 22.5798 22.5798 22.5798 22.5120 0.0000 172.0480 -24.2807 -0.0000 0.0000 147.7673 | 92.3698 144.6288 1411.9751 21.6943 150.0000 1.3938 0.5400 0.7527 23.3325 23.3325 23.32624 0.0000 191.2237 -28.2010 -0.0000 0.0000 163.0227 | (45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59)
(61)
(63a)
(63b)
(63c)
(63d)
(63d) | | Energy conte
Energy content
Distribution 10
Water storage:
Store volume
a) If manufac:
Temperature:
Enter (49) or
Total storage:
If cylinder con
Primary loss
Combi loss
Total heat required
WWHRS
PV diverter
Solar input
FGRRS
Output from w/l | r use 92.6106 146.6726 (annual) 0ss (46)m : 22.0009 loss: turer decla factor from (54) in (55) loss 23.3325 ntains dedi 23.3325 23.2624 0.0000 uired for w 193.2675 -28.7331 -0.0000 0.0000 h 164.5344 ar (kWh/yea r(s) | 90.5839
128.9903
= 0.15 x (4
19.3485
red loss fa
Table 2b
)
21.0745
cated solar
21.0745
21.0112
0.0000
ater heatin
171.0760
-25.4118
-0.0000
0.0000
145.6642
r) | 88.1254 135.4455 45)m 20.3168 actor is known | 84.4098
115.5528
17.3329
own (kWh/d
22.5798
22.5798
22.5120
0.0000
df for each
160.6447
-22.0339
-0.0000
0.0000
0.0000
138.6107 | 81.3842
109.5588
16.4338
aay):
23.3325
23.3325
23.2624
0.0000
month
156.1537
-20.5348
-0.0000
0.0000
0.0000
135.6189 | 78.1348
96.0759
14.4114
22.5798
22.5798
22.5120
0.0000
141.1677
-17.5718
-0.0000
0.0000
0.0000
123.5959 | 76.9029
93.0074
13.9511
23.3325
23.3325
23.2624
0.0000
139.6023
-16.4708
-0.0000
0.0000
0.0000
123.1316 | 79.3510
98.2532
14.7380
23.3325
23.3325
23.2624
0.0000
144.8481
-17.5150
0.0000
0.0000
0.0000
127.3331
Total p | 81.9305
101.0285
15.1543
22.5798
22.5798
22.5120
0.0000
146.1204
-18.1805
-0.0000
0.0000
0.0000
127.9399
per year (kWh, | 85.3397
115.8051
Total = S
17.3708
23.3325
23.3325
23.2624
0.0000
162.4000
-21.4328
-0.0000
0.0000
0.0000
140.9673
/year) = S | 89.1118 126.9562 um(45) m = 19.0434 22.5798 22.5798 22.5120 0.0000 172.0480 -24.2807 -0.0000 0.0000 0.0000 147.7673 um(64) m = 0.0000 | 92.3698 144.6288 1441.9751 21.6943 150.0000 1.3938 0.5400 0.7527 23.3325 23.2624 0.0000 191.2237 -28.2010 0.0000 0.0000 0.0000 163.0227 1693.6166 1694 | (45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(61)
(63a)
(63a)
(63b)
(63c)
(63d)
(63d)
(64)
(64)
(64) | | Energy conte
Energy content
Distribution 10
Water storage:
Store volume
a) If manufact
Temperature:
Enter (49) or
Total storage:
If cylinder con
Primary loss
Combi loss
Total heat requirements
WHRS
PV diverter
Solar input
FGRRS
Output from w/1 | r use 92.6106 146.6726 (annual) 0ss (46)m . 22.0009 loss: turer decla factor from (54) in (55 loss 23.3325 ntains dedi 23.3325 23.2624 0.0000 uired for w 193.2675 -28.7331 -0.0000 h 164.5344 ar (kWh/yea r (s) 0.0000 m water
hea | 90.5839 128.9903 = 0.15 x (4 19.3485 red loss fa Table 2b) 21.0745 cated solar 21.0745 21.0112 0.0000 atter heatin 171.0760 -25.4118 -0.0000 0.0000 145.6642 r) 0.0000 ting, kWh/m | 88.1254 135.4455 45)m 20.3168 actor is known | 84.4098
115.5528
17.3329
own (kWh/d
22.5798
22.5798
22.5120
0.0000
ed for each
160.6447
-22.0339
-0.0000
0.0000
0.0000
138.6107 | 81.3842
109.5588
16.4338
aay):
23.3325
23.2624
0.0000
month
156.1537
-0.0000
0.0000
0.0000
135.6189 | 78.1348
96.0759
14.4114
22.5798
22.5798
22.5120
0.0000
141.1677
-17.5718
-0.0000
0.0000
0.0000
123.5959 | 76.9029
93.0074
13.9511
23.3325
23.3325
23.2624
0.0000
139.6023
-16.4708
-0.0000
0.0000
0.0000
123.1316 | 79.3510
98.2532
14.7380
23.3325
23.3325
23.2624
0.0000
144.8481
-17.5150
-0.0000
0.0000
127.3331
Total r | 81.9305
101.0285
15.1543
22.5798
22.5798
22.5120
0.0000
146.1204
-18.1805
-0.0000
0.0000
0.0000
127.9399
per year (kWh, | 85.3397
115.8051
Total = S
17.3708
23.3325
23.3325
23.2624
0.0000
-21.4328
-0.0000
0.0000
140.9673
/year) = S | 89.1118 126.9562 um(45) m = 19.0434 22.5798 22.5798 22.5120 0.0000 172.0480 -24.2807 -0.0000 0.0000 147.7673 um(64) m = 0.0000 m(64a) m = | 92.3698 144.6288 1441.9751 21.6943 150.0000 1.3938 0.5400 0.7527 23.3325 23.3252 0.0000 191.2237 -28.2010 0.0000 0.0000 163.0227 1693.6166 1694 0.0000 | (45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59)
(61)
(63a)
(63a)
(63c)
(63d)
(63d)
(64)
(64)
(64)
(64a) | | Energy conte
Energy content
Distribution 10
Water storage:
Store volume
a) If manufact
Temperature:
Enter (49) or
Total storage:
If cylinder con
Primary loss
Combi loss
Total heat required
WWHRS
PV diverter
Solar input
FGHRS
Output from w/1 | r use 92.6106 146.6726 (annual) 0ss (46)m . 22.0009 loss: turer decla factor from (54) in (55 loss 23.3325 ntains dedi 23.3325 23.2624 0.0000 uired for w 193.2675 -28.7331 -0.0000 h 164.5344 ar (kWh/yea r (s) 0.0000 m water hea | 90.5839 128.9903 = 0.15 x (4 19.3485 red loss fa Table 2b) 21.0745 cated solar 21.0745 21.0112 0.0000 atter heatin 171.0760 -25.4118 -0.0000 0.0000 145.6642 r) 0.0000 ting, kWh/m | 88.1254 135.4455 45)m 20.3168 actor is known | 84.4098
115.5528
17.3329
own (kWh/d
22.5798
22.5798
22.5120
0.0000
ed for each
160.6447
-22.0339
-0.0000
0.0000
0.0000
138.6107 | 81.3842
109.5588
16.4338
aay):
23.3325
23.2624
0.0000
month
156.1537
-0.0000
0.0000
0.0000
135.6189 | 78.1348
96.0759
14.4114
22.5798
22.5798
22.5120
0.0000
141.1677
-17.5718
-0.0000
0.0000
0.0000
123.5959 | 76.9029
93.0074
13.9511
23.3325
23.3325
23.2624
0.0000
139.6023
-16.4708
-0.0000
0.0000
0.0000
123.1316 | 79.3510
98.2532
14.7380
23.3325
23.3325
23.2624
0.0000
144.8481
-17.5150
-0.0000
0.0000
127.3331
Total r | 81.9305
101.0285
15.1543
22.5798
22.5798
22.5120
0.0000
146.1204
-18.1805
-0.0000
0.0000
0.0000
127.9399
per year (kWh, | 85.3397
115.8051
Total = S
17.3708
23.3325
23.3325
23.2624
0.0000
-21.4328
-0.0000
0.0000
140.9673
/year) = S | 89.1118 126.9562 um(45) m = 19.0434 22.5798 22.5798 22.5120 0.0000 172.0480 -24.2807 -0.0000 0.0000 147.7673 um(64) m = 0.0000 m(64a) m = | 92.3698 144.6288 1441.9751 21.6943 150.0000 1.3938 0.5400 0.7527 23.3325 23.3252 0.0000 191.2237 -28.2010 0.0000 0.0000 163.0227 1693.6166 1694 0.0000 | (45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59)
(61)
(63a)
(63a)
(63c)
(63d)
(63d)
(64)
(64)
(64)
(64a) | | Energy conte
Energy content
Distribution 10
Water storage:
Store volume
a) If manufact
Temperature:
Enter (49) or
Total storage:
If cylinder con
Primary loss
Combi loss
Total heat required
WWHRS
PV diverter
Solar input
FGHRS
Output from w/1 | r use 92.6106 146.6726 (annual) oss (46)m 22.0009 loss: turer decla factor from (54) in (55) loss 23.3325 ntains dedi 23.3325 23.2624 0.0000 u193.2675 -28.7331 -0.0000 h 164.5344 ar (kWh/yea r(s) 0.0000 m water hea 86.0446 | 90.5839 128.9903 = 0.15 x (4 19.3485 red loss fa Table 2b) 21.0745 cated solar 21.0745 21.0112 0.0000 atr1,0760 -25.4118 -0.0000 0.0000 145.6642 r) 0.0000 ting, kWh/m 76.5579 | 88.1254 135.4455 45)m 20.3168 actor is known | 84.4098
115.5528
17.3329
own (kWh/d
22.5798
22.5798
22.5120
0.0000
ed for each
160.6447
-22.0339
-0.0000
0.0000
138.6107 | 81.3842
109.5588
16.4338
ay):
23.3325
23.3325
23.2624
0.0000
month
156.1537
-20.5348
-0.0000
0.0000
135.6189 | 78.1348 96.0759 14.4114 22.5798 22.5798 22.5120 0.0000 141.1677 -17.5718 -0.0000 0.0000 123.5959 0.0000 ded by inst. 68.0187 | 76.9029 93.0074 13.9511 23.3325 23.3325 23.2624 0.0000 139.6023 -16.4708 -0.0000 0.0000 123.1316 0.0000 antaneous ei 68.2009 | 79.3510 98.2532 14.7380 23.3325 23.3325 23.2624 0.0000 144.8481 -17.5150 -0.0000 0.0000 127.3331 Total p | 81.9305
101.0285
15.1543
22.5798
22.5798
22.5120
0.0000
146.1204
-18.1805
-0.0000
0.0000
0.0000
127.9399
per year (kWh, | 85.3397
115.8051
Total = S
17.3708
23.3325
23.3325
23.2624
0.0000
-21.4328
-0.0000
0.0000
140.9673
/year) = S | 89.1118 126.9562 um(45) m = 19.0434 22.5798 22.5798 22.5120 0.0000 172.0480 -24.2807 -0.0000 0.0000 147.7673 um(64) m = 0.0000 m(64a) m = | 92.3698 144.6288 1441.9751 21.6943 150.0000 1.3938 0.5400 0.7527 23.3325 23.3252 0.0000 191.2237 -28.2010 0.0000 0.0000 163.0227 1693.6166 1694 0.0000 | (45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59)
(61)
(63a)
(63a)
(63c)
(63d)
(63d)
(64)
(64)
(64)
(64a) | | Energy conte Energy content Distribution 10 Water storage: Store volume a) If manufact Temperature: Enter (49) or Total storage If cylinder con Primary loss Combi loss Total heat requ WWHRS PV diverter Solar input FGHRS Output from w/l 12Total per yee Electric showe: Heat gains from | r use 92.6106 146.6726 (annual) oss (46)m 22.0009 loss: turer decla factor from (54) in (55) loss 23.3325 ntains dedi 23.3325 23.2624 0.0000 uired for w 193.2675 -28.7331 -0.0000 0.00000 h 164.5344 ar (kWh/yea r(s) 0.0000 m water hea 86.0446 | 90.5839 128.9903 = 0.15 x (4 19.3485 red loss fa Table 2b) 21.0745 cated solar 21.0745 21.0112 0.0000 ater heatin 171.0760 -25.4118 -0.0000 0.0000 145.6642 r) 0.0000 ting, kWh/m 76.5579 | 88.1254 135.4455 45)m 20.3168 actor is known | 84.4098
115.5528
17.3329
own (kWh/d
22.5798
22.5798
22.5120
0.0000
ed for each
160.6447
-22.0339
-0.0000
0.0000
0.0000
138.6107 | 81.3842
109.5588
16.4338
aay):
23.3325
23.3325
23.2624
0.0000
month
156.1537
-20.5348
-0.0000
0.0000
135.6189 | 78.1348
96.0759
14.4114
22.5798
22.5798
22.5120
0.0000
141.1677
-17.5718
-0.0000
0.0000
123.5959
0.0000
123.5959
68.0187 | 76.9029
93.0074
13.9511
23.3325
23.3325
23.2624
0.0000
139.6023
-16.4708
-0.0000
0.0000
123.1316
0.0000
antaneous et | 79.3510
98.2532
14.7380
23.3325
23.2624
0.0000
144.8481
-17.5150
-0.0000
0.0000
127.3331
Total p | 81.9305
101.0285
15.1543
22.5798
22.5798
22.5120
0.0000
146.1204
-18.1805
-0.0000
0.0000
0.0000
127.9399
per year (kWh, | 85.3397
115.8051
Total = S
17.3708
23.3325
23.3325
23.2624
0.0000
-21.4328
-0.0000
0.0000
140.9673
/year) = S | 89.1118 126.9562 um(45) m = 19.0434 22.5798 22.5798 22.5120 0.0000 172.0480 -24.2807 -0.0000 0.0000 147.7673 um(64) m = 0.0000 m(64a) m = | 92.3698 144.6288 1441.9751 21.6943 150.0000 1.3938 0.5400 0.7527 23.3325 23.3252 0.0000 191.2237 -28.2010 0.0000 0.0000 163.0227 1693.6166 1694 0.0000 | (45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59)
(61)
(63a)
(63a)
(63c)
(63d)
(63d)
(64)
(64)
(64)
(64a) | | Energy conte Energy content Distribution 16 Water storage: Store volume a) If manufact Temperature: Enter (49) or Total storage: If cylinder con Primary loss Combi loss Total heat requ WWHRS PV diverter Solar input FGRRS Output from w/1 12Total per yee Electric showe: Heat gains from | r use 92.6106 146.6726 (annual) 0ss (46)m 22.0009 loss: turer decla factor from (54) in (55) loss 23.3325 ntains dedi 23.3325 ntains dedi 23.3325 0.0000 uired for w 193.2675 -28.7331 -0.0000 0.0000 h 164.5344 ar (kWh/yea r(s) 0.0000 m water hea 86.0446 | 90.5839 128.9903 = 0.15 x (4 19.3485 red loss fa Table 2b) 21.0745 cated solar 21.0745 21.0112 0.0000 ater heatin 171.0760 -25.4118 -0.0000 0.0000 145.6642 r) 0.0000 ting, kWh/m 76.5579 | 88.1254 135.4455 45)m 20.3168 actor is known | 84.4098
115.5528
17.3329
own (kWh/d
22.5798
22.5798
22.5120
0.0000
ed for each
160.6447
-22.0339
-0.0000
0.0000
0.0000
138.6107 | 81.3842
109.5588
16.4338
aay):
23.3325
23.3325
23.2624
0.0000
month
156.1537
-20.5348
-0.0000
0.0000
135.6189 | 78.1348
96.0759
14.4114
22.5798
22.5798
22.5120
0.0000
141.1677
-17.5718
-0.0000
0.0000
123.5959
0.0000
123.5959 | 76.9029
93.0074
13.9511
23.3325
23.3325
23.2624
0.0000
139.6023
-16.4708
-0.0000
0.0000
0.0000
123.1316 |
79.3510
98.2532
14.7380
23.3325
23.3325
23.2624
0.0000
144.8481
-17.5150
0.0000
0.0000
0.0000
127.3331
Total r | 81.9305
101.0285
15.1543
22.5798
22.5798
22.5120
0.0000
146.1204
-18.1805
-0.0000
0.0000
0.0000
127.9399
per year (kWh/y | 85.3397
115.8051
Total = S
17.3708
23.3325
23.3325
23.2624
0.0000
162.4000
-21.4328
-0.0000
0.0000
140.9673
/year) = S
0.0000
year) = Su
75.7811 | 89.1118 126.9562 um(45) m = 19.0434 22.5798 22.5798 22.5798 22.5798 22.5120 0.0000 172.0480 -24.2807 -0.0000 0.0000 147.7673 um(64) m = 0.0000 m(64a) m = 78.2864 | 92.3698 144.6288 1411.9751 21.6943 150.0000 1.3938 0.54000 0.7527 23.3325 23.3325 23.32624 0.0000 191.2237 -28.2010 -0.0000 0.0000 163.0227 1693.6166 1694 0.0000 85.3650 | (45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(61)
(62)
(63a)
(63b)
(63c)
(63d)
(64)
(64)
(64a)
(64a)
(65) | | Energy conte Energy content Distribution 10 Water storage: Store volume a) If manufact Temperature: Enter (49) or Total storage If cylinder con Primary loss Combi loss Total heat requ WWHRS PV diverter Solar input FGHRS Output from w/l 12Total per yee Electric showe: Heat gains from | r use 92.6106 146.6726 (annual) 0ss (46)m 22.0009 loss: turer decla factor from (54) in (55) loss 23.3325 ntains dedi 23.3325 ntains dedi 23.3325 0.0000 uired for w 193.2675 -28.7331 -0.0000 0.0000 h 164.5344 ar (kWh/yea r(s) 0.0000 m water hea 86.0446 | 90.5839 128.9903 = 0.15 x (4 19.3485 red loss fa Table 2b) 21.0745 cated solar 21.0745 21.0112 0.0000 ater heatin 171.0760 -25.4118 -0.0000 0.0000 145.6642 r) 0.0000 ting, kWh/m 76.5579 ble 5 and 5 | 88.1254 135.4455 45)m 20.3168 actor is known | 84.4098
115.5528
17.3329
own (kWh/d
22.5798
22.5798
22.5120
0.0000
ed for each
160.6447
-22.0339
-0.0000
0.0000
138.6107
0.0000
Tot
74.4948 | 81.3842
109.5588
16.4338
ay):
23.3325
23.3325
23.2624
0.0000
month
156.1537
-20.5348
-0.0000
0.0000
135.6189
0.0000
al Energy us
73.7042 | 78.1348 96.0759 14.4114 22.5798 22.5798 22.5120 0.0000 141.1677 -17.5718 -0.0000 0.0000 123.5959 0.0000 sed by instance of the control | 76.9029 93.0074 13.9511 23.3325 23.3325 23.2624 0.0000 139.6023 -16.4708 -0.0000 0.0000 0.0000 123.1316 0.0000 antaneous e: 68.2009 | 79.3510 98.2532 14.7380 23.3325 23.3325 23.2624 0.0000 144.8481 -17.5150 0.0000 0.0000 127.3331 Total r 0.0000 lectric sho 69.9451 | 81.9305
101.0285
15.1543
22.5798
22.5798
22.5120
0.0000
146.1204
-18.1805
-0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.00000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.00000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.00000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.00000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.00000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 85.3397
115.8051
Total = S
17.3708
23.3325
23.3325
23.2624
0.0000
-21.4328
-0.0000
0.0000
0.0000
140.9673
/year) = S
0.0000
year) = Su
75.7811 | 89.1118 126.9562 um(45) m = 19.0434 22.5798 22.5798 22.5120 0.0000 172.0480 -24.2807 -0.0000 0.0000 0.0000 0.0000 0.0000 m(64a) m = 78.2864 | 92.3698 144.6288 1441.9751 21.6943 150.0000 1.3938 0.5400 0.7527 23.3325 23.2624 0.0000 191.2237 -28.2010 0.0000 0.0000 163.0227 1693.6166 1694 0.0000 0.0000 85.3650 | (45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(61)
(63a)
(63d)
(63d)
(63d)
(644)
(64)
(64a)
(64a)
(65) | | Energy conte Energy content Distribution 10 Water storage: Store volume a) If manufact Temperature: Enter (49) or Total storage: If cylinder con Primary loss Combi loss Total heat requ WWHRS PV diverter Solar input FGRS Output from w/1 12Total per yea Electric showe: Heat gains from 5. Internal gains Metabolic gain: (66) m Lighting gains Appliances gain | r use 92.6106 146.6726 (annual) 0ss (46)m 22.0009 loss: turer decla factor from (54) in (55 loss 23.3325 ntains dedi 23.3325 23.2624 0.0000 uired for w 193.2675 -28.7331 -0.0000 h 164.5344 ar (kWh/yea ar (kWh/yea ar (s) 0.0000 m water hea 86.0446 | 90.5839 128.9903 = 0.15 x (4 19.3485 red loss fa Table 2b) 21.0745 cated solar 21.0745 21.0112 0.0000 ater heatin 171.0760 -25.4118 -0.0000 0.0000 0.0000 145.6642 r) 0.0000 ting, kWh/m 76.5579 ble 5 and 5 -, Watts Feb 73.8652 din Append 77.9074 ted in Append | 88.1254 135.4455 45)m 20.3168 actor is known | 84.4098
115.5528
17.3329
own (kWh/d
22.5798
22.5798
22.5120
0.0000
ed for each
160.6447
-22.0339
-0.0000
0.0000
138.6107
0.0000
Tot
74.4948 | 81.3842
109.5588
16.4338
ay):
23.3325
23.2624
0.0000
month
156.1537
-0.0000
0.0000
135.6189
0.0000
al Energy us
73.7042 | 78.1348 96.0759 14.4114 22.5798 22.5798 22.5120 0.0000 141.1677 -17.5718 -0.0000 0.0000 123.5959 0.0000 sed by inst. 68.0187 Jun 73.8652 see Table 5 72.7136 see Table 5 72.7136 | 76.9029 93.0074 13.9511 23.3325 23.3325 23.2624 0.0000 139.6023 -16.4708 -0.0000 0.0000 0.0000 123.1316 0.0000 antaneous e: 68.2009 Jul 73.8652 70.3680 1e 5 | 79.3510 98.2532 14.7380 23.3325 23.3325 23.2624 0.0000 144.8481 -17.5150 -0.0000 0.0000 127.3331 Total r 0.0000 lectric shc 69.9451 | 81.9305
101.0285
15.1543
22.5798
22.5798
22.5120
0.0000
146.1204
-18.1805
-0.0000
0.0000
0.0000
127.9399
per year (kWh/y
69.6655 | 85.3397
115.8051
Total = S
17.3708
23.3325
23.3325
23.2624
0.0000
-21.4328
-0.0000
0.0000
140.9673
/year) = S
0.0000
year) = Su
75.7811 | 89.1118 126.9562 um(45) m = 19.0434 22.5798 22.5798 22.5120 0.0000 172.0480 -24.2807 -0.0000 0.0000 147.7673 um(64) m = 0.0000 m(64a) m = 78.2864 | 92.3698 144.6288 1441.9751 21.6943 150.0000 1.3938 0.5400 0.7527 23.3325 23.3252 23.2624 0.0000 191.2237 -28.2010 0.0000 0.0000 163.0227 1693.6166 1694 0.0000 85.3650 Dec 73.8652 70.3680 | (45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(63)
(63a)
(63b)
(63c)
(63d)
(63d)
(64)
(64)
(64)
(64a)
(65) | | Energy conte Energy content Distribution 10 Water storage: Store volume a) If manufact Temperature: Enter (49) or Total storage: If cylinder con Primary loss Combi loss Total heat requ WWHRS PV diverter Solar input FGRS Output from w/1 12Total per yea Electric showe: Heat gains from 5. Internal gains Metabolic gain: (66) m Lighting gains Appliances gain | r use 92.6106 146.6726 (annual) 0058 (46)m : 22.0009 loss: turer decla factor from (54) in (55) loss 23.3325 ntains dedi 23.3325 23.2624 0.0000 uired for w 193.2675 -28.7331 -0.0000 h 164.5344 ar (kWh/yea r(s) 0.0000 m water hea 86.0446 | 90.5839 128.9903 = 0.15 x (4 19.3485 red loss fa Table 2b) 21.0745 cated solar 21.0745 21.0112 0.0000 ater heatin 171.0760 -25.4118 -0.0000 0.0000 145.6642 r) 0.0000 ting, kWh/m 76.5579 Watts Feb 73.8652 d in Appendi 77.9074 ted in Appen 129.4788 in Appendi in Appendi | 88.1254 135.4455 45)m 20.3168 actor is known | 84.4098 115.5528 17.3329 DWN (kWh/d 22.5798 22.5798 22.5120 0.0000 ed for each 160.6447 -22.0339 -0.0000 0.0000 Tot 74.4948 Apr 73.8652 tion L9 or 72.7136 eation L13 118.9939 | 81.3842
109.5588
16.4338
ay):
23.3325
23.2624
0.0000
month
156.1537
-20.5348
-0.0000
0.0000
135.6189
0.0000
al Energy
us
73.7042
May
73.8652
L9a), also s
70.3680
or L13a), also
109.9886
IL5al, also | 78.1348 96.0759 14.4114 22.5798 22.5798 22.5120 0.0000 141.1677 -17.5718 -0.0000 0.0000 123.5959 0.0000 sed by inst. 68.0187 Jun 73.8652 see Table 5 72.7136 tso see Table 5 72.7136 tso see Table 5 72.7136 | 76.9029 93.0074 13.9511 23.3325 23.3325 23.2624 0.0000 139.6033 -16.4708 -0.0000 0.0000 123.1316 0.0000 antaneous e: 68.2009 Jul 73.8652 70.3680 1e 5 95.8706 | 79.3510 98.2532 14.7380 23.3325 23.3325 23.2624 0.0000 144.8481 -17.5150 -0.0000 0.0000 127.3331 Total r 0.0000 127.3351 0.0000 127.33652 70.3680 94.5408 | 81.9305
101.0285
15.1543
22.5798
22.5798
22.5120
0.0000
146.1204
-18.1805
-0.0000
0.0000
127.9399
per year (kWh/y
69.6655
Sep
73.8652
72.7136
97.8919 | 85.3397 115.8051 Total = S 17.3708 23.3325 23.3325 23.2624 0.0000 -21.4328 -0.0000 0.0000 140.9673 /year) = S 0.0000 year) = Su 75.7811 Oct 73.8652 70.3680 105.0258 | 89.1118 126.9562 um(45) m = 19.0434 22.5798 22.5798 22.5120 0.0000 172.0480 0.0000 0.0000 147.7673 um(64) m = 78.2864 Nov 73.8652 72.7136 114.0311 | 92.3698 144.6288 1411.9751 21.6943 150.0000 1.3938 0.5400 0.7527 23.3325 23.2624 0.0000 191.2237 -28.2010 -0.0000 0.0000 163.0227 1693.6166 1694 0.0000 85.3650 Dec 73.8652 70.3680 122.4948 | (45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59)
(61)
(63a)
(63b)
(63c)
(63d)
(63d)
(64)
(64)
(64)
(64a)
(65) | | Energy conte Energy content Distribution 16 Water storage: Store volume a) If manufact Temperature: Enter (49) or Total storage: If cylinder con Primary loss Combi loss Total heat requ WWHRS PV diverter Solar input FGRRS Output from w/l 12Total per yee Electric showe: Heat gains from 5. Internal ga: Metabolic gain: (66) m Lighting gains Appliances gain Cooking gains Pumps, fans | r use 92.6106 146.6726 (annual) oss (46)m 22.0009 loss: turer decla factor from (54) in (55 loss 23.3325 ntains dedi 23.3325 ntains dedi 23.3325 ntains dedi 23.3325 0.0000 uired for w 193.2675 -28.7331 -0.0000 h 164.5344 ar (kWh/yea r(s) 0.0000 m water hea 86.0446 | 90.5839 128.9903 = 0.15 x (4 19.3485 red loss fa Table 2b) 21.0745 cated solar 21.0745 21.0112 0.0000 ater heatin 171.0760 -25.4118 -0.0000 0.0000 145.6642 r) 0.0000 ting, kWh/m 76.5579 ble 5 and 5 | 88.1254 135.4455 45)m 20.3168 actor is known and actor is known ac | 84.4098
115.5528
17.3329
own (kWh/d
22.5798
22.5798
22.5120
0.0000
ed for each
160.6447
-22.0339
-0.0000
0.0000
138.6107
74.4948
Apr
73.8652
25.7136
18.9939
ion L15 or 30.3865
3.3865
3.0000 | 81.3842
109.5588
16.4338
ay):
23.3325
23.3325
23.2624
0.0000
month
156.1537
-20.5348
-0.0000
0.0000
135.6189
0.0000
al Energy us
73.7042
May
73.8652
L9a), also:
70.3680
70.3680
109.9886
L15a), also:
30.3865 | 78.1348 96.0759 14.4114 22.5798 22.5798 22.5798 22.5120 0.0000 141.1677 -17.5718 -0.0000 0.0000 0.0000 123.5959 0.0000 sed by inst. 68.0187 Jun 73.8652 see Table 5 72.7136 so see Table 5 72.7136 so see Table 5 30.38652 | 76.9029 93.0074 13.9511 23.3325 23.3325 23.2624 0.0000 139.6023 -16.4708 -0.0000 0.0000 0.0000 123.1316 0.0000 antaneous e: 68.2009 Jul 73.8652 70.3680 1e 5 95.8706 5 30.3865 | 79.3510 98.2532 14.7380 23.3325 23.3325 23.2624 0.0000 144.8481 -17.5150 0.0000 0.0000 127.3331 Total p | 81.9305
101.0285
15.1543
22.5798
22.5798
22.5120
0.0000
146.1204
-18.1805
-0.0000
0.0000
0.0000
127.9399
per year (kWh/y
69.6655 | 85.3397 115.8051 Total = S 17.3708 23.3325 23.3325 23.2624 0.0000 162.4000 0.0000 0.0000 0.0000 140.9673 /year) = S 0.0000 year) = Su 75.7811 Oct 73.8652 70.3680 105.0258 30.3865 | 89.1118 126.9562 um(45) m = 19.0434 22.5798 22.5798 22.5120 0.0000 172.0480 -24.2807 -0.0000 0.0000 0.0000 147.7673 um(64) m = 0.0000 m(64a) m = 78.2864 Nov 73.8652 72.7136 114.0311 30.3865 | 92.3698 144.6288 1441.9751 21.6943 150.0000 1.3938 0.5400 0.7527 23.3325 23.2624 0.0000 191.2237 -28.2010 0.0000 0.0000 163.0227 1693.6166 1694 0.0000 0.0000 85.3650 Dec 73.8652 70.3680 122.4948 30.3865 | (45) (46) (47) (48) (49) (55) (56) (57) (61) (62) (63a) (63b) (63c) (63d) (644) (644) (64a) (655) (666) (67) (68) (69) | | Energy conte Energy content Distribution 10 Water storage: Store volume a) If manufact Temperature: Enter (49) or Total storage: If cylinder con Primary loss Combi loss Total heat requ WWHRS PV diverter Solar input FGHRS Output from w/1 12Total per yea Electric showe: Heat gains from 5. Internal gains Metabolic gains (66) m Lighting gains Appliances gain Cooking gains Pumps, fans Losses e.g. evo | r use 92.6106 146.6726 (annual) 0ss (46)m 22.0009 loss: turer decla factor from (54) in (55 loss 23.3325 ntains dedi 23.3325 ntains dedi 23.3325 0.0000 uired for w 193.2675 -28.7331 -0.0000 0.0000 h 164.5344 ar (kWh/yea r(s) 0.0000 m water hea 86.0446 | 90.5839 128.9903 = 0.15 x (4 19.3485 red loss fa Table 2b) 21.0745 cated solar 21.0745 21.0112 0.0000 ater heatin 171.0760 -25.4118 -0.0000 0.0000 145.6642 r) 0.0000 ting, kWh/m 76.5579 | 88.1254 135.4455 45)m 20.3168 actor is known | 84.4098 115.5528 17.3329 DWN (kWh/d) 22.5798 22.5798 22.5798 22.5120 0.0000 df for each 160.6447 -22.0339 -0.0000 0.0000 138.6107 0.0000 Tot 74.4948 Apr 73.8652 tion L9 or 72.7136 ation L13 118.9939 ion L15 or 30.3865 30.0000 15 5) | 81.3842
109.5588
16.4338
ay):
23.3325
23.3325
23.2624
0.0000
month
156.1537
-20.5348
-0.0000
0.0000
135.6189
0.0000
al Energy us
73.7042
May
73.8652
L9a), also:
70.3680
70.3680
109.9886
L15a), also:
30.3865 | 78.1348 96.0759 14.4114 22.5798 22.5798 22.5798 22.5120 0.0000 141.1677 -17.5718 -0.0000 0.0000 0.0000 123.5959 0.0000 sed by inst. 68.0187 Jun 73.8652 see Table 5 72.7136 see Table 5 72.7136 see Table 5 0.0000 | 76.9029 93.0074 13.9511 23.3325 23.3325 23.2624 0.0000 139.6023 -16.4708 -0.0000 0.0000 0.0000 123.1316 0.0000 antaneous e: 68.2009 Jul 73.8652 70.3680 1e 5 95.8706 5 30.3865 0.0000 | 79.3510 98.2532 14.7380 23.3325 23.3325 23.2624 0.0000 144.8481 -17.5150 -0.0000 0.0000 127.3331 Total r 0.0000 lectric shc 69.9451 Aug 73.8652 70.3680 94.5408 30.3865 0.0000 | 81.9305
101.0285
15.1543
22.5798
22.5798
22.5120
0.0000
146.1204
-18.1805
-0.0000
0.0000
0.0000
127.9399
per year (kWh/
69.6655
Sep
73.8652
72.7136
97.8919
30.3865 | 85.3397 115.8051 Total = S 17.3708 23.3325 23.3325 23.2624 0.0000 -21.4328 -0.0000 0.0000 140.9673 /year) = S 0.0000 year) = Su 75.7811 Oct 73.8652 70.3680 105.0258 30.3865 3.0000 | 89.1118 126.9562 um(45) m = 19.0434 22.5798 22.5798 22.5120 0.0000 172.0480 -24.2807 -0.0000 0.0000 147.7673 um(64) m = 78.2864 Nov 73.8652 72.7136 114.0311 30.3865 3.0000 | 92.3698 144.6288 1441.9751 21.6943 150.0000 1.3938 0.5400 0.7527 23.3325 23.2624 0.0000 191.2237 -28.2010 0.0000 0.0000 163.0227 1693.6166 1694 0.0000 85.3650 Dec 73.8652 70.3680 122.4948 30.3865 3.0000 | (45) (46) (47) (48) (49) (55) (56) (57) (59) (61) (63a) (63a) (63b) (63d) (64) (64) (64) (65) (66) (67) (68) (69) (70) | | Energy conte Energy content Distribution 10 Water storage: Store volume a) If manufact Temperature: Enter (49) or Total storage: If cylinder con Primary loss Combi loss Total heat requ WWHRS PV diverter Solar input FGRS Output from w/1 12Total per yea Electric showe: Heat gains from 5. Internal gain Metabolic gain: (66) m Lighting gains Appliances gain Cooking gains Pumps, fans Losses e.g. ev. | r use 92.6106 146.6726 (annual) 058 (46)m 22.0009 loss: turer decla factor from (54) in (55 loss 23.3325 ntains dedi 23.3325 ntains dedi 23.3325 0.0000 uired for w 193.2675 -28.7331 -0.0000 h 164.5344 ar (kWh/yea r(s) 0.0000 m water hea 86.0446 | 90.5839 128.9903 = 0.15 x (4 19.3485 red loss fa Table 2b) 21.0745 cated solar 21.0745 21.0112 0.0000 ater heatin 171.0760 -25.4118 -0.0000 0.0000 145.6642 r) 0.0000 ting, kWh/m 76.5579 ble 5 and 5 | 88.1254 135.4455 45)m 20.3168 actor is known and actor is known ac | 84.4098 115.5528 17.3329 DWN (kWh/d 22.5798 22.5798 22.5798 22.5120 0.0000 0.0000 0.0000 138.6107 Apr 73.8652 173.8652 101.90 or 72.7136 181.9939 101.15 or 30.3865 3.0000 185.0000 185.0000 186.0000 197.7136 198.0000 198.0000 198.0000 198.0000 198.00000 198.00000 198.00000 198.00000 198.00000 198.00000 198.00000 198.00000 198.00000 198.00000 198.00000 198.00000 198.00000 198.00000 198.00000 198.00000 198.00000 198.000000000 198.000000000000000000000000000000000000 | 81.3842
109.5588
16.4338
ay):
23.3325
23.3325
23.2624
0.0000
month
156.1537
-20.5348
-0.0000
0.0000
135.6189
0.0000
al Energy us
73.7042
May
73.8652
L9a), also s
70.3680
or L13a), also s
109.9886
L15a), also s
30.3865
3.0000
-59.0922
99.0648 | 78.1348 96.0759 14.4114 22.5798 22.5798 22.5798 22.5120 0.0000 141.1677 -17.5718 -0.0000 0.0000 123.5959 0.0000 123.5959 0.0000 123.5959 0.0000 123.5959 0.0000 123.5959 0.0000 123.5959 0.0000 123.5959 0.0000 123.5959 | 76.9029 93.0074 13.9511 23.3325 23.3325 23.2624 0.0000 139.6023 -16.4708 -0.0000 0.0000 123.1316 0.0000 123.1316 0.0000 antaneous et 68.2009 Jul 73.8652 70.3680 185 95.8706 5 30.3865 0.0000 -59.0922 91.6679 | 79.3510 98.2532 14.7380 23.3325 23.3325 23.2624 0.0000 144.8481 -17.5150 -0.0000 0.0000 127.3331 Total r 0.0000 lectric sho 69.9451 Aug 73.8652 70.3680 94.5408
30.3865 0.0000 -59.0922 94.0122 | 81.9305
101.0285
15.1543
22.5798
22.5798
22.5120
0.0000
146.1204
-18.1805
-0.0000
0.0000
127.9399
per year (kWh/
69.6655
Sep
73.8652
72.7136
97.8919
30.3865
0.0000
-59.0922 | 85.3397 115.8051 Total = S 17.3708 23.3325 23.3325 23.32624 0.0000 162.4000 -21.4328 -0.0000 0.0000 0.0000 140.9673 /year) = S 0.0000 year) = Su 75.7811 Oct 73.8652 70.3680 105.0258 30.3865 30.3865 30.000 -59.0922 101.8564 | 89.1118 126.9562 um(45) m = 19.0434 22.5798 22.5798 22.5120 0.0000 172.0480 -24.2807 -0.0000 0.0000 147.7673 um(64) m = 0.0000 m(64a) m = 78.2864 Nov 73.8652 72.7136 114.0311 30.3865 3.0000 -59.0922 108.7311 | 92.3698 144.6288 1441.9751 21.6943 150.0000 1.3938 0.54000 0.7527 23.3325 23.3325 23.32624 0.0000 191.2237 -28.2010 -0.0000 0.0000 0.0000 163.0227 1693.6166 1694 0.0000 0.0000 85.3650 Dec 73.8652 70.3680 122.4948 30.3865 3.0000 -59.0922 114.7379 | (45) (46) (47) (48) (49) (55) (56) (57) (59) (61) (63a) (63a) (63b) (63c) (63d) (64) (64) (65) (66) (67) (68) (69) (70) (71) (72) | SAP 10 Online 2.13.11 Page 5 of 7 | 6. Solar gains | | | | | | | | | | | | | | |---|--------------------------------|--|---|------------------------------|-----------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-----------------------------|---|-------------------------| | [Jan] | | | | m2 | Solar flux
Table 6a
W/m2 | Speci
or | g
fic data
Table 6b | Specific
or Tab | FF
data
le 6c | Acces
facto
Table | or | Gains
W | | | Northeast
Southeast | | | 3.72
1.86 | 00
500 | 11.2829
36.7938 | | 0.6300
0.6300 | 0 | .7000
.7000 | 0.77 | | 12.8274
20.9151 | | | Solar gains
Total gains | | | | | | | | | | | | | | | 7. Mean intern | | | | | | | | | | | | | | | Temperature du | ring heati | ng periods i | in the livir | ng area fro | m Table 9, 1 | | | | | | | 21.0000 | (85) | | Utilisation fa
tau
alpha | Jan
109.8228 | Feb | Mar | Apr | | Jun
113.3608
8.5574 | Jul
113.3608
8.5574 | Aug
113.5981
8.5732 | Sep
112.8706
8.5247 | Oct
112.0967
8.4731 | Nov
111.5561
8.4371 | Dec
110.9965
8.3998 | | | util living an | | | 0.9884 | 0.9474 | 0.8130 | 0.5883 | 0.4237 | 0.4670 | 0.7282 | 0.9575 | 0.9946 | 0.9987 | (86) | | MIT
Th 2 | 20.3815 | 20.4839 | 20.6323
20.0057 | 20.8379
20.0170 | 20.9659
20.0191 | 20.9979 | 20.9999 | 20.9997
20.0308 | 20.9889
20.0252 | 20.8436
20.0191 | | 20.3677
20.0103 | (87) | | util rest of h | 0.9973 | 0.9936 | 0.9817 | 0.9197 | 0.7452 | 0.5006 | 0.3303 | 0.3689 | 0.6342 | 0.9288 | 0.9910 | 0.9979 | | | MIT 2
Living area fi | | 19.4344 | 19.6228 | 19.8746 | 19.9983 | 20.0283 | 20.0290 | 20.0308 | | 19.8875
Living area | a / (4) = | | (91) | | MIT
Temperature ac
adjusted MIT | | 19.9696
19.9696 | 20.1376 | 20.3659 | 20.4917 | 20.5227 | 20.5241 | 20.5249 | | 20.3750 | | 19.8408
0.0000
19.8408 | | | | | | | | | | | | | | | | | | 8. Space heat: | ing require | ment | | | | | | | | | | | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Utilisation
Useful gains
Ext temp. | 394.9375
4.3000 | 428.3898 | | 0.9308
447.6961
8.9000 | | 0.5455
268.2411
14.6000 | 0.3779
178.1587
16.6000 | 0.4190
186.8500
16.4000 | 0.6826
288.4993
14.1000 | 0.9409
373.2316
10.6000 | | | (95) | | Heat loss rate
Space heating | 728.9678 | 704.4007 | 635.7579 | 527.7739 | 403.7174 | 268.9400 | 178.1855 | 186.9128 | 292.5324 | 448.8706 | 599.4086 | 725.3459 | (97) | | Space heating | 248.5186
requirement | 185.4793
t - total pe | | 57.6560
n/year) | 10.9926 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 56.2754 | 156.8942 | 254.5080
1113.4893 | (98a) | | Solar heating
Solar heating | 0.0000 | 0.0000
on - total r | | 0.0000
Th/vear) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Space heating
Space heating | kWh
248.5186
requirement | 185.4793 | 143.1652 | 57.6560 | | 0.0000
(kWh/year) | 0.0000 | 0.0000 | 0.0000 | | 156.8942
) / (4) = | 1113.4893 | | | Space heating | per mz | | | | | | | | | (900) |) / (4) = | 26.1321 | (99) | | 9a. Energy rec | quirements | - Individual | l heating sy | stems, inc | luding micro | o-CHP | | | | | | | | | Fraction of sy
Fraction of sy
Efficiency of
Efficiency of
Efficiency of | main space
main space | rom main sys
heating sys
heating sys | stem(s)
stem 1 (in 9
stem 2 (in 9 | ;)
;) | m (Table 11) |) | | | | | | 0.0000
1.0000
92.3000
0.0000
0.0000 | (202)
(206)
(207) | | Space heating | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating | 248.5186 | 185.4793 | | 57.6560 | 10.9926 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 56.2754 | 156.8942 | 254.5080 | (98) | | Space heating | 92.3000
fuel (main | 92.3000
heating sys | 92.3000
stem) | 92.3000 | 92.3000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 92.3000 | 92.3000 | 92.3000 | (210) | | Space heating | 269.2509
efficiency | 200.9527
(main heat) | 155.1086
ing system 2 | | 11.9096 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 60.9701 | 169.9829 | | | | Space heating | | | 0.0000
stem 2) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating | 0.0000
fuel (secon | 0.0000
ndary)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Water heating
Water heating | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (220) | | Efficiency of | 164.5344 | 145.6642 | 155.4306 | 138.6107 | 135.6189 | 123.5959 | 123.1316 | 127.3331 | 127.9399 | 140.9673 | 147.7673 | 163.0227
79.8000 | | | (217)m
Fuel for water | 84.9822 | 84.6028 | 83.8759 | 82.2488 | 80.4111 | 79.8000 | 79.8000 | 79.8000 | 79.8000 | 82.1763 | 84.1944 | 85.0546 | | | Space cooling | 193.6105
fuel requi: | 172.1743
rement | | | 168.6571 | | 154.3002 | | 160.3257 | 171.5426 | 175.5072 | | | | (221)m
Pumps and Fa
Lighting | 0.0000
7.3041
14.6211 | 6.5973
11.7296 | 0.0000
7.3041
10.5612 | 0.0000
7.0685
7.7376 | 0.0000
7.3041
5.9767 | 0.0000
7.0685
4.8830 | 0.0000
7.3041
5.4522 | 0.0000
7.3041
7.0869 | 0.0000
7.0685
9.2052 | 0.0000
7.3041
12.0778 | 0.0000
7.0685
13.6418 | 0.0000
7.3041
15.0274 | (231) | | Electricity ge
(233a)m
Electricity ge | -14.7805 | -21.6607
wind turbing | -32.3614
nes (Appendi | -37.8882
.x M) (nega | -42.1984
tive quanti | ty) | | | -31.7939 | -25.4780 | -16.5556 | -12.6876 | (233a) | | (234a)m
Electricity ge | 0.0000
enerated by | 0.0000
hydro-elect | 0.0000
tric generat | 0.0000
ors (Appen | 0.0000
dix M) (nega | 0.0000
ative quant | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | (235a)m
Electricity us | | | | | | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | (235c)m
Electricity ge | 0.0000
enerated by | 0.0000
PVs (Append | 0.0000
dix M) (nega | 0.0000
tive quant | 0.0000
ity) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | (233b)m
Electricity ge
(234b)m | | wind turbing | | | -52.8125
tive quanti
0.0000 | ty) | 0.0000 | -44.2105
0.0000 | -32.0726
0.0000 | -18.5336
0.0000 | -8.0780
0.0000 | -4.7381
0.0000 | | | | | | | | | | | | | | | | | SAP 10 Online 2.13.11 Page 6 of 7 | Electricity generated by hydro-electric generators (Appendix M) (negative quantity (235b)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Electricity used or net electricity generated by micro-CHP (Appendix N) (negative | 0.0000 0.0000
if net generation) | | 0.0000 | 0.0000 | (235b) | |---|--|---|--------|--|---| | (235d)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Annual totals kWh/year | 0.0000 0.0000 | 0.0000 0.0000 | | 0.0000 | | | Space heating fuel - main system 1
Space heating fuel - main system 2 | | | | 1206.3806 | | | Space heating fuel - secondary
Efficiency of water heater | | | | 0.0000
79.8000 | (215) | | Water heating fuel used
Space cooling fuel | | | | 2056.0695 | | | Electricity for pumps and fans: | | | | | (/ | | Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) | | | | 86.0000
118.0005 | | | Energy saving/generation technologies (Appendices
M , N and Q) | | | | 110.0000 | (202) | | PV generation Wind generation | | | | -702.0353
0.0000 | | | Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) | | | | 0.0000 | (235a) | | Appendix Q - special features | | | | | | | Energy saved or generated
Energy used | | | | -0.0000
0.0000 | (237) | | Total delivered energy for all uses | | | | 2764.4153 | (230) | | | | | | | | | 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP | | | | | | | | Energy | Emission factor | | Emissions | | | | kWh/year | kg CO2/kWh | kg | CO2/year | | | Space heating - main system 1 | 1206.3806 | 0.2100 | | 253.3399 | | | Space heating - main system 1
Total CO2 associated with community systems
Water heating (other fuel) | | 0.2100 | | 253.3399
0.0000
431.7746 | (373) | | Total CO2 associated with community systems | 1206.3806 | 0.2100
0.2100 | | 0.0000 | (373)
(264)
(265) | | Total CO2 associated with community systems
Water heating (other fuel)
Space and water heating | 1206.3806
2056.0695 | 0.2100
0.2100 | | 0.0000
431.7746
685.1145 | (373)
(264)
(265)
(267) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies | 1206.3806
2056.0695
86.0000
118.0005 | 0.2100
0.2100
0.1387
0.1443 | | 0.0000
431.7746
685.1145
11.9293
17.0311 | (373)
(264)
(265)
(267) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported | 1206.3806
2056.0695
86.0000 | 0.2100
0.2100
0.1387
0.1443 | | 0.0000
431.7746
685.1145
11.9293
17.0311
-47.0017
-44.0019 | (373)
(264)
(265)
(267)
(268) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year | 1206.3806
2056.0695
86.0000
118.0005 | 0.2100
0.2100
0.1387
0.1443 | | 0.0000
431.7746
685.1145
11.9293
17.0311
-47.0017
-44.0019
-91.0037
623.0712 | (373)
(264)
(265)
(267)
(268)
(269)
(272) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total | 1206.3806
2056.0695
86.0000
118.0005 | 0.2100
0.2100
0.1387
0.1443 | | 0.0000
431.7746
685.1145
11.9293
17.0311
-47.0017
-44.0019
-91.0037 | (373)
(264)
(265)
(267)
(268)
(269)
(272) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year | 1206.3806
2056.0695
86.0000
118.0005 | 0.2100
0.2100
0.1387
0.1443 | | 0.0000
431.7746
685.1145
11.9293
17.0311
-47.0017
-44.0019
-91.0037
623.0712 | (373)
(264)
(265)
(267)
(268)
(269)
(272) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year | 1206.3806
2056.0695
86.0000
118.0005
-351.4360
-350.5993 | 0.2100
0.2100
0.1387
0.1443
0.1337
0.1255 | | 0.0000
431.7746
685.1145
11.9293
17.0311
-47.0017
-44.0019
-91.0037
623.0712
14.6200 | (265)
(267)
(268)
(268)
(268)
(268) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) | 1206.3806
2056.0695
86.0000
118.0005
-351.4360
-350.5993 | 0.2100 0.2100 0.1387 0.1443 0.1337 0.1255 | Prima | 0.0000
431.7746
685.1145
11.9293
17.0311
-47.0017
-44.0019
-91.0037
623.0712
14.6200 | (265)
(267)
(268)
(268)
(268)
(268) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) 13a. Primary energy - Individual heating systems including micro-CHP Space heating - main system 1 | 1206.3806
2056.0695
86.0000
118.0005
-351.4360
-350.5993 | 0.2100 0.2100 0.1387 0.1443 0.1337 0.1255 Primary energy factor kg CO2/kWh | Prima | 0.0000
431.7746
685.1145
11.9293
17.0311
-47.0017
-44.0019
-91.0037
623.0712
14.6200
kWh/year
1363.2101 | (373)
(264)
(265)
(267)
(268)
(269)
(272)
(273) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) | 1206.3806
2056.0695
86.0000
118.0005
-351.4360
-350.5993
Energy
kWh/year
1206.3806 | 0.2100 0.2100 0.1387 0.1443 0.1337 0.1255 | Prima | 0.0000 431.7746 685.1145 11.9293 17.0311 -47.0017 -44.0019 -91.0037 623.0712 14.6200 ary energy kWh/year 1363.2101 0.0000 0.0000 2323.3586 | (265)
(267)
(268)
(267)
(268)
(269)
(272)
(273)
(273) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot | 1206.3806 2056.0695 86.0000 118.0005 -351.4360 -350.5993 Energy kWh/year 1206.3806 2056.0695 86.0000 | 0.2100
0.2100
0.1387
0.1443
0.1337
0.1255
Primary energy factor
kg CO2/kWh
1.1300
1.1300 | Prima | 0.0000
431.7746
685.1145
11.9293
17.0311
-47.0017
-44.0019
-91.0037
623.0712
14.6200
ary energy
kWh/year
1363.2101
0.0000
2323.3586
3686.5686
130.1008 | (265)
(266)
(267)
(268)
(268)
(269)
(272)
(273)
(273)
(278)
(278)
(278)
(278)
(281) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting | 1206.3806 2056.0695 86.0000 118.0005 -351.4360 -350.5993 Energy kWh/year 1206.3806 2056.0695 | 0.2100
0.2100
0.1387
0.1443
0.1337
0.1255
Primary energy factor kg CO2/kWh 1.1300
1.1300
1.5128 | Prima | 0.0000 431.7746 685.1145 11.9293 17.0311 -47.0017 -44.0019 -91.0037 623.0712 14.6200 ary energy kWh/year 1363.2101 0.0000 2323.3586 3686.5686 | (265)
(266)
(267)
(268)
(268)
(269)
(272)
(273)
(273)
(278)
(278)
(278)
(278)
(281) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy saving/generation technologies PV Unit electricity used in dwelling | 1206.3806 2056.0695 86.0000 118.0005 -351.4360 -350.5993 Energy kWh/year 1206.3806 2056.0695 86.0000 118.0005 | 0.2100
0.2100
0.1387
0.1443
0.1337
0.1255
Primary energy factor kg C02/kWh 1.1300
1.1300
1.5128
1.5338 | Prima | 0.0000 431.7746 685.1145 11.9293 17.0311 -47.0017 -44.0019 -91.0037 623.0712 14.6200 ary energy kWh/year 1363.2101 0.0000 2323.3586 6366.5686 130.1008 180.9931 | (265)
(266)
(267)
(268)
(268)
(269)
(272)
(273)
(273)
(278)
(278)
(278)
(278)
(281) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans
and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total | 1206.3806 2056.0695 86.0000 118.0005 -351.4360 -350.5993 Energy kWh/year 1206.3806 2056.0695 86.0000 118.0005 | 0.2100
0.2100
0.1387
0.1443
0.1337
0.1255
Primary energy factor kg C02/kWh 1.1300
1.1300
1.5128
1.5338 | Prima | 0.0000 431.7746 685.1145 11.9293 17.0311 -47.0017 -44.0019 -91.0037 623.0712 14.6200 ary energy kWh/year 1363.2101 0.0000 0.223.3586 3686.5686 130.1008 180.9931 -525.1295 -161.5115 -686.6441 | (264)
(267)
(268)
(267)
(268)
(269)
(272)
(273)
(273)
(273)
(275)
(473)
(279)
(281)
(282) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported | 1206.3806 2056.0695 86.0000 118.0005 -351.4360 -350.5993 Energy kWh/year 1206.3806 2056.0695 86.0000 118.0005 | 0.2100
0.2100
0.1387
0.1443
0.1337
0.1255
Primary energy factor kg C02/kWh 1.1300
1.1300
1.5128
1.5338 | Prima | 0.0000 431.7746 685.1145 11.9293 17.0311 -47.0017 -44.0019 -91.0037 623.0712 14.6200 ary energy kWh/year 1363.2101 0.0000 2323.3586 130.1008 180.9931 -525.1295 -161.5115 | (264)
(267)
(268)
(267)
(268)
(269)
(272)
(273)
(273)
(273)
(275)
(473)
(279)
(281)
(282) | SAP 10 Online 2.13.11 Page 7 of 7 | Dwelling Address | Unit 1, Highland Square , Bristol | |------------------------------|-----------------------------------| | Report Date | 05/03/2024 | | Property Type | Flat, Semi-Detached | | Floor Area [m ²] | 43 | This document is not an Energy Performance Certificat EPC) s required by the Energy Performance of Buildings Reg io SAP 10 Online 2.13.11 Page 1 of 4 #### Breakdown of property's energy performance Each feature is assessed as one of the following: | Very Poor | Poor Average | | Good | Very Good | | | |-----------------------|--|-------------------|-----------------------|-----------|--|--| | | | | | | | | | Feature | Description | gy
Performance | | | | | | Walls | Average thermal transmi | ttance 0.18 W/m²K | | Very Good | | | | Floor | Average thermal transmi | ttance 0.12 W/m²K | | Very Good | | | | Windows | High performance glazin | g | | Good | | | | Main heating | eating Air source heat pump, radiators, electric | | | | | | | Main heating controls | Time and temperature zo | one control | | Very Good | | | | Secondary heating | None | | | | | | | Hot water | er From main system | | Average | | | | | Lighting | Good lighting e iciency | | ghting e iciency Good | | | | | Air tightness | Air perm ity [AP5 | Good | | | | | #### Primary Energy e The primary ener e for this operty per year is 37 kilowatt hour (kWh) per square metre #### Estimat d C emissions of the dwelling The estimed CO rating rovides an indication of the dwelling's impact on the environment in terms of carbon dio emissio; the higher the rating the less impact it has on the environment. The estimated CO emissions for this dwellings is: 0.1 per year With the recommended measures the potential CO emissions could be: per year SAP 10 Online 2.13.11 Page 2 of 4 #### Recommendations The recommended measures provided below will help to improve the energy efficiency of the dwelling. To reach the dwelling's potential energy rating all of the recommended measures shown below would need to installed. Having these measures installed individually or in any other order may give a different result who pared work the cumulative potential rating. | Recommended measure | Typical | Potential Rating | lative | Cumulative | |---------------------|---------|-------------------|----------|------------| | | Yearly | after | s | Potential | | | Saving | measure installed | (per yea | Rating | #### Estimated energy use and potential savin s Estimated energy cost for this property over a year £265 Over a year you could save £0 The estimated cost and savings show how much the average househ would spend in this property heating, lighting and hot water. It not based on how energy is ed by the people living at the propert #### Contacting asses or and the accreditation scheme | As | ssessor contact details | |---------------------------|-------------------------| | Asse r name | | | Assess accredita n number | | | Email Address | | SAP 10 Online 2.13.11 Page 3 of 4 | Accreditation scheme contact details | | | | | | |--------------------------------------|-----------------------------|--|--|--|--| | Accreditation scheme | Elmhurst Energy Systems Ltd | | | | | | Telephone | | | | | | | Email Address | | | | | | | Assessment details | | | |--------------------------|---------------|--| | Related party disclosure | No related pa | | | Date of assessment | 05/03/202 | | | Date of certificate | 05/03/202 | | | Type of assessment | SAP w dwellin | | #### **Building Regulations England Part L (BREL) Compliance Report** Approved Document L1 2021 Edition, England assessed by Array SAP 10 program, Array Date: Tue 05 Mar 2024 08:41:58 | Project Information | | | | |---------------------|------------|-----------------|---------------------| | Assessed By | | Building Type | Flat, Semi-detached | | OCDEA Registration | EES/025661 | Assessment Date | 2024-03-05 | | Dwelling Details | | | | |-------------------------|--------------------------------|------------------|-------------------| | Assessment Type | As designed | Total Floor Area | 62 m ² | | Site Reference | Unit 3 | Plot Reference | Residual | | Address | Unit 1 Highland Square, Bristo | ol | | | Client Details | | |----------------|---| | Name | Tebby & Son | | Company | SF Tebby & Son | | Address | Unit 11 Avon Gorge Industrial Estate , Bristol, BS2 9XX | This report covers items included within the SAP calculations. It is not a complete report of regulations compliance. | 1a Target emission rate and dwelling emission rate | | | |--|---|----| | Fuel for main heating system | Electricity | | | Target carbon dioxide emission rate | 11.67 kgCO ₂ /m ² | | | Dwelling carbon dioxide emission rate | 4.62 kgCO ₂ /m ² | OK | | 1b Target primary energy rate and dwelling primary energy | | | | Target primary energy | 61.38 kWh _{PE} /m ² | | | Dwelling primary energy | 48.68 kWh _{PE} /m ² | OK | | 1c Target fabric energy efficiency and dwelling fabric energy efficiency | | | | Target fabric energy efficiency | 31.9 kWh/m ² | | | Dwelling fabric energy efficiency | 30.8 kWh/m ² | OK | | 2a Fabric U-values | | | | | |--------------------|---|---|---|-----| | Element | Maximum permitted average U-Value [W/m²K] | Dwelling average U-Value [W/m ² K] | Element with highest individual U-Value | | | External walls | 0.26 | 0.18 | Walls (1) (0.18) | OK | | Party walls | 0.2 | 0 | Party Wall (1) (0) | N/A | | Curtain walls | 1.6 | 0 | N/A | N/A | | Floors | 0.18 | 0.18 | Exposed Floor (0.18) | OK | | Roofs | 0.16 | 0.11 | Roof (1) (0.11) | ОК | | Windows, doors, | 1.6 | 1.31 | W01 (1.31) | OK | | and roof windows | | | | | | Rooflights | 2.2 | N/A | N/A | N/A | | 2b Envelope elements (better than typically expected values are flagged with a subsequent (!)) | | | | |--|----------------------------|------------------------------|--| | Name | Net area [m ²] | U-Value [W/m ² K] | | | Exposed wall: Walls (1) | 22.43 | 0.18 | | | Party wall: Party Wall (1) | 95.62 | 0 (!) | | | Party floor: Exposed Floor, Exposed Floor | 7.88 | 0.18 | | | Exposed roof: Roof (1) | 38.16 | 0.11 | | | 2c Openings (better than typically expected values are flagged with a subsequent (!)) | | | | | |---|------------------------|-------------|--------------|------------------------------| | Name | Area [m ²] | Orientation | Frame factor | U-Value [W/m ² K] | | W01, Windows | 2.26 | North East | 0.7 | 1.31 | | W02, Windows | 2.26 | North East | 0.7 | 1.31 | | W03, Windows | 2.26 | North East | 0.7 | 1.31 | | W04, Windows | 2.25 | North East | 0.7 | 1.31 | | W05, Windows | 2.24 | North East | 0.7 | 1.31 | | 2d Thermal brid | 2d Thermal bridging (better than typically expected values are flagged with a subsequent (!)) | | | | |-------------------|---|--------------------------------------|---------------------|---------| | Building part 1 - | Main Dwelling: Thermal bridging ca | alculated from linear thermal transm | ittances for each j | unction | | Main element | Main element Junction detail Source Psi value Drawing / [W/mK] reference | | | _ | | External wall | E2: Other lintels (including other steel lintels) | Not government-approved scheme | 0.023 (!) | | | Main element | Junction detail | Source | Psi value
[W/mK] | Drawing / reference | |---------------|---|--|---------------------|---------------------| | External wall | E3: Sill | Calculated by person with
suitable expertise | 0.021 (!) | | | External wall | E4: Jamb | Calculated by person with suitable expertise | 0.016 (!) | | | External wall | E20: Exposed floor (normal) | Calculated by person with suitable expertise | 0.116 | | | External wall | E7: Party floor between dwellings (in blocks of flats) | Calculated by person with suitable expertise | 0.038 (!) | | | Party wall | P7: Exposed floor (normal) | Calculated by person with suitable expertise | 0.185 | | | Party wall | P3: Intermediate floor between dwellings (in blocks of flats) | SAP table default | 0 (!) | | | External wall | E16: Corner (normal) | Calculated by person with suitable expertise | 0.043 | | | External wall | E25: Staggered party wall between dwellings | Calculated by person with suitable expertise | 0.036 (!) | | | External wall | E18: Party wall between dwellings | Calculated by person with suitable expertise | 0.046 | | | External wall | E21: Exposed floor (inverted) | SAP table default | 0.32 | | | Party wall | P5: Roof (insulation at rafter level) | Calculated by person with suitable expertise | 0.101 | Calculate | | External wall | E24: Eaves (insulation at ceiling level - inverted) | SAP table default | 0.15 | | | 3 Air permeability (better than typically expected values are flagged with a subsequent (!)) | | | |--|--|----| | Maximum permitted air permeability at 50Pa | 8 m ³ /hm ² | | | Dwelling air permeability at 50Pa | 4.5 m ³ /hm ² , Design value | OK | | Air permeability test certificate reference | | | | 4 Space heating | | |---------------------------------------|---| | Main heating system 1: Heat pump with | radiators or underfloor heating - Electricity | | Efficiency | 231.7% | | Emitter type | Radiators | | Flow temperature | 55°C | | System type | Heat Pump | | Manufacturer | Atlantic | | Model | Logic Air 8kW | | Commissioning | | | Secondary heating system: N/A | | | Fuel | N/A | | Efficiency | N/A | | Commissioning | | | 5 Hot water | | |--------------------------------------|--------------| | Cylinder/store - type: Cylinder | | | Capacity | 150 litres | | Declared heat loss | 2.09 kWh/day | | Primary pipework insulated | Yes | | Manufacturer | | | Model | | | Commissioning | | | Waste water heat recovery system 1 - | type: N/A | | Efficiency | | | Manufacturer | | | Model | | | 6 Controls | | | | | | | | | | | |---|--|--|--|--|--|--|--|--|--|--| | Main heating 1 - type: Time and temperature zone control by arrangement of plumbing and electrical services | | | | | | | | | | | | Function | | | | | | | | | | | | Ecodesign class | | | | | | | | | | | | Manufacturer | | | | | | | | | | | | Model | | | | | | | | | | | | Water heating - type: Cylinder thermosta | at and HW separately | timed | | |--|-------------------------|--|-----| | Manufacturer | | | | | Model | | | | | 7 Lighting | | | | | Minimum permitted light source efficacy | 75 lm/W | | | | Lowest light source efficacy | 80 lm/W | | OK | | External lights control | N/A | | | | 8 Mechanical ventilation | | | | | System type: N/A | | | | | Maximum permitted specific fan power | N/A | | | | Specific fan power | N/A | | N/A | | Minimum permitted heat recovery | N/A | | 1 | | efficiency | | | | | Heat recovery efficiency | N/A | | N/A | | Manufacturer/Model | | | | | Commissioning | | | | | 9 Local generation | | | | | N/A | | | | | 10 Heat networks | | | | | N/A | | | | | 44 Commenting decommentary evidence | | | | | 11 Supporting documentary evidence N/A | | | | | 12 Declarations | | | | | a. Assessor Declaration | | | | | | infirmation that the co | ontents of this BREL Compliance Report | | | | | nformation submitted for this dwelling for | | | | | and that the supporting documentary | | | evidence (SAP Conventions, Appendi | | | | | documentary evidence required) has | | | | | Compliance Report. | boon roviowed in the | ocarde of proparing this BILE | | | | | | 1 | | | | | | | Signed: | | Assessor ID: | | | | | | | | | | | | | Name: | | Date: | | | | | | | | b. Client Declaration | | | | | N/A | | | | | Property Reference | Unit 3 | } | | | | | | | Issued | on Date | 05/0 | 3/2024 | 1 | |------------------------------------|------------------------|----------|--------------------|--|---|--|-----------|--------------|---|--|-------------|---|----------------------------| | Assessment Reference | Resid | ual | | | | Prop T | ype Ref | | Tebby an | d Son G | arage | | | | Property | Unit 1 | , Highla | nd Square | , Bristol | | | | | | | | | | | SAP Rating | | | | 83 B | DER | | 4.62 | | 1 | ER | • | 1.67 | | | Environmental | | | | 97 A | % DER | < TER | | | | | (| 0.41 | | | CO ₂ Emissions (t/year) | | | | 0.26 | DFEE | | 30.77 | | Т | FEE | | 31.91 | | | Compliance Check | | | | See BREL | % DFEE < TFEE | | | | | 3 | 3.56 | | | | % DPER < TPER | | | | 20.69 | DPER | | 48.68 | | T | PER | (| 31.38 | | | Assessor Details | | | l | | | | | | F | \ssessor | ·ID (| J367-0 | 001 | | Client | | | | | | | | | | | | | | | SUMMARY FOR INPL | JT DATA FO | R: Nev | v Build (<i>l</i> | As Designed) | | | | | | | | | | | Orientation | | | | Southwest | | | | | | | | | | | Property Tenture | | | | 1 | | | | | | | | | | | Transaction Type | | | | 6 | | | | | | | | | | | Terrain Type | | | | Urban | | | | | | | | | | | 1.0 Property Type | | | | Flat, Semi-Detache | | | | | | | | | | | Position of Flat | | | | Top-floor flat | | | | | | | | | | | Which Floor | | | | 1 | | | | | | | | | | | 2.0 Number of Storeys | | | | 1 | | | | | | | | | | | 3.0 Date Built | | | | 2024 | | | | | | | | | | | 3.0 Property Age Band | | | | L | | | | | | | | | | | 4.0 Sheltered Sides | | | | 3 | | | | | | | | | | | 5.0 Sunlight/Shade | | | | | | | | | | | | | | | 6.0 Thermal Mass Parame | ater | | | Average or unknown Precise calculation | | | | | | | | | | | Thermal Mass | | | | N/A | | | | | k. | I/m²K | | | | | 7.0 Electricity Tariff | | | | Standard | | | | | | | | | | | Smart electricity meter | fitted | | | No | | | | | | | | | | | Smart gas meter fitted | | | | No | | | | | | | | | | | 7.0 Measurements | | | | | | | | | | | | | | | | | | | Baseme
Ground flo
1st Stor
2nd Stor
3rd Stor
4th Stor
5th Stor
7th Stor | ent:
or:
ey:
ey:
ey:
ey:
ey:
ey: | Loss Peri
0.00 m
15.24 m
0.00 m
0.00 m
0.00 m
0.00 m
0.00 m
0.00 m
0.00 m | meter | Int | ernal Floo
0.00 m
62.29 r
0.00 m
0.00 m
0.00 m
0.00 m
0.00 m
0.00 m | n ²
n ²
1 ²
1 ²
1 ²
1 ² | Avera | 9e Stor
0.00
2.50
0.00
0.00
0.00
0.00
0.00
0.00 | m
m
m
m
m
m | | 8.0 Living Area | | | | 23.99 | | | | | m | 2 | | | | | 9.0 External Walls Description | Туре | Constr | ruction | | U- V alue | Kappa G | iross Nei | t Area | Shelter | Shelter | Onenir | nas Are | a Calculat | | Cavity Wall | Cavity Wall | Cavity | | oard on dabs, dense block
de structure | (W/m²K) | (kJ/m²K) Ar | ea(m²) | (m²)
2.43 | Res
0.00 | None | 11.2 | _ | Type
er Gross A | | 9.1 Party Walls | Type | | Construc | tion | | | | Value | Карра | Area | Shelter | | helter | | Description | ·ype | | | sterboard on both sid | les, dense | cellular blo | (W | | (kJ/m²K)
70.00 | (m²)
95.62 | Res
0.00 | | None | | Description Party Wall 1 | Filled Cav | | | | | | | | | | | | | | Party Wall 1 | Filled Cav
Edge Sea | | cavity | | | | | | | | | | | | • | | ling | | | | | | | | | | appa
/m²K) | Area (r | SAP 10 Online 2.13.11 Page 1 of 4 | Description | Туре | Construc | etion | | U-Value
(W/m²K)(| | | | a Code | Shelter
Factor | | on Openings | |--|---|-----------------------------|----------------------------------|-----------------|-----------------------|--------------------|--------------------|-----------------------|----------------------|-------------------|---------------------------|--------------------| | External Roof 1 | External Flat
Roof | Plasterbo | ard, insulated fla | at roof | 0.11 | 9.00 | 38.16 | (m ²)
38.1 | | 0.00 | Enter Gros
Area | ss 0.00 | | 10.1 Party Ceilings | | | | | | | | | | | | | | Description | | Const | ruction | | | | | | | | Kappa
(kJ/m²K) | Area (m²) | | Party Ceiling 1 | | Precas | st concrete plank | s floor, screed | , carpeted | | | | | | 30.00 | 54.41 | | 11.0 Heat Loss Floors | | | | | | | | | | | | | | Description | Туре | Storey Inde | x Constructi | on | | | Value
//m²K) | SI | helter Code | | helter Kap
actor (kJ/m | pa Area(m²
1²K) | | Exposed Floor | Exposed Floor -
Solid | Lowest occu | pied Other | | | | 0.18 | | None | | 0.00 75.0 | | | 11.1 Party Floors | | | | | | | | | | | | | | Description | | Storey | Construction | | | | | | | | Kappa | Area (m²) | | Party Floor 1 | | Index
Lowest
occupied | Precast concre | te planks floor | , screed, carp | eted | | | | | (kJ/m²K)
30.00 | 54.41 | | 12.0 Opening Types | | | | | | | | | | | | | | Description | Data Source | Type | Gla | zing | | Glazin
Gap | g Filliı
Typ | | G-value | Frame
Type |
Frame
Factor | U Value
(W/m²K) | | Windows | Manufacturer | Window | Dou | ble Low-E Sof | t 0.05 | Оар | Air Fi | | 0.63 | Wood | 0.70 | 1.31 | | 13.0 Openings | | | | | | | | | | | | | | Name | Opening Ty | /pe | Location | | | | ntation | | Area (| | P | itch | | W01
W02 | Windows
Windows | | Cavity Wa
Cavity Wa | | | | th East
th East | | 2.20
2.20 | | | 0 | | W03 | Windows | | Cavity Wa | ıll | | | th East | | 2.20 | | | 0 | | W04
W05 | Windows
Windows | | Cavity Wa
Cavity Wa | | | | th East
th East | | 2.2
2.2 | | | 0 | | 14.0 Conservatory | | | None | | | | | | 7 | | | | | 15.0 Draught Proofing | | | 100 | | | | | | | | | | | | | | No | | | | | | _ | | | | | 16.0 Draught Lobby | | | INO | | | | | | | | | | | 17.0 Thermal Bridging | | | Calculate | Bridges | | | | | | | | | | 17.1 List of Bridges | | | _ | | | | | | | | | | | Bridge Type
E2 Other lintels (included) | ding other steel linte | de) | Source Type
Non Gov Appro | oved Schemes | Length
5.51 | Psi
0.02 | | | Reference: | | | Imported
No | | E3 Sill | ung outer steer linke | | Independently | | 5.51 | 0.02 | 0.0 | | | | | No | | E4 Jamb | D | | Independently | | 20.84 | 0.02 | | | | | | No | | E20 Exposed floor (no
E7 Party floor between | | s of flats) | Independently
Independently | | 2.89
28.37 | 0.12
0.04 | 0.1
0.0 | | | | | No
No | | P7 Partý Wall - Expos | ed floor (normal) | , | Independently | assessed | 8.41 | 0.18 | 0.1 | 8 | | | | No | | P3 Party wall - Interme
(in blocks of flats) | ediate floor betweer | n dwellings | Table K1 - Defa | ault | 19.89 | 0.00 | 0.0 | 0 | | | | No | | È16 Comer (normal) | | | Independently | | 3.50 | 0.04 | 0.0 | | | | | No | | E25 Staggered party v
E18 Party wall between | | ngs | Independently
Independently | | 1.00
5.00 | 0.04
0.05 | 0.0
0.0 | | | | | No
No | | E21 Exposed floor (in | verted) | | Table K1 - Defa | ault | 5.37 | 0.32 | 0.3 | 2 | | | | No | | P5 Party wall - Roof (i
E24 Eaves (insulation | insulation at rafter le
at ceiling level - inv | evel)
erted) | Independently
Table K1 - Defa | | 13.96
2.09 | 0.10
0.15 | 0.1
0.1 | | Calculate | | | No
No | | Y-value | | , | 0.09 | | | | | | W/m²K | | | | | | | | | | | | | | | | | | | 18.0 Pressure Testing | | | Yes | | | | | | | | _ | | | Designed AP₅o | | | 4.50 | | | | | | m³/(h.m ² | ²) @ 50 I | Pa | | | Property Tested? | | | Yes | | | | | | | | | | | Test Method | | | Blower Do | ЮГ | | | | | | | | | | 19.0 Mechanical Ventilat | | | | | | | | | | | | | | Mechanical Ventilation Mechanical Ventilation | on
tilation System Pres | ent | No | | | | | | 7 | | | | | 20.0 Fans, Open Fireplac | | - CITC | 140 | | | | | | | | | | | 21.0 Fixed Cooling Syste | | | No | | | | | | | | | | | 22.0 Lighting | | | | | | | | | | | | | | No Fixed Lighting | | | No | | | | | | | | | | | | | | Name | | fficacy | I | Power | | Capa | city | C | ount | | | | | Lighting | I | 80.00 | | 15 | | 120 | JU | | 5 | SAP 10 Online 2.13.11 Page 2 of 4 | 24.0 Main Heating 1 | Database | | |--|--|------------------------------------| | Percentage of Heat | 100.00 | % | | Database Ref. No. | 106764 | 70 | | Fuel Type | Electricity | | | SAP Code | 0 | | | In Winter | 231.75 | | | In Summer | 192.18 | | | Model Name | Logic Air 8kW | | | | | | | Manufacturer | Atlantic | | | System Type | Heat Pump | | | Controls SAP Code | 2207 | | | Delayed Start Stat | No | | | HETAS approved System | No | | | Oil Pump Inside | No | | | FI Case | 0.00 | | | Flue Type | None or Unknown | | | Fan Assisted Flue | No | | | Is MHS Pumped | Pump in heated space | | | Heating Pump Age | 2013 or later | | | Heat Emitter | Radiators | | | Flow Temperature | Enter value | | | Flow Temperature Value | 55.00 | | | Boiler Interlock | No | | | 25.0 Main Heating 2 | None | | | 26.0 Heat Networks | None | | | Heat Source Fuel Type Heating U | | trical Fuel Factor Efficiency type | | | Heat Power
Ratio | | | Heat source 1 None
Heat source 2 None | | | | Heat source 3 None
Heat source 4 None | | | | | | | | Heat source 5 None | | | | Heat source 5 None 28.0 Water Heating | | | | Heat source 5 None 28.0 Water Heating Water Heating | Main Heating 1 | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code | Main Heating 1 | | | Heat source 5 None 28.0 Water Heating Water Heating | | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code | 901
No
No | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 | 901
No | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 | 901
No
No | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 | 901
No
No | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System | 901 No No No No | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel | 901 No No No No No No | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day | 901 No No No No Yes | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day Summer Immersion | 901 No No No No No No No No No N | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day Summer Immersion Cold Water Source | 901 No No No No Yes No From header tank | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day Summer Immersion Cold Water Source Bath Count | 901 No No No No No No No From header tank 0 | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day Summer Immersion Cold Water Source Bath Count Supplementary Immersion | 901 No No No No No No From header tank 0 No | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day Summer Immersion Cold Water Source Bath Count Supplementary Immersion Immersion Only Heating Hot Water | 901 No No No No No No Yes No From header tank 0 No No No From Peader tank 0 No No No No No No No No No | onnected Connected To | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day Summer Immersion Cold Water Source Bath Count Supplementary Immersion Immersion Only Heating Hot Water 28.1 Showers Description Shower Type | 901 No No No No No No From header tank 0 No No | onnected Connected To | SAP 10 Online 2.13.11 Page 3 of 4 | 29.0 Hot Water Cy | linder | | | Hot Water | r Cylinder | |] | | | | | |--------------------|-----------------|---------------|-----|------------|---------------|----------|-----|-----|----------|-----|-----| | Cylinder Stat | | | | Yes | | | | | | | | | Cylinder In Hea | ated Space | | | Yes | | | | | | | | | Independent Ti | me Control | | | Yes | | | | | | | | | Insulation Type | Insulation Type | | | | | | | | | | | | Cylinder Volum | Cylinder Volume | | | | | | | | L | | | | Loss | | | | 2.09 | | | | | kWh/day | | | | Pipes insulation | n | | | Fully insu | lated primary | pipework | | |] | | | | In Airing Cupbo | pard | | | No | | |] | | | | | | 31.0 Thermal Stor | e | | | None | | | | |] | | | | 34.0 Small-scale i | lydro | | | None | | | | |] | | | | Electricity Gen | erated | | | 0.00 | | | | |] | | | | Apportioned | | | | 0.00 | | | | | kWh/Year | | | | Connected to o | lwelling's elec | tricity meter | | Yes | | | | | | | | | Electricity Gen | Annual | | |] | | | | | | | | | Jan | Feb | Mar |
Арг | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Recommendations Lower cost measures None Further measures to achieve even higher standards | | Tunical Cost | Tomical acrimus necessary | Ratings after improvement | | | | | |---------------------|--------------|---------------------------|---------------------------|----------------------|--|--|--| | | Typical Cost | Typical savings per year | SAP rating | Environmental Impact | | | | | Solar water heating | | | 0 | 0 | | | | | _ | | | 0 | 0 | | | | | | | | 0 | 0 | | | | SAP 10 Online 2.13.11 Page 4 of 4 | Property Reference | е | Un | it 3 | | | | | | I. | ssued on Da | te | 05/03/2024 | | |---|--|---|-------------------------|-----------------|-------------------------|-------------------------|--|-----------------------|---------------------------------------|-----------------------------|--|---|--| | Assessment Refe | rence | Re | sidual | | | | | Prop Type Re | ef Te | bby and Son | Garage | | | | Property | | Un | it 1, Highland | Square, Bristol | | | | | | | | | | | SAP Rating | | | | | 83 B | | DER | 4.62 |) | TER | | 11.67 | | | Environmental | | | | | 97 A | | % DER < TEI | | | | | 60.41 | | | CO ₂ Emissions (t/ | year) | | | | 0.26 | | DFEE | 30.7 | | TFEE | | 31.91 | | | Compliance Chec | | | | | See BREL | | % DFEE < TF | | | | | 3.56 | | | % DPER < TPER | | | | | 20.69 | | DPER | 48.0 | 68 | TPER | | 61.38 | | | | | | | | | | | | | = | | | | | Assessor Details Client | | | | | | | | | | Asses | sor ID | U367-000 |)1 | | SAP 10 WORKSHEET
CALCULATION OF I | | uild (As D | esigned) | | | 2022) | | | | | | | | | 1. Overall dwell | ing charac | teristics | | | | | | Area | Store | y height | | Volume | | | Ground floor
Total floor area
Dwelling volume | a TFA = (la | 1)+(1b)+(1c |)+(ld)+(le |)(ln) | 6 | 2.2900 | | (m2)
62.2900
(3 | (1b) x
(a)+(3b)+(3c)+ | (m)
2.5000
(3d)+(3e). | | (m3)
155.7250
155.7250 | (4) | | 2. Ventilation r | ate | | | | | | | | | | | | | | Number of open of
Number of open f
Number of chimne
Number of flues
Number of flues
Number of blocke
Number of passiv
Number of fluele | lues ys / flues attached t attached t d chimneys ittent ext ve vents | o solid fu
to other he
tract fans | el boiler | fire | | | | | | | 0 * 80 =
0 * 20 =
0 * 10 =
0 * 20 =
0 * 35 =
0 * 20 =
3 * 10 =
0 * 10 =
0 * 40 = | 0.0000
0.0000
0.0000
0.0000
0.0000
30.0000
0.0000 | (6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b) | | Infiltration due
Pressure test
Pressure Test Me
Measured/design
Infiltration rat
Number of sides | ethod
AP50
ce | ys, flues | and fans | = (6a)+(6b) | +(6c)+(6d)+(| 6e)+(6f)+ | (6g)+(7a)+ | 7b)+(7c) = | | 30.0000 | / (5) = | 0.1926
Yes
Blower Door
4.5000
0.4176 | (8) | | Shelter factor
Infiltration rat | e adjusted | l to includ | e shelter | factor | | | | | (20) = 1 -
(21 | | (19)] =
(20) = | | | | Wind speed
Wind factor
Adj infilt rate | Jan
5.1000
1.2750 | | Mar
4.9000
1.2250 | | May
4.3000
1.0750 | Jun
3.8000
0.9500 | Jul
3.8000
0.9500 | | Sep
4.0000
1.0000 | Oct
4.3000
1.0750 | | | | | Effective ac | 0.4127 | | | | 0.3480
0.5605 | | | 0.2994
0.5448 | | | | | | | 3. Heat losses a | and heat lo | ss paramet | er | | | | | | | | | | | | Element | | | | Gross | Openings | Me | +7=== | II emlus | AxU | K- | -value | AxK | | | Windows (Uw = 1. | 31) | | | m2 | m2 | 11 | .2700 | W/M2K
1.2448 | W/K
14.0286 | | to/mZK | kJ/K | (27) | | Exposed Floor
Cavity Wall | | | | 33.7000 | 11.2700 | 7
22 | .8800
.4300 | 0.1800
0.1800 | 14.0286
1.4184
4.0374
4.1976 | 75
150 | 0.0000 | 591.0000
3364.5000 | (28b)
(29a) | | External Roof 1
Total net area o | of external | | Aum(A, m2) | 38.1600 | | 38
79 | . /400 | | | | .0000 | 343.4400 | (3I) | | Fabric heat loss
Party Wall 1
Party Floor 1
Party Ceiling 1
Internal Wall 1 | s, W/K = Su | m (A x U) | | | | 54
54 | (26)
.6200
.4100
.4100
.7500 | 30) + (32)
0.0000 | = 23.6820
0.0000 | 40
30 | 0.0000 | 6693.4000
2176.4000
1632.3000
13975.0000 | (32d)
(32b) | | Heat capacity Cm | | | | | | | | (28). | (30) + (32) | + (32a) | .(32e) = | | | | Thermal mass par
List of Thermal
K1 Eleme
E2 Other
E3 Sill | rameter (TM
Bridges | IP = Cm / T | | | | | | I
5
5 | ength Ps
.5100 | i-value
0.0230
0.0210 | To
0.1:
0.1 | 461.9689
tal
267
157 | | | | sed floor
floor bet | | ings (in b | locks of fla | ts) | | | 2 | .8400
.8900
.3700 | 0.0160
0.1160
0.0380 | 0.3
0.3
1.0 | 352
781 | | SAP 10 Online 2.13.11 Page 1 of 7 | P3 Part
E16 Cor
E25 Sta
E18 Par
E21 Exp
P5 Part | ry wall - I
rner (norma
aggered par
try wall be
cosed floor
ry wall - R
res (insula
8 (Sum(L x
oridges | al) Ety wall bet Etween dwell (inverted) Roof (insulation at ce: | e floor betw
tween dwelli
lings
)
ation at raf
iling level | ings
fter level)
- inverted | | cks of flats | 3) | 19.
3.
1.
5.
5. | 4100
8900
5000
0000
0000
3700
9600
0940 | 0.1850
0.0000
0.0430
0.0360
0.0460
0.3200
0.1010
0.1500 | 1.55
0.00
0.15
0.03
0.23
1.71
1.41
0.31
(36a) = | 000
005
060
000
84 | | |--|--|--|---|-----------------------------------|--------------------------------|------------------------------|------------------------------|------------------------------|--|--|---|-----------------------------------|--------------| | Ventilation hea | | | | | | | | | | | | | | | (38)m | Jan
30.0707 | Feb
29.9008 | Mar
29.7342 | Apr
28.9519 | May
28.8055 | Jun
28.1241 | Jul
28.1241 | Aug
27.9979 | Sep
28.3866 | Oct
28.8055 | Nov
29.1016 | Dec
29.4112 | (38) | | Heat transfer c Average = Sum(3 | 61.1567 | 60.9868 | 60.8202 | 60.0379 | 59.8915 | 59.2101 | 59.2101 | 59.0839 | 59.4726 | 59.8915 | 60.1876 | 60.4972
60.0372 | (39) | | HLP | Jan
0.9818 | Feb
0.9791 | Mar
0.9764 | Apr
0.9638 | May
0.9615 | Jun
0.9506 | Jul
0.9506 | Aug
0.9485 | Sep
0.9548 | Oct
0.9615 | Nov
0.9662 | Dec
0.9712 | (40) | | HLP (average)
Days in mont | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 0.9638
31 | | | | | | | | | | | | | | | | | | 4. Water heatin | ng energy r | equirements | | | | | | | | | | | | | Assumed occupan | | | | | | | | | | | | 2.0456 | (42) | | Hot water usage | 73.2343 | 72.1131 | 70.4608 | 67.9189 | 65.6414 | 62.4552 | 59.9352 | 62.8813 | 64.3630 | 67.5188 | 70.8052 | 73.1683 | (42a) | | Hot water usage | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (42b) | | Average daily h | 35.5788 | 34.2851 | 32.9913
/day) | 31.6975 | 30.4037 | 29.1100 | 29.1100 | 30.4037 | 31.6975 | 32.9913 | 34.2851 | 35.5788
99.8608 | | | P-12- 1-1 | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Daily hot water
Energy conte
Energy content | 108.8132
160.1918 | 106.3982
140.7863 | 103.4521
147.8309 | 99.6164
130.1239 | 96.0451
123.7639 | 91.5652
105.8921 | 89.0451
98.3975 | 93.2850
109.7981 | 96.0605
111.4254 | 100.5101
129.5174
Total = Si | 105.0903
142.0330
um(45)m = | 108.7471
159.7032
1559.4635 | | | Distribution lo | | = 0.15 x (4 | 45)m
22.1746 | 19.5186 | 18.5646 | 15.8838 | 14.7596 | 16.4697 | 16.7138 | 19.4276 | 21.3050 | 23.9555 | (46) | | Water storage 1
Store volume
a) If manufact | urer decla | | actor is kno | own (kWh/d | ay): | | | | | | | 150.0000
2.0900 | (48) | | Temperature f
Enter (49) or (
Total storage l | (54) in (55 | | | | | | | | | | | 0.5400
1.1286 | | | If cylinder con | 34.9866 | 31.6008
cated solar | 34.9866
r storage | 33.8580 | 34.9866 | 33.8580 | 34.9866 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | (56) | | Primary loss
Combi loss | 34.9866
23.2624
0.0000 | 31.6008
21.0112
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | (59) | | Total heat requ | 218.4408 | 193.3983 | ng calculate
206.0799
0.0000 | 186.4939 | 182.0129 | 162.2621
0.0000 | 156.6465 | 168.0471 | 167.7954 | 187.7664 | 198.4030
0.0000 | 217.9522 | | | PV diverter
Solar input | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | 0.0000 | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | 0.0000 | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 |
0.0000
0.0000
0.0000 | 0.0000 | 0.0000
0.0000
0.0000 | (63b) | | FGHRS
Output from w/h | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (63d) | | 12Total per yea | | 193.3983
(r) | 206.0799 | 186.4939 | 182.0129 | 162.2621 | 156.6465 | 168.0471
Total pe | 167.7954
er year (kWh | 187.7664
n/year) = St | 198.4030
um(64)m = | 217.9522
2245.2985
2245 | (64) | | Electric shower | 0.0000 | 0.0000 | 0.0000 | 0.0000
Tot | 0.0000
al Energy us | 0.0000 | 0.0000 | 0.0000 | 0.0000
ver(s) (WWh | 0.0000
(vear) = Su | 0.0000
m(64a)m = | 0.0000 | | | Heat gains from | water hea
99.8630 | ting, kWh/r
88.9011 | month
95.7530 | | 87.7507 | 5. Internal gai | ns (see Ta | ble 5 and 5 | 5a) | | | | | | | | | | | | Metabolic gains | (Table 5)
Jan | , Watts
Feb | Mar | Apr | Mav | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | (66)m
Lighting gains | 102.2793 | 102.2793 | 102.2793 | 102.2793 | 102.2793 | 102.2793 | 102.2793 | 102.2793 | 102.2793 | 102.2793 | 102.2793 | | (66) | | Appliances gain | s (calcula | ted in Appe | endix L, equ | ation L13 | | lso see Tabl | le 5 | | | | | | | | Cooking gains (| calculated | l in Appendi | ix L, equati | on L15 or | 153.3614
L15a), also | see Table 5 | 5 | | | | | | | | Pumps, fans
Losses e.g. eva | 0.0000 | 0.0000 | 33.2279
0.0000 | 0.0000 | 33.2279
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 33.2279
0.0000 | | | Water heating g | -81.8234 | -81.8234 | -81.8234 | -81.8234 | -81.8234 | -81.8234 | -81.8234 | -81.8234 | -81.8234 | -81.8234 | -81.8234 | -81.8234 | (71) | | | 134.2244 | | 128.7002 | 122.7253 | 117.9445 | 111.5349 | 106.6080 | 111.7031 | 114.0902 | 120.5158 | 128.2250 | 134.0060 | (72) | | | | 468.3437 | 450.2238 | 437.3676 | 416.9645 | 401.8195 | 385.9428 | 389.1837 | 399.3091 | 412.6159 | 435.9474 | 450.4639 | (73) | | 6. Solar gains | [Jan] | | | Aı | rea
m2 | Solar flux
Table 6a
W/m2 | Specif
or 1 | g
fic data
Table 6b | Specific
or Tabl | FF
data
Le 6c | Acces
facto
Table | ss
or
6d | Gains
W | | | Northeast | | | 11.27 | 700 | 11.2829 | | 0.6300 | 0. | | | | 38.8614 | (75) | | Solar gains
Total gains | 38.8614
497.4276 | 79.1034
547.4471 | 142.5192
592.7430 | 234.0575
671.4251 | 314.6192
731.5837 | 335.4174
737.2369 | 313.7761
699.7189 | 250.1459
639.3296 | 173.6619
572.9710 | 96.6707
509.2866 | 48.8977
484.8451 | 31.7361
482.2001 | (83)
(84) | SAP 10 Online 2.13.11 Page 2 of 7 | 7. Mean intern | | | | | | | | | | | | 21 0000 | (OE) | |--|--|--
--|--|---|---|--|---|--|---|--|---
--| | Temperature du
Utilisation fa | | | | | | Jun | Jul | Aug. | Sep | Oct | Nov | 21.0000
Dec | (85) | | tau
alpha
util living ar | 130.7027
9.7135 | 131.0669
9.7378 | 131.4258
9.7617 | 133.1384
9.8759 | 133.4638
9.8976 | 134.9997
10.0000 | 134.9997
10.0000 | Aug
135.2880
10.0192 | 134.4039
9.9603 | 133.4638
9.8976 | 132.8072
9.8538 | 132.1276
9.8085 | | | avii iiving ai | 0.9995 | 0.9985 | 0.9931 | 0.9395 | 0.7485 | 0.5137 | 0.3723 | 0.4251 | 0.7087 | 0.9720 | 0.9980 | 0.9996 | (86) | | Living
Non living
24 / 16
24 / 9 | 20.4499
19.4667
0
3 | 20.5430
19.5876
0 | 20.6921
19.7779
0 | 20.8994
20.0289
0 | 20.9901
20.1102
0 | 20.9998
20.1247
0 | 21.0000
20.1247
0 | 21.0000
20.1264
0 | 20.9955
20.1195
0 | 20.8655
19.9997
0
0 | 20.6292
19.7069
0 | 20.4385
19.4596
0 | | | 16 / 9
MIT
Th 2
util rest of h | 28
20.7186
20.0985 | 0
20.5430
20.1008 | 20.6921
20.1030 | 20.8994
20.1136 | 0
20.9901
20.1155 | 0
20.9998
20.1247 | 0
21.0000
20.1247 | 0
21.0000
20.1264 | 0
20.9955
20.1212 | 0
20.8655
20.1155 | 20.6292
20.1116 | 10
20.5171
20.1074 | | | MIT 2
Living area fr | 0.9992
19.8466 | 0.9976
19.5876 | 0.9888
19.7779 | 0.9093
20.0289 | 0.6835
20.1102 | 0.4436
20.1247 | 0.2983
20.1247 | 0.3444
20.1264 | 0.6228
20.1195
fLA = | 0.9505
19.9997
Living area | 0.9966
19.7069 | 0.9994
19.5763
0.3851 | (90) | | MIT
Temperature ad | 20.1824 | 19.9556 | 20.1300 | 20.3642 | 20.4490 | 20.4617 | 20.4618 | 20.4629 | 20.4569 | 20.3332 | 20.0621 | 19.9386
0.0000 | | | adjusted MIT | 20.1824 | 19.9556 | 20.1300 | 20.3642 | 20.4490 | 20.4617 | 20.4618 | 20.4629 | 20.4569 | 20.3332 | 20.0621 | 19.9386 | (93) | | | | | | | | | | | | | | | | | 8. Space heati | ng requirem | nent | | | | | | | | | | | | | Utilisation
Useful gains
Ext temp. | 4.3000 | Feb
0.9974
546.0045
4.9000 | Mar
0.9889
586.1736
6.5000 | Apr
0.9189
616.9694
8.9000 | May
0.7086
518.3787
11.7000 | Jun
0.4706
346.9731
14.6000 | Jul
0.3268
228.6571
16.6000 | Aug
0.3755
240.0418
16.4000 | Sep
0.6562
375.9925
14.1000 | Oct
0.9569
487.3503
10.6000 | Nov
0.9965
483.1445
7.1000 | Dec
0.9994
481.8990
4.2000 | (95) | | Heat loss rate | 971.3182 | 918.1905 | 828.9780 | 688.2849 | 523.9933 | 347.0713 | 228.6592 | 240.0500 | 378.0593 | 582.9339 | 780.1574 | 952.1428 | (97) | | Space heating
Space heating
Solar heating | 352.8461
requirement | | 180.6465
er year (kW | 51.3471
h/year) | 4.1773 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 71.1142 | 213.8493 | 349.8614
1473.9509 | (98a) | | Solar heating
Space heating | 0.0000
contribution | 0.0000
on - total p | 0.0000
per year (k | 0.0000
Wh/year) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Space heating
Space heating | 352.8461
requirement | 250.1090
t after sola | | 51.3471
tion - total | 4.1773
per year | 0.0000
(kWh/year) | 0.0000 | 0.0000 | 0.0000 | 71.1142
(98c) | 213.8493 | 349.8614
1473.9509
23.6627 | | | | | | | | | | | | | | | | | | 9a. Energy req | nivemente - | | l heating e | | uding micr | | | | | | | | | | Fraction of sp | | | | | | | | | | | | 0.0000 | (201) | | Fraction of sp | | | | | . (| | | | | | | | | | Efficiency of
Efficiency of
Efficiency of | main space | heating sys | stem 1 (in
stem 2 (in | %) | | | | | | | | 1.0000
231.7456
0.0000
0.0000 | (206)
(207) | | Efficiency of
Efficiency of
Efficiency of | main space
secondary/s | heating system
heating system
supplementar | stem 1 (in
stem 2 (in | %) | May | Jun | Jul | Aug | Sep | Oct | Nov | 231.7456
0.0000 | (206)
(207) | | Efficiency of
Efficiency of
Efficiency of
Space heating | main space
secondary/s
Jan
requirement
352.8461 | heating system
heating system
supplemental
Feb
t
250.1090 | stem 1 (in
stem 2 (in
ry heating
Mar
180.6465 | %)
system, %
Apr
51.3471 | May
4.1773 | Jun
0.0000 | Jul
0.0000 | Aug
0.0000 | Sep
0.0000 | Oct
71.1142 | Nov
213.8493 | 231.7456
0.0000
0.0000 | (206)
(207)
(208) | | Efficiency of
Efficiency of
Efficiency of
Space heating | main space
secondary/s
Jan
requirement
352.8461
efficiency
231.7456 | heating symbol heatin | stem 1 (in
stem 2 (in
ry heating
Mar
180.6465
ing system
231.7456 | %) system, % Apr 51.3471 | - | | | _ | _ | | | 231.7456
0.0000
0.0000
Dec | (206)
(207)
(208)
(98) | | Efficiency of
Efficiency of
Efficiency of
Space heating
Space heating
Space heating | main space
secondary/s
Jan
requirement
352.8461
efficiency
231.7456
fuel (main
152.2558 | heating symbol heatin | stem 1 (in
stem 2 (in
ry heating
Mar
180.6465
ing system
231.7456
stem)
77.9503 | %)
system, %
Apr
51.3471
1)
231.7456
22.1567 | 4.1773 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 71.1142 | 213.8493 | 231.7456
0.0000
0.0000
Dec
349.8614 | (206)
(207)
(208)
(98)
(210) | | Efficiency of
Efficiency of
Efficiency of
Space heating | main space
secondary/s
Jan
requirement
352.8461
efficiency
231.7456
fuel (main
152.2558
efficiency
0.0000 | heating symbol heatin | stem 1 (in stem 2 (in ry heating Mar 180.6465 ing system 231.7456 stem) 77.9503 ing system 0.0000 | %)
system, %
Apr
51.3471
1)
231.7456
22.1567 | 4.1773
231.7456 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 71.1142
231.7456 | 213.8493
231.7456 | 231.7456
0.0000
0.0000
Dec
349.8614
231.7456 | (206)
(207)
(208)
(98)
(210)
(211) | | Efficiency of
Efficiency of
Efficiency of
Space heating
Space heating
Space heating
Space heating | main space
secondary/s
Jan
requirement
352.8461
efficiency
231.7456
fuel (main
152.2558
efficiency
0.0000
fuel (main
0.0000
fuel (secondary) | heating symbol heatin | stem 1 (in
stem 2 (in
ry heating
Mar
180.6465
ing system
231.7456
stem)
77.9503
ing system
0.0000
stem 2)
0.0000 | %) system, % Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 | 4.1773
231.7456
1.8025
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 71.1142
231.7456
30.6863
0.0000
0.0000 | 213.8493
231.7456
92.2776
0.0000
0.0000 | 231.7456
0.0000
0.0000
Dec
349.8614
231.7456
150.9679
0.0000 |
(206)
(207)
(208)
(98)
(210)
(211)
(212)
(213) | | Efficiency of
Efficiency of
Efficiency of
Space heating
Space heating
Space heating
Space heating
Space heating
Space heating | main space
secondary/s
Jan
requirement
352.8461
efficiency
231.7456
fuel (main
152.2558
efficiency
0.0000
fuel (main
0.0000 | heating symbol heatin | stem 1 (in
stem 2 (in
ry heating
Mar
180.6465
ing system
231.7456
stem)
77.9503
ing system
0.0000
stem 2) | %) system, % Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 | 4.1773
231.7456
1.8025
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 71.1142
231.7456
30.6863
0.0000 | 213.8493
231.7456
92.2776
0.0000 | 231.7456
0.0000
0.0000
Dec
349.8614
231.7456
150.9679
0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213) | | Efficiency of
Efficiency of
Efficiency of
Space heating
Space heating
Space heating
Space heating
Space heating | main space
secondary/s
Jan
requirement
352.8461
efficiency
231.7456
fuel (main
152.2558
efficiency
0.0000
fuel (main
0.0000
fuel (secor
0.0000 | heating synheating synheating synheating synhementa: Feb 250.1090 (main heat: 231.7456 heating synheating sy | stem 1 (in
stem 2 (in
ry heating
Mar
180.6465
ing system
231.7456
stem)
77.9503
ing system
0.0000
stem 2)
0.0000 | %) system, % Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 | 4.1773
231.7456
1.8025
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 71.1142
231.7456
30.6863
0.0000
0.0000 | 213.8493
231.7456
92.2776
0.0000
0.0000 | 231.7456
0.0000
0.0000
Dec
349.8614
231.7456
150.9679
0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215) | | Efficiency of Efficiency of Efficiency of Efficiency of Efficiency of Space heating Efficiency of (217) m | main space
secondary/s
Jan
requirement
352.8461
efficiency
231.7456
fuel (main
152.2558
efficiency
0.0000
fuel (main
0.0000
fuel (secon
0.0000
requirement
218.4408
water heate | heating synheating syn | stem 1 (in stem 2 (in ry heating | %) system, % Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 0.0000 | 4.1773
231.7456
1.8025
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 71.1142
231.7456
30.6863
0.0000
0.0000 | 213.8493
231.7456
92.2776
0.0000
0.0000 | 231.7456
0.0000
0.0000
Dec
349.8614
231.7456
150.9679
0.0000
0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215) | | Efficiency of Efficiency of Efficiency of Efficiency of Efficiency of Space heating Space heating Space heating Space heating Space heating Space heating Water heating Water heating Efficiency of (217) m Fuel for water | main space
secondary/s
Jan
requirement
352.8461
efficiency
231.7456
fuel (main
152.2558
efficiency
0.0000
fuel (main
0.0000
fuel (secor
218.4408
water heate
192.1801
hating, 1 | heating synheating synheating synheating synpplementa: Feb 250.1090 (main heat: 231.7456 heating sy: 107.9240 (main heat: 0.0000 heating sy: 0.0000 193.3983 193.3983 191.1801 100.6339 | stem 1 (in stem 2 (in stem 2 (in ry heating | %) system, % | 4.1773
231.7456
1.8025
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 71.1142
231.7456
30.6863
0.0000
0.0000
0.0000 | 213.8493
231.7456
92.2776
0.0000
0.0000
0.0000 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217) | | Efficiency of Efficiency of Efficiency of Efficiency of Efficiency of Efficiency of Space heating Efficiency of (217) m Fuel for water Space cooling (221) m | main space
secondary/s
Jan
requirement
352.8461
efficiency
231.7456
fuel (main
152.2558
efficiency
0.0000
fuel (main
0.0000
fuel (secon
0.0000
requirement
218.4408
water heate
192.1801
theating, 1
113.6647
fuel requir
0.0000 | heating synheating synheating synheating synplementa: Feb 250.1090 (main heat: 231.7456 heating syn 107.9240 (main heat: 0.0000 heating syn 0.0000 dary) 0.0000 193.3983 er 192.1801 cWh/month 100.6339 rement 0.0000 | stem 1 (in stem 2 (in stem 2 (in ry heating | %) system, % Apr | 4.1773
231.7456
1.8025
0.0000
0.0000
0.0000
182.0129
192.1801
94.7096
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
162.2621
192.1801
84.4323
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
156.6465
192.1801
81.5103
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
168.0471
192.1801
87.4426
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000 | 71.1142
231.7456
30.6863
0.0000
0.0000
0.0000
187.7664
192.1801
97.7034
0.0000 | 213.8493
231.7456
92.2776
0.0000
0.0000
0.0000
198.4030
192.1801
103.2381
0.0000 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(219)
(221) | | Efficiency of Efficiency of Efficiency of Efficiency of Efficiency of Efficiency of Space heating Space heating Space heating Space heating Space heating Space heating Water heating Water heating Efficiency of (217)m Fuel for water Space cooling (221)m Pumps and Fa Lighting | main space
secondary/s
Jan
requirement
352.8461
efficiency
231.7456
fuel (main
152.2558
efficiency
0.0000
fuel (main
0.0000
fuel (secon
0.0000
requirement
218.4408
water heate
121.6647
fuel requir
theating, 1
113.6647
fuel requir
0.0000
0.0000
0.0000 | heating symbol heatin | stem 1 (in stem 2 (in stem 2 (in ry heating war level 1 (in system 231.7456 stem) 77.9503 ing system 0.0000 o.0000 colors 206.0799 leg2.1801 log2.327 o.0000 0.0000 lef.5507 | %) system, % Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 186.4939 192.1801 97.0412 0.0000 0.0000 10.6604 | 4.1773
231.7456
1.8025
0.0000
0.0000
0.0000
182.0129
192.1801
94.7096
0.0000
0.0000
0.2344 | 0.0000
0.0000
0.0000
0.0000
0.0000
162.2621
192.1801
84.4323
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
156.6465
192.1801
81.5103 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
168.0471
192.1801
87.4426 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116 | 71.1142
231.7456
30.6863
0.0000
0.0000
0.0000
187.7664
192.1801
97.7034 | 213.8493
231.7456
92.2776
0.0000
0.0000
0.0000
198.4030
192.1801
103.2381 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(219)
(221)
(231) | | Efficiency of Efficiency of Efficiency of Efficiency of Efficiency of Efficiency of Space heating Space heating Space heating Space heating Space heating Space heating Water heating Water heating Efficiency of (217)m Fuel for water Space cooling (221)m Pumps and Fa Lighting Electricity ge (233a)m | main space
secondary/s
Jan
requirement
352.8461
efficiency
231.7456
fuel (main
152.2558
efficiency
0.0000
fuel (secor
0.0000
requirement
218.4408
water heate
192.1801
heating, 1
113.6647
fuel requir
0.0000
20.1442
herated by
0.0000 | heating synheating syn | stem 1 (in stem 2 | %) system, % Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 186.4939 192.1801 97.0412 0.0000 10.6604 ative quantip 0.0000 | 4.1773
231.7456
1.8025
0.0000
0.0000
0.0000
182.0129
192.1801
94.7096
0.0000
0.2344
1ty) | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
162.2621
192.1801
84.4323
0.0000
0.7276
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
156.6465
192.1801
81.5103
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
168.0471
192.1801
87.4426
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000
0.0000 | 71.1142 231.7456 30.6863 0.0000 0.0000 187.7664 192.1801 97.7034 0.0000 0.0000 | 213.8493
231.7456
92.2776
0.0000
0.0000
198.4030
192.1801
103.2381
0.0000
0.0000 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232) | | Efficiency of Space heating Space heating Space heating Space heating Space heating Water heating Water heating Efficiency of (217) m Fuel for
water Space cooling (221) m Pumps and Fa Lighting Electricity gets | main space secondary/s Jan requirement 352.8461 efficiency 231.7456 fuel (main 152.2558 efficiency 0.0000 fuel (main 0.0000 fuel (secon 0.0000) requirement 218.4408 water heatt 192.1801 heating, 113.6647 fuel requirement 200.0000 20.1442 inerated by 0.0000 inerated by 0.0000 inerated by 0.0000 | heating synheating synheating synheating synpplementa: Feb: 250.1090 (main heat: 231.7456 heating sy: 107.9240 (main heat: 0.0000 heating sy: 0.00000 heating sy: 0.00000 heating sy: 0.00000 heating sy: 0.00000 heating sy: 193.3983 er: 192.1801 heating sy: 193.3983 er: 192.1801 heating synheating synh | stem 1 (in stem 2 (in ry heating 2 (in ry heating Mar 180.6465 ing system 231.7456 stem) 77.9503 ing system 0.0000 0.0000 206.0799 192.1801 107.2327 0.0000 0.0000 14.5507 dix M) (neg 0.0000 nes (Append 0.0000 nes (Append 0.0000) | %) system, % | 4.1773
231.7456
1.8025
0.0000
0.0000
0.0000
182.0129
192.1801
94.7096
0.0000
0.0000
8.2344
tty)
0.0000
cive quanti | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
162.2621
192.1801
84.4323
0.0000
0.0000
6.7276
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
156.6465
192.1801
81.5103
0.0000
0.0000
7.5117
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
168.0471
192.1801
87.4426
0.0000
0.0000
9.7640 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000
0.0000
12.6825 | 71.1142
231.7456
30.6863
0.0000
0.0000
0.0000
187.7664
192.1801
97.7034
0.0000
0.0000
16.6401 | 213.8493 231.7456 92.2776 0.0000 0.0000 198.4030 192.1801 103.2381 0.0000 0.0000 18.7950 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 0.0000 20.7040 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232)
(233a) | | Efficiency of Space heating Space heating Space heating Space heating Space heating Water heating Water heating Efficiency of (217) m Fuel for water Space cooling (221) m Pumps and Fa Lighting Electricity ge (233a) m Electricity ge (234a) m Electricity ge (234a) m | main space secondary/s Jan requirement 352.8461 efficiency 231.7456 fuel (main 152.2558 efficiency 0.0000 fuel (main 0.0000 fuel (secon 0.0000 fuel 152.84408 water heate 192.1801 heating, 1 113.6647 fuel requirement 200000 20.1442 encated by 0.0000 enerated b | heating synheating synheating synheating synwiplementa: Feb: 250.1090 (main heat: 231.7456 (main heat: 0.0000 0.00 | stem 1 (in stem 2 | %) system, % Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 186.4939 192.1801 97.0412 0.0000 10.6604 ative quanti 0.0000 ix M) (negat 0.0000 ix M) (negot 0.0000 tors (Appenc 0.0000 by micro-CHI | 4.1773 231.7456 1.8025 0.0000 0.0000 0.0000 182.0129 192.1801 94.7096 0.0000 8.2344 tty) 0.0000 cive quanti 0.0000 six M) (nec 0.0000 c) (Appendix M) (nec 0.0000 c) (Appendix M) (nec 0.0000 c) (Appendix M) | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
162.2621
192.1801
84.4323
0.0000
6.7276
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
156.6465
192.1801
81.5103
0.0000
7.5117
0.0000
0.0000
ity)
0.0000
ve if net gr | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
168.0471
192.1801
87.4426
0.0000
9.7640
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000
0.0000
12.6825
0.0000
0.0000 | 71.1142 231.7456 30.6863 0.0000 0.0000 187.7664 192.1801 97.7034 0.0000 0.0000 16.6401 0.0000 0.0000 | 213.8493 231.7456 92.2776 0.0000 0.0000 198.4030 192.1801 103.2381 0.0000 0.0000 18.7950 0.0000 0.0000 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 0.0000 20.77040 0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(217)
(219)
(221)
(231)
(232)
(233a)
(234a) | | Efficiency of Space heating Space heating Space heating Space heating Space heating Water heating Water heating Water heating Water heating Efficiency of (217) m Fuel for water Space cooling (221) m Pumps and Fa Lighting Electricity ge (234a) m Electricity ge (234a) m Electricity ge (235c) m Electricity us (235c) m Electricity ge | main space secondary/s Jan requirement 352.8461 efficiency 231.7456 fuel (main 152.2558 efficiency 0.0000 fuel (secor 0.0000 requirement 218.4408 water heate 192.1801 heating, 1; 113.6647 fuel requir 0.0000 enerated by | heating synheating synheating synheating synphementa: Feb: 250.1090 (main heat: 231.7456 heating syn 107.9240 (main heat: 0.0000 heating syn 0.0000 heating syn 0.0000 heating syn 193.3983 er 192.1801 (wh/month 100.6339 rement 0.0000 heating synthymonth 100.6309 rement 0.0000 heating synthymonth 100.6309 rement 0.0000 heating synthymonth 100.0000 synthy | stem 1 (in stem 2 (in ry heating 2 (in ry heating Mar 180.6465 ing system 231.7456 stem) 77.9503 ing system 0.0000 stem 2) 0.0000 192.1801 107.2327 0.0000 14.5507 dix M) (neg 0.0000 nes (Append 0.0000 stem 2) 0.0000 ctric generated 0.0000 generated 0.0000 dix M) (neg | \$) system, \$ Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 0.0000 186.4939 192.1801 97.0412 0.0000 ix M) (negat 0.0000 ix M) (negat 0.0000 tors (Appenc 0.0000 by micro-CHI 0.0000 ative quanti 0.0000 ative quantive quanti 0.0000 ative quantive quanti 0.0000 ative quantive quantiv | 4.1773 231.7456 1.8025 0.0000 0.0000 0.0000 182.0129 192.1801 94.7096 0.0000 0.2000 0.2000 cive quanti 0.0000 cive quanti 0.0000 cive (Appendix 0.0000 ci (Appendix 0.0000) ci (Appendix 0.0000) city) | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
162.2621
192.1801
84.4323
0.0000
6.7276
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 156.6465 192.1801 81.5103 0.0000 0.0000 7.5117 0.0000 0.0000 ity) 0.0000 ve if net g | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
168.0471
192.1801
87.4426
0.0000
9.7640
0.0000
0.0000
0.0000
0.0000
eneration) | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000
0.0000
12.6825
0.0000
0.0000
0.0000 | 71.1142 231.7456 30.6863 0.0000 0.0000 187.7664 192.1801 97.7034 0.0000 0.0000 16.6401 0.0000 0.0000 0.0000 | 213.8493 231.7456 92.2776 0.0000 0.0000 198.4030 192.1801 103.2381 0.0000 0.0000 18.7950 0.0000 0.0000 0.0000 0.0000 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232)
(233a)
(234a)
(235a) | | Efficiency of Space heating Space heating Space heating Space heating Space heating Space heating Water heating Water heating Water heating Efficiency of (217) m Fuel for water Space cooling (221) m Pumps and Fa Lighting Electricity ge (233a)m Electricity ge (235a)m Electricity us (235c)m Electricity ge (235a)m Electricity ge (235c)m Electricity ge | main space secondary/s Jan requirement 352.8461 efficiency 231.7456 fuel (main 152.2558 efficiency 0.0000 fuel (secon secon 0.0000 fuel fuel requirement 0.0000 fuel fuel requirement 0.0000 fuel fuel fuel fuel fuel fuel fuel fuel | heating synheating synheating synheating synwiphementa: Feb 250.1090 (main heat: 231.7456 heating synuphementa: 0.0000 heating synuphementa: 190.0000 dary) 0.0000 193.3983 er 192.1801 Wh/month 100.6339 rement 0.0000 0.0000 0.0000 heating synuphement one | stem 1 (in stem 2 (in stem 2) (in ry heating war heating system 231.7456 stem) 77.9503 ing system 0.0000 stem 2) 0.0000 10.0000 10.0000 14.5507 dix M) (neg 0.0000 ric genera 0.0000 generated 0.0000 dix M) (neg 0.0000 dix M) (neg 0.0000 fic genera 0.0000 generated 0.0000 dix M) (neg (| \$) system, \$ Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 0.0000 186.4939 192.1801 97.0412 0.0000 10.6604 ative quanti 0.0000 tors (Appendo (Append | 4.1773 231.7456 1.8025 0.0000 0.0000 0.0000 182.0129 192.1801 94.7096 0.0000 8.2344 tty) 0.0000 ix M) (nec | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
162.2621
192.1801
84.4323
0.0000
6.7276
0.0000
0.0000
(ty)
0.0000
(megation on one of the | 0.0000 0.0000 0.0000 0.0000 0.0000 156.6465 192.1801 81.5103 0.0000 0.0000 7.5117 0.0000 ity) 0.0000 ve if net gr 0.00000 0.00000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
168.0471
192.1801
87.4426
0.0000
0.7640
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000
0.0000
12.6825
0.0000
0.0000
0.0000
0.0000 | 71.1142 231.7456 30.6863 0.0000 0.0000 187.7664 192.1801 97.7034 0.0000 0.0000 16.6401 0.0000 0.0000 0.0000 0.0000 0.0000 | 213.8493 231.7456 92.2776 0.0000 0.0000 198.4030 192.1801 103.2381 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(221)
(231)
(232)
(233a)
(234a)
(235a)
(235c)
(233b) | | Efficiency of Space heating Space heating Space heating Space heating Space heating Water heating Water heating Efficiency of (217)m Fuel for water Space cooling
(221)m Fuel for water Space cooling (221)m Fuel for water Space cooling (223a)m Electricity ge (233a)m Electricity ge (235a)m Electricity ge (235c)m Electricity ge (233b)m Electricity ge (234b)m Electricity ge (234b)m Electricity ge (234c)m Electricity ge (234c)m Electricity ge Elec | main space secondary/s Jan requirement 352.8461 efficiency 231.7456 fuel (main 152.2558 efficiency 0.0000 fuel (main fuel (main 0.0000 fuel fuel (main 0.0000 fuel fuel (main 0.0000 fuel fuel (main 0.0000 fuel fuel fuel (main 0.0000 fuel fuel fuel fuel fuel fuel fuel fuel | heating synheating synheating synheating synwiphementa: Feb 250.1090 (main heat: 231.7456 heating synheating | stem 1 (in stem 2 (in stem 2 (in ry heating ry heating mar l80.6465 ing system 231.7456 stem) 77.9503 ing system 0.0000 cool of the o | \$) system, \$ Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 0.0000 186.4939 192.1801 97.0412 0.0000 10.6604 ative quanti 0.0000 ix M) (negat 0.0000 by micro-CHI 0.0000 ative quanti 0.0000 ative quanti 0.0000 ix M) (negat 0.0000 ix M) (negat 0.0000 by micro-CHI 0.0000 ix M) (negat | 4.1773 231.7456 1.8025 0.0000 0.0000 0.0000 182.0129 192.1801 94.7096 0.0000 0.0000 8.2344 ty) 0.0000 2.14y | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 162.2621 192.1801 84.4323 0.0000 0.0000 6.7276 0.0000 ative quant. 0.0000 ity) | 0.0000 0.0000 0.0000 0.0000 0.0000 156.6465 192.1801 81.5103 0.0000 0.0000 7.5117 0.0000 0.0000 ity) 0.0000 ve if net gr 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 168.0471 192.1801 87.4426 0.0000 0.0000 9.7640 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000
0.0000
12.6825
0.0000
0.0000
0.0000
0.0000
0.0000 | 71.1142 231.7456 30.6863 0.0000 0.0000 187.7664 192.1801 97.7034 0.0000 0.0000 16.6401 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 213.8493 231.7456 92.2776 0.0000 0.0000 198.4030 192.1801 103.2381 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 231.7456 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(219)
(221)
(232)
(233a)
(234a)
(235a)
(235c)
(233b)
(234b) | | Efficiency of Space heating Space heating Space heating Space heating Space heating Water heating Efficiency of (217)m Fuel for water Space cooling (221)m Fuel for water Space cooling (221)m Fumps and Fa Lighting Electricity ge (233a)m Electricity ge (235a)m Electricity ge (235b)m Electricity ge (235b)m Electricity ge Electricity ge (235b)m Electricity ge E | main space secondary/s Jan requirement 352.8461 efficiency 231.7456 fuel (main 152.2558 efficiency 0.0000 fuel (secon 0.0000 fuel fuel fuel fuel fuel fuel fuel requirement 218.4408 fuel requirement 218.4408 fuel fuel fuel fuel fuel fuel fuel fuel | heating synheating synheating synheating synwiplementa: Feb 250.1090 (main heat: 231.7456 heating synheating | stem 1 (in stem 2 (in stem 2 (in ry heating war leads to 1 (in stem 2 ste | \$) system, \$ Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 186.4939 192.1801 97.0412 0.0000 io.6604 ative quanti 0.0000 tors (Appending the column of | 4.1773 231.7456 1.8025 0.0000 0.0000 0.0000 182.0129 192.1801 94.7096 0.0000 8.2344 tty) 0.0000 dix M) (nec quanti 0.0000 (Appendix 0.0000 cive quanti | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 162.2621 192.1801 84.4323 0.0000 6.7276 0.0000 ty) | 0.0000 0.0000 0.0000 0.0000 0.0000 156.6465 192.1801 81.5103 0.0000 7.5117 0.0000 0.0000 ity) 0.0000 0.0000 ity) 0.0000 0.0000 ve if net go | 0.0000 0.0000 0.0000 0.0000 0.0000 168.0471 192.1801 87.4426 0.0000 9.7640 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000
12.6825
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 71.1142 231.7456 30.6863 0.0000 0.0000 187.7664 192.1801 97.7034 0.0000 16.6401 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 213.8493 231.7456 92.2776 0.0000 0.0000 198.4030 192.1801 103.2381 0.0000 0.0000 18.7950 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 231.7456 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(221)
(231)
(232)
(233a)
(234a)
(235a)
(235c)
(234b)
(235b) | | Efficiency of Space heating Space heating Space heating Space heating Space heating Water heating Water heating Water heating Fefficiency of (217)m Fuel for water Space cooling (221)m Pumps and Fa Lighting Electricity ge (233a)m Electricity ge (234a)m Electricity us (235c)m Electricity ge (233b)m Electricity ge (234b)m Electricity ge (235d)m Electricity ge (235d)m Electricity us (235d)m Electricity us (235d)m Electricity us (235d)m Annual totals | main space secondary/s Jan requirement 352.8461 efficiency 231.7456 fuel (main 152.2558 efficiency 0.0000 fuel (main 0.0000 fuel (secon 0.0000 fuel ment of the secondary th | heating synheating synheating synheating synwiplementa: Feb 250.1090 (main heat: 231.7456 heating synheating | stem 1 (in stem 2 (in ry heating 2 (in ry heating Mar 180.6465 ing system 231.7456 stem) 77.9503 ing system 0.0000 stem 2) 0.0000 10.0000 14.5507 dix M) (neg 0.0000 ric generated 0.0000 generated 0.0000 ines (Append 0.0000 ines (Append 0.0000 tric genera (0.0000 ines (Append 0.0000 ine | \$) system, \$ Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 186.4939 192.1801 97.0412 0.0000 io.6604 ative quanti 0.0000 tors (Appending the column of | 4.1773 231.7456 1.8025 0.0000 0.0000 0.0000 182.0129 192.1801 94.7096 0.0000 8.2344 1ty) 0.0000 ix M) (nec | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 162.2621 192.1801 84.4323 0.0000 6.7276 0.0000 ty) | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 156.6465 192.1801 81.5103 0.0000 7.5117 0.0000 0.0000 ity) 0.0000 ve if net gr 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 ity) 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
168.0471
192.1801
87.4426
0.0000
9.7640
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000
0.0000
12.6825
0.0000
0.0000
0.0000
0.0000
0.0000 | 71.1142 231.7456 30.6863 0.0000 0.0000 187.7664 192.1801 97.7034 0.0000 0.0000 16.6401 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 213.8493 231.7456 92.2776 0.0000 0.0000 198.4030 192.1801 103.2381 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(219)
(221)
(232)
(233a)
(234a)
(235a)
(235c)
(234b)
(235b)
(235d)
(211) | | Efficiency of Space heating Space heating Space heating Space heating Water heating Water heating Water heating Efficiency of (217)m Fuel for water Space cooling (221)m Pumps and Fa Lighting Electricity ge (233a)m Electricity ge (233a)m Electricity ge (233b)m Electricity ge (235b)m Electricity ge (235b)m Electricity ge (235b)m Electricity ge (235d)m Annual totals Space heating Space heating Space heating Space heating Space heating | main space secondary/s Jan requirement 352.8461 efficiency 231.7456 fuel (main 152.2558 efficiency 0.0000 fuel (main 0.0000 fuel (secon 0.0000 fuel 152.84408 water heate 192.1801 heating, 113.6647 fuel requirement 0.0000 20.1442 enerated by 0.0000 | heating synheating synheating synheating synwiplementa: Feb 250.1090 (main heat: 231.7456 (main heat: 0.0000 0.00 | stem 1 (in stem 2 (in stem 2 (in ry heating war leads to 1 (in stem 2 ste | \$) system, \$ Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 186.4939 192.1801 97.0412 0.0000 io.6604 ative quanti 0.0000 tors (Appending the column of | 4.1773 231.7456 1.8025 0.0000 0.0000 0.0000 182.0129 192.1801 94.7096 0.0000 8.2344 tty) 0.0000 dix M) (nec quanti 0.0000 (Appendix 0.0000 cive quanti | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 162.2621 192.1801 84.4323 0.0000 6.7276 0.0000 ty) | 0.0000 0.0000 0.0000 0.0000 0.0000 156.6465 192.1801 81.5103 0.0000 7.5117 0.0000 0.0000 ity) 0.0000 0.0000 ity) 0.0000 0.0000 ve if net go | 0.0000 0.0000 0.0000 0.0000 0.0000 168.0471 192.1801 87.4426 0.0000 9.7640 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000
12.6825
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 71.1142 231.7456 30.6863 0.0000 0.0000 187.7664 192.1801 97.7034 0.0000 16.6401 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 213.8493 231.7456 92.2776 0.0000 0.0000 198.4030 192.1801 103.2381 0.0000 0.0000 18.7950 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(221)
(231)
(232)
(233a)
(234a)
(235a)
(235b)
(235b)
(235d)
(211)
(211)
(211) | | Efficiency of Space heating Space heating Space heating Space heating Space heating Space heating Water heating Water heating Water heating Efficiency of (217) m Fuel for water Space cooling
(221) m Pumps and Fa Lighting Electricity ge (233a) m Electricity ge (234a) m Electricity us (235c) m Electricity ge (234b) m Electricity ge (234b) m Electricity ge (235b) m Electricity us (235c) m Electricity ge (235b) m Electricity ge (235b) m Electricity ge (235b) m Space heating Space heating Space heating | main space secondary/s Jan requirement 352.8461 efficiency 231.7456 fuel (main 152.2558 efficiency 0.0000 fuel (main 0.0000 fuel (secor 0.0000 fuel 138.647 fuel requirement 192.1801 fuel requirement 0.0000 fuel requirement 0.0000 fuel fuel fuel fuel fuel fuel fuel fuel | heating synheating synheating synheating synwiplementa: Feb 250.1090 (main heat: 231.7456 (main heat: 0.0000 0.00 | stem 1 (in stem 2 (in stem 2 (in ry heating war leads to 1 (in stem 2 ste | \$) system, \$ Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 186.4939 192.1801 97.0412 0.0000 io.6604 ative quanti 0.0000 tors (Appending the column of | 4.1773 231.7456 1.8025 0.0000 0.0000 0.0000 182.0129 192.1801 94.7096 0.0000 8.2344 tty) 0.0000 dix M) (nec quanti 0.0000 (Appendix 0.0000 cive quanti | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 162.2621 192.1801 84.4323 0.0000 6.7276 0.0000 ty) | 0.0000 0.0000 0.0000 0.0000 0.0000 156.6465 192.1801 81.5103 0.0000 7.5117 0.0000 0.0000 ity) 0.0000 0.0000 ity) 0.0000 0.0000 ve if net go | 0.0000 0.0000 0.0000 0.0000 0.0000 168.0471 192.1801 87.4426 0.0000 9.7640 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000
12.6825
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 71.1142 231.7456 30.6863 0.0000 0.0000 187.7664 192.1801 97.7034 0.0000 16.6401 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 213.8493 231.7456 92.2776 0.0000 0.0000 198.4030 192.1801 103.2381 0.0000 0.0000 18.7950 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(215)
(217)
(217)
(221)
(231)
(232)
(233a)
(235a)
(235a)
(235a)
(235b)
(235b)
(235d)
(211)
(211)
(211)
(212)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213) | SAP 10 Online 2.13.11 Page 3 of 7 | Electricity for | | | | | | | | | | | | 162.5750 | (232) | |--|------------------|-------------|------------------|--------------|------------------|------------------|------------------|----------------------|------------------|------------------|-----------------------|--------------------------------------|--------------------| | Energy saving/ge
PV generation
Wind generation
Hydro-electric g
Electricity gene | generation (| Appendix N | 1) | es M ,N and | Q) | | | | | | | 0.0000
0.0000
0.0000
0.0000 | (234)
(235a) | | Appendix Q - spe
Energy saved or | | es | | | | | | | | | | -0.0000 | | | Energy used
Total delivered | energy for | all uses | | | | | | | | | | 0.0000
1966.9267 | | | | | | | | | | | | | | | | | | 12a. Carbon diox | ide emissio | ns - Indiv | vidual heat | ing systems | including m | icro-CHP | | | | | | | | | | | | | | | | | Energy | | factor | | Emissions | | | Space heating -
Total CO2 associ | | | ntretame | | | | | kWh/year
636.0211 | | 0.1574 | | g CO2/year
100.1333
0.0000 | (261) | | Water heating (c
Space and water | other fuel) | onandiroy c | , you can | | | | | 1168.3306 | | 0.1407 | | 164.4015
264.5348 | (264) | | Pumps, fans and
Energy for light | electric ke | ep-hot | | | | | | 0.0000
162.5750 | | 0.0000
0.1443 | | 0.0000
23.4646 | (267) | | Total CO2, kg/ye
EPC Dwelling Car | ear | Emission | Rate (DER) | | | | | | | | | 287.9994
4.6200 | | | | | | | | | | | | | | | | | | 13a. Primary ene | ergy - India | ridual heat | ing system | including | micro-CHP | | | | | | | | | | | | | | | | | | Energy | Primary energy | y factor | Prim | ary energy | | | Space heating - | | | | | | | | | kg | | | kWh/year
1006.7160 | (275) | | Total CO2 associ | other fuel) | ommunity s | systems | | | | | 1168.3306 | | 1.5203 | | 0.0000
1776.2160 | (473)
(278) | | Space and water
Pumps, fans and
Energy for light | electric ke | ep-hot | | | | | | 0.0000
162.5750 | | 0.0000
1.5338 | | 2782.9320
0.0000
249.3630 | (281) | | Total Primary en
Dwelling Primary | nergy kWh/ye | | | | | | | 162.5750 | | 1.5550 | | 3032.2950
48.6800 | (286) | | Dwelling limit | r chergy had | C (DILII) | | | | | | | | | | 40.0000 | (207) | SAP 10 WORKSHEET | FOD New Bu | ild (As De | eimed) | Wareign 10 | 2 Fahruaru | 2022) | | | | | | | | | CALCULATION OF I | TARGET EMISS | SIONS | | (veision 10. | 1. Overall dwell | - | Area
(m2) | | y height (m) | | Volume
(m3) | | | Ground floor
Total floor area | TFA = (la) | +(lb)+(lc) | +(ld)+(le) | (1n) | 6 | 2.2900 | | | (lb) x | 2.5000 | (2b) = | | (1b) - (3b)
(4) | | Dwelling volume | (, | (, - (, | (22) | , , , , , , | | | | (| 3a)+(3b)+(3c)+ | (3d) + (3e) | (3n) = | 155.7250 | (5) | | | | | | | | | | | | | | | | | 2. Ventilation r | | | | | | | | | | | | | | | Z. Vendilation i | | | | | | | | | | | n | 3 per hour | | | Number of open o | chimneys | | | | | | | | | | 0 * 80 = | 0.0000 | (6a) | | Number of open f
Number of chimne | eys / flues | | | ire | | | | | | | 0 * 20 =
0 * 10 = | 0.0000 | (6c) | | Number of flues
Number of flues
Number of blocke | attached to | | | | | | | | | | | 0.0000 | (6e) | | Number of blocke
Number of interm
Number of passiv | nittent extr | act fans | | | | | | | | | 2 * 10 = | 20.0000 | (7a) | | Number of fluele | | :s | | | | | | | | | 0 * 10 =
0 * 40 = | 0.0000 | (7c) | | Infiltration due | to chimney | s, flues a | and fans = | = (6a)+(6b)+ | ·(6c)+(6d)+(| 6e)+(6f)+(| 6g)+(7a)+(| 7b)+(7c) = | | 20.0000 | Air change
/ (5) = | 0.1284 | (8) | | Pressure test
Pressure Test Me | | | | | | | | | | | В | Yes
lower Door | | | Measured/design
Infiltration rat
Number of sides | :e | | | | | | | | | | | 5.0000
0.3784 | | | Shelter factor | Silcitorica | | | | | | | | (20) = 1 - | [0.075 x | (19)1 = | | | | Infiltration rat | te adjusted | to include | shelter fa | actor | | | | | | | x (20) = | 0.2933 | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Wind speed
Wind factor | 5.1000
1.2750 | | 4.9000
1.2250 | | | 3.8000
0.9500 | 3.8000
0.9500 | | | | | | | | Adj infilt rate
Effective ac | 0.3739 | | 0.3593 | | 0.3153
0.5497 | 0.2786 | 0.2786 | | 0.2933
0.5430 | | | | | | DITCOULVE GO | 3.3033 | 3.3072 | 0.3043 | 0.5520 | 0.0437 | 0.3300 | 0.3300 | 0.5500 | 0.3430 | 0.345/ | 0.3344 | 0.3394 | (20) | | | | | | | | | | | | | | | |
 3. Heat losses a | and heat los | s paramete |
r | | | | | | | | | | | | Element | | | | Gross
m2 | Openings
m2 | Net | Area
m2 | U-value
W/m2K | A x U
W/K | | -value
kJ/m2K | A x K
kJ/K | | | | | | | | 41144 | | | , | , 10 | | | 20/10 | | SAP 10 Online 2.13.11 Page 4 of 7 | TER Opening Type (Uw = 1.
Exposed Floor
Cavity Wall
External Roof 1
Total net area of externa
Fabric heat loss, W/K = S
Party Wall 1
Thermal mass parameter (I | l elements
um (A x U) | Aum (A, m2) | 33.7000
38.1600 | 11.2700 | 7.
22.
38.
79. | .2700
.8800
.4300
.1600
.7400
(26)(3 | 1.1450
0.1300
0.1800
0.1100
30) + (32) =
0.0000 | 12.90-
1.02-
4.03
4.19
22.16-
0.000 | 14
74
76 | | 470.7038 | (27)
(28b)
(29a)
(30)
(31)
(33)
(32) | |---|---|--|---|--|--|--
--|---|--|--|--|---| | List of Thermal Bridges K1 Element E2 Other lintels E3 Sill E4 Jamb E20 Exposed floor E7 Party floor be P7 Party Wall - E P3 Party wall - E E16 Corner (norma E25 Staggered par E18 Party wall be E21 Exposed floor P5 Party wall - E E24 Exposed floor P5 Party wall - B E24 Exposed floor P5 Party wall - B E24 Exposed floor F5 Party wall - B E24 Exposed floor F5 Party wall - B E24 Exposed floor | (including
tween dwell
knosed floo
ntermediate
1)
ty wall bet
tween dwell
(inverted)
loof (insula
tion at cei | other steel lings (in bl or (normal) e floor betw tween dwelli lings ation at raf lling level | locks of flaveen dwellings | ngs (in bloo | cks of flat: | 3) | 5.
5.
20.
28.
8.
19.
3.
1.
5. | singth 1
5100
5100
8400
8900
3700
4100
8900
5000
0000
0000
3700
9600
0940 | Psi-value 0.0500 0.0500 0.0500 0.3200 0.0700 0.1600 0.0900 0.0600 0.3200 0.0800 0.2400 | Tot
0.27
0.27
1.04
0.92
1.98
1.34
0.00
0.31
0.06
0.30
1.71
1.11 | a1
555
55
20
48
59
56
00
00
00
00
84
68
26
9.8621 | | | Total fabric heat loss | | | 0.00 11 | 05) (5) | | | | (3 | 33) + (36) - | (36a) =
+ (36a) = | 0.0000
32.0260 | (37) | | Ventilation heat loss cal
Jan
(38)m 29.2875
Heat transfer coeff | Feb
29.1480 | Mar
29.0112 | Apr
28.3689 | 25) m x (5)
May
28.2487 | Jun
27.6893 | Jul
27.6893 | Aug
27.5857 | Sep
27.9048 | Oct
28.2487 | Nov
28.4918 | Dec
28.7460 | (38) | | 61.3135
Average = Sum(39)m / 12 = | 61.1740 | 61.0373 | 60.3949 | 60.2748 | 59.7153 | 59.7153 | 59.6117 | 59.9308 | 60.2748 | 60.5179 | 60.7720
60.3944 | (39) | | Jan
HLP 0.9843
HLP (average) | Feb
0.9821 | Mar
0.9799 | Apr
0.9696 | May
0.9676 | Jun
0.9587 | Jul
0.9587 | Aug
0.9570 | Sep
0.9621 | Oct
0.9676 | Nov
0.9716 | Dec
0.9756
0.9696 | (40) | | Days in mont 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | | | | | | | | | | | | | | | | | 4. Water heating energy r | | | | | | | | | | | | | | Assumed occupancy
Hot water usage for mixer | | | | | | | | | | | 2.0456 | | | 75.1325
Hot water usage for baths
0.0000 | | 72.3581 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 64.4565
0.0000 | 0.0000 | 0.0000 | 72.2437 | 74.8447 | | | Hot water usage for other 35.5788 | uses
34.2851 | 32.9913 | 31.6975 | 30.4037 | 29.1100 | 29.1100 | 30.4037 | 31.6975 | 32.9913 | 34.2851 | 35.5788 | (42c) | | Average daily hot water u | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | 101.6141
Dec | (43) | | | | | | | | | | | | | | | | Daily hot water use
110.7114 | | 105.3494 | 100.9076 | 97.2907 | 93.4062 | 91.9336 | 94.8602 | 97.9439 | 102.0194 | 106.5288 | 110.4235 | (44) | | Energy conte 175.3398
Energy content (annual) | 108.2885
154.2014 | 105.3494
161.9182 | _ | _ | | | _ | _ | 102.0194
138.4393 | | | | | Energy conte 175.3398 Energy content (annual) Distribution loss (46)m 26.3010 Water storage loss: | 108.2885
154.2014
= 0.15 x (4 | 105.3494
161.9182 | 100.9076 | 97.2907 | 93.4062 | 91.9336 | 94.8602 | 97.9439 | 102.0194
138.4393 | 106.5288
151.7698 | 110.4235
172.8966
1687.9455
25.9345 | (45)
(46) | | 110.7114 Energy conte 175.3398 Energy content (annual) Distribution loss (46)m 26.3010 Water storage loss: Store volume a) If manufacturer decla Temperature factor from | 108.2885
154.2014
= 0.15 x (4
23.1302
ared loss fa | 105.3494
161.9182
15)m
24.2877 | 100.9076
138.1375
20.7206 | 97.2907
130.9720
19.6458 | 93.4062
114.8538 | 91.9336
111.1857 | 94.8602
117.4568 | 97.9439
120.7747 | 102.0194
138.4393
Total = St | 106.5288
151.7698
um(45)m = | 110.4235
172.8966
1687.9455
25.9345
150.0000
1.3938
0.5400 | (45)
(46)
(47)
(48)
(49) | | 110.7114 Energy conte 175.3398 Energy content (annual) Distribution loss (46)m 26.3010 Water storage loss: Store volume a) If manufacturer decla Temperature factor from Enter (49) or (54) in (55 Total storage loss | 108.2885
154.2014
= 0.15 x (4
23.1302
ared loss fa
Table 2b | 105.3494
161.9182
15)m
24.2877 | 100.9076
138.1375
20.7206
own (kWh/da | 97.2907
130.9720
19.6458
ay): | 93.4062
114.8538
17.2281 |
91.9336
111.1857
16.6779 | 94.8602
117.4568
17.6185 | 97.9439
120.7747
18.1162 | 102.0194
138.4393
Total = St
20.7659 | 106.5288
151.7698
um(45)m =
22.7655 | 110.4235
172.8966
1687.9455
25.9345
150.0000
1.3938
0.5400
0.7527 | (45)
(46)
(47)
(48)
(49)
(55) | | 110.7114 Energy conte 175.3398 Energy content (annual) Distribution loss (46)m 26.3010 Water storage loss: Store volume a) If manufacturer decla Temperature factor from Enter (49) or (54) in (55) Total storage loss 23.3325 If cylinder contains dedi | 108.2885
154.2014
= 0.15 x (4
23.1302
ared loss fa
Table 2b
0)
21.0745
cated solar | 105.3494
161.9182
i5)m
24.2877
actor is knot | 100.9076
138.1375
20.7206
own (kWh/da
22.5798 | 97.2907
130.9720
19.6458
ay): | 93.4062
114.8538
17.2281
22.5798 | 91.9336
111.1857
16.6779 | 94.8602
117.4568
17.6185 | 97.9439
120.7747
18.1162 | 102.0194
138.4393
Total = St
20.7659 | 106.5288
151.7698
um(45)m =
22.7655 | 110.4235
172.8966
1687.9455
25.9345
150.0000
1.3938
0.5400
0.7527
23.3325 | (45)
(46)
(47)
(48)
(49)
(55)
(56) | | 110.7114 Energy conte 175.3398 Energy content (annual) Distribution loss (46)m 26.3010 Water storage loss: Store volume a) If manufacturer decla Temperature factor from Enter (49) or (54) in (55 Total storage loss 23.3325 If cylinder contains dedic Primary loss 23.2624 Combi loss 0.0000 | 108.2885
154.2014
= 0.15 x (4
23.1302
ared loss fa
Table 2b
)
21.0745
cated solar
21.0745
21.0112
0.0000 | 105.3494
161.9182
15)m
24.2877
actor is kmo
23.3325
c storage
23.3325
23.2624
0.0000 | 100.9076
138.1375
20.7206
own (kWh/da
22.5798
22.5798
22.5798
22.5120
0.0000 | 97.2907
130.9720
19.6458
aay):
23.3325
23.3325
23.2624
0.0000 | 93.4062
114.8538
17.2281
22.5798
22.5798
22.5120 | 91.9336
111.1857
16.6779
23.3325
23.3325
23.2624 | 94.8602
117.4568
17.6185
23.3325
23.3325 | 97.9439
120.7747
18.1162
22.5798
22.5798
22.5120 | 102.0194
138.4393
Total = St
20.7659
23.3325
23.3325
23.3325
23.2624 | 106.5288
151.7698
um(45)m =
22.7655
22.5798
22.5798
22.5798
22.5120 | 110.4235
172.8966
1687.9455
25.9345
150.0000
1.3938
0.5400
0.7527
23.3325
23.3325
23.2624 | (45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59) | | 110.7114 Energy conte 175.3398 Energy content (annual) Distribution loss (46)m 26.3010 Water storage loss: Store volume a) If manufacturer decla Temperature factor from Enter (49) or (54) in (55 Total storage loss 23.3325 If cylinder contains dedi 23.3325 Primary loss 23.2624 Combi loss 0.0000 Total heat required for w 10000 Total heat required for w 10000 1000 1000 1000 1000 1000 1000 1 | 108.2885
154.2014
= 0.15 x (4
23.1302
ared loss fa
in Table 2b
)
21.0745
cated solar
21.0745
21.0112
0.0000
outer heatin
196.2871 | 105.3494
161.9182
15)m
24.2877
actor is knot
23.3325
c storage
23.3325
23.2624
0.0000
g calculate
208.5131 | 100.9076
138.1375
20.7206
0wn (kWh/da
22.5798
22.5798
22.5120
0.0000
dd for each
183.2294
-26.3393 | 97.2907
130.9720
19.6458
ay):
23.3325
23.2624
0.0000
month
177.5669
-24.5473 | 93.4062
114.8538
17.2281
22.5798
22.5798
22.5120
0.0000
159.9456
-21.0053 | 91.9336
111.1857
16.6779
23.3325
23.3325
23.2624
0.0000
157.7806 | 94.8602
117.4568
17.6185
23.3325
23.3325
23.2624
0.0000
164.0517
-20.9374 | 97.9439
120.7747
18.1162
22.5798
22.5798
22.5120
0.0000
165.8665
-21.7329 | 102.0194
138.4393
Total = St
20.7659
23.3325
23.3325
23.3325
23.2624
0.0000
185.0342
-25.6207 | 106.5288
151.7698
151.7698
151.7698
152.7655
22.7655
22.5798
22.5798
22.5120
0.0000
196.8616
-29.0251 | 110.4235
172.8966
1687.9455
25.9345
150.0000
1.3938
0.5400
0.7527
23.3325
23.3325
23.2624
0.0000
219.4915 | (45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59)
(61)
(62) | | 110.7114 Energy conte 175.3398 Energy content (annual) Distribution loss (46)m 26.3010 Water storage loss: Store volume a) If manufacturer decla Temperature factor from Enter (49) or (54) in (55) Total storage loss 23.3325 If cylinder contains dedic Primary loss 23.2624 Combi loss 0.0000 Total heat required for w 221.9347 WWHRS PV diverter -0.0000 Solar input 0.0000 | 108.2885
154.2014
= 0.15 x (4
23.1302
ared loss fa
Table 2b
))
21.0745
cated solar
21.0745
21.0112
0.0000
rater heatin
196.2871
-30.3772
-0.0000
0.00000 | 105.3494
161.9182
15)m
24.2877
actor is known
23.3325
c storage
23.3325
23.2624
0.0000
ng calculate
208.5131
-31.8092
-0.0000
0.00000 | 100.9076
138.1375
20.7206
own (kWh/da
22.5798
22.5798
22.5120
0.0000
cd for each
183.2294
-26.3393
-0.0000
0.0000 | 97.2907
130.9720
19.6458
ay):
23.3325
23.3325
23.2624
0.0000
month
177.5669
-24.5473
-0.0000
0.0000 | 93.4062
114.8538
17.2281
22.5798
22.5798
22.5120
0.0000
159.9456
-21.0053
-0.0000
0.00000 | 91.9336
111.1857
16.6779
23.3325
23.3325
23.2624
0.0000
157.7806
-19.6891
-0.0000
0.00000 | 94.8602
117.4568
17.6185
23.3325
23.3325
23.2624
0.0000
164.0517
-20.9374
-0.0000
0.00000 | 97.9439
120.7747
18.1162
22.5798
22.5798
22.5120
0.0000
165.8665
-21.7329
-0.0000
0.0000 | 102.0194
138.4393
Total = Si
20.7659
23.3325
23.3325
23.2624
0.0000
185.0342
-25.6207
-0.0000
0.00000 | 106.5288
151.7698
151.7698
13m(45) m =
22.7655
22.5798
22.5798
22.5120
0.0000
196.8616
-29.0251
-0.0000
0.0000 | 110.4235
172.8966
1687.9455
25.9345
150.0000
1.3938
0.5400
0.7527
23.3325
23.3255
23.2624
0.0000
219.4915
-33.7114
-0.0000
0.0000 | (45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59)
(61)
(62)
(63a)
(63b)
(63c) | | 110.7114 | 108.2885
154.2014
= 0.15 x (4
23.1302
ared loss fa
i Table 2b
)
21.0745
cated solar
21.0745
21.0112
0.0000
vater heatin
196.2871
-30.3772
-0.0000
0.0000
0.0000 | 105.3494
161.9182
15)m
24.2877
actor is knot
23.3325
c storage
23.3325
23.2624
0.0000
g calculate
208.5131
-31.8092
-0.0000
0.0000 | 100.9076
138.1375
20.7206
own (kWh/da
22.5798
22.5798
22.5120
0.0000
ed for each
183.2294
-26.3393
-0.0000
0.0000
0.0000 | 97.2907
130.9720
19.6458
aay):
23.3325
23.3325
23.2624
0.0000
month
177.5669
-24.5473
-0.0000
0.0000
0.0000 | 93.4062
114.8538
17.2281
22.5798
22.5798
22.5120
0.0000
159.9456
-21.0053
-0.0000
0.0000
0.0000 | 91.9336
111.1857
16.6779
23.3325
23.3325
23.2624
0.0000
157.7806
-19.6891
-0.0000
0.0000
0.0000 | 94.8602
117.4568
17.6185
23.3325
23.3325
23.2624
0.0000
164.0517
-20.9374
-0.0000
0.0000
0.0000 | 97.9439
120.7747
18.1162
22.5798
22.5798
22.5120
0.0000
165.8665
-21.7329
-0.0000
0.0000
0.0000 | 102.0194
138.4393
Total = Si
20.7659
23.3325
23.3325
23.2624
0.0000
185.0342
-25.6207
-0.0000
0.0000
0.0000 | 106.5288
151.7698
um(45) m =
22.7655
22.5798
22.5798
22.5798
22.5120
0.0000
196.8616
-29.0251
-0.0000
0.0000
0.0000 | 110.4235
172.8966
1687.9455
25.9345
150.0000
1.3938
0.5400
0.7527
23.3325
23.3325
23.32624
0.0000
219.4915
-33.7114
-0.0000
0.0000
185.7801 | (45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59)
(61)
(62)
(63a)
(63b)
(63c)
(63d)
(64) | | 110.7114 | 108.2885
154.2014
= 0.15 x (4
23.1302
ared loss fa
1 Table 2b
)
21.0745
cated solar
21.0745
21.0112
0.0000
arter heatin
196.2871
-30.3772
-0.0000
0.0000
0.0000
165.9100 | 105.3494
161.9182
15)m
24.2877
actor is knot
23.3325
c storage
23.3325
23.2624
0.0000
g calculate
208.5131
-31.8092
-0.0000
0.0000 | 100.9076
138.1375
20.7206
own (kWh/da
22.5798
22.5798
22.5120
0.0000
ed for each
183.2294
-26.3393
-0.0000
0.0000
0.0000 | 97.2907
130.9720
19.6458
aay):
23.3325
23.3325
23.2624
0.0000
month
177.5669
-24.5473
-0.0000
0.0000
0.0000 | 93.4062
114.8538
17.2281
22.5798
22.5798
22.5120
0.0000
159.9456
-21.0053
-0.0000
0.0000
0.0000 | 91.9336
111.1857
16.6779
23.3325
23.3325
23.2624
0.0000
157.7806
-19.6891
-0.0000
0.0000
0.0000 | 94.8602
117.4568
17.6185
23.3325
23.3325
23.2624
0.0000
164.0517
-20.9374
-0.0000
0.0000
0.0000 | 97.9439
120.7747
18.1162
22.5798
22.5798
22.5120
0.0000
165.8665
-21.7329
-0.0000
0.0000
0.0000 | 102.0194
138.4393
Total = St
20.7659
23.3325
23.3325
23.2624
0.0000
185.0342
-25.6207
-0.0000
0.0000 | 106.5288
151.7698
um(45) m =
22.7655
22.5798
22.5798
22.5798
22.5120
0.0000
196.8616
-29.0251
-0.0000
0.0000
0.0000 |
110.4235
172.8966
1687.9455
25.9345
150.0000
1.3938
0.5400
0.7527
23.3325
23.3325
23.32624
0.0000
219.4915
-33.7114
-0.0000
0.0000
185.7801 | (45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59)
(61)
(62)
(63a)
(63b)
(63c)
(63d)
(63d)
(64)
(64) | | 110.7114 Energy conte 175.3398 Energy content (annual) Distribution loss (46)m 26.3010 Water storage loss: Store volume a) If manufacturer decla Temperature factor from Enter (49) or (54) in (55 Total storage loss 23.3325 If cylinder contains dedic Combi loss 0.0000 Total heat required for w 221.9347 WWHRS -34.3475 PV diverter -0.0000 Solar input 0.0000 FGRRS 0.0000 Output from w/h 187.5872 12Total per year (kWh/yea Electric shower(s) | 108.2885
154.2014
= 0.15 x (4
23.1302
(red loss fa
(Table 2b)
)
21.0745
cated solar
21.0745
21.0112
0.0000
rater heatin
196.2871
-30.3772
-0.0000
0.0000
165.9100
(r)
0.0000 | 105.3494 161.9182 15)m 24.2877 actor is known is storage 23.3325 23.2624 0.0000 ag calculate 208.5131 -31.8092 -0.0000 0.0000 176.7038 | 100.9076
138.1375
20.7206
0wn (kWh/da
22.5798
22.5798
22.5120
0.0000
ed for each
183.2294
-26.3393
-0.0000
0.0000
0.0000
156.8901 | 97.2907
130.9720
19.6458
aay):
23.3325
23.3325
23.2624
0.0000
month
177.5669
-24.5473
-0.0000
0.0000
153.0196 | 93.4062
114.8538
17.2281
22.5798
22.5798
22.5120
0.0000
159.9456
-21.0053
-0.0000
0.0000
0.0000
138.9404 | 91.9336
111.1857
16.6779
23.3325
23.3325
23.2624
0.0000
157.7806
-19.6891
-0.0000
0.0000
0.0000
138.0915 | 94.8602
117.4568
17.6185
23.3325
23.3325
23.2624
0.0000
164.0517
-20.9374
-0.0000
0.0000
0.0000 | 97.9439
120.7747
18.1162
22.5798
22.5798
22.5120
0.0000
165.8665
-21.7329
-0.0000
0.0000
0.0000
144.1336
rr year (kWI | 102.0194
138.4393
Total = St
20.7659
23.3325
23.3325
23.2624
0.0000
185.0342
-25.6207
-0.0000
0.0000
0.0000
159.4136
n/year) = St | 106.5288
151.7698
1m(45) m =
22.7655
22.5798
22.5798
22.5120
0.0000
196.8616
-29.0251
-0.0000
0.0000
0.0000
167.8365
1m(64) m = | 110.4235
172.8966
1687.9455
25.9345
150.0000
1.3938
0.5400
0.7527
23.3325
23.2624
0.0000
219.4915
-33.7114
-0.0000
0.0000
185.7801
1917.4206 | (45)
(46)
(47)
(48)
(55)
(56)
(57)
(59)
(61)
(62)
(63a)
(63b)
(63c)
(63d)
(64)
(64)
(64) | | 110.7114 Energy conte 175.3398 Energy content (annual) Distribution loss (46)m 26.3010 Water storage loss: Store volume a) If manufacturer decla Temperature factor from Enter (49) or (54) in (55 Total storage loss 23.3325 If cylinder contains dedi 23.3325 Primary loss 23.2624 Combi loss 0.0000 Total heat required for w 221.9347 WWHRS -34.3475 PV diverter -0.0000 Solar input 0.0000 FGRRS 0.0000 Output from w/h 187.5872 12Total per year (kWh/yea Electric shower(s) 0.0000 Heat gains from water hea | 108.2885
154.2014
= 0.15 x (4
23.1302
ared loss farted loss farted solar 21.0745
21.0745
21.0745
21.012
0.0000
arter heatin 196.2871
-30.3772
-0.0000
0.0000
0.0000
165.9100
arter loss farted solar 21.0745
0.0000
0.0000
0.0000
control 165.9100
arter loss farted solar 21.0745
0.0000
0.0000
arter loss farted solar 21.0745
0.0000
0.0000
arter loss farted solar 21.0745
0.0000
0.0000
arter loss farted solar 21.0745
0.0000
0.0000
arter loss farted solar 21.0745
0.0000
arter loss farted solar 21.0745
0.0000
arter loss farted solar 21.0745
0.0000
0.0000
0.0000
arter loss farted solar 21.0745
0.0000
0.0000
0.0000
arter loss farted solar 21.0745
0.0000
0.0000
0.0000
arter loss farted solar 21.0745
0.0000
arter loss farted solar 21.0745
0.0000
0.0000
arter loss farted solar 21.0745
0.0000
arter loss farted solar 21.0745
0.0000
arter loss farted solar 21.0745
0.0000
arter loss farted solar 21.0745
arter 21.0745 | 105.3494 161.9182 15)m 24.2877 24.2877 24.2877 25.23.3325 25.25.23.2624 0.0000 0.0000 0.0000 176.7038 | 100.9076 138.1375 20.7206 20.7206 22.5798 22.5798 22.5120 0.0000 20.0000 20.0000 0.0000 156.8901 0.0000 Total | 97.2907
130.9720
19.6458
ay):
23.3325
23.2624
0.0000
month
177.5669
-24.5473
-0.0000
0.0000
153.0196 | 93.4062
114.8538
17.2281
22.5798
22.5798
22.5120
0.0000
159.9456
-21.0053
-0.0000
0.0000
0.0000
138.9404 | 91.9336
111.1857
16.6779
23.3325
23.3325
23.2624
0.0000
157.7806
-19.6891
-0.0000
0.0000
0.0000
138.0915 | 94.8602
117.4568
17.6185
23.3325
23.3325
23.2624
0.0000
164.0517
-0.0000
0.0000
0.0000
143.1143
Total pe | 97.9439
120.7747
18.1162
22.5798
22.5798
22.5120
0.0000
165.8665
-21.7329
-0.0000
0.0000
0.0000
144.1336
r year (kWI | 102.0194
138.4393
Total = St
20.7659
23.3325
23.3325
23.2624
0.0000
185.0342
-25.6207
-0.0000
0.0000
159.4136
n/year) = St | 106.5288 151.7698 151.7698 151.7698 151.7698 152.7655 22.5798 22.5798 22.5798 22.5120 0.0000 196.8616 -29.0251 -0.0000 0.0000 167.8365 152.64) m = 0.0000 | 110.4235 172.8966 1687.9455 25.9345 150.0000 1.3938 0.5400 0.7527 23.3325 23.2624 0.0000 219.4915 -33.7114 -0.0000 0.0000 185.7801 1917.4206 1917 | (45) (46) (47) (48) (49) (55) (56) (57) (59) (61) (62) (63a) (63b) (63c) (63d) (64) (64) (64) (64a) | | 110.7114 Energy conte 175.3398 Energy content (annual) Distribution loss (46)m | 108.2885 154.2014 = 0.15 x (4 23.1302 red loss fa Table 2b) 21.0745 cated solar 21.0745 21.0112 0.0000 red red heatin 196.2871 -30.3772 -0.0000 0.0000 165.9100 cr) 0.0000 cr) 0.0000 cr) 0.0000 cr) 0.0000 cr) 0.0000 | 105.3494 161.9182 15)m 24.2877 10tor is known | 100.9076 138.1375 20.7206 20.7206 20.7206 22.5798 22.5798 22.5120 0.0000 d for each 183.2294 -26.3393 -0.0000 0.0000 156.8901 0.0000 Tota 82.0042 | 97.2907 130.9720 19.6458 ay): 23.3325 23.3325 23.2624 0.0000 month 177.5669 -24.5473 -0.0000 0.0000 153.0196 0.0000 al Energy us 80.8241 | 93.4062
114.8538
17.2281
22.5798
22.5798
22.5120
0.0000
159.9456
-21.0053
-0.0000
0.0000
138.9404
0.0000
138.9404 | 91.9336
111.1857
16.6779
23.3325
23.3325
23.2624
0.0000
157.7806
-19.6891
-0.0000
0.0000
0.0000
138.0915 | 94.8602
117.4568
17.6185
23.3325
23.3325
23.2624
0.0000
164.0517
-20.9374
-0.0000
0.0000
143.1143
Total pe | 97.9439
120.7747
18.1162
22.5798
22.5798
22.5120
0.0000
165.8665
-21.7329
-0.0000
0.0000
0.0000
144.1336
r year (kWI | 102.0194
138.4393
Total = St
20.7659
23.3325
23.3325
23.2624
0.0000
185.0342
-25.6207
-0.0000
0.0000
159.4136
n/year) = St | 106.5288 151.7698 151.7698 151.7698 151.7698 152.7655 22.5798 22.5798 22.5798 22.5120 0.0000 196.8616 -29.0251 -0.0000 0.0000 167.8365 152.64) m = 0.0000 | 110.4235 172.8966 1687.9455 25.9345 150.0000 1.3938 0.5400 0.7527 23.3325 23.2624 0.0000 219.4915 -33.7114 -0.0000 0.0000 185.7801 1917.4206 1917 | (45) (46) (47) (48) (49) (55) (56) (57) (59) (61) (62) (63a) (63b) (63c) (63d) (64) (64) (64) (64a) | | 110.7114 Energy conte 175.3398 Energy content (annual) Distribution loss (46)m 26.3010 Water storage loss: Store volume a) If manufacturer decla Temperature factor from Enter (49) or (54) in (55 Total storage loss 23.3325 If cylinder contains dedi 23.3325 Primary loss 23.2624 Combi loss 0.0000 Total heat required for w 221.9347 WWHRS -34.3475 PV diverter -0.0000 Solar input 0.0000 FGRRS 0.0000 Output from w/h 187.5872 12Total per year (kWh/yea Electric shower(s) 0.0000 Heat gains from water hea | 108.2885
154.2014
= 0.15 x (4
23.1302
ared loss fa
1 Table 2b
)
21.0745
cated solar
21.0745
21.0112
0.0000
uster heatin
196.2871
-30.3772
-0.0000
0.0000
165.9100
ir)
0.0000
ting, kWh/m
84.9405 | 105.3494 161.9182 15)m 24.2877 24.2877 24.2877 24.2877 25.23.2624 0.0000 20.0000 0.0000 176.7038 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 100.9076 138.1375 20.7206 20.7206 20.7206 22.5798 22.5798 22.5120 0.0000 20.0000 20.0000 156.8901 0.0000 Tota 82.0042 | 97.2907
130.9720
19.6458
ay):
23.3325
23.3325
23.2624
0.0000
month
177.5669
-24.5473
-0.0000
0.0000
153.0196
0.0000
al Energy us
80.8241 | 93.4062
114.8538
17.2281
22.5798
22.5798
22.5120
0.0000
159.9456
-21.0053
-0.0000
0.0000
0.0000
138.9404
0.0000
sed by insta | 91.9336
111.1857
16.6779
23.3325
23.3325
23.2624
0.0000
157.7806
-19.6891
-0.0000
0.0000
138.0915
0.0000
antaneous e:
74.2452 | 94.8602
117.4568
17.6185
23.3325
23.3325
23.2624
0.0000
164.0517
-0.09374
-0.0000
0.0000
143.1143
Total pe | 97.9439
120.7747
18.1162
22.5798
22.5798
22.5120
0.0000
165.8665
-21.7329
-0.0000
0.0000
0.0000
144.1336
r year (kWI | 102.0194
138.4393
Total =
St
20.7659
23.3325
23.3325
23.2624
0.0000
185.0342
-25.6207
-0.0000
0.0000
159.4136
n/year) = St | 106.5288 151.7698 151.7698 151.7698 151.7698 152.7655 22.5798 22.5798 22.5798 22.5120 0.0000 196.8616 -29.0251 -0.0000 0.0000 167.8365 152.64) m = 0.0000 | 110.4235 172.8966 1687.9455 25.9345 150.0000 1.3938 0.5400 0.7527 23.3325 23.2624 0.0000 219.4915 -33.7114 -0.0000 0.0000 185.7801 1917.4206 1917 | (45) (46) (47) (48) (49) (55) (56) (57) (59) (61) (62) (63a) (63b) (63c) (63d) (64) (64) (64) (64a) | | 110.7114 | 108.2885 154.2014 = 0.15 x (4 23.1302 ared loss fa Table 2b) 21.0745 cated solar 21.0745 21.0112 0.0000 are heatin 196.2871 -30.3772 -0.0000 0.0000 165.9100 are 10000 100000 are 10000 100000 are 10000 100000 are 100000 are 10000 are 100000 are 100000 are 100000 are 100000 are 10000 | 105.3494 161.9182 15)m 24.2877 24.2877 actor is known is storage 23.3325 23.2624 0.0000 ag calculate 208.5131 -31.8092 -0.0000 176.7038 0.0000 176.7038 | 100.9076 138.1375 20.7206 20.7206 20.7206 22.5798 22.5798 22.5120 0.0000 0.0000 156.3393 -0.0000 0.0000 156.8901 0.0000 Tota 82.0042 | 97.2907
130.9720
19.6458
ay):
23.3325
23.3325
23.2624
0.0000
month
177.5669
-24.5473
-0.0000
0.0000
153.0196
0.0000
al Energy us
80.8241 | 93.4062
114.8538
17.2281
22.5798
22.5798
22.5120
0.0000
159.9456
-21.0053
-0.0000
0.0000
138.9404
0.0000
138.9404
74.2624 | 91.9336
111.1857
16.6779
23.3325
23.3325
23.2624
0.0000
157.7806
-19.6891
-0.0000
0.0000
138.0915
0.0000
antaneous et | 94.8602
117.4568
17.6185
23.3325
23.3325
23.2624
0.0000
164.0517
-20.9374
-0.0000
0.0000
143.1143
Total pe
0.0000
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.05 | 97.9439
120.7747
18.1162
22.5798
22.5798
22.5120
0.0000
165.8665
-21.7329
-0.0000
0.0000
0.0000
144.1336
er year (kWh
76.2310 | 102.0194 138.4393 Total = Si 20.7659 23.3325 23.3325 23.2624 0.0000 185.0342 -25.6207 -0.0000 0.0000 159.4136 n/year) = Si 0.0000 /year) = Si 83.3070 | 106.5288 151.7698 151.7698 1m(45) m = 22.7655 22.5798 22.5798 22.5120 0.0000 196.8616 -29.0251 -0.0000 0.0000 0.0000 167.8365 1m(64) m = 0.0000 n(64a) m = 86.5369 | 110.4235 172.8966 1687.9455 25.9345 150.0000 1.3938 0.5400 0.7527 23.3325 23.3325 23.2624 0.0000 219.4915 -33.7114 -0.0000 0.0000 185.7801 1917.4206 1917 0.0000 0.0000 94.7640 Dec | (45) (46) (47) (48) (49) (55) (56) (57) (59) (61) (62) (63a) (63b) (63c) (63d) (64) (64) (64) (64a) (65) | | 110.7114 | 108.2885 154.2014 = 0.15 x (4 23.1302 ared loss fa iTable 2b) 21.0745 cated solar 21.0745 21.0112 0.0000 inter heatin 196.2871 -30.3772 -0.0000 0.0000 0.0000 iting, kWh/m 84.9405 ble 5 and 5 -, Watts Feb 102.2793 d in Append | 105.3494 161.9182 15)m 24.2877 24.2877 24.2877 24.2877 25.23.2624 0.0000 20.0000 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 | 100.9076 138.1375 20.7206 20.7206 22.5798 22.5798 22.5120 0.0000 20.0000 20.0000 156.8901 0.0000 Tota 82.0042 Apr 102.2793 cion L9 or 1 | 97.2907 130.9720 19.6458 ay): 23.3325 23.3325 23.2624 0.0000 month 177.5669 -24.5473 -0.0000 0.0000 153.0196 0.0000 al Energy us 80.8241 May 102.2793 L9a), also s | 93.4062
114.8538
17.2281
22.5798
22.5798
22.5120
0.0000
159.9456
-21.0053
-0.0000
0.0000
138.9404
0.0000
sed by insta
74.2624 | 91.9336
111.1857
16.6779
23.3325
23.3325
23.2624
0.0000
157.7806
-19.6891
-0.0000
0.0000
138.0915
0.0000
antaneous et
74.2452 | 94.8602
117.4568
17.6185
23.3325
23.3325
23.2624
0.0000
164.0517
-0.0000
0.0000
0.0000
143.1143
Total pe
0.0000
164.3303 | 97.9439
120.7747
18.1162
22.5798
22.5798
22.5120
0.0000
165.8665
-21.7329
0.0000
0.0000
144.1336
rr year (kWh
76.2310 | 102.0194 138.4393 Total = St 20.7659 23.3325 23.3325 23.2624 0.0000 185.0342 -25.6207 -0.0000 0.0000 0.0000 0.0000 vyear) = St 83.3070 Oct 102.2793 | 106.5288 151.7698 151.7698 151.7698 151.7698 151.7698 151.7698 151.7698 151.7698 151.7698 151.7698 161 | 110.4235 172.8966 1687.9455 25.9345 150.0000 1.3938 0.5400 0.7527 23.3325 23.32524 0.0000 219.4915 -33.7114 -0.0000 0.0000 185.7801 1917.4206 1917 0.0000 0.0000 94.7640 Dec 102.2793 | (45) (46) (47) (48) (49) (55) (56) (57) (59) (61) (62) (63a) (63b) (63c) (63d) (64) (64) (64) (64a) (65) | | 110.7114 | 108.2885 154.2014 = 0.15 x (4 23.1302 red loss fa Table 2b) 21.0745 cated solar 21.0745 21.0112 0.0000 red re heatin 196.2871 -30.3772 -0.0000 0.0000 165.9100 r) 0.0000 ting, kWh/m 84.9405 Matts Feb 102.2793 din Append 101.8293 ted in Append 180.5374 | 105.3494 161.9182 15)m 24.2877 24.2877 24.2877 24.2877 24.2877 24.2877 24.2877 23.3325 23.2624 0.0000 20.0000 176.7038 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 | 100.9076 138.1375 20.7206 20.7206 20.7206 22.5798 22.5798 22.5120 0.0000 0.0000 156.8901 0.0000 156.8901 0.0000 156.8901 Apr 102.2793 200 1.9 or 1 95.0407 125.9178 | 97.2907 130.9720 19.6458 ay): 23.3325 23.3325 23.2624 0.0000 month 177.5669 -24.5473 -0.0000 0.0000 153.0196 0.0000 al Energy us 80.8241 May 102.2793 L9a), a1so s
91.9748 or L13a), a1so s 1153.3614 | 93.4062
114.8538
17.2281
22.5798
22.5798
22.5120
0.0000
159.9456
-21.0053
-0.0000
0.0000
138.9404
0.0000
sed by insta
74.2624
74.2624
Jun
102.2793
see Table 5
95.0407
Iso see Table 141.5601 | 91.9336
111.1857
16.6779
23.3325
23.3325
23.2624
0.0000
157.7806
-19.6891
-0.0000
0.0000
138.0915
0.0000
antaneous e:
74.2452
Jul
102.2793
91.9748
les 5
133.6761 | 94.8602
117.4568
17.6185
23.3325
23.3325
23.2624
0.0000
164.0517
-20.9374
-0.0000
0.0000
143.1143
Total pe
0.0000
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.0517
164.05 | 97.9439
120.7747
18.1162
22.5798
22.5798
22.5120
0.0000
165.8665
-21.7329
-0.0000
0.0000
144.1336
rr year (kWN,
76.2310 | 102.0194 138.4393 Total = St 20.7659 23.3325 23.3325 23.2624 0.0000 185.0342 -25.6207 -0.0000 0.0000 159.4136 n/year) = St 0.0000 /year) = St 83.3070 Oct 102.2793 91.9748 | 106.5288 151.7698 151 | 110.4235 172.8966 1687.9455 25.9345 150.0000 1.3938 0.5400 0.7527 23.3325 23.3325 23.2624 0.0000 219.4915 -33.7114 -0.0000 0.0000 185.7801 1917.4206 1917 0.0000 0.0000 94.7640 Dec | (45) (46) (47) (48) (49) (55) (56) (57) (59) (61) (62) (63a) (63d) (63d) (64) (64) (64a) (65) | | 110.7114 | 108.2885 154.2014 = 0.15 x (4 23.1302 red loss fa 1 Table 2b) 21.0745 cated solar 21.0745 21.0112 0.0000 atter heatin 196.2871 -30.3772 -0.0000 0.0000 0.0000 165.9100 r) 0.0000 atting, kWh/m 84.9405 Watts Feb 102.2793 din Appendi 101.8293 red in Appendi 101.8293 red in Appendi 133.2279 | 105.3494 161.9182 15)m 24.2877 24.2877 24.2877 24.2877 25.23.2624 0.0000 20.0000 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 | 100.9076 138.1375 20.7206 20.7206 20.7206 20.7206 22.5798 22.5798 22.5120 0.0000 20.0000 20.0000 156.8901 0.0000 Total 82.0042 Apr 102.2793 210n L9 or 1 95.0407 21510n L13 or 1 165.9178 21.15 or 1 33.2279 | 97.2907 130.9720 19.6458 ay): 23.3325 23.3325 23.2624 0.0000 month 177.5669 -24.5473 -0.0000 0.0000 153.0196 0.0000 al Energy us 80.8241 May 102.2793 193), also s 91.9748 153.3614 Ll5a), also s 33.2279 | 93.4062
114.8538
17.2281
22.5798
22.5798
22.5120
0.0000
159.9456
-21.0053
-0.0000
0.0000
0.0000
138.9404
0.0000
sed by insta
74.2624
74.2624
Jun
102.2793
see Table 5
95.0407
120 so see Table 5
95.0407
120 so see Table 5
95.0407
120 so see Table 5
93.2279 | 91.9336
111.1857
16.6779
23.3325
23.3325
23.2624
0.0000
157.7806
-19.6891
-0.0000
0.0000
138.0915
0.0000
antaneous e:
74.2452
Jul
102.2793
91.9748
1e 5
133.6761 | 94.8602
117.4568
17.6185
23.3325
23.32524
0.0000
164.0517
-20.9374
-0.0000
0.0000
143.1143
Total pe
0.0000
143.123
76.3303
76.3303
91.9748
131.8220
33.2279 | 97.9439 120.7747 18.1162 22.5798 22.5798 22.5120 0.0000 165.8665 -21.7329 -0.0000 0.0000 144.1336 rr year (kWN 76.2310 Sep 102.2793 95.0407 136.4944 33.2279 | 102.0194 138.4393 Total = St 20.7659 23.3325 23.3325 23.3325 23.2624 0.0000 185.0342 -25.6207 -0.0000 0.0000 0.0000 159.4136 n/year) = St 0.0000 /year) = St 83.3070 Oct 102.2793 91.9748 146.4415 33.2279 | 106.5288 151.7698 151.7698 151.7698 151.7698 151.7698 151.7698 151.7698 151.7698 151.7698 151.7698 162.5798 162.5798 162.5798 162.5120 162.0000 167.8365 1664) m = 168.5369 169.0000 160000 160000 167.8365 1664) m = 168.5369 | 110.4235 172.9966 1687.9455 25.9345 150.0000 1.3938 0.5400 0.7527 23.3325 23.2624 0.0000 219.4915 -33.7114 -0.0000 0.0000 185.7801 1917.4206 1917 0.0000 94.7640 Dec 102.2793 91.9748 170.7992 33.2279 | (45) (46) (47) (48) (49) (55) (56) (57) (59) (61) (62) (63a) (63b) (63c) (63d) (64) (64) (64) (64a) (65) | | 110.7114 Energy conte 175.3398 Energy content (annual) Distribution loss (46)m | 108.2885 154.2014 = 0.15 x (4 23.1302 fred loss far fable 2b) 21.0745 cated solar 21.0745 21.012 0.0000 atter heatin 196.2871 -30.3772 -0.0000 0.0000 0.0000 0.0000 165.9100 r) 0.0000 atting, kWh/m 84.9405 din Appendi 101.8293 din Appendi 101.8293 din Appendi 33.2279 3.0000 negative va | 105.3494 161.9182 15)m 24.2877 24.2877 24.2877 24.2877 25.23.2624 0.0000 20.0000 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 | 100.9076 138.1375 20.7206 20.7206 20.7206 22.5798 22.5798 22.5120 0.0000 20.0000 20.0000 156.3991 0.0000 156.8901 Apr 102.2793 2ion L9 or 1 95.0407 1etion L13 or 1 165.9178 1on L15 or 1 33.2279 33.2279 33.2279 33.2279 33.2279 33.0000 1e 5) | 97.2907 130.9720 19.6458 ay): 23.3325 23.3325 23.2624 0.0000 month 177.5669 -24.5473 -0.0000 0.0000 153.0196 0.0000 al Energy us 80.8241 May 102.2793 L9a), also s 91.9748 or L13a), also s 91.9748 or L13a), also s 33.2279 3.0000 | 93.4062 114.8538 17.2281 22.5798 22.5798 22.5798 22.5120 0.0000 159.9456 -21.0053 -0.0000 0.0000 0.0000 138.9404 0.0000 138.9404 0.0000 sed by insta 74.2624 Jun 102.2793 see Table 5 95.0407 Iso see Table 5 33.2279 0.0000 | 91.9336
111.1857
16.6779
23.3325
23.3325
23.2624
0.0000
157.7806
-19.6891
-0.0000
0.0000
0.0000
138.0915
0.0000
138.0915
74.2452 |
94.8602
117.4568
17.6185
23.3325
23.3252
23.2624
0.0000
164.0517
-20.9374
-0.0000
0.0000
143.1143
Total pe
0.0000
164.3124
91.0000
176.3303
176.3303 | 97.9439 120.7747 18.1162 22.5798 22.5798 22.5798 22.5120 0.0000 165.8665 -21.7329 -0.0000 0.0000 144.1336 r year (kWh 76.2310 Sep 102.2793 95.0407 136.4944 33.2279 0.0000 | 102.0194 138.4393 Total = St 20.7659 23.3325 23.3325 23.2624 0.0000 185.03422 -25.6207 -0.0000 0.0000 159.4136 n/year) = St 0.0000 year) = Sur 83.3070 Oct 102.2793 91.9748 146.4415 33.2279 3.0000 | 106.5288 151.7698 151 | 110.4235 172.8966 1687.9455 25.9345 150.0000 1.3938 0.5400 0.7527 23.3325 23.2624 0.0000 219.4915 -33.7114 -0.0000 0.0000 185.7801 1917.4206 1917 0.0000 94.7640 Dec 102.2793 91.9748 170.7992 33.2279 3.0000 | (45) (46) (47) (48) (49) (55) (56) (57) (59) (61) (62) (63a) (63d) (63d) (64) (64) (64a) (65) | | 110.7114 | 108.2885 154.2014 = 0.15 x (4 23.1302 ared loss fa Table 2b) 21.0745 cated solar 21.0745 21.0112 0.0000 ater heatin 196.2871 -30.3772 -0.0000 0.0000 165.9100 ar) 0.0000 ting, kWh/m 84.9405 Watts Feb 102.2793 din Appendi 101.8293 ted in Appendi 33.2279 3.0000 negative va -81.8234 e 5) | 105.3494 161.9182 15)m 24.2877 24.2877 24.2877 24.2877 24.2877 25.23.3325 23.2624 0.0000 27.293 28.293.325 20.0000 27.293 28.293.325 29.293 29 | 100.9076 138.1375 20.7206 DWN (kWh/do 22.5798 22.5798 22.5798 22.5120 0.0000 df for each 183.2294 -26.3393 -0.0000 Total 82.0042 Apr 102.2793 cion L9 or 102.2793 cion L9 or 102.2793 cion L9 or 102.2793 cion L9 or 103.32279 33.2279 33.2279 33.2279 33.2279 33.2279 3.0000 Le 5) -81.8234 | 97.2907 130.9720 19.6458 ay): 23.3325 23.3325 23.2624 0.0000 month 177.5669 -24.5473 -0.0000 0.0000 153.0196 0.0000 al Energy us 80.8241 May 102.2793 193), also s 91.9748 153.3614 Ll5a), also s 33.2279 | 93.4062 114.8538 17.2281 22.5798 22.5798 22.5798 22.5120 0.0000 159.9456 -21.0053 -0.0000 0.0000 138.9404 0.0000 138.9404 0.0000 138.9404 102.2793 see Table 5 95.0407 Lso see Table 141.5601 see Table 5 95.0407 Lso see Table 33.2279 0.0000 -81.8234 | 91.9336 111.1857 16.6779 23.3325 23.3252 23.2624 0.0000 157.7806 -19.6891 -0.0000 0.0000 138.0915 0.0000 antaneous e: 74.2452 Jul 102.2793 91.9748 1e 5 133.6761 5 33.2279 0.0000 -81.8234 | 94.8602
117.4568
17.6185
23.3325
23.3252
23.2624
0.0000
164.0517
-20.9374
-0.0000
0.0000
143.1143
Total pe
0.0000
164.3124
91.0000
176.3303
176.3303
176.3303 | 97.9439 120.7747 18.1162 22.5798 22.5798 22.5798 22.5120 0.0000 165.8665 -21.7329 -0.0000 0.0000 144.1336 ryear (kWh, 76.2310 Sep 102.2793 95.0407 136.4944 33.2279 0.0000 -81.8234 | 102.0194 138.4393 Total = St 20.7659 23.3325 23.3252 23.32624 0.0000 185.0327 -0.0000 0.0000 159.4136 n/year) = St 83.3070 Oct 102.2793 91.9748 146.4415 33.2279 3.0000 -81.8234 | 106.5288 151.7698 151.7698 151.7698 151.7698 151.7698 151.7698 151.7698 151.7698 151.7698 151.7698 151.7698 151.7698 151.7698 151.7698 161.8365 171 | 110.4235 172.9966 1687.9455 25.9345 150.0000 1.3938 0.5400 0.7527 23.3325 23.2624 0.0000 219.4915 -33.7114 -0.0000 0.0000 185.7801 1917.4206 1917 0.0000 94.7640 Dec 102.2793 91.9748 170.7992 33.2279 | (45) (46) (47) (48) (49) (55) (56) (57) (59) (61) (63a) (63a) (63b) (63d) (64) (64) (64a) (65) (66) (67) (68) (69) (70) (71) | | 110.7114 | 108.2885 154.2014 = 0.15 x (4 23.1302 red loss fa Table 2b) 21.0745 cated solar 21.0745 21.0112 0.0000 dier heatin 196.2871 -30.3772 -0.0000 0.0000 0.0000 165.9100 r) 0.0000 ting, kWh/m 84.9405 water feb 102.2793 din Appendi 101.8293 ted in Appendi 33.2279 3.0000 negative va -81.8234 e 5) 126.3996 | 105.3494 161.9182 15)m 24.2877 24.2877 24.2877 24.2877 24.2877 24.2877 24.2877 24.2877 25.23.2624 0.0000 26.208.5131 -31.8092 -0.0000 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 0.0000 176.7038 | 100.9076 138.1375 20.7206 20.7206 20.7206 20.7206 22.5798 22.5798 22.5120 0.0000 20.0000 156.8901 0.0000 156.8901 0.0000 156.8901 0.0000 156.8901 0.0000 156.8901 0.0000 156.8901 0.0000 156.8901 0.0000 156.8901 0.0000 156.8901
0.0000 156.8901 0.0000 156.8901 0.0000 156.8901 0.0000 156.8901 0.0000 156.8901 0.0000 156.8901 0.0000 156.8901 0.0000 156.8901 0.0000 156.8901 0.0000 156.8901 0.0000 156.8901 0.0000 156.8901 0.0000 156.8901 | 97.2907 130.9720 19.6458 ay): 23.3325 23.3325 23.32624 0.0000 month 177.5669 -24.5473 -0.0000 0.0000 153.0196 0.0000 al Energy us 80.8241 May 102.2793 L9a), also s 91.9748 or L13a), also 1133, also 1133, also 1133, also 33.2279 3.0000 -81.8234 108.6346 | 93.4062 114.8538 17.2281 22.5798 22.5798 22.5798 22.5120 0.0000 159.9456 -21.0053 -0.0000 0.0000 138.9404 0.0000 138.9404 0.0000 3ed by insta 74.2624 Jun 102.2793 see Table 5 95.0407 Iso Ta | 91.9336 111.1857 16.6779 23.3325 23.3325 23.3325 23.2624 0.0000 157.7806 -19.6891 -0.0000 0.0000 138.0915 0.0000 138.0915 0.0000 antaneous e: 74.2452 Jul 102.2793 91.9748 1es 5 133.6761 5 33.2279 0.0000 -81.8234 99.7919 | 94.8602
117.4568
17.6185
23.3325
23.3325
23.2624
0.0000
164.0517
-20.9374
-0.0000
0.0000
143.1143
Total pe
0.0000
164.3143
Total pe
102.2793
91.9748
131.8220
33.2279
0.0000
-81.8234 | 97.9439 120.7747 18.1162 22.5798 22.5798 22.5798 22.5120 0.0000 165.8665 -21.7329 -0.0000 0.0000 144.1336 rr year (kWh 0.0000 rer(s) (kWh, 76.2310 Sep 102.2793 95.0407 136.4944 33.2279 0.0000 -81.8234 105.8765 | 102.0194 138.4393 Total = St 20.7659 23.3325 23.3325 23.32624 0.0000 185.0342 -25.6207 -0.0000 0.0000 159.4136 n/year) = St 0.0000 (year) = Sus 83.3070 Oct 102.2793 91.9748 146.4415 33.2279 3.0000 -81.8234 111.9718 | 106.5288 151.7698 151.7698 1m(45) m = 22.7655 22.5798 22.5798 22.5798 22.5120 0.0000 196.8616 -29.0251 -0.0000 0.0000 0.0000 167.8365 1m(64) m = 0.0000 n(64a) m = 86.5369 Nov 102.2793 95.0407 158.9980 33.2279 3.0000 -81.8234 120.1902 | 110.4235 172.8966 1687.9455 25.9345 150.0000 1.3938 0.54000 0.7527 23.3325 23.3325 23.32624 0.0000 219.4915 -33.7114 -0.0000 0.0000 185.7801 1917.4206 1917 0.0000 94.7640 Dec 102.2793 91.9748 170.7992 33.2279 3.0000 -81.8234 127.3710 | (45) (46) (47) (48) (49) (55) (56) (57) (59) (61) (63a) (63b) (63c) (63d) (64) (64) (64) (65) (65) | SAP 10 Online 2.13.11 Page 5 of 7 | 6. Solar gain |
IS | | | | | | | | | | | | | |---|------------------------------|---------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|-------------------------------------|------------------| | [Jan] | | | Solar flux
Table 6a
W/m2 | Specific data
or Table 6b | | FF
Specific data
or Table 6c | | Access
factor
Table 6d | | Gains
W | | | | | Northeast | | | 11.2 | 700 | 11.2829 | | 0.6300 | 0 | .7000 | 0.770 | 00 | 38.8614 | (75) | | Solar gains
Total gains | 38.8614
494.6661 | 79.1034
544.5535 | 142.5192
589.5075 | 234.0575
665.5945 | 314.6192
725.2738 | 335.4174
728.8441 | 313.7761
692.9028 | 250.1459
630.2210 | 173.6619
564.7573 | 96.6707
503.7426 | 48.8977
479.8103 | 31.7361
478.5650 | | | 7. Mean inter | | | ng season) | | | | | | | | | | | | Temperature d | uring heatin | ng periods i | in the livir | ng area fro | m Table 9, 1 | | | | | | | 21.0000 | (85) | | tau
alpha
util living a | Jan
132.8334
9.8556 | Feb | Mar
133.4346 | Apr
134.8537 | May
135.1226 | Jun
136.3885
10.0926 | Jul
136.3885
10.0926 | Aug
136.6255
10.1084 | Sep
135.8981
10.0599 | Oct
135.1226
10.0082 | Nov
134.5798
9.9720 | Dec
134.0169
9.9345 | | | util living u | | 0.9987 | 0.9939 | 0.9454 | 0.7587 | 0.5240 | 0.3792 | 0.4351 | 0.7234 | 0.9758 | 0.9984 | 0.9997 | (86) | | MIT
Th 2 | 20.4536
20.0964 | 20.5448
20.0983 | 20.6912
20.1001 | 20.8950
20.1088 | 20.9894
20.1104 | 20.9997
20.1179 | 21.0000
20.1179 | 21.0000
20.1193 | 20.9949
20.1150 | 20.8601
20.1104 | 20.6258
20.1071 | 20.4396
20.1037 | | | util rest of
MIT 2
Living area f | 0.9993
19.4685
raction | | 0.9900
19.7735 | 0.9165
20.0200 | 0.6930
20.1047 | 0.4520
20.1178 | 0.3032
20.1179 | 0.3518
20.1193 | | 0.9562
19.9889
Living area | | 0.9995
19.4567
0.3851 | (90)
(91) | | MIT
Temperature a
adjusted MIT | djustment | | 20.1270 | 20.3570 | 20.4454 | 20.4575 | 20.4576 | 20.4585 | 20.4527 | 20.3244 | 20.0552 | 19.8352
0.0000
19.8352 | | | | | | | | | | | | | | | | (/ | | 9 Space heat | ing require | | | | | | | | | | | | | | 8. Space heat | | | | | | | | | | | | | | | Utilisation
Useful gains
Ext temp. | 494.2955 | | Mar
0.9901
583.6779
6.5000 | Apr
0.9256
616.0822
8.9000 | May
0.7184
521.0376
11.7000 | Jun
0.4798
349.6713
14.6000 | Jul
0.3325
230.3576
16.6000 | Aug
0.3839
241.9237
16.4000 | Sep
0.6699
378.3432
14.1000 | Oct
0.9620
484.5791
10.6000 | Nov
0.9971
478.4129
7.1000 | Dec
0.9995
478.3039
4.2000 | (95) | | Heat loss rat | 953.2984 | 921.0131 | 831.7523 | 691.9449 | 527.1266 | 349.7815 | 230.3599 | 241.9331 | 380.7225 | 586.1386 | 784.0198 | 950.1860 | (97) | | Space heating
Space heating | 341.4981 | 253.8172
t - total pe | | 54.6211
n/year) | 4.5302 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 75.5602 | 220.0370 | 351.0803
1485.7114 | (98a) | | Solar heating
Solar heating | 0.0000 | 0.0000
on - total n | 0.0000
er vear (ki | 0.0000
Wh/vear) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Space heating | kWh
341.4981 | 253.8172 | 184.5673 | 54.6211 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 75.5602 | 220.0370 | 351.0803 | (98c) | | Space heating
Space heating | | t alter sola | ar contribu | tion - tota | ı per year (| (kwn/year) | | | | (98c) | / (4) = | 1485.7114
23.8515 | (99) | | | | | | | | | | | | | | | | | 9a. Energy re | | | | | | | | | | | | | | | Fraction of s
Fraction of s | pace heat fr | rom main sys | stem(s) | | m (Table 11) | | | | | | | 0.0000 | (202) | | Efficiency of
Efficiency of
Efficiency of | main space | heating sys | stem 2 (in 9 | b) | | | | | | | | 92.3000
0.0000
0.0000 | (207) | | Space heating | Jan
requirement | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating | 341.4981
efficiency | 253.8172
(main heati | ing system 1 | | 4.5302 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 75.5602 | 220.0370 | 351.0803 | | | Space heating | | | | 92.3000 | 92.3000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 92.3000 | 92.3000 | 92.3000 | | | Space heating | efficiency | | ing system 2 | | 4.9081 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 81.8637 | 238.3933 | 380.3687 | | | Space heating | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating | 0.0000
fuel (secor | 0.0000
ndary)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | . , | | Water heating
Water heating | requirement | : | | | | | | | | | | | | | Efficiency of | water heate | | 176.7038 | 156.8901 | 153.0196 | 138.9404 | 138.0915 | 143.1143 | 144.1336 | 159.4136 | 167.8365 | 185.7801
79.8000 | (216) | | (217)m
Fuel for wate | | 85.0102
Wh/month
195.1648 | 84.1576
209.9678 | 81.9448
191.4583 | 80.0332
191.1951 | 79.8000
174.1107 | 79.8000
173.0470 | 79.8000
179.3412 | 79.8000
180.6186 | 82.4884
193.2557 | 84.6680
198.2289 | 85.4645
217.3769 | | | Space cooling
(221)m | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Pumps and Fa
Lighting
Electricity g | 7.3041
19.1106 | 6.5973
15.3312 | 7.3041
13.8040 | 7.0685
10.1134 | 7.3041
7.8119 | 7.0685
6.3824 | 7.3041
7.1263 | 7.3041
9.2630 | 7.0685
12.0317 | 7.3041
15.7863 | 7.0685
17.8306 | 7.3041
19.6417 | (231) | | (233a)m
Electricity g | -21.2892 | -31.0349 | -46.1166 | -53.6723 | -59.4691 | -56.1057
(y) | -55.4350 | -51.5549 | -44.9629 | -36.3112 | -23.7709 | -18.2896 | (233a) | | (234a)m
Electricity g | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
ity) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234a) | | (235a)m
Electricity u | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
eneration) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | (235c)m
Electricity g | 0.0000
generated by | 0.0000
PVs (Append | 0.0000
lix M) (nega | 0.0000
ative quant | 0.0000
ity) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | (235c) | | (233b)m
Electricity g | -9.1125
generated by | -19.4417
wind turbin | -39.1457
nes (Appendi | -59.5300
ix M) (nega | -79.4240
tive quantit | ·γ) | | -66.6255 | -48.4011 | -28.0276 | -12.2401 | -7.1845 | | | (234b)m
Electricity g
(235b)m | 0.0000 | hydro-elect
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | (234b)
(235b) | | Electricity u | sed or net e | electricity | generated h | oy micro-CH | P (Appendix | N) (negati | ve if net g | eneration) | | | | | | SAP 10 Online 2.13.11 Page 6 of 7 | (235d)m
Annual totals
Space heating
Space heating
Space heating
Efficiency of
Water heating | fuel - main :
fuel - main :
fuel - secon
water heater | system 1
system 2
dary | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
1609.6548
0.0000
0.0000
79.8000
2323.4590 | (211)
(213)
(215) | |---|--
------------------------------|--------|------------|--------------|--------|--------|------------------------------------|-------------|-------------------|--------|---|-------------------------| | Space cooling | fuel | | | | | | | | | | | 0.0000 | (221) | | Electricity for
Total electric
Electricity for | city for the | above, kWh/y | | L) | | | | | | | | 86.0000
154.2331 | | | Energy saving,
PV generation
Wind generation
Hydro-electric
Electricity ge
Appendix Q - s | on
c generation
enerated - Mic | (Appendix N)
cro CHP (App | | M ,N and (| 2) | | | | | | | -1026.2798
0.0000
0.0000
0.0000 | (234)
(235a) | | Energy saved of
Energy used
Total delivere | or generated | | | | | | | | | | | -0.0000
0.0000
3147.0672 | (237) | | 12a. Carbon di | | | | | including mi | | | | | | | | | | | | | | | | | | Energy | Fmissio | n factor | | Emissions | | | Space heating
Total CO2 asso | | | stems | | | | | kWh/year
1609.6548 | kg | CO2/kWh
0.2100 | k | g CO2/year
338.0275
0.0000 | | | Water heating | | | | | | | | 2323.4590 | | 0.2100 | | 487.9264 | | | Space and wate
Pumps, fans ar
Energy for lig | nd electric k | eep-hot | | | | | | 86.0000
154.2331 | | 0.1387
0.1443 | | 825.9539
11.9293
22.2606 | (267) | | Energy saving
PV Unit electr
PV Unit electr
Total
Total CO2, kg/
EPC Target Car | ricity used in
ricity exports
/year | n dwelling
ed | | | | | | -498.0124
-528.2674 | | 0.1339
0.1255 | | -66.6712
-66.3173
-132.9885
727.1553
11.6700 | (272) | | 13a. Primary e | imarv energ | v factor | Prim | arv energy | | | Space heating
Total CO2 asso | | | stems | | | | | Energy Pr
kWh/year
1609.6548 | kg | CO2/kWh
1.1300 | LLIM | kWh/year
1818.9100
0.0000 | (2/3) | | Water heating | (other fuel) | | | | | | | 2323.4590 | | 1.1300 | | 2625.5087 | (278) | | Space and wate
Pumps, fans ar
Energy for lig | nd electric k | eep-hot | | | | | | 86.0000
154.2331 | | 1.5128
1.5338 | | 4444.4187
130.1008
236.5679 | (281) | | Energy saving
PV Unit electr
PV Unit electr
Total
Total Primary
Target Primary | ricity used in
ricity exporte
energy kWh/ye | n dwelling
ed
ear | | | | | | -498.0124
-528.2674 | | 1.4947
0.4608 | | -744.3976
-243.4215
-987.8191
3823.2683
61.3800 | (286) | SAP 10 Online 2.13.11 Page 7 of 7 | Dwelling Address | Unit 1, Highland Square , Bristol | |------------------------------|-----------------------------------| | Report Date | 05/03/2024 | | Property Type | Flat, Semi-Detached | | Floor Area [m ²] | 62 | This document is not an Energy Performance Certificat EPC) s required by the Energy Performance of Buildings Reg io SAP 10 Online 2.13.11 Page 1 of 4 #### Breakdown of property's energy performance Each feature is assessed as one of the following: | Very Poor | Poor | Average | Good | Very Good | |-----------------------|---|--------------------|------|-------------------| | | | | | | | Feature | Description | | | gy
Performance | | Walls | Average thermal transmi | ttance 0.18 W/m²K | | Very Good | | Roof | Average thermal transmi | ttance 0.11 W/m²K | | Very Good | | Floor | Average thermal transmi | ttance 0.18 W/m²K | | Very Good | | Windows | High performance glazing | | | Good | | Main heating | Air source heat pump, radiators, electric | | | Average | | Main heating controls | Time and temperature z contro | | | Very Good | | Secondary heating | None | | | | | Hot water | From main sys m | | | Average | | Lighting | Good ligh g efficien | | | Good | | Air tightness | Air perme 50] = | 4.5 h.m² (assumed) | | Good | #### Primary Energy use The primary energy use for this property per year is 45 kilowatt hour (kWh) per square metre #### Estim ted CO₂ missions of the dwelling The estimated ing provides an indication of the dwelling's impact on the environment in terms of carbon dioxide emissions; the higher the rating the less impact it has on the environment. The estimated CO emissions for this dwellings is: 0.3 per year SAP 10 Online 2.13.11 Page 2 of 4 With the recommended measures the potential CO emissions could be: (per year #### Recommendations The recommended measures provided below will help to improve the energy efficiency of the dwelli To reach the dwelling's potential energy rating all of the recommended measures shown would d to be installed. Having these measures installed individually or in any other order may give a different result omp d with the cumulative potential rating. | Recommended measure | Typical | Potential Rati | C ulative | Cumulative | |---------------------|---------|----------------|------------|------------| | | Yearly | after | avings | Potential | | | Saving | measure insta | (per year) | Rating | #### Estimated energy use and potential aving Estimated energy cost for this property over a year £457 Over a year you could save £0 The estimated cost and saving how how much the average hou ld would spend in this property heating, lighting and hot water. It not based on how e is used by the people living at the pr Containg the ssessor and the accreditation scheme | Assessor contact details | | | | |---------------------------------|--|--|--| | Assessor name | | | | | Assessor's accreditation number | | | | | Email Address | | | | SAP 10 Online 2.13.11 Page 3 of 4 | Accreditation scheme contact details | | | | |--|--|--|--| | Accreditation scheme Elmhurst Energy Systems Ltd | | | | | Telephone | | | | | Email Address | | | | | Assessment details | | | | |--------------------------|---------------|--|--| | Related party disclosure | No related pa | | | | Date of assessment | 05/03/202 | | | | Date of certificate | 05/03/202 | | | | Type of assessment | SAP w dwellin | | | #### **Building Regulations England Part L (BREL) Compliance Report** Approved Document L1 2021 Edition, England assessed by Array SAP 10 program, Array Date: Tue 05 Mar 2024 08:41:59 | Project Information | | | | | |---------------------|------------|-----------------|---------------------|--| | Assessed By | | Building Type | Flat, Semi-detached | | | OCDEA Registration | EES/025661 | Assessment Date | 2024-03-05 | | | Dwelling Details | | | | | |------------------|--------------------------------|------------------|-------------------|--| | Assessment Type | As designed | Total Floor Area | 62 m ² | | | Site Reference | Unit 3 | Plot Reference | PV | | | Address | Unit 1 Highland Square, Bristo | ol | | | | Client Details | | |----------------|---| | Name | Tebby & Son | | Company | SF Tebby & Son | | Address | Unit 11 Avon Gorge Industrial Estate , Bristol, BS2 9XX | This report covers items included within the SAP calculations. It is not a complete report of regulations compliance. | 1a Target emission rate and dwelling emission | rate | | | | |--|---|----|--|--| | Fuel for main heating system | Electricity | | | | | Target carbon dioxide emission rate | 11.67 kgCO ₂ /m ² | | | | | Dwelling carbon dioxide emission rate | 2.88 kgCO ₂ /m ² | OK | | | | 1b Target primary energy rate and dwelling primary energy | | | | | | Target primary energy | 61.38 kWh _{PE} /m ² | | | | | Dwelling primary energy | 34.3 kWh _{PE} /m ² | OK | | | | 1c Target fabric energy efficiency and dwelling fabric energy efficiency | | | | | | Target fabric energy efficiency 31.9 kWh/m ² | | | | | | Dwelling fabric energy efficiency | 30.8 kWh/m ² | OK | | | | 2a Fabric U-values | | | | | | |----------------------------------|---|----------------------------------|---|-----|--| | Element | Maximum permitted average U-Value [W/m²K] | Dwelling average U-Value [W/m²K] | Element with highest individual U-Value | | | | External walls | 0.26 | 0.18 | Walls (1) (0.18) | OK | | | Party walls | 0.2 | 0 | Party Wall (1) (0) | N/A | | | Curtain walls | 1.6 | 0 | N/A | N/A | | | Floors | 0.18 | 0.18 | Exposed Floor (0.18) | OK | | | Roofs | 0.16 | 0.11 | Roof (1) (0.11) | OK | | | Windows, doors, and roof windows | 1.6 | 1.31 | W01 (1.31) | OK | | | Rooflights | 2.2 | N/A | N/A | N/A | | | 2b Envelope elements (better than typically expected values are flagged with a subsequent (!)) | | | | | |--|----------------------------|------------------------------|--|--| | Name | Net area [m ²] | U-Value [W/m ² K] | | | | Exposed wall: Walls (1) | 22.43 | 0.18 | | | | Party wall: Party Wall (1) | 95.62 | 0 (!) | | | | Party floor: Exposed Floor, Exposed Floor | 7.88 | 0.18 | | | | Exposed roof: Roof (1) | 38.16 | 0.11 | | | | 2c Openings (better than typically expected values are flagged with a subsequent (!)) | | | | | | |---|------------------------|-------------|--------------|------------------------------|--| | Name | Area [m ²] | Orientation | Frame factor | U-Value [W/m ² K] | | | W01, Windows | 2.26 | North East | 0.7 | 1.31 | | | W02, Windows | 2.26 | North East | 0.7 | 1.31 | | | W03, Windows | 2.26 | North East | 0.7 | 1.31 | | | W04, Windows | 2.25 | North East | 0.7 | 1.31 | | | W05, Windows | 2.24 | North East | 0.7 | 1.31 | | | 2d Thermal brid | 2d Thermal bridging (better than typically expected values are flagged with a subsequent (!)) | | | | | | | | | | | | |---
---|--------------------------------|---------------------|---------------------|--|--|--|--|--|--|--|--| | Building part 1 - Main Dwelling: Thermal bridging calculated from linear thermal transmittances for each junction | | | | | | | | | | | | | | Main element | Junction detail | Source | Psi value
[W/mK] | Drawing / reference | | | | | | | | | | External wall | E2: Other lintels (including other steel lintels) | Not government-approved scheme | 0.023 (!) | | | | | | | | | | | Main element | Junction detail | Source | Psi value
[W/mK] | Drawing / reference | |---------------|---|--|---------------------|---------------------| | External wall | E3: Sill | Calculated by person with suitable expertise | 0.021 (!) | | | External wall | E4: Jamb | Calculated by person with suitable expertise | 0.016 (!) | | | External wall | E20: Exposed floor (normal) | Calculated by person with suitable expertise | 0.116 | | | External wall | E7: Party floor between dwellings (in blocks of flats) | Calculated by person with suitable expertise | 0.038 (!) | | | Party wall | P7: Exposed floor (normal) | Calculated by person with suitable expertise | 0.185 | | | Party wall | P3: Intermediate floor between dwellings (in blocks of flats) | SAP table default | 0 (!) | | | External wall | E16: Corner (normal) | Calculated by person with suitable expertise | 0.043 | | | External wall | E25: Staggered party wall between dwellings | Calculated by person with suitable expertise | 0.036 (!) | | | External wall | E18: Party wall between dwellings | Calculated by person with suitable expertise | 0.046 | | | External wall | E21: Exposed floor (inverted) | SAP table default | 0.32 | | | Party wall | P5: Roof (insulation at rafter level) | Calculated by person with suitable expertise | 0.101 | Calculate | | External wall | E24: Eaves (insulation at ceiling level - inverted) | SAP table default | 0.15 | | | 3 Air permeability (better than typically expected values are flagged with a subsequent (!)) | | | | | | | | | |--|--|----|--|--|--|--|--|--| | Maximum permitted air permeability at 50Pa | 8 m ³ /hm ² | | | | | | | | | Dwelling air permeability at 50Pa | 4.5 m ³ /hm ² , Design value | OK | | | | | | | | Air permeability test certificate reference | | | | | | | | | | 4 Space heating | | |--------------------------------------|---| | Main heating system 1: Heat pump wit | h radiators or underfloor heating - Electricity | | Efficiency | 231.7% | | Emitter type | Radiators | | Flow temperature | 55°C | | System type | Heat Pump | | Manufacturer | Atlantic | | Model | Logic Air 8kW | | Commissioning | | | Secondary heating system: N/A | | | Fuel | N/A | | Efficiency | N/A | | Commissioning | | | 5 Hot water | | | | | | | | |--------------------------------------|--------------|--|--|--|--|--|--| | Cylinder/store - type: Cylinder | | | | | | | | | Capacity | 150 litres | | | | | | | | Declared heat loss | 2.09 kWh/day | | | | | | | | Primary pipework insulated | Yes | | | | | | | | Manufacturer | | | | | | | | | Model | | | | | | | | | Commissioning | | | | | | | | | Waste water heat recovery system 1 - | type: N/A | | | | | | | | Efficiency | | | | | | | | | Manufacturer | | | | | | | | | Model | | | | | | | | | 6 Controls | | | | | | | | | | |---|--|--|--|--|--|--|--|--|--| | Main heating 1 - type: Time and temperature zone control by arrangement of plumbing and electrical services | | | | | | | | | | | Function | | | | | | | | | | | Ecodesign class | | | | | | | | | | | Manufacturer | | | | | | | | | | | Model | | | | | | | | | | | Water heating - type: Cylinder thermosta | at and HW saparately | timed | | |--|------------------------|--|-----| | Manufacturer | l and nivi separately | timed | | | Model | | | | | | | | | | 7 Lighting | | | | | Minimum permitted light source efficacy | 75 lm/W | | | | Lowest light source efficacy | 80 lm/W | | OK | | External lights control | N/A | | | | 8 Mechanical ventilation | | | | | System type: N/A | | | | | Maximum permitted specific fan power | N/A | | | | Specific fan power | N/A | | N/A | | Minimum permitted heat recovery | N/A | | | | efficiency | | | | | Heat recovery efficiency | N/A | | N/A | | Manufacturer/Model | | | | | Commissioning | | | | | 9 Local generation | | | | | Technology type: Photovoltaic system | (1) | | | | Peak power | 1.045 kWp | | | | Orientation | South West | | | | Pitch | 45° | | | | Overshading | None or very little | | | | Manufacturer | Trono or vory maio | | | | MCS certificate | | | | | | | | | | 10 Heat networks | | | | | N/A | | | | | 11 Supporting documentary evidence | | | | | N/A | | | | | 12 Declarations | | | | | a. Assessor Declaration | | | | | | nfirmation that the co | ontents of this BREL Compliance Report | | | | | of this BREE compliance Report of the street | | | | | and that the supporting documentary | | | evidence (SAP Conventions, Appendi | | | | | documentary evidence required) has | | | | | Compliance Report. | been reviewed in the | course or preparing this bitch | | | Соттриансе ттерогт. | | | | | | | | | | Signed: | | Assessor ID: | | | - 3 | | | | | | | | | | Name: | | Date: | | | | | | | | b. Client Declaration | | | | | N/A | | | | | Property Reference | Unit 3 | | | | | | | Issued | on Date | 05/0 | 3/2024 | ļ | |------------------------------------|---------------------------------|---------------|--|---|---|---------|---------------|--|---|----------------|--|----------------------------| | Assessment Reference | PV | | | | Prop 1 | Type R | lef | Tebby ar | nd Son G | arage | | | | Property | Unit 1, Hi | ghland Square | , Bristol | | | | | | | | | | | SAP Rating | | | 83 B | DER | | 2.88 | | 1 | ΓER | 1 | 1.67 | | | Environmental | | | 98 A | % DER | < TER | | | | | 7 | 5.32 | | | CO ₂ Emissions (t/year) | | | 0.15 | DFEE | | 30.7 | 7 | 1 | TFEE . | 3 | 1.91 | | | Compliance Check | | | See BREL | % DFE | E < TFEE | | | | | 3 | .56 | | | % DPER < TPER | | | 44.11 | DPER | | 34.30 |) | 1 | [PER | 6 | 1.38 | | | Assessor Details | | | | | | | | , | Assessor | · ID U | 367-0 | 001 | | Client | | | | | | | | | | | | | | SUMMARY FOR INPU | T DATA FOR: | New Build (| As Designed) | | | | | | | | | | | Orientation | | | Southwest | | | | | | | | | | | Property Tenture | | | 1 | | | | | | | | | | | Transaction Type | | | 6 | | | | | | | | | | | Terrain Type | | | Urban | | | | | | | | | | | 1.0 Property Type | | | Flat, Semi-Detached | i | | | | | | | | | | Position of Flat | | | Top-floor flat | | | | | | | | | | | Which Floor | | | 1 | | | | | | | | | | | 2.0 Number of Storeys | | | 1 | | | | | | | | | | | 3.0 Date Built | | | 2024 | | | | | | | | | | | 3.0 Property Age Band | | | L | | | | | | | | | | | 4.0 Sheltered Sides | | | 3 | | | | | | | | | | | 5.0 Sunlight/Shade | | | Average or unknow | n | | | | | | | | | | 6.0 Thermal Mass Parame | ter | | Precise calculation | • | | | | | | | | | | Thermal Mass | | | N/A | | | | | k.
 J/m²K | | | | | 7.0 Electricity Tariff | | | Standard | | | | | | | | | | | Smart electricity meter f | itted | | No | | | | | | | | | | | Smart gas meter fitted | | | No | | | | | | | | | | | 7.0 Measurements | | | | | | | | | | | | | | | | | Baseme
Ground flo
1st Stor
2nd Stor
3rd Stor
4th Stor
5th Stor
7th Stor | nt:
or:
ey:
ey:
ey:
ey:
ey: | 0.00 m
15.24 m
0.00 m
0.00 m
0.00 m
0.00 m
0.00 m
0.00 m
0.00 m
0.00 m | | In | ternal Flo 0.00 n 62.29 i 0.00 n | 1 ²
11 ²
1 ²
1 ²
1 ²
1 ²
1 ² | Averag | 0.00
2.50
0.00
0.00
0.00
0.00
0.00
0.00 | m
m
m
m
m
m | | 8.0 Living Area | | | 23.99 | | | | | m |) ² | | | | | 9.0 External Walls Description | Type Co | onstruction | | U-Value | Kappa (| Gross I | Nett Area | Shelter | Shelter | Openin | gs Area | n Calculati | | Cavity Wall | Cavity Wall Ca | | ooard on dabs, dense block,
side structure | (W/m²K) | (kJ/m²K) Ar | | (m²)
22.43 | Res
0.00 | None | 11.27 | | Type
er Gross A | | 9.1 Party Walls | | | | | | | | | | | | | | Description | Туре | Constru | ction | | | | | Kappa
(kJ/m ² K) | Area
(m²) | Shelter
Res | S | helter | | Party Wall 1 | Filled Cavity v
Edge Sealing | | asterboard on both sid | les, dense | cellular blo | | 0.00 | 70.00 | 95.62 | 0.00 | ı | None | | 9.2 Internal Walls Description | | Construct | tion | | | | | | | Ka | ppa | Area (r | | Internal Wall 1 | | | ck, dense plaster | | | | | | | (kJ/ | m²K)
0.00 | 139.7 | | milemai vvali i | | Delise DIO | un, delise piastei | | | | | | | 10 | 0.00 | 138.7 | SAP 10 Online 2.13.11 Page 1 of 4 | Description | Туре | Construc | ction | | U-Value
(W/m²K)(| Kappa
kJ/m²K)A | | | a Code | Shelter
Factor | Calculatio | nOpenings | |---|--------------------------|-----------------------------|---------|--|---------------------|--------------------|----------------------|-----------------------|--------------------|---------------------|---------------------------|--------------------| | External Roof 1 | External Flat
Roof | Plasterbo | ard, in | sulated flat roof | 0.11 | 9.00 | 38.16 | (m ²)
38.1 | | 0.00 | Enter Gros
Area | s 0.00 | | 10.1 Party Ceilings | | | | | | | | | | | | | | Description | | Const | ructio | n | | | | | | | Kappa
(kJ/m²K) | Area (m²) | | Party Ceiling 1 | | Preca | st cond | rete planks floor, scree | d, carpeted | | | | | | 30.00 | 54.41 | | 11.0 Heat Loss Floors | | | | | | | | | | | | | | Description | Туре | Storey Inde | x | Construction | | | /alue
/m²K) | S | helter Code | | helter Kap
actor (kJ/m | pa Area(m²)
²K) | | Exposed Floor | Exposed Floor -
Solid | Lowest occu | pied | Other | | | .18 | | None | | 0.00 75.0 | | | 11.1 Party Floors | | | | | | | | | | | | | | Description | | Storey | Cons | truction | | | | | | | Kappa | Area (m²) | | Party Floor 1 | | Index
Lowest
occupied | | ast concrete planks floo | r, screed, carp | peted | | | | | (kJ/m²K)
30.00 | 54.41 | | 12.0 Opening Types | | | | | | | | | | | | | | Description | Data Source | Type | | Glazing | | Glazin | | | G-value | Frame | Frame
Factor | U Value
(W/m²K) | | Windows | Manufacturer | Window | | Double Low-E So | ft 0.05 | Gap | Typ
Air Fi | | 0.63 | Type
Wood | 0.70 | 1.31 | | 13.0 Openings | | | | | | | | | | | | | | Name | Opening Ty | /pe | | Location | | | ntation | | Area (| | | itch | | W01
W02 | Windows
Windows | | | Cavity Wall
Cavity Wall | | | h East
h East | | 2.20
2.20 | | | 0
0 | | W03 | Windows | | | Cavity Wall | | Nort | h East | | 2.20 | 6 | | 0 | | W04
W05 | Windows
Windows | | | Cavity Wall
Cavity Wall | | | h East
h East | | 2.2
2.2 | | | 0
0 | | 44.0.00================================ | | | | None | | | | | 7 | | | | | 14.0 Conservatory | | | | 100 | | | | | <u></u> % | | | | | 15.0 Draught Proofing | | | | | | | | | 70 | | | | | 16.0 Draught Lobby | | | L | No | | | | | | | | | | 17.0 Thermal Bridging | | | (| Calculate Bridges | | | | | | | | | | 17.1 List of Bridges | | | | | | | | | | | | | | Bridge Type
E2 Other lintels (include | ting other steel linte | ale) | | ce Type
Gov Approved Scheme: | Length
5.51 | Psi
0.02 | Adjus
0.0 | | Reference: | | | Imported
No | | E3 Sill | ang outer elect mile | ,,,, | Indep | endently assessed | 5.51 | 0.02 | 0.0 | 2 | | | | No | | E4 Jamb
E20 Exposed floor (no | rmal) | | | endently assessed
endently assessed | 20.84
2.89 | 0.02
0.12 | 0.0
0.1 | | | | | No
No | | E7 Party floor between | | s of flats) | | endently assessed | 28.37 | 0.12 | 0.0 | | | | | No | | P7 Party Wall - Expose | | . طبیعالنمیم | | endently assessed | 8.41 | 0.18 | 0.1 | | | | | No | | P3 Party wall - Interme
(in blocks of flats) | ediate floor betweer | n aweilings | lable | K1 - Default | 19.89 | 0.00 | 0.0 | U | | | | No | | È16 Comer (normal)
E25 Staggered party v | uall batusan duallin | | | endently assessed | 3.50 | 0.04
0.04 | 0.0 | | | | | No | | E18 Party wall betwee | | igs | Inder | endently assessed
endently assessed | 1.00
5.00 | 0.04 | 0.0 | | | | | No
No | | E21 Exposed floor (inv | | | | K1 - Default | 5.37 | 0.32 | 0.3 | | | | | No | | P5 Party wall - Roof (ii
E24 Eaves (insulation | | | | endently assessed
K1 - Default | 13.96
2.09 | 0.10
0.15 | 0.1
0.1 | | Calculate | | | No
No | | Y-value | | | (| 0.09 | | | | | W/m²K | | | | | 18.0 Pressure Testing | | | , | /es | | | | | | | | | | Designed AP₅₀ | | | | 1.50 | | | | | m³/(h.m² | ²) @ 50 F | Pa | | | Property Tested? | | | Ī | Yes | | | | | j ` | , 0 | | | | Test Method | | | Ī | Blower Door | | | | | Ī | | | | | 19.0 Mechanical Ventilat | ion | | | | | | | | | | | | | Mechanical Ventilation | | | | | | | | | | | | | | Mechanical Vent | ilation System Pres | ent | | No | | | | | | | | | | 20.0 Fans, Open Fireplac | es, Flues | | | | | | | | | | | | | 21.0 Fixed Cooling Syste | em | | | No | | | | | | | | | | 22.0 Lighting | | | | | | | | | | | | | | No Fixed Lighting | | | | No | | | | | | | | | | | | | | Name
Lighting 1 | Efficacy
80.00 | F | Power
15 | | Capa
120 | i city
00 | C | ount
5 | | | | | | - J | | | | | .20 | - | | | SAP 10 Online 2.13.11 Page 2 of 4 | 24.0 Main Heating 1 | Database | | |--|--|------------------------------------| | Percentage of Heat | 100.00 | % | | Database Ref. No. | 106764 | 70 | | Fuel Type | Electricity | | | SAP Code | 0 | | | In Winter | 231.75 | | | In Summer | 192.18 | | | Model Name | Logic Air 8kW | | | | | | | Manufacturer | Atlantic | | | System Type | Heat Pump | | | Controls SAP Code | 2207 | | | Delayed Start Stat | No | | | HETAS approved System | No | | | Oil Pump Inside | No | | | FI Case | 0.00 | | | Flue Type | None or Unknown | | | Fan Assisted Flue | No | | | Is MHS Pumped | Pump in heated space | | | Heating Pump Age | 2013 or later | | | Heat Emitter | Radiators | | | Flow Temperature | Enter value | | | Flow Temperature Value | 55.00 | | | Boiler Interlock | No | | | 25.0 Main Heating 2 | None | | | 26.0 Heat Networks | None | | | Heat Source Fuel Type Heating U | | trical Fuel Factor Efficiency type | | | Heat Power
Ratio | | | Heat source 1 None
Heat source 2 None | | | | Heat source 3 None
Heat source 4 None | | | | | | | | Heat source 5 None | | | | Heat source 5 None 28.0 Water Heating | | | | Heat source 5 None 28.0 Water Heating Water Heating | Main Heating 1 | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code | Main Heating 1 | | | Heat source 5 None 28.0 Water Heating Water Heating | | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code | 901
No
No | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 | 901
No | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 | 901
No
No | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 | 901
No
No | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System | 901 No No No No | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel | 901 No No No No No No | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day | 901 No No No No Yes | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste
Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day Summer Immersion | 901 No No No No No No No No No N | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day Summer Immersion Cold Water Source | 901 No No No No Yes No From header tank | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day Summer Immersion Cold Water Source Bath Count | 901 No No No No No No No From header tank 0 | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day Summer Immersion Cold Water Source Bath Count Supplementary Immersion | 901 No No No No No No From header tank 0 No | | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day Summer Immersion Cold Water Source Bath Count Supplementary Immersion Immersion Only Heating Hot Water | 901 No No No No No No Yes No From header tank 0 No No No From Peader tank 0 No No No No No No No No No | onnected Connected To | | Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day Summer Immersion Cold Water Source Bath Count Supplementary Immersion Immersion Only Heating Hot Water 28.1 Showers Description Shower Type | 901 No No No No No No From header tank 0 No No | onnected Connected To | SAP 10 Online 2.13.11 Page 3 of 4 | 29.0 Hot Water 0 | Cylinder | | | Hot Water | Cylinder | г | | | | | | | |--|------------------|----------------|-------------|--------------|-----------|--------------|------------|-------------|---------------|---------------|---------------------------------|-----------------------| | Cylinder Stat | | | | Yes | | | | | | | | | | Cylinder In H | eated Space | | | Yes | | | | | | | | | | Independent | Time Control | | | Yes | | | | | | | | | | Insulation Typ | pe | | | Measured | Loss | | | | | | | | | Cylinder Volu | ime | | | 150.00 | | | | | | L | | | | Loss | | | | 2.09 | | | | | | kWh/da | ay | | | Pipes insulati | ion | | | Fully insula | ated prin | nary pipewor | k | | | | | | | In Airing Cupl | board | | | No | | | | | | | | | | 31.0 Thermal Sto | ore | | | None | | | | | | | | | | 32.0 Photovoltai | ic Unit | | | One Dwelli | ing | | | | | | | | | Export Capab | ole Meter? | | | Yes | | | | | | | | | | Connected To | o Dwelling | | | No | | | | | | | | | | Diverter | | | | No | | | | | | | | | | Battery Capa | city [kWh] | | | 0.00 | | | | | | | | | | PV Cel | ls kWp | Orientation | Elevation | Overs | hading | FGHRS | MCS | Certificate | Over
Facto | shading
or | MCS
Certificate
Reference | Panel
Manufacturer | | 1.04 | | South West | 4 5° | None (| Or Little | No | No | | 1.00 | | Reference | | | 34.0 Small-scale | Hydro | | | None | | | | | | | | | | Electricity Ge | nerated | | | 0.00 | | | | | | | | | | Apportioned | | | | 0.00 | | | | | | kWh/Ye | еаг | | | Connected to | dwelling's elect | tricity meter | | Yes | | | | | | | | | | Electricity Ge | neration | | | Annual | | | | | | | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | A | ug | Sep | Oct | t Nov | Dec | | Recommendation Lower cost rown None Further mean | | /e even higher | standards | | | | | | | | | | | | | | T | ypical Cost | | Typical sav | ings per y | ear | SAP ra | | fter improvem | ent
mental Impact | | | Solar water | heating | | | | | | | 0
0 | y | LIIVIIOII | 0
0 | SAP 10 Online 2.13.11 Page 4 of 4 | Property Reference | | Uni | t 3 | | | | | | | Issued on Dat | te | 05/03/2024 | | |---|---|---|-------------------------|--------------------|------------------|-------------------------|----------------|-------------------------|---|--|-----------------------------------|---|--| | Assessment Refer | rence | PV | | | | | | Prop Type R | ef Te | ebby and Son (| Garage | | | | Property | | Uni | t 1, Highland | Square , Bristol | | | | | | | | | | | SAP Rating | | | | | 83 B | | DER | 2.8 | 8 | TER | | 11.67 | | | Environmental | | | | | 98 A | | % DER < TE | R | | | | 75.32 | | | CO ₂ Emissions (t/) | | | | | 0.15 | | DFEE | 30. | 77 | TFEE | | 31.91 | | | Compliance Check | k | | | | See BREL | | % DFEE < TI | | | | | 3.56 | | | % DPER < TPER | | | | | 44.11 | | DPER | 34. | 30 | TPER | | 61.38 | | | Assessor Details | | | | | | | | | | Asses | sor ID | U367-000 |)1 | | | | | | | | | | | | | | | | | SAP 10 WORKSHEET
CALCULATION OF D | WELLING EN | MISSIONS FOR | | | | 2022) | | | | | | | | | Ground floor
Total floor area
Dwelling volume | TFA = (1a | a) + (lb) + (lc) |)+(ld)+(le |)(ln) | 6 | 2.2900 | | Area
(m2)
62.2900 | | | 2b) = | | (1b) - (3
(4)
(5) | | 2. Ventilation r | ate | | | | | | | | | | 1 | m3 per hour | | | Number of open of
Number of open f
Number of chimne
Number of flues
Number of flues
Number of blocke
Number of interm
Number of passiv
Number of fluele | lues ys / flues attached t attached t d chimneys ittent ext e vents | to solid fue
to other hea
s
tract fans | el boiler | fire | | | | | | | 3 * 10 = | 0.0000
0.0000
0.0000
0.0000
0.0000
30.0000
0.0000 | (6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b) | | Infiltration due
Pressure test
Pressure Test Me
Measured/design
Infiltration rat
Number of sides | thod
AP50 | eys, flues a | and fans | = (6a)+(6b) | +(6c)+(6d)+(| 6e)+(6f)+ | (6g)+(7a)+ | (7b)+(7c) = | | | / (5) = | es per hour
0.1926
Yes
Blower Door
4.5000
0.4176 | (17) | | Shelter factor
Infiltration rat | e adjusted | d to include | e shelter : | factor | | | | | (20) = 1 - (2) | [0.075 x
1) = (18) x | | | | | Wind speed
Wind factor
Adj infilt rate | Jan
5.1000
1.2750 | | Mar
4.9000
1.2250 | | | Jun
3.8000
0.9500 | | Aug
3.7000
0.9250 | | Oct
4.3000
1.0750 | Nov
4.5000
1.1250 | | | | - | 0.4127 | | | 0.3560
0.5634 | 0.3480
0.5605 | | | 0.2994
0.5448 | | 0.3480
0.5605 | | | | | 3. Heat losses a | | | | | | | | | | | | | | | Element | | | | Gross
m2 | | Ne | tlres | II_value | AxI | J K- | value | A x K | | | Windows (Uw = 1.
Exposed Floor | 31) | | | me | ш | 11 | .2700
.8800 | 1.2448 | 14.028 | 6
4 75 | 0000 | 501 0000 | (27) | | Cavity Wall External Roof 1 | | | | 33.7000
38.1600 | 11.2700 | 22 | .4300
.1600 | 0.1800 | 14.0286
1.4184
4.0374
4.1976 | 4 150 | .0000 | 3364.5000 | (29a) | | Total net area o
Fabric heat loss
Party Wall 1
Party Floor 1
Party Ceiling 1
Internal Wall 1 | f external | | Aum (A, m2) | 30.1000 | | 79
95
54
54 | .7400 | | = 23.6820 | 70
70
40
30 | .0000 | 6693.4000
2176.4000
1632.3000 | (31)
(33)
(32)
(32d)
(32b) | | Heat capacity Cm | ı = Sum(A > | k k) | | | | | | (28) | (30) + (32) | | | | | | Thermal mass par
List of Thermal
K1 Eleme
E2 Other
E3 Sill
E4 Jamb
E20 Expo | eameter (The
Bridges
ent
lintels
esed floor | MP = Cm / The (including of (normal) | other stee | | ts) | | | I
5
5
20 | Length P:
5.5100
5.5100
0.8400
2.8900 | 0.0230
0.0230
0.0210
0.0160
0.1160
0.0380 | To
0.1:
0.1
0.3:
0.3: | 461.9689
tal
267
157
334
352 | | SAP 10 Online 2.13.11 Page 1 of 7 | P3 Part
E16 Cor
E25 Sta
E18 Par
E21 Exp
P5 Part | y wall - I
rner (norma
aggered par
rty wall be
cosed floor
ry wall - R
res (insula
6 (Sum(L x
oridges | ntermediate 1) ty wall bet tween dwell (inverted) oof (insulation at cen | tween dwelli
lings
)
ation at raf
iling level | ngs
(ter level)
- inverted | | ks of flats | 3) | 19.
3.
1.
5.
5. | 4100
8900
5000
0000
0000
3700
9600
0940 | 0.1850
0.0000
0.0430
0.0360
0.0460
0.3200
0.1010
0.1500 | 1.55
0.00
0.15
0.03
0.23
1.71
1.41
0.31 | 000
005
060
000
84 | | |---|---|--|---|----------------------------------|--------------------------------|-----------------------|---------------------------|-------------------------------
--|--|--|--------------------------------|-------| | Ventilation hea | | culated mor | nthly (38)m | = 0.33 x (| 25)m x (5) | | | | | | | | (=-, | | (38) m | Jan
30.0707 | Feb
29.9008 | Mar
29.7342 | Apr
28.9519 | May
28.8055 | Jun
28.1241 | Jul
28.1241 | Aug
27.9979 | Sep
28.3866 | Oct
28.8055 | Nov
29.1016 | Dec
29.4112 | (38) | | Heat transfer c
Average = Sum(3 | 61.1567 | 60.9868 | 60.8202 | 60.0379 | 59.8915 | 59.2101 | 59.2101 | 59.0839 | 59.4726 | 59.8915 | 60.1876 | 60.4972
60.0372 | (39) | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | HLP (average) | 0.9818 | 0.9791 | 0.9764
31 | 0.9638 | 0.9615 | 0.9506 | 0.9506 | 0.9485 | 0.9548 | 0.9615 | 0.9662 | 0.9712
0.9638
31 | (40) | | Days in mont | 21 | 26 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | | | | | | | | | | | | | | | | | | 4. Water heatin | | | s (kWh/year) | | | | | | | | | | | | Assumed occupan
Hot water usage | | showers | | | | | | | | | | 2.0456 | (42) | | Hot water usage | | | 70.4608 | 67.9189 | 65.6414 | 62.4552 | 59.9352 | 62.8813 | 64.3630 | 67.5188 | 70.8052 | 73.1683 | | | Hot water usage | 0.0000
for other
35.5788 | 0.0000
uses
34.2851 | 0.0000
32.9913 | 0.0000
31.6975 | 0.0000
30.4037 | 0.0000 | 0.0000
29.1100 | 0.0000
30.4037 | 0.0000
31.6975 | 0.0000
32.9913 | 0.0000
34.2851 | 0.0000
35.5788 | | | Average daily h | | | | 31.0373 | 30.4037 | 23.1100 | 23.1100 | 30.4037 | 31.0373 | 52.5515 | 04.2001 | 99.8608 | | | Daily hot water | Jan
use | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Energy conte | | 106.3982
140.7863 | 103.4521
147.8309 | 99.6164
130.1239 | 96.0451
123.7639 | 91.5652
105.8921 | 89.0451
98.3975 | 93.2850
109.7981 | 96.0605
111.4254 | 100.5101
129.5174 | 105.0903 | 108.7471
159.7032 | | | Energy content
Distribution lo | | = 0.15 x (4 | 45)m
22.1746 | 19.5186 | 18.5646 | 15.8838 | 14.7596 | 16.4697 | 16.7138 | 19.4276 | um(45)m = 21.3050 | 1559.4635
23.9555 | (46) | | Water storage 1
Store volume | | | | | | | | | | | | 150.0000 | | | a) If manufact
Temperature f
Enter (49) or (
Total storage 1 | actor from
(54) in (55 | Table 2b | actor is kno | own (kWh/d | ay): | | | | | | | 2.0900
0.5400
1.1286 | (49) | | If cylinder con | 34.9866 | 31.6008
cated solar | 34.9866
r storage | 33.8580 | 34.9866 | 33.8580 | 34.9866 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | (56) | | Primary loss | 34.9866
23.2624 | 31.6008
21.0112 | 34.9866
23.2624 | 33.8580
22.5120 | 34.9866
23.2624 | 33.8580
22.5120 | 34.9866
23.2624 | 34.9866
23.2624 | 33.8580
22.5120 | 34.9866
23.2624 | 33.8580
22.5120 | 34.9866
23.2624 | (59) | | Combi loss
Total heat requ | | | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | WWHRS
PV diverter | 218.4408
0.0000
-0.0000 | 0.0000
-0.0000 | 206.0799
0.0000
-0.0000 | 0.0000
-0.0000 | 182.0129
0.0000
-0.0000 | 0.0000
-0.0000 | 0.0000
-0.0000 | 168.0471
0.0000
-0.0000 | 0.0000
-0.0000 | 187.7664
0.0000
-0.0000 | 198.4030
0.0000
-0.0000 | 217.9522
0.0000
-0.0000 | (63a) | | Solar input
FGHRS | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (63c) | | Output from w/h | 1
218.4408 | 193.3983 | 206.0799 | 186.4939 | 182.0129 | 162.2621 | 156.6465 | 168.0471 | | | | 217.9522 | | | 12Total per yea
Electric shower | | r) | | | | | | TOTAL PE | er year (kwi | h/year) = Si | um(64)m = | 2245.2985
2245 | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000
Tot | 0.0000
al Energy us | 0.0000
ed by insta | 0.0000
antaneous e | 0.0000
lectric show | 0.0000
ver(s) (kWh | 0.0000
/year) = Sur | 0.0000
m(64a)m = | 0.0000 | | | Heat gains from | | | | 88.3622 | 87.7507 | 80.3051 | 79.3164 | 83.1071 | 82.1450 | 89.6637 | 92.3220 | 99.7005 | (65) | | | | | | | | | | | | | | | | | 5. Internal gai | ns (see Ta | ble 5 and 5 | 5a) | | | | | | | | | | | | Metabolic gains | (Table 5) | , Watts | Mar | | | | | Aug | Sep | Oct | Nov | Dec | | | (66)m
Lighting gains | 102.2793 | 102.2793 | 102.2793 | 102.2793 | 102.2793 | 102.2793 | 102.2793 | 102.2793 | 102.2793 | 102.2793 | | | (66) | | Appliances gain | s (calcula | ted in Appe | endix L, equ | ation L13 | 91.9748
or Ll3a), al | so see Tabl | le 5 | | 95.0407 | 91.9748 | 95.0407 | 91.9748 | | | Cooking gains (| calculated | in Appendi | ix L, equati | on L15 or | | see Table 5 | 5 | | | | | 170.7992 | | | Pumps, fans
Losses e.g. eva | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 33.2279
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 33.2279
0.0000 | 33.2279
0.0000 | | | | -81.8234 | -81.8234 | | | -81.8234 | -81.8234 | -81.8234 | -81.8234 | -81.8234 | -81.8234 | -81.8234 | -81.8234 | (71) | | Total internal | 134.2244 | 132.2932 | 128.7002 | 122.7253 | 117.9445 | 111.5349 | 106.6080 | 111.7031 | 114.0902 | 120.5158 | 128.2250 | 134.0060 | (72) | | | | 468.3437 | 450.2238 | 437.3676 | 416.9645 | 401.8195 | 385.9428 | 389.1837 | 399.3091 | 412.6159 | 435.9474 | 450.4639 | (73) | | | | | | | | | | | | | | | | | 6. Solar gains | | | | | | | | | | | | | | | [Jan] | | | | rea
m2 | Solar flux
Table 6a
W/m2 | Specif | g
fic data
Table 6b | Specific
or Tabl | FF
data
le 6c | Acces
facto
Table | or | Gains
W | | | Northeast | | | 11.27 | 700 | 11.2829 | | 0.6300 | 0. | | 0.77 | | 38.8614 | (75) | | Solar gains | | | | | | | | | 173.6619 | 96.6707 | 48.8977 | 31.7361 | (83) | | Total gains | 497.4276 | 547.4471 | 592.7430 | 671.4251 | 731.5837 | 737.2369 | 699.7189 | 639.3296 | 572.9710 | 509.2866 | 484.8451 | 482.2001 | | SAP 10 Online 2.13.11 Page 2 of 7 | 7. Mean intern | | | | | | | | | | | | 21 0000 | (OE) | |--
--|--|--|--|---
--|--|---|--|--|---|---|--| | Temperature du
Utilisation fa | | | | | | Jun | Jul | Aug. | Sep | Oct | Nov | 21.0000
Dec | (85) | | tau
alpha
util living ar | 130.7027
9.7135 | 131.0669
9.7378 | 131.4258
9.7617 | 133.1384
9.8759 | 133.4638
9.8976 | 134.9997
10.0000 | 134.9997
10.0000 | Aug
135.2880
10.0192 | 134.4039
9.9603 | 133.4638
9.8976 | 132.8072
9.8538 | 132.1276
9.8085 | | | uoii iiving ui | 0.9995 | 0.9985 | 0.9931 | 0.9395 | 0.7485 | 0.5137 | 0.3723 | 0.4251 | 0.7087 | 0.9720 | 0.9980 | 0.9996 | (86) | | Living
Non living
24 / 16
24 / 9 | 20.4499
19.4667
0
3 | 20.5430
19.5876
0 | 20.6921
19.7779
0 | 20.8994
20.0289
0 | 20.9901
20.1102
0 | 20.9998
20.1247
0
0 | 21.0000
20.1247
0 | 21.0000
20.1264
0 | 20.9955
20.1195
0 | 20.8655
19.9997
0
0 | 20.6292
19.7069
0 | 20.4385
19.4596
0 | | | 16 / 9
MIT
Th 2 | 28
20.7186
20.0985 | 0
20.5430
20.1008 | 20.6921
20.1030 | 0
20.8994
20.1136 | 20.9901
20.1155 | 0
20.9998
20.1247 | 21.0000
20.1247 | 0
21.0000
20.1264 | 0
20.9955
20.1212 | 0
20.8655
20.1155 | 20.6292
20.1116 | 20.5171
20.1074 | | | util rest of h MIT 2 Living area fr | 0.9992
19.8466 | 0.9976
19.5876 | 0.9888
19.7779 | 0.9093
20.0289 | 0.6835
20.1102 | 0.4436
20.1247 | 0.2983
20.1247 | 0.3444
20.1264 | 0.6228
20.1195
fLA = | 0.9505
19.9997
Living area | 0.9966
19.7069 | 0.9994
19.5763
0.3851 | (90) | | MIT
Temperature ad | 20.1824 | 19.9556 | 20.1300 | 20.3642 | 20.4490 | 20.4617 | 20.4618 | 20.4629 | 20.4569 | 20.3332 | 20.0621 | 19.9386 | | | adjusted MIT | 20.1824 | 19.9556 | 20.1300 | 20.3642 | 20.4490 | 20.4617 | 20.4618 | 20.4629 | 20.4569 | 20.3332 | 20.0621 | 19.9386 | (93) | | | | | | | | | | | | | | | | | 8. Space heati | ng require | nent | | | | | | | | | | | | | Utilisation
Useful gains
Ext temp. | 4.3000 | Feb
0.9974
546.0045
4.9000 | Mar
0.9889
586.1736
6.5000 | Apr
0.9189
616.9694
8.9000 | May
0.7086
518.3787
11.7000 | Jun
0.4706
346.9731
14.6000 | Jul
0.3268
228.6571
16.6000 | Aug
0.3755
240.0418
16.4000 | Sep
0.6562
375.9925
14.1000 | Oct
0.9569
487.3503
10.6000 | Nov
0.9965
483.1445
7.1000 | Dec
0.9994
481.8990
4.2000 | (95) | | Heat loss rate | 971.3182 | 918.1905 | 828.9780 | 688.2849 | 523.9933 | 347.0713 | 228.6592 | 240.0500 | 378.0593 | 582.9339 | 780.1574 | 952.1428 | (97) | | Space heating
Space heating
Solar heating | 352.8461
requirement | | 180.6465
er year (kW | 51.3471
h/year) | 4.1773 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 71.1142 | 213.8493 | 349.8614
1473.9509 | (98a) | | Solar heating
Space heating | 0.0000
contribution | 0.0000
on - total p | 0.0000
per year (k | 0.0000
Wh/year) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Space heating
Space heating | 352.8461
requirement | 250.1090
t after sol | | 51.3471
tion - total | 4.1773
per year | 0.0000
(kWh/year) | 0.0000 | 0.0000 | 0.0000 | 71.1142
(98c) | 213.8493 | 349.8614
1473.9509
23.6627 | | | | | | | | | | | | | | | | | | 9a. Energy req | ni remente | | l heating e | | uding micr | | | | | | | | | | Fraction of sp | | | | | | | | | | | | 0.0000 | (201) | | Fraction of sp | | | | | . , | -, | | | | | | | \/ | | Efficiency of
Efficiency of
Efficiency of | main space | heating sys | stem 1 (in
stem 2 (in | %) | | | | | | | | 1.0000
231.7456
0.0000
0.0000 | (206)
(207) | | Efficiency of
Efficiency of | main space
secondary/s | heating system
heating system
supplementar | stem 1 (in
stem 2
(in | %) | May | Jun | Jul | Aug | Sep | Oct | Nov | 231.7456
0.0000 | (206)
(207) | | Efficiency of
Efficiency of
Space heating | main space
secondary/s
Jan
requirement
352.8461 | heating system
heating system
supplementar
Feb
t
250.1090 | stem 1 (in
stem 2 (in
ry heating
Mar
180.6465 | %)
system, %
Apr
51.3471 | May
4.1773 | Jun
0.0000 | Jul
0.0000 | Aug
0.0000 | Sep
0.0000 | Oct
71.1142 | Nov
213.8493 | 231.7456
0.0000
0.0000 | (206)
(207)
(208) | | Efficiency of
Efficiency of
Space heating
Space heating | Jan
requirement
352.8461
efficiency
231.7456 | heating symbol heatin | stem 1 (in
stem 2 (in
ry heating
Mar
180.6465
ing system
231.7456 | %)
system, %
Apr
51.3471
1) | - | | | _ | _ | | | 231.7456
0.0000
0.0000
Dec | (206)
(207)
(208)
(98) | | Efficiency of
Efficiency of
Space heating
Space heating
Space heating | main space
secondary/s
Jan
requirement
352.8461
efficiency
231.7456
fuel (main
152.2558 | heating symbol heatin | stem 1 (in stem 2 (in ry heating | %)
system, %
Apr
51.3471
1)
231.7456
22.1567 | 4.1773 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 71.1142 | 213.8493 | 231.7456
0.0000
0.0000
Dec
349.8614 | (206)
(207)
(208)
(98)
(210) | | Efficiency of
Efficiency of
Space heating
Space heating | main space
secondary/s
Jan
requirement
352.8461
efficiency
231.7456
fuel (main
152.2558
efficiency
0.0000 | heating symbol heatin | stem 1 (in stem 2 (in ry heating Mar 180.6465 ing system 231.7456 stem) 77.9503 ing system 0.0000 | %)
system, %
Apr
51.3471
1)
231.7456
22.1567 | 4.1773
231.7456 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 71.1142
231.7456 | 213.8493
231.7456 | 231.7456
0.0000
0.0000
Dec
349.8614
231.7456 | (206)
(207)
(208)
(98)
(210)
(211) | | Efficiency of
Efficiency of
Space heating
Space heating
Space heating
Space heating | main space
secondary/s
Jan
requirement
352.8461
efficiency
231.7456
fuel (main
152.2558
efficiency
0.0000
fuel (main
0.0000
fuel (secondary) | heating symbol heating symbol heating symplementa: Feb t 250.1090 (main heat: 231.7456 heating symbol s | stem 1 (in stem 2 (in stem 2 (in ry heating | %) system, % Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 | 4.1773
231.7456
1.8025
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 71.1142
231.7456
30.6863
0.0000
0.0000 | 213.8493
231.7456
92.2776
0.0000
0.0000 | 231.7456
0.0000
0.0000
Dec
349.8614
231.7456
150.9679
0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213) | | Efficiency of
Efficiency of
Space heating
Space heating
Space heating
Space heating
Space heating
Space heating | main space
secondary/s
Jan
requirement
352.8461
efficiency
231.7456
fuel (main
152.2558
efficiency
0.0000
fuel (main
0.0000 | heating symbol heatin | stem 1 (in
stem 2 (in
ry heating
Mar
180.6465
ing system
231.7456
stem)
77.9503
ing system
0.0000
stem 2) | %) system, % Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 | 4.1773
231.7456
1.8025
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 71.1142
231.7456
30.6863
0.0000 | 213.8493
231.7456
92.2776
0.0000 | 231.7456
0.0000
0.0000
Dec
349.8614
231.7456
150.9679
0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213) | | Efficiency of
Efficiency of
Space heating
Space heating
Space heating
Space heating
Space heating | main space
secondary/s
Jan
requirement
352.8461
efficiency
231.7456
fuel (main
152.2558
efficiency
0.0000
fuel (main
0.0000
fuel (secon
0.0000 | heating synheating synheating synplementa: Feb 250.1090 (main heat: 231.7456 heating syn 107.9240 (main heat: 0.0000 heating syn 0.0000 dary) 0.0000 | stem 1 (in stem 2 (in stem 2 (in ry heating | %) system, % Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 | 4.1773
231.7456
1.8025
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 71.1142
231.7456
30.6863
0.0000
0.0000 | 213.8493
231.7456
92.2776
0.0000
0.0000 | 231.7456
0.0000
0.0000
Dec
349.8614
231.7456
150.9679
0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215) | | Efficiency of
Efficiency of
Space heating
Space heating
Space heating
Space heating
Space heating
Space heating
Water heating
Water heating
Efficiency of
(217)m | main space
secondary/s
Jan
requirement
352.8461
efficiency
231.7456
fuel (main
152.2558
efficiency
0.0000
fuel (main
0.0000
fuel (secon
0.0000
requirement
218.4408
water heate
192.1801 | heating symbol heatin | stem 1 (in stem 2 (in ry heating Mar 180.6465 ing system 231.7456 stem) 77.9503 ing system 0.0000 stem 2) 0.0000 c.0000 | %) system, % Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 0.0000 | 4.1773
231.7456
1.8025
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 71.1142
231.7456
30.6863
0.0000
0.0000 | 213.8493
231.7456
92.2776
0.0000
0.0000 | 231.7456
0.0000
0.0000
Dec
349.8614
231.7456
150.9679
0.0000
0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215) | | Efficiency of Efficiency of Efficiency of Space heating Space heating Space heating Space heating Space heating Space heating Water heating Water heating Efficiency of (217)m Fuel for water | main space
secondary/s Jan requirement 352.8461 efficiency 231.7456 fuel (main 152.2558 efficiency 0.0000 fuel (main 0.0000 fuel (secon 0.0000 requirement 218.4408 water heatt 192.1801 heating, 1 113.6647 | heating synheating synheating synheating synpplementaring synthesis (main heat: 231.7456 heating synthesis (main heat: 0.0000 0.00000 heating synthesis (main heat: 0.0000 0. | stem 1 (in stem 2 (in stem 2 (in ry heating Mar 180.6465 ing system 231.7456 stem) 77.9503 ing system 0.0000 stem 2) 0.0000 stem 2) 0.0000 100000 100000 100000 10000 10000 10000 100000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 1 | %) system, % Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 0.0000 | 4.1773
231.7456
1.8025
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 71.1142
231.7456
30.6863
0.0000
0.0000
0.0000 | 213.8493
231.7456
92.2776
0.0000
0.0000
0.0000 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217) | | Efficiency of Efficiency of Efficiency of Efficiency of Space heating Space heating Space heating Space heating Space heating Space heating Water heating Water heating Efficiency of (217)m Fuel for water Space cooling (221)m | main space
secondary/s
Jan
requirement
352.8461
efficiency
231.7456
fuel (main
152.2558
efficiency
0.0000
fuel (main
0.0000
requirement
218.4408
water heate
192.1801
heating, 1
113.6647
fuel requir
0.0000 | heating
synheating synheating synheating synpplementa: Feb 250.1090 (main heat: 231.7456 heating syn 107.9240 (main heat: 0.0000 heating syn 0.0000 to 193.3983 er 192.1801 kWh/month 100.6339 rement 0.0000 | stem 1 (in stem 2 (in stem 2 (in ry heating | %) system, % Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 0.0000 186.4939 192.1801 97.0412 0.0000 | 4.1773
231.7456
1.8025
0.0000
0.0000
0.0000
182.0129
192.1801
94.7096
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
162.2621
192.1801
84.4323
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
156.6465
192.1801
81.5103
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
168.0471
192.1801
87.4426
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000 | 71.1142
231.7456
30.6863
0.0000
0.0000
0.0000
187.7664
192.1801
97.7034
0.0000 | 213.8493
231.7456
92.2776
0.0000
0.0000
0.0000
198.4030
192.1801
103.2381
0.0000 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(219)
(221) | | Efficiency of Efficiency of Efficiency of Efficiency of Space heating Space heating Space heating Space heating Space heating Space heating Water heating Water heating Efficiency of (217) m Fuel for water Space cooling (221) m Pumps and Fa Lighting | main space secondary/s Jan requirement 352.8461 efficiency 231.7456 fuel (main 152.2558 efficiency 0.0000 fuel (secon 0.0000 fuel (secon 0.0000 requirement 218.4408 water heatt 192.1801 heating, 113.6647 fuel require 0.0000 0.0000 0.0000 0.01442 | heating symbol heating symbol heating symplementa: Feb t 250.1090 (main heat: 231.7456 heating symbol | stem 1 (in stem 2 (in stem 2 (in ry heating war l80.6465 ing system 231.7456 stem) 77.9503 ing system 0.0000 o.0000 stem 2) 0.0000 c.0000 l92.1801 l07.2327 0.0000 0.0000 l4.5507 | %) system, % Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 186.4939 192.1801 97.0412 0.0000 0.0000 10.6604 | 4.1773
231.7456
1.8025
0.0000
0.0000
0.0000
182.0129
192.1801
94.7096
0.0000
0.0000
0.2344 | 0.0000
0.0000
0.0000
0.0000
0.0000
162.2621
192.1801
84.4323
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
156.6465
192.1801
81.5103 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
168.0471
192.1801
87.4426 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116 | 71.1142
231.7456
30.6863
0.0000
0.0000
0.0000
187.7664
192.1801
97.7034 | 213.8493
231.7456
92.2776
0.0000
0.0000
0.0000
198.4030
192.1801
103.2381 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(219)
(221)
(231) | | Efficiency of Efficiency of Efficiency of Efficiency of Space heating Space heating Space heating Space heating Space heating Space heating Water heating Water heating Efficiency of (217)m Fuel for water Space cooling (221)m Pumps and Fa Lighting Electricity ge (233a)m | main space secondary/s Jan requirement 352.8461 efficiency 231.7456 fuel (main 152.2558 efficiency 0.0000 fuel (secondary (se | heating symbol heating symbol heating symplementa: Feb t 250.1090 (main heat: 231.7456 heating symbol | stem 1 (in stem 2 (in stem 2 (in ry heating mar law.6465 ing system 231.7456 stem) 77.9503 ing system 2.00000 co.0000 | %) system, % | 4.1773
231.7456
1.8025
0.0000
0.0000
0.0000
182.0129
192.1801
94.7096
0.0000
0.2000
8.2344 | 0.0000
0.0000
0.0000
0.0000
0.0000
162.2621
192.1801
84.4323
0.0000
6.7276 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
156.6465
192.1801
81.5103
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
168.0471
192.1801
87.4426
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000
0.0000 | 71.1142
231.7456
30.6863
0.0000
0.0000
187.7664
192.1801
97.7034
0.0000 | 213.8493
231.7456
92.2776
0.0000
0.0000
198.4030
192.1801
103.2381
0.0000
0.0000 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232) | | Efficiency of Efficiency of Efficiency of Efficiency of Space heating Space heating Space heating Space heating Space heating Space heating Water heating Water heating Efficiency of (217)m Fuel for water Space cooling (221)m Pumps and Fa Lighting Electricity ge | main space secondary/s Jan requirement 352.8461 efficiency 231.7456 fuel (main 152.2558 efficiency 0.0000 fuel (main 0.0000 fuel (secon 0.0000 requirement 218.4408 water heatt 192.1801 heating, 1; 113.6647 fuel requirement 113.6647 fuel requirement 200.0000 20.1442 uerated by -19.9262 | heating synheating synheating synheating synpplementa: Feb 250.1090 (main heat: 231.7456 heating sy: 107.9240 (main heat: 0.0000 heating sy: 0.0 | stem 1 (in stem 2 (in ry heating 2 (in ry heating Mar 180.6465 ing system 231.7456 stem) 77.9503 ing system 0.0000 0.0000 206.0799 192.1801 107.2327 0.0000 0.0000 14.5507 dix M) (neg -46.0646 nes (Append 0.0000 0.0000 1 | %) system, % | 4.1773 231.7456 1.8025 0.0000 0.0000 0.0000 182.0129 192.1801 94.7096 0.0000 0.0000 8.2344 1ty) -60.2298 zive quantii 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
162.2621
192.1801
84.4323
0.0000
0.0000
6.7276
-57.1594 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
156.6465
192.1801
81.5103
0.0000
0.0000
7.5117 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
168.0471
192.1801
87.4426
0.0000
0.0000
9.7640 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000
0.0000
12.6825 | 71.1142
231.7456
30.6863
0.0000
0.0000
0.0000
187.7664
192.1801
97.7034
0.0000
0.0000
16.6401 | 213.8493 231.7456 92.2776 0.0000 0.0000 198.4030 192.1801 103.2381 0.0000 0.0000 18.7950 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 0.0000 20.7040 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232)
(233a) | | Efficiency of Efficiency of Efficiency of Efficiency of Space heating Space heating Space heating Space heating Space heating Space heating Water heating Water heating Efficiency of (217)m Fuel for water Space cooling (221)m Pumps and Fa Lighting Electricity ge (233a)m Electricity ge (234a)m | main space secondary/s Jan requirement 352.8461 efficiency 231.7456 fuel (main 152.2558 efficiency 0.0000 fuel (main 0.0000 fuel (secon 0.0000 requirement 218.4408 water heate 192.1801 heating, 1 113.6647 fuel requirement 200000 20.1442 enerated by -19.9262 enerated by 0.0000 e | heating synheating synheating synheating synyplementa: Feb t 250.1090 (main heat: 231.7456 heating synheating synheatin | stem 1 (in stem 2 | %) system, % Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 186.4939 192.1801 97.0412 0.0000 10.6604 ative quanti -53.8770 ix M) (negat 0.0000 tors (Append 0.0000 by micro-CHF | 4.1773 231.7456 1.8025 0.0000 0.0000 0.0000 182.0129 192.1801 94.7096 0.0000 8.2344 tty) -60.2298 tive quanti 0.0000 gix M) (neg 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
162.2621
192.1801
84.4323
0.0000
6.7276
-57.1594
.ty)
0.0000
jative quant:
0.0000
(x)) (negatire quant: |
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
156.6465
192.1801
81.5103
0.0000
7.5117
-56.3107
0.0000
ity)
0.0000
ve if net gr | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
168.0471
192.1801
87.4426
0.0000
9.7640
-52.0310
0.0000
eneration) | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000
12.6825
-44.2184
0.0000
0.0000 | 71.1142 231.7456 30.6863 0.0000 0.0000 187.7664 192.1801 97.7034 0.0000 0.0000 16.6401 -35.0746 0.0000 0.0000 | 213.8493 231.7456 92.2776 0.0000 0.0000 198.4030 192.1801 103.2381 0.0000 0.0000 18.7950 -22.4734 0.0000 0.0000 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 0.0000 20.77040 -16.9844 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(217)
(219)
(221)
(231)
(232)
(233a)
(234a) | | Efficiency of Efficiency of Efficiency of Efficiency of Space heating Water heating Water heating Efficiency of (217)m Fuel for water Space cooling (221)m Pumps and Fa Lighting Electricity ge (233a)m Electricity ge (234a)m Electricity ge (235c)m Electricity us (235c)m Electricity ge Ele | main space secondary/s Jan requirement 352.8461 efficiency 231.7456 fuel (main 152.2558 efficiency 0.0000 fuel (main 0.0000 requirement 218.4408 water heating, 113.6647 fuel requirement 200.0000 conserved by 19.9262 enerated by 0.0000 0.00000 enerated by 0.0000 enerated by 0.0000 enerated by 0.0000 enera | heating synheating synheating synheating synphementa: Feb 250.1090 (main heat: 231.7456 heating syn 107.9240 (main heat: 0.0000 heating syn 0.0000 193.3983 er 192.1801 cWh/month 100.6339 rement 0.0000 0.0000 16.1604 PVs (Appen-30.1687 wind turbin 0.0000 hydro-electicity 0.0000 electricity 0.0000 PVs (Appen- | stem 1 (in stem 2 (in ry heating 2 (in ry heating Mar 180.6465 ing system 231.7456 stem) 77.9503 ing system 0.0000 stem 2) 0.0000 10.0000 10.0000 10.0000 10.0000 14.5507 dix M) (neg -46.0646 nes (Append 0.0000 tric genera | %) system, % Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 0.0000 186.4939 192.1801 97.0412 0.0000 0.0000 ix M) (negat 0.0000 tors (Append 0.0000 tors (Append 0.0000 by micro-CHE 0.0000 ative quanti | 4.1773 231.7456 1.8025 0.0000 0.0000 0.0000 182.0129 192.1801 94.7096 0.0000 0.2344 1ty) -60.2298 cive quanti 0.0000 ix M) (nee 0.0000 (Appendix 0.0000 c) (Appendix 0.0000) | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
162.2621
192.1801
84.4323
0.0000
0.0000
6.7276
-57.1594
ty)
0.0000
pative quant:
0.0000
x N) (negative 0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
156.6465
192.1801
81.5103
0.0000
7.5117
-56.3107
0.0000
ity)
0.0000
ve if net go | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
168.0471
192.1801
87.4426
0.0000
9.7640
-52.0310
0.0000
eneration)
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000
12.6825
-44.2184
0.0000
0.0000 | 71.1142 231.7456 30.6863 0.0000 0.0000 187.7664 192.1801 97.7034 0.0000 0.0000 16.6401 -35.0746 0.0000 0.0000 | 213.8493 231.7456 92.2776 0.0000 0.0000 198.4030 192.1801 103.2381 0.0000 0.0000 18.7950 -22.4734 0.0000 0.0000 0.0000 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 0.0000 20.7040 -16.9844 0.0000 0.0000 0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232)
(233a)
(234a)
(235a) | | Efficiency of Efficiency of Efficiency of Efficiency of Efficiency of Space heating Efficiency of (217)m Fuel for water Space cooling (221)m Pumps and Fa Lighting Electricity ge (233a)m Electricity ge (235a)m Electricity us (235c)m Electricity ge (233b)m Electricity ge (235b)m Electricity ge (235b)m Electricity ge (235b)m Electricity ge | main space secondary/s Jan requirement 352.8461 efficiency 231.7456 fuel (main 152.2558 efficiency 0.0000 fuel (secon 0.0000 fuel (secon 0.0000 fuel (secon 0.0000 fuel 13.6647 fuel requirement 218.4408 water heate 192.1801 la3.6647 fuel requirement 20.0000 0.0000 electropy 19.9262 enerated by -19.9262 enerated by 0.0000 electropy electro | heating synheating synheating synheating synsupplementa: Feb 250.1090 (main heat: 231.7456 heating synupplementa: 0.0000 heating synupplementa: 0.0000 heating synupplementa: 193.3983 er 192.1801 (Wh/month 100.6339 rement 0.0000 0.0000 0.0000 0.0000 0.00000 heating synupplement 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000 | stem 1 (in stem 2 (in ry heating 2 (in ry heating Mar 180.6465 ing system 231.7456 stem) 77.9503 ing system 0.0000 stem 2) 0.0000 100000 100000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 100000 100000 10000 10000 10000 10000 10000 10000 100000 100000 10 | \$) system, \$ Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 0.0000 186.4939 192.1801 97.0412 0.0000 10.6604 ative quanti -53.8770 ix M) (negat 0.0000 by micro-CHE 0.0000 ative quanti -38.7053 ix M) (negat 3.7053 | 4.1773 231.7456 1.8025 0.0000 0.0000 0.0000 182.0129 192.1801 94.7096 0.0000 8.2344 tty) -60.2298 sive quanti 0.0000 ix M) (nec 0.0000 c) (Appendix 0.0000 tty) -53.3637 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 162.2621 192.1801 84.4323 0.0000 6.7276 -57.1594 ity) 0.0000 jative quant: 0.0000 (N) (negative quant: 0.0000 -54.1923 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
156.6465
192.1801
81.5103
0.0000
7.5117
-56.3107
0.0000
ity)
0.0000
ve if net gr
0.0000
-53.7089 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
168.0471
192.1801
87.4426
0.0000
9.7640
-52.0310
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000
0.0000
12.6825
-44.2184
0.0000
0.0000
0.0000 | 71.1142 231.7456 30.6863 0.0000 0.0000 187.7664 192.1801 97.7034 0.0000 0.0000 16.6401 -35.0746 0.0000 0.0000 -17.5448 | 213.8493 231.7456 92.2776 0.0000 0.0000 198.4030 192.1801 103.2381 0.0000 0.0000 18.7950 -22.4734 0.0000 0.0000 0.0000 -6.9782 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 0.0000 20.77040 -16.9844 0.0000 0.0000 0.0000 0.0000 -3.8496 |
(206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232)
(233a)
(234a)
(235a)
(235c)
(233b) | | Efficiency of Efficiency of Efficiency of Efficiency of Efficiency of Space heating Space heating Space heating Space heating Space heating Space heating Water heating Efficiency of (217)m Fuel for water Space cooling (221)m Pumps and Fa Lighting Electricity ge (233a)m Electricity ge (235a)m Electricity us (235c)m Electricity ge (235b)m Electricity ge (234b)m Electricity ge | main space secondary/s Jan requirement 352.8461 efficiency 231.7456 fuel (main 152.2558 efficiency 0.0000 fuel (main 0.0000 fuel (secon 0.0000 requirement 218.4408 water heate 192.1801 heating, 113.6647 fuel requirement 0.0000 0.01442 merated by 0.0000 merated by 0.0000 ed 0.0000 merated by | heating synheating synheating synheating synyphementa: Feb 250.1090 (main heat: 231.7456 heating syn 107.9240 (main heat: 0.0000 heating syn 0.0000 dary) 0.0000 193.3983 er 192.1801 kWh/month 100.6339 rement 0.0000 0.61604 PVs (Appenn -30.1687 wind turbin 0.0000 plectricity 0.0000 PVs (Appenn -11.1135 wind turbin 0.0000 PVs (Appenn -11.1135 wind turbin 0.0000 heating synheating s | stem 1 (in stem 2 (in stem 2 (in stem 2) (in ry heating | \$) system, \$ Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 0.0000 0.0000 186.4939 192.1801 97.0412 0.0000 10.6604 ative quanti -53.8770 ix M) (negat 0.0000 by micro-CHE 0.0000 ative quanti -38.7053 ix M) (negat 0.0000 tors (Appendon) 10.0000 tors (Appendon) t | 4.1773 231.7456 1.8025 0.0000 0.0000 0.0000 182.0129 192.1801 94.7096 0.0000 0.0000 8.2344 tty) -60.2298 sive quanti 0.0000 (Appendix 0.0000 tty) -53.3637 sive quanti 0.0000 ix M) (neg 0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 162.2621 192.1801 84.4323 0.0000 0.0000 6.7276 -57.1594 tty) 0.0000 x N) (negating the quant of the control | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
156.6465
192.1801
81.5103
0.0000
0.0000
7.5117
-56.3107
0.0000
ity)
0.0000
ve if net g
0.0000
-53.7089
0.0000 | 0.0000 0.0000 0.0000 0.0000 0.0000 168.0471 192.1801 87.4426 0.0000 0.0000 9.7640 -52.0310 0.0000 eneration) 0.0000 -44.6225 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000
0.0000
12.6825
-44.2184
0.0000
0.0000
0.0000
0.0000 | 71.1142 231.7456 30.6863 0.0000 0.0000 187.7664 192.1801 97.7034 0.0000 0.0000 16.6401 -35.0746 0.0000 0.0000 -17.5448 0.0000 | 213.8493 231.7456 92.2776 0.0000 0.0000 198.4030 192.1801 103.2381 0.0000 0.0000 18.7950 -22.4734 0.0000 0.0000 -6.9782 0.0000 | 231.7456 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 0.0000 -16.9844 0.0000 0.0000 0.0000 -3.8496 0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(219)
(221)
(232)
(233a)
(234a)
(235a)
(235c)
(233b)
(234b) | | Efficiency of Efficiency of Efficiency of Efficiency of Space heating Water heating Water heating Efficiency of (217)m Fuel for water Space cooling (221)m Pumps and Fa Lighting Electricity ge (233a)m Electricity ge (235a)m Electricity us (235c)m Electricity ge (233b)m Electricity ge (233b)m Electricity ge (235b)m Electricity ge (235b)m Electricity us | main space secondary/s Jan requirement 352.8461 efficiency 231.7456 fuel (main 152.2558 efficiency 0.0000 fuel (main 0.0000 fuel (secon 0.0000 requirement 218.4408 water heate 192.1801 heating, 1 113.6647 fuel requirement 200000 20.1442 enerated by -19.9262 enerated by -19.9262 enerated by 0.0000 enerated by 0.0000 enerated by -4.9377 enerated by 0.0000 0.00000 enerated by 0.0000 0.00 | heating synheating synheating synyphementa: Feb t 250.1090 (main heat: 231.7456 heating synheating synheatin | stem 1 (in stem 2 (in stem 2 (in ry heating war leads to stem) Mar 180.6465 ing system 231.7456 stem) 77.9503 ing system 0.0000 206.0799 192.1801 107.2327 0.0000 0.0000 14.5507 dix M) (neg -46.0646 nes (Append 0.0000 tric genera 0.0000 dix M) (neg -23.6671 nes (Append 0.0000 tric genera 0.0000 dric genera 0.0000 dric genera 0.0000 generated i 0.0000 tric genera 0.0000 | %) system, % Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 0.0000 186.4939 192.1801 97.0412 0.0000 10.6604 artive quanti -53.8770 ix M) (negat 0.0000 by micro-CHE 0.0000 by micro-CHE 1.38.7053 ix M) (negat 0.0000 tors (Append 0.0000 by micro-CHE | 4.1773 231.7456 1.8025 0.0000 0.0000 0.0000 182.0129 192.1801 94.7096 0.0000 8.2344 tty) -60.2298 cive quanti 0.0000 cix M) (nec 0.0000 c) (Appendix M) (nec 0.0000) | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 162.2621 192.1801 84.4323 0.0000 6.7276 -57.1594 tty) 0.0000 (x N) (negative quant: 0.0000 -54.1923 tty) 0.0000 jative quant: 0.0000 (x N) (negative quant: 0.0000 (x N) (negative quant: 0.0000) | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 156.6465 192.1801 81.5103 0.0000 7.5117 -56.3107 0.0000 ity) 0.0000 ve if net gr 0.0000 -53.7089 0.0000 ve if net gr 0.0000 ve if net gr | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 168.0471 192.1801 87.4426 0.0000 9.7640 -52.0310 0.0000 eneration) 0.0000 -44.6225 0.0000 0.0000 eneration) | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000
12.6825
-44.2184
0.0000
0.0000
0.0000
-32.1392
0.0000
0.0000 | 71.1142 231.7456 30.6863 0.0000 0.0000 187.7664 192.1801 97.7034 0.0000 16.6401 -35.0746 0.0000 0.0000 -17.5448 0.0000 0.0000 | 213.8493 231.7456 92.2776 0.0000 0.0000 198.4030 192.1801 103.2381 0.0000 0.0000 18.7950 -22.4734 0.0000 0.0000 -6.9782 0.0000 0.0000 | 231.7456 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 0.0000 20.7040 -16.9844 0.0000 0.0000 0.0000 -3.8496 0.0000 0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(221)
(231)
(232)
(233a)
(234a)
(235a)
(235c)
(234b)
(235b) | | Efficiency of Efficiency of Efficiency of Efficiency of Efficiency of Space heating Space heating Space heating Space heating Space heating Space heating Water heating Water heating Efficiency of (217)m Fuel for water Space cooling (221)m Pumps and Fa Lighting Electricity ge (233a)m Electricity ge (234a)m Electricity ge (235c)m Electricity ge (235c)m Electricity ge (234b)m Electricity ge (234b)m Electricity ge (235d)m us (235d)m Annual totals | main space secondary/s Jan requirement 352.8461 efficiency 231.7456 fuel (main 152.2558 efficiency 0.0000 fuel (main 0.0000 fuel (secon 0.0000 fuel main 152.801 fuel main 0.0000 fuel secon 0.0000 fuel secon 0.0000 fuel meating, 113.6647 fuel requirement 192.1801 fuel fuel fuel fuel fuel fuel fuel | heating synheating synheating synheating synyphementa: Feb 1 250.1090 (main heat: 231.7456 (main heat: 0.0000 heating syn0.0000 (main heat: 0.0000 heating syn0.0000 (main heat: 0.0000 heating syn0.0000 (main heat: 192.1801 (WM/month 100.6339 (main heat: 0.0000 0.00 | stem 1 (in stem 2 (in ry heating 2 (in ry heating Mar 180.6465 ing system 231.7456 stem) 77.9503 ing system 0.0000 stem 2) 0.0000 100000 100000 100000 100000 100000 100000 10000 10000 100000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000 1 | %) system, % Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 0.0000 186.4939 192.1801 97.0412 0.0000 10.6604 artive quanti -53.8770 ix M) (negat 0.0000 by micro-CHE 0.0000 by micro-CHE 1.38.7053 ix M) (negat 0.0000 tors (Append 0.0000 by micro-CHE | 4.1773 231.7456 1.8025 0.0000 0.0000 0.0000 182.0129 192.1801 94.7096 0.0000 8.2344 1ty) -60.2298 1ive quanti 0.0000 ix M) (nec | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 162.2621 192.1801 84.4323 0.0000 6.7276 -57.1594 tty) 0.0000 (x N) (negative quant: 0.0000 -54.1923 tty) 0.0000 jative quant: 0.0000 (x N) (negative quant: 0.0000 (x N) (negative quant: 0.0000) | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 156.6465 192.1801 81.5103 0.0000 0.0000 7.5117 -56.3107 0.0000 ity) 0.0000 ve if net gr 0.0000 -53.7089 0.0000 ity) 0.0000 |
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
168.0471
192.1801
87.4426
0.0000
0.7640
-52.0310
0.0000
0.0000
eneration)
0.0000
-44.6225
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000
0.0000
12.6825
-44.2184
0.0000
0.0000
0.0000
0.0000 | 71.1142 231.7456 30.6863 0.0000 0.0000 187.7664 192.1801 97.7034 0.0000 0.0000 16.6401 -35.0746 0.0000 0.0000 -17.5448 0.0000 | 213.8493 231.7456 92.2776 0.0000 0.0000 198.4030 192.1801 103.2381 0.0000 0.0000 18.7950 -22.4734 0.0000 0.0000 -6.9782 0.0000 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 0.0000 0.0000 -16.9844 0.0000 0.0000 0.0000 -3.8496 0.0000 0.0000 0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(219)
(221)
(232)
(233a)
(234a)
(235a)
(235c)
(234b)
(235b)
(235d)
(211) | | Efficiency of Efficiency of Efficiency of Efficiency of Efficiency of Space heating Space heating Space heating Space heating Space heating Space heating Water heating Water heating Efficiency of (217)m Fuel for water Space cooling (221)m Pumps and Fa Lighting Electricity ge (233a)m Electricity ge (234a)m Electricity ge (235c)m Electricity ge (235b)m Electricity ge (235d)m | main space secondary/s Jan requirement 352.8461 efficiency 231.7456 fuel (main 152.2558 efficiency 0.0000 fuel (main 0.0000 requirement 218.4408 water heatt 192.1801 heating, 113.6647 fuel requirement 200.0000 efficiency 0.0000 | heating synheating synheating synheating synyphementa: Feb t 250.1090 (main heat: 231.7456 heating synheating synheatin | stem 1 (in stem 2 (in stem 2 (in ry heating war leads to stem) Mar 180.6465 ing system 231.7456 stem) 77.9503 ing system 0.0000 206.0799 192.1801 107.2327 0.0000 0.0000 14.5507 dix M) (neg -46.0646 nes (Append 0.0000 tric genera 0.0000 dix M) (neg -23.6671 nes (Append 0.0000 tric genera 0.0000 dric genera 0.0000 dric genera 0.0000 generated i 0.0000 tric genera 0.0000 | %) system, % Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 0.0000 186.4939 192.1801 97.0412 0.0000 10.6604 artive quanti -53.8770 ix M) (negat 0.0000 by micro-CHE 0.0000 by micro-CHE 1.38.7053 ix M) (negat 0.0000 tors (Append 0.0000 by micro-CHE | 4.1773 231.7456 1.8025 0.0000 0.0000 0.0000 182.0129 192.1801 94.7096 0.0000 8.2344 tty) -60.2298 cive quanti 0.0000 cix M) (nec 0.0000 c) (Appendix M) (nec 0.0000) | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 162.2621 192.1801 84.4323 0.0000 6.7276 -57.1594 tty) 0.0000 (x N) (negative quant: 0.0000 -54.1923 tty) 0.0000 jative quant: 0.0000 (x N) (negative quant: 0.0000 (x N) (negative quant: 0.0000) | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 156.6465 192.1801 81.5103 0.0000 7.5117 -56.3107 0.0000 ity) 0.0000 ve if net gr 0.0000 -53.7089 0.0000 ve if net gr 0.0000 ve if net gr | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 168.0471 192.1801 87.4426 0.0000 9.7640 -52.0310 0.0000 eneration) 0.0000 -44.6225 0.0000 0.0000 eneration) | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000
12.6825
-44.2184
0.0000
0.0000
0.0000
-32.1392
0.0000
0.0000 | 71.1142 231.7456 30.6863 0.0000 0.0000 187.7664 192.1801 97.7034 0.0000 16.6401 -35.0746 0.0000 0.0000 -17.5448 0.0000 0.0000 | 213.8493 231.7456 92.2776 0.0000 0.0000 198.4030 192.1801 103.2381 0.0000 0.0000 18.7950 -22.4734 0.0000 0.0000 -6.9782 0.0000 0.0000 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 0.0000 20.7040 -16.9844 0.0000 0.0000 -3.8496 0.0000 0.0000 0.0000 0.0000 636.0211 0.0000 0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(221)
(231)
(232)
(233a)
(234a)
(235a)
(235b)
(235b)
(235d)
(211)
(211)
(211) | | Efficiency of Efficiency of Efficiency of Efficiency of Efficiency of Space heating Space heating Space heating Space heating Space heating Space heating Water heating Efficiency of (217)m Fuel for water Space cooling (221)m Pumps and Fa Lighting Electricity ge (233a)m Electricity ge (235a)m Electricity us (235c)m Electricity ge (233b)m Electricity ge (233b)m Electricity ge (235b)m Electricity ge (235b)m Electricity ge (235b)m Electricity us (235d)m Annual totals Space heating | main space secondary/s Jan requirement 352.8461 efficiency 231.7456 fuel (main 152.2558 efficiency 0.0000 fuel (main 0.0000 fuel (secon 0.0000 fuel (secon 0.0000 fuel (secon 0.0000 fuel 138.4408 water heatt 192.1801 fuel requirement 136.4408 fuel requirement 192.1801 fuel requirement 192.1801 fuel requirement 192.1801 fuel requirement 192.1801 fuel requirement 199.9262 fuel reduction 199 | heating synheating synheating synheating synyphementa: Feb t 250.1090 (main heat: 231.7456 heating synheating synheatin | stem 1 (in stem 2 (in stem 2 (in ry heating war leads to stem) Mar 180.6465 ing system 231.7456 stem) 77.9503 ing system 0.0000 206.0799 192.1801 107.2327 0.0000 0.0000 14.5507 dix M) (neg -46.0646 nes (Append 0.0000 tric genera 0.0000 dix M) (neg -23.6671 nes (Append 0.0000 tric genera 0.0000 dric genera 0.0000 dric genera 0.0000 generated i 0.0000 tric genera 0.0000 | %) system, % Apr 51.3471 1) 231.7456 22.1567 2) 0.0000 0.0000 0.0000 186.4939 192.1801 97.0412 0.0000 10.6604 artive quanti -53.8770 ix M) (negat 0.0000 by micro-CHE 0.0000 by micro-CHE 1.38.7053 ix M) (negat 0.0000 tors (Append 0.0000 by micro-CHE | 4.1773 231.7456 1.8025 0.0000 0.0000 0.0000 182.0129 192.1801 94.7096 0.0000 8.2344 tty) -60.2298 cive quanti 0.0000 cix M) (nec 0.0000 c) (Appendix M) (nec 0.0000) | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 162.2621 192.1801 84.4323 0.0000 6.7276 -57.1594 tty) 0.0000 (x N) (negative quant: 0.0000 -54.1923 tty) 0.0000 jative quant: 0.0000 (x N) (negative quant: 0.0000 (x N) (negative quant: 0.0000) | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 156.6465 192.1801 81.5103 0.0000 7.5117 -56.3107 0.0000 ity) 0.0000 ve if net gr 0.0000 -53.7089 0.0000 ve if net gr 0.0000 ve if net gr | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 168.0471 192.1801 87.4426 0.0000 9.7640 -52.0310 0.0000 eneration) 0.0000 -44.6225 0.0000 0.0000 eneration) | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
167.7954
192.1801
87.3116
0.0000
12.6825
-44.2184
0.0000
0.0000
0.0000
-32.1392
0.0000
0.0000 | 71.1142 231.7456 30.6863 0.0000 0.0000 187.7664 192.1801 97.7034 0.0000 16.6401 -35.0746 0.0000 0.0000 -17.5448 0.0000 0.0000 | 213.8493 231.7456 92.2776 0.0000 0.0000 198.4030 192.1801 103.2381 0.0000 0.0000 18.7950 -22.4734 0.0000 0.0000 -6.9782 0.0000 0.0000 | 231.7456 0.0000 0.0000 Dec 349.8614 231.7456 150.9679 0.0000 0.0000 217.9522 192.1801 192.1801 113.4104 0.0000 0.0000 -16.9844 0.0000 0.0000 -3.8496 0.0000 0.0000 0.0000 0.0000 0.0000 |
(206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(215)
(217)
(217)
(221)
(231)
(232)
(233a)
(235a)
(235a)
(235a)
(235b)
(235b)
(235d)
(211)
(211)
(212)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213) | SAP 10 Online 2.13.11 Page 3 of 7 | Electricity for lighting (calculated in Appendix L) | | | 162.5750 (232) | |---|-------------------------|--|--| | Energy saving/generation technologies (Appendices M .N and O) | | | 102.3730 (232) | | PV generation Wind generation Hydro-electric generation (Appendix N) | | | -839.3408 (233)
0.0000 (234)
0.0000 (235a) | | Electricity generated - Micro CHP (Appendix N) Appendix Q - special features | | | 0.0000 (235) | | Energy saved or generated Energy used Total delivered energy for all uses | | | -0.0000 (236)
0.0000 (237)
1127.5859 (238) | | 1001 dillitia thing, 171 dil abio | | | 112.10003 (200) | | | | | | | 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP | Energy | Emission factor | Emissions | | Space heating - main system 1 | kWh/year
636.0211 | kg CO2/kWh | kg CO2/year | | Total CO2 associated with community systems Water heating (other fuel) | 1168.3306 | | 0.0000 (373) | | Space and water heating
Pumps, fans and electric keep-hot | 0.0000 | | | | Energy for lighting | 162.5750 | 0.1443 | 23.4646 (268) | | Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported | -494.5181
-344.8227 | | | | Total CO2, kg/year | -344.0227 | 0.1240 | -108.7980 (269)
179.2014 (272) | | EPC Dwelling Carbon Dioxide Emission Rate (DER) | | | 2.8800 (273) | | | | | | | 13a. Primary energy - Individual heating systems including micro-CHP | | | | | | | Primary energy factor
kg CO2/kWh | | | Space heating - main system 1 Total CO2 associated with community systems | 636.0211 | | | | Water heating (other fuel) Space and water heating | 1168.3306 | 1.5203 | | | Pumps, fans and electric keep-hot
Energy for lighting | 0.0000
162.5750 | | 0.0000 (281) | | Energy saving/generation technologies | | | | | PV Unit electricity used in dwelling
PV Unit electricity exported
Total | -494.5181
-344.8227 | | | | Total Primary energy kWh/year
Dwelling Primary energy Rate (DPER) | | | 2136.8043 (286)
34.3000 (287) | | | | | (2017) | | | | | | | | | | | | | | | | | 032 10 Marketing Pag V. P. 114 (3- P. 14-4) (11-4) | | | | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS | | | | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) | | | | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) | | | | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) | | | | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS | Area | | Volume | | SAP 10 WORKSHEET FOR New Build (As
Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor | | (m) | (2b) = 155.7250 (1b) - (3b) | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics | Area
(m2)
62.2900 | (m) | (2b) = (m3)
(2b) = 155.7250 (1b) - (3b)
(4) | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 62.2900 | Area
(m2)
62.2900 | (lb) x 2.5000 | (2b) = (m3)
(2b) = 155.7250 (1b) - (3b)
(4) | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 62.2900 Dwelling volume | Area
(m2)
62.2900 | (lb) x 2.5000 | (2b) = (m3)
(2b) = 155.7250 (1b) - (3b)
(4) | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 62.2900 | Area
(m2)
62.2900 | (lb) x 2.5000 | (2b) = 155.7250 (1b) - (3b)
(3n) = 155.7250 (5) | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 62.2900 Dwelling volume 2. Ventilation rate | Area
(m2)
62.2900 | (lb) x 2.5000 | (2b) = 155.7250 (1b) - (3b)
(3n) = 155.7250 (5) | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 62.2900 Dwelling volume Number of open chimneys Number of open flues | Area
(m2)
62.2900 | (lb) x 2.5000 | (2b) = 155.7250 (1b) - (3b) (4)(3n) = 155.7250 (5) m3 per hour 0 * 80 = 0.0000 (6a) 0 * 20 = 0.0000 (6b) | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 62.2900 Dwelling volume 2. Ventilation rate Number of open chimneys | Area
(m2)
62.2900 | (lb) x 2.5000 | (2b) = 155.7250 (1b) - (3b)
((3n) = 155.7250 (5)
m3 per hour
0 * 80 = 0.0000 (6a) | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 62.2900 Dwelling volume Number of open chimneys Number of open flues Number of open flues Number of folimneys flues attached to closed fire Number of flues attached to solid fuel boiler | Area
(m2)
62.2900 | (lb) x 2.5000 | (m3) (2b) = 155.7250 (lb) - (3b) (4) (3n) = 155.7250 (5) m3 per hour 0 * 80 = 0.0000 (6a) 0 * 20 = 0.0000 (6b) 0 * 10 = 0.0000 (6c) 0 * 20 = 0.0000 (6c) 0 * 20 = 0.0000 (6d) | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 62.2900 Dwelling volume 2. Ventilation rate Number of open chimneys Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of blocked chimneys | Area
(m2)
62.2900 | (lb) x 2.5000 | (2b) = 155.7250 (1b) - (3b)
((3n) = 155.7250 (5)
m3 per hour
0 * 80 = 0.0000 (6a)
0 * 20 = 0.0000 (6b)
0 * 10 = 0.0000 (6c)
0 * 20 = 0.0000 (6c) | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 62.2900 Dwelling volume 2. Ventilation rate Number of open chimneys Number of open flues Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of passive vents Number of passive vents Number of passive vents Number of flueless gas fires | Area
(m2)
62.2900 | (m)
(1b) x 2.5000
3a)+(3b)+(3c)+(3d)+(3e) | (2b) = 155.7250 (lb) - (3b) (1d) (1 | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 62.2900 Dwelling volume Number of open chimneys Number of open flues Number of flues attached to solid fuel boiler Number of flues attached to solid fuel boiler Number of flues attached to the heater Number of flues attached to the heater Number of passive vents Number of passive vents Number of flueless gas fires Infiltration due to chimneys, flues and fans = (6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)- Pressure test | Area
(m2)
62.2900 | (m)
(1b) x 2.5000
3a)+(3b)+(3c)+(3d)+(3e) | (2b) = 155.7250 (1b) - (3b) (1d) (1 | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 62.2900 Dwelling volume Number of open chimneys Number of open flues Number of flues attached to closed fire Number of flues attached to other heater Number of flues attached to other heater Number of intermittent extract fans Number of passive vents Number of flueless gas fires Infiltration due to chimneys, flues and fans = (6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)- Pressure test Pressure test Method Measured/design AP50 | Area
(m2)
62.2900 | (m)
(1b) x 2.5000
3a)+(3b)+(3c)+(3d)+(3e) | (2b) = 155.7250 (lb) - (3b)
((3n) = 155.7250 (5)
m3 per hour
0 * 80 = 0.0000 (6a)
0 * 20 = 0.0000 (6b)
0 * 10 = 0.0000 (6c)
0 * 20 = 0.0000 (6d)
0 * 35 = 0.0000 (6d)
0 * 35 = 0.0000 (6f)
2 * 10 = 20.0000 (7a)
0 * 10 = 0.0000 (7b)
0 * 40 = 0.0000 (7c)
Air changes per hour
0 / (5) = 0.1284 (8)
Yes
Blower Door
5.0000 (17) | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 62.2900 Dwelling volume 8. Ventilation rate 2. Ventilation rate Number of open chimneys Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of blocked chimneys Number of intermittent extract fans Number of passive vents Number of flueless gas fires Infiltration due to chimneys, flues and fans = (6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)- Pressure test Pressure Test Method | Area
(m2)
62.2900 | (m)
(1b) x 2.5000
3a)+(3b)+(3c)+(3d)+(3e) | (2b) = 155.7250 (1b) - (3b) (1d) (1 | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics 1. Overall floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 62.2900 Dwelling volume 2. Ventilation rate Number of open chimneys Number of chimneys / flues attached to closed fire Number of flues attached to oblid fuel boiler Number of flues attached to other heater Number of blocked chimneys Number of intermittent extract fans Number of passive vents Number of flueless gas fires Infiltration due to chimneys, flues and fans = (6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)-Pressure test Pressure Test Method Measured/design AP50 Infiltration rate | Area
(m2)
62.2900 | (m)
(1b) x 2.5000
3a)+(3b)+(3c)+(3d)+(3e) | (2b) = 155.7250 (1b) - (3b) (1d) (1 | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics 1. Overall floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 62.2900 Dwelling volume Number of open chimneys Number of open flues Number of chimneys / flues attached to closed fire Number of flues attached to other heater Number of flues attached to other heater Number of intermittent extract fans Number of passive vents Number of flueless gas fires Infiltration due to chimneys, flues and fans = (6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)- Pressure test Pressure Test Method Measured/design AP50 Infiltration rate Number of sides sheltered Shelter factor Infiltration rate adjusted to include shelter factor | Area (m2) 62.2900 (: | (m) (1b) x 2.5000 3a)+(3b)+(3c)+(3d)+(3e) 20.0000 (20) = 1 - [0.075 x (21) = (18) Sep Oct | (2b) = 155.7250 (1b) - (3b) (1d) (1 | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 62.2900 Dwelling volume 2. Ventilation rate Number of open chimneys Number of open flues Number of open flues Number of flues attached to solid fuel boiler Number of flues attached to solid fuel boiler Number of blocked chimneys Number of intermittent extract fans Number of passive vents Number of passive vents Number of flueless gas fires Infiltration due to chimneys, flues and fans = (6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)- Pressure test Pressure Test Method Measured/design AP50 Infiltration rate Number of sides sheltered Shelter factor Infiltration rate adjusted to include shelter factor Jan Feb Mar Apr May Jun Wind speed 5.1000 5.0000 4.9000 4.4000 4.3000 3.8000 in Mind factor 1.2750 1.2500 1.2000 1.0000 0.9500 in 0.9500 0.9500 in 0.9500 0.9500 in 0.9500 0.9500 in 0.9 | Area (m2) 62.2900 (: | (m) (1b) x 2.5000 3a)+(3b)+(3c)+(3d)+(3e) 20.0000 (20) = 1 - [0.075 x (21) = (18) Sep Oct 4.0000 4.3000 | (2b) = 155.7250 (1b) - (3b) (4)(3n) = 155.7250 (5) m3 per hour 0 * 80 = 0.0000 (6a) 0 *
20 = 0.0000 (6b) 0 * 20 = 0.0000 (6c) 0 * 20 = 0.0000 (7a) 0 * 35 = 0.0000 (7a) 0 * 40 = 0.0000 (7b) 0 * 40 = 0.0000 (7c) Air changes per hour 0 / (5) = 0.1284 (8) Yes Blower Door 5.0000 (17) 0.3784 (18) 3 (19) 4 (19)] = 0.7750 (20) x (20) = 0.2933 (21) Nov Dec 4.5000 Dec 4.5000 (22) | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 62.2900 Dwelling volume Number of open chimneys Number of open flues Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of inderwittent extract fans Number of intermittent extract fans Number of passive vents Number of flueless gas fires Infiltration due to chimneys, flues and fans = (6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)- Fressure test Fressure Test Method Measured/design AFS0 Infiltration rate Number of sides sheltered Shelter factor Infiltration rate adjusted to include shelter factor Van Feb Mar Apr May Jun Wind speed 5.1000 5.0000 4.9000 4.4000 4.3000 3.8000 Wind factor 1.2750 1.2500 1.2250 1.1000 1.0750 0.9500 Wind fadj infilt rate | Area (m2) 62.2900 (; | (m) (1b) x 2.5000 3a)+(3b)+(3c)+(3d)+(3e) 20.0000 (20) = 1 - [0.075; (21) = (18) Sep Oct 4.0000 4.3000 1.0000 1.0750 | (2b) = 155.7250 (1b) - (3b) (1d) (1 | SAP 10 Online 2.13.11 Page 4 of 7 Effective ac 0.5699 0.5672 0.5645 0.5520 0.5497 0.5388 0.5388 0.5368 0.5430 0.5497 0.5544 0.5594 (25) | 3. Heat losses and heat
 | | | Gross | Openings | | tArea | U-value | Ах | п | K-value | AxK | | |--|--|--|--|---|--|--|--|--|--
--|---|--| | | 1 201 | | m2 | m2 | | m2 | W/m2K | W | /K | kJ/m2K | kJ/K | | | TER Opening Type (Uw :
Exposed Floor | = 1.20) | | | | 7 | .2700
.8800 | 1.1450
0.1300 | 12.90
1.02 | 44 | | | (27 | | Cavity Wall
External Roof 1 | | | 33.7000
38.1600 | 11.2700 | | .4300
.1600 | 0.1800
0.1100 | 4.03
4.19 | | | | (29 | | Total net area of exte
Fabric heat loss, W/K | | | | | 79 | .7400 | 30) + (32) = | = 22.16 | 40 | | | (31 | | Party Wall 1 | - 544 (11 11 | 0, | | | 95 | .6200 | 0.0000 | 0.00 | | | | (32 | | hermal mass parameter | | / TFA) in kJ/ | m2K | | | | | | | | 470.7038 | (35 | | ist of Thermal Bridge
Kl Element | | | | | | | | | Psi-value | Tot | | | | E2 Other linte | els (includi | ng other stee | l lintels) | | | | | .5100
.5100 | 0.0500
0.0500 | 0.27
0.27 | | | | E4 Jamb
E20 Exposed fl | loor (normal | , | | | | | | .8400
.8900 | 0.0500
0.3200 | 1.04 | | | | E7 Party floor | r between dw | ellings (in b | | ats) | | | 28 | .3700
.4100 | 0.0700 | 1.98 | 59 | | | P7 Party Wall
P3 Party wall | Intermedi | | | ngs (in bloc | ks of flat | 3) | 19. | .8900 | 0.0000 | 0.00 | 00 | | | E16 Corner (no
E25 Staggered | party wall | | ings | | | | 1. | .5000
.0000 | 0.0900
0.0600 | 0.31
0.06 | | | | E18 Party wall
E21 Exposed f1 | | | | | | | | .0000
.3700 | 0.0600
0.3200 | 0.30
1.71 | | | | P5 Party wall
E24 Eaves (ins | - Roof (ins | ulation at ra | | ١ | | | 13. | .9600
.0940 | 0.0800
0.2400 | 1.11 | 68 | | | Thermal bridges (Sum() | | | | | | | - | .0540 | 0.2400 | | 9.8621 | | | Point Thermal bridges
Cotal fabric heat loss | 3 | | | | | | | (| 33) + (36) | (36a) =
+ (36a) = | 0.0000
32.0260 | | | Ventilation heat loss | | | | | | | | | | | _ | | | Jan
(38)m 29.287 | Feb
75 29.148 | Mar
0 29.0112 | Apr
28.3689 | May
28.2487 | Jun
27.6893 | Jul
27.6893 | Aug
27.5857 | Sep
27.9048 | Oct
28.2487 | Nov
28.4918 | Dec
28.7460 | (38 | | Heat transfer coeff
61.31 | 35 61.174 | 0 61.0373 | 60.3949 | 60.2748 | 59.7153 | 59.7153 | 59.6117 | 59.9308 | 60.2748 | | 60.7720 | | | Average = Sum(39)m / 1 | | . 02.0070 | 00.0049 | 00.2740 | 05.7100 | 03.7100 | 03.0117 | 03.3000 | 55.2740 | 00.01/3 | 60.3944 | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct
0.9676 | Nov | Dec | | | HLP (0.984
HLP (average) | | | 0.9696 | 0.9676 | 0.9587 | 0.9587 | 0.9570 | 0.9621 | | | 0.9756
0.9696 | | | Days in mont | 31 2 | 8 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | . Water heating energ | gy requireme | nts (kWh/year |) | | | | | | | | | | | l. Water heating energy
 | gy requireme | nts (kWh/year |) | | | | | | | | 2.0456 | (42 | | L. Water heating energy
Assumed occupancy
Not water usage for mi
75.132 | gy requireme
ixer showers
74.003 | nts (kWh/year |) | | | | 64.4565 | 66.2464 | 69.0281 | 72.2437 | 2.0456
74.8447 | | | ssumed occupancy
lot water usage for m
75.13
dot water usage for ba
0.000 | gy requirements ixer showers 25 74.003 aths 00 0.000 | nts (kWh/year
5
5 72.3581 |) | | | | | 66.2464 | 69.0281 | | | (42 | | I. Water heating energy
issumed occupancy
lot water usage for m:
75.13;
lot water usage for b:
0.00
lot water usage for o:
35.57(| gy requireme ixer showers 25 74.003 aths 00 0.000 ther uses 88 34.285 | nts (kWh/year
5 72.3581
0 0.0000
1 32.9913 | 69.2101 | 66.8870 | 64.2962 | 62.8236 | 64.4565 | | | 0.0000 | 74.8447
0.0000
35.5788 | (42 | | I. Water heating energiassumed occupancy iot water usage for mr. Total water usage for br. 0.000 iot water usage for br. 35.570 werage daily hot water | ixer showers 25 74.003 aths 00 0.000 ther uses 88 34.285 er use (litr | nts (kWh/year
5 72.3581
0 0.0000
1 32.9913
es/day) | 69.2101
0.0000
31.6975 | 66.8870
0.0000
30.4037 | 64.2962
0.0000
29.1100 | 62.8236
0.0000
29.1100 | 64.4565
0.0000
30.4037 | 0.0000
31.6975 | 0.0000
32.9913 | 0.0000
34.2851 | 74.8447
0.0000
35.5788
101.6141 | (42 | | ssumed occupancy iot water usage for m 75.13: dot water usage for b 0.00 iot water usage for o 35.57 average daily hot water use | gy requirements for showers 25 74.003 aths 00 0.000 ther uses 34.285 er use (litr | nts (kWh/year
5 72.3581
0 0.0000
1 32.9913
es/day)
Mar | 69.2101
0.0000
31.6975 | 66.8870
0.0000
30.4037
May | 64.2962
0.0000
29.1100
Jun | 62.8236
0.0000
29.1100
Jul | 64.4565
0.0000
30.4037
Aug | 0.0000
31.6975
Sep | 0.0000
32.9913
Oct | 0.0000
34.2851
Nov | 74.8447
0.0000
35.5788
101.6141
Dec | (42
(42
(42
(43 | | ssumed occupancy iot water usage for m 75.13: dot water usage for b 0.00 iot water usage for o 35.57 average daily hot water use | yy requireme-
25 74.003
thbs 00 0.000
ther uses 34.285
er use (litr
Feb | nts (kWh/year
5 72.3581
0 0.0000
1 32.9913
es/day)
Mar
5 105.3494 | 69.2101
0.0000
31.6975 | 66.8870
0.0000
30.4037 | 64.2962
0.0000
29.1100 | 62.8236
0.0000
29.1100 | 64.4565
0.0000
30.4037 | 0.0000
31.6975 | 0.0000
32.9913
Oct
102.0194
138.4393 | 0.0000
34.2851
Nov
106.5288
151.7698 | 74.8447
0.0000
35.5788
101.6141
Dec
110.4235
172.8966 | (42
(42
(42
(43
(43
(44
(45 | | I. Water heating energy issumed occupancy iot water usage for mr 75.13. Iot water usage for br 0.00 iot water usage for br 35.57 iverage daily hot water use 110.71: Inergy contet (annual Chergy contett (annual | yy requireme- ixer showers 25 74.003 aths 0 0.000 ther uses 38 34.25 er use (litr Feb 14 108.288 98 154.201 | nts (kWh/year
5 72.3581
0 0.0000
1 32.9913
es/day)
Mar
5 105.3494
4 161.9182 | 69.2101
0.0000
31.6975
Apr
100.9076 | 66.8870
0.0000
30.4037
May
97.2907 | 64.2962
0.0000
29.1100
Jun
93.4062 | 62.8236
0.0000
29.1100
Jul
91.9336 | 64.4565
0.0000
30.4037
Aug
94.8602 | 0.0000
31.6975
Sep
97.9439 | 0.0000
32.9913
Oct
102.0194
138.4393 | 0.0000
34.2851
Nov
106.5288 | 74.8447
0.0000
35.5788
101.6141
Dec
110.4235
172.8966 | (42
(42
(42
(43
(43
(44
(45 | | I. Water heating energy issumed occupancy for water usage for minute of the state o | ixer showers 74.003 at hs 25 74.003 at hs 20 0.000 ther uses 88 34.285 er use (litr Feb 14 108.288 98 154.201 16) m = 0.15 x | nts (kWh/year
5 72.3581
0 0.0000
1 32.9913
es/day)
Mar
5 105.3494
4 161.9182 | 69.2101
0.0000
31.6975
Apr
100.9076 | 66.8870
0.0000
30.4037
May
97.2907 | 64.2962
0.0000
29.1100
Jun
93.4062 | 62.8236
0.0000
29.1100
Jul
91.9336 | 64.4565
0.0000
30.4037
Aug
94.8602 | 0.0000
31.6975
Sep
97.9439 | 0.0000
32.9913
Oct
102.0194
138.4393 | 0.0000
34.2851
Nov
106.5288
151.7698
Sum(45)m = | 74.8447
0.0000
35.5788
101.6141
Dec
110.4235
172.8966 | (42
(42
(42
(43
(43
(44
(45 | | I. Water heating energy Issumed occupancy Not water usage for m: 75.13: Not water usage for m: 0.00 Not water usage for on 35.57: Neverage daily hot water Usage for on 10.71: Chergy conte 175.33: Chergy content (annual Distribution loss (26.30) Nater storage loss: Store volume | gy requirements showers 25 74.003 at hs 20 0.000 there uses 38
34.285 er use (litr Feb 14 108.288 98 154.201 l) 6) m = 0.15 x 10 23.130 | nts (kWh/year
 | 69.2101
0.0000
31.6975
Apr
100.9076
138.1375
20.7206 | 66.8870
0.0000
30.4037
May
97.2907
130.9720 | 64.2962
0.0000
29.1100
Jun
93.4062
114.8538 | 62.8236
0.0000
29.1100
Jul
91.9336
111.1857 | 64.4565
0.0000
30.4037
Aug
94.8602
117.4568 | 0.0000
31.6975
Sep
97.9439
120.7747 | 0.0000
32.9913
Oct
102.0194
138.4393
Total = 1 | 0.0000
34.2851
Nov
106.5288
151.7698
Sum(45)m = | 74.8447
0.0000
35.5788
101.6141
Dec
110.4235
172.8966
1687.9455
25.9345
150.0000 | (42
(42
(42
(43
(43
(44
(45
(46 | | I. Water heating energy Issumed occupancy Not water usage for mi O.00 Not water usage for be O.00 Not water usage for be Average daily hot water Usaily hot water use 110.71: Chergy conte 175.33: Chergy content (annual Distribution loss (40 26.30: Nater storage loss: Core volume I ff manufacturer de Temperature factor: | yy requireme- ixer showers 25 74.003 aths 00 0.000 ther uses 88 34.285 er use (litr Feb 14 108.288 98 154.201 1) 6)m = 0.15 x 10 23.130 | nts (kWh/year
5 72.3581
0 0.0000
1 32.9913
es/day)
Mar
5 105.3494
4 161.9182
(45)m
2 24.2877
factor is km | 69.2101
0.0000
31.6975
Apr
100.9076
138.1375
20.7206 | 66.8870
0.0000
30.4037
May
97.2907
130.9720 | 64.2962
0.0000
29.1100
Jun
93.4062
114.8538 | 62.8236
0.0000
29.1100
Jul
91.9336
111.1857 | 64.4565
0.0000
30.4037
Aug
94.8602
117.4568 | 0.0000
31.6975
Sep
97.9439
120.7747 | 0.0000
32.9913
Oct
102.0194
138.4393
Total = 1 | 0.0000
34.2851
Nov
106.5288
151.7698
Sum(45)m = | 74.8447
0.0000
35.5788
101.6141
Dec
110.4235
172.8966
1687.9455
25.9345
150.0000
1.3938
0.5400 | (42
(42
(42
(43
(43
(44
(45
(45
(46
(46
(46
(46
(46
(46
(46
(46
(46
(46 | | I. Water heating energy issumed occupancy iot water usage for brown of the for brown iot water usage for brown of the forbit of the forbit of the forbit occupancy iot water usage for brown of the forbit occupancy iot water usage for brown of the forbit occupancy in a content of the forbit occupancy iot of the forbit occupancy iot occupa | yy requireme- ixer showers 25 74.003 aths 00 0.000 ther uses 88 34.285 er use (litr Feb 14 108.288 98 154.201 1) 6)m = 0.15 x 10 23.130 | nts (kWh/year
5 72.3581
0 0.0000
1 32.9913
es/day)
Mar
5 105.3494
4 161.9182
(45)m
2 24.2877
factor is km | 69.2101
0.0000
31.6975
Apr
100.9076
138.1375
20.7206 | 66.8870
0.0000
30.4037
May
97.2907
130.9720 | 64.2962
0.0000
29.1100
Jun
93.4062
114.8538 | 62.8236
0.0000
29.1100
Jul
91.9336
111.1857 | 64.4565
0.0000
30.4037
Aug
94.8602
117.4568 | 0.0000
31.6975
Sep
97.9439
120.7747 | 0.0000
32.9913
Oct
102.0194
138.4393
Total = 1 | 0.0000
34.2851
Nov
106.5288
151.7698
Sum(45)m = | 74.8447
0.0000
35.5788
101.6141
Dec
110.4235
172.8966
1687.9455
25.9345
150.0000
1.3938 | (42
(42
(42
(43
(43
(44
(45
(46
(47
(48
(49 | | I. Water heating energy Issumed occupancy Not water usage for by 0.00 Issumed occupancy Not water usage for by 0.00 Issumed occupancy Issumed occupancy Issumed occupancy Issumed occupancy Issumed occupancy Issumed occupancy Issumed Issume | gy requirements in the second of | nts (kWh/year
 | 69.2101
0.0000
31.6975
Apr
100.9076
138.1375
20.7206
own (kWh/da | 66.8870
0.0000
30.4037
May
97.2907
130.9720
19.6458 | 64.2962
0.0000
29.1100
Jun
93.4062
114.8538 | 62.8236
0.0000
29.1100
Jul
91.9336
111.1857 | 64.4565
0.0000
30.4037
Aug
94.8602
117.4568 | 0.0000
31.6975
Sep
97.9439
120.7747
18.1162 | 0.0000
32.9913
Oct
102.0194
138.4393
Total = 20.7659 | 0.0000 34.2851 Nov 106.5288 151.7698 Sum (45) m = 22.7655 | 74.8447
0.0000
35.5788
101.6141
Dec
110.4235
172.8966
1687.9455
25.9345
150.0000
1.3938
0.5400 | (42) (42) (43) (44) (45) (46) (47) (48) (49) (55) | | I. Water heating energy issumed occupancy iot water usage for brown of the second occupancy iot water usage for brown of the second occupancy iot water usage for brown occupancy iot water usage loss intergy content (annual bistribution loss (44 26.30) ister storage loss: istore volume 19 If manufacturer de Temperature factor: inter (49) or (54) in inter (49) or (54) in inter storage loss if cylinder contains of cylinder contains | yy requireme- ixer showers 25 74.003 atchs 00.000 0.000 0ther uses 38 34.285 er use (litr Feb 14 108.288 91 104.201 1) 6)m = 0.15 x 10 23.130 eclared loss from Table 2 (55) 225 21.074 dedicated so | nts (kWh/year
5 72.3581
0 0.0000
1 32.9913
es/day)
Mar
5 105.3494
4 161.9182
(45)m
2 24.2877
factor is kn
b | 69.2101
0.0000
31.6975
Apr
100.9076
138.1375
20.7206
own (kWh/da | 66.8870
0.0000
30.4037
May
97.2907
130.9720
19.6458
ay): | 64.2962
0.0000
29.1100
Jun
93.4062
114.8538
17.2281 | 62.8236
0.0000
29.1100
Jul
91.9336
111.1857
16.6779 | 64.4565
0.0000
30.4037
Aug
94.8602
117.4568
17.6185 | 0.0000
31.6975
Sep
97.9439
120.7747
18.1162 | 0.0000
32.9913
Oct
102.0194
138.4393
Total =
20.7659 | 0.0000 34.2851 Nov 106.5288 151.7698 Sum (45) m = 22.7655 | 74.8447 0.0000 35.5788 101.6141 Dec 110.4235 172.8966 1687.9455 25.9345 150.0000 1.3938 0.5400 0.7527 23.3325 | (42) (42) (43) (43) (44) (45) (46) (47) (55) (56) (56) | | L. Water heating energy lassumed occupancy lot water usage for brown of the second occupancy lot water usage for brown of the second occupancy lot water usage for brown occupancy lot lot water usage lot | yy requireme- ixer showers 25 74.003 atchs 00 0.000 00 0.000 00 0.000 14 108.288 154.201 1) 6)m = 0.15 x 10 23.130 eclared loss from Table 2 (55) 25 21.074 24 21.011 24 21.011 20 0.000 | nts (kWh/year
 | 69.2101
0.0000
31.6975
Apr
100.9076
138.1375
20.7206
own (kWh/da
22.5798
22.5798
22.5798
22.5120
0.0000 | 66.8870
0.0000
30.4037
May
97.2907
130.9720
19.6458
ay):
23.3325
23.3325
23.3252
40.0000 | 64.2962
0.0000
29.1100
Jun
93.4062
114.8538
17.2281
22.5798
22.5798
22.5798
22.5798 | 62.8236
0.0000
29.1100
Jul
91.9336
111.1857
16.6779 | 64.4565
0.0000
30.4037
Aug
94.8602
117.4568
17.6185 | 0.0000
31.6975
Sep
97.9439
120.7747
18.1162
22.5798
22.5798
22.5798
22.5120 | 0.0000
32.9913
Oct
102.0194
138.4393
Total = 20.7659
23.3325
23.3325
23.3325 | 0.0000 34.2851 Nov 106.5288 151.7698 Sum (45)m = 22.7655 22.5798 22.5798 22.5798 | 74.8447 0.0000 35.5788 101.6141 Dec 110.4235 172.8966 1687.9455 25.9345 150.0000 1.93938 0.5400 0.7527 23.3325 23.3252 23.32524 | (42) (42) (43) (44) (45) (46) (47) (48) (49) (55) (56) (56) (57) | | I. Water heating energy Issumed occupancy Not water usage for my 75.13; Itot water usage for bo 0.00 Itot water usage for on 35.57; Itotwater usage for on 35.57; Itotwater usage for on 10.71; Itotyater usage 110.71; Itotya | gy requirements of the control th | nts (kWh/year | 69.2101
0.0000
31.6975
Apr
100.9076
138.1375
20.7206
own (kWh/da
22.5798
22.5798
22.5120
0.0000 | 66.8870
0.0000
30.4037
May
97.2907
130.9720
19.6458
ay):
23.3325
23.3325
23.32524
0.0000 | 64.2962
0.0000
29.1100
Jun
93.4062
114.8538
17.2281
22.5798
22.5798
22.5798
22.5120
0.0000 | 62.8236
0.0000
29.1100
Jul
91.9336
111.1857
16.6779
23.3325
23.3325
23.2624
0.0000 | 64.4565
0.0000
30.4037
Aug
94.8602
117.4568
17.6185
23.3325
23.3325
23.2624
0.0000 | 0.0000
31.6975
Sep
97.9439
120.7747
18.1162
22.5798
22.5798
22.5798
22.5120
0.0000 | 0.0000
32.9913
Oct
102.0194
138.4393
Total = 20.7659
23.3325
23.3325
23.2624
0.0000 | 0.0000 34.2851 Nov 106.5288 151.7698 Sum (45)m = 22.7655 22.5798 22.5798 22.5798 22.5120 0.0000 | 74.8447 0.0000 35.5788 101.6141 Dec 110.4235 172.8966 1687.9455 25.9345 150.0000 1.93938 0.5400 0.7527 23.3325 23.32524 0.0000 | (42) (42) (43) (43) (44) (45) (46) (47) (48) (49) (55) (56) (56) (61) | | I. Water heating energy Issumed occupancy Not water usage for my 75.13; Itot water usage for bo 0.00 Itot water usage for on 35.57; Itotwater usage for on 35.57; Itotwater usage for on 10.71; Itotyater usage 110.71; Itotya | gy requirements of the control th | nts (kWh/year | 69.2101
0.0000
31.6975
Apr
100.9076
138.1375
20.7206
own (kWh/da
22.5798
22.5798
22.5120
0.0000 | 66.8870
0.0000
30.4037
May
97.2907
130.9720
19.6458
ay):
23.3325
23.3325
23.32524
0.0000 | 64.2962
0.0000
29.1100
Jun
93.4062
114.8538
17.2281
22.5798
22.5798
22.5798
22.5120
0.0000 | 62.8236
0.0000
29.1100
Jul
91.9336
111.1857
16.6779
23.3325
23.3325
23.2624
0.0000 | 64.4565
0.0000
30.4037
Aug
94.8602
117.4568
17.6185
23.3325
23.3325
23.2624
0.0000 | 0.0000
31.6975
Sep
97.9439
120.7747
18.1162
22.5798
22.5798
22.5798
22.5120
0.0000 | 0.0000
32.9913
Oct
102.0194
138.4393
Total = 20.7659
23.3325
23.3325
23.2624
0.0000 | 0.0000 34.2851 Nov 106.5288 151.7698 Sum (45)m = 22.7655 22.5798 22.5798
22.5798 22.5120 0.0000 | 74.8447 0.0000 35.5788 101.6141 Dec 110.4235 172.8966 1687.9455 25.9345 150.0000 1.93938 0.5400 0.7527 23.3325 23.32524 0.0000 | (42) (42) (43) (43) (44) (45) (46) (47) (48) (49) (55) (56) (56) (61) | | I. Water heating energy Issumed occupancy Not water usage for my 75.13; Itot water usage for bo 0.00 Itot water usage for on 35.57; Itotwater usage for on 35.57; Itotwater usage for on 10.71; Itotyater usage 110.71; Itotya | gy requirements of the control th | nts (kWh/year | 69.2101
0.0000
31.6975
Apr
100.9076
138.1375
20.7206
own (kWh/da
22.5798
22.5798
22.5120
0.0000 | 66.8870
0.0000
30.4037
May
97.2907
130.9720
19.6458
ay):
23.3325
23.3325
23.32524
0.0000 | 64.2962
0.0000
29.1100
Jun
93.4062
114.8538
17.2281
22.5798
22.5798
22.5798
22.5120
0.0000 | 62.8236
0.0000
29.1100
Jul
91.9336
111.1857
16.6779
23.3325
23.3325
23.2624
0.0000 | 64.4565
0.0000
30.4037
Aug
94.8602
117.4568
17.6185
23.3325
23.3325
23.2624
0.0000 | 0.0000
31.6975
Sep
97.9439
120.7747
18.1162
22.5798
22.5798
22.5798
22.5120
0.0000 | 0.0000
32.9913
Oct
102.0194
138.4393
Total = 20.7659
23.3325
23.3325
23.2624
0.0000 | 0.0000 34.2851 Nov 106.5288 151.7698 Sum (45)m = 22.7655 22.5798 22.5798 22.5798 22.5120 0.0000 | 74.8447 0.0000 35.5788 101.6141 Dec 110.4235 172.8966 1687.9455 25.9345 150.0000 1.93938 0.5400 0.7527 23.3325 23.32524 0.0000 | (42) (42) (42) (43) (44) (45) (47) (47) (49) (55) (56) (56) (61) | | I. Water heating energiassumed occupancy into water usage for more provided to the second occupancy into the second occupancy occupa | gy requireme- ixer showers 25 74.003 atchs 0.000 | nts (kWh/year | 69.2101
0.0000
31.6975
Apr
100.9076
138.1375
20.7206
cown (kWh/da
22.5798
22.5798
22.5120
0.0000
ed for each
183.2294
-26.3393
-0.0000
0.0000
0.0000
0.0000 | 66.8870 0.0000 30.4037 May 97.2907 130.9720 19.6458 ay): 23.3325 23.3252 0.0000 month 177.5669 -24.5473 -0.0000 0.0000 0.0000 | 64.2962
0.0000
29.1100
Jun
93.4062
114.8538
17.2281
22.5798
22.5798
22.5798
22.5120
0.0000
159.9456
-21.0053
-0.0000
0.0000
0.0000 | 62.8236 0.0000 29.1100 Jul 91.9336 111.1857 16.6779 23.3325 23.3325 23.2624 0.0000 157.7806 -19.6891 -0.0000 0.0000 0.0000 | 64.4565 0.0000 30.4037 Aug 94.8602 117.4568 17.6185 23.3325 23.3325 23.2624 0.0000 164.0517 -20.9374 -0.0000 0.0000 0.0000 | 0.0000 31.6975 Sep 97.9439 120.7747 18.1162 22.5798 22.5798 22.5120 0.0000 165.8665 -21.7329 -0.0000 0.0000 0.0000 | 0.0000 32.9913 Oct 102.0194 138.4393 Total = 20.7659 23.3325 23.3325 23.2624 0.0000 185.0342 -25.6207 -0.0000 0.0000 0.0000 | 0.0000 34.2851 Nov 106.5288 151.7698 Sum(45)m = 22.7655 22.5798 22.5798 22.5798 22.5120 0.0000 196.8616 -29.0251 -0.0000 0.0000 0.0000 | 74.8447 0.0000 35.5788 101.6141 Dec 110.4235 172.8966 1687.9455 25.9345 150.0000 1.9938 0.5400 0.7527 23.3325 23.3252 23.32624 0.0000 219.4915 -33.7114 -0.0000 0.0000 0.0000 | (422 (433 (444 (444 (444 (444 (444 (444 | | I. Water heating energy Issumed occupancy Not water usage for mi O.00 Not water usage for be | gy requireme- ixer showers 25 74.003 aths 00 0.000 ther uses 38 34.285 er use (litr Feb 14 108.288 98 154.201 1) 6)m = 0.15 x 10 23.130 eclared loss from Table 2 (55) 25 21.074 dedicated so 25 21.074 dedicated so 25 21.074 24 21.011 00 0.000 00 water hea 47 196.287 75 -30.377 750 -0.000 00 0.000 00 0.000 00 0.000 00 0.000 72 165.910 | nts (kWh/year | 69.2101
0.0000
31.6975
Apr
100.9076
138.1375
20.7206
cown (kWh/da
22.5798
22.5798
22.5120
0.0000
ed for each
183.2294
-26.3393
-0.0000
0.0000
0.0000
0.0000 | 66.8870 0.0000 30.4037 May 97.2907 130.9720 19.6458 ay): 23.3325 23.3252 0.0000 month 177.5669 -24.5473 -0.0000 0.0000 0.0000 | 64.2962
0.0000
29.1100
Jun
93.4062
114.8538
17.2281
22.5798
22.5798
22.5798
22.5120
0.0000
159.9456
-21.0053
-0.0000
0.0000
0.0000 | 62.8236 0.0000 29.1100 Jul 91.9336 111.1857 16.6779 23.3325 23.3325 23.2624 0.0000 157.7806 -19.6891 -0.0000 0.0000 0.0000 | 64.4565 0.0000 30.4037 Aug 94.8602 117.4568 17.6185 23.3325 23.3325 23.3325 23.3252 40.0000 164.0517 -20.9374 -0.0000 0.0000 0.00000 143.1143 | 0.0000 31.6975 Sep 97.9439 120.7747 18.1162 22.5798 22.5798 22.5120 0.0000 165.8665 -21.7329 -0.0000 0.0000 144.1336 | 0.0000 32.9913 Oct 102.0194 138.4393 Total = 20.7659 23.3325 23.3325 23.3624 0.0000 185.0342 -25.6207 -0.0000 0.0000 159.4136 | 0.0000 34.2851 Nov 106.5288 151.7698 Sum(45)m = 22.7655 22.5798 22.5798 22.5798 22.5120 0.0000 196.8616 -29.0251 -0.0000 0.0000 0.0000 | 74.8447 0.0000 35.5788 101.6141 Dec 110.4235 172.8966 1687.9455 25.9345 150.0000 0.7527 23.3325 23.3252 23.32624 0.0000 219.4915 -33.7114 -0.0000 0.0000 185.7801 1917.4206 | (422 (423 (433 (444 (444 (444 (444 (444 | | Summed occupancy lot water usage for mi 75.13. Not water usage for be 0.000 Not water usage for be 10.000 storage loss usage for be | gy requireme- ixer showers 25 74.003 aths 00 0.000 ther uses 38 34.285 er use (litr Feb 14 108.288 98 154.201 1) 6)m = 0.15 x 10 23.130 eclared loss from Table 2 (55) 25 21.074 dedicated soc 25 21.074 dedicated soc 27 21.011 00 0.000 00 0.000 00 0.000 072 165.910 | nts (kWh/year | 69.2101
0.0000
31.6975
Apr
100.9076
138.1375
20.7206
own (kWh/di
22.5798
22.5798
22.5798
22.5120
0.0000
ed for each
183.2294
-26.3393
-0.0000
0.0000
156.8901 | 66.8870 0.0000 30.4037 May 97.2907 130.9720 19.6458 ay): 23.3325 23.3325 23.3254 0.0000 month 177.5669 -24.5473 -0.0000 0.0000 0.0000 153.0196 | 64.2962
0.0000
29.1100
Jun
93.4062
114.8538
17.2281
22.5798
22.5798
22.5798
22.5120
0.0000
159.9456
-21.0053
-0.0000
0.0000
0.0000
138.9404 | 62.8236 0.0000 29.1100 Jul 91.9336 111.1857 16.6779 23.3325 23.3325 23.3252 23.2624 0.0000 157.7806 -19.6891 -0.0000 0.0000 138.0915 | 64.4565 0.0000 30.4037 Aug 94.8602 117.4568 17.6185 23.3325 23.3325 23.3325 23.32624 0.0000 164.0517 -20.9374 -0.0000 0.0000 143.1143 Total pe | 0.0000 31.6975 Sep 97.9439 120.7747 18.1162 22.5798 22.5798 22.5120 0.0000 165.8665 -21.7329 -0.0000 0.0000 144.1336 er year (kW | 0.0000 32.9913 Oct 102.0194 138.4393 Total = : 20.7659 23.3325 23.3325 23.32624 0.0000 185.0342 -25.6207 -0.0000 0.0000 159.4136 h/year) = : | 0.0000 34.2851 Nov 106.5288 151.7698 151.7698 22.7655 22.5798 22.5120 0.0000 196.8616 -29.0251 -0.0000 0.0000 0.0000 167.8365 Sum(64)m = | 74.8447 0.0000 35.5788 101.6141 Dec 110.4235 172.8966 1687.9455 25.9345 150.0000 0.7527 23.3325 23.3325 23.3624 0.0000 219.4915 -33.7114 -0.0000 0.0000 0.0000 185.7801 1917.4206 1917 | (42
(42
(42
(43
(43
(44
(44
(45
(45
(45
(45
(45
(45
(45
(45 | | . Water heating energy issumed occupancy for water usage for be 0.00 tot water usage for be 0.00 tot water usage for be 10.00 10.00 tater storage loss: 10.00 total | gy requireme- ixer showers 25 74.003 aths 00 0.000 ther uses 38 34.285 er use (litr Feb 14 108.288 98 154.201 1) 6)m = 0.15 x 10 23.130 eclared loss from Table 2 (55) 25 21.074 dedicated soc 25 21.074 dedicated soc 27 21.011 00 0.000 00 0.000 00 0.000 072 165.910 | nts (kWh/year | 69.2101
0.0000
31.6975
Apr
100.9076
138.1375
20.7206
cown (kWh/da
22.5798
22.5798
22.5120
0.0000
ed for each
183.2294
-26.3393
-0.0000
0.0000
156.8901 | 66.8870 0.0000 30.4037 May 97.2907 130.9720 19.6458 ay): 23.3325 23.3252 23.32524 0.0000 month 177.5669 -24.5473 -0.0000 0.0000 153.0196 | 64.2962 0.0000 29.1100 Jun 93.4062 114.8538 17.2281 22.5798 22.5798 22.5120 0.0000 159.9456 -21.0053 -0.0000 0.0000 0.0000 138.9404 | 62.8236 0.0000 29.1100 Jul 91.9336 111.1857 16.6779 23.3325 23.3325
23.2624 0.0000 157.7806 -19.6891 -0.0000 0.0000 138.0915 | 64.4565 0.0000 30.4037 Aug 94.8602 117.4568 17.6185 23.3325 23.3325 23.2624 0.0000 164.0517 -20.9374 -0.0000 0.0000 143.1143 Total pe | 0.0000 31.6975 Sep 97.9439 120.7747 18.1162 22.5798 22.5798 22.5120 0.0000 165.8665 -21.7329 -0.0000 0.0000 0.0000 144.1336 er year (kW | 0.0000 32.9913 Oct 102.0194 138.4393 Total = 20.7659 23.3325 23.3325 23.32624 0.0000 185.0342 -25.6207 -0.0000 0.0000 0.0000 159.4136 h/year) = 30.0000 | 0.0000 34.2851 Nov 106.5288 151.7698 151.7698 22.7655 22.5798 22.5120 0.0000 196.8616 -29.0251 -0.0000 0.0000 0.0000 167.8365 Sum(64)m = | 74.8447 0.0000 35.5788 101.6141 Dec 110.4235 172.8966 1687.9455 25.9345 150.0000 0.7527 23.3325 23.3325 23.3624 0.0000 219.4915 -33.7114 -0.0000 0.0000 0.0000 185.7801 1917.4206 1917 | (42 (42 (43 (44 (45 (45 (45 (45 (45 (45 (45 (45 (45 | | I. Water heating energy Issumed occupancy Not water usage for by 0.000 Not water usage for by 0.000 Not water usage for by 10.71 Not water usage | gy requireme- ixer showers 25 74.003 aths 00 0.000 ther uses 38 34.285 er use (litr Feb 14 108.288 98 154.201 1) 6)m = 0.15 x 10 23.130 eclared loss from Table 2 (55) 25 21.074 dedicated so 25 21.074 dedicated so 27 196.28 | nts (kWh/year | 69.2101
0.0000
31.6975
Apr
100.9076
138.1375
20.7206
cown (kWh/da
22.5798
22.5798
22.5798
22.5798
22.5120
0.0000
ed for each
183.2294
-26.3393
-0.0000
0.0000
0.0000
156.8901 | 66.8870 0.0000 30.4037 May 97.2907 130.9720 19.6458 ay): 23.3325 23.3325 23.3252 24.0.0000 month 177.5669 -24.5473 -0.0000 0.0000 153.0196 | 64.2962 0.0000 29.1100 Jun 93.4062 114.8538 17.2281 22.5798 22.5798 22.5798 22.5120 0.0000 159.9456 -21.0053 -0.0000 0.0000 0.0000 138.9404 0.0000 ed by inste | 62.8236 0.0000 29.1100 Jul 91.9336 111.1857 16.6779 23.3325 23.3325 23.3252 23.2624 0.0000 157.7806 -19.6891 -0.0000 0.0000 138.0915 0.0000 antaneous el | 64.4565 0.0000 30.4037 Aug 94.8602 117.4568 17.6185 23.3325 23.3325 23.3252 23.32624 0.0000 164.0517 -20.9374 -0.0000 0.0000 143.1143 Total pe | 0.0000 31.6975 Sep 97.9439 120.7747 18.1162 22.5798 22.5798 22.5120 0.0000 165.8665 -21.7329 -0.0000 0.0000 144.1336 er year (kW | 0.0000 32.9913 Oct 102.0194 138.4393 Total = : 20.7659 23.3325 23.3325 23.3624 0.0000 185.0342 -25.6207 -0.0000 0.0000 159.4136 h/year) = : 0.0000 /year) = S | 0.0000 34.2851 Nov 106.5288 151.7698 Sum(45)m = 22.7655 22.5798 22.5798 22.5120 0.0000 196.8616 -29.0251 -0.0000 0.0000 167.8365 Sum(64)m = 0.0000 um(64a)m = | 74.8447 0.0000 35.5788 101.6141 Dec 110.4235 172.8966 1687.9455 25.9345 150.0000 0.7527 23.3325 23.3325 23.3624 0.0000 219.4915 -33.7114 -0.0000 0.0000 185.7801 1917.4206 1917 | (42
(42
(43
(43
(43
(44
(44
(45
(47
(47
(47
(47
(47
(47
(47
(47
(47
(47 | | I. Water heating energy Issumed occupancy Not water usage for by 0.000 Not water usage for by 0.000 Not water usage for by 10.71 Not water usage | gy requireme- ixer showers 25 74.003 aths 00 0.000 ther uses 38 34.285 er use (litr Feb 14 108.288 98 154.201 1) 6)m = 0.15 x 10 23.130 eclared loss from Table 2 (55) 25 21.074 dedicated so 25 21.074 dedicated so 27 196.28 | nts (kWh/year | 69.2101
0.0000
31.6975
Apr
100.9076
138.1375
20.7206
cown (kWh/da
22.5798
22.5798
22.5798
22.5798
22.5120
0.0000
ed for each
183.2294
-26.3393
-0.0000
0.0000
0.0000
156.8901 | 66.8870 0.0000 30.4037 May 97.2907 130.9720 19.6458 ay): 23.3325 23.3325 23.3252 24.0.0000 month 177.5669 -24.5473 -0.0000 0.0000 153.0196 | 64.2962 0.0000 29.1100 Jun 93.4062 114.8538 17.2281 22.5798 22.5798 22.5798 22.5120 0.0000 159.9456 -21.0053 -0.0000 0.0000 0.0000 138.9404 0.0000 ed by inste | 62.8236 0.0000 29.1100 Jul 91.9336 111.1857 16.6779 23.3325 23.3325 23.3252 23.2624 0.0000 157.7806 -19.6891 -0.0000 0.0000 138.0915 0.0000 antaneous el | 64.4565 0.0000 30.4037 Aug 94.8602 117.4568 17.6185 23.3325 23.3325 23.3252 23.32624 0.0000 164.0517 -20.9374 -0.0000 0.0000 143.1143 Total pe | 0.0000 31.6975 Sep 97.9439 120.7747 18.1162 22.5798 22.5798 22.5120 0.0000 165.8665 -21.7329 -0.0000 0.0000 144.1336 er year (kW | 0.0000 32.9913 Oct 102.0194 138.4393 Total = : 20.7659 23.3325 23.3325 23.3624 0.0000 185.0342 -25.6207 -0.0000 0.0000 159.4136 h/year) = : 0.0000 /year) = S | 0.0000 34.2851 Nov 106.5288 151.7698 Sum(45)m = 22.7655 22.5798 22.5798 22.5120 0.0000 196.8616 -29.0251 -0.0000 0.0000 167.8365 Sum(64)m = 0.0000 um(64a)m = | 74.8447 0.0000 35.5788 101.6141 Dec 110.4235 172.8966 1687.9455 25.9345 150.0000 0.7527 23.3325 23.3325 23.3624 0.0000 219.4915 -33.7114 -0.0000 0.0000 185.7801 1917.4206 1917 | (42 (42 (43 (44 (44 (45 (45 (45 (45 (45 (45 (45 (45 | | . Water heating energy ussumed occupancy lot water usage for br 0.00 lot water usage for br 0.00 lot water usage for br 10.00 lot water usage loss linergy conte 175.33 linergy content (annual listribution loss (44 26.30) later storage loss: loter volume 10.1f manufacturer de Temperature factor: loter (49) or (54) in lotal storage loss 23.33 f cylinder contains f cylinder contains loter (49) or (54) in lotal storage loss 23.33 f cylinder contains loter (49) or (54) (54) loter (49) or (54) loter (54) loter (55) loter (54) loter (55) loter (56) | gy requireme- ixer showers 25 74.003 atchs 0 0.000 cher uses 38 34.285 er use (litr Feb 14 108.288 98 154.201 1) 6)m = 0.15 x 10 23.130 eclared loss from Table 2 (55) 225 21.074 24 21.011 0 0.000 cor water hea 0 16.287 75 -30.377 00 -0.000 00 0.000 72 165.910 (year) 00 0.000 heating, KW 64 84.940 | nts (kWh/year | 69.2101
0.0000
31.6975
Apr
100.9076
138.1375
20.7206
own (kWh/da
22.5798
22.5798
22.5798
22.5120
0.0000
ed for each
183.2294
-26.3393
-0.0000
0.0000
156.8901
0.0000
Tota | 66.8870 0.0000 30.4037 May 97.2907 130.9720 19.6458 ay): 23.3325 23.3252 23.3252 0.0000 month 177.5669 -24.5473 -0.0000 0.0000 153.0196 0.0000 al Energy us 80.8241 | 64.2962 0.0000 29.1100 Jun 93.4062 114.8538 17.2281 22.5798 22.5798 22.5798 22.5120 0.0000 159.9456 -21.0053 -0.0000 0.0000 138.9404 0.0000 ed by insta | 62.8236 0.0000 29.1100 Jul 91.9336 111.1857 16.6779 23.3325 23.3252 23.3252 20.0000 157.7806 -19.6891 -0.0000 0.0000 138.0915 0.0000 antaneous el 74.2452 | 64.4565 0.0000
30.4037 Aug 94.8602 117.4568 17.6185 23.3325 23.3325 23.3252 40.0000 164.0517 -20.9374 -0.0000 0.0000 143.1143 Total pe 0.0000 Rectric shot 76.3303 | 0.0000 31.6975 Sep 97.9439 120.7747 18.1162 22.5798 22.5798 22.5120 0.0000 165.8665 -21.7329 -0.0000 0.0000 144.1336 er year (kW | 0.0000 32.9913 Oct 102.0194 138.4393 Total = : 20.7659 23.3325 23.3325 23.3624 0.0000 185.0342 -25.6207 -0.0000 0.0000 159.4136 h/year) = : 0.0000 /year) = S | 0.0000 34.2851 Nov 106.5288 151.7698 Sum(45)m = 22.7655 22.5798 22.5798 22.5120 0.0000 196.8616 -29.0251 -0.0000 0.0000 167.8365 Sum(64)m = 0.0000 um(64a)m = | 74.8447 0.0000 35.5788 101.6141 Dec 110.4235 172.8966 1687.9455 25.9345 150.0000 0.7527 23.3325 23.3325 23.3624 0.0000 219.4915 -33.7114 -0.0000 0.0000 185.7801 1917.4206 1917 | (44 (44 (44 (44 (45 (46 (46 (46 (46 (46 (46 (46 (46 (46 (46 | | I. Water heating energy Issumed occupancy Issumed occupancy Internal gains Issumed occupancy Issum | gy requireme- ixer showers 25 74.003 atchs 00 0.000 ther uses 38 34.285 er use (litr Feb 14 108.288 98 154.201 1) 6)m = 0.15 x 10 23.130 eclared loss from Table 2 (55) 25 21.074 dedicated sc | nts (kWh/year | 69.2101
0.0000
31.6975
Apr
100.9076
138.1375
20.7206
own (kWh/da
22.5798
22.5798
22.5798
22.5120
0.0000
ed for each
183.2294
-26.3393
-0.0000
0.0000
156.8901
0.0000
Tota
82.0042 | 66.8870 0.0000 30.4037 May 97.2907 130.9720 19.6458 ay): 23.3325 23.3325 23.2624 0.0000 month 177.5669 -24.5473 -0.0000 0.0000 153.0196 0.0000 al Energy us 80.8241 | 64.2962
0.0000
29.1100
Jun
93.4062
114.8538
17.2281
22.5798
22.5798
22.5798
22.5120
0.0000
0.0000
159.9456
-21.0053
-0.0000
0.0000
138.9404
0.0000
ied by insta | 62.8236 0.0000 29.1100 Jul 91.9336 111.1857 16.6779 23.3325 23.3325 23.3325 23.3254 0.0000 157.7806 -19.6891 -0.0000 0.0000 138.0915 0.0000 antaneous el 74.2452 | 64.4565 0.0000 30.4037 Aug 94.8602 117.4568 17.6185 23.3325 23.3325 23.3325 23.32624 0.0000 164.0517 -20.9374 -0.0000 0.0000 143.1143 Total pe 0.0000 lectric show | 0.0000 31.6975 Sep 97.9439 120.7747 18.1162 22.5798 22.5798 22.5798 22.5120 0.0000 165.8665 -21.7329 -0.0000 0.0000 144.1336 er year (kW 0.0000 ver(s) (kWh 76.2310 | 0.0000 32.9913 Oct 102.0194 138.4393 Total = : 20.7659 23.3325 23.3325 23.3624 0.0000 185.0342 -25.6207 -0.0000 0.0000 159.4136 h/year) = : 0.0000 /year) = S | 0.0000 34.2851 Nov 106.5288 151.7698 Sum(45)m = 22.7655 22.5798 22.5798 22.5120 0.0000 196.8616 -29.0251 -0.0000 0.0000 167.8365 Sum(64)m = 0.0000 um(64a)m = | 74.8447 0.0000 35.5788 101.6141 Dec 110.4235 172.8966 1687.9455 25.9345 150.0000 0.7527 23.3325 23.3325 23.3624 0.0000 219.4915 -33.7114 -0.0000 0.0000 185.7801 1917.4206 1917 | (42 (43 (44 (45 (45 (45 (45 (45 (45 (45 (45 (45 | | I. Water heating energy Issumed occupancy Issumed occupancy Internal gains Issumed occupancy Issum | gy requireme- ixer showers 25 74.003 atchs 00 0.000 ther uses 38 34.285 er use (litr Feb 14 108.288 98 154.201 1) 6)m = 0.15 x 10 23.130 eclared loss from Table 2 (55) 25 21.074 dedicated sc | nts (kWh/year | 69.2101
0.0000
31.6975
Apr
100.9076
138.1375
20.7206
own (kWh/da
22.5798
22.5798
22.5798
22.5120
0.0000
ed for each
183.2294
-26.3393
-0.0000
0.0000
156.8901
0.0000
Tota
82.0042 | 66.8870 0.0000 30.4037 May 97.2907 130.9720 19.6458 ay): 23.3325 23.3325 23.2624 0.0000 month 177.5669 -24.5473 -0.0000 0.0000 153.0196 0.0000 al Energy us 80.8241 | 64.2962
0.0000
29.1100
Jun
93.4062
114.8538
17.2281
22.5798
22.5798
22.5798
22.5120
0.0000
0.0000
159.9456
-21.0053
-0.0000
0.0000
138.9404
0.0000
ied by insta | 62.8236 0.0000 29.1100 Jul 91.9336 111.1857 16.6779 23.3325 23.3325 23.3325 23.3254 0.0000 157.7806 -19.6891 -0.0000 0.0000 138.0915 0.0000 antaneous el 74.2452 | 64.4565 0.0000 30.4037 Aug 94.8602 117.4568 17.6185 23.3325 23.3325 23.3325 23.32624 0.0000 164.0517 -20.9374 -0.0000 0.0000 143.1143 Total pe 0.0000 lectric show | 0.0000 31.6975 Sep 97.9439 120.7747 18.1162 22.5798 22.5798 22.5798 22.5120 0.0000 165.8665 -21.7329 -0.0000 0.0000 144.1336 er year (kW 0.0000 ver(s) (kWh 76.2310 | 0.0000 32.9913 Oct 102.0194 138.4393 Total = 20.7659 23.3325 23.32524 0.0000 185.0342 -25.6207 -0.0000 0.0000 0.0000 159.4136 h/year) = 30.0000 /year) = S 83.3070 | 0.0000 34.2851 Nov 106.5288 151.7698 Sum(45)m = 22.7655 22.5798 22.5798 22.5798 22.5120 0.0000 196.8616 -29.0251 -0.0000 0.0000 0.0000 0.0000 167.8365 Sum(64)m = 0.0000 um(64a)m = 86.5369 | 74.8447 0.0000 35.5788 101.6141 Dec 110.4235 172.8966 1687.9455 25.9345 150.0000 0.7527 23.3325 23.3325 23.3624 0.0000 219.4915 -33.7114 -0.0000 0.0000 185.7801 1917.4206 1917 0.0000 94.7640 | (42) (42) (43) (44) (44) (45) (46) (63) (63) (63) (63) (63) (64) (64) (64) (64) (64) (64) (64) | | I. Water heating energy Issumed occupancy Issumed occupancy Internal gains (Table 2016 Internal gains (Table 2017 Internal gains (Table 2017 Internal gains (Table 2018 Internal gains (Table 2018 Internal gains (Table Jan Jan Jan Jan Jan Jan Jan Ja | gy requireme- ixer showers 25 74.003 aths 00 0.000 ther uses 38 34.285 er use (litr Feb 14 108.288 98 154.201 1) 6)m = 0.15 x 10 23.130 eclared loss from Table 2 (55) 25 21.074 dedicated so 25 21.074 24 21.011 00 0.000 or water hea 47 196.287 196 | nts (kWh/year | 69.2101 0.0000 31.6975 Apr 100.9076 138.1375 20.7206 own (kWh/da) 22.5798 22.5798 22.5798 22.5120 0.0000 ed for each 183.2294 -26.3393 -0.0000 0.0000 156.8901 0.0000 Total | 66.8870 0.0000 30.4037 May 97.2907 130.9720 19.6458 ay): 23.3325 23.3252 23.2624 0.0000 month 177.5669 -24.5473 -0.0000 0.0000 153.0196 0.0000 al Energy us 80.8241 | 64.2962 0.0000 29.1100 Jun 93.4062 114.8538 17.2281 22.5798 22.5798 22.5798 22.5720 0.0000 0.0000 138.9404 0.0000 138.9404 0.0000 138.9404 Jun 102.2793 | 62.8236 0.0000 29.1100 Jul 91.9336 111.1857 16.6779 23.3325 23.3325 23.3325 23.3254 0.0000 157.7806 -19.6891 -0.0000 0.0000 138.0915 0.0000 antaneous el 74.2452 Jul 102.2793 | 64.4565 0.0000 30.4037 Aug 94.8602 117.4568 17.6185 23.3325 23.3252 23.3252 23.32624 0.0000 164.0517 -20.9374 -0.0000 0.0000 143.1143 Total pe 0.0000 143.1143 Total pe 0.0000 143.1143 Total pe 0.0000 143.143 Total pe 0.0000 143.143 Total pe | 0.0000 31.6975 Sep 97.9439 120.7747 18.1162 22.5798 22.5798 22.5798 22.5120 0.0000 165.8665 -21.7329 -0.0000 0.0000 144.1336 er year (kW | 0.0000 32.9913 Oct 102.0194 138.4393 Total = 20.7659 23.3325 23.3325 23.3325 23.32624 0.0000 185.0342 -25.6207 -0.0000 0.0000 159.4136 h/year) = 3 83.3070 Oct | 0.0000 34.2851 Nov 106.5288 151.7698 151.7698 Sum (45)m = 22.7655 22.5798
22.5798 22 | 74.8447 0.0000 35.5788 101.6141 Dec 110.4235 172.8966 1687.9455 25.9345 150.0000 0.7527 23.3325 23.3325 23.3624 0.0000 219.4915 -33.7114 -0.0000 0.0000 185.7801 1917 0.0000 0.0000 94.7640 Dec | (42 (42 (42 (42 (43 (44 (44 (45 (45 (46 (46 (46 (46 (46 (46 (46 (46 (46 (46 | | I. Water heating energiassumed occupancy iot water usage for me of the control of the control occupancy iot water usage for me of the control occupancy iot water usage for be of the control occupancy iot water usage for be of the control occupancy iot water usage for be of the control occupancy iot water usage for be of the control occupancy interced to the control occupancy iot io | gy requirements in the state of | nts (kWh/year | 69.2101 0.0000 31.6975 Apr 100.9076 138.1375 20.7206 own (kWh/da 22.5798 22.5798 22.5798 22.5120 0.0000 ed for each 183.2294 -26.3393 -0.0000 0.0000 156.8901 0.0000 Tot: 82.0042 Apr 102.2793 tion 19 or : 95.0407 | 66.8870 0.0000 30.4037 May 97.2907 130.9720 19.6458 ay): 23.3325 23.3325 23.3254 0.0000 month 177.5669 -24.5473 -0.0000 153.0196 0.0000 al Energy us 80.8241 May 102.2793 L9a), also s 91.9748 | 64.2962 0.0000 29.1100 Jun 93.4062 114.8538 17.2281 22.5798 22.5798 22.5798 22.5798 22.5120 0.0000 0.0000 159.9456 -21.0053 -0.0000 0.0000 138.9404 0.0000 ed by insta | 62.8236 0.0000 29.1100 Jul 91.9336 111.1857 16.6779 23.3325 23.3325 23.3252 40.0000 157.7806 -19.6891 -0.0000 0.0000 138.0915 0.0000 138.0915 0.0000 antaneous el 74.2452 Jul 102.2793 91.9748 | 64.4565 0.0000 30.4037 Aug 94.8602 117.4568 17.6185 23.3325 23.3325 23.2624 0.0000 164.0517 -20.9374 -0.0000 0.0000 143.1143 Total periods of the control | 0.0000 31.6975 Sep 97.9439 120.7747 18.1162 22.5798 22.5798 22.5798 22.5120 0.0000 165.8665 -21.7329 -0.0000 0.0000 144.1336 er year (kW 0.0000 ver(s) (kWh 76.2310 | 0.0000 32.9913 Oct 102.0194 138.4393 Total = 20.7659 23.3325 23.3325 23.3325 23.3325 23.0624 0.0000 185.0342 -25.6207 -0.0000 0.0000 159.4136 h/year) = \$ 0.0000 /year) = \$ 83.3070 Oct 102.2793 | 0.0000 34.2851 Nov 106.5288 151.7698 Sum(45)m = 22.7655 22.5798 22.5798 22.5798 22.5120 0.0000 196.8616 -29.0251 -0.0000 0.0000 167.8365 Sum(64)m = 0.0000 um(64a)m = 86.5369 | 74.8447 0.0000 35.5788 101.6141 Dec 110.4235 172.8966 1687.9455 25.9345 150.0000 0.7527 23.3325 23.3325 23.3624 0.0000 219.4915 -33.7114 -0.0000 0.0000 185.7801 1917 0.0000 0.0000 94.7640 Dec | (42 (42 (42 (43 (44 (45 (45 (46 (45 (46 (46 (46 (46 (46 (46 (46 (46 (46 (46 | SAP 10 Online 2.13.11 Page 5 of 7 | Pumps, fans
Losses e.g. e
Water heating
Total interna | -81.8234
gains (Tab
128.4629
l gains | (negative v
-81.8234 | -81.8234
122.4647 | 33.2279
3.0000
le 5)
-81.8234
113.8947
431.5370 | 33.2279
3.0000
-81.8234
108.6346
410.6546 | 33.2279
0.0000
-81.8234
103.1422
393.4267 | 33.2279
0.0000
-81.8234
99.7919
379.1267 | 33.2279
0.0000
-81.8234
102.5945
380.0751 | 33.2279
0.0000
-81.8234
105.8765
391.0953 | 33.2279
3.0000
-81.8234
111.9718
407.0719 | 33.2279
3.0000
-81.8234
120.1902
430.9126 | 33.2279
3.0000
-81.8234
127.3710
446.8289 | (70)
(71)
(72) | |---|--|---|--|--|---|---|--|---|---|---|---|---|-------------------------| | 6. Solar gain | | | | | | | | | | | | | | | [Jan] | | | A | rea
m2 | Solar flux
Table 6a
W/m2 | Speci
or | g
fic data
Table 6b | Specific
or Tab | FF
data
le 6c | Acces
facto
Table 6 | or | Gains
W | | | Northeast | | | 11.2 | 700 | 11.2829 | | | 0 | .7000 | 0.770 | 00 | 38.8614 | (75) | | Solar gains
Total gains | 494.6661 | 544.5535 | 589.5075 | 665.5945 | 725.2738 | 728.8441 | 692.9028 | 630.2210 | 173.6619
564.7573 | 96.6707
503.7426 | 48.8977
479.8103 | 31.7361
478.5650 | (83)
(84) | | 7. Mean inter | nal tempera | ture (heati | ng season) | | | | | | | | | | | | Temperature d
Utilisation f | actor for g | ains for li | ving area, n | nil,m (see | Table 9a) | | | | | | | 21.0000 | (85) | | tau
alpha
util living a | 132.8334
9.8556
rea | 133.1363
9.8758 | 9.8956 | 134.8537
9.9902 | 135.1226
10.0082 | 10.0926 | Jul
136.3885
10.0926 | Aug
136.6255
10.1084 | 10.0599 | Oct
135.1226
10.0082 | 9.9720 | Dec
134.0169
9.9345 | | | MIT | 0.9996
20.4536 | 0.9987
20.5448 | 0.9939 | 0.9454
20.8950 | 0.7587 | 0.5240 | 0.3792 | 0.4351 | 0.7234 | 0.9758 | 0.9984 | 0.9997 | | | Th 2
util rest of | 20.0964 | 20.0983 | 20.1001 | 20.1088 | 20.1104 | 20.1179 | 20.1179 | 20.1193 | 20.1150 | 20.1104 | 20.1071 | 20.4396 | | | MIT 2
Living area f | raction | 0.9979
19.5866 | 0.9900
19.7735 | 0.9165
20.0200 | 0.6930
20.1047 | 0.4520
20.1178 | 0.3032
20.1179 | 0.3518
20.1193 | 0.6358
20.1131
fLA = | 0.9562
19.9889
Living area | 0.9972
19.6978
1/(4) = | 0.9995
19.4567
0.3851 | (90)
(91) | | MIT
Temperature a
adjusted MIT | | 19.9556 | 20.1270 | 20.3570 | 20.4454 | 20.4575 | 20.4576 | 20.4585 | 20.4527 | 20.3244 | 20.0552 | 19.8352
0.0000
19.8352 | | | 8. Space heat | | |
Mar | Apr | May | Jun | Jul |
 | Sep | Oct | Nov | Dec | | | Utilisation Useful gains Ext temp. Heat loss rat | 4.3000 | | 0.9901
583.6779
6.5000 | 0.9256
616.0822
8.9000 | 0.7184
521.0376 | 0.4798
349.6713
14.6000 | 0.3325
230.3576
16.6000 | 0.3839 | 0.6699
378.3432
14.1000 | 0.9620
484.5791
10.6000 | 0.9971
478.4129
7.1000 | 0.9995
478.3039
4.2000 | (95) | | Space heating | 953.2984
kWh | 921.0131 | | 691.9449 | | 349.7815 | 230.3599 | 241.9331 | 380.7225 | 586.1386 | 784.0198 | 950.1860 | (97) | | Space heating
Solar heating | requirement | _ | er year (kW) | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 75.5602 | | 351.0803
1485.7114 | | | Solar heating
Space heating | contributi | 0.0000
on - total p | | 0.0000
Wh/year) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating
Space heating | 341.4981
requirement | 253.8172
t after sol | | | 4.5302
al per year | 0.0000
(kWh/year) | 0.0000 | 0.0000 | 0.0000 | | 220.0370 | 351.0803
1485.7114
23.8515 | | |
9a. Energy re | auirements | | l heating s | | luding micro | | | | | | | | | | Fraction of s
Fraction of s
Efficiency of
Efficiency of
Efficiency of | pace heat fi
pace heat fi
main space
main space | rom seconda
rom main sy
heating sy
heating sy
supplementa | ry/supplementstem(s) stem(s) stem 1 (in stem 2 | ntary syste
%)
%) | | | | | | | | 0.0000
1.0000
92.3000
0.0000 | (202)
(206)
(207) | | Space heating | | Feb
t
253.8172 | Mar | Apr
54.6211 | May
4.5302 | Jun
0.0000 | Jul
0.0000 |
Aug
0.0000 | Sep
0.0000 | Oct
75.5602 | Nov
220.0370 | Dec
351.0803 | (00) | | Space heating | efficiency | | ing system : | 1) | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 92.3000 | 92.3000 | 92.3000 | | | Space heating | fuel (main
369.9871 | heating sy
274.9916 | stem)
199.9646 | 59.1778 | 4.9081 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 81.8637 | 238.3933 | 380.3687 | | | Space heating
Space heating | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (212) | | Space heating | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (213) | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating
Water heating
Efficiency of | requirement
187.5872 | 165.9100 | 176.7038 | 156.8901 | 153.0196 | 138.9404 | 138.0915 | 143.1143 | 144.1336 | 159.4136 | 167.8365 | 185.7801
79.8000 | | | (217)m
Fuel for wate | 85.3857
r heating, 1 | 85.0102
kWh/month | | 81.9448 | 80.0332 | 79.8000 | 79.8000 | 79.8000 | 79.8000 | 82.4884 | 84.6680 | 85.4645 | (217) | | Space cooling
(221)m | fuel requi: | rement | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Pumps and Fa
Lighting
Electricity g | 7.3041
19.1106 | 6.5973
15.3312 | 7.3041
13.8040 | 7.0685
10.1134 | 7.3041
7.8119 | 7.0685
6.3824 | 7.3041 | 7.3041
9.2630 | 7.0685
12.0317 | 7.3041
15.7863 | 7.0685
17.8306 | 7.3041
19.6417 | (231) | | (233a)m
Electricity g | -21.2892
enerated by | -31.0349
wind turbi | -46.1166
nes (Append: | -53.6723
ix M) (nega | -59.4691
tive quantit | ΣY) | | | | -36.3112 | -23.7709 | | | | (234a)m
Electricity g | | | 0.0000
tric genera | | | 0.0000
ative quant | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234a) | SAP 10 Online 2.13.11 Page 6 of 7 | (235a)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0 0 0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235a) | |--|--|-------------|--|-----------|--|---| | Electricity used or net electricity generated by micro-CHP (Appendix N) (negative if ne (235c)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | et generation) | | 0.0000 | 0.0000 | 0.0000 | . , | | Electricity generated by PVs (Appendix M) (negative quantity) (233b)m -9.1125 -19.4417 -39.1457 -59.5300 -79.4240 -80.0464 -79.08 | | | -28.0276 | -12.2401 | -7.1845 | | | Electricity generated by wind turbines (Appendix M) (negative quantity) (234b)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234b) | | Electricity generated by hydro-electric generators (Appendix M) (negative quantity) (235b)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235b) | | Electricity used or net electricity generated by micro-CHP (Appendix N) (negative if ne (235d)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 | et generation)
000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235d) | | Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - main system 2 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel | | | | | 1609.6548
0.0000
0.0000
79.8000
2323.4590
0.0000 | (213)
(215)
(219) | | Electricity for pumps and fans:
Total electricity for the above, kWh/year
Electricity for lighting (calculated in Appendix L) | | | | | 86.0000
154.2331 | | | Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) Appendix Q - special features | | | | | -1026.2798
0.0000
0.0000
0.0000 | (234)
(235a) | | Energy saved or generated Energy used Total delivered energy for all uses | | | | | -0.0000
0.0000
3147.0672 | (237) | | | | | | | | | | 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP | | | | | | | | 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP | Energy | Emiss | ion factor | | Emissions | | | | kWh/year | | kg CO2/kWh | k | g CO2/year | (251) | | Space heating - main system 1 | | | ion factor
kg CO2/kWh
0.2100 | k | g CO2/year
338.0275 | (261) | | | kWh/year | | kg CO2/kWh | k | g CO2/year
338.0275
0.0000
487.9264 | (261)
(373)
(264) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating | kWh/year
1609.6548
2323.4590 | | kg CO2/kWh
0.2100
0.2100 | k | g CO2/year
338.0275
0.0000
487.9264
825.9539 | (261)
(373)
(264)
(265) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot | kWh/year
1609.6548
2323.4590
86.0000 | | kg CO2/kWh
0.2100
0.2100
0.1387 | k | g CO2/year
338.0275
0.0000
487.9264
825.9539
11.9293 | (261)
(373)
(264)
(265)
(267) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating | kWh/year
1609.6548
2323.4590 | | kg CO2/kWh
0.2100
0.2100 | k | g CO2/year
338.0275
0.0000
487.9264
825.9539 | (261)
(373)
(264)
(265)
(267) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies | kWh/year
1609.6548
2323.4590
86.0000
154.2331 | | kg CO2/kWh
0.2100
0.2100
0.1387
0.1443 | le. | g CO2/year
338.0275
0.0000
487.9264
825.9539
11.9293
22.2606 | (261)
(373)
(264)
(265)
(267) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling | kWh/year
1609.6548
2323.4590
86.0000
154.2331 | | kg CO2/kWh
0.2100
0.2100
0.1387
0.1443 | lc | g CO2/year
338.0275
0.0000
487.9264
825.9539
11.9293
22.2606 | (261)
(373)
(264)
(265)
(267) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies | kWh/year
1609.6548
2323.4590
86.0000
154.2331 | | kg CO2/kWh
0.2100
0.2100
0.1387
0.1443 | lc | g CO2/year
338.0275
0.0000
487.9264
825.9539
11.9293
22.2606 | (261)
(373)
(264)
(265)
(267)
(268) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported | kWh/year
1609.6548
2323.4590
86.0000
154.2331 | | kg CO2/kWh
0.2100
0.2100
0.1387
0.1443 | lc | g CO2/year
338.0275
0.0000
487.9264
825.9539
11.9293
22.2606 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year | kWh/year
1609.6548
2323.4590
86.0000
154.2331 | | kg CO2/kWh
0.2100
0.2100
0.1387
0.1443 | lc | g CO2/year
338.0275
0.0000
487.9264
825.9539
11.9293
22.2606
-66.6712
-66.3173
-132.9885
727.1553 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling FV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) | kWh/year
1609.6548
2323.4590
86.0000
154.2331
-498.0124
-528.2674 | Primary ene | kg
CO2/kWh
0.2100
0.2100
0.1387
0.1443
0.1339
0.1255 | k | g CO2/year
338.0275
0.0000
487.9264
825.9539
11.9293
22.2606
-66.6712
-66.3173
-132.9885
727.1553
11.6700 | (261)
(373)
(264)
(265)
(267)
(268)
(268)
(269)
(272)
(273) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) | kWh/year
1609.6548
2323.4590
86.0000
154.2331
-498.0124
-528.2674 | Primary ene | kg CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1339 0.1255 | k | g CO2/year
338.0275
0.0000
487.9264
825.9539
11.9293
22.2606
-66.6712
-66.3173
-132.9885
727.1553
11.6700 | (261)
(373)
(264)
(265)
(267)
(268)
(268)
(269)
(272)
(273) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling FV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) | kWh/year
1609.6548
2323.4590
86.0000
154.2331
-498.0124
-528.2674 | Primary ene | kg CO2/kWh
0.2100
0.2100
0.1387
0.1443
0.1339
0.1255 | k | g CO2/year
338.0275
0.0000
487.9264
825.9539
11.9293
22.2606
-66.6712
-66.3173
-132.9885
727.1553
11.6700 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272)
(273) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) | kWh/year
1609.6548
2323.4590
86.0000
154.2331
-498.0124
-528.2674 | Primary ene | kg CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1339 0.1255 | k | g CO2/year
338.0275
0.0000
487.9264
825.9539
11.9293
22.2606
-66.6712
-66.3173
-132.9885
727.1553
11.6700 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272)
(273)
(273) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating | kWh/year
1609.6548
2323.4590
86.0000
154.2331
-498.0124
-528.2674
Energy
kWh/year
1609.6548
2323.4590 | Primary ene | kg CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1339 0.1255 crgy factor kg CO2/kWh 1.1300 1.1300 | k
Prim | g CO2/year
338.0275
0.0000
487.9264
825.9539
11.9293
22.2606
-66.6712
-66.3173
-132.9885
727.1553
11.6700
ary energy
kWh/year
1818.9100
0.0000
265.5087
4444.4187 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272)
(273)
(273)
(275)
(473)
(278)
(279) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) | kWh/year
1609.6548
2323.4590
86.0000
154.2331
-498.0124
-528.2674
Energy
kWh/year
1609.6548 | Primary ene | kg CO2/kWh
0.2100
0.2100
0.1387
0.1443
0.1339
0.1255
rgy factor
kg CO2/kWh
1.1300 | k
Prim | g CO2/year
338.0275
0.0000
487.9264
825.9539
11.9293
22.2606
-66.6712
-66.3173
-132.9885
727.1553
11.6700 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272)
(273)
(273)
(275)
(473)
(278)
(278)
(278) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy saving/generation technologies | kWh/year
1609.6548
2323.4590
86.0000
154.2331
-498.0124
-528.2674
-528.2674
-528.2674
2323.4590
86.0000
154.2331 | Primary ene | kg CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1339 0.1255 crgy factor kg CO2/kWh 1.1300 1.5128 1.5338 | k | g CO2/year
338.0275
0.0000
487.9264
825.9539
22.2606
-66.6712
-66.3173
-132.9885
727.1553
11.6700
ary energy
kWh/year
1818.9100
0.0000
2625.5087
4444.4187
236.5679 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272)
(273)
(273)
(273)
(278)
(278)
(278)
(279)
(281)
(282) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling Energy saving/generation technologies PV Unit electricity used in dwelling | KWh/year
1609.6548
2323.4590
86.0000
154.2331
-498.0124
-528.2674
Energy
kWh/year
1609.6548
2323.4590
86.0000
154.2331 | Primary ene | kg CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1339 0.1255 crgy factor kg CO2/kWh 1.1300 1.5128 1.5338 1.4947 | k | g CO2/year
338.0275
0.0000
487.9264
825.9539
11.9293
22.2606
-66.6712
-66.3173
-132.9885
727.1553
11.6700
ary energy
kWh/year
1818.9100
0.0000
2625.5087
4444.4187
130.1008
236.5679 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272)
(273)
(273)
(273)
(278)
(278)
(278)
(279)
(281)
(282) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling FV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity used in dwelling PV Unit electricity used in dwelling PV Unit electricity exported | kWh/year
1609.6548
2323.4590
86.0000
154.2331
-498.0124
-528.2674
-528.2674
-528.2674
2323.4590
86.0000
154.2331 | Primary ene | kg CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1339 0.1255 crgy factor kg CO2/kWh 1.1300 1.5128 1.5338 | k | g CO2/year
338.0275
0.0000
487.9264
825.9539
11.9293
22.2606
-66.6712
-66.3173
-132.9885
727.1553
11.6700
ary energy
kWh/year
1818.9100
0.0000
2625.5087
4444.4187
4444.4187
4444.4187
4444.4187
-744.3976
-243.4215 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272)
(273)
(273)
(273)
(278)
(279)
(281)
(282) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling Energy saving/generation technologies PV Unit electricity used in dwelling | KWh/year
1609.6548
2323.4590
86.0000
154.2331
-498.0124
-528.2674
Energy
kWh/year
1609.6548
2323.4590
86.0000
154.2331 | Primary ene | kg CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1339 0.1255 crgy factor kg CO2/kWh 1.1300 1.5128 1.5338 1.4947 | k | g CO2/year
338.0275
0.0000
487.9264
825.9539
11.9293
22.2606
-66.6712
-66.3173
-132.9885
727.1553
11.6700
ary energy
kWh/year
1818.9100
0.0000
2625.5087
4444.4187
130.1008
236.5679 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272)
(273)
(273)
(273)
(273)
(278)
(279)
(281)
(282) |
SAP 10 Online 2.13.11 Page 7 of 7 | Dwelling Address | Unit 1, Highland Square , Bristol | |------------------------------|-----------------------------------| | Report Date | 05/03/2024 | | Property Type | Flat, Semi-Detached | | Floor Area [m ²] | 62 | This document is not an Energy Performance Certificat EPC) s required by the Energy Performance of Buildings Reg io SAP 10 Online 2.13.11 Page 1 of 4 #### Breakdown of property's energy performance Each feature is assessed as one of the following: | Very Poor | Poor | Average | Good | Very Good | |-----------------------|--------------------------|--------------------|------|-------------------| | | | | | | | Feature | Description | | | gy
Performance | | Walls | Average thermal transmi | ttance 0.18 W/m²K | | Very Good | | Roof | Average thermal transmi | ttance 0.11 W/m²K | | Very Good | | Floor | Average thermal transmi | ttance 0.18 W/m²K | | Very Good | | Windows | High performance glazin | Good | | | | Main heating | Air source heat pump, ra | diators, electric | | Average | | Main heating controls | Time and temperature z | contro | | Very Good | | Secondary heating | None | | | | | Hot water | From main sys m | Average | | | | Lighting | Good ligh g efficien | | Good | | | Air tightness | Air perme 50] = | 4.5 h.m² (assumed) | | Good | #### Primary Energy use The primary energy use for this property per year is 30 kilowatt hour (kWh) per square metre #### Estim ted CO₂ missions of the dwelling The estimated ing provides an indication of the dwelling's impact on the environment in terms of carbon dioxide emissions; the higher the rating the less impact it has on the environment. The estimated CO emissions for this dwellings is: 0.2 per year SAP 10 Online 2.13.11 Page 2 of 4 With the recommended measures the potential CO emissions could be: 0 per year #### Recommendations The recommended measures provided below will help to improve the energy efficiency of the dwelli To reach the dwelling's potential energy rating all of the recommended measures shown would d to be installed. Having these measures installed individually or in any other order may give a different result omp d with the cumulative potential rating. | Recommended measure | Typical | Potential Rati | C ulative | Cumulative | |---------------------|---------|----------------|------------|------------| | | Yearly | after | avings | Potential | | | Saving | measure insta | (per year) | Rating | #### Estimated energy use and potential aving Estimated energy cost for this property over a year £457 Over a year you could save £0 The estimated cost and saving how how much the average hou ld would spend in this property heating, lighting and hot water. It not based on how e is used by the people living at the pr # Containg the ssessor and the accreditation scheme | As | sessor contact details | |---------------------------------|------------------------| | Assessor name | | | Assessor's accreditation number | | | Email Address | | SAP 10 Online 2.13.11 Page 3 of 4 | Accreditation sche | eme contact details | |----------------------|-----------------------------| | Accreditation scheme | Elmhurst Energy Systems Ltd | | Telephone | | | Email Address | | | Assessment details | | | | | | |--------------------------|---------------|--|--|--|--| | Related party disclosure | No related pa | | | | | | Date of assessment | 05/03/202 | | | | | | Date of certificate | 05/03/202 | | | | | | Type of assessment | SAP w dwellin | | | | | #### **Building Regulations England Part L (BREL) Compliance Report** Approved Document L1 2021 Edition, England assessed by Array SAP 10 program, Array Date: Tue 05 Mar 2024 08:41:58 | Project Information | | | | |---------------------|------------|-----------------|-------------------------| | Assessed By | | Building Type | Maisonette, Mid-terrace | | OCDEA Registration | EES/025661 | Assessment Date | 2024-03-05 | | Dwelling Details | | | | |-------------------------|--------------------------------|---------------------------------|-------------------| | Assessment Type | As designed | Total Floor Area | 92 m ² | | Site Reference | Unit 4 | Plot Reference | Residual | | Address | Unit 1 Highland Square, Bristo | Unit 1 Highland Square, Bristol | | | Client Details | | | |----------------|---|--| | Name | Tebby & Son | | | Company | SF Tebby & Son | | | Address | Unit 11 Avon Gorge Industrial Estate , Bristol, BS2 9XX | | This report covers items included within the SAP calculations. It is not a complete report of regulations compliance. | 1a Target emission rate and dwelling emission rate | | | | | |--|---|----|--|--| | Fuel for main heating system | Electricity | | | | | Target carbon dioxide emission rate | 11.51 kgCO ₂ /m ² | | | | | Dwelling carbon dioxide emission rate | 4.52 kgCO ₂ /m ² | OK | | | | 1b Target primary energy rate and dwelling primary energy | | | | | | Target primary energy | 60.37 kWh _{PE} /m ² | | | | | Dwelling primary energy | 47.26 kWh _{PE} /m ² | OK | | | | 1c Target fabric energy efficiency and dwelling fabric energy efficiency | | | | | | Target fabric energy efficiency | 38.1 kWh/m ² | | | | | Dwelling fabric energy efficiency | 37.4 kWh/m ² | OK | | | | 2a Fabric U-values | | | | | |--------------------|---|----------------------------------|---|-----| | Element | Maximum permitted average U-Value [W/m²K] | Dwelling average U-Value [W/m²K] | Element with highest individual U-Value | | | External walls | 0.26 | 0.18 | Walls (1) (0.18) | OK | | Party walls | 0.2 | 0 | Party Wall (1) (0) | N/A | | Curtain walls | 1.6 | 0 | N/A | N/A | | Floors | 0.18 | 0.18 | Exposed Floor (0.18) | OK | | Roofs | 0.16 | 0.11 | Roof (1) (0.11) | OK | | Windows, doors, | 1.6 | 1.31 | W01 (1.31) | OK | | and roof windows | | | | | | Rooflights | 2.2 | N/A | N/A | N/A | | 2b Envelope elements (better than typically expected values are flagged with a subsequent (!)) | | | | |--|----------------------------|------------------------------|--| | Name | Net area [m ²] | U-Value [W/m ² K] | | | Exposed wall: Walls (1) | 71.34 | 0.18 | | | Exposed wall: Walls (2) | 13.04 | 0.18 | | | Party wall: Party Wall (1) | 65.88 | 0 (!) | | | Party floor: Exposed Floor, Exposed Floor | 7.22 | 0.18 | | | Exposed roof: Roof (1) | 53.98 | 0.11 | | | 2c Openings (better than typically expected values are flagged with a subsequent (!)) | | | | | |---|------------------------|-------------|--------------|------------------------------| | Name | Area [m ²] | Orientation | Frame factor | U-Value [W/m ² K] | | W01, Windows | 2.38 | North East | 0.7 | 1.31 | | W02, Windows | 2.38 | North East | 0.7 | 1.31 | | W03, Windows | 2.38 | North East | 0.7 | 1.31 | | W04, Windows | 4.41 | North East | 0.7 | 1.31 | | W05, Windows | 2.38 | South East | 0.7 | 1.31 | | W06, Windows | 0.53 | South West | 0.7 | 1.31 | | W07, Windows | 0.53 | South West | 0.7 | 1.31 | | 2d Thermal bridging (better than typically expected values are flagged with a subsequent (!)) | | |---|--| | Building part 1 - Main Dwelling: Thermal bridging calculated from linear thermal transmittances for each junction | | Date generated: 2024-03-05 08:41:58 | Main element | Junction detail | Source | Psi value
[W/mK] | Drawing / reference | |---------------|---|--|---------------------|---------------------| | External wall | E2: Other lintels (including other steel lintels) | Not government-approved scheme | 0.023 (!) | | | External wall | E3: Sill | Calculated by person with suitable expertise | 0.021 (!) | | | External wall | E4: Jamb | Calculated by person with suitable expertise | 0.016 (!) | | | External wall | E20: Exposed floor (normal) | Calculated by person with suitable expertise | 0.116 | | | External wall | E7: Party floor between dwellings (in blocks of flats) | Calculated by person with suitable expertise | 0.038 (!) | | | Party wall | P7: Exposed floor (normal) | Calculated by person with suitable expertise | 0.185 | | | Party wall | P3: Intermediate floor between dwellings (in blocks of flats) | SAP table default | 0 (!) | | | External wall | E16: Corner (normal) | Calculated by person with suitable expertise | 0.043 | | | External wall | E25: Staggered party wall between dwellings | Calculated by person with suitable expertise | 0.036 (!) | | | External wall | E18: Party wall between dwellings | Calculated by person with suitable expertise | 0.046 | | | External wall | E21: Exposed floor (inverted) | SAP table default | 0.32 | | | Party wall | P4: Roof (insulation at ceiling level) | Calculated by person with suitable expertise | 0.101 | | | Party wall | P8: Exposed floor (inverted) | Calculated by person with suitable expertise | 0.185 | | | External wall | E14: Flat roof | SAP table default | 0.16 | | | Roof | R8: Roof to wall (rafter) | SAP table default | 0.12 | | | External wall | E6: Intermediate floor within a dwelling | Calculated by person with suitable expertise | 0.001 (!) | | | 3 Air permeability (better than typically expected values are flagged with a subsequent (!)) | | | | |--|--|----|--| | Maximum permitted air permeability at 50Pa | 8 m ³ /hm ² | | | | Dwelling air permeability at 50Pa | 4.5 m ³ /hm ² , Design value | OK | |
| Air permeability test certificate reference | | · | | | 4 Space heating | | | | |---------------------------------------|---|--|--| | Main heating system 1: Heat pump with | Main heating system 1: Heat pump with radiators or underfloor heating - Electricity | | | | Efficiency | 247.7% | | | | Emitter type | Radiators | | | | Flow temperature | 55°C | | | | System type | Heat Pump | | | | Manufacturer | Atlantic | | | | Model | Logic Air 8kW | | | | Commissioning | | | | | Secondary heating system: N/A | | | | | Fuel | N/A | | | | Efficiency | N/A | | | | Commissioning | | | | | 5 Hot water | | | |--|--------------|--| | Cylinder/store - type: Cylinder | | | | Capacity | 150 litres | | | Declared heat loss | 2.09 kWh/day | | | Primary pipework insulated | Yes | | | Manufacturer | | | | Model | | | | Commissioning | | | | Waste water heat recovery system 1 - type: N/A | | | | Efficiency | | | | Manufacturer | | | | Model | | | | 6 Controls | | | | |--|-------------------------|--|---------| | Main heating 1 - type: Time and tempera | ature zone control by | arrangement of plumbing and electrical s | ervices | | Function | | | | | Ecodesign class | | | | | Manufacturer | | | | | Model | | | | | Water heating - type: Cylinder thermosta | at and HW separately | timed | | | Manufacturer | | | | | Model | | | | | 7 Lighting | | | | | Minimum permitted light source efficacy | 75 lm/W | | | | Lowest light source efficacy | 80 lm/W | | ОК | | External lights control | N/A | | OK | | | 14/7 (| | | | 8 Mechanical ventilation | | | | | System type: N/A | T | | | | Maximum permitted specific fan power | N/A | | Lance | | Specific fan power | N/A | | N/A | | Minimum permitted heat recovery | N/A | | | | efficiency | | | Land | | Heat recovery efficiency | N/A | | N/A | | Manufacturer/Model | | | | | Commissioning | | | | | 9 Local generation | | | | | N/A | | | | | 40 Heat matricella | | | | | 10 Heat networks | | | | | N/A | | | | | 11 Supporting documentary evidence | | | | | N/A | | | | | 12 Declarations | | | | | a. Assessor Declaration | | | | | | infirmation that the co | ontents of this BREL Compliance Report | | | | | nformation submitted for this dwelling for | | | the purpose of carrying out the "As de | | | | | evidence (SAP Conventions, Appendi | | | | | documentary evidence required) has | | | | | Compliance Report. | been reviewed in the | course of preparing this bitch | | | озприанос порон. | | | | | | | | | | Signed: | | Assessor ID: | | | Oignou. | | 7.000000.15. | | | | | | | | Name: | | Date: | | | | | | | | b. Client Declaration | | | | N/A | Property Reference | Un | it 4 | | | | | | | | Issued | on Date | 05/03 | /2024 | | |---|------------------------------|------------------------|------------------------------------|-----------------------|--------------------------|--------------------|-------------------|---------|----------------------|-----------------------|----------------|----------------|------------------|----------------------| | Assessment Reference | Re | sidual | | | | | Pro | р Туре | Ref | Tebby ar | nd Son G | arage | | | | Property | Un | it 1, Highla | nd Square | , Bristol | | | | | | | | | | | | SAP Rating | | | | 81 B | | DER | | 4.52 |) | | ER | 11 | .51 | | | Environmental | | | | 96 A | | % DER | < TFR | 4.52 | - | | | | .73 | | | CO ₂ Emissions (t/year) | | | | 0.38 | | DFEE | · · · · · | 37.3 | 20 | | FEE | | .13 | | | Compliance Check | | | | See BREL | | | E < TFE | | , o | | | 1.9 | | | | % DPER < TPER | | | | 21.72 | | DPER | | 47.2 | 26 | 1 | PER | | .37 | | | | | | | | | | | | | | | | | | | Assessor Details | | | | | | | | | | , | Assesso | טון טון | 867-000 |)1 | | Client | UT DATA 5 | OD. No. | Dilal / | A - Danis | 1\ | | | | | | | | | | | SUMMARY FOR INP | UT DATA F | OR: Nev | v Build (| As Design | ied) | | | | | | | | | | | Orientation | | | | Southwest | <u> </u> | | | | | | | | | | | Property Tenture | | | | 1 | | | | | | | | | | | | Transaction Type | | | | 6 | | | | | | | | | | | | Terrain Type | | | | Urban | | | | | | | | | | | | 1.0 Property Type | | | | Maisonette | e, Mid-Terra | ce | | | | | | | | | | Position of Flat | | | | Top-floor fl | at | | | | | | | | | | | Which Floor | | | | 1 | | | | | | | | | | | | 2.0 Number of Storeys | | | | 3 | | | | | | | | | | | | .0 Date Built | | | | 2024 | | | | | | | | | | | | 3.0 Property Age Band | | | | L | | | | | | | | | | | | I.0 Sheltered Sides | | | | 3 | | | | | | | | | | | | 5.0 Sunlight/Shade | | | | Average of | r unknown | | | | | | | | | | | 6.0 Thermal Mass Param | eter | | | Precise ca | lculation | | | | | | | | | | | Thermal Mass | | | | N/A | | | | | | k | J/m²K | | | | | 7.0 Electricity Tariff | | | | Standard | | | | | | | | | | | | Smart electricity meter | fitted | | | No | | | | | | | | | | | | Smart gas meter fitted | | | | No | | | | | | | | | | | | 7.0 Measurements | Basement | | Loss P 6 | | r In | ternal Flo | | Average | Store
0.00 m | | | | | | | Gr | ound floor | : | 3.30 n | n | | 4.86 n |) ² | | 2.50 m | | | | | | | | 1st Storey
2nd Storey | : | 14.97
18.05 | m | | 59.81 r
27.28 r | n² | | 2.70 m
2.42 m | | | | | | | | 3rd Storey
4th Storey | | 0.00 n
0.00 n | | | 0.00 m
0.00 m | | | 0.00 m
0.00 m | | | | | | | | 5th Storey
6th Storey | : | 0.00 n
0.00 n | n | | 0.00 m
0.00 m | | (| 0.00 m
0.00 m | | | | | | | | 7th Storey | | 0.00 n | | | 0.00 m | | | 0.00 m | | | 3.0 Living Area | | | | 27.28 | | | | | | m | 2 | | | | | 9.0 External Walls | | | | | | | | | | | | | | | | Description | Туре | Consti | ruction | | | U-Value
(W/m²K) | Kappa
(kJ/m²K) | | Nett Area
(m²) | Shelter
Res | Shelter | Openings | | Calculat
Type | | | Cavity Wall | | wall : plasterb
avity, any outs | oard on dabs, d | lense block, | 0.18 | 150.00 | 86.33 | 71.34 | 0.00 | None | 14.99 | Enter | Gross Ar | | Cavity Wall | Carry Hall | | | two layers of pla | asterboard) | 0.18 | 18.00 | 13.04 | 13.04 | 0.00 | None | 0.00 | Enter | Gross A | | Cavity Wall
Sloping Wall | Timber Frame | TITIDEI | | | | | | | | | | | | | | Sloping Wall 1.1 Party Walls | Timber Frame | Timber | 0 | -4: | | | | | 11 1/-1 | V | A | Chalka | - | | | Sloping Wall On Party Walls Description | Timber Frame | | Construc | | | | | | (W/m ² K) | · Kappa
) (kJ/m²K) | Area
(m²) | Shelter
Res | | elter | | Sloping Wall | Timber Frame | Cavity with | | ction
asterboard o | n both sides | s, dense | cellular l | blocks, | | | | | | e iter
one | | Sloping Walls O.1 Party Walls Description Party Wall 1 | Timber Frame Type Filled (| Cavity with | Single pla | | n both side: | s, dense | cellular l | blocks, | (W/m ² K) |) (kJ/m²K) | (m²) | Res | | | | Sloping Wall On Party Walls Description | Timber Frame Type Filled (| Cavity with
Sealing | Single pla | asterboard o | n both side: | s, dense | cellular I | blocks, | (W/m ² K) |) (kJ/m²K) | (m²) | Res | No
opa / | | SAP 10 Online 2.13.11 Page 1 of 4 | Description | Туре | Construc | ction | | | -Value
V/m²K) | | | a(m²) / | Nett
Area | | Shelter
Factor | Calcula
Type | | Openings | |--|-----------------------------|-----------------------------|----------|--|----------|------------------|-------|----------------------------------|-----------------|-----------------------|---------------|-------------------|-----------------------|--------------------------------|------------------------| | External Roof 1 | External Flat
Roof | Plasterbo | ard, ins | sulated flat roof | | 0.11 | 9.00 | 53 | | (m²)
53.98 | None | 0.00 | Enter G
Area | | 0.00 | | 10.2 Internal Ceilings | | | | | | | | | | | | | | | | | Description
Internal Ceiling 1 | | Storey
+1 | | Construction
Plasterboard ceiling, | carpet | ed chip | board | floor | | | | | , | Area
32. | (m²)
14 | | 11.0 Heat Loss Floors | | | | | | | | | | | | | | | | | Description Exposed Floor | Type Exposed Floor - Solid | Storey Inde | | Construction
Other | | | | U- Val i
(W/m²
0.18 | K) | She | None | F | actor (k | appa
J/m²K
'5.00 | Area (m²)
)
7.22 | | 11.1 Party Floors | | | | | | | | | | | | | | | | | Description | | Storey | Cons | truction | | | | | | | | | | | Area (m²) | | Party Floor 1 | | Index
Lowest
occupied | Preca | st concrete planks floo | or, scre | ed, car | peted | | | | | | (kJ/m
30.0 | | 47.73 | | 11.2 Internal Floors | | | | | | | | | | | | | | | | | Description | | Storey | Cons | truction | | | | | | | | | Карр | | Area (m²) | | Internal Floor 1 | | Index | Plaste | erboard ceiling, carpete | ed chip | board f | loor | | | | | | (kJ/m
9.00 | | 32.14 | | 12.0 Opening Types | | | | | | | | | | | | | | | | | Description | Data Source | Type | | Glazing | | | | azing
Sap | Filling
Type | | 3-value | Frame
Type | Fram
Facto | or | U Value
(W/m²K) | | Windows | Manufacturer | Window | | Double Low-E So | oft 0.05 | , | | | Air Fille | ed | 0.63 | Wood | 0.70 | | 1.31 | | 13.0 Openings | | | | | | | | | | | | | | | | | Name
W01 | Opening Ty
Windows | pe | | .ocation
Cavity Wall | | | | Orienta
North E | | | Area (
2.3 | | | Pitc
0 | h | | W02 | Windows | | (| Cavity Wall | | | | North I | | | 2.3 | | | 0 | | | W03
W04 | Windows
Windows | | | Cavity Wall
Cavity Wall | | | | North E | | | 2.3
4.4 | | | 0 | | | W05 | Windows | | (| Cavity Wall | | | | South I | East | | 2.3 | 8 | | 0 | | | W06
W07 | Windows
Windows | | | Cavity Wall
Cavity Wall | | | | South
\
South \ | | | 0.5
0.5 | | | 0 | | | 14.0 Conservatory | | | ١ | lone | | | | | | | | | | | | | 15.0 Draught Proofing | | | 1 | 00 | | | | | | | % | | | | | | 16.0 Draught Lobby | | | ١ | lo | | | | | | | | | | | | | 17.0 Thermal Bridging | | | (| Calculate Bridges | | | | | | | | | | | | | 17.1 List of Bridges | | | C | | | | | n-: | A -1! | D. | | | | | | | Bridge Type
E2 Other lintels (including | g other steel linte | els) | | ce Type
Bov Approved Scheme | | Length
8.20 | | Psi
).02 | 0.02 | ea Re | eference | • | | | mported
No | | E3 Sill | | • | | endently assessed | | 8.20 | | 0.02 | 0.02 | | | | | | No | | E4 Jamb
E20 Exposed floor (norm | al) | | | endently assessed
endently assessed | | 23.67
3.12 | |).02
).12 | 0.02
0.12 | | | | | | No
No | | E7 Party floor between de | wellings (in block | s of flats) | Indep | endently assessed | | 31.46 | 0 | 0.04 | 0.04 | | | | | | No | | P7 Party Wall - Exposed
P3 Party wall - Intermedia | | dwellinge | | endently assessed
K1 - Default | | 4.67
14.45 | |).18
).00 | 0.18
0.00 | | | | | | No
No | | (in blocks of flats) | ate floor between | i uweiii iga | Table | KT - Delault | | 17.70 | | 7.00 | 0.00 | | | | | | NO | | E16 Corner (normal)
E25 Staggered party wall | l botuson durollir | ngo. | | endently assessed
endently assessed | | 16.64
26.80 | |).04
).04 | 0.04
0.04 | | | | | | No
No | | E18 Party wall between d | | iys | | endently assessed | | 5.20 | |).0 4
).05 | 0.04 | | | | | | No | | E21 Exposed floor (invert | | B | | K1 - Default | | 1.50 | | 0.32 | 0.32 | | | | | | No | | P4 Party wall - Roof (insu
P8 Party Wall - Exposed | | evei) | | endently assessed
endently assessed | | 14.49
4.60 | |).10
).18 | 0.10
0.18 | | | | | | No
No | | E14 Flat roof | | | Table | K1 - Default | | 24.47 | 0 | 0.16 | 0.16 | | | | | | No | | R8 Roof to wall (rafter)
E6 Intermediate floor with | nin a dwelling | | | K1 - Default
endently assessed | | 4.32
18.05 | |).12
).00 | 0.12
0.00 | | | | | | No
No | | Y-value | | | C | .08 | | | | | | | W/m²K | | | | | | 18.0 Pressure Testing | | | ١ | 'es | | | | | | | | | | | | | Designed AP ₅₀ | | | 4 | .50 | | | | | | | m³/(h.m | ²) @ 50 F | ^o a | | | | Property Tested? | | | ١ | 'es | | | | | | | | | | | | | Test Method | | | E | Blower Door | | | | | | | | | | | | | 19.0 Mechanical Ventilation | 1 | | | | | | | | | | | | | | | | Mechanical Ventilation | | | | | | | | | | | | | | | | | Mechanical Ventilat | ion System Pres | ent | ١ | lo | | | | | | | | | | | | | 20.0 Fans, Open Fireplaces | , Flues | | | | | | | | | | | | | | | SAP 10 Online 2.13.11 Page 2 of 4 | 21.0 Fixed Cooling System | No | | | | | | |---|---------------------------|-------------------|--------------------|---------------|-------------------|-----------------| | 22.0 Lighting | | | | | | | | No Fixed Lighting | No | | | | | | | | Name
Lighting 1 | Efficacy
80.00 | Power
15 | | Capacity
1200 | Count
5 | | 24.0 Main Heating 1 | Database | | | | | | | Percentage of Heat | 100.00 | | | | % | | | Database Ref. No. | 106764 | | | | | | | Fuel Type | Electricity | | | | | | | SAP Code | 0 | | | | | | | In Winter | 247.69 | | | | | | | In Summer | 188.71 | | | | | | | Model Name | Logic Air 8kW | | | | | | | Manufacturer | Atlantic | | | | | | | System Type | Heat Pump | | | | | | | Controls SAP Code | 2207 | | | | | | | Delayed Start Stat | No | | | | | | | HETAS approved System | No | | | | | | | Oil Pump Inside | No | | | | | | | FI Case | 0.00 | | | | | | | Flue Type | None or Unknown | | | | | | | Fan Assisted Flue | No | | | | | | | Is MHS Pumped | Pump in heated space | е | | | | | | Heating Pump Age | 2013 or later | | | | | | | Heat Emitter | Radiators | | | | | | | Flow Temperature | Enter value | | | | | | | Flow Temperature Value | 55.00 | | | | | | | Boiler Interlock | No | | | | | | | 25.0 Main Heating 2 | None | | | | | | | 26.0 Heat Networks | None | | | $\overline{}$ | | | | Heat Source Fuel Type Heating L | Jse Efficiency Per | centage Of I | Heat Heat
Power | Electi | rical Fuel Factor | Efficiency type | | Heat source 1 None Heat source 2 None Heat source 3 None Heat source 4 None Heat source 5 None | | | Ratio | | | | | Heat source 2 None Heat source 3 None Heat source 4 None Heat source 5 None | | | | | | | | Heat source 2 None Heat source 3 None Heat source 4 None Heat source 5 None | Main Heating 1 | | | | | | | Heat source 2 None Heat source 3 None Heat source 4 None Heat source 5 None 28.0 Water Heating | Main Heating 1 | | | | | | | Heat source 2 None Heat source 3 None Heat source 4 None Heat source 5 None 28.0 Water Heating Water Heating | | | | | | | | Heat source 2 None Heat source 3 None Heat source 4 None Heat source 5 None 28.0 Water Heating Water Heating SAP Code | 901 | | | | | | | Heat source 2 None Heat source 3 None Heat source 4 None Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System | 901
No | | | | | | | Heat source 2 None Heat source 3 None Heat source 4 None Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 | 901
No
No | | | | | | | Heat source 2 None Heat source 3 None Heat source 4 None Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 | 901
No
No | | | | | | | Heat source 2 None Heat source 3 None Heat source 4 None Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System | 901
No
No
No | | | | | | | Heat source 2 None Heat source 3 None Heat source 4 None Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel | 901 No No No No No No | | | | | | | Heat source 2 None Heat source 3 None Heat source 4 None Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day | 901 No No No No Yes | | | | | | | Heat source 2 None Heat source 3 None Heat source 4 None Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day Summer Immersion | 901 No No No No No Ves No | | | | | | SAP 10 Online 2.13.11 Page 3 of 4 | Immersion On | ly Heating Ho | t Water | | No | | | | | | | | |--|----------------|----------------|--------------|------------------|---------------|------------|---------------------|------------------|------------------------|--|------------| | 28.1 Showers | | | | | | | | | | | | | Description | | | Shower Typ | pe | | | low Rate
[I/min] | Rated Power [kW] | Connected | Connected To | | | 1 | | | Combi boile | er or unvented l | hot water sy | stem | 7.00 | [KVV] | No | | | | 28.3 Waste Water | Heat Recov | ery System | | | | | | | | | | | 29.0 Hot Water Cy | ylinder | | | Hot Water (| Cylinder | | | | | | | | Cylinder Stat | | | | Yes | | | | | | | | | Cylinder In He | ated Space | | | Yes | | | | | | | | | Independent T | ime Control | | | Yes | | | | | | | | | Insulation Type | е | | | Measured L | _OSS | | | | | | | | Cylinder Volun | ne | | | 150.00 | | | | | L | | | | Loss | | | | 2.09 | | | | | kWh/day | | | | Pipes insulatio | n | | | Fully insulat | ted primary p | pipework | | | | | | | In Airing Cupb | oard | | | No | | | | | | | | | 31.0 Thermal Sto | re | | | None | | | | | | | | | 34.0 Small-scale | Hydro | | | None | | | | | | | | | Electricity Gen | erated | | | 0.00 | | | | | | | | | Apportioned | | | | 0.00 | | | | | kWh/Year | r | | | Connected to | dwelling's ele | ctricity meter | | Yes | | | | | | | | | Electricity Gen | eration | | | Annual | | | | | | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Au | g Sep | Oct | Nov | Dec | | Recommendation
Lower cost m
None
Further meas | easures | eve even highe | er standards | | | | | | | | | | | Solar wate | er heating | | Typical Cost | Турі | ical savin | gs per ye | SAF | Ratings after rating 0 | er improvement
Environmen
0
0 | tal Impact | SAP 10 Online 2.13.11 Page 4 of 4 | Property Reference | e | | Unit 4 | | | | | | | Issue | d on Da | ate | 05/03/2024 | | |---|--|--------------------------------|-------------------------|--------------------|------------------|--------------------|--|----------------------------|-------------------------|--------------------------|--------------------------------|--
--|---| | Assessment Refer | rence | | Residual | | | | | Prop Type F | Ref | Tebby a | and Son | Garage | | | | Property | | | Unit 1, Highland | l Square , Bristo | l | | | | | | | | | | | SAP Rating | | | | | 81 B | | DER | 4. | 52 | | TER | | 11.51 | | | Environmental | | | | | 96 A | | % DER < TER | 1 | | | | | 60.73 | | | CO₂ Emissions (t/) | /ear) | | | | 0.38 | | DFEE | 37 | 7.38 | | TFEE | | 38.13 | | | Compliance Check | k | | | | See BREL | | % DFEE < TFE | EE | | | | | 1.97 | | | % DPER < TPER | | | | | 21.72 | | DPER | 47 | 7.26 | | TPER | ₹ | 60.37 | | | Assessor Details | | | | | | | | | | | Asse | ssor ID | U367-00 | 01 | | Client | | | | | | | | | | | | | | | | SAP 10 WORKSHEET
CALCULATION OF D | | | | | | 7 2022) | | | - | | | | | | | 1. Overall dwell | ing charact | teristic | :s | | | | |
Area | -
-
a Sto | orey he | eight | | Volume | <u>.</u> | | Ground floor
First floor
Second floor
Total floor area
Dwelling volume | TFA = (la) |)+(lb)+(| (lc)+(ld)+(le | è)(ln) | Ş | 91.9500 | | 59.8100
27.2800 |) (lb) x | 2.
2.
2. | (m)
.5000
.7000
.4200 | (2b) =
(2c) =
(2d) = | (m3)
12.1500
161.4870
66.0176
239.6546 | (1b) - (3i
(1c) - (3c
(1d) - (3c
(4) | | 2. Ventilation r | | | | | | | | | - | | | | m3 per hour | : | | Number of open of
Number of open f
Number of open f
Number of flues
Number of flues
Number of blocke
Number of interm
Number of passiv
Number of fluele | lues ys / flues attached to attached to d chimneys ittent extr e vents | o solid
o other
ract far | fuel boiler
heater | fire | | | | | | | | 0 * 20 =
0 * 35 =
0 * 20 =
5 * 10 = | 0.0000
0.0000
0.0000 | (6b)
(6c)
(6d)
(6e)
(6f)
(7a) | | Infiltration due
Pressure test
Pressure Test Me
Measured/design
Infiltration rat
Number of sides | thod
AP50
e | ys, flue | s and fans | = (6a)+(6b) |)+(6c)+(6d)+(| (6e)+(6f)+(| (6g)+(7a)+(7 | 7b)+(7c) = | = | 50 | 0.0000 | Air chan
/ (5) = | ges per hour
0.2086
Yes
Blower Door
4.5000
0.4336 | (8)
:
:
(17) | | Shelter factor
Infiltration rat | e adjusted | to incl | ude shelter | factor | | | | | (20) = 1 | | | (19)] =
x (20) = | | | | Wind speed
Wind factor
Adj infilt rate | Jan
5.1000
1.2750 | | Mar
4.9000
1.2250 | | | | Jul
3.8000
0.9500 | | Sep
4.0000
1.0000 | 4. | t
.3000
.0750 | | | | | Effective ac | 0.4285 | | 0.4117
0.5847 | | 0.3613
0.5653 | | 0.3193
0.5510 | | | | .3613
.5653 | | | | | 3. Heat losses a | | | | | | | | | - | | | | | | | Element | | | | Gross | Openings | Net | Area | U-value | A 2 | | | -value | АхЕ | | | Windows (Uw = 1.
Exposed Floor
Cavity Wall
Sloping Wall
External Roof 1
Total net area o | f external | | | 13.0400
53.9800 | m2
14.9900 | 71.
13.
53. | 0400
9800
5700 | 0.1800
0.1800
0.1100 | 12.84
2.34
5.93 | 996
112
172
378 | | kJ/m2K
5.0000
0.0000
8.0000
9.0000 | kJ/F
541.5000
10701.0000
234.7200
485.8200 | (27)
(28b)
(29a)
(29a)
(30)
(31) | | Fabric heat loss
Party Wall 1
Party Floor 1
Internal Wall 1
Internal Floor 1
Internal Ceiling | | п (Ах С | ") | | | 47.
139.
32. | (26)(3
8800
7300
7500
1400
1400 | 30) + (32)
0.0000 | | | 10
1 | 0.0000 | 4611.6000
1909.2000
13975.0000
578.5200
289.2600 | (32d)
(32c)
(32d) | | Heat capacity Cm
Thermal mass par
List of Thermal
Kl Eleme | ameter (TMI
Bridges | | TFA) in kJ/ | m2K | | | | | (30) + (3 | 32) + (| | | 33326.6200
362.4428 | | | | | includin | ng other stee | el lintels) | | | | | 8.2000 | | 230 | | 1886 | | SAP 10 Online 2.13.11 Page 1 of 7 | E3 Sill E4 Jamb E20 Exposed floor (r E7 Party floor betwee P7 Party Wall - Expo P3 Party wall - Inte E16 Corner (normal) E25 Staggered party E18 Party wall betwee E21 Exposed floor (i P4 Party Wall - Roof P8 Party Wall - Expo E14 Flat roof R8 Roof to wall (raf E6 Intermediate floor Thermal bridges (Sum (L x Po | een dwellings (in
osed floor (normal
ermediate floor be
wall between dwel
een dwellings
inverted)
f (insulation at c
osed floor (invert
fter)
or within a dwelli |)
tween dwelli
lings
eiling level
ed) | ings (in bloo | cks of flat: | s) | 23
3
31
4
14
16
26
5
1
14
4
24
4 | 2000
6700
1200
4640
6700
4500
6400
8000
2000
5000
4900
5960
4700
3200
0500 | 0.0210
0.0160
0.1160
0.1850
0.0000
0.0460
0.360
0.0460
0.3200
0.1010
0.1850
0.1200
0.1200 | 0.17
0.37
0.36
1.19
0.86
0.00
0.71
0.96
0.23
0.48
1.46
0.85
3.91
0.51 | 87
19
56
39
00
55
48
92
00
35
00
35
52 | (36) | |---|---|---|--|--|--|--|--|---|--|--|-------------------------| | Point Thermal bridges
Total fabric heat loss | • | | • | | | | (| 33) + (36) | (36a) =
+ (36a) = | 0.0000
53.4109 | | | (38)m 46.8031 4 | lated monthly (38):
Feb Mar
46.5211 46.2448 | n = 0.33 x
Apr
44.9469 | (25)m x (5)
May
44.7040 | Jun
43.5736 | Jul
43.5736 | Aug
43.3642 | Sep
44.0090 | Oct
44.7040 | Nov
45.1953 | Dec
45.7089 | (38) | | Heat transfer coeff 100.2140 Average = Sum(39)m / 12 = | 99.9320 99.6557 | 98.3578 | 98.1149 | 96.9845 | 96.9845 | 96.7751 | 97.4199 | 98.1149 | 98.6062 | 99.1198
98.3566 | (39) | | | Feb Mar
1.0868 1.0838
28 31 | | May
1.0670
31 | Jun
1.0548
30 | Jul
1.0548
31 | Aug
1.0525
31 | Sep
1.0595
30 | Oct
1.0670
31 | Nov
1.0724
30 | Dec
1.0780
1.0697
31 | (40) | | 4. Water heating energy requ | | | | | | | | | | | | | Assumed occupancy
Hot water usage for mixer sh | | | | | | | | | | 2.6515 | (42) | | Hot water usage for baths | 84.6808 82.7405
0.0000 0.0000 | 79.7556 | 77.0812
0.0000 | 73.3397 | 70.3805 | 73.8400 | 75.5800 | 79.2858 | 83.1450
0.0000 | 85.9199
0.0000 | | | Hot water usage for other us | | | 35.7062 | 34.1868 | 34.1868 | 35.7062 | 37.2256 | 38.7450 | 40.2644 | 41.7838 | | | Average daily hot water use Jan | (litres/day) Feb Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | 117.2682
Dec | (43) | | Daily hot water use
127.7812 12 | 24.9452 121.4855
65.3278 173.6002 | 116.9811
152.8066 | 112.7874
145.3379 | 107.5265
124.3508 | 104.5672
115.5499 | 109.5462
128.9379 | 112.8056
130.8489 | 118.0308
152.0946 | 123.4094
166.7919 | 127.7037
187.5422 | | | Energy content (annual) Distribution loss (46)m = 0 | | | 21.8007 | 18.6526 | 17.3325 | 19.3407 | 19.6273 | | um(45)m = 25.0188 | 1831.3046
28.1313 | | | Water storage loss:
Store volume
a) If manufacturer declared
Temperature factor from Ta
Enter (49) or (54) in (55) | d loss factor is k | | | | | | | | | 150.0000
2.0900
0.5400
1.1286 | (47)
(48)
(49) | | Total storage loss 34.9866 3 If cylinder contains dedicat | 31.6008 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | (56) | | 34.9866 3
Primary loss 23.2624 2 | 31.6008 34.9866
21.0112 23.2624
0.0000 0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | (59) | | WWHRS 0.0000 PV diverter 0.0000 Solar input 0.0000 | er heating calcula
17.9398 231.8492
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000 | | 0.0000
0.0000
0.0000
0.0000
0.0000 | 180.7208
0.0000
0.0000
0.0000
0.0000 | 173.7989
0.0000
0.0000
0.0000
0.0000 | 187.1869
0.0000
0.0000
0.0000
0.0000 | 187.2189
0.0000
0.0000
0.0000
0.0000 | 210.3436
0.0000
0.0000
0.0000
0.0000 | 223.1619
0.0000
0.0000
0.0000
0.0000 | 245.7912
0.0000
0.0000
0.0000
0.0000 | (63a)
(63b)
(63c) | | 246.3650 21 | 17.9398 231.8492 | 209.1766 | 203.5869 | 180.7208 | 173.7989 | 187.1869
Total pe | 187.2189
er year (kW | 210.3436
h/year) = S | 223.1619
um(64)m = | | | | 12Total per year (kWh/year)
Electric shower(s)
0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 2517
0.0000 | | | Heat gains from water heatin | | Tot | al Energy u | | | | | | m(64a)m = | 0.0000 | (64a) | | 105.1470 | 57.0011 104.5215 | 55.5042 | 34.3241 | 00.4420 |
03.0193 | 05.4710 | 00.0032 | 57.1700 | 100.3343 | 100.5570 | (65) | | 5. Internal gains (see Table | e 5 and 5a) | | | | | | | | | | | | Metabolic gains (Table 5), W | | | May | | | | Sep | Oct | Nov | Dec | | | (66)m 132.5741 13
Lighting gains (calculated i | 32.5741 132.5741
in Appendix L. egu | 132.5741
ation L9 or | 132.5741
L9a), also: | 132.5741
see Table 5 | 132.5741 | 132.5741 | 132.5741 | 132.5741 | 132.5741 | 132.5741 | | | 127.2048 14
Appliances gains (calculated
242.6198 24 | 40.8339 127.2048
d in Appendix L, e | 131.4450
quation L13 | 127.2048
or L13a), a | 131.4450
lso see Tab: | 127.2048
le 5 | 127.2048 | 131.4450 | 127.2048 | 131.4450 | 127.2048
231.9148 | | | Cooking gains (calculated in | 45.1374 238.7931
n Appendix L, equa
36.2574 36.2574 | tion L15 or | L15a), also | see Table : 36.2574 | 5
36.2574 | 36.2574 | 36.2574 | 36.2574 | 36.2574 | 36.2574 | (69) | | Pumps, fans 0.0000
Losses e.g. evaporation (neg | 0.0000 0.0000
gative values) (Ta | 0.0000
ole 5) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (70) | | Water heating gains (Table 5 | 06.0593 -106.0593
5)
44.4361 140.2168 | | | | | | | | | | | | Total internal gains | 93.1797 568.9869 | 6. Solar gains | | | | | | | | | | | | | [Jan] | | Area
m2 | Solar flux
Table 6a
W/m2 | Speci:
or | g
fic data
Table 6b | Specific
or Tabl | FF
data
Le 6c | Acce
fact
Table | or | Gains
W | | SAP 10 Online 2.13.11 Page 2 of 7 | Northeast
Southeast
Southwest | | | 1.0 | 800
600 | 11.2829
36.7938
36.7938 | | 0.6300
0.6300
0.6300 | 0 | .7000
.7000
.7000 | 0.770
0.770
0.770 | 00 | 39.8269
26.7623
11.9194 | (77) | |---|---|--|---|--|---|---|---|---|-----------------------------|------------------------------|-----------------------------|-------------------------------|----------------------------| | C-1 | | | | | | | | | 275 5026 | 171 0040 | 05 4440 | CE (2001 | (02) | | Solar gains
Total gains | 7. Mean inter | nal temperat | | | | | | | | | | | | | | Temperature d | uring heating | ng periods | in the livi | ng area from | n Table 9, | | | | | | | 21.0000 | (85) | | Utilisation f | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | tau
alpha | 7.1584 | 92.6369
7.1758 | 92.8938
7.1929 | 94.1196
7.2746 | 94.3526
7.2902 | 95.4523
7.3635 | 95.4523
7.3635 | | | 94.3526
7.2902 | 93.8825
7.2588 | 93.3960
7.2264 | | | util living a | 0.9992 | 0.9979 | 0.9933 | 0.9637 | 0.8491 | 0.6284 | 0.4595 | 0.5184 | 0.8068 | 0.9803 | 0.9977 | 0.9994 | (86) | | Mon living | 20.1189 | 10 1521 | 10 4020 | 10 7506 | 10 0744 | 20 0250 | 20.9993 | 20.9985 | | 20.7020
19.7414 | | | | | 24 / 16
24 / 9 | 0
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0
0
0 | 0 | 0 | 0 | 0 | | | 24 / 16
24 / 9
16 / 9
MIT
Th 2
util rest of | 28
20.5492 | 20.2451 | 20.4402 | 20.7229 | 20.9252 | 20.9927 | 20.9993 | 20.9985 | 20.9614 | 0
0
20.7020
20.0278 | 20.3692 | 10
20.2294 | (87) | | util rest of | | 0.9969 | | 0.9454 | 0.7903 | 20.0380 | 20.0380 | | 0.7193 | 0.9668 | | | | | MIT 2
Living area f | 19.6023 | 19.1521 | | 19.7586 | 19.9744 | 20.0350 | 20.0378 | | 20.0136 | 19.7414
Living area | 19.3204 | 19.1651 | (90) | | MIT
Temperature a | djustment | | | 20.0447 | 20.2565 | 20.3191 | 20.3231 | 20.3240 | | 20.0264 | | 19.4809
0.0000 | (92) | | adjusted MIT | 19.8832 | 19.4764 | 19.7100 | 20.0447 | 20.2565 | 20.3191 | 20.3231 | 20.3240 | 20.2948 | 20.0264 | 19.6315 | 19.4809 | (93) | | | | | | | | | | | | | | | | | 8. Space heat | | | | | | | | | | | | | | | Utilisation | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Useful gains | 657.0276 | 737.3003 | | | | | | 379.2180 | | 0.9668
668.3445 | | 633.2858 | (95) | | Ext temp.
Heat loss rat | 4.3000
e W
1561.6580 | | | 8.9000 | 11.7000
839.5235 | 14.6000
554.6681 | 16.6000
361.0821 | | 14.1000
603.4935 | 10.6000 | 7.1000 | 4.2000
1514.6374 | | | Space heating | kWh | | 387.2727 | | 41.3438 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 190.8551 | | 655.7256 | | | Space heating
Solar heating | requirement | t - total p | er year (kW | h/year) | | | | | | | | 3031.5275 | . , | | Solar heating | contribution | | 0.0000
per year (ki | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.0000 | (98b) | | Space heating
Space heating | 673.0450 | | | 173.4455 | | | 0.0000 | 0.0000 | 0.0000 | 190.8551 | | 655.7256
3031.5275 | (98c) | | Space heating | | | | | Par Jame | (, 1) | | | | (98c) | | 32.9693 | (99) | | | | | | | | | | | | | | | | | 9a. Energy re | | - Individua | l heating s | ystems, incl | luding micr | o-CHP | | | | | | | | | Fraction of s | pace heat fi | rom seconda | ry/suppleme | | | | | | | | | 0.0000
1.0000 | | | Efficiency of
Efficiency of | main space | heating sy | stem 1 (in | | | | | | | | | 247.6858
0.0000 | (206) | | Efficiency of | | | | | | | | | | | | 0.0000 | | | Space heating | | | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating | efficiency | (main heat | 387.2727
ing system:
247.6858 | 1) | 41.3438 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 190.8551
247.6858 | 426.4398
247.6858 | 655.7256
247.6858 | | | Space heating | fuel (main | | stem) | 70.0264 | 16.6920 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 77.0553 | 172.1697 | 264.7409 | | | Space heating | | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating | 0.0000 | 0.0000 | stem 2)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (213) | | Space heating | fuel (secon
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating | | | | | | | | | | | | | | | Efficiency of | 246.3650 | 217.9398 | 231.8492 | 209.1766 | 203.5869 | 180.7208 | 173.7989 | 187.1869 | 187.2189 | 210.3436 | 223.1619 | 245.7912
188.7089 | | | (217)m
Fuel for wate | 188.7089
r heating, 1 | 188.7089
kWh/month | 188.7089 | 188.7089 | 188.7089 | 188.7089 | 188.7089 | 188.7089 | 188.7089 | 188.7089 | 188.7089 | 188.7089 | (217) | | Space cooling | fuel requir | | | 110.8462 | | 95.7670 | 92.0989 | 99.1935 | 99.2104 | 111.4646 | 118.2572 | 130.2489 | | | (221)m
Pumps and Fa
Lighting | 0.0000
0.0000
31.1079 | 0.0000
0.0000
24.9559 | 0.0000
0.0000
22.4700 | 0.0000
0.0000
16.4625 | 0.0000
0.0000
12.7161 | 0.0000
0.0000
10.3892 | 0.0000
0.0000
11.6001 | 0.0000
0.0000
15.0782 | 0.0000
0.0000
19.5851 | 0.0000
0.0000
25.6967 | 0.0000
0.0000
29.0244 | 0.0000
0.0000
31.9725 | (231) | | Electricity g
(233a)m | | PVs (Appen | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity g
(234a)m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity g | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235a) | | (235a)m | | | | | (Appendix | N) (negativ | ve if net o | | | | | | | | Electricity u
(235c)m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235c) | | Electricity u
(235c)m
Electricity g
(233b)m | 0.0000
enerated by
0.0000 | 0.0000
PVs (Appen
0.0000 | 0.0000
dix M) (neg
0.0000 | 0.0000
ative quant:
0.0000 | 0.0000
ity)
0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity u
(235c)m
Electricity g | 0.0000
menerated by
0.0000
menerated by
0.0000 | 0.0000
PVs (Appen
0.0000
wind turbi
0.0000 | 0.0000
dix M) (neg
0.0000
nes (Append
0.0000 | 0.0000
ative quant:
0.0000
ix M) (negat
0.0000 | 0.0000
ity)
0.0000
tive quanti
0.0000 | 0.0000
ty)
0.0000 | 0.0000
0.0000
0.0000
ity) | 0.0000 | 0.0000 | 0.0000 | | | (233b) | | Electricity u
(235c)m
Electricity g
(233b)m
Electricity g
(234b)m
Electricity g
(235b)m
Electricity u | 0.0000 senerated by 0.0000 senerated by 0.0000 senerated by 0.0000 senerated by 0.0000 | 0.0000 PVs (Appen 0.0000 wind turbi 0.0000 hydro-elec 0.0000 electricity | 0.0000 dix M) (neg. 0.0000 nes (Append 0.0000 tric genera 0.0000 | 0.0000 ative quanti 0.0000 ix M) (negat 0.0000 tors (Append 0.0000 by micro-CH | 0.0000
ity)
0.0000
cive quanti
0.0000
dix M) (neg
0.0000
? (Appendix | 0.0000
ty)
0.0000
ative quant:
0.0000
N) (negative | 0.0000
0.0000
0.0000
ity)
0.0000
ve if net g | 0.0000
0.0000
0.0000
generation) | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | (233b)
(234b)
(235b) | | Electricity u
(235c)m
Electricity g
(233b)m
Electricity g
(234b)m
Electricity g
(235b)m | 0.0000
enerated
by
0.0000
enerated by
0.0000
enerated by
0.0000
sed or net e | 0.0000
PVs (Appen
0.0000
wind turbi
0.0000
hydro-elec
0.0000 | 0.0000
dix M) (neg
0.0000
nes (Append
0.0000
tric genera
0.0000 | 0.0000
ative quant:
0.0000
ix M) (negat
0.0000
tors (Append | 0.0000
ity)
0.0000
cive quanti
0.0000
dix M) (neg
0.0000 | 0.0000
ty)
0.0000
ative quant:
0.0000 | 0.0000
0.0000
0.0000
ity)
0.0000 | 0.0000
0.0000
0.0000
generation) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (233b)
(234b)
(235b) | SAP 10 Online 2.13.11 Page 3 of 7 | Space heating fuel - main system 1 Space heating fuel - main system 2 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel Electricity for pumps and fans: Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses | | 1223.9409 (211) 0.0000 (213) 0.0000 (215) 188.7089 1333.8746 (219) 0.0000 (221) 0.0000 (231) 251.0584 (232) 0.0000 (233) 0.0000 (234) 0.0000 (235) -0.0000 (235) -0.0000 (236) 0.0000 (237) 2808.8738 (238) | |--|--|---| | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Total CO2, kg/year EPC Dwelling Carbon Dioxide Emission Rate (DER) | Energy kWh/year kg CO2/kWh 1223,9409 0.1563 0.1408 0.0000 0.0000 251.0584 0.1443 | kg CO2/year
191.2888 (261)
0.0000 (373)
187.8229 (264)
379.1117 (265)
0.0000 (267) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Total Primary energy kWh/year Dwelling Primary energy Rate (DPER) | Energy Primary energy factor kWh/year kg CO2/kWh 1223.9409 1.5786 1333.8746 1.5207 0.0000 0.0000 251.0584 1.5338 | kWh/year
1932.1217 (275)
0.0000 (473)
2028.3662 (278)
3960.4899 (279)
0.0000 (281) | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics | | | | Ground floor First floor Second floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) Dwelling volume 91.9500 | Area Storey height | (2b) = 12.1500 (1b) - (3b)
(2c) = 161.4870 (1c) - (3c)
(2d) = 66.0176 (1d) - (3d)
(4) | | Number of open chimneys Number of open flues Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of blocked chimneys Number of intermittent extract fans Number of passive vents Number of flueless gas fires Infiltration due to chimneys, flues and fans = (6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)+(7a)+ Pressure test Pressure Test Method Measured/design AP50 Infiltration rate Number of sides sheltered | | m3 per hour 0 * 80 = 0.0000 (6a) 0 * 20 = 0.0000 (6b) 0 * 10 = 0.0000 (6c) 0 * 20 = 0.0000 (6d) 0 * 35 = 0.0000 (6e) 3 * 10 = 30.0000 (7a) 0 * 10 = 0.0000 (7b) 0 * 40 = 0.0000 (7c) Air changes per hour / (5) = 0.1252 (8) Yes Blower Door 5.0000 (17) 0.3752 (18) 3 (19) | | Shelter factor
Infiltration rate adjusted to include shelter factor | (21) = (18) 1 | (19)] = 0.7750 (20)
x (20) = 0.2908 (21) | | Jan Feb Mar Apr May Jun Jul Wind speed 5.1000 5.0000 4.9000 4.4000 4.3000 3.8000 3.8000 Wind factor 1.2750 1.2500 1.2250 1.1000 1.0750 0.9500 0.9500 Adj infilt rate | 3.7000 4.0000 4.3000
0.9250 1.0000 1.0750 | 4.5000 4.7000 (22)
1.1250 1.1750 (22a) | SAP 10 Online 2.13.11 Page 4 of 7 0.3416 (22b) 0.5584 (25) Effective ac 0.5661 0.5423 0.5687 0.5634 0.5511 0.5489 0.5382 0.5382 0.5362 0.5489 0.5535 3. Heat losses and heat loss parameter Gross m2 Openings m2 NetArea m2 U-value A x U W/K K-value kJ/m2K AxK kJ/K TER Opening Type (Uw = 1.20) 14.9900 1.1450 17.1641 Exposed Floor 7.2200 71.3400 0.1300 0.9386 (28b) (29a) 86.3300 14.9900 Cavity Wall 0.1800 Sloping Wall External Roof 1 (29a) (30) 13 0400 0.1800 Total net area of external elements Aum(A, m2) Fabric heat loss, W/K = Sum (A x U) 160.5700 (31) (26)...(30) + (32) = 39,2289 Party Wall 1 65.8800 0.0000 362.4428 (35) Thermal mass parameter (TMP = Cm / TFA) in kJ/m2K List of Thermal Bridges KI Element E2 Other lintels (including other steel lintels) Psi-value 0.0500 0.0500 Total 0.4100 0.4100 Length 8.2000 8.2000 E3 Sill 23.6700 0.0500 1.1835 E20 Exposed floor (normal) E7 Party floor between dwellings (in blocks of flats) 3.1200 31.4640 0.3200 0.9984 E7 Party floor between dwellings (in blocks of flats) P7 Party Wall - Exposed floor (normal) P3 Party wall - Intermediate floor between dwellings (in blocks of flats) E16 Corner (normal) E25 Staggered party wall between dwellings E18 Party wall between dwellings E21 Exposed floor (inverted) P4 Party wall - Roof (insulation at ceiling level) P8 Party Wall - Exposed floor (inverted) E14 Flat roof E18 Roof to wall (rafter) 4.6700 14.4500 16.6400 0.1600 0.7472 0.0000 0.0000 1.4976 0.0600 26.8000 1.6080 5.2000 0.0600 0.3120 4.5960 24.4700 0.2400 1.1030 0.0800 R8 Roof to wall (rafter) E6 Intermediate floor within a dwelling Thermal bridges (Sum(L x Psi) calculated using Appendix K) 0.0600 0.2592 14.9078 (36) Point Thermal bridges (36a) =0.0000 Total fabric heat loss (33) + (36) + 54.1367 (37) Ventilation heat loss calculated monthly (38)m = 0.33 x (25)m x (5) Jan Feb Mar Apr 43.5882 May 43.4064 Jun Jul Aug 42.4035 Sep 42.8861 Oct 43.4064 Jan (38)m 44.9777 Heat transfer coeff 44.7666 44.5598 42.5602 42.5602 44.1586 (38) 97.7249 96.5402 97.0229 97.9109 98.2954 (39) 99.1144 98.9034 98.6965 97.5432 96.6969 96.6969 97.5432 Average = Sum(39)m / 12 =97.7241 Jul Apr May Jun Sep 1.0779 1.0648 1.0690 (40) 1.0756 1.0734 1.0628 1.0608 1.0516 1.0516 1.0499 1.0552 1.0608 HLP (average) Days in mont 1.0628 31 31 4. Water heating energy requirements (kWh/year) Assumed occupancy Hot water usage for mixer showers 88,2264 86.9006 84.9685 81,2719 78.5438 75.5016 73.7723 75.6898 77.7916 81.0581 84.8342 87.8884 (42a) Hot water usage for baths 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (42b) Hot water usage for other uses 41.7838 40.2644 38 Average daily hot water use (litres/day) 38,7450 37 2256 35 7062 34 1868 34 1868 35 7062 37 2256 38 7450 40.2644 41.7838 (42c) 119.3271 (43) Apr Mav Jun Jul Aug Sep Oct Nov Daily hot water use 130.0103 127.1650 Energy conte 205.9045 181.0812 129.6722 (44) 123.7135 118.4975 114,2500 109.6883 107.9591 111.3959 115.0172 119.8031 125.0986 190.1430 162.2171 153.8025 134.8746 130.5672 137.9315 141.8277 162.5717 178.2258 203.0354 (45) Energy content (annual) Distribution loss (46)m = 0.15 x (45)m 30.8857 27.1622 28.5215 Total = Sum(45)m =1982,1821 23.0704 24.3858 Water storage loss: Water storage 1055. Store volume a) If manufacturer declared loss factor is known (kWh/day): Temperature factor from Table 2b Enter (49) or (54) in (55) Total storage loss 23 3325 21.0745 23.3325 22.5798 23 150.0000 (47) 1.3938 0.5400 (49) 0.7527 (55) 23.3325 22.5798 23.3325 23.3325 22.5798 23.3325 22.5798 23.3325 (56) If cylinder contains dedicated solar storage 23.3325 21.0745 23.3325 Primary loss 23.2624 21.0112 23.2624 22.5798 23.3325 22.5798 23.3325 23.3325 22.5798 23.3325 22.5798 23.3325 (57) Primary loss 23.2624 21.0112 23.2624 22.5120 23.2624 Combi loss 0.0000 0.0000 0.0000 0.0000 0.0000 Total heat required for water heating calculated for each month 252.4994 223.1669 236.7379 207.3089 200.3974 22 5120 23 2624 22 5120 23 2624 22 5120 23 2624 0.0000 200.3974 179.9664 177.1621 186.9196 209.1666 223.3177 249,6303 (62) 184.5264 -39.5865 (63a) -0.0000 (63b) 0.0000 (63c) WWHRS -40.3334 -0.0000 -35.6712 -0.0000 -37.3529 -0.0000 -30.9296 -0.0000 -28.8253 -0.0000 -24.6660 -0.0000 -24.5863 -0.0000 -25.5204 -0.0000 -30.0858 -0.0000 -34.0835 -0.0000 Solar input 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 **FGHRS** 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (63d) Output from w/h 212.1659 187.4957 199.3851 176.3793 171.5721 155.3004 154.0416 159.9401 161.3992 179.0808 189.2342 210.0437 (64) Total per year (kWh/year) = Sum(64)m = 2156.0381 12Total per year (kWh/year) Electric shower(s) 2156 (64) 0.0000 0.0000 0.0000 Total Energy used by instantaneous electric shower(s) (kWh/year) = Sum(64a)m = 0.0000 (64a) Heat gains from water heating, kWh/month 105.7392 93.8781 100. 100.4985 90.0107 88.4152 80.9193 80.6895 83.1381 83.2312 91.3310 95.3336 104.7852 (65) 5. Internal gains (see Table 5 and 5a) Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun 132.5741 132.5741 132.5741 132.5741 132.5741 Jul 132.5741 Aug 132.5741 Sep Oct Nov
Dec 132.5741 132.5741 132.5741 (66) SAP 10 Online 2.13.11 Page 5 of 7 | Lighting gains | | | | | L9a), also s
127.2048 | | | 127 2048 | 131.4450 | 127.2048 | 131.4450 | 127.2048 | (67) | |--|--|--|--
--|--|---|---|---|---|--|---|---|--| | Appliances ga: | ins (calcul | ated in App | endix L, eq | uation L13 | or L13a), al | so see Tab | le 5 | | | | | | | | Cooking gains | (calculate | d in Append | ix L, equat: | ion L15 or | | see Table | 5 | 178.9906 | 185.3350 | 198.8414 | 215.8908 | 231.9148 | | | Pumps, fans | 3.0000 | 36.2574
3.0000 | 36.2574
3.0000 | 36.2574
3.0000 | 36.2574
3.0000 | 36.2574
0.0000 | 36.2574
0.0000 | 36.2574
0.0000 | 36.2574
0.0000 | 36.2574
3.0000 | 36.2574
3.0000 | 36.2574
3.0000 | | | Losses e.g. e | -106.0593 | -106.0593 | | | -106.0593 | -106.0593 | -106.0593 | -106.0593 | -106.0593 | -106.0593 | -106.0593 | -106.0593 | (71) | | Water heating | 142.1225 | | 135.0786 | 125.0148 | 118.8377 | 112.3879 | 108.4536 | 111.7448 | 115.5989 | 122.7567 | 132.4077 | 140.8403 | (72) | | Total internal | | 591.4431 | 566.8487 | 547.5187 | 520.0521 | 498.8184 | 479.9390 | 480.7125 | 495.1511 | 514.5751 | 545.5157 | 565.7321 | (73) | 6. Solar gains | | | | | | | | | | | | | | | [Jan] | | | A: | rea | Solar flux | | g | | FF | Acce | 33 | Gains | | | | | | | m2 | Table 6a
W/m2 | Speci
or | fic data
Table 6b | Specific
or Tab | data
le 6c | fact
Table | | M | | | Northeast | | | 11.5 | 500 | 11.2829 | | 0.6300 | 0 | | 0.77 | | 39.8269 | (75) | | Southeast
Southwest | | | 2.3 | 800
600 | 36.7938
36.7938 | | 0.6300
0.6300 | 0 | .7000
.7000 | 0.77 | 00
00 | 26.7623
11.9194 | (77)
(79) | | | | | | | | | | | | | | | | | Solar gains
Total gains | | | | | 447.5529
967.6049 | | | | | | 96.4442
641.9599 | 65.6281
631.3602 | | | - | 7. Mean inter | | | | | | | | | | | | | | | Temperature du
Utilisation fa | | | | | | Th1 (C) | | | | | | 21.0000 | (85) | | tau | Jan
93.4011 | Feb
93.6004 | Mar
93.7966 | | | Jun
95.7362 | Jul
95.7362 | Aug
95.8916 | Sep
95.4146 | Oct
94.9056 | Nov
94.5492 | Dec
94.1794 | | | alpha
util living a | 7.2267 | 7.2400 | 7.2531 | 7.3153 | 7.3270 | 7.3824 | 7.3824 | 7.3928 | 7.3610 | 7.3270 | 7.3033 | 7.2786 | | | , | 0.9992 | 0.9979 | 0.9933 | 0.9640 | 0.8497 | 0.6314 | 0.4610 | 0.5223 | 0.8101 | 0.9808 | 0.9978 | 0.9994 | (86) | | MIT
Th 2 | 20.1320 | 20.2569 | 20.4496 20.0226 | 20.7252
20.0313 | 20.9260 20.0330 | 20.9926 | 20.9993 | 20.9984 | 20.9607 | 20.7030 20.0330 | 20.3733
20.0297 | 20.1128
20.0262 | | | util rest of h | | 0.9969 | 0.9898 | 0.9458 | 0.7911 | 0.5414 | 0.3610 | 0.4148 | 0.7232 | 0.9675 | 0.9965 | 0.9992 | | | MIT 2
Living area fi | 19.0132 | 19.1743 | 19.4208 | 19.7662 | 19.9801 | 20.0375 | 20.0404 | 20.0416 | 20.0167 | 19.7470
Living are | 19.3306 | 18.9944
0.2967 | (90) | | MIT
Temperature a | 19.3451 | 19.4955 | 19.7260 | 20.0508 | 20.2607 | 20.3209 | 20.3249 | 20.3255 | 20.2968 | | 19.6399 | 19.3262 | | | adjusted MIT | | 19.4955 | 19.7260 | 20.0508 | 20.2607 | 20.3209 | 20.3249 | 20.3255 | 20.2968 | 20.0307 | 19.6399 | 19.3262 | (93) | 8. Space heat: | ing require | ment
 | | | | | | | | | | | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | (04) | | Utilisation
Useful gains | Jan
0.9985
655.2518 | Feb
0.9962
735.5760 | 0.9884
793.7790 | 0.9463
850.8043 | 0.8062
780.0513 | 0.5682
549.3161 | 0.3907
359.9727 | 0.4469
378.4165 | 0.7485
576.9368 | 0.9674
664.1153 | 0.9958
639.2596 | 0.9989
630.6473 | (95) | | Utilisation | Jan
0.9985
655.2518
4.3000 | Feb
0.9962
735.5760
4.9000 | 0.9884
793.7790
6.5000 | 0.9463
850.8043
8.9000 | 0.8062
780.0513
11.7000 | 0.5682
549.3161
14.6000 | 0.3907
359.9727
16.6000 | 0.4469
378.4165
16.4000 | 0.7485
576.9368
14.1000 | 0.9674
664.1153
10.6000 | 0.9958
639.2596
7.1000 | 0.9989
630.6473
4.2000 | (95)
(96) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating | Jan
0.9985
655.2518
4.3000
e W
1491.1909
kWh | Feb
0.9962
735.5760
4.9000 | 0.9884
793.7790
6.5000
1305.3629 | 0.9463
850.8043
8.9000
1089.7065 | 0.8062
780.0513
11.7000
835.0394 | 0.5682
549.3161
14.6000
553.1912 | 0.3907
359.9727
16.6000
360.1867 | 0.4469
378.4165
16.4000
378.9659 | 0.7485
576.9368
14.1000
601.2294 | 0.9674
664.1153
10.6000
919.8963 | 0.9958
639.2596
7.1000
1227.7950 | 0.9989
630.6473
4.2000
1486.8361 | (95)
(96)
(97) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating | Jan
0.9985
655.2518
4.3000
e
W
1491.1909
kWh
621.9387
requiremen | Feb
0.9962
735.5760
4.9000
1443.5434
475.7541 | 0.9884
793.7790
6.5000
1305.3629
380.6185 | 0.9463
850.8043
8.9000
1089.7065
172.0096 | 0.8062
780.0513
11.7000 | 0.5682
549.3161
14.6000
553.1912 | 0.3907
359.9727
16.6000
360.1867 | 0.4469
378.4165
16.4000
378.9659 | 0.7485
576.9368
14.1000
601.2294 | 0.9674
664.1153
10.6000
919.8963 | 0.9958
639.2596
7.1000
1227.7950 | 0.9989
630.6473
4.2000
1486.8361 | (95)
(96)
(97) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating Solar heating | Jan
0.9985
655.2518
4.3000
e W
1491.1909
kWh
621.9387
requirement
kWh
0.0000 | Feb
0.9962
735.5760
4.9000
1443.5434
475.7541
t - total p
0.0000 | 0.9884
793.7790
6.5000
1305.3629
380.6185
er year (kWI | 0.9463
850.8043
8.9000
1089.7065
172.0096
h/year) | 0.8062
780.0513
11.7000
835.0394
40.9112 | 0.5682
549.3161
14.6000
553.1912 | 0.3907
359.9727
16.6000
360.1867 | 0.4469
378.4165
16.4000
378.9659 | 0.7485
576.9368
14.1000
601.2294 | 0.9674
664.1153
10.6000
919.8963 | 0.9958
639.2596
7.1000
1227.7950 | 0.9989
630.6473
4.2000
1486.8361
637.0045
2942.2832
0.0000 | (95)
(96)
(97)
(98a) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating | Jan
0.9985
655.2518
4.3000
e W
1491.1909
kWh
621.9387
requiremen
kWh
0.0000
contributi
kWh | Feb
0.9962
735.5760
4.9000
1443.5434
475.7541
t - total p
0.0000
on - total | 0.9884
793.7790
6.5000
1305.3629
380.6185
er year (kWI
0.0000
per year (ki | 0.9463
850.8043
8.9000
1089.7065
172.0096
h/year)
0.0000
Wh/year) | 0.8062
780.0513
11.7000
835.0394
40.9112 | 0.5682
549.3161
14.6000
553.1912
0.0000 | 0.3907
359.9727
16.6000
360.1867
0.0000 | 0.4469
378.4165
16.4000
378.9659
0.0000 | 0.7485
576.9368
14.1000
601.2294
0.0000 | 0.9674
664.1153
10.6000
919.8963
190.3010
0.0000 | 0.9958
639.2596
7.1000
1227.7950
423.7455
0.0000 | 0.9989
630.6473
4.2000
1486.8361
637.0045
2942.2832
0.0000
0.0000 | (95)
(96)
(97)
(98a)
(98b) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating Solar heating Solar heating Space heating Space heating | Jan
0.9985
655.2518
4.3000
e W
1491.1909
kWh
621.9387
requiremen
kWh
0.0000
contributi
kWh
621.9387
requiremen | Feb
0.9962
735.5760
4.9000
1443.5434
475.7541
t - total p
0.0000
on - total; | 0.9884
793.7790
6.5000
1305.3629
380.6185
er year (kW)
0.0000
per year (ki | 0.9463
850.8043
8.9000
1089.7065
172.0096
h/year)
0.0000
Wh/year) | 0.8062
780.0513
11.7000
835.0394
40.9112
0.0000 | 0.5682
549.3161
14.6000
553.1912
0.0000
0.0000 | 0.3907
359.9727
16.6000
360.1867
0.0000 | 0.4469
378.4165
16.4000
378.9659
0.0000 | 0.7485
576.9368
14.1000
601.2294
0.0000 | 0.9674
664.1153
10.6000
919.8963
190.3010
0.0000 | 0.9958
639.2596
7.1000
1227.7950
423.7455
0.0000 | 0.9989 630.6473 4.2000 1486.8361 637.0045 2942.2832 0.0000 0.0000 637.0045 2942.2832 | (95)
(96)
(97)
(98a)
(98b) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating Solar heating Solar heating | Jan
0.9985
655.2518
4.3000
e W
1491.1909
kWh
621.9387
requiremen
kWh
0.0000
contributi
kWh
621.9387
requiremen | Feb
0.9962
735.5760
4.9000
1443.5434
475.7541
t - total p
0.0000
on - total; | 0.9884
793.7790
6.5000
1305.3629
380.6185
er year (kW)
0.0000
per year (ki | 0.9463
850.8043
8.9000
1089.7065
172.0096
h/year)
0.0000
Wh/year) | 0.8062
780.0513
11.7000
835.0394
40.9112
0.0000 | 0.5682
549.3161
14.6000
553.1912
0.0000
0.0000 | 0.3907
359.9727
16.6000
360.1867
0.0000 | 0.4469
378.4165
16.4000
378.9659
0.0000 | 0.7485
576.9368
14.1000
601.2294
0.0000 | 0.9674
664.1153
10.6000
919.8963
190.3010
0.0000 | 0.9958
639.2596
7.1000
1227.7950
423.7455
0.0000 | 0.9989
630.6473
4.2000
1486.8361
637.0045
2942.2832
0.0000
0.0000 | (95)
(96)
(97)
(98a)
(98b) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating Solar heating Solar heating Space heating Space heating Space heating | Jan 0.9985 655.2518 4.3000 e W 1491.1909 kWh 621.9387 requiremen kWh 0.0000 contributi kWh 621.9387 requiremen per m2 | Feb 0.9962 735.5760 4.9000 1443.5434 475.7541 t - total p 0.0000 on - total; 475.7541 t after sol | 0.9884
793.7790
6.5000
1305.3629
380.6185
er year (kWI
0.0000
per year (ki | 0.9463
850.8043
8.9000
1089.7065
172.0096
h/year)
0.0000
Wh/year)
172.0096
tion - tota | 0.8062
780.0513
11.7000
835.0394
40.9112
0.0000
40.9112
1 per year (| 0.5682
549.3161
14.6000
553.1912
0.0000
0.0000
0.0000
(kWh/year) | 0.3907
359.9727
16.6000
360.1867
0.0000
0.0000 | 0.4469 378.4165 16.4000 378.9659 0.0000 0.0000 | 0.7485
576.9368
14.1000
601.2294
0.0000 | 0.9674
664.1153
10.6000
919.8963
190.3010
0.0000 | 0.9958
639.2596
7.1000
1227.7950
423.7455
0.0000 | 0.9989 630.6473 4.2000 1486.8361 637.0045 2942.2832 0.0000 0.0000 637.0045 2942.2832 | (95)
(96)
(97)
(98a)
(98b) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating Solar heating Space heating Space heating Space heating Space heating | Jan 0.985 655.2518 4.3000 e W 1491.1909 kWh 621.9387 requiremen kWh 0.0000 contributi kWh 621.9387 requiremen per m2 | Feb 0.9962 735.5760 4.9000 1443.5434 475.7541 t - total p 0.0000 on - total; 475.7541 t after sol | 0.9884
793.7790
6.5000
1305.3629
380.6185
er year (kWI
0.0000
per year (kWI
380.6185
ar contribut | 0.9463
850.8043
8.9000
1089.7065
172.0096
h/year)
0.0000
Wh/year)
172.0096
tion - tota | 0.8062
780.0513
11.7000
835.0394
40.9112
0.0000
40.9112
1 per year (| 0.5682
549.3161
14.6000
553.1912
0.0000
0.0000
0.0000
(kWh/year) | 0.3907
359.9727
16.6000
360.1867
0.0000
0.0000 | 0.4469 378.4165 16.4000 378.9659 0.0000 0.0000 | 0.7485
576.9368
14.1000
601.2294
0.0000 | 0.9674
664.1153
10.6000
919.8963
190.3010
0.0000 | 0.9958
639.2596
7.1000
1227.7950
423.7455
0.0000 | 0.9989 630.6473 4.2000 1486.8361 637.0045 2942.2832 0.0000 0.0000 637.0045 2942.2832 | (95)
(96)
(97)
(98a)
(98b) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating Solar heating Solar heating Space heating Space heating Space heating Space heating Fraction of si | Jan 0.9985 655.2518 4.3000 e W 1491.1909 kWh 621.9387 requiremen kWh 0.0000 contributi kWh 621.9387 requiremen per m2 | Feb
0.9962
735.5760
4.9000
1443.5434
475.7541
t - total p
0.0000
on - total;
475.7541
t after sol | 0.9884 793.7790 6.5000 1305.3629 380.6185 er year (kWI 0.0000 per year (kI 380.6185 ar contribut | 0.9463
850.8043
8.9000
1089.7065
172.0096
h/year)
0.0000
Wh/year)
172.0096
tion - tota | 0.8062 780.0513 11.7000 835.0394 40.9112 0.0000 40.9112 1 per year (| 0.5682
549.3161
14.6000
553.1912
0.0000
0.0000
0.0000
(kWh/year) | 0.3907
359.9727
16.6000
360.1867
0.0000
0.0000 | 0.4469 378.4165 16.4000 378.9659 0.0000 0.0000 | 0.7485
576.9368
14.1000
601.2294
0.0000 | 0.9674
664.1153
10.6000
919.8963
190.3010
0.0000 | 0.9958
639.2596
7.1000
1227.7950
423.7455
0.0000 | 0.9989
630.6473
4.2000
1486.8361
637.0045
2942.2832
0.0000
637.0045
2942.2832
31.9987 | (95)
(96)
(97)
(98a)
(98b)
(98c)
(99) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating Solar heating Solar heating Space heating Space heating Space heating Space heating Space heating | Jan 0.9985 655.2518 4.3000 e W 1491.1909 kWh 621.9387 requiremen kWh 621.9387 requiremen per m2 | Feb 0.9962 735.5760 4.9000 1443.5434 475.7541 t - total p 0.0000 on - total; 475.7541 t after sol | 0.9884 793.7790 6.5000 1305.3629 380.6185 er year (kWl 0.0000 per year (ki 380.6185 ar contribut 1 heating sy | 0.9463
850.8043
8.9000
1089.7065
172.0096
h/year)
0.0000
Wh/year)
172.0096
tion - tota | 0.8062 780.0513 11.7000 835.0394 40.9112 0.0000 40.9112 1 per year (| 0.5682
549.3161
14.6000
553.1912
0.0000
0.0000
0.0000
(kWh/year) | 0.3907
359.9727
16.6000
360.1867
0.0000
0.0000 | 0.4469 378.4165 16.4000 378.9659 0.0000 0.0000 | 0.7485
576.9368
14.1000
601.2294
0.0000 | 0.9674
664.1153
10.6000
919.8963
190.3010
0.0000 | 0.9958
639.2596
7.1000
1227.7950
423.7455
0.0000 | 0.9989
630.6473
4.2000
1486.8361
637.0045
2942.2832
0.0000
0.0000
637.0045
2942.2832
31.9987 | (95)
(96)
(97)
(98a)
(98b)
(98c)
(99) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating Solar heating Space heating Space heating Space heating Space heating Fraction of spraction of spraction of spraction of sprace in the sprace of spraction spractic sprac | Jan 0.9985 655.2518 4.3000 e W 1491.1909 kWh 621.9387 requiremen kWh 621.9387
requiremen per m2 | Feb 0.9962 735.5760 4.9000 1443.5434 475.7541 t - total p 0.0000 on - total; 475.7541 t after sol - Individua rom seconda rom main sy heating sy heating sy heating sy | 0.9884 793.7790 6.5000 1305.3629 380.6185 er year (kWI 0.0000 per year (ki 380.6185 ar contribut 1 heating sy ry/supplement stem (s) stem 1 (in the stem 2 (| 0.9463
850.8043
8.9000
1089.7065
172.0096
h/year)
0.0000
Wh/year)
172.0096
tion - tota | 0.8062 780.0513 11.7000 835.0394 40.9112 0.0000 40.9112 1 per year (| 0.5682
549.3161
14.6000
553.1912
0.0000
0.0000
0.0000
(kWh/year) | 0.3907
359.9727
16.6000
360.1867
0.0000
0.0000 | 0.4469 378.4165 16.4000 378.9659 0.0000 0.0000 | 0.7485
576.9368
14.1000
601.2294
0.0000 | 0.9674
664.1153
10.6000
919.8963
190.3010
0.0000 | 0.9958
639.2596
7.1000
1227.7950
423.7455
0.0000 | 0.9989 630.6473 4.2000 1486.8361 637.0045 2942.2832 0.0000 637.0045 2942.2832 31.9987 | (95)
(96)
(97)
(98a)
(98b)
(98c)
(99)
(201)
(202)
(206)
(207) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating Solar heating Space heating Space heating Space heating Fraction of space heating Fraction of space fifticiency of | Jan 0.9985 655.2518 4.3000 e W 1491.1909 kWh 621.9387 requiremen kWh 621.9387 requiremen per m2 | Feb 0.9962 735.5760 4.9000 1443.5434 475.7541 t - total p 0.0000 on - total; 475.7541 t after sol - Individua rom seconda rom main sy heating sy heating sy heating sy | 0.9884 793.7790 6.5000 1305.3629 380.6185 er year (kWI 0.0000 per year (ki 380.6185 ar contribut 1 heating sy ry/supplement stem (s) stem 1 (in the stem 2 (| 0.9463
850.8043
8.9000
1089.7065
172.0096
h/year)
0.0000
Wh/year)
172.0096
tion - tota | 0.8062 780.0513 11.7000 835.0394 40.9112 0.0000 40.9112 1 per year (| 0.5682
549.3161
14.6000
553.1912
0.0000
0.0000
0.0000
(kWh/year) | 0.3907
359.9727
16.6000
360.1867
0.0000
0.0000 | 0.4469 378.4165 16.4000 378.9659 0.0000 0.0000 | 0.7485
576.9368
14.1000
601.2294
0.0000 | 0.9674
664.1153
10.6000
919.8963
190.3010
0.0000 | 0.9958
639.2596
7.1000
1227.7950
423.7455
0.0000 | 0.9989
630.6473
4.2000
1486.8361
637.0045
2942.2832
0.0000
637.0045
2942.2832
31.9987 | (95)
(96)
(97)
(98a)
(98b)
(98c)
(99)
(201)
(202)
(206)
(207) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating Solar heating Space heating Space heating Space heating Fraction of space heating Fraction of space fifticiency of | Jan 0.9985 655.2518 4.3000 e W 1491.1909 kWh 621.9387 requiremen kWh 0.0000 contributi kWh 621.9387 requirement per m2 quirements pace heat f main space main space secondary/Jan requiremen | Feb 0.9962 735.5760 4.9000 1443.5434 475.7541 t - total p 0.0000 on - total; 475.7541 t after sol - Individua - rom seconda yheating sy heating sy supplementa Feb t | 0.9884 793.7790 6.5000 1305.3629 380.6185 er year (kWI 0.0000 per year (kWI 380.6185 ar contribut 1 heating sy ry/supplements stem 1 (in stem 1 (in stem 2 | 0.9463 850.8043 8.9000 1089.7065 172.0096 h/year) 0.0000 Wh/year) 172.0096 tion - tota ystems, inc ntary syste %) %) system, % Apr | 0.8062 780.0513 11.7000 835.0394 40.9112 0.0000 40.9112 1 per year (| 0.5682
549.3161
14.6000
553.1912
0.0000
0.0000
0.0000
(kWh/year) | 0.3907
359.9727
16.6000
360.1867
0.0000
0.0000 | 0.4469 378.4165 16.4000 378.9659 0.0000 0.0000 | 0.7485
576.9368
14.1000
601.2294
0.0000
0.0000 | 0.9674
664.1153
10.6000
919.8963
190.3010
0.0000
190.3010
(98c | 0.9958
639.2596
7.1000
1227.7950
423.7455
0.0000
423.7455
) / (4) = | 0.9989 630.6473 4.2000 1486.8361 637.0045 2942.2832 0.0000 637.0045 2942.2832 31.9987 0.0000 1.0000 92.33000 0.00000 0.00000 | (95)
(96)
(97)
(98a)
(98b)
(98c)
(99)
(201)
(202)
(206)
(207)
(208) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating Solar heating Space heating Space heating Space heating Space heating Space heating Fraction of sp. | Jan 0.9985 655.2518 4.3000 e W 1491.1909 kWh 621.9387 requiremen kWh 0.0000 contributi kWh 621.9387 requirements pace heat f p | Feb 0.9962 735.5760 4.9000 1443.5434 475.7541 t - total p 0.0000 on - total : 475.7541 t after sol - Individua rom seconda rom main sy heating sy heating sy supplementa Feb t 475.7541 (main heat 92.3000 | 0.9884 793.7790 6.5000 1305.3629 380.6185 er year (kWI 0.0000 per year (kWI 380.6185 ar contribut 1 heating system 1 (in stem 1 (in stem 1 (in stem 2 (in stem 2 (in stem 2 (in stem 2 (in stem 3 (in stem 2 | 0.9463
850.8043
8.9000
1089.7065
172.0096
h/year)
0.0000
Wh/year)
172.0096
tion - tota
ystems, incontary system
%)
%)
%)
%)
%)
%)
%)
Apr
172.0096 | 0.8062 780.0513 11.7000 835.0394 40.9112 0.0000 40.9112 1 per year (| 0.5682
549.3161
14.6000
553.1912
0.0000
0.0000
0.0000
(kWh/year) | 0.3907
359.9727
16.6000
360.1867
0.0000
0.0000 | 0.4469 378.4165 16.4000 378.9659 0.0000 0.0000 | 0.7485
576.9368
14.1000
601.2294
0.0000
0.0000 | 0.9674
664.1153
10.6000
919.8963
190.3010
0.0000
190.3010
(98c | 0.9958
639.2596
7.1000
1227.7950
423.7455
0.0000
423.7455
) / (4) = | 0.9989 630.6473 4.2000 1486.8361 637.0045 2942.2832 0.0000 637.0045 2942.2832 31.9987 0.0000 1.0000 92.3000 0.0000 Dec | (95)
(96)
(97)
(98a)
(98b)
(98c)
(99)
(201)
(202)
(206)
(207)
(208) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating Solar heating Solar heating Space heating Space heating Space heating Fraction of spraction spractic spraction of spraction of spractic sp | Jan 0.9985 655.2518 4.3000 e W 1491.1909 kWh 621.9387 requiremen kWh 621.9387 requiremen per m2 pace heat f | Feb 0.9962 735.5760 4.9000 1443.5434 475.7541 t - total p 0.0000 on - total : 475.7541 t after sol - Individua rom main sy heating sy heating sy supplementa Feb t 475.7541 (main heat 92.3000 heating sy heating sy heating sy heating sy heating sy supplementa Feb t 475.7541 (main heat 92.3000 heating sy heati | 0.9884 793.7790 6.5000 1305.3629 380.6185 er year (kWI 0.0000 per year (kWI 380.6185 ar contribut 1 heating system 1 (in stem 1 (in stem 1 (in stem 2 (in stem 2 (in stem 2 (in stem 2 (in stem 3 (in stem 2 | 0.9463 850.8043 8.9000 1089.7065 172.0096 h/year) 0.0000 Wh/year) 172.0096 tion - tota ystems, inc ntary syste %) %) system, % Apr 172.0096 1) 92.3000 | 0.8062 780.0513 11.7000 835.0394 40.9112 0.0000 40.9112 1 per year (| 0.5682
549.3161
14.6000
553.1912
0.0000
0.0000
(kWh/year) | 0.3907
359.9727
16.6000
360.1867
0.0000
0.0000
Jul
0.0000 | 0.4469 378.4165 16.4000 378.9659 0.0000 0.0000 | 0.7485
576.9368
14.1000
601.2294
0.0000
0.0000
0.0000 | 0.9674
664.1153
10.6000
919.8963
190.3010
0.0000
190.3010
(98c | 0.9958 639.2596 7.1000 1227.7950 423.7455 0.0000 423.7455) / (4) = | 0.9989 630.6473 4.2000 1486.8361 637.0045 2942.2832 0.0000 637.0045 2942.2932 31.9987 0.0000 92.3000 0.0000 Dec 637.0045 | (95)
(96)
(97)
(98a)
(98b)
(98c)
(99)
(201)
(202)
(206)
(207)
(208)
(98)
(210) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating Solar heating Space heating Space heating Space heating Space heating Space heating Fraction of sp. | Jan 0.9985 655.2518 4.3000 e W 1491.1909 kWh 621.9387 requiremen kWh 0.0000 contributi kWh 622.9387 requirements per m2 contributi kWh 621.9387 requirements pace heat f main space main space main space secondary/ Jan requiremen 621.9387 Jan requiremen 621.9387 requiremen 621.9387 difficiency 92.3000 fuel (main 673.8231 | Feb 0.9962 735.5760 4.9000 1443.5434 475.7541 t - total p 0.0000 on - total; 475.7541 t after sol - Individua rom seconda rom main sy heating sy heating sy supplementa Feb t 475.7541 (main heat 92.3000 heating sy 515.4432 | 0.9884 793.7790 6.5000 1305.3629 380.6185 er year (kW) 0.0000 per year (kW) 380.6185 ar contribut 1 heating system 1 (in stem 2 (in stem 2) | 0.0463 850.8043 8.9000 1089.7065 172.0096 h/year) 0.0000 Wh/year) 172.0096 tion - tota ystems, inc mary system % Apr 172.0096 1) 92.3000 186.3593 | 0.8062 780.0513 11.7000 835.0394 40.9112 0.0000 40.9112 1 per year (| 0.5682
549.3161
14.6000
553.1912
0.0000
0.0000
(kWh/year)
0-CHP
Jun
0.0000
0.0000 | 0.3907
359.9727
16.6000
360.1867
0.0000
0.0000
Jul
0.0000
0.0000 | 0.4469 378.4165 16.4000 378.9659 0.0000 0.0000 Aug 0.0000 0.0000 | 0.7485
576.9368
14.1000
601.2294
0.0000
0.0000
0.0000 | 0.9674
664.1153
10.6000
919.8963
190.3010
0.0000
190.3010
(98c | 0.9958 639.2596 7.1000 1227.7950 423.7455 0.0000 423.7455) / (4) = Nov 423.7455 92.3000 | 0.9989 630.6473 4.2000 1486.8361 637.0045 2942.2832 0.0000 637.0045 2942.2832 31.9987 0.0000 1.0000 92.33000 0.0000 Dec 637.0045 92.3000 690.1457 | (95)
(96)
(97)
(98a)
(98b)
(98c)
(99)
(201)
(202)
(206)
(207)
(208)
(98)
(210)
(211) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating Solar heating Solar heating Space heating Space heating Space heating Fraction of space heating Efficiency of Efficiency of Efficiency of Space heating Space heating | Jan 0.9985 655.2518 4.3000 e W 1491.1909 kWh 621.9387 requiremen kWh 621.9387 requiremen requiremen contributi kWh 621.9387 requiremen per m2 Quirements quirements quirements condary/ Jan requiremen 621.9387 requiremen face heat f pace pa | Feb 0.9962 735.5760 4.9000 1443.5434 475.7541 t - total p 0.0000 on - total; 475.7541 t after sol -
Individua rom seconda rom main sy heating sy heating sy supplementa Feb t 475.7541 (main heat 92.3000 heating sy 515.4432 (main heat 0.0000 | 0.9884 793.7790 6.5000 1305.3629 380.6185 er year (kWI 0.0000 per year (kWI 380.6185 ar contribut 1 heating s; ry/supplements stem 1 (in stem 2 | 0.9463 850.8043 8.9000 1089.7065 172.0096 h/year) 0.0000 Wh/year) 172.0096 tion - tota wystems, inc ntary syste % % Apr 172.0096 1) 92.3000 186.3593 0.0000 | 0.8062 780.0513 11.7000 835.0394 40.9112 0.0000 40.9112 1 per year (| 0.5682
549.3161
14.6000
553.1912
0.0000
0.0000
(kWh/year)
CHP
Jun
0.0000
0.0000 | Jul 0.0000 0.0000 0.0000 0.0000 | 0.4469 378.4165 16.4000 378.9659 0.0000 0.0000 Aug 0.0000 0.0000 0.0000 0.0000 | 0.7485
576.9368
14.1000
601.2294
0.0000
0.0000
0.0000
Sep
0.0000
0.0000
0.0000 | 0.9674
664.1153
10.6000
919.8963
190.3010
0.0000
190.3010
(98c | 0.9958 639.2596 7.1000 1227.7950 423.7455 0.0000 423.7455) / (4) = Nov 423.7455 92.3000 459.0959 0.0000 | 0.9989 630.6473 4.2000 1486.8361 637.0045 2942.2832 0.0000 637.0045 2942.2832 31.9987 0.0000 0.0000 0.0000 Dec 637.0045 92.3000 690.1457 0.0000 | (95)
(96)
(97)
(98a)
(98b)
(98c)
(99)
(201)
(202)
(206)
(207)
(208)
(210)
(211)
(212) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating Solar heating Space heating Space heating Space heating Space heating Fraction of space heating | Jan 0.9985 655.2518 4.3000 e 1491.1909 kWh 621.9387 requirement kWh 621.9387 requirement contributi kWh 621.9387 requirement accident per m2 Jan requirement 621.9387 requirement contributi contribu | Feb 0.9962 735.5760 4.9000 1443.5434 475.7541 t - total p 0.0000 on - total; 475.7541 t after sol - Individua - rom seconda rom main sy heating sy heating sy heating sy heating sy supplementa Feb t 475.7541 (main heat 92.3000 heating sy 515.4432 (main heat 0.0000 heating sy 0.0000 ndary) | 0.9884 793.7790 6.5000 1305.3629 380.6185 er year (kW) 0.0000 per year (kW) 380.6185 ar contribut 1 heating system 1 (in: stem 1 (in: stem 2 (in: stem 1) Mar 380.6185 ing system: 92.3000 stem, 412.3710 ing system: 0.0000 stem 2) 0.0000 | 0.0463 850.8043 8.9000 1089.7065 172.0096 h/year) 0.0000 Wh/year) 172.0096 tion - tota ystems, inc ntary syste %) %) % Apr 172.0096 1) 92.3000 186.3593 2) 0.0000 | 0.8062 780.0513 11.7000 835.0394 40.9112 0.0000 40.9112 1 per year (| 0.5682
549.3161
14.6000
553.1912
0.0000
0.0000
0.0000
(kWh/year)
D-CHP Jun 0.0000
0.0000
0.0000 | Jul 0.0000 0.0000 0.0000 0.0000 | 0.4469 378.4165 16.4000 378.9659 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.7485
576.9368
14.1000
601.2294
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.9674 664.1153 10.6000 919.8963 190.3010 0.0000 190.3010 (98c | 0.9958 639.2596 7.1000 1227.7950 423.7455 0.0000 423.7455) / (4) = Nov 423.7455 92.3000 459.0959 0.0000 0.0000 | 0.9989 630.6473 4.2000 1486.8361 637.0045 2942.2832 0.0000 637.0045 2942.2832 31.9987 0.0000 0.0000 0.0000 Dec 637.0045 92.3000 690.1457 0.0000 0.0000 | (95)
(96)
(97)
(98a)
(98b)
(98c)
(99)
(201)
(202)
(206)
(207)
(208)
(98)
(210)
(211)
(212)
(213) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating Solar heating Solar heating Space heating Space heating Space heating Fraction of space heating | Jan 0.9985 655.2518 4.3000 e W 1491.1909 kWh 621.9387 requirement kWh 621.9387 requirement per m2 pace heat f | Feb 0.9962 735.5760 4.9000 1443.5434 475.7541 t - total p 0.0000 on - total; 475.7541 t after sol tafter t | 0.9884 793.7790 6.5000 1305.3629 380.6185 er year (kW) 0.0000 per year (kW) 380.6185 ar contribut 1 heating system 1 (in: stem 1 (in: stem 2 (in: stem 1) Mar 380.6185 ing system: 92.3000 stem, 412.3710 ing system: 0.0000 stem 2) 0.0000 | 0.9463 850.8043 8.9000 1089.7065 172.0096 h/year) 0.0000 Wh/year) 172.0096 tion - tota wystems, inc ntary syste % % Apr 172.0096 1) 92.3000 186.3593 0.0000 | 0.8062 780.0513 11.7000 835.0394 40.9112 0.0000 40.9112 1 per year (luding micro m (Table 11) May 40.9112 92.3000 44.3241 0.0000 | 0.5682
549.3161
14.6000
553.1912
0.0000
0.0000
0.0000
0.Wh/year)
D-CHP
Jun
0.0000
0.0000
0.0000 | Jul 0.0000 0.0000 0.0000 0.0000 | 0.4469 378.4165 16.4000 378.9659 0.0000 0.0000 Aug 0.0000 0.0000 0.0000 0.0000 | 0.7485
576.9368
14.1000
601.2294
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.9674
664.1153
10.6000
919.8963
190.3010
0.0000
190.3010
(98c | 0.9958 639.2596 7.1000 1227.7950 423.7455 0.0000 423.7455) / (4) = Nov 423.7455 92.3000 459.0959 0.0000 | 0.9989 630.6473 4.2000 1486.8361 637.0045 2942.2832 0.0000 637.0045 2942.2832 31.9987 0.0000 0.0000 0.0000 Dec 637.0045 92.3000 690.1457 0.0000 | (95)
(96)
(97)
(98a)
(98b)
(98c)
(99)
(201)
(202)
(206)
(207)
(208)
(98)
(210)
(211)
(212)
(213) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating Solar heating Space heating Space heating Space heating Fraction of space heating | Jan 0.9985 655.2518 4.3000 e W 1491.1909 kWh 621.9387 requiremen kWh 621.9387 requiremen contributi kWh 621.9387 requiremen per m2 Quirements pace heat f he | Feb 0.9962 735.5760 4.9000 1443.5434 475.7541 t - total p 0.0000 on - total; 475.7541 t after sol - Individua | 0.9884 793.7790 6.5000 1305.3629 380.6185 er year (kWI 0.0000 per year (kI 380.6185 ar contribut 1 heating system (s) stem 1 (in 2 (in stem 1 st | 0.9463 850.8043 8.9000 1089.7065 172.0096 h/year) 0.0000 Wh/year) 172.0096 tion - tota ystems, inc. ntary syste %) %) %) system, % Apr 172.0096 1) 92.3000 186.3593 2) 0.0000 0.0000 | 0.8062 780.0513 11.7000 835.0394 40.9112 0.0000 40.9112 1 per year (| 0.5682 549.3161 14.6000 553.1912 0.0000 0.0000 (kWh/year) CHP Jun 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | Jul
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | 0.4469 378.4165 16.4000 378.9659 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.7485 576.9368 14.1000 601.2294 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.9674 664.1153 10.6000 919.8963 190.3010 0.0000 190.3010 (98c | 0.9958 639.2596 7.1000 1227.7950 423.7455 0.0000 423.7455) / (4) = Nov 423.7455 92.3000 459.0959 0.0000 0.0000 | 0.9989 630.6473 4.2000 1486.8361 637.0045 2942.2832 0.0000 637.0045 2942.2832 31.9987 0.0000 1.0000 92.33000 0.0000 Dec 637.0045 92.3000 690.1457 0.0000 0.0000 0.0000 | (95)
(96)
(97)
(98a)
(98b)
(98c)
(99)
(201)
(202)
(206)
(207)
(208)
(210)
(211)
(212)
(213)
(215) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating Solar heating Solar heating Space heating Space heating Space heating Space heating Fraction of space heating | Jan 0.9985 655.2518 4.3000 e W 1491.1909 kWh 621.9387 requiremen kWh 0.0000 contributi kWh 621.9387 requiremen per m2 quirements pace heat f main space m | Feb 0.9962 735.5760 4.9000 1443.5434 475.7541 t - total p 0.0000 on - total: 475.7541 t after sol af | 0.9884 793.7790 6.5000 1305.3629 380.6185 er year (kWI 0.0000 per year (kWI 380.6185 ar contribut 1 heating system (s) stem 1 (in stem 1 (in stem 1) stem 2 (in stem 1) year (kWI 380.6185 ing system (s) stem 0 0.0000 stem 0 0.0000 199.3851 | 0.9463 850.8043 8.9000 1089.7065 172.0096 h/year) 0.0000 Wh/year) 172.0096 tion - tota whose the second of se | 0.8062 780.0513 11.7000 835.0394 40.9112 0.0000 40.9112 1 per year (| 0.5682 549.3161 14.6000 553.1912 0.0000 0.0000 0.0000 (kWh/year) D-CHP Jun 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 155.3004 | Jul 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.4469 378.4165 16.4000 378.9659 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.7485 576.9368 14.1000 601.2294 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 161.3992 | 0.9674 664.1153 10.6000 919.8963 190.3010 0.0000 190.3010 (98c Oct 190.3010 92.3000 206.1766 0.0000 0.0000 179.0808 | 0.9958 639.2596 7.1000 1227.7950 423.7455 0.0000 423.7455) / (4) = Nov 423.7455 92.3000 459.0959 0.0000 0.0000 0.0000 | 0.9989 630.6473 4.2000 1486.8361 637.0045 2942.2832 0.0000 637.0045 2942.2832 31.9987 0.0000 1.0000 92.3000 0.0000 Dec 637.0045 92.3000 690.1457 0.0000 0.0000 0.0000 | (95)
(96)
(97)
(98a)
(98b)
(98c)
(99)
(201)
(202)
(206)
(207)
(208)
(211)
(212)
(213)
(215) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating Solar heating Solar heating Space heating Space heating Space heating Space heating Fraction of space heating | Jan 0.9985 655.2518 4.3000 e 1491.1909 kWh 621.9387 requiremen kWh 0.0000 contributi kWh 621.9387 requiremen per m2 Quirements pace heat f main space mai | Feb 0.9962 735.5760 4.9000 1443.5434 475.7541 t - total p 0.0000 on - total; 475.7541 t after sol tafter t | 0.9884 793.7790 6.5000 1305.3629 380.6185 er year (kW) 0.0000 per year (kW) 380.6185 ar contribut 1 heating system (system 2) 1 heating system 2 1 heating system 2 2.3000 192.3000 199.3851 85.4857 | 0.0463 850.8043 8.9000 1089.7065 172.0096 h/year) 0.0000 Wh/year) 172.0096 tion - tota ystems, inc mary system, % Apr 172.0096 10 92.3000 186.3593 2) 0.0000 0.0000 176.3793 84.0035 | 0.8062 780.0513 717.7000 835.0394 40.9112 0.0000 40.9112 1 per year (1.1 per year (1.2 per year (1.3 per year (1.4 per year (1.5 | 0.5682 549.3161 14.6000 553.1912 0.0000 0.0000 0.0000 (kWh/year) D-CHP Jun 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 155.3004 79.8000 | Jul 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.4469 378.4165 16.4000 378.9659 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 159.9401 79.8000 | 0.7485 576.9368 14.1000 601.2294 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 161.3992 79.8000 | 0.9674 664.1153 10.6000 919.8963 190.3010 0.0000 190.3010 (98c Oct 190.3010 92.3000 206.1766 0.0000 0.0000 179.0808 84.1963 | 0.9958 639.2596 7.1000 1227.7950 423.7455 0.0000 423.7455) / (4) = Nov 423.7455 92.3000 459.0959 0.0000 0.0000 189.2342 85.8123 | 0.9989 630.6473 4.2000 1486.8361 637.0045 2942.2832 0.0000 637.0045 2942.2832 31.9987 0.0000 0.0000 Dec 637.0045 92.3000 0.0000 Dec 637.0045 92.3000 0.0000 0.0000 0.0000 0.0000 | (95)
(96)
(97)
(98a)
(98b)
(98c)
(99)
(201)
(202)
(206)
(207)
(208)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217) | | Utilisation Useful gains Ext temp. Heat loss rate Space heating Space heating Solar heating Space | Jan 0.9985 655.2518 4.3000 e W 1491.1909 kWh 621.9387 requirement kWh 621.9387 requirement main space heat f pace | Feb 0.9962 735.5760 4.9000 1443.5434 475.7541 t - total p 0.0000 on - total; 475.7541 t after sol tafter t | 0.9884 793.7790 6.5000 1305.3629 380.6185 er year (kW) 0.0000 per year (kW) 380.6185 ar contribut 1 heating system (system 2) 1 heating system 2 1 heating system 2 2.3000 192.3000 199.3851 85.4857 | 0.9463 850.8043 8.9000 1089.7065 172.0096 h/year) 0.0000 Wh/year) 172.0096 tion - tota whose the second of se | 0.8062 780.0513 717.7000 835.0394 40.9112 0.0000 40.9112 1 per year (1.1 per year (1.2 per year (1.3 per year (1.4 per year (1.5 | 0.5682 549.3161 14.6000 553.1912 0.0000 0.0000 0.0000 (kWh/year) D-CHP Jun 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 155.3004 | Jul 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.4469 378.4165 16.4000 378.9659 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.7485 576.9368 14.1000 601.2294 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 161.3992 79.8000 | 0.9674 664.1153 10.6000 919.8963 190.3010 0.0000 190.3010 (98c Oct 190.3010 92.3000 206.1766 0.0000 0.0000 179.0808 | 0.9958 639.2596 7.1000 1227.7950 423.7455 0.0000 423.7455) / (4) = Nov 423.7455 92.3000 459.0959 0.0000 0.0000 0.0000 | 0.9989 630.6473 4.2000 1486.8361 637.0045 2942.2832 0.0000 637.0045 2942.2832 31.9987 0.0000 0.0000 Dec 637.0045 92.3000 0.0000 Dec 637.0045 92.3000 0.0000 0.0000 0.0000 0.0000 | (95)
(96)
(97)
(98a)
(98b)
(98c)
(99)
(201)
(202)
(206)
(207)
(208)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(219) | SAP 10 Online 2.13.11 Page 6 of 7 | Pumps and Fa 7.3041 6.5973 7.3041 7.0685 7.3041 7.0685 7.304
Lighting 26.4306 21.2036 19.0915 13.9873 10.8042 8.8271 9.855 | 7.3041
9 12.8111 | 7.0685
16.6404 | 7.3041
21.8331 | 7.0685
24.6604 | 7.3041
27.1652 | | |---|--|---------------------------|---|-------------------|--|--| | Electricity generated by PVs (Appendix M) (negative quantity) (233a)m -30.8211 -44.6104 -65.8046 -75.9780 -83.6196 -78.6382 -77.652 | | | -51.8847 | -34.2865 | -26.5114 | (233a) | | Electricity generated by wind turbines (Appendix M) (negative quantity) (234a)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234a) | | Electricity generated by hydro-electric generators (Appendix M) (negative quantity) (235a)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235a) | | Electricity used or net electricity generated by micro-CHP (Appendix N) (negative if net (235c)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Electricity generated by FVs (Appendix M) (negative quantity) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235c) | | (233b)m -14.0566 -29.9011 -60.0562 -91.1267 -121.4089 -122.3440 -120.925
Electricity generated by wind turbines (Appendix M) (negative quantity) | -101.9844 | -74.2074 | -43.0897 | -18.8715 | -11.0925 | (233b) | | (234b)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Electricity generated by hydro-electric generators (Appendix M) (negative quantity) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234b) | | (235b)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Electricity used or net electricity generated by micro-CHP (Appendix N) (negative if net | generation) | | 0.0000 | | 0.0000 | | | (235d)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Annual totals kWh/year | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | ,, | | Space heating fuel - main system 1
Space heating fuel - main system 2 | | | | | 3187.7391 | (213) | | Space heating fuel - secondary
Efficiency of water heater
Water heating fuel used | | | | | 0.0000
79.8000
2584.3607 | | | Space cooling fuel | | | | | 0.0000 | | | Electricity for pumps and fans:
Total electricity for the above, kWh/year
Electricity for lighting (calculated in Appendix L) | | | | | 86.0000
213.3105 | | | Energy saving/generation technologies (Appendices M ,N and Q) PV generation | | | | | -1514.9530 | (222) | | Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) | | | | | 0.0000
0.0000
0.0000 | (234)
(235a) | | Appendix Q - special features Energy saved or generated | | | | | -0.0000 | ,, | | Energy used Total delivered energy for all uses | | | | | 0.0000
4556.4572 | | | | | | | | | | | 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP | | | | | | | | | Energy
kWh/year | kç | on factor
g CO2/kWh | k | Emissions
g CO2/year | | | Space heating - main system 1 Total CO2 associated with community systems | Energy
kWh/year
3187.7391 | kç | g CO2/kWh
0.2100 | k | g CO2/year
669.4252
0.0000 | (373) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating | Energy
kWh/year
3187.7391
2584.3607 | kç | g CO2/kWh
0.2100
0.2100 | k | g CO2/year
669.4252
0.0000
542.7158
1212.1410 | (373)
(264)
(265) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) | Energy
kWh/year
3187.7391 | kç | g CO2/kWh
0.2100 | k | g CO2/year
669.4252
0.0000
542.7158 | (373)
(264)
(265)
(267) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105 | kç | g CO2/kWh
0.2100
0.2100
0.1387
0.1443 | lc | g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873 | (373)
(264)
(265)
(267) | | Space heating - main system 1 Total CO2 associated with community systems
Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting | Energy
kWh/year
3187.7391
2584.3607
86.0000 | kç | g CO2/kWh
0.2100
0.2100 | le. | g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873
-94.6205
-101.6121
-196.2326 | (373)
(264)
(265)
(267)
(268) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105 | kç | g CO2/kWh
0.2100
0.2100
0.1387
0.1443 | le. | g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873
-94.6205
-101.6121 | (373)
(264)
(265)
(267)
(268)
(269)
(272) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105 | kç | g CO2/kWh
0.2100
0.2100
0.1387
0.1443 | le. | g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873
-94.6205
-101.6121
-196.2326
1058.6249 | (373)
(264)
(265)
(267)
(268)
(269)
(272) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105 | kç | g CO2/kWh
0.2100
0.2100
0.1387
0.1443 | le. | g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873
-94.6205
-101.6121
-196.2326
1058.6249 | (373)
(264)
(265)
(267)
(268)
(269)
(272) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105
-705.8886
-809.0645 | kç | g CO2/kWh
0.2100
0.2100
0.1387
0.1443
0.1340
0.1256 | k | g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873
-94.6205
-101.6121
-196.2326
1058.6249
11.5100 | (373)
(264)
(265)
(267)
(268)
(269)
(272) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) 13a. Primary energy - Individual heating systems including micro-CHP Space heating - main system 1 | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105
-705.8886
-809.0645 | kç
Primary enerç
kç | g CO2/kWh
0.2100
0.2100
0.1387
0.1443
0.1340
0.1256 | k | g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873
-94.6205
-101.6121
-196.2326
1058.6249
11.5100
ary energy
kWh/year
3602.1451 | (264)
(265)
(267)
(268)
(268)
(268)
(269)
(272)
(273) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies FV Unit electricity used in dwelling FV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105
-705.8886
-809.0645 | kç
Primary enerç
kç | g CO2/kWh
0.2100
0.2100
0.1387
0.1443
0.1340
0.1256 | k | g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873
-94.6205
-101.6121
-196.2326
1058.6249
11.5100
ary energy
kWh/year
3602.1451
0.0000
2920.3276 | (264)
(265)
(267)
(268)
(268)
(268)
(272)
(273)
(273) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105
-705.8886
-809.0645
Energy
kWh/year
3187.7391 | kç
Primary enerç
kç | g CO2/kWh
0.2100
0.2100
0.1387
0.1443
0.1340
0.1256 | k
Prim | g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873
-94.6205
-101.6121
-196.2326
1058.6249
11.5100
ary energy
kWh/year
3602.1451
0.0000 | (264)
(265)
(267)
(268)
(269)
(272)
(273)
(273)
(273) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies | Energy kWh/year 3187.7391 2584.3607 86.0000 213.3105 -705.8886 -809.0645 -809.065 | kç
Primary enerç
kç | g CO2/kWh
0.2100
0.2100
0.1387
0.1443
0.1340
0.1256
gy factor
g CO2/kWh
1.1300
1.1300
1.5128
1.5338 | k | g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873
-94.6205
-101.6121
-196.2326
1058.6249
11.5100
ary energy
kWh/year
3602.1451
0.0000
2920.3276
6522.4728
327.1827 | (264)
(265)
(267)
(268)
(269)
(272)
(273)
(273)
(273) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling FV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105
-705.8886
-809.0645
Energy
kWh/year
3187.7391
2584.3607
86.0000 | kç
Primary enerç
kç | g CO2/kWh
0.2100
0.2100
0.1387
0.1443
0.1340
0.1256
gy factor
g CO2/kWh
1.1300
1.5128 | Prim | g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873
-94.6205
-101.6121
-196.2326
1058.6249
11.5100
ary
energy
kWh/year
3602.1451
0.0000
2920.3276
6522.4728
6522.4728
6522.4728
327.1827 | (265)
(267)
(268)
(269)
(269)
(272)
(273)
(273)
(273)
(278)
(279)
(279)
(281)
(282) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling Energy saving/generation technologies PV Unit electricity used in dwelling | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105
-705.8886
-809.0645
Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105 | kç
Primary enerç
kç | g CO2/kWh
0.2100
0.2100
0.1387
0.1443
0.1340
0.1256
gy factor
g CO2/kWh
1.1300
1.5128
1.5338 | Prim | g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873
-94.6205
-101.6121
-196.2326
1058.6249
11.5100
ary energy
kWh/year
0.0000
2920.3276
6522.4728
130.1008
327.1827 | (264)
(267)
(268)
(267)
(268)
(269)
(272)
(273)
(273)
(273)
(273)
(279)
(281)
(282) | SAP 10 Online 2.13.11 Page 7 of 7 | Dwelling Address | Unit 1, Highland Square , Bristol | |------------------------------|-----------------------------------| | Report Date | 05/03/2024 | | Property Type | Maisonette, Mid-Terrace | | Floor Area [m ²] | 92 | This document is not an Energy Performance Certificat EPC) s required by the Energy Performance of Buildings Reg io SAP 10 Online 2.13.11 Page 1 of 4 #### Breakdown of property's energy performance Each feature is assessed as one of the following: | Very Poor | Poor | Average | Good | Very Good | | | |-----------------------|---|--------------------|------|-------------------|--|--| | | | | | | | | | Feature | Description | | | gy
Performance | | | | Walls | Average thermal transmi | ttance 0.18 W/m²K | | Very Good | | | | Roof | Average thermal transmi | ttance 0.11 W/m²K | | Very Good | | | | Floor | Average thermal transmi | ttance 0.18 W/m²K | | Very Good | | | | Windows | High performance glazing | | | Good | | | | Main heating | Air source heat pump, radiators, electric | | | Good | | | | Main heating controls | Time and temperature z contro | | | Very Good | | | | Secondary heating | None | | | | | | | Hot water | From main sys m | | | Average | | | | Lighting | Good ligh g efficien | | | Good | | | | Air tightness | Air perme 50] = | 4.5 h.m² (assumed) | | Good | | | #### Primary Energy use The primary energy use for this property per year is 44 kilowatt hour (kWh) per square metre #### Estim ted CO₂ missions of the dwelling The estimated ing provides an indication of the dwelling's impact on the environment in terms of carbon dioxide emissions; the higher the rating the less impact it has on the environment. The estimated CO emissions for this dwellings is: 0.4 per year SAP 10 Online 2.13.11 Page 2 of 4 With the recommended measures the potential CO emissions could be: 0 per year #### Recommendations The recommended measures provided below will help to improve the energy efficiency of the dwelli To reach the dwelling's potential energy rating all of the recommended measures shown would d to be installed. Having these measures installed individually or in any other order may give a different result omp d with the cumulative potential rating. | Recommended measure | Typical | Potential Rati | C ulative | Cumulative | |---------------------|---------|----------------|------------|------------| | | Yearly | after | avings | Potential | | | Saving | measure insta | (per year) | Rating | #### Estimated energy use and potential aving Estimated energy cost for this property over a year £654 Over a year you could save £0 The estimated cost and saving how how much the average hou ld would spend in this property heating, lighting and hot water. It not based on how e is used by the people living at the pr ### Containg the ssessor and the accreditation scheme | Assessor contact details | | | | | |---------------------------------|--|--|--|--| | Assessor name | | | | | | Assessor's accreditation number | | | | | | Email Address | | | | | SAP 10 Online 2.13.11 Page 3 of 4 | Accreditation scheme contact details | | | | |--|--|--|--| | Accreditation scheme Elmhurst Energy Systems Ltd | | | | | Telephone | | | | | Email Address | | | | | Assessment details | | | | | |--------------------------|---------------|--|--|--| | Related party disclosure | No related pa | | | | | Date of assessment | 05/03/202 | | | | | Date of certificate | 05/03/202 | | | | | Type of assessment | SAP w dwellin | | | | #### **Building Regulations England Part L (BREL) Compliance Report** Approved Document L1 2021 Edition, England assessed by Array SAP 10 program, Array Date: Tue 05 Mar 2024 08:41:59 | Project Information | | | | | |---------------------|------------|-----------------|-------------------------|--| | Assessed By | | Building Type | Maisonette, Mid-terrace | | | OCDEA Registration | EES/025661 | Assessment Date | 2024-03-05 | | | Dwelling Details | | | | | |-------------------------|----------------------|------------------|-------------------|--| | Assessment Type | As designed | Total Floor Area | 92 m ² | | | Site Reference | Unit 4 | Plot Reference | PV | | | Address | Unit 1 Highland Squa | are, Bristol | · | | | Client Details | | | |----------------|---|--| | Name | Tebby & Son | | | Company | SF Tebby & Son | | | Address | Unit 11 Avon Gorge Industrial Estate , Bristol, BS2 9XX | | This report covers items included within the SAP calculations. It is not a complete report of regulations compliance. | 1a Target emission rate and dwelling emission | rate | | | | |--|---|----|--|--| | Fuel for main heating system | Electricity | | | | | Target carbon dioxide emission rate | 11.51 kgCO ₂ /m ² | | | | | Dwelling carbon dioxide emission rate | 3.33 kgCO ₂ /m ² | OK | | | | 1b Target primary energy rate and dwelling primary energy | | | | | | Target primary energy | 60.37 kWh _{PE} /m ² | | | | | Dwelling primary energy | 37.13 kWh _{PE} /m ² | OK | | | | 1c Target fabric energy efficiency and dwelling fabric energy efficiency | | | | | | Target fabric energy efficiency | 38.1 kWh/m² | | | | | Dwelling fabric energy efficiency | 37.4 kWh/m ² | OK | | | | 2a Fabric U-values | | | | | | |----------------------------------|---|----------------------------------|---|-----|--| | Element | Maximum permitted average U-Value [W/m²K] | Dwelling average U-Value [W/m²K] | Element with highest individual U-Value | | | | External walls | 0.26 | 0.18 | Walls (1) (0.18) | OK | | | Party walls | 0.2 | 0 | Party Wall (1) (0) | N/A | | | Curtain walls | 1.6 | 0 | N/A | N/A | | | Floors | 0.18 | 0.18 | Exposed Floor (0.18) | OK | | | Roofs | 0.16 | 0.11 | Roof (1) (0.11) | OK | | | Windows, doors, and roof windows | 1.6 | 1.31 | W01 (1.31) | OK | | | Rooflights | 2.2 | N/A | N/A | N/A | | | 2b Envelope elements (better than typically expected values are flagged with a subsequent (!)) | | | | | |--|----------------------------|------------------------------|--|--| | Name | Net area [m ²] | U-Value [W/m ² K] | | | | Exposed wall: Walls (1) | 71.34 | 0.18 | | | | Exposed wall: Walls (2) | 13.04 | 0.18 | | | | Party wall: Party Wall (1) | 65.88 | 0 (!) | | | | Party floor: Exposed Floor, Exposed Floor | 7.22 | 0.18 | | | | Exposed roof: Roof (1) | 53.98 | 0.11 | | | | 2c Openings (better than typically expected values are flagged with a subsequent (!)) | | | | | | |---|------------------------|-------------|--------------|------------------------------|--| | Name | Area [m ²] | Orientation | Frame factor | U-Value [W/m ² K] | | | W01, Windows | 2.38 | North East | 0.7 | 1.31 | | | W02, Windows | 2.38 | North East | 0.7 | 1.31 | | | W03, Windows | 2.38 | North East | 0.7 | 1.31 | | | W04, Windows | 4.41 | North East | 0.7 | 1.31 | | | W05, Windows | 2.38 | South East | 0.7 | 1.31 | | | W06, Windows | 0.53 | South West | 0.7 | 1.31 | | | W07, Windows | 0.53 | South West | 0.7 | 1.31 | | | 2d Thermal bridging (better than typically expected values are flagged with a subsequent (!)) | |---| | Building part 1 - Main Dwelling: Thermal bridging calculated from linear thermal transmittances for each junction | Date generated: 2024-03-05 08:41:59 | Main element | Junction detail | Source | Psi value
[W/mK] | Drawing / reference | |---------------|---|--|---------------------|---------------------| | External wall | E2: Other lintels (including other steel lintels) | Not government-approved scheme | 0.023 (!) | | | External wall | E3: Sill | Calculated by person with suitable expertise | 0.021 (!) | | | External wall | E4: Jamb | Calculated by person with suitable expertise | 0.016 (!) | | | External wall |
E20: Exposed floor (normal) | Calculated by person with suitable expertise | 0.116 | | | External wall | E7: Party floor between dwellings (in blocks of flats) | Calculated by person with suitable expertise | 0.038 (!) | | | Party wall | P7: Exposed floor (normal) | Calculated by person with suitable expertise | 0.185 | | | Party wall | P3: Intermediate floor between dwellings (in blocks of flats) | SAP table default | 0 (!) | | | External wall | E16: Corner (normal) | Calculated by person with suitable expertise | 0.043 | | | External wall | E25: Staggered party wall between dwellings | Calculated by person with suitable expertise | 0.036 (!) | | | External wall | E18: Party wall between dwellings | Calculated by person with suitable expertise | 0.046 | | | External wall | E21: Exposed floor (inverted) | SAP table default | 0.32 | | | Party wall | P4: Roof (insulation at ceiling level) | Calculated by person with suitable expertise | 0.101 | | | Party wall | P8: Exposed floor (inverted) | Calculated by person with suitable expertise | 0.185 | | | External wall | E14: Flat roof | SAP table default | 0.16 | | | Roof | R8: Roof to wall (rafter) | SAP table default | 0.12 | | | External wall | E6: Intermediate floor within a dwelling | Calculated by person with suitable expertise | 0.001 (!) | | | 3 Air permeability (better than typically expected values are flagged with a subsequent (!)) | | | | | | | | | | |--|--|----|--|--|--|--|--|--|--| | Maximum permitted air permeability at 50Pa | 8 m ³ /hm ² | | | | | | | | | | Dwelling air permeability at 50Pa | 4.5 m ³ /hm ² , Design value | OK | | | | | | | | | Air permeability test certificate reference | | · | | | | | | | | | 4 Space heating | | | | | | | | | | |---|---------------|--|--|--|--|--|--|--|--| | Main heating system 1: Heat pump with radiators or underfloor heating - Electricity | | | | | | | | | | | Efficiency | 247.7% | | | | | | | | | | Emitter type | Radiators | | | | | | | | | | Flow temperature | 55°C | | | | | | | | | | System type | Heat Pump | | | | | | | | | | Manufacturer | Atlantic | | | | | | | | | | Model | Logic Air 8kW | | | | | | | | | | Commissioning | | | | | | | | | | | Secondary heating system: N/A | | | | | | | | | | | Fuel | N/A | | | | | | | | | | Efficiency | N/A | | | | | | | | | | Commissioning | | | | | | | | | | | 5 Hot water | | |--------------------------------------|--------------| | Cylinder/store - type: Cylinder | | | Capacity | 150 litres | | Declared heat loss | 2.09 kWh/day | | Primary pipework insulated | Yes | | Manufacturer | | | Model | | | Commissioning | | | Waste water heat recovery system 1 - | type: N/A | | Efficiency | | | Manufacturer | | | Model | | | 6 Controls | | | | |--|------------------------|--|---------| | Main heating 1 - type: Time and tempera | ature zone control by | arrangement of plumbing and electrical s | ervices | | Function | | | | | Ecodesign class | | | | | Manufacturer | | | | | Model | | | | | Water heating - type: Cylinder thermosta | at and HW separately | timed | | | Manufacturer | | | | | Model | | | | | 7 Lighting | | | | | Minimum permitted light source efficacy | 75 lm/W | | | | Lowest light source efficacy | 80 lm/W | | OK | | External lights control | N/A | | | | _ | | | | | 8 Mechanical ventilation | | | | | System type: N/A Maximum permitted specific fan power | N//A | | | | Specific fan power | N/A
N/A | | N/A | | Minimum permitted heat recovery | N/A | | IVA | | efficiency | 17/7 | | | | Heat recovery efficiency | N/A | | N/A | | Manufacturer/Model | 14/7 | | 14/7 | | Commissioning | | | | | | | | | | 9 Local generation | (4) | | | | Technology type: Photovoltaic system | | | | | Peak power | 1.045 kWp | | | | Orientation Pitch | South West 45° | | | | Overshading | None or very little | | | | Manufacturer | None or very little | | | | MCS certificate | | | | | | | | | | 10 Heat networks | | | | | N/A | | | | | 11 Supporting documentary evidence | | | | | N/A | | | | | | | | | | 12 Declarations | | | | | a. Assessor Declaration | office of the state of | starts of this DDEL Occupions Depart | | | | | entents of this BREL Compliance Report | | | | | nformation submitted for this dwelling for and that the supporting documentary | | | evidence (SAP Conventions, Appendi | • | • | | | documentary evidence required) has | | | | | Compliance Report. | been reviewed in the | course of preparing this BREL | | | оопірнаное пероп. | | | | | | | | | | Signed: | | Assessor ID: | | | Oignou. | | 7.000000110. | | | | | | | | Name: | | Date: | | | | | | | | h Client Declaration | | <u> </u> | | N/A | Property Reference | Unit 4 | | | | | | | | Issued | on Date | 05/03 | /2024 | | |-------------------------------------|------------------------|----------|------------------------------------|---|------------|----------------------------|-------------------|---------------|--------------------|--------------|---------------------|------------------|----------------------------| | Assessment Reference | PV | | | | | Pro | p Type l | Ref | Tebby an | d Son G | arage | | | | Property | Unit 1 | , Highla | nd Square | , Bristol | | | | | | | | | | | SAP Rating | | | | 81 B | DER | | 3.33 | | Т | ER | 11 | .51 | | | Environmental | | | | 97 A | % DEF | ? < TER | | | | | | .07 | | | CO ₂ Emissions (t/year) | | | | 0.27 | DFEE | | 37.3 | 18 | Т | FEE | | .13 | | | Compliance Check | | | | See BREL | % DFE | E < TFE | | | | | 1.9 | | | | % DPER < TPER | | | | 38.50 | DPER | | 37.1 | 3 | Т | PER | | .37 | | | Assessor Details | | | | | | | | | A | \ssessoi | · ID U3 | 367-00 | 001 | | Client | | | | | | | | | | | | | | | SUMMARY FOR INPU | T DATA FO | R: Nev | v Build (A | As Designed) | | | | | | | | | | | Orientation | | | (. | Southwest | | | | | | | | | | | Property Tenture | | | | 1 | | | | | | | | | | | Transaction Type | | | | 6 | | | | | | | | | | | Transaction Type
Terrain Type | | | | Urban | | | | | | | | | | | 2. | | | | Maisonette, Mid-Te | rraco | | | | | | | | | | 1.0 Property Type Position of Flat | | | | Top-floor flat | iiace | | | | | | | | | | | | | | • | | | | | | | | | | | Which Floor | | | | 1 | | | | | | | | | | | 2.0 Number of Storeys | | | | 3 | | | | | | | | | | | 3.0 Date Built | | | | 2024 | | | | | | | | | | | 3.0 Property Age Band | | | | L | | | | | | | | | | | 4.0 Sheltered Sides | | | | 3 | | | | | | | | | | | 5.0 Sunlight/Shade | | | | Average or unknow | | | | | | | | | | | 6.0 Thermal Mass Parame | ter | | | Precise calculation | | | | | | | | | | | Thermal Mass | | | | N/A | | | | | kJ | l/m²K | | | | | 7.0 Electricity Tariff | | | | Standard | | | | | | | | | | | Smart electricity meter fi | itted | | | No | | | | | | | | | | | Smart gas meter fitted | | | | No | | | | | | | | | | | 7.0 Measurements | | | | | Наз | t Loss Po | orimete | r In | ternal Floo | or Area | Average | Stor | ey Heigh | | | | | | Basem | ent: | 0.00 r | n | | 0.00 m | 2 | _ | 0.00 r | n . | | | | | | Ground flo
1st Sto | rey: | 3.30 r
14.97 | m | | 4.86 m
59.81 n | n² | | 2.50 r
2.70 r | n | | | | | | 2nd Sto
3rd Sto | | 18.05
0.00 r | | | 27.28 n
0.00 m | | | 2.42 r
0.00 r | | | | | | | 4th Sto | rey: | 0.00 r
0.00 r | n | | 0.00 m
0.00 m | ² | | 0.00 r
0.00 r | n | | | | | | 6th Sto | reý: | 0.00 r | n | | 0.00 m | 2 | | 0.00 r | n | | | | | | 7th Sto | rey: | 0.00 r | n | | 0.00 m | | | 0.00 r | n | | 8.0 Living Area | | | | 27.28 | | | | | m | | | | | | 9.0 External Walls Description | Туре | Constr | ruction | | | Карра | | Nett Area | Shelter | Shelter | Opening | s Area | Calculation | | | Cavity Wall | | | oard on dabs, dense bloc | (W/m²K) | (kJ/m²K)
150.00 | Area(m²)
86.33 | (m²)
71.34 | Res
0.00 | None | 14.99 | | Type
r Gross Are | | Sloping Wall | Timber Frame | | avity, any outsi
framed wall (t | ide structure
two layers of plasterboard | 0.18 | 18.00 | 13.04 | 13.04 | 0.00 | None | 0.00 | Ente | r Gross Are | | 9.1 Party Walls | _ | | _ | | | | | | | _ | | | _ | | Description | Type | | Construc | tion | | | | | Kappa
(kJ/m²K) | Area
(m²) | Shelter
Res | SI | nelter | | Party Wall 1 | Filled Cav
Edge Sea | | Single pla
cavity | sterboard on both si | des, dense | cellular | blocks, | 0.00 | 70.00 | 65.88 | 0.00 | ١ | lone | | 9.2 Internal Walls | | - | - | | | | | | | | | | | | memai mana | | | | | | | | | | | | | | | Description | | | Constructi | ion | | | | | | | Kap
(k.l/n | | Area (m | | | | | | ion
ck, dense plaster | | | | | | | Kap
(kJ/n
100 | n²K) | Area (m
139.75 | SAP 10 Online 2.13.11 Page 1 of 4 | Description | Туре | Construc | ction | | Kappa G
(kJ/m²K)Ar | ea(m²) / | Nett
Area | | Shelter
Factor | Calculatio
Type | nOpenings | |--|--|-------------------------------------
--|--|--|--|----------------------|--------------------|-------------------|---|--| | External Roof 1 | External Flat
Roof | Plasterbo | ard, insulated flat roof | 0.11 | 9.00 5 | | (m²)
53.98 | None | 0.00 | Enter Gros
Area | s 0.00 | | 10.2 Internal Ceilings | | | | | | | | | | | | | Description
Internal Ceiling 1 | | Storey
+1 | Construction
Plasterboard ceili | ng, carpeted chip | board floor | | | | | | e a (m²)
2.14 | | 11.0 Heat Loss Floors | _ | | | | | | | | | | | | Description Exposed Floor | Type Exposed Floor - Solid | Storey Inde | | | U-Va
(W/m
0.1 | ¹K) | | Iter Code
None | Fa | nelter Kapp
actor (kJ/m
).00 75.0 | | | 11.1 Party Floors | | | | | | | | | | | | | Description | | Storey | Construction | | | | | | | | Area (m² | | Party Floor 1 | | Index
Lowest
occupied | Precast concrete planks | floor, screed, car | peted | | | | | (kJ/m²K)
30.00 | 47.73 | | 11.2 Internal Floors | | | | | | | | | | | | | Description | | Storey
Index | Construction | | | | | | | Kappa | | | Internal Floor 1 | | index | Plasterboard ceiling, car | peted chipboard f | loor | | | | | (kJ/m²K)
9.00 | 32.14 | | 12.0 Opening Types | | | | | | | | | | | | | Description | Data Source | Type | Glazing | | Glazing
Gap | Filling
Type | | -value | Frame
Type | Frame
Factor | U Value
(W/m²K) | | Windows | Manufacturer | Window | Double Low-l | Soft 0.05 | | Air Fille | ed | 0.63 | Wood | 0.70 | 1.31 | | 13.0 Openings | | | | | | | | | _ | | | | Name
W01 | Opening Ty
Windows | pe | Location
Cavity Wall | | Orient
North | | | Area (2.38 | | | tch
0 | | W02 | Windows | | Cavity Wall | | North | East | | 2.38 | 3 | | 0 | | W03
W04 | Windows
Windows | | Cavity Wall | | North
North | | | 2.38
4.4 | | | 0
0 | | W05 | Windows | | Cavity Wall
Cavity Wall | | South | | | 2.38 | | | 0 | | W06 | Windows | | Cavity Wall | | South | West | | 0.53 | 3 | | 0 | | W07 | Windows | | Cavity Wall | | South | West | | 0.53 | 3 | | 0 | | | | | - | | | | | | | | | | 14.0 Conservatory | | | None | | | | | | | | | | 14.0 Conservatory
15.0 Draught Proofing | | | None | | | | | % | | | | | - | | | | | | | | % | | | | | 15.0 Draught Proofing
16.0 Draught Lobby | | | 100
No | | | | | % | | | | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging | | | 100 | | | | | % | | | | | 15.0 Draught Proofing
16.0 Draught Lobby | | | 100
No | Length | Psi | Adjusto | ed Re | % | | | Imported | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin | ng other steel linte | els) | 100 No Calculate Bridges Source Type Non Gov Approved Scho | emes 8.20 | 0.02 | 0.02 | | | | | No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill | ng other steel linte | els) | 100 No Calculate Bridges Source Type Non Gov Approved Sch Independently assessed | emes 8.20
8.20 | 0.02
0.02 | 0.02
0.02 | | | | | No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm | nal) | • | 100 No Calculate Bridges Source Type Non Gov Approved Schi Independently assessed Independently assessed Independently assessed | emes 8.20
8.20
23.67
3.12 | 0.02
0.02
0.02
0.12 | 0.02
0.02
0.02
0.12 | | | | | No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between d | nal)
dwellings (in block | • | No Calculate Bridges Source Type Non Gov Approved Scholndependently assessed Independently Index I | emes 8.20
8.20
23.67
3.12
31.46 | 0.02
0.02
0.02
0.12
0.04 | 0.02
0.02
0.02
0.12
0.04 | | | | | No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between d P7 Party Wall - Exposed | nal)
dwellings (in block
I floor (normal) | ss of flats) | 100 No Calculate Bridges Source Type Non Gov Approved Schi Independently assessed Independently assessed Independently assessed | 8.20
8.20
23.67
3.12
31.46
4.67 | 0.02
0.02
0.02
0.12 | 0.02
0.02
0.02
0.12 | | | | | No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between d P7 Party Wall - Exposed P3 Party wall - Intermedi (in blocks of flats) | nal)
dwellings (in block
I floor (normal) | ss of flats) | 100 No Calculate Bridges Source Type Non Gov Approved Schelndependently assessed Independently Indepe | 8.20
8.20
23.67
3.12
31.46
4.67
14.45 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00 | | | | | No
No
No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between of P7 Party Wall - Exposed P3 Party Wall - Intermedi (in blocks of flats) E16 Comer (normal) | nal)
dwellings (in block
I floor (normal)
iate floor betweer | ss of flats) | No Calculate Bridges Source Type Non Gov Approved Schindependently assessed Independently Independe | 8.20
8.20
23.67
3.12
31.46
4.67
14.45 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00 | | | | | No
No
No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between d P7 Party Wall - Exposed P3 Party wall - Intermedi (in blocks of flats) | nal)
dwellings (in block
d floor (normal)
liate floor betweer | ss of flats) | 100 No Calculate Bridges Source Type Non Gov Approved Schelndependently assessed Independently Indepe | 8.20
8.20
23.67
3.12
31.46
4.67
14.45 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00 | | | | | No
No
No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between of P7 Party Wall - Exposed P3 Party wall - Intermedi (in blocks of flats) E16 Comer (normal) E25 Staggered party wall E18 Party wall between e21 Exposed floor (invertible) | nal) dwellings (in block floor (normal) liate floor betweer ll between dwellin dwellings rted) | ss of flats) n dwellings | Too No Calculate Bridges Source Type Non Gov Approved Schindependently assessed Independently Table K1 - Default | 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.04
0.05
0.32 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.04
0.05
0.32 | | | | |
No
No
No
No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between d P7 Party Wall - Exposed P3 Party wall - Intermedi (in blocks of flats) E16 Comer (normal) E25 Staggered party wal E18 Party wall between E21 Exposed floor (inver P4 Party wall - Roof (insi | nal) dwellings (in block difloor (normal) liate floor betweer all between dwellin dwellings rted) sulation at ceiling | ss of flats) n dwellings | Too No Calculate Bridges Source Type Non Gov Approved Schelindependently assessed Independently Indep | 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.04
0.05
0.32
0.10 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.04
0.05
0.32
0.10 | | | | | No
No
No
No
No
No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between of P7 Party Wall - Exposed P3 Party Wall - Intermedi (in blocks of flats) E16 Corner (normal) E25 Staggered party wall E18 Party wall between of E21 Exposed floor (inver P4 Party Wall - Roof (insight P8 Party Wall - Exposed E14 Flat roof | nal) dwellings (in block difloor (normal) liate floor betweer all between dwellin dwellings rted) sulation at ceiling | ss of flats) n dwellings | No Calculate Bridges Source Type Non Gov Approved Schindependently assessed Independently Table K1 - Default | 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.04
0.05
0.32 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.04
0.05
0.32 | | | | | No
No
No
No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between of P7 Party Wall - Exposed P3 Party Wall - Intermedi (in blocks of flats) E16 Comer (normal) E25 Staggered party wall E18 Party wall between e21 Exposed floor (inver P4 Party wall - Roof (ins) P8 Party Wall - Exposed | nal) dwellings (in block of floor (normal) iate floor between all between dwellin dwellings rted) ulation at ceiling of floor (inverted) | ss of flats) n dwellings | No Calculate Bridges Source Type Non Gov Approved Scholadependently assessed Independently Independen | emes 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50
14.49
4.60
24.47 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.04
0.05
0.32
0.10
0.18 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.18 | | | | | No
No
No
No
No
No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between of P7 Party Wall - Exposed P3 Party wall - Intermedi (in blocks of flats) E16 Comer (normal) E25 Staggered party wal E18 Party wall between of E21 Exposed floor (inver P4 Party Wall - Roof (insi P8 Party Wall - Exposed E14 Flat roof R8 Roof to wall (rafter) | nal) dwellings (in block of floor (normal) iate floor between all between dwellin dwellings rted) ulation at ceiling of floor (inverted) | ss of flats) n dwellings | No Calculate Bridges Source Type Non Gov Approved Schindependently assessed Independently Applications Individual Independently Individual Individ | emes 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50
14.49
4.60
24.47 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.18
0.16
0.12 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.16 | | | | | No N | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between of P7 Party Wall - Exposed P3 Party Wall - Intermedi (in blocks of flats) E16 Comer (normal) E25 Staggered party wall E18 Party wall between of E21 Exposed floor (inver P4 Party Wall - Exposed E14 Flat roof R8 Roof to wall (rafter) E6 Intermediate floor with | nal) dwellings (in block of floor (normal) iate floor between all between dwellin dwellings rted) ulation at ceiling of floor (inverted) | ss of flats) n dwellings | No Calculate Bridges Source Type Non Gov Approved Schindependently assessed Independently I | emes 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50
14.49
4.60
24.47 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.18
0.16
0.12 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.16 | | ference: | | | No N | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between d P7 Party Wall - Exposed P3 Party wall - Intermedi (in blocks of flats) E16 Comer (normal) E25 Staggered party wal E18 Party wall between E21 Exposed floor (inver P4 Party Wall - Exposed E14 Flat roof R8 Roof to wall (rafter) E6 Intermediate floor with Y-value | nal) dwellings (in block of floor (normal) iate floor between all between dwellin dwellings rted) ulation at ceiling of floor (inverted) | ss of flats) n dwellings | No Calculate Bridges Source Type Non Gov Approved Schindependently assessed Independently | emes 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50
14.49
4.60
24.47 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.18
0.16
0.12 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.16 | | eference: | | ra | No N | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between of P7 Party Wall - Exposed P3 Party Wall - Intermedi (in blocks of flats) E16 Corner (normal) E25 Staggered party wall E18 Party wall between E21 Exposed floor (inver P4 Party Wall - Roof (inser P8 Party Wall - Exposed E14 Flat roof R8 Roof to wall (rafter) E6 Intermediate floor with Y-value 18.0 Pressure Testing | nal) dwellings (in block of floor (normal) iate floor between all between dwellin dwellings rted) ulation at ceiling of floor (inverted) | ss of flats) n dwellings | No Calculate Bridges Source Type Non Gov Approved Schindependently assessed Independently In | emes 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50
14.49
4.60
24.47 | 0.02
0.02
0.02
0.12
0.18
0.00
0.04
0.04
0.05
0.32
0.10
0.18
0.16
0.12 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.16 | | eference: | | d'a | No
No
No
No
No
No
No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between of P7 Party Wall - Exposed P3 Party wall - Intermedi (in blocks of flats) E16 Comer (normal) E25 Staggered party wall E18 Party wall between of E21 Exposed floor (inverteam of P8 Party Wall - Exposed E14 Flat roof R8 Roof to wall (rafter) E6 Intermediate floor with Y-value 18.0 Pressure Testing Designed APso | nal) dwellings (in block of floor (normal) iate floor between all between dwellin dwellings rted) ulation at ceiling of floor (inverted) | ss of flats) n dwellings | No Calculate Bridges Source Type Non Gov Approved Scholadependently assessed Independently In | emes 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50
14.49
4.60
24.47 | 0.02
0.02
0.02
0.12
0.18
0.00
0.04
0.04
0.05
0.32
0.10
0.18
0.16
0.12 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.16 | | eference: | | °a | No
No
No
No
No
No
No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between d P7 Party Wall - Exposed P3 Party wall - Intermedi (in blocks of flats) E16 Corner (normal) E25 Staggered party wall E18 Party wall between dE21 Exposed floor (inver P4 Party wall - Roof (insigher P8 Party Wall - Exposed E14 Flat roof R8 Roof to wall (rafter) E6 Intermediate floor with Y-value 18.0 Pressure Testing Designed APso Property Tested? | nal) dwellings (in block difloor (normal) iate floor between dwellings rted) ulation at ceiling difloor (inverted) thin a dwelling | ss of flats) n dwellings | No Calculate Bridges Source Type Non Gov Approved Schindependently assessed Independently Independent | emes 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50
14.49
4.60
24.47 | 0.02
0.02
0.02
0.12
0.18
0.00
0.04
0.04
0.05
0.32
0.10
0.18
0.16
0.12 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.16 | | eference: | | °a | No
No
No
No
No
No
No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges
Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between of P7 Party Wall - Exposed P3 Party wall - Intermedi (in blocks of flats) E16 Comer (normal) E25 Staggered party wall E18 Party wall between of E21 Exposed floor (inverse P4 Party wall - Exposed E14 Flat roof R8 Roof to wall (rafter) E6 Intermediate floor with Y-value 18.0 Pressure Testing Designed APso Property Tested? Test Method | nal) dwellings (in block difloor (normal) iate floor between dwellings rted) sulation at ceiling if floor (inverted) thin a dwelling | ss of flats) n dwellings | No Calculate Bridges Source Type Non Gov Approved Schindependently assessed Independently Independent | emes 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50
14.49
4.60
24.47 | 0.02
0.02
0.02
0.12
0.18
0.00
0.04
0.04
0.05
0.32
0.10
0.18
0.16
0.12 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.16 | | eference: | | 'a | No N | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between d P7 Party Wall - Exposed P3 Party wall - Intermedi (in blocks of flats) E16 Corner (normal) E25 Staggered party wall E18 Party wall between E21 Exposed floor (inver P4 Party Wall - Roof (insi P8 Party Wall - Exposed E14 Flat roof R8 Roof to wall (rafter) E6 Intermediate floor with Y-value 18.0 Pressure Testing Designed APso Property Tested? Test Method 19.0 Mechanical Ventilation | nal) dwellings (in block difloor (normal) liate floor between dwellings rted) ulation at ceiling of floor (inverted) thin a dwelling | as of flats) a dwellings ags devel) | No Calculate Bridges Source Type Non Gov Approved Schindependently assessed Independently Independent | emes 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50
14.49
4.60
24.47 | 0.02
0.02
0.02
0.12
0.18
0.00
0.04
0.04
0.05
0.32
0.10
0.18
0.16
0.12 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.16 | | eference: | | ·°a | No N | SAP 10 Online 2.13.11 Page 2 of 4 | 21.0 Fixed Cooling System | No | | | | | | |--|----------------------------------|-----------------------|-------------------------|----|---------------------|-----------------| | 22.0 Lighting | | | | | | | | No Fixed Lighting | No | | | | | | | | Name
Lighting 1 | Efficacy
80.00 | Power
15 | ' | Capacity
1200 | Count
5 | | 24.0 Main Heating 1 | Database | | | | | | | Percentage of Heat | 100.00 | | | | % | | | Database Ref. No. | 106764 | | | | | | | Fuel Type | Electricity | | | | | | | SAP Code | 0 | | | | | | | In Winter | 247.69 | | | | | | | In Summer | 188.71 | | | | | | | Model Name | Logic Air 8kW | | | | | | | Manufacturer | Atlantic | | | | | | | System Type | Heat Pump | | | | | | | Controls SAP Code | 2207 | | | | | | | Delayed Start Stat | No | | | | | | | HETAS approved System | No | | | | | | | Oil Pump Inside | No | | | | | | | FI Case | 0.00 | | | | | | | Flue Type | None or Unknown | | | | | | | Fan Assisted Flue | No | | | | | | | Is MHS Pumped | Pump in heated sp | ace | | | | | | Heating Pump Age | 2013 or later | | | | | | | Heat Emitter | Radiators | | | | | | | Flow Temperature | Enter value | | | | | | | Flow Temperature Value | 55.00 | | | | | | | Boiler Interlock | No | | | | | | | 25.0 Main Heating 2 | None | | | | | | | 26.0 Heat Networks | None | | | | | | | Heat Source Fuel Type Heating U Heat source 1 None Heat source 2 None | Jse Efficiency F | Percentage Of
Heat | Heat Hea
Pow
Rati | er | ctrical Fuel Factor | Efficiency type | | Heat source 3 None Heat source 4 None Heat source 5 None | | | | | | | | Heat source 4 None
Heat source 5 None | | | | | | | | Heat source 4 None
Heat source 5 None | Main Heating 1 | | | | | | | Heat source 4 None Heat source 5 None 28.0 Water Heating | Main Heating 1 | | | | | | | Heat source 4 Heat source 5 None None 28.0 Water Heating Water Heating | | | | | | | | Heat source 4 None Heat source 5 None 28.0 Water Heating Water Heating SAP Code | 901 | | | | | | | Heat source 4 Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System | 901
No | | | | | | | Heat source 4 Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 | 901
No
No | | | | | | | Heat source 4 None None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 | 901
No
No | | | | | | | Heat source 4 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel | 901
No
No
No | | | | | | | Heat source 4 Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System | 901 No No No No No | | | | | | | Heat source 4 Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day | 901 No No No No Yes | | | | | | | Heat source 4 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day Summer Immersion | No No No No No Vo No No No No No | | | | | | SAP 10 Online 2.13.11 Page 3 of 4 | Immersion Only | Heating Hot V | Vater | | No | | | | | | | | | |---|------------------|-----------------|--------------|--------------|-----------|---------------|----------------------|-------------------|-------------|---------|-------------------------|------------------------| | 28.1 Showers | | | | | | | | | | | | | | Description | | | Shower Type | | | | Flow Rate
[I/min] | Rated Pov
[kW] | ver C | | Connected | I То | | 1 | | | Combi boiler | or unvented | hot wat | er system | 7.00 | | | No | | | | 28.3 Waste Water H | leat Recover | y System | | | | | | | | | | | | 29.0 Hot Water Cyli | inder | | | Hot Water | Cylinder | Г | | | | | | | | Cylinder Stat | | | | Yes | | | | | | | | | | Cylinder In Heat | ed Space | | | Yes | | | | | | | | | | Independent Tim | ne Control | | | Yes | | | | | | | | | | Insulation Type | | | | Measured I | LOSS | | | | | | | | | Cylinder Volume | : | | | 150.00 | | | | | | L | | | | Loss | | | | 2.09 | | | | | | kWh/day | / | | | Pipes insulation | | | | Fully insula | ted prin | nary pipework | (| | | | | | | In Airing Cupboa | nrd | | | No | | | | | | | | | | 31.0 Thermal Store | | | | None | | | | | | | | | | 32.0 Photovoltaic U | Jnit | | | One Dwelli | ng | | | | | | | | | Export Capable | Meter? | | | Yes | | | | | | | | | | Connected To D | welling | | | No | | | | | | | | | | Diverter | | | | No | | | | | | | | | | Battery Capacity | [kWh] | | | 0.00 | | | | | | | | | | PV Cells k | кWр | Orientation | Elevation | Overs | hading | FGHRS | MCS C | ertificate | Over | or T | MCS
Certificate | Panel
Manufacturer | | 1.04 | | South West | 45° | None (| Or Little | No | No | | 1.00 | | Reference | | | 34.0 Small-scale Hy | ydro | | | None | | | | | | | | | | Electricity Gener | rated | | | 0.00 | | | | | | | | | | Apportioned | | | | 0.00 | | | | | | kWh/Yea | аг | | | Connected to dw | velling's electr | icity meter | | Yes | | | | | | | | | | Electricity Gener | ration | | | Annual | | | | | | | | | | Jan | Feb | Mar | Apr | Мау | Jun | Jul | Au | g S | ер | Oct | Nov | / Dec | | Recommendations
Lower cost med
None
Further measur | asures | e even higher s | | ypical Cost | | Typical sav | ings per ye | ar <u>.</u> | R
SAP ra | | ter improven
Enviror | nent
nmental Impact | | | Solar water | heating | | | | | | | 0
0
0 | | | 0 | SAP 10 Online 2.13.11 Page 4 of 4 | Property Reference | e | l | Jnit 4 | | | | | | | Issu | ed on Da | ate | 05/03/2024 | | | | |---|--|-------------------------------------|-----------------------|--------------------|------------------|--------------------------------|----------------------|---|-----------------------|-------------|-----------------------------------|--|--|---|--|--| | Assessment Refer | rence | I | PV | | | | | Prop Type F | Ref | Tebby | and Sor | Garage | | | | | | Property | | · · | Jnit 1, Highland | Square, Bristol | | | | | | | | | | | | | | SAP Rating | | | | | 81 B | | DER | 3. | 33 | | TER | | 11.51 | | | | | Environmental | | | | | 97 A | 9 | % DER < TER | | | | | | 71.07 | | | | | CO ₂ Emissions (t/) | /ear) | |
 | 0.27 | | DFEE | 37 | 7.38 | | TFEE | | 38.13 | 38.13 | | | | Compliance Check | Compliance Check | | | | | | % DFEE < TFE | EE | | | | | 1.97 | | | | | % DPER < TPER | | | | | 38.50 | | DPER | 37 | 7.13 | | TPEF | ₹ | 60.37 | | | | | Assessor Details | | | | | | | | | | | Asse | ssor ID | U367-00 | 01 | | | | Client | | | | | | | | | | | | | | | | | | SAP 10 WORKSHEET
CALCULATION OF D | | | | | | 7 2022) | | | - | | | | | | | | | 1. Overall dwell | ing charact | teristic | 3 | | | | | Area | -
-
- St | orev h | neight | | Volume | | | | | Ground floor
First floor
Second floor
Total floor area
Dwelling volume | TFA = (la |)+(lb)+(| lc)+(ld)+(le | e)(ln) | 9 | 1.9500 | | (m2)
4.8600
59.8100
27.2800 |)
(lb) x
(lc) x | 2
2
2 | (m)
2.5000
2.7000
2.4200 | (2b) =
(2c) =
(2d) = | (m3)
12.1500
161.4870
66.0176 | (lb) - (3h
(lc) - (3c
(ld) - (3c
(4) | | | | 2. Ventilation r | | | | | | | | | - | | | | m3 per hour | : | | | | Number of open c
Number of open f
Number of chimne
Number of flues
Number of blocke
Number of interm
Number of passiv
Number of fluele | lues ys / flues attached to attached to d chimneys ittent ext: e vents | o solid :
o other l
ract fan: | fuel boiler
neater | fire | | | | | | | | 0 * 20 =
0 * 35 =
0 * 20 =
5 * 10 = | 0.0000
0.0000
0.0000
0.0000
0.0000
50.0000 | (6b)
(6c)
(6d)
(6e)
(6f)
(7a) | | | | Infiltration due
Pressure test
Pressure Test Me
Measured/design
Infiltration rat
Number of sides | thod
AP50
e | ys, flue: | and fans | = (6a)+(6b) | +(6c)+(6d)+(| (6e)+(6f)+(| 6g)+(7a)+(7 | 7b)+(7c) = | = | 5 | 60.0000 | / (5) = | yes per hour
0.2086
Yes
Blower Door
4.5000
0.4336 | (8)
(17) | | | | Shelter factor
Infiltration rat | e adjusted | to incl | ude shelter | factor | | | | | | | | (19)] =
x (20) = | | | | | | Wind speed
Wind factor
Adj infilt rate | Jan
5.1000
1.2750 | Feb
5.0000
1.2500 | | | | Jun
3.8000
0.9500 | | | | 4 | Oct
1.3000
1.0750 | | | | | | | _ | 0.4285 | | | 0.3697
0.5683 | 0.3613
0.5653 | 0.3193
0.5510 | 0.3193
0.5510 | | | |).3613
).5653 | 0.3781
0.5715 | | | | | | 3. Heat losses a | | | | | | | | | - | | | | | | | | | Element | | | | Gross | Openings | Net | Area | U-value | A | хU | | -value | AxK | | | | | Windows (Uw = 1.
Exposed Floor
Cavity Wall
Sloping Wall
External Roof 1 | | | | 13.0400
53.9800 | m2
14.9900 | 14.
7.
71.
13.
53. | 3400
0400
9800 | W/m2K
1.2448
0.1800
0.1800
0.1800
0.1100 | 1.2 | 996 | 7
15
1 | kJ/m2K
5.0000
0.0000
8.0000
9.0000 | kJ/K
541.5000
10701.0000
234.7200
485.8200 | (27)
(28b)
(29a)
(29a)
(30) | | | | Total net area of Fabric heat loss Party Wall 1 Party Floor 1 Internal Wall 1 Internal Floor 1 Internal Ceiling | , W/K = Sur | | | | | 47.
139.
32. | (26) (3 | 30) + (32)
0.0000 | | | 10
1 | 0.0000
0.0000
0.0000
8.0000 | 4611.6000
1909.2000
13975.0000
578.5200
289.2600 | (32d)
(32c)
(32d) | | | | Heat capacity Cm
Thermal mass par
List of Thermal | ameter (TM
Bridges | | TFA) in kJ/ | m2K | | | | | (30) + (| | | | 362.4428 | | | | | K1 Eleme
E2 Other | | includin | g other stee | el lintels) | | | | | Length
8.2000 | | 0230 | | tal
.886 | | | | SAP 10 Online 2.13.11 Page 1 of 7 | E3 Sill E4 Jamb E40 Exposed floor E7 Party floor bet P7 Party Wall - E1 P3 Party wall - E1 E16 Corner (normal E25 Staggered part E18 Party wall bet E21 Exposed floor P4 Party wall - E2 E14 Flat roof R8 Roof to wall (1) E6 Intermediate f1 Thermal bridges (Sum(L x 1) Point Thermal bridges Total fabric heat loss Ventilation heat loss calc Jan (38)m 46.8031 Heat transfer coeff 100.2140 | 23
31
4
14
26
5
1
14
4
24 | .2000
.6700
.6700
.1200
.4640
.6700
.4500
.6400
.8000
.2000
.5960
.4700
.3200
.0500 | 0.0210
0.0160
0.1160
0.0380
0.1850
0.0000
0.0430
0.3200
0.1010
0.1850
0.1600
0.1200
0.0010 | 0.17
0.37
0.36
1.19
0.86
0.00
0.71
0.96
0.23
0.48
1.46
0.85
3.91
0.51
0.51
0.51 | 87
19
39
00
55
48
92
00
35
03
55
03 | (37) | | | | | | | |--|--|--|--|--|--|-----------------------|------------------------|-----------------------|-----------------------------------|-----------------------------------|--|----------------| | Average = Sum(39)m / 12 = | | 99.6557 | 98.3578 | 98.1149 | 96.9845 | 96.9845 | | | | | 98.3566 | | | HLP 1.0899 | Feb
1.0868 | Mar
1.0838 | Apr
1.0697 | May
1.0670 | Jun
1.0548 | Jul
1.0548 | Aug
1.0525 | Sep
1.0595 | Oct
1.0670 | Nov
1.0724 | Dec
1.0780 | | | HLP (average)
Days in mont 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 1.0697
31 | | | 4. Water heating energy re
Assumed occupancy
Hot water usage for mixer
85.9974
Hot water usage for baths | showers
84.6808 | kWh/year | | 77.0812 | 73.3397 | 70.3805 | 73.8400 | 75.5800 | 79.2858 | 83.1450 | 2.6515
85.9199 | | | 0.0000
Hot water usage for other | 0.0000
uses | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | 41.7838
Average daily hot water us | 40.2644
se (litres/ | 38.7450
/day) | 37.2256 | 35.7062 | 34.1868 | 34.1868 | 35.7062 | 37.2256 | 38.7450 | 40.2644 | 41.7838
117.2682 | | | Jan
Daily hot water use | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | 127.7812 | 124.9452
165.3278 | 121.4855
173.6002 | 116.9811
152.8066 | 112.7874
145.3379 | 107.5265
124.3508 | 104.5672
115.5499 | 109.5462
128.9379 | 112.8056
130.8489 | 118.0308
152.0946
Total = S | 123.4094
166.7919
um(45)m = | 127.7037
187.5422
1831.3046 | (45) | | Distribution loss (46)m = 28.2174 | | 45)m
26.0400 | 22.9210 | 21.8007 | 18.6526 | 17.3325 | 19.3407 | 19.6273 | 22.8142 | 25.0188 | 28.1313 | (46) | | Water storage loss:
Store volume
a) If manufacturer declar
Temperature factor from
Enter (49) or (54) in (55) | Table 2b | actor is km | own (kWh/d | lay): | | | | | | | 150.0000
2.0900
0.5400
1.1286 | (48)
(49) | | Total storage loss
34.9866 | 31.6008 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | (56) | | If cylinder contains dedic
34.9866
Primary loss 23.2624 | 31.6008
21.0112 | 34.9866
23.2624 | 33.8580
22.5120 | 34.9866
23.2624 | 33.8580
22.5120 | 34.9866
23.2624 | 34.9866
23.2624 | 33.8580
22.5120 | 34.9866
23.2624 | 33.8580
22.5120 | 34.9866
23.2624 | (59) | | Combi loss 0.0000 Total heat required for wa | | | | 0.0000
month
203.5869 | 0.0000
180.7208 | 0.0000 | 0.0000
187.1869 | 0.0000 | 0.0000 | 0.0000 | 0.0000
245.7912 | | | WWHRS 0.0000
PV diverter -0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (63a) | | Solar input 0.0000
FGHRS 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (63c) | | Output from w/h
246.3650 | 217.9398 | 231.8492 | 209.1766 | 203.5869 | 180.7208 | 173.7989 | 187.1869 | 187.2189 | 210.3436 | 223.1619 | 245.7912 | (64) | | 12Total per year (kWh/year
Electric shower(s) | | | | | | | lotal p | er year (xw | n/year) = 5 | um(64)m = | 2517.1396 | | | 0.0000 Heat gains from water heat | 0.0000 | 0.0000 | 0.0000
Tot | 0.0000
al Energy u | 0.0000
sed by inst | 0.0000
antaneous e | 0.0000
electric sho | 0.0000
wer(s) (kWh | 0.0000
/year) = Su | 0.0000
m(64a)m = | 0.0000 | (64a)
(64a) | | Heat gains from water heat
109.1478 | ting, kWh/m
97.0611 | nonth
104.3213 | 95.9042 | 94.9241 | 86.4426 | 85.0195 | 89.4710 | 88.6032 | 97.1706 | 100.5543 | 108.9570 | (65) | | | | | | | | | | | | | | | | 5. Internal gains (see Tab | ble 5 and 5 | 5a) | | | | | | | | | | | | Metabolic gains (Table 5),
Jan | | | | | | 71 | 3 | | 0 | | D | | | (66)m 132.5741
Lighting gains (calculated | 132.5741 | 132.5741 | 132.5741 | 132.5741 | 132.5741 | Jul
132.5741 | Aug
132.5741 | Sep
132.5741 | Oct
132.5741 | Nov
132.5741 | Dec
132.5741 | (66) | | 127.2048 Appliances gains (calculate | 140.8339 | 127.2048 | 131.4450 | 127.2048 | 131.4450 | 127.2048 | 127.2048 | 131.4450 | 127.2048 | 131.4450 | 127.2048 | (67) | | 242.6198
Cooking gains (calculated | 245.1374 | 238.7931 | 225.2867 | 208.2373 | 192.2133 | 181.5083 | 178.9906 | 185.3350 | 198.8414 | 215.8908 | 231.9148 | (68) | | 36.2574
Pumps, fans 0.0000 | 36.2574
0.0000 (69)
(70) | | Losses e.g. evaporation (r
-106.0593 | negative va
-106.0593 | alues) (Tab | le 5) | | | | | | | | | | | Water heating gains (Table
146.7040
Total internal gains | | 140.2168 | 133.2003 | 127.5861 | 120.0592 | 114.2736 |
120.2568 | 123.0601 | 130.6057 | 139.6587 | 146.4476 | (72) | | | 593.1797 | 568.9869 | 552.7042 | 525.8005 | 506.4897 | 485.7589 | 489.2245 | 502.6123 | 519.4241 | 549.7667 | 568.3394 | (73) | | | | | | | | | | | | | | | | 6. Solar gains | | | | | | | | | | | | | | [Jan] | | | | Solar flux
Table 6a
W/m2 | | | | FF
data
le 6c | Acce
fact
Table | ss
or
6d | Gains
W | | SAP 10 Online 2.13.11 Page 2 of 7 | Northeast
Southeast
Southwest | | | 1.0 | 800
600 | 11.2829
36.7938
36.7938 | | 0.6300
0.6300
0.6300 | 0 | .7000
.7000
.7000 | 0.770
0.770
0.770 | 00 | 39.8269
26.7623
11.9194 | (77) | |--|--|--|---|---|---|---
--|---|---|---|---|--|---| | C-1 | | | | | | | | | 275 5026 | 171 0040 | 05 4440 | CE (2001 | (02) | | Solar gains
Total gains | 7. Mean inter | nal temperat | | | | | | | | | | | | | | Temperature d | uring heating | ng periods | in the livi | ng area from | n Table 9, 1 | | | | | | | 21.0000 | (85) | | Utilisation f | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | tau
alpha | 7.1584 | 92.6369
7.1758 | 92.8938
7.1929 | 94.1196
7.2746 | 94.3526
7.2902 | 95.4523
7.3635 | 95.4523
7.3635 | | 95.0257
7.3350 | 94.3526
7.2902 | 93.8825
7.2588 | 93.3960
7.2264 | | | util living a | 0.9992 | 0.9979 | 0.9933 | 0.9637 | 0.8491 | 0.6284 | 0.4595 | 0.5184 | 0.8068 | 0.9803 | 0.9977 | 0.9994 | (86) | | Mon living | 20.1189 | 10 1521 | 10 4020 | 10 7506 | 10 0744 | 20 0250 | 20.9993
20.0378 | 20.9985 | | 20.7020
19.7414 | | | | | 24 / 16
24 / 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
0
0 | 0 | 0 | 0 | 0 | | | 24 / 16
24 / 9
16 / 9
MIT
Th 2
util rest of | 28
20.5492 | 0
20.2451 | 0
20.4402 | 0
20.7229 | 0
20.9252 | 0
0
20.9927 | 20.9993 | 20.9985 | 0
20.9614 | 0
0
20.7020
20.0278 | 0
20.3692 | 10
20.2294 | (87) | | Th 2
util rest of | | | | | | | 20.0380 | | | | | | | | MIT 2
Living area f | 19.6023 | 0.9969
19.1521 | | 0.9454
19.7586 | 0.7903
19.9744 | 0.5385
20.0350 | 0.3595
20.0378 | 0.4115
20.0395 | | 0.9668
19.7414
Living area | 19.3204 | 19.1651 | (90) | | MIT
Temperature a | 19.8832 | 19.4764 | 19.7100 | 20.0447 | 20.2565 | 20.3191 | 20.3231 | 20.3240 | | 20.0264 | | | | | adjusted MIT | | 19.4764 | 19.7100 | 20.0447 | 20.2565 | 20.3191 | 20.3231 | 20.3240 | 20.2948 | 20.0264 | 19.6315 | 19.4809 | (93) | | | | | | | | | | | | | | | | | 8. Space heat | ing require | | | | | | | | | | | | | | | Jan | Feh | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Utilisation
Useful gains | 0.9988
657.0276 | 0.9962
737.3003 | 0.9885 | 0.9458 | 0.8054 | 0.5653 | 0.3893 | 0.4434
379.2180 | 0.7448 | 0.9668
668.3445 | 0.9957 | 0.9989 | | | Ext temp.
Heat loss rat | 4.3000
e W | 4.9000 | 6.5000 | 8.9000 | 11.7000 | 14.6000 | 16.6000 | 16.4000 | 14.1000 | 10.6000 | 7.1000 | 4.2000 | | | Space heating | | | | | | 554.6681 | 361.0821 | | 603.4935 | | | 1514.6374 | | | Space heating
Solar heating | requirement | | 387.2727
er year (kW | | 41.3438 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 190.8551 | 426.4398 | 655.7256
3031.5275 | (98a) | | Solar heating | 0.0000 | | 0.0000
per vear (ki | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Space heating | kWh | | | ,, | | | | | | | | | | | | | 483.3998 | 387.2727 | 173.4455 | 41.3438 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 190.8551 | 426.4398 | 655.7256 | (98c) | | Space heating
Space heating | requirement | | | | | | 0.0000 | 0.0000 | 0.0000 | | | 655.7256
3031.5275
32.9693 | | | | requirement | | | | | | 0.0000 | 0.0000 | 0.0000 | | | 3031.5275 | | | Space heating | requirement | t after sol | ar contribu | tion - total | l per year | (kWh/year) | | | 0.0000 | | | 3031.5275 | | | Space heating | requirement per m2 quirements | t after sol | ar contribu | tion - total | l per year | (kWh/year) | | | 0.0000 | | | 3031.5275
32.9693 | (99) | | Space heating 9a. Energy re Fraction of s. | requirements quirements pace heat fi | t after sol | ar contribu | ystems, inc | l per year | (kWh/year) | | | 0.0000 | | | 3031.5275
32.9693
0.0000
1.0000 | (99)
(201)
(202) | | Space heating 9a. Energy re Fraction of s | requirement per m2 quirements pace heat f: pace heat f: main space main space | - Individua - Individua - rom seconda rom main sy heating sy heating sy | ar contribu | tion - total ystems, incl ntary syster %) | l per year | (kWh/year) | | | 0.0000 | | | 3031.5275
32.9693 | (201)
(202)
(206)
(207) | | 9a. Energy re-
Fraction of s
Fraction of s
Efficiency of
Efficiency of | requirement per m2 quirements pace heat fi main space main space secondary/: Jan | - Individua - Individua - rom seconda rom main sy heating sy supplementa Feb | ar contribu | tion - total ystems, incl ntary syster %) | l per year | (kWh/year) | | | 0.0000
Sep | | | 0.0000
1.0000
247.6858
0.0000 | (201)
(202)
(206)
(207) | | 9a. Energy re-
Fraction of s
Fraction of s
Efficiency of
Efficiency of
Space heating | requirements quirements pace heat f: pace heat f: pace heat f: pace main space main space secondary/: Jan requirement 673.0450 | Individua rom seconda rom main sy heating sy supplementa Feb t 483.3998 | ar contribu 1 heating s ry/suppleme stem (s) stem 1 (in stem 2 (in ry heating Mar 387.2727 | ystems, inci
ntary system
%)
%)
system, %
Apr
173.4455 | Luding micro | o-CHP | | | | (98c) | / (4) = | 0.0000
1.0000
247.6858
0.0000 | (201)
(202)
(206)
(207)
(208) | | Space heating 9a. Energy re Fraction of s Fraction of s Efficiency of Efficiency of Efficiency of Space heating Space heating | requirement per m2 quirements | Individua Indivi | ar contribu l heating s | ystems, inci | L per year Luding micro n (Table 11) | O-CHP | Jul | Aug | Sep | (98c)
Oct | / (4) = | 0.0000
1.0000
247.6858
0.0000
Dec | (99)
(201)
(202)
(206)
(207)
(208) | | 9a. Energy re-
Fraction of s
Fraction of s
Efficiency of
Efficiency of
Space heating | requirement per m2 quirements | - Individua rom main sy heating sy heating sy supplementa Feb t 483.3998 (main heat 247.6858 heating sy 195.1666 | ar contribu | ystems, inci | Luding micro n (Table 11) May 41.3438 | Jun | Jul
0.0000 | Aug
0.0000 | Sep
0.0000 | (98c)
Oct
190.8551 | / (4) = Nov 426.4398 | 0.0000
1.0000
247.6858
0.0000
Dec
655.7256 | (201)
(202)
(202)
(206)
(207)
(208)
(98) | | 9a. Energy re- Fraction of s Fraction of s Efficiency of Efficiency of Space heating Space heating | requirement per m2 quirements | Individua Indivi | l heating s stem(s) stem 1 (in stem 2 (in ry heating Mar 387.2727 ing system 247.6858 stem() 156.3565 ing system 0.0000 stem 2) | ystems, inci- ntary system %) %) Apr 173.4455 1) 247.6858 70.0264 2) 0.0000 | May 41.3438 247.6858 16.6920 0.0000 | Jun 0.0000 0.0000 0.0000 | Jul
0.0000
0.0000
0.0000 | Aug
0.0000
0.0000
0.0000 | Sep
0.0000
0.0000
0.0000
0.0000 | Oct
190.8551
247.6858
77.0553
0.0000 | Nov
426.4398
247.6858
172.1697
0.0000 | 0.0000
1.0000
247.6858
0.0000
Dec
655.7256
247.6858
264.7409 | (201)
(202)
(206)
(207)
(208)
(98)
(210)
(211)
(212) | | 9a. Energy re Fraction of s Fraction of s Efficiency of Efficiency of Space heating Space heating Space heating | quirements quirements quirements quirements pace heat fi main space main space secondary/: Jan requirement 673.0450 efficiency 247.6858 fuel (main 771.7334 efficiency 0.0000 fuel (main 0.0000 fuel (secondary) fuel (secondary) | - Individua - Individua - Tom main sy heating sy heating sy supplementa Feb t 483.3998 (main heat 247.6858 heating sy 195.1666 (main heat 0.0000 heating sy nounce | l heating s stem(s) stem(1) into year stem(1) stem(2) into year stem(2) into year 387.2727 ing system 247.6858 stem) 156.3565 ing system 0.0000 stem(2) 0.0000 | ystems, inci | May 41.3438 247.6858 16.6920 0.0000 | Jun 0.0000 0.0000 0.0000 0.0000 | Jul
0.0000
0.0000
0.0000
0.0000 | Aug
0.0000
0.0000
0.0000
0.0000 | Sep
0.0000
0.0000
0.0000
0.0000 | Oct
190.8551
247.6858
77.0553
0.0000 | Nov
426.4398
247.6858
172.1697
0.0000
0.0000 | 0.0000
1.0000
247.6858
0.0000
Dec
655.7256
247.6858
264.7409
0.0000 | (201)
(202)
(206)
(207)
(208)
(98)
(210)
(211)
(212)
(213) | | 9a. Energy re Fraction of s Fraction of s Efficiency of Efficiency of Efficiency of Space heating Space heating Space heating Space heating Space heating | requirements quirements pace heat f: | | l heating s stem(s) stem 1 (in stem 2 (in ry heating Mar 387.2727 ing system 247.6858 stem() 156.3565 ing system 0.0000 stem 2) | ystems, inci- ntary system %) %) Apr 173.4455 1) 247.6858 70.0264 2) 0.0000 | May 41.3438 247.6858 16.6920 0.0000 | Jun 0.0000 0.0000 0.0000 | Jul
0.0000
0.0000
0.0000 | Aug
0.0000
0.0000
0.0000 | Sep
0.0000
0.0000
0.0000
0.0000 | Oct
190.8551
247.6858
77.0553
0.0000 | Nov
426.4398
247.6858
172.1697
0.0000 | 0.0000
1.0000
247.6858
0.0000
Dec
655.7256
247.6858
264.7409 |
(201)
(202)
(206)
(207)
(208)
(98)
(210)
(211)
(212)
(213) | | 9a. Energy re- Fraction of s Fraction of s Efficiency of Efficiency of Efficiency of Space heating Space heating Space heating Space heating | requirement per m2 quirements | Tafter sol | ar contribu 1 heating s ry/suppleme stem 1 (in stem 2 (in ry heating Mar 387.2727 ing system 247.6858 stem) 156.3565 ing system 0.0000 stem 2) 0.0000 0.0000 | ystems, incl
ntary system
%)
%)
system, %
Apr
173.4455
1)
247.6858
70.0264
2)
0.0000
0.0000 | May 41.3438 247.6858 16.6920 0.0000 0.0000 | Jun 0.0000 0.0000 0.0000 0.0000 | Jul 0.0000 0.0000 0.0000 0.0000 0.0000 | Aug
0.0000
0.0000
0.0000
0.0000
0.0000 | Sep
0.0000
0.0000
0.0000
0.0000
0.0000 | Oct
190.8551
247.6858
77.0553
0.0000
0.0000 | Nov
426.4398
247.6858
172.1697
0.0000
0.0000 | 0.0000
0.0000
1.0000
247.6858
0.0000
Dec
655.7256
247.6858
264.7409
0.0000
0.0000 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) | | 9a. Energy re Fraction of s Fraction of s Efficiency of Efficiency of Space heating Water heating | requirement per m2 quirements | Tafter sol | l heating s stem(s) stem(1) into year stem(1) stem(2) into year stem(2) into year 387.2727 ing system 247.6858 stem) 156.3565 ing system 0.0000 stem(2) 0.0000 | ystems, inci | May 41.3438 247.6858 16.6920 0.0000 | Jun 0.0000 0.0000 0.0000 0.0000 0.0000 | Jul
0.0000
0.0000
0.0000
0.0000 | Aug
0.0000
0.0000
0.0000
0.0000 | Sep
0.0000
0.0000
0.0000
0.0000 | Oct
190.8551
247.6858
77.0553
0.0000 | Nov
426.4398
247.6858
172.1697
0.0000
0.0000 | 0.0000
1.0000
247.6858
0.0000
Dec
655.7256
247.6858
264.7409
0.0000
0.0000 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) | | Space heating 9a. Energy re Fraction of s Fraction of s Fraction of s Efficiency of Efficiency of Space heating Efficiency of | quirements quirements quirements quirements pace heat fi main space main space secondary/s Jan requirement 673.0450 efficiency 247.6858 fuel (main 271.7334 efficiency 0.0000 fuel (main 0.0000 fuel (main 0.0000 requirement 246.3650 water heatet 188.7089 r heating, l | Tafter sol | ar contribu | ystems, inci- ntary system %) %) %) Apr 173.4455 1) 247.6858 70.0264 2) 0.0000 0.0000 0.0000 | May 41.3438 247.6858 16.6920 0.0000 0.0000 203.5869 188.7089 | Jun 0.0000 0.0000 0.0000 0.0000 | Jul 0.0000 0.0000 0.0000 0.0000 0.0000 173.7989 | Aug 0.0000 0.0000 0.0000 0.0000 0.0000 | Sep
0.0000
0.0000
0.0000
0.0000
0.0000
187.2189 | Oct
190.8551
247.6858
77.0553
0.0000
0.0000 | Nov
426.4398
247.6858
172.1697
0.0000
0.0000
223.1619 | 0.0000
1.0000
247.6858
0.0000
Dec
655.7256
247.6858
264.7409
0.0000
0.0000 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) (64) (216) (217) | | Space heating 9a. Energy re Fraction of s Fraction of s Fraction of s Efficiency of Efficiency of Efficiency of Space heating Space heating Space heating Space heating Space heating Space heating Efficiency of (217)m Fuel for wate Space cooling (221)m | quirements quirements quirements pace heat f; pace heat f; main space main space secondary/s Jan requirement 673.0450 efficiency 247.6858 fuel (main 271.7334 efficiency 0.0000 fuel (main 0.0000 fuel (secon 0.0000 requirement 246.3650 water heat 188.7089 reating, 1 130.5530 fuel require 0.0000 | Tafter sol Individua Indi | ar contribu l heating s ry/suppleme stem 1 (in stem 2 (in ry heating Mar 387.2727 ing system 247.6858 stem) 156.3565 ing system 0.0000 0.0000 231.8492 188.7089 122.8608 0.0000 | ystems, inci | May 41.3438 247.6858 16.6920 0.0000 0.0000 203.5869 188.7089 107.8841 0.0000 | Jun 0.0000 0.0000 0.0000 0.0000 0.0000 180.7208 188.7089 95.7670 0.0000 | Jul 0.0000 0.0000 0.0000 0.0000 0.0000 173.7989 188.7089 92.0989 0.0000 | Aug 0.0000 0.0000 0.0000 0.0000 0.0000 187.1869 188.7089 99.1935 0.0000 | Sep
0.0000
0.0000
0.0000
0.0000
0.0000
187.2189
188.7089
99.2104
0.0000 | Oct
190.8551
247.6858
77.0553
0.0000
0.0000
210.3436
188.7089
111.4646
0.0000 | Nov
426.4398
247.6858
172.1697
0.0000
0.0000
223.1619
188.7089
118.2572
0.0000 | 0.0000
1.0000
247.6858
0.0000
Dec
655.7256
247.6858
264.7409
0.0000
0.0000 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) (64) (216) (217) (219) (221) | | Space heating 9a. Energy re Fraction of s Efficiency of Efficiency of Efficiency of Space heating Fuel heating Efficiency of (217)m Fuel for wate Space cooling (221)m Pumps and Fa Lighting | quirements quirements quirements quirements pace heat fi main space main space secondary/s Jan requirement 673.0450 efficiency 247.6858 fuel (main 0.0000 fuel (main 0.0000 fuel (secon 0.0000 requirement 246.3650 water heat 188.7089 r heating, 130.5530 fuel require 0.0000 0.0000 31.1079 | Tafter solution to a feet a solution to a seconda crom main sy heating sy heating sy supplementa feb t 483.3998 (main heat 247.6858 heating sy 195.1666 (main heat 0.0000 heating sy 0.0000 to 217.9398 er 188.7089 kWh/month 115.4899 rement 0.0000 0.0000 24.9559 | ar contribu 1 heating s | ystems, inci- ystems, inci- ntary system % % % T73.4455 10 247.6858 70.0264 20 0.0000 0.0000 209.1766 188.7089 110.8462 0.0000 0.0000 10.4625 | May 41.3438 247.6858 16.6920 0.0000 0.0000 203.5869 188.7089 107.8841 0.0000 0.0000 | Jun 0.0000 0.0000 0.0000 0.0000 0.0000 180.7208 188.7089 95.7670 | Jul
0.0000
0.0000
0.0000
0.0000
0.0000
173.7989
188.7089
92.0989 | Aug
0.0000
0.0000
0.0000
0.0000
0.0000
187.1869
188.7089
99.1935 | Sep
0.0000
0.0000
0.0000
0.0000
0.0000
187.2189
188.7089
99.2104 | Oct
190.8551
247.6858
77.0553
0.0000
0.0000
210.3436
188.7089 | Nov
426.4398
247.6858
172.1697
0.0000
0.0000
223.1619
188.7089
118.2572 | 0.0000
1.0000
247.6858
0.0000
Dec
655.7256
247.6858
264.7409
0.0000
0.0000 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) (64) (216) (217) (219) (221) (231) | | Space heating 9a. Energy re | quirements quirement quire | Tafter solution to a feet a solution to the seconda cross and supplementa feb t 483.3998 (main heat 247.6858 heating sy 195.1666 (main heat 0.0000 heating sy 0.0000 to 199.00000 to 188.7089 kWh/month 115.4899 rement 0.0000 24.9559 PVs (Appen -31.7633 | ar contribu 1 heating s ry/suppleme stem 1 (in stem 2 (in ry heating Mar 387.2727 ing system 247.6858 stem) 156.3565 ing system 0.0000 0.0000 231.8492 188.7089 122.8608 0.0000 0.0000 22.4700 d.0000 22.4700 d.49.3127 | ystems, inci- ntary system %) %) %) %) %) ystems, inci- ntary system % Apr 173.4455 1) 247.6858 70.0264 2) 0.0000 0.0000 209.1766 188.7089 110.8462 0.0000 16.4625 atticum quantiti58.7771 | May 41.3438 247.6858 16.6920 0.0000 0.0000 203.5869 188.7089 107.8841 0.0000 12.7161 ity) -65.5787 | Jun 0.0000 0.0000 0.0000 0.0000 0.0000 180.7208 188.7089 95.7670 0.0000 10.3892 -61.7595 | Jul 0.0000 0.0000 0.0000 0.0000 173.7989 188.7089 92.0989 0.0000 0.0000 | Aug 0.0000 0.0000 0.0000 0.0000 187.1869 188.7089 99.1935 0.0000 0.0000 | Sep
0.0000
0.0000
0.0000
0.0000
0.0000
187.2189
188.7089
99.2104
0.0000
0.0000 | Oct
190.8551
247.6858
77.0553
0.0000
0.0000
210.3436
188.7089
111.4646
0.0000 | Nov 426.4398 247.6858 172.1697 0.0000 0.0000 223.1619 188.7089 118.2572 0.0000 0.0000 | 0.0000
0.0000
1.0000
247.6858
0.0000
Dec
655.7256
247.6858
264.7409
0.0000
0.0000 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) (64) (216) (217) (219) (221) (231) (232) | | Space heating 9a. Energy re Fraction of s Fraction of s Fraction of s Efficiency of Efficiency of Efficiency of Space heating Efficiency of (217)m Fuel for wate Space cooling (221)m Fuel for wate Space cooling (221)m Fuel for wate Space cooling (221)m Electricity g (233a)m Electricity g (233a)m Electricity g (234a)m | requirement per m2 quirements | t after sol | ar contribu 1 heating s ry/suppleme stem 1 (in stem 2 (in ry heating Mar 387.2727 ing system 0.0000 0.0000 231.8492 188.7089 122.8608 0.0000 0.0000 dix M) (neg -49.3127 nes (Append | ystems, inci ntary system %) %) %) %ysystem, % Apr 173.4455 1) 247.6858 70.0264 2) 0.0000 0.0000 209.1766 188.7089 110.8462 0.0000 0.0000 16.4625 ative quant: -58.7771 ix M) (negative June 10.0000 | May 41.3438 247.6858 16.6920 0.0000 0.0000 203.5869 188.7089 107.8841 0.0000 0.0000 12.7161 ity) -65.5787 ive quantive 0.0000 | Jun 0.0000 0.0000 0.0000 0.0000 0.0000 180.7208 188.7089 95.7670 0.0000 0.0000 10.3892 -61.7595 by) 0.0000 | Jul 0.0000 0.0000 0.0000 0.0000 0.0000 173.7989 188.7089 92.0989 0.0000 0.0000 11.6001 -60.8548 0.0000 | Aug 0.0000 0.0000 0.0000 0.0000 0.0000 187.1869 188.7089 99.1935 0.0000 0.0000 15.0782 | Sep
0.0000
0.0000
0.0000
0.0000
0.0000
187.2189
188.7089
99.2104
0.0000
0.0000
19.5851 | Oct 190.8551 247.6858 77.0553 0.0000 0.0000 210.3436 188.7089 111.4646 0.0000 0.0000 25.6967 | Nov 426.4398 247.6858 172.1697 0.0000 0.0000 223.1619 188.7089 118.2572 0.0000 0.0000 29.0244 | 3031.5275 32.9693 0.0000 1.0000 247.6858 0.0000 Dec 655.7256 247.6858 264.7409 0.0000 0.0000 245.7912 188.7089 188.7089 130.2489 0.0000 0.0000 31.9725 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) (64) (216) (217) (219) (221) (231) (232) (233a) | | Space heating 9a. Energy re Fraction of s Fraction of s Fraction of s Efficiency of Efficiency of Efficiency of Space heating Frace heating Space heating Space heating Space heating Space heating Efficiency of (21)m Fuel for wate Space cooling (221)m Pumps and Fa
Lighting Electricity g (233a)m Electricity g Electricity g | quirements quirement quirem | t after sol | ar contribu 1 heating s | ystems, inci- ntary system %) %) %) %ystem, % Apr 173.4455 1) 247.6858 70.0264 2) 0.0000 0.0000 209.1766 188.7089 110.8462 0.0000 16.4625 ative quant: -58.7771 ix M) (negat 0.0000 tors (Appen: 0.0000 tors (Appen: 0.0000 | May 41.3438 247.6858 16.6920 0.0000 0.0000 203.5869 188.7089 107.8841 0.0000 0.27161 ity) -65.5787 cive quantif 0.0000 ix M) (negg | Jun 0.0000 0.0000 0.0000 0.0000 0.0000 180.7208 188.7089 95.7670 0.0000 10.3892 -61.7595 ty) 0.0000 attive quant. 0.0000 | Jul 0.0000 0.0000 0.0000 0.0000 173.7989 188.7089 92.0989 0.0000 11.6001 -60.8548 0.0000 ity) 0.0000 ye if net gr | Aug 0.0000 0.0000 0.0000 0.0000 0.0000 187.1869 188.7089 99.1935 0.0000 0.0000 15.0782 -55.9010 0.0000 | Sep
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
187.2189
188.7089
99.2104
0.0000
0.0000
19.5851
-47.1454 | Oct
190.8551
247.6858
77.0553
0.0000
0.0000
210.3436
188.7089
111.4646
0.0000
25.6967
-37.3828
0.0000
0.0000 | Nov
426.4398
247.6858
172.1697
0.0000
0.0000
223.1619
188.7089
118.2572
0.0000
29.0244
-23.4887 | 3031.5275 32.9693 0.0000 1.0000 247.6858 0.0000 Dec 655.7256 247.6858 264.7409 0.0000 0.0000 245.7912 188.7089 188.7089 130.2489 0.0000 0.0000 31.9725 -17.5738 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) (64) (217) (219) (221) (231) (232) (233a) (234a) | | Space heating | requirement per m2 quirements quirements pace heat fi deficiency 247.6858 fuel (main 217.7334 efficiency 0.0000 fuel (secon 0.0000 requirement 246.3650 requirement 188.7089 130.530 fuel requir 0.0000 0.0000 31.1079 enerated by -20.6886 enerated by 0.0000 enerated by 0.0000 enerated by 0.0000 sed or net 6 0.0000 enerated by 0.0000 enerated by 0.0000 enerated by 0.0000 | t after sol | ar contribu 1 heating s stem(s) stem(s) stem(s) stem 1 (in stem 2 (in ry heating Mar 387.2727 ing system 0.0000 co.0000 231.8492 188.7089 122.8608 0.0000 0.0000 22.4700 dix M) (neg -49.3127 nes (Append 0.0000 generated 1 0.0000 generated 3 0.00000 generated 3 0.0000 | ystems, inci ntary system %) %) %) %ystems, % Apr 173.4455 1) 247.6858 70.0264 2) 0.0000 0.0000 0.0000 209.1766 188.7089 110.8462 0.0000 16.4625 ative quant: -58.7771 ix M) (negat 0.0000 tors (Appencount) | May 41.3438 247.6858 16.6920 0.0000 0.0000 203.5869 188.7089 107.8841 0.0000 0.0000 ity) -65.5787 cive quanti 0.0000 ix M) (neg quanti 0.0000 (Appendix 0.0000) | Jun 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 180.7208 188.7089 95.7670 0.0000 0.0000 10.3892 -61.7595 ty) 0.0000 ative quant. 0.0000 N) (negation 0.0000 N) (negation 0.0000) | Jul 0.0000 0.0000 0.0000 0.0000 0.0000 173.7989 188.7089 92.0989 0.0000 0.0000 11.6001 -60.8548 0.0000 ity) 0.0000 ve if net go | Aug 0.0000 0.0000 0.0000 0.0000 0.0000 187.1869 188.7089 99.1935 0.0000 0.0000 15.0782 -55.9010 0.0000 0.0000 eneration) 0.0000 | Sep 0.0000 0.0000 0.0000 0.0000 0.0000 187.2189 188.7089 99.2104 0.0000 0.0000 19.5851 -47.1454 0.0000 0.0000 0.0000 | Oct 190.8551 247.6858 77.0553 0.0000 0.0000 210.3436 188.7089 111.4646 0.0000 25.6967 -37.3828 0.0000 0.0000 | Nov 426.4398 247.6858 172.1697 0.0000 0.0000 223.1619 188.7089 118.2572 0.0000 29.0244 -23.4887 0.0000 0.0000 0.0000 | 3031.5275 32.9693 0.0000 1.0000 247.6858 0.0000 Dec 655.7256 247.6858 264.7409 0.0000 0.0000 245.7912 188.7089 188.7089 130.2489 0.0000 0.0000 31.9725 -17.5738 0.0000 0.0000 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) (64) (216) (217) (219) (221) (231) (232) (233a) (234a) (235a) (235c) | | Space heating | requirements quirements quirements quirements pace heat fi main space main space main space secondary/s Jan requirement 673.0450 efficiency 247.6858 fuel (main 0.0000 fuel (main 0.0000 fuel (secon 0.0000 fuel (secon 188.7089 requirement 246.3650 water heat 188.7089 requirement 246.3650 water heat 188.7089 colono 0.0000 guel requirement 0.0000 onerated by -20.6886 enerated by 0.0000 | t after sol | ar contribu l heating s l heating s ry/suppleme stem 1 (in stem 2 (in ry heating Mar 387.2727 ing system 247.6858 stem) 156.3565 ing system 0.0000 0.0000 231.8492 188.7089 122.8608 0.0000 022.4700 dix M) (neg -49.3127 nes (Append 0.0000 tric genera 0.0000 dix M) (neg -20.4190 mes (Append 0.0000 dix M) (neg -20.4190 nes (Append | ystems, inci- ntary system %) %) %) %ystem, % Apr 173.4455 1) 247.6858 70.0264 2) 0.0000 0.0000 0.0000 209.1766 188.7089 110.8462 0.0000 16.4625 ative quant: -58.7771 ix M) (negative quant: -38.9052 0.0000 ative quant: -33.8052 ix M) (negative quant: | May 41.3438 247.6858 16.6920 0.0000 0.0000 0.0000 203.5869 188.7089 107.8841 0.0000 0.27161 ity) -65.5787 cive quanti 0.0000 ity) -48.0148 cive quanti 0.0000 ity) -48.0148 | Jun 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 180.7208 188.7089 95.7670 0.0000 0.03892 -61.7595 ty) 0.0000 ative quant 0.0000 N) (negati 0.0000 -49.5922 | Jul 0.0000 0.0000 0.0000 0.0000 0.0000 173.7989 188.7089 92.0989 0.0000 0.0000 11.6001 -60.8548 0.0000 ity) 0.0000 ve if net gr 0.00000 -49.1648 | Aug 0.0000 0.0000 0.0000 0.0000 0.0000 187.1869 188.7089 99.1935 0.0000 0.0000 15.0782 -55.9010 0.0000 0.0000 eneration) 0.0000 -40.7525 | Sep 0.0000 0.0000 0.0000 0.0000 0.0000 187.2189 188.7089 99.2104 0.0000 0.0000 19.5851 -47.1454 0.0000 0.0000 0.0000 0.0000 -29.2122 | Oct 190.8551 247.6858 77.0553 0.0000 0.0000 210.3436 188.7089 111.4646 0.0000 25.6967 -37.3828 0.0000 0.0000 0.0000 -15.2366 | Nov 426.4398 247.6858 172.1697 0.0000 0.0000 223.1619 188.7089 118.2572 0.0000 29.0244 -23.4887 0.0000 0.0000 0.0000 -5.9628 | 3031.5275 32.9693 0.0000 1.0000 247.6858 0.0000 Dec 655.7256 247.6858 264.7409 0.0000 0.0000 245.7912 188.7089 188.7089 130.2489 0.0000 0.0000 31.9725 -17.5738 0.0000 0.0000 -3.2602 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) (64) (216) (217) (219) (221) (2331) (233a) (234a) (235a) (235c) (233b) | | Space heating | quirements | t after sol | ar contribu 1 heating s 1 | ystems, inci- ntary system } Apr 173.4455 173.4455 170.0264 290.0000 0.0000 0.0000 209.1766 188.7089 110.8462 0.0000 0.0000 16.4625 ative quanti -58.7771 ix M) (negat 0.0000 by micro-CHi | May 41.3438 247.6858 16.6920 0.0000 0.0000 0.0000 203.5869 188.7089 107.8841 0.0000 12.7161 ity) -65.5787 tive quanti 0.0000 ity) -48.0148 tive quanti 0.0000 ity) -48.0148 | Jun 0.0000 0.0000 0.0000 0.0000 0.0000 180.7208 188.7089 95.7670 0.0000 0.0000 10.3892 -61.7595 ty) 0.0000 ative quant 0.0000 N) (negati: 0.0000 -49.5922 ty) 0.0000 ative quant | Jul 0.0000 0.0000 0.0000 0.0000 173.7989 188.7089 92.0989 0.0000 0.0000 11.6001 -60.8548 0.0000 ve if net gr 0.0000 -49.1648 0.0000 | Aug 0.0000 0.0000 0.0000 0.0000 0.0000 187.1869 188.7089 99.1935 0.0000 0.0000 15.0782 -55.9010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | Sep 0.0000 0.0000 0.0000 0.0000 0.0000 187.2189 188.7089 99.2104 0.0000 0.0000 1.5851 -47.1454 0.0000 0.0000 0.0000 -29.2122 0.0000 | Oct 190.8551 247.6858 77.0553 0.0000 0.0000 210.3436 188.7089 111.4646 0.0000 0.0000 25.6967 -37.3828 0.0000 0.0000 -15.2366 0.0000 | Nov 426.4398 247.6858 172.1697 0.0000 0.0000 223.1619 188.7089 118.2572 0.0000 0.0000 29.0244 -23.4887 0.0000 0.0000 -5.9628 0.0000 | 3031.5275 32.9693 0.0000 1.0000 247.6858 0.0000 Dec 655.7256 247.6858 264.7409 0.0000 0.0000 245.7912 188.7089 188.7089 130.2489 0.0000 0.0000 31.9725 -17.5738 0.0000 0.0000 0.0000 -3.2602 0.0000 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) (64) (216) (217) (219) (221) (231) (232) (233a) (234a) (235a) (235c) (233b) (234b) | | Space heating | requirement per m2 quirements quirements pace heat fi main space main space main space secondary/s Jan requirement 673.0450 efficiency 247.6858 fuel (main 271.7334 efficiency 0.0000 fuel (main 0.0000 fuel (secon 0.0000 fuel (secon 188.7089 requirement 246.3650 water heatt 188.7089 requirement 0.0000 fuel (requirement 0.0000 nerated by -20.6886 enerated by 0.0000 enerated by -4.1753 enerated by -4.1753 enerated by 0.0000 | t after sol | ar contribu 1 heating s 1 | ystems, inci- ntary system %) %) %) %ystem, % Apr 173.4455 1) 247.6858 70.0264 2) 0.0000 0.0000 0.0000 209.1766 188.7089 110.8462 0.0000 16.4625 ative quant: -58.7771 ix M) (negat 0.0000 tors (Appens 0.0000 ative quant: -33.8052 ix M) (negat 0.0000 ative quant: -33.8052 ix M) (negat 0.0000 tors (Appens | May 41.3438 247.6858 16.6920 0.0000 0.0000 0.0000 203.5869 188.7089 107.8841 0.0000 12.7161 ity) -65.5787 cive quanti 0.0000 ity) -48.0148 cive quanti 0.0000 ity) -48.0148 ive quanti 0.0000 ity) 1.0000 | Jun 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 180.7208 188.7089 95.7670 0.0000 10.3892 -61.7595 ty) 0.0000 ative quant. 0.0000 -49.5922 ty) 0.0000 ative quant. 0.0000 colour quant. 0.0000 10.0000 colour quant. 0.0000 colour quant. 0.0000 colour quant. 0.0000 colour quant. 0.0000 | Jul 0.0000 0.0000 0.0000 0.0000 0.0000 173.7989 188.7089 92.0989 0.0000 0.0000 11.6001 -60.8548 0.0000 ity) 0.0000 ve if net gr 0.0000 -49.1648 0.0000 ity) 0.0000 | Aug 0.0000 0.0000 0.0000 0.0000 0.0000 187.1869 188.7089 99.1935 0.0000 0.0000 15.0782 -55.9010 0.0000 0.0000 eneration) 0.0000 -40.7525 0.0000 0.0000 | Sep 0.0000 0.0000 0.0000 0.0000 0.0000 187.2189 188.7089 99.2104 0.0000 0.0000 19.5851 -47.1454 0.0000 0.0000 0.0000 0.0000 -29.2122 | Oct 190.8551 247.6858 77.0553 0.0000 0.0000 210.3436 188.7089 111.4646 0.0000 25.6967 -37.3828 0.0000 0.0000 0.0000 -15.2366 | Nov 426.4398 247.6858 172.1697 0.0000 0.0000 223.1619 188.7089 118.2572 0.0000 29.0244 -23.4887 0.0000 0.0000 0.0000 -5.9628 | 3031.5275 32.9693 0.0000 1.0000 247.6858 0.0000 Dec 655.7256 247.6858 264.7409 0.0000 0.0000 245.7912 188.7089 188.7089 130.2489 0.0000 0.0000 31.9725 -17.5738 0.0000 0.0000 -3.2602 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) (64) (216)
(217) (221) (231) (232) (233a) (234a) (235a) (235c) (233b) (234b) (235b) | SAP 10 Online 2.13.11 Page 3 of 7 | Space heating fuel - main system 1 Space heating fuel - main system 2 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel Electricity for pumps and fans: Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses | | | | 1223.9409
0.0000
0.0000
188.7089
1333.8746
0.0000
251.0584
-839.3408
0.0000
0.0000
0.0000
-0.0000
0.0000
1969.5330 | (213)
(215)
(219)
(221)
(231)
(232)
(233)
(234)
(235a)
(235a)
(235)
(236)
(237) | |--|--|--|----------------------------------|---|---| | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies | Energy
kWh/year
1223.9409
1333.8746
0.0000
251.0584 | kg CO2/kWh
0.1563
0.1408
0.0000
0.1443 | kg | Emissions
CO2/year
191.2888
0.0000
187.8229
379.1117
0.0000
36.2355 | (373)
(264)
(265)
(267) | | PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Dwelling Carbon Dioxide Emission Rate (DER) | -530.2265
-309.1143 | | | -70.7348
-38.1022
-108.8370
306.5101
3.3300 | (272) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies | Energy | 1.5207
0.0000 | : | ry energy
kWh/year
1932.1217
0.0000
0228.3682
3960.4899
0.0000
385.0818 | (473)
(278)
(279)
(281) | | PV Unit electricity used in dwelling PV Unit electricity exported Total Total Primary energy kWh/year Dwelling Primary energy Rate (DPER) | -530.2265
-309.1143 | | | -791.6190
-139.8203
-931.4394
3414.1323
37.1300 | (286) | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS | | | | | | | 1. Overall dwelling characteristics Ground floor First floor Second floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) Dwelling volume 91.9500 | 59.8100
27.2800 | | (2b) =
(2c) =
(2d) = | 161.4870
66.0176 | (1c) - (3c)
(1d) - (3d)
(4) | | 2. Ventilation rate | | | -2 | } | | | Number of open chimneys Number of open flues Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of blocked chimneys Number of intermittent extract fans Number of passive vents Number of flueless gas fires | | | 0 * 80 =
0 * 20 =
0 * 10 = | 0.0000
30.0000
0.0000 | (6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b) | | Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)+(7a)+$
Pressure test
Pressure Test Method
Measured/design AP50
Infiltration rate | (7b)+(7c) = | 30.0000 | Air changes
) / (5) =
Blo | per hour
0.1252
Yes
ower Door
5.0000
0.3752 | (17) | SAP 10 Online 2.13.11 Page 4 of 7 | Number of sides | sheltered | | | | | | | | | | | | (19) | |---|---|---|--|--|------------------------------|------------------------------|--|---|---|--|---|--|---| | Shelter factor
Infiltration rat | e adjusted | to includ | de shelter i | factor | | | | | (20) = 1 - | [0.075 x
1) = (18) | | 0.7750
0.2908 | | | Wind speed
Wind factor | Jan
5.1000
1.2750 | Feb
5.0000
1.2500 | Mar
4.9000
1.2250 | Apr
4.4000
1.1000 | May
4.3000
1.0750 | Jun
3.8000
0.9500 | Jul
3.8000
0.9500 | Aug
3.7000
0.9250 | Sep
4.0000
1.0000 | Oct
4.3000
1.0750 | Nov
4.5000
1.1250 | Dec
4.7000
1.1750 | | | Adj infilt rate
Effective ac | 0.3707
0.5687 | 0.3635
0.5661 | 0.3562
0.5634 | 0.3198
0.5511 | 0.3126
0.5489 | 0.2762
0.5382 | 0.2762
0.5382 | | | 0.3126
0.5489 | 3. Heat losses a | nd heat lo | ss paramet | er | | | | | | | | | | | | Element | | | | Gross
m2 | Openings
m2 | 2 | tArea
m2 | U-value
W/m2K | A x
W/ | K | -value
kJ/m2K | A x K
kJ/K | | | TER Opening Type
Exposed Floor
Cavity Wall
Sloping Wall
External Roof 1
Total net area o
Fabric heat loss
Party Wall 1 | f external | elements | Aum(A, m2) | 86.3300
13.0400
53.9800 | 14.9900 | 71
13
53
160 | .9900
.2200
.3400
.0400
.9800
.5700
(26)(5 | 1.1450
0.1300
0.1800
0.1800
0.1100
30) + (32) | | 6
2
2
8
9 | | | (27)
(28b)
(29a)
(29a)
(30)
(31)
(33)
(32) | | Thermal mass par | | IP = Cm / T | TFA) in kJ/r | n2K | | | | | | | | 362.4428 | (35) | | E3 Sill E4 Jamb E20 Expo E7 Party P7 Party P3 Party E16 Corn E25 Stag E18 Part E21 Expo P4 Party P8 Party E14 Flat R8 Roof | nt sed floor floor bet Wall - Ex wall - In Intels (wall - Intel floor bet wall - Intel floor bet wall bet wall bet wall - Ro wall - Ro floor wall - Ex roof to wall (r | (normal) ween dwell posed floo termediate) y wall bet ween dwell (inverted) of (insule posed floo after) | or (normal)
e floor betw
tween dwell:
lings | locks of fla
ween dwellir
ings
iling level) | gs (in bloo | cks of flat | s) | 8
8
23
3
31
4
14
16
26
5
1
14
4
24 | .2500
.2000
.2000
.1200
.4640
.4500
.4500
.6400
.8000
.2000
.5960
.4700
.3200 | si-value
0.0500
0.0500
0.0500
0.3200
0.1600
0.0900
0.0600
0.0600
0.1200
0.1200
0.1200
0.1200
0.0800
0.0800
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600 | Tot
0.41
0.41
1.18
0.99
2.20
0.74
0.00
1.49
1.60
0.31
0.48
1.73
1.10 | 00
00
35
84
27
27
00
80
20
00
88
80
30
76
89 | | | Thermal bridges
Point Thermal br
Total fabric hea | (Sum(L x P
idges | | | | | | | | | | (36a) =
+ (36a) = | 14.9078
0.0000 | | | Ventilation heat | loss calc | ulated mor | nthly (38)m
Mar | = 0.33 x (2 | 25)m x (5)
Mav | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Heat transfer co | 44.9777
eff
99.1144 | 44.7666
98.9034 | 44.5598
98.6965 | 43.5882
97.7249 | 43.4064
97.5432 | 42.5602
96.6969 | 42.5602
96.6969 | 42.4035
96.5402 | 42.8861
97.0229 | 43.4064
97.5432 | 43.7742
97.9109 | 44.1586
98.2954 | | | Average = Sum(39 |)m / 12 = | Feb | Mar | | | Jun | Jul | | | Oct | Nov | 97.7241 | | | HLP
HLP (average) | 1.0779 | 1.0756 | 1.0734 | Apr
1.0628 | May
1.0608 | 1.0516 | 1.0516 | Aug
1.0499 | Sep
1.0552 | 1.0608 | 1.0648 | Dec
1.0690
1.0628 | | | Days in mont | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | | | 4. Water heating | energy re | | |
) | | | | | | | | | | | Assumed occupanc
Hot water usage | for mixer | | 04.0505 | 01 0710 | 50 5400 | DE 5016 | B0 BB00 | TF 6000 | 77 7016 | 01 0501 | 04 0040 | 2.6515 | | | Hot water usage | 88.2264
for baths
0.0000 | | 84.9685
0.0000 | 0.0000 | 78.5438
0.0000 | 75.5016 | 73.7723 | 75.6898 |
77.7916
0.0000 | 0.0000 | 84.8342
0.0000 | 0.0000 | | | | for other 41.7838 | uses
40.2644 | 38.7450 | 37.2256 | | 34.1868 | 34.1868 | | 37.2256 | 38.7450 | 40.2644 | 41.7838 | (42c) | | Average daily ho | t water us
Jan | e (litres/
Feb | day)
Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | 119.3271
Dec | (43) | | | use
30.0103 | 127.1650 | 123.7135 | 118.4975 | 114.2500 | 109.6883 | 107.9591 | 111.3959 | 115.0172 | 119.8031 | 125.0986 | 129.6722 | | | Energy conte 2
Energy content (
Distribution los | annual) | | | 162.2171 | 153.8025 | 134.8746 | 130.5672 | 137.9315 | 141.8277 | | 178.2258
um(45)m = | | | | Water storage lo | 30.8857 | 27.1622 | 28.5215 | 24.3326 | 23.0704 | 20.2312 | 19.5851 | 20.6897 | 21.2742 | 24.3858 | 26.7339 | 30.4553 | (46) | | Store volume a) If manufactu Temperature fa Enter (49) or (5 Total storage lo | ctor from
4) in (55) | | actor is kno | own (kWh/da | чу): | | | | | | | 150.0000
1.3938
0.5400
0.7527 | (48)
(49) | | | 23.3325 | 21.0745
ated solar | 23.3325
storage | 22.5798 | 23.3325 | 22.5798 | 23.3325 | 23.3325 | 22.5798 | 23.3325 | 22.5798 | 23.3325 | (56) | | Primary loss
Combi loss | 23.3325
23.2624
0.0000 | 21.0745
21.0112
0.0000 | 23.3325
23.2624
0.0000 | 22.5798
22.5120
0.0000 | 23.3325
23.2624
0.0000 | 22.5798
22.5120
0.0000 | 23.3325
23.2624
0.0000 | 23.3325
23.2624
0.0000 | 22.5798
22.5120
0.0000 | 23.3325
23.2624
0.0000 | 22.5798
22.5120
0.0000 | 23.3325
23.2624
0.0000 | (59) | | WWHRS -
PV diverter
Solar input
FGHRS | 52.4994
40.3334 | 223.1669
-35.6712
-0.0000
0.0000 | 236.7379
-37.3529 | ed for each
207.3089
-30.9296
-0.0000
0.0000 | 200.3974
-28.8253 | | | | 186.9196
-25.5204
-0.0000
0.0000
0.0000 | -30.0858 | | 249.6303
-39.5865
-0.0000
0.0000
0.0000 | (63a)
(63b)
(63c) | | | | | 199.3851 | 176.3793 | 171.5721 | 155.3004 | 154.0416 | | 161.3992
er year (kWh | | | 2156.0381 | (64) | | 12Total per year
Electric shower(| | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 2156
0.0000 | (64) | | Heat gains from | | | | | | | | | wer(s) (kWh/ | | | 0.0000 | | SAP 10 Online 2.13.11 Page 5 of 7 | | 105.7392 | 93.8781 | 100.4985 | 90.0107 | 88.4152 | 80.9193 | 80.6895 | 83.1381 | 83.2312 | 91.3310 | 95.3336 | 104.7852 | (65) | |---|--------------------------|--------------------------|---------------------------|--------------------------|--------------------------------|-------------------------|---------------------------|--------------------|---------------------|----------------------------------|---------------------|---------------------------------------|----------------| | 5. Internal ga | | | | | | | | | | | | | | | Metabolic gair | | , Watts | | | | | | | C | 0-4 | V | D | | | (66)m
Lighting gains | 132.5741 | 132.5741 | 132.5741 | 132.5741 | | | | | Sep
132.5741 | Oct
132.5741 | Nov
132.5741 | | (66) | | Appliances gai | 127.2048 | 140.8339 | 127.2048 | 131.4450 | 127.2048 | 131.4450 | 127.2048 | 127.2048 | 131.4450 | 127.2048 | 131.4450 | 127.2048 | (67) | | Cooking gains | 242.6198
(calculated | 245.1374
d in Append | 238.7931
lix L, equat: | 225.2867
ion L15 or 1 | 208.2373
L15a), also | 192.2133
see Table 5 | 181.5083
5 | | | 198.8414 | | 231.9148 | | | Pumps, fans | 36.2574
3.0000 | 36.2574
3.0000 | 36.2574
3.0000 | 36.2574
3.0000 | 36.2574
3.0000 | 36.2574
0.0000 | 36.2574
0.0000 | 36.2574
0.0000 | 36.2574
0.0000 | 36.2574
3.0000 | 36.2574
3.0000 | 36.2574
3.0000 | | | Losses e.g. ev
Water heating | -106.0593 | -106.0593 | | | -106.0593 | -106.0593 | -106.0593 | -106.0593 | -106.0593 | -106.0593 | -106.0593 | -106.0593 | (71) | | Total internal | 142.1225 | 139.6995 | 135.0786 | 125.0148 | 118.8377 | 112.3879 | 108.4536 | 111.7448 | 115.5989 | 122.7567 | 132.4077 | 140.8403 | (72) | | | | 591.4431 | 566.8487 | 547.5187 | 520.0521 | 498.8184 | 479.9390 | 480.7125 | 495.1511 | 514.5751 | 545.5157 | 565.7321 | (73) | | 6. Solar gains | 3 | | | | | | | | | | | | | | [Jan] | | | A | rea
m2 | Solar flux
Table 6a
W/m2 | Specif
or 1 | g
fic data
Table 6b | Specific
or Tab | FF
data
le 6c | Acces
facto
Table 6 | ss
or
id | Gains
W | | | Northeast | | | | | | | | | | | | | | | Southeast
Southwest | | | 2.30
1.00 | 800
600
 | 36.7938
36.7938 | | 0.6300
0.6300 | 0:
0: | .7000
.7000 | 0.770
0.770
0.770 | 10
10 | 26.7623
11.9194 | (77)
(79) | | Solar gains
Total gains | | | | | | | | | | | | | | | 7. Mean intern | | | | | | | | | | | | | | | Temperature du
Utilisation fa | actor for ga | ains for li | ving area, n | nil,m (see ' | Table 9a) | | | | | | | 21.0000 | (85) | | tau
alpha | Jan
93.4011 | Feb
93.6004 | Mar
93.7966 | Apr
94.7291 | May
94.9056 | Jun
95.7362 | Jul
95.7362 | Aug
95.8916 | Sep
95.4146 | Oct
94.9056 | Nov
94.5492 | Dec
94.1794 | | | util living ar | rea | | 0.9933 | 0.9640 | 0.8497 | 0.6314 | 0.4610 | | 0.8101 | 0.9808 | 0.9978 | | | | MIT | | 20.2569 | 20.4496 | 20.7252 | 20.9260 | 20.9926 | 20.9993 | | 20.9607 | 20.7030 | | | | | Th 2
util rest of h | | | 20.0226 | 20.0313 | 20.0330 | 20.0405 | 20.0405 | 20.0419 | | 20.0330 | | | | | MIT 2
Living area fr | 19.0132 | 0.9969
19.1743 | 0.9898
19.4208 | 0.9458
19.7662 | 0.7911
19.9801 | 0.5414
20.0375 | 0.3610
20.0404 | 0.4148
20.0416 | | 0.9675
19.7470
Living area | | 18.9944 | (90) | | MIT
Temperature ad | 19.3451 | 19.4955 | 19.7260 | 20.0508 | 20.2607 | 20.3209 | 20.3249 | 20.3255 | | 20.0307 | | | (92) | | adjusted MIT | 19.3451 | 19.4955 | 19.7260 | 20.0508 | 20.2607 | 20.3209 | 20.3249 | 20.3255 | 20.2968 | 20.0307 | 19.6399 | 19.3262 | (93) | | 8. Space heati | ing require | nent | | | | | | | | | | | | | Utilisation | Jan
0.9985 | Feb
0.9962 | Mar
0.9884 | Apr
0.9463 | May
0.8062 | Jun
0.5682 | Jul
0.3907 | Aug
0.4469 | Sep
0.7485 | Oct
0.9674 | Nov
0.9958 | Dec
0.9989 | (94) | | Useful gains
Ext temp. | 655.2518 | 735.5760 | 793.7790 | 850.8043 | | 549.3161
14.6000 | | | | 664.1153
10.6000 | | 630.6473 | (95) | | | 1491.1909 | 1443.5434 | 1305.3629 | 1089.7065 | 835.0394 | 553.1912 | 360.1867 | 378.9659 | 601.2294 | 919.8963 | 1227.7950 | 1486.8361 | (97) | | Space heating
Space heating | 621.9387 | | 380.6185
er year (kW) | | 40.9112 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 190.3010 | 423.7455 | 637.0045
2942.2832 | | | Solar heating | 0.0000
contribution | 0.0000
on - total | | 0.0000
Wh/year) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating
Space heating
Space heating | 621.9387
requirement | 475.7541
after sol | 380.6185
ar contribu | 172.0096
tion - tota | 40.9112
1 per year | 0.0000
(kWh/year) | 0.0000 | 0.0000 | 0.0000 | 190.3010
(98c) | 423.7455
/ (4) = | 2942.2832 | | | 9a. Energy req | | | | | | | | | | | | | | | Fraction of sp | ace heat fi | rom seconda | ry/supplemen | | | | | | | | | 0.0000 | | | Fraction of sp
Efficiency of
Efficiency of
Efficiency of | main space
main space | heating sy
heating sy | stem 1 (in stem 2 (in | %) | | | | | | | | 1.0000
92.3000
0.0000
0.0000 | (206)
(207) | | Space hostin- | Jan
remuirement | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating Space heating | 621.9387 | 475.7541 | 380.6185 | | 40.9112 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 190.3010 | 423.7455 | 637.0045 | (98) | | Space heating | 92.3000
fuel (main | 92.3000
heating sy | 92.3000
stem) | 92.3000 | 92.3000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 92.3000 | 92.3000 | 92.3000 | (210) | | Space heating | 673.8231
efficiency | 515.4432
(main heat | 412.3710
ing system 2 | 2) | 44.3241 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 206.1766 | | 690.1457 | | | Space heating | | heating sy | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating | fuel (secon | ndary) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 3.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 3.0000 | 0.0000 | (213) | SAP 10 Online 2.13.11 Page 6 of 7 | Water heating | | | | | | | |--
---|--------------|--|-----------|---|--| | Water heating requirement 212.1659 187.4957 199.3851 176.3793 171.5721 155.3004 154. | 0416 159.9401 | 161.3992 | 179.0808 | 189.2342 | | | | Efficiency of water heater (217)m 86.3236 86.0563 85.4857 84.0035 81.3882 79.8000 79. | 8000 79.8000 | 79.8000 | 84.1963 | 85.8123 | 79.8000
86.3841 | | | Fuel for water heating, kWh/month 245.7798 217.8756 233.2380 209.9665 210.8070 194.6121 193. | 0346 200.4261 | 202.2546 | 212.6944 | 220.5211 | 243.1509 | (219) | | Space cooling fuel requirement (221)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (221) | | Pumps and Fa 7.3041 6.5973 7.3041 7.0685 7.3041 7.0685 7.5
Lighting 26.4306 21.2036 19.0915 13.9873 10.8042 8.8271 9.5 | 3041 7.3041
8559 12.8111 | | 7.3041
21.8331 | | 7.3041
27.1652 | | | Electricity generated by PVs (Appendix M) (negative quantity) (233a)m -30.8211 -44.6104 -65.8046 -75.9780 -83.6196 -78.6382 -77. | | | | | -26.5114 | | | Electricity generated by wind turbines (Appendix M) (negative quantity) (234a)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity generated by hydro-electric generators (Appendix M) (negative quantity) | 0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity used or net electricity generated by micro-CHP (Appendix N) (negative if | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity generated by PVs (Appendix M) (negative quantity) (233b)m -14.0566 -29.9011 -60.0562 -91.1267 -121.4089 -122.3440 -120. | | | | | -11.0925 | | | Electricity generated by wind turbines (Appendix M) (negative quantity) | 0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity generated by hydro-electric generators (Appendix M) (negative quantity) (235b)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity used or net electricity generated by micro-CHP (Appendix N) (negative if 1 (235d)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | net generation) | | 0.0000 | 0.0000 | | | | Annual totals kWh/year | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating fuel - main system 1
Space heating fuel - main system 2 | | | | | 3187.7391 | (213) | | Space heating fuel - secondary
Efficiency of water heater | | | | | 0.0000
79.8000 | | | Water heating fuel used
Space cooling fuel | | | | | 2584.3607
0.0000 | | | Electricity for pumps and fans: | | | | | | | | Total electricity for the above, kWh/year
Electricity for lighting (calculated in Appendix L) | | | | | 86.0000
213.3105 | | | Energy saving/generation technologies (Appendices M ,N and Q) | | | | | | | | PV generation Wind generation | | | | | -1514.9530
0.0000 | | | Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) | | | | | 0.0000 | | | | | | | | | | | Appendix Q - special features Energy saved or generated | | | | | -0.0000 | (236) | | Energy saved or generated
Energy used | | | | | 0.0000 | (237) | | Energy saved or generated | | | | | | (237) | | Energy saved or generated
Energy used | | | | | 0.0000 | (237) | | Energy saved or generated Energy used Total delivered energy for all uses | | | | | 0.0000
4556.4572 | (237) | | Energy saved or generated Energy used Total delivered energy for all uses | Energy
kWh/year | | ion factor
kg CO2/kWh | | 0.0000 | (237) | | Energy saved or generated Energy used Total delivered energy for all uses |
Energy | | kg CO2/kWh
0.2100 | k | 0.0000
4556.4572
Emissions | (237)
(238) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 | Energy
kWh/year | 1 | 0.2100 | k | 0.0000
4556.4572
Emissions
g CO2/year
669.4252
0.0000
542.7158 | (237)
(238)
(261)
(373)
(264) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot | Energy
kWh/year
3187.7391 | 1 | 0.2100 | k | 0.0000
4556.4572
Emissions
g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293 | (237)
(238)
(261)
(373)
(264)
(265)
(267) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting | Energy
kWh/year
3187.7391
2584.3607
86.0000 | 1 | kg CO2/kWh
0.2100 | k | 0.0000
4556.4572
Emissions
g CO2/year
669.4252
0.0000
542.7158
1212.1410 | (237)
(238)
(261)
(373)
(264)
(265)
(267) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105 | 1 | 0.2100
0.2100
0.2100
0.1387
0.1443 | k | 0.0000
4556.4572
Emissions
g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873 | (237)
(238)
(261)
(373)
(264)
(265)
(267) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105 | 1 | 0.2100
0.2100
0.2100
0.1387
0.1443 | k | 0.0000
4556.4572
Emissions
g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873
-94.6205
-101.6121
-196.2326 | (261)
(373)
(264)
(267)
(268) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system l Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105 | 1 | 0.2100
0.2100
0.2100
0.1387
0.1443 | k | 0.0000
4556.4572
Emissions
g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105 | 1 | 0.2100
0.2100
0.2100
0.1387
0.1443 | k | 0.0000
4556.4572
Emissions
g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873
-94.6205
-101.6121
-196.2326
1058.6249 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105 | 1 | 0.2100
0.2100
0.2100
0.1387
0.1443 | k | 0.0000
4556.4572
Emissions
g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873
-94.6205
-101.6121
-196.2326
1058.6249 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting
Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105
-705.8886
-809.0645 | 1 | CO2/kWh
0.2100
0.2100
0.1387
0.1443
0.1340
0.1256 | k | 0.0000 4556.4572 Emissions g CO2/year 669.4252 0.0000 542.7158 1212.1410 11.9293 30.7873 -94.6205 -101.6121 -196.2326 1058.6249 11.5100 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) | Energy kWh/year 3187.7391 2584.3607 86.0000 213.3105 -705.8886 -809.0645 | Primary enem | 0.2100
0.2100
0.2100
0.1387
0.1443 | k | 0.0000
4556.4572
Emissions
g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873
-94.6205
-101.6121
-196.2326
1058.6249 | (261)
(373)
(264)
(264)
(267)
(268)
(269)
(272)
(273) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems | Energy kWh/year 3187.7391 2584.3607 86.0000 213.3105 -705.8886 -809.0645 Energy kWh/year 3187.7391 | Primary ene | CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1340 0.1256 crgy factor kg CO2/kWh 1.1300 | k | Emissions
g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.923
30.7873
-94.6205
-101.6121
-196.2326
1058.6249
11.5100
ary energy
kWh/year
3602.1451
0.0000 | (261)
(373)
(264)
(265)
(268)
(269)
(272)
(273) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating (other fuel) Space and water heating | Energy kWh/year 3187.7391 2584.3607 86.0000 213.3105 -705.8886 -809.0645 Energy kWh/year 3187.7391 2584.3607 | Primary ene: | cg CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1340 0.1256 cgg factor kg CO2/kWh 1.1300 1.1300 | k
Prim | 0.0000 4556.4572 Emissions g CO2/year 669.4252 0.0000 542.7158 1212.1410 11.9293 30.7873 -94.6205 -101.6121 -196.2326 1058.6249 11.5100 ary energy kWh/year 3602.1451 0.0000 2920.3276 6522.4728 | (261)
(373)
(264)
(265)
(267)
(268)
(272)
(273)
(273)
(275)
(473)
(279) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) | Energy kWh/year 3187.7391 2584.3607 86.0000 213.3105 -705.8886 -809.0645 Energy kWh/year 3187.7391 | Primary ene: | CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1340 0.1256 crgy factor kg CO2/kWh 1.1300 | k | 0.0000 4556.4572 Emissions g CO2/year 669.4252 0.0000 542.7158 1212.1410 11.9293 30.7873 -94.6205 -101.6121 -196.2326 1058.6249 11.5100 ary energy kWh/year 3602.1451 0.0000 0.920.3276 | (261)
(373)
(261)
(373)
(264)
(265)
(267)
(268)
(272)
(273)
(273)
(273) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies | Energy kWh/year 3187.7391 2584.3607 86.0000 213.3105 -705.8886 -809.0645 Energy kWh/year 3187.7391 2584.3607 86.0000 213.3105 | Primary ener | cg CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1340 0.1256 cg CO2/kWh 1.1300 1.5128 1.5338 | Prim | 0.0000 4556.4572 Emissions g CO2/year 669.4252 0.0000 542.7158 1212.1410 11.9293 30.7873 -94.6205 -101.6121 -196.2326 1058.6249 11.5100 ary energy kWh/year 3602.1451 0.0000 2920.3276 6522.4728 130.10827 | (261)
(373)
(261)
(373)
(264)
(265)
(267)
(268)
(272)
(273)
(273)
(273) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling | Energy kWh/year 3187.7391 2584.3607 86.0000 213.3105 -705.8886 -809.0645 Energy kWh/year 3187.7391 2584.3607 86.0000 | Primary ene) | CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1340 0.1256 crgy factor kg CO2/kWh 1.1300 1.5128 | Prim | 0.0000 4556.4572 Emissions g CO2/year 669.4252 0.0000 542.7158 1212.1410 11.9293 30.7873 -94.6205 -101.6121 -196.2326 1058.6249 11.5100 ary energy kWh/year 3602.1451 0.0000 2920.3276 6522.4728 130.1008 327.1827 | (261)
(373)
(261)
(373)
(264)
(265)
(267)
(268)
(272)
(273)
(273)
(273)
(278)
(278)
(278)
(278)
(281)
(282) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP 13a. Carbon dioxide emissions - Individual heating systems including micro-CHP 15pace heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) 13a. Primary energy - Individual heating systems including micro-CHP 13a. Primary energy - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling | Energy kWh/year 3187.7391 2584.3607 86.0000 213.3105 -705.8886 -809.0645 Energy kWh/year 3187.7391 2584.3607 86.0000 213.3105 -705.8886 | Primary ene) | rgy factor rgy factor 1.1300 1.1300 1.1300 1.1300 1.1300 1.1300 1.14954 | Prim | 0.0000 4556.4572 Emissions g CO2/year 669.4252 0.0000 542.7158 1212.1410 11.9293 30.7873 -94.6205 -101.6121 -196.2326 1058.6249 11.5100 ary energy kWh/year 3602.1451 0.0000 2920.3276 6522.4728 130.1008 327.1827 | (261)
(373)
(264)
(265)
(267)
(268)
(272)
(273)
(273)
(273)
(275)
(473)
(279)
(281)
(282) | SAP 10 Online 2.13.11 Page 7 of 7 | Dwelling Address | Unit 1, Highland Square , Bristol | |------------------------------|-----------------------------------| | Report Date | 05/03/2024 | | Property Type | Maisonette, Mid-Terrace | | Floor Area [m ²] | 92 | This document is not an Energy Performance Certificat EPC) s required by the Energy Performance of Buildings Reg io SAP 10 Online 2.13.11 Page 1 of 4 #### Breakdown of property's energy performance Each feature is assessed as one of the following: | Very Poor | Poor | Average | Good | Very Good | | | |-----------------------|--------------------------|--|------|-------------------|--|--| | Feature | Description | | | gy
Performance | | | | Walls | Average thermal transmi | ttance
0.18 W/m²K | 5/// | Very Good | | | | Roof | Average thermal transmi | ttance 0.11 W/m²K | | Very Good | | | | Floor | Average thermal transmi | Average thermal transmittance 0.18 W/m²K | | | | | | Windows | High performance glazin | High performance glazing | | | | | | Main heating | Air source heat pump, ra | diators, electric | | Good | | | | Main heating controls | Time and temperature z | contro | | Very Good | | | | Secondary heating | None | | | | | | | Hot water | From main sys m | Average | | | | | | Lighting | Good ligh g efficien | | | Good | | | | Air tightness | Air perme 50] = | 4.5 h.m² (assumed) | | Good | | | #### Primary Energy use The primary energy use for this property per year is 33 kilowatt hour (kWh) per square metre #### Estim ted CO₂ missions of the dwelling The estimated ing provides an indication of the dwelling's impact on the environment in terms of carbon dioxide emissions; the higher the rating the less impact it has on the environment. The estimated CO emissions for this dwellings is: 0.3 per year SAP 10 Online 2.13.11 Page 2 of 4 With the recommended measures the potential CO emissions could be: per year #### Recommendations The recommended measures provided below will help to improve the energy efficiency of the dwelli To reach the dwelling's potential energy rating all of the recommended measures shown d to be installed. Having these measures installed individually or in any other order may give a different result d with the cumulative potential rating. | Recommended measure | Typical | Potential Rati | C ulative | Cumulative | |---------------------|---------|----------------|------------|------------| | | Yearly | after | avings | Potential | | | Saving | measure insta | (per year) | Rating | #### Estimated energy use and potential aving Estimated energy cost for this property over a year £654 Over a year you could The estimated cost and saving how much the average hou would spend in this property heating, lighting and hot water. It not based on how e is used by the people living at the pr p # save #### Containg the ssessor and the accreditation scheme | As | ssessor contact details | |---------------------------------|-------------------------| | Assessor name | | | Assessor's accreditation number | | | Email Address | | SAP 10 Online 2.13.11 Page 3 of 4 | Accreditation scheme contact details | | | | | | | |--------------------------------------|-----------------------------|--|--|--|--|--| | Accreditation scheme | Elmhurst Energy Systems Ltd | | | | | | | Telephone | | | | | | | | Email Address | | | | | | | | Assessment details | | | | | | | | |--------------------------|---------------|--|--|--|--|--|--| | Related party disclosure | No related pa | | | | | | | | Date of assessment | 05/03/202 | | | | | | | | Date of certificate | 05/03/202 | | | | | | | | Type of assessment | SAP w dwellin | | | | | | | #### **Building Regulations England Part L (BREL) Compliance Report** Approved Document L1 2021 Edition, England assessed by Array SAP 10 program, Array Date: Tue 05 Mar 2024 08:41:58 | Project Information | | | | |---------------------|------------|-----------------|---------------------------| | Assessed By | | Building Type | Maisonette, Semi-detached | | OCDEA Registration | EES/025661 | Assessment Date | 2024-03-05 | | Dwelling Details | | | | |-------------------------|---------------------------------|------------------|-------------------| | Assessment Type | As designed | Total Floor Area | 61 m ² | | Site Reference | Unit 5 | Plot Reference | Residual | | Address | Unit 1 Highland Square, Bristol | | | | Client Details | | |----------------|---| | Name | Tebby & Son | | Company | SF Tebby & Son | | Address | Unit 11 Avon Gorge Industrial Estate , Bristol, BS2 9XX | This report covers items included within the SAP calculations. It is not a complete report of regulations compliance. | 1a Target emission rate and dwelling emission rate | | | |--|---|----| | Fuel for main heating system | Electricity | | | Target carbon dioxide emission rate | 15.38 kgCO ₂ /m ² | | | Dwelling carbon dioxide emission rate | 5.8 kgCO ₂ /m ² | OK | | 1b Target primary energy rate and dwelling primary energy | | | | Target primary energy | 81.31 kWh _{PE} /m ² | | | Dwelling primary energy | 60.62 kWh _{PE} /m ² | OK | | 1c Target fabric energy efficiency and dwelling fabric energy efficiency | | | | Target fabric energy efficiency | 48.5 kWh/m ² | | | Dwelling fabric energy efficiency | 47.6 kWh/m ² | OK | | 2a Fabric U-values | | | | | |--------------------|---|---|---|-----| | Element | Maximum permitted average U-Value [W/m²K] | Dwelling average U-Value [W/m ² K] | Element with highest individual U-Value | | | External walls | 0.26 | 0.18 | Walls (1) (0.18) | OK | | Party walls | 0.2 | 0 | Party Wall (1) (0) | N/A | | Curtain walls | 1.6 | 0 | N/A | N/A | | Floors | 0.18 | N/A | N/A | N/A | | Roofs | 0.16 | 0.11 | Roof (1) (0.11) | ОК | | Windows, doors, | 1.6 | 1.31 | W01 (1.31) | ОК | | and roof windows | | | | | | Rooflights | 2.2 | N/A | N/A | N/A | | 2b Envelope elements (better than typically expected values are flagged with a subsequent (!)) | | | | |--|----------------------------|------------------------------|--| | Name | Net area [m ²] | U-Value [W/m ² K] | | | Exposed wall: Walls (1) | 77.37 | 0.18 | | | Party wall: Party Wall (1) | 23.29 | 0 (!) | | | Exposed roof: Roof (1) | 60.65 | 0.11 | | | 2c Openings (better than typically expected values are flagged with a subsequent (!)) | | | | | |---|------------------------|-------------|--------------|------------------------------| | Name | Area [m ²] | Orientation | Frame factor | U-Value [W/m ² K] | | W01, Windows | 4.41 | North East | 0.7 | 1.31 | | W02, Windows | 1.26 | North East | 0.7 | 1.31 | | W03, Windows | 4.41 | North East | 0.7 | 1.31 | | W04, Windows | 1.26 | South West | 0.7 | 1.31 | | W05, Windows | 3.49 | South West | 0.7 | 1.31 | | W06, Windows | 2.29 | South West | 0.7 | 1.31 | | 2d Thermal brid | 2d Thermal bridging (better than typically expected values are flagged with a subsequent (!)) | | | | |-------------------|---|--------------------------------------|---------------------|---------| | Building part 1 - | Main Dwelling: Thermal bridging ca | alculated from linear thermal transm | ittances for each j | unction | | Main element | | | | _ | | External wall | E2: Other lintels (including other steel lintels) | Not government-approved scheme | 0.023 (!) | | | Main element | Junction detail | Source | Psi value
[W/mK] | Drawing / reference | |---------------|---|--|---------------------|---------------------| | External wall | E3: Sill | Calculated by person with suitable expertise | 0.021 (!) | | | External wall | E4: Jamb | Calculated by person with suitable expertise | 0.016 (!) | | | External wall | E24: Eaves (insulation at ceiling level - inverted) | SAP table default | 0.15 | | | Party wall | P3: Intermediate floor between dwellings (in blocks of flats) | SAP table default | 0 (!) | | | External wall | E16: Corner (normal) | Calculated by person with suitable expertise | 0.043 | | | External wall | E25: Staggered party wall between dwellings | Calculated by person with suitable expertise | 0.036 (!) | | | External wall | E18: Party wall between dwellings | Calculated by person with suitable expertise | 0.046 | | | Party wall | P4: Roof (insulation at ceiling level) | Calculated by person with suitable expertise | 0.101 | | | External wall | E14: Flat roof | SAP table default | 0.16 | | | External wall | E17: Corner (inverted - internal area greater than external area) | Calculated by person with suitable expertise | -0.073 | | | 3 Air permeability (better than typically expected values are flagged with a subsequent (!)) | | | | |--|--|----|--| | Maximum permitted air permeability at 50Pa | 8 m³/hm² | | | | Dwelling air permeability at 50Pa | 4.5 m ³ /hm ² , Design value | OK | | | Air permeability test certificate reference | | | | | 4 Space heating | | | |---------------------------------------|---|--| | Main heating system 1: Heat pump with | radiators or underfloor heating - Electricity | | | Efficiency | 244.8% | | | Emitter type | Radiators | | | Flow temperature | 55°C | | | System type | Heat Pump | | | Manufacturer | Atlantic | | | Model | Logic Air 8kW | | | Commissioning | | | | Secondary heating system: N/A | | | | Fuel | N/A | | | Efficiency | N/A | | | Commissioning | | | | 5 Hot water | | | | |--|---------------------------------|--|--| | Cylinder/store - type: Cylinder | Cylinder/store - type: Cylinder | | | | Capacity | 150 litres | | | | Declared heat loss | 2.09 kWh/day | | | | Primary pipework insulated | Yes | | | | Manufacturer | | | | | Model | | | | | Commissioning | | | | | Waste water heat recovery system 1 - type: N/A | | | | | Efficiency | | | | | Manufacturer | | | | | Model | | | | | 6 Controls | | | |---|--|--| | Main heating 1 - type: Time and temperature zone control
by arrangement of plumbing and electrical services | | | | Function | | | | Ecodesign class | | | | Manufacturer | | | | Model | | | | Water heating - type: Cylinder thermostat and HW separately timed | | | | Manufacturer | | | | Model | | | | 7 Lighting | | | | |---|-------------------------|--|-------| | Minimum permitted light source efficacy | 75 lm/W | | | | Lowest light source efficacy | 80 lm/W | | OK | | External lights control | N/A | | | | 8 Mechanical ventilation | | | | | System type: N/A | | | | | Maximum permitted specific fan power | N/A | | | | Specific fan power | N/A | | N/A | | Minimum permitted heat recovery | N/A | | 14/74 | | efficiency | | | | | Heat recovery efficiency | N/A | | N/A | | Manufacturer/Model | 1471 | | 1471 | | Commissioning | | | | | 9 Local generation | | | | | N/A | | | | | | | | | | 10 Heat networks | | | | | N/A | | | | | 11 Supporting documentary evidence | | | | | N/A | | | | | 12 Declarations | | | | | a. Assessor Declaration | | | | | | enfirmation that the ac | Intents of this BREL Compliance Report | | | | | Interns of this BREE Compliance Report | | | the purpose of carrying out the "As de | | | | | evidence (SAP Conventions, Appendi | | | | | documentary evidence required) has | | • | | | Compliance Report. | been reviewed in the | course or preparing this bitch | | | Острианос Кероп. | | | | | | | | | | Signed: | | Assessor ID: | | | | | | | | | | | | | Name: | | Date: | | b. Client Declaration N/A | Property Reference | Unit 5 | | | | | | | | Issued | on Date | 05/0 | 03/202 | 4 | |------------------------------------|-------------------------|--------|----------------------|---|--|---|--------|-----------|---|--|----------------|---|----------------------------| | Assessment Reference | Resido | ıal | | | | Prop | Type F | Ref | Tebby a | nd Son G | arage | | | | Property | Unit 1 | Highla | nd Square | , Bristol | | | | | | | | | | | SAP Rating | | | | 79 C | DER | | 5.80 | | - | ΓER | 1 | 15.38 | | | Environmental | | | | 96 A | % DE | R < TER | | | | | 6 | 32.29 | | | CO ₂ Emissions (t/year) | | | | 0.33 | DFEE | | 47.5 | 9 | - | TFEE | 4 | 18.55 | | | Compliance Check | | | | See BREL | % DFI | EE < TFEE | | | | | 1 | 1.98 | | | % DPER < TPER | | | | 25.44 | DPER | | 60.6 | 2 | | [PER | 8 | 31.31 | | | Assessor Details | | | | | | | | | | Assessor | ·ID (| J367-0 | 001 | | Client | | | | | | | | | | | | | | | SUMMARY FOR INPU | T DATA FO | R: Nev | v Build (<i>F</i> | As Designed) | | | | | | | | | | | Orientation | | | | Southwest | | | | | | | | | | | Property Tenture | | | | 1 | | | | | | | | | | | Transaction Type | | | | 6 | | | | | | | | | | | Terrain Type | | | | Urban | | | | | | | | | | | 1.0 Property Type | | | | Maisonette, Semi-I | Detached | | | | | | | | | | Position of Flat | | | | Top-floor flat | | | | | | | | | | | Which Floor | | | | 1 | | | | | | | | | | | 2.0 Number of Storeys | | | | 1 | | | | | | | | | | | 3.0 Date Built | | | | 2024 | | | | | | | | | | | 3.0 Property Age Band | | | | L | | | | | | | | | | | 4.0 Sheltered Sides | | | | 3 | | | | | | | | | | | 5.0 Sunlight/Shade | | | | Average or unknow | m | | | | | | | | | | 6.0 Thermal Mass Parame | ter | | | Precise calculation | | | | | | | | | | | Thermal Mass | | | | N/A | | | | | k | J/m²K | | | | | 7.0 Electricity Tariff | | | | Standard | | | | | | | | | | | Smart electricity meter f | itted | | | No | | | | | | | | | | | Smart gas meter fitted | | | | No | | | | | | | | | | | 7.0 Measurements | | | | | | | | | | | | | | | | | | | Basem
Ground flo
1st Stor
2nd Stor
3rd Stor
4th Stor
5th Stor
7th Stor | ent:
por:
rey:
rey:
rey:
rey:
rey: | 14.97 m
39.08 m
39.08 m
14.97 m
18.05 m
0.00 m
0.00 m
0.00 m
0.00 m | 1 | r In | ternal Flo
0.00 n
60.65 s
59.81 n
27.28 n
0.00 n
0.00 n
0.00 n
0.00 n | 1 ²
11 ²
11 ²
1 ²
1 ²
1 ²
1 ² | Averaç | 9e Stor
0.00
2.50
2.70
2.42
0.00
0.00
0.00
0.00 | m
m
m
m
m
m | | 8.0 Living Area | | | | 19.68 | | | | | п | ı² | | | | | 9.0 External Walls Description | Туре | Constr | uction | | U-Valu | е Карра | Gross | Nett Area | Shelter | Shelter | Openin | ngs Are | a Calculati | | Cavity Wall | Cavity Wall | Cavity | | oard on dabs, dense block
de structure | (W/m²K |) (kJ/m²K) A | | | Res
0.00 | None | 17.12 | _ | Type
er Gross A | | 9.1 Party Walls | | | _ | | | | | | | _ | | | | | Description | Type | | Construc | tion | | | | | Kappa
(kJ/m²K) | Area
(m²) | Shelter
Res | S | helter | | Party Wall 1 | Filled Cav
Edge Seal | | Single pla
cavity | sterboard on both si | des, dens | e cellular bl | | ` 0.00 ´ | `70.00 ′ | 23.29 | 0.00 | | None | | 9.2 Internal Walls Description | | | Constructi | on | | | | | | | | арра | Area (r | | Internal Wall 1 | | | Dense bloc | k, dense plaster | | | | | | | | /m²K)
00.00 | 135.6 | | 10.0 External Roofs | | | | , p | | | | | | | | | | SAP 10 Online 2.13.11 Page 1 of 4 | Description | Туре | Construc | tion | | Kappa G
kJ/m²K)Ar | ea(m²) | | | Shelter
Factor | Calculation
Type | Opening | |---|-----------------------|-----------------|---|-------------------|----------------------|-------------------------|-----------------------|--------------------|-------------------|---------------------|-----------------| | External Roof 1 | External Flat
Roof | Plasterbo | ard, insulated flat roof | 0.11 | 9.00 6 | | (m²)
60.65 | None | 0.00 | Enter Gross
Area | s 0.00 | | 11.1 Party Floors | | | | | | | | | | | | | Description | | Storey
Index | Construction | | | | | | | Kappa
(kJ/m²K) | Area (m² | | Party Floor 1 | | Lowest occupied | Precast concrete planks floo | or, screed, carp | eted | | | | | 30.00 | 60.65 | | 12.0 Opening Types Description | Data Source | Туре | Glazing | | Glazing | Fillin | | G-value | Frame | Frame | U Value | | Windows | Manufacturer | Window | Double Low-E So | oft 0.05 | Gap | Type
Air Fill | | 0.63 | Type
Wood | Factor 0.70 | (W/m²K)
1.31 | | 13.0 Openings | | | | | | | | | | | | | Name | Opening Ty | pe | Location | | Orient | | | Area (| | Pit | ch | | W01
W02 | Windows
Windows | | Cavity Wall
Cavity Wall | | North
North | | | 4.41
1.26 | | (|)
1 | | W03 | Windows | | Cavity Wall | | North | | | 4.4 | | | j | | W04 | Windows | | Cavity Wall | | South | | | 1.26 | | |) | | W05
W06 | Windows
Windows | | Cavity Wall
Cavity Wall | | South
South | | | 3.49
2.29 | | (|)
) | | | Tilldotts | | , | | Coddi | 11000 | | | | | | | 14.0 Conservatory | | | None | | | | | | | | | | 15.0 Draught Proofing | | | 100 | | | | | % | | | | | 16.0 Draught Lobby | | | No | | | | | | | | | | 17.0 Thermal Bridging | | | Calculate Bridges | | | | | | | | | | 17.1 List of Bridges | | | | | | | | | | | | | Bridge Type | | | Source Type | Length | Psi | Adjust | ed R | eference: | | | Imported | | E2 Other lintels (includin
E3 Sill | g other steel linte | ls) | Non Gov Approved Scheme
Independently assessed | s 8.15
8.15 | 0.02
0.02 | 0.02
0.02 | | | | | No
No | | E4 Jamb | | | Independently assessed | 25.20 | 0.02 | 0.02 | | | | | No | | E24 Eaves (insulation at | | | Table K1 - Default | 42.25 | 0.15 | 0.15 | | | | | No | | P3 Party wall - Intermed
(in blocks of flats) | iate floor between | dwellings | Table K1 - Default | 15.04 | 0.00 | 0.00 | ı | | | | No | | È16 Comer (normal) | | | Independently assessed | 16.50 | 0.04 | 0.04 | | | | | No | | E25 Staggered party wa | ll between dwellin | gs | Independently assessed | 2.00 | 0.04 | 0.04 | | | | | No | | E18 Party wall between
P4 Party wall - Roof (ins | | evel) | Independently assessed
Independently assessed | 5.00
5.50 | 0.05
0.10 | 0.05
0.10 | | | | | No
No | | E14 Flat roof | | , | Table K1 - Default | 39.08 | 0.16 | 0.16 | | | | | No | | E17 Corner (inverted – in
external area) | nternal area great | er than | Independently assessed | 5.50 | -0.07 | -0.07 | | | | | No | | Y-value | | | 0.09 | | | | | W/m²K | | | | | 18.0 Pressure Testing | | | Yes | | | | | | | | | | Designed APso | | | 4.50 | | | | | m³/(h.m² | 2) @ EN I | Pa | | | • | | | | | | | | 111-7(11.111- |) (@ 50 1 | r a | | | Property Tested? | | | Yes | | | | | | | | | | Test Method | | | Blower Door | | | | | | | | | | 19.0 Mechanical Ventilation | | | | | | | | | | | | | Mechanical Ventilation | | ont | No | | | | | | | | | | Mechanical Ventila | | ent
——— | No | | | | | | | | | | 20.0 Fans, Open Fireplace | s, Flues | | | | | | | | | | | | 21.0 Fixed Cooling System | 1 | | No | | | | | | | | | | 22.0 Lighting | | | | | | | | | | | | | No Fixed Lighting | | | No | | | | | | | | | | | | | Name
Lighting 1 | Efficacy
80.00 | | ower
15 | | Capa
120 | | | unt
5 | | 24 0 Main Hastin a 4 | | | Database | | | | | 120 | | | - | | 24.0 Main Heating 1 | | | 100.00 | | | | | % | | | | | Percentage of Heat | | | | | | | | 70 | | | | | Database Ref. No. | | | 106764 | | | | | | | | | | Fuel Type | | | Electricity | | | | | | | | | | SAP Code | | | 0 | | | | | | | | | | In Winter | | | 244.75 | | | | | | | | | SAP 10 Online 2.13.11 Page 2 of 4 | In Summer | 190.28 | |
---|---|--| | Model Name | Logic Air 8kW |] | | Manufacturer | Atlantic |] | | System Type | Heat Pump | | | Controls SAP Code | 2207 |] | | Delayed Start Stat | No |] | | HETAS approved System | No | | | Oil Pump Inside | No | | | FI Case | 0.00 |] | | Flue Type | None or Unknown |] | | Fan Assisted Flue | No |] | | Is MHS Pumped | Pump in heated space | | | Heating Pump Age | 2013 or later | | | Heat Emitter | Radiators | | | Flow Temperature | Enter value | | | Flow Temperature Value | 55.00 | | | Boiler Interlock | No | | | 5.0 Main Heating 2 | None |] | | 5.0 Heat Networks | None |] | | Heat Source Fuel Type Heating U Heat source 1 None Heat source 2 None Heat source 3 None Heat source 4 None Heat source 5 None | Jse Efficiency Percentage Of Heat Heat Ele
Heat Power
Ratio | ctrical Fuel Factor Efficiency type | | 8.0 Water Heating | | | | Water Heating | Main Heating 1 |] | | SAP Code | 901 | | | Flue Gas Heat Recovery System | No | | | Waste Water Heat Recovery Instantaneous System 1 | No | | | Waste Water Heat Recovery Instantaneous System 2 | No | | | Waste Water Heat Recovery Storage System | No |] | | Solar Panel | No |] | | Water use <= 125 litres/person/day | Yes |] | | Summer Immersion | No |] | | Cold Water Source | From header tank |] | | Bath Count | 0 |] | | Supplementary Immersion | No |] | | Immersion Only Heating Hot Water | No | | | 3.1 Showers | | | | Description Shower Ty | pe Flow Rate Rated Power (| Connected Connected To | | 1 Combi boile | [l/min] [kW]
er or unvented hot water system 7.00 | No | | 8.3 Waste Water Heat Recovery System | | | | | Het Water Cylinder | 7 | | 9.0 Hot Water Cylinder | Hot Water Cylinder Yes |] | | Cylinder In Heated Space | | J
7 | | Cylinder In Heated Space | Yes |]
] | | Independent Time Control Insulation Type | Yes |] | | Insulation IVDA | Measured Loss | T. Control of the Con | SAP 10 Online 2.13.11 Page 3 of 4 | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | |------------------|----------------|-----------------|-----|------------|----------------|------------|-----|-----|----------|-----|-----| | Electricity Ge | eneration | | | Annual | | | | | | | | | Connected to | dwelling's ele | ectricity meter | | Yes | | | | | | | | | Apportioned | | | | 0.00 | | | | | kWh/Year | | | | Electricity Ge | enerated | | | 0.00 | | | | | | | | | 34.0 Small-scale | e Hydro | | | None | | | | | | | | | 31.0 Thermal St | ore | | | None | | | | | | | | | In Airing Cup | board | | | No | | | | | | | | | Pipes insulat | ion | | | Fully insu | ulated primary | / pipework | | | | | | | Loss | | | | 2.09 | | | | | kWh/day | | | | Cylinder Volu | ıme | | | 150.00 | | | | | _ L | | | Recommendations Lower cost measures None Further measures to achieve even higher standards | | Tomical Coast | Tomical actions necessar | Ratings aft | er improvement | |---------------------|---------------|--------------------------|-------------|----------------------| | | Typical Cost | Typical savings per year | SAP rating | Environmental Impact | | Solar water heating | | | 0 | 0 | | _ | | | 0 | 0 | | | | | 0 | 0 | SAP 10 Online 2.13.11 Page 4 of 4 | Property Reference | | | nit 5 | | | | 1 = | D | | ssued on Dat | | 05/03/2024 | | |---|---|---|----------------------------|-------------------------------------|-------------------|-------------------------|----------------------------------|--------------------------------------|--------------------------------------|--|--|---|--| | Assessment Refer | rence | | esidual | | | | | Prop Type Ref | Те | bby and Son | Garage | | | | Property | | Ur | nit 1, Highland | Square , Bristol | | | | | | | | | | | SAP Rating | | | | | 79 C | | DER | 5.80 | | TER | | 15.38 | | | Environmental | | | | | 96 A | | % DER < TE | ₹ | | | | 62.29 | | | CO ₂ Emissions (t/) | year) | | | | 0.33 | | DFEE | 47.59 | 9 | TFEE | | 48.55 | | | Compliance Check | k | | | | See BREL | | % DFEE < TF | | | | | 1.98 | | | % DPER < TPER | | | | | 25.44 | | DPER | 60.62 | 2 | TPER | | 81.31 | | | Assessor Details | | | | | | | | | | Asses | sor ID | U367-000 |)1 | | | | | | | | | | | | | | | | | SAP 10 WORKSHEET
CALCULATION OF D | | | | | | 2022) | | | | | | | | | 1. Overall dwell | ing charac | cteristics | | | | | | | | | | | | | Ground floor
Total floor area
Dwelling volume | a TFA = (1 | a)+(lb)+(lc | c)+(ld)+(le | e)(ln) | 6 | 0.6500 | | Area
(m2)
60.6500 (| | | 2b) = | | (4) | | 2. Ventilation r | ate | | | | | | | | | | | m3 per hour | | | Number of open of
Number of open f
Number of chimne
Number of flues
Number of flues
Number of interm
Number of passiv
Number of fluele | Tlues ys / flues attached f attached f d chimneys attent exive vents | to solid fu
to other he
s
tract fans | uel boiler | fire | | | | | | | 0 * 80 =
0 * 20 =
0 * 10 =
0 * 20 =
0 * 35 =
0 * 20 =
5 * 10 = | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
50.0000 | (6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b) | | Infiltration due
Pressure test
Pressure Test Me
Measured/design
Infiltration rat
Number of sides | ethod
AP50
Se | | and fans | = (6a)+(6b) | + (6c) + (6d) + (| 6e)+(6f)+ | +(6g)+(7a)+ | (7b)+(7c) = | | | / (5) = | Yes
Blower Door
4.5000
0.5548 | (17) | | Shelter factor
Infiltration rat | ce adjusted | d to includ | de shelter | factor | | | | (| (20) = 1 - (21 | [0.075 x
) = (18) x | | | | | Wind speed
Wind factor
Adi infilt rate | Jan
5.1000
1.2750 | | | Apr
4.4000
1.1000 | | Jun
3.8000
0.9500 | 3.8000 | | Sep
4.0000
1.0000 | | | | | | | 0.5482 | | | 0.4729
0.6118 | | | | 0.3977
0.5791 | | 0.4622
0.6068 | | | | | 3. Heat losses a | and heat lo | oss paramet | ter | | | | | | | | | | | | Element | | | | Gross | Openings | Ne | etArea | U-value | A x U | K- | value | AxK | | | Vindows (Uw = 1. | 31) | | | m2 | m2 | 17 | m2
7.1200 | W/m2K
1.2448 | W/K
21.3105 | k | J/m2K | kJ/K | (27) | | Cavity Wall
External Roof 1 | - | | | 94.4900
60.6500 | 17.1200 | 77 | 7.3700
0.6500 | 0.1800
0.1100 | W/K
21.3105
13.9266
6.6715 | 150
9 | .0000 | 11605.5000
545.8500 | (29a)
(30) | | Cotal net area o
Fabric heat loss
Party Wall l
Party Floor l | | | | * | | 23
60 | (26)
(26)
3.2900
0.6500 | | 41.9086 | 70
40 | .0000 | 1630.3000
2426.0000 | (31)
(33)
(32)
(32d) | | Internal Wall 1
Heat capacity Cm
Thermal mass par | ameter (T | | IFA) in kJ/ | m2K | | 135 | 5.6000 | (28) | .(30) + (32) | | | | (34) | | E3 Sill
E4 Jamb
E24 Eave
P3 Party
E16 Corn | ent
: lintels
es (insular
/ wall - In
her (norma) | tion at cei | iling level
e floor bet | l lintels) - inverted) ween dwellin | | s of flat | ts) | 8.
8.
25.
42.
15.
16. | 1480
2000
2500
0400
5000 | 0.0230
0.0210
0.0160
0.1500
0.0000
0.0430
0.0360 | | 874
711
032
375
000
095 | | SAP 10 Online 2.13.11 Page 1 of 7 | P4 Part
E14 Fla | at roof
rner (inver | coof (insulated - inte | ation at ce:
rnal area g: | reater than | external ar | rea) | | 5.
39. |
.0000
.5000
.0750
.5000 | 0.0460
0.1010
0.1600
-0.0730 | 0.23
0.55
6.25
-0.40 | 55
20 | (36) | |---|--------------------------------|------------------------------|------------------------------------|------------------------------|--------------------------------|------------------------------|------------------------------|------------------------------|----------------------------------|---------------------------------------|-------------------------------|--|--------------| | Point Thermal h
Total fabric he | oridges | | | | | | | | C | 33) + (36) | (36a) =
+ (36a) = | 0.0000
56.4253 | | | Ventilation hea | at loss cal
Jan
32.5359 | culated mo
Feb
32.2440 | nthly (38)m
Mar
31.9578 | = 0.33 x (Apr 30.6138 | 25)m x (5)
May
30.3624 | Jun
29.1918 | Jul
29.1918 | Aug
28.9750 | Sep
29.6427 | Oct
30.3624 | Nov
30.8711 | Dec
31.4029 | (38) | | Heat transfer of
Average = Sum(3 | 88.9613 | 88.6693 | 88.3832 | 87.0392 | 86.7877 | 85.6171 | 85.6171 | 85.4003 | 86.0680 | 86.7877 | 87.2964 | 87.8282
87.0380 | (39) | | HLP | Jan
1.4668 | Feb
1.4620 | Mar
1.4573 | Apr
1.4351 | May
1.4310 | Jun
1.4117 | Jul
1.4117 | Aug
1.4081 | Sep
1.4191 | Oct
1.4310 | Nov
1.4393 | Dec
1.4481 | | | HLP (average)
Days in mont | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 1.4351 | | | | | | | | | | | | | | | | | | 4. Water heating | | | | | | | | | | | | | | | Assumed occupar
Hot water usage | ncy | | | | | | | | | | | 2.0000 | (42) | | Hot water usage | 72.2731
e for baths | 71.1666 | 69.5359 | 67.0274 | 64.7798 | 61.6354 | 59.1485 | 62.0559 | 63.5182 | 66.6325 | 69.8758 | 72.2079 | | | Hot water usage | 0.0000
for other
35.1115 | 0.0000
uses
33.8347 | 0.0000
32.5579 | 0.0000 | 0.0000
30.0044 | 0.0000
28.7276 | 0.0000
28.7276 | 0.0000
30.0044 | 0.0000 | 0.0000
32.5579 | 0.0000
33.8347 | 0.0000
35.1115 | | | Average daily h | hot water u | | /day) | | | | | | | | | 98.5497 | | | Daily hot water | | Feb
105.0013 | Mar
102.0938 | Apr
98.3085 | May
94.7842 | Jun
90.3630 | Jul
87.8760 | Aug
92.0602 | Sep
94.7993 | Oct
99.1905 | Nov
103.7106 | Dec
107.3194 | (44) | | Energy conte
Energy content
Distribution lo | 158.0886
(annual) | 138.9379 | 145.8900 | 128.4155 | 122.1390 | 104.5018 | 97.1056 | 108.3566 | 109.9625 | 127.8170 | 140.1683
um(45)m = | 157.6064
1538.9892 | (45) | | Water storage 1 | 23.7133 | 20.8407 | 21.8835 | 19.2623 | 18.3208 | 15.6753 | 14.5658 | 16.2535 | 16.4944 | 19.1725 | 21.0252 | 23.6410 | (46) | | Store volume a) If manufact Temperature i Enter (49) or | factor from | Table 2b | actor is kno | own (kWh/d | ay): | | | | | | | 150.0000
2.0900
0.5400
1.1286 | (48)
(49) | | Total storage 1 If cylinder cor | 34.9866 | 31.6008 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | (56) | | Primary loss
Combi loss | 34.9866
23.2624
0.0000 | 31.6008
21.0112
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | 33.8580
22.5120
0.0000 | 34.9866
23.2624
0.0000 | (59) | | Total heat requ | | 191.5499
0.0000 | ng calculate
204.1390
0.0000 | 184.7855
0.0000 | 180.3880
0.0000 | 160.8718
0.0000 | 155.3546
0.0000 | 166.6056
0.0000 | 166.3325
0.0000 | 186.0660
0.0000 | 196.5383
0.0000 | 215.8554 | | | PV diverter
Solar input
FGHRS | 0.0000
0.0000
0.0000 (63c) | | Output from w/h | | | 204.1390 | 184.7855 | 180.3880 | 160.8718 | 155.3546 | 166.6056 | 166.3325 | 186.0660 | 196.5383 | 215.8554 | (64) | | 12Total per yea | | r) | | | | | | Total pe | er year (kW | h/year) = S | um(64)m = | 2224.8242
2225 | (64)
(64) | | | 0.0000 | 0.0000 | 0.0000 | 0.0000
Tot | 0.0000
al Energy us | 0.0000
sed by inst | 0.0000
antaneous e | 0.0000
lectric show | 0.0000
wer(s) (kWh | 0.0000
/year) = Su | 0.0000
m(64a)m = | 0.0000
0.0000 | | | Heat gains from | 99.1637 | 88.2865 | 95.1076 | 87.7942 | 87.2104 | 79.8429 | 78.8868 | 82.6278 | 81.6585 | 89.0983 | 91.7020 | 99.0033 | (65) | | | | | | | | | | | | | | | | | 5. Internal gai | | | 5a)
 | | | | | | | | | | | | Metabolic gains
(66)m | Jan
99.9976 | , Watts
Feb
99.9976 | Mar
99.9976 | Apr
99.9976 | May
99.9976 | Jun
99.9976 | Jul
99.9976 | Aug
99.9976 | Sep
99.9976 | Oct
99.9976 | Nov
99.9976 | Dec
99.9976 | (66) | | Lighting gains | (calculate
88.0572 | d in Appen
97.4919 | dix L, equat
88.0572 | 00.9924 | L9a), also s
88.0572 | see Table 5
90.9924 | 88.0572 | | | 88.0572 | 90.9924 | 88.0572 | (67) | | Appliances gair
Cooking gains | 174.5832 | 176.3949 | 171.8296 | 162.1107 | 149.8424 | 138.3119 | 130.6089 | 128.7972 | 133.3625 | 143.0813 | 155.3497 | 166.8802 | (68) | | Pumps, fans | 32.9998 | 32.9998
0.0000 | 32.9998
0.0000 | 32.9998
0.0000 | 32.9998
0.0000 | 32.9998 | 32.9998 | | | | | 32.9998
0.0000 | | | Losses e.g. eva | -79.9981 | -79.9981 | | | -79.9981 | -79.9981 | -79.9981 | -79.9981 | -79.9981 | -79.9981 | -79.9981 | -79.9981 | (71) | | | 133.2845
gains | 131.3787 | | | 117.2183 | | | | 113.4146 | 119.7558 | 127.3638 | 133.0690 | (72) | | | 448.9242 | 458.2647 | 440.7189 | 428.0388 | 408.1172 | 393.1965 | 377.6960 | 380.9125 | 390.7688 | 403.8936 | 426.7052 | 441.0056 | (73) | | 6. Solar gains | | | | | | | | | | | | | | | [Jan] | | | 7. |
rea | Solar floor | | | | FF | Acce | 99 | Gains | | | | | | | m2 | Solar flux
Table 6a
W/m2 | Speci
or | fic data
Table 6b | Specific
or Tab | data
le 6c | fact
Table | or | Gains
W | | | Northeast
Southwest | | | 10.00 | 300
400 | 11.2829
36.7938 | | 0.6300
0.6300 | 0
0 | .7000
.7000 | 0.77
0.77 | 00
00 | 34.7580
79.1625 | | | Solar gains
Total gains | 7. Mean internal temperature (heating season) SAP 10 Online 2.13.11 Page 2 of 7 | Temperature dur
Utilisation fac | | | | | | Th1 (C) | | | | | | 21.0000 | (85) | |---|---|--|--|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|--|-------------------------| | tau
alpha | Jan
92.9482
7.1965 | Feb
93.2542
7.2169 | Mar
93.5562
7.2371 | Apr
95.0008
7.3334 | May
95.2761
7.3517 | Jun
96.5787
7.4386 | Jul
96.5787
7.4386 | Aug
96.8239
7.4549 | Sep
96.0728
7.4049 | Oct
95.2761
7.3517 | Nov
94.7209
7.3147 | Dec
94.1473
7.2765 | | | util living are | | 0.9979 | 0.9911 | 0.9474 | 0.8004 | 0.5742 | 0.4166 | 0.4728 | 0.7610 | 0.9755 | 0.9980 | 0.9996 | (86) | | Living
Non living
24 / 16 | 20.1031
18.7041
0 | 20.2563
18.9025
0 | 20.4792
19.1867
0 | 20.7731
19.5469
0 | 20.9509
19.7131
0 | 20.9961
19.7534
0 | 20.9997
19.7544
0 | 20.9992
19.7571
0 | 20.9744
19.7396
0 | 20.7281
19.5091
0 | 20.3674
19.0586
0 | 20.0864
18.6938
0 | | | 24 / 9
16 / 9
MIT | 3
28
20.5412 | 0
0
20.2563 | 0
0
20.4792 | 0
0
20.7731 | 0
0
20.9509 | 0
0
20.9961 | 0
0
20.9997 | 0
0
20.9992 | 0
0
20.9744 | 0
0
20.7281 | 0
0
20.3674 | 0
10
20.2142 | (87) | | Th 2
util rest of ho | 0.9990 | 19.7161
0.9964 | 19.7197
0.9848 | 19.7365
0.9141 | 19.7397
0.7154 | 19.7544
0.4650 | 19.7544
0.2989 | 19.7571
0.3457 | 19.7487
0.6420 | 19.7397
0.9524 | 19.7333 | 19.7266
0.9993 | (89) | | MIT 2
Living area fra
MIT | 19.3105
action
19.7098 | 18.9025
19.3418 | 19.1867
19.6061 | 19.5469
19.9448 | 19.7131 | 19.7534
20.1566 | 19.7544 | 19.7571 | 19.7396
fLA =
20.1402 | 19.5091
Living are
19.9047 | 19.0586
a / (4) =
19.4833 | 18.8799
0.3245
19.3129 | (91) | | Temperature adj
adjusted MIT | justment
19.7098 | 19.3418 | 19.6061 | 19.9448 | 20.1147 | 20.1566 | 20.1585 | 20.1601 | 20.1402 | 19.9047 | 19.4833 | 0.0000
19.3129 | | | 8. Space heatin | Ext temp. | Jan
0.9990
562.2966
4.3000 | Feb
0.9958
661.0559
4.9000 | Mar
0.9841
740.7035
6.5000 | Apr
0.9207
797.2879
8.9000 | May
0.7426
702.1564
11.7000 | Jun
0.5007
474.3298
14.6000 | Jul
0.3372
304.6028
16.6000 | Aug
0.3870
320.9487
16.4000 | Sep
0.6817
508.4442
14.1000 | Oct
0.9564
611.4927
10.6000 | Nov
0.9958
562.8971
7.1000 | Dec
0.9992
536.6946
4.2000 | (95) | | Heat loss rate 1 Space heating k | 1370.8783 | 1280.5453 | 1158.3573 | 961.3285 | 730.2967 | 475.7437 | 304.6649 | 321.1157 | 519.8712 | 807.5296 | 1081.0192 | 1327.3356 | (97) | | | 601.5848
requirement | 416.2969
t - total p | | 118.1092
h/year) | 20.9364 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 145.8515 | 373.0479 | 588.2369
2574.7980 | | | Solar heating of Space heating k | 0.0000
contribution | 0.0000
on - total | 0.0000
per year (k |
0.0000
Wh/year) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | | 601.5848
requirement | | 310.7344
ar contribu | | 20.9364
L per year | 0.0000
(kWh/year) | 0.0000 | 0.0000 | 0.0000 | 145.8515
(98c | 373.0479
) / (4) = | 588.2369
2574.7980
42.4534 | | | | | | | | | | | | | | | | | | 9a. Energy requ | irements |
- Individua | l heating s | vstems. incl | luding micr | no-CHP | | | | | | | | | Fraction of spa
Fraction of spa
Efficiency of m
Efficiency of m
Efficiency of s | ace heat fi
ace heat fi
ace heat fi
main space | rom seconda
rom main sy
heating sy
heating sy | ry/suppleme
stem(s)
stem 1 (in
stem 2 (in |
ntary system
%)
%) | | | | | | | | 0.0000
1.0000
244.7539
0.0000
0.0000 | (202)
(206)
(207) | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | | 601.5848 | 416.2969 | 310.7344 | 118.1092 | 20.9364 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 145.8515 | 373.0479 | 588.2369 | (98) | | Space heating e | 244.7539 | 244.7539 | 244.7539 | 244.7539 | 244.7539 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 244.7539 | 244.7539 | 244.7539 | (210) | | | 245.7917
efficiency | 170.0880
(main heat | 126.9579
ing system | | 8.5541 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 59.5911 | 152.4176 | 240.3381 | | | Space heating f | 0.0000
fuel (main | 0.0000
heating sy | 0.0000
stem 2) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating f | | 0.0000
ndary)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Water heating | | | | | | | | | | | | | (===, | | Water heating r
Efficiency of w | 216.3376 | 191.5499 | 204.1390 | 184.7855 | 180.3880 | 160.8718 | 155.3546 | 166.6056 | 166.3325 | 186.0660 | 196.5383 | 215.8554
190.2848 | | | (217)m
Fuel for water | 190.2848
heating. } | 190.2848
Wh/month | | 190.2848 | 190.2848 | 190.2848 | 190.2848 | 190.2848 | 190.2848 | 190.2848 | 190.2848 | 190.2848 | (217) | | Space cooling f | | 100.6649
rement
0.0000 | 0.0000 | 97.1100
0.0000 | 94.7990 | 84.5427
0.0000 | 0.0000 | 87.5559
0.0000 | 87.4124
0.0000 | 97.7829 | 0.0000 | 0.0000 | | | Pumps and Fa
Lighting | 0.0000
19.0977 | 0.0000
15.3209 | 0.0000
13.7947 | 0.0000
10.1066 | 0.0000
7.8066 | 0.0000 | 0.0000
7.1215 | 0.0000
9.2568 | 0.0000
12.0236 | 0.0000
15.7756 | 0.0000
17.8186 | 0.0000
19.6285 | (231) | | Electricity gen
(233a)m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (233a) | | Electricity gen
(234a)m
Electricity gen | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234a) | | (235a)m
Electricity use | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
eneration) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235a) | | (235c)m
Electricity gen | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235c) | | (233b)m
Electricity gen | 0.0000
nerated by | | | | 0.0000
tive quanti | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (233b) | | (234b)m
Electricity gen | | | | | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | (234b) | | (235b)m
Electricity use | | | | | | (N) (negati | | | 0.0000 | 0.0000 | 0.0000 | | (235b) | | (235d)m
Annual totals k
Space heating f | | 0.0000
n system 1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1051.9948 | (235d)
(211) | | Space heating f
Space heating f | fuel - mair
fuel - seco | n system 2
ondary | | | | | | | | | | 0.0000 | (213)
(215) | | Efficiency of w | ester best | ar. | | | | | | | | | | 190.2848 | | | Water heating f
Space cooling f | fuel used | | | | | | | | | | | 1169.2078
0.0000 | | | | fuel used
fuel
r pumps and
ity for the | i fans:
e above, kW | | lix L) | | | | | | | | | (221) | SAP 10 Online 2.13.11 Page 3 of 7 Energy saving/generation technologies (Appendices M ,N and Q) | PV generation Wind generation Hydro-electric g Electricity gene Appendix Q - spe Energy saved or Energy used Total delivered | erated - Mic
ecial featur
generated | cro CHP (Ap | | | | | | | | | | 0.0000
0.0000
0.0000
0.0000
-0.0000
0.0000
2375.3317 | (234)
(235a)
(235)
(236)
(237) | |---|---|---|-----------|--------------------------|------------------|-------------------|----------------------------|--|-------------------------------------|---|--|--|--| | 12a. Carbon diox | | | | ting systems | including m | icro-CHP | | | | | | | | | Space heating -
Total CO2 associ
Water heating (o
Space and water
Pumps, fans and
Energy for light
Total CO2, kg/ye
EPC Dwelling Can | main system
iated with o
other fuel)
heating
electric ke
ting | m 1
community s
eep-hot | ystems | | | | | Energy
kWh/year
1051.9948
1169.2078
0.0000
154.1291 | kg | n factor
CO2/kWh
0.1569
0.1407
0.0000
0.1443 | 1 | Emissions
cg CO2/year
165.0270
0.0000
164.5155
329.5425
0.0000
22.2456
351.7881
5.8000 | (261)
(373)
(264)
(265)
(267)
(268)
(272) | | 13a. Primary ene | | | | ms including | | | | | | | | | | | Space heating -
Total CO2 associ
Water heating (c
Space and water
Pumps, fans and
Energy for light
Total Primary
Dwelling Primary | iated with (other fuel) heating electric ke ting nergy kWh/ye | community s
eep-hot
ear | ystems | | | | | | | | | mary energy
kWh/year
1662.9244
0.0000
1777.5141
3440.4385
0.0000
236.4084
3676.8469
60.6200 | (275)
(473)
(278)
(279)
(281)
(282)
(286) | | SAP 10 WORKSHEE:
CALCULATION OF 1 | FOR New B | uild (As De | | (Version 10 | | | | | | | | | | | 1. Overall dwell | ling charact | teristics | | | | | | | | | | | | | Ground floor
Total floor area
Dwelling volume | a TFA = (la |)+(1b)+(1c) | +(ld)+(le |)(ln) | 6 | 0.6500 | | | | | (2b) = | | (1b) - (3b)
(4) | | 2. Ventilation | | | | | | | | | | | | | | | Number of open of
Number of open in
Number of chimne
Number of flues
Number of block
Number of intern
Number of passiv
Number of flues | chimneys flues eys / flues attached to attached to ed chimneys ittent ext: ve vents | attached t
o solid fue
o other hea
ract fans | o closed | | | | | | | | 0 * 80 =
0 * 20 =
0 * 10 =
0 * 20 =
0 * 35 =
0 * 20 =
2 * 10 =
0 * 10 = | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | (6a)
(6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b) | | Infiltration due
Pressure test
Pressure Test Me
Measured/design
Infiltration rat
Number of sides | ethod
AP50
te | ys, flues a | and fans | = (6a)+(6b)· | +(6c)+(6d)+(| 6e)+(6f)+(| 6g)+(7a)+(| 7b)+(7c) = | | 20.0000 | / (5) = | es per hour
0.1319
Yes
Blower Door
5.0000
0.3819 | (8) | | Shelter factor
Infiltration rat | te adjusted | to include | shelter | factor | | | | | (20) = 1 - | [0.075 x
) = (18) | (19)] =
x (20) = | 0.7750
0.2960 | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Wind factor
Adj infilt rate | 1.2750 | 1.2500 | 1.2250 | 4.4000
1.1000 | 4.3000
1.0750 | 0.9500 | 0.9500 | | 1.0000 | 1.0750 | | 1.1750 | (22a) | | Effective ac | 0.3774 | | | 0.3256
0.5530 | | | | | 0.2960
0.5438 | | | | | | 3. Heat losses a | and heat lo | ss paramete | r | Gross | Openings |
Net |
Area |
U-value | ΑxU | | -value | АхК | | | TER Opening Type
Cavity Wall
External Roof 1 | e (Uw = 1.20 | 0) | | m2
94.4900
60.6500 | m2
15.1800 | 15.
79.
60. | m2
1800
3100
6500 | W/m2K
1.1450
0.1800
0.1100 | W/K
17.3817
14.2758
6.6715 | | kJ/m2K | kJ/K | (27)
(29a)
(30) | SAP 10 Online 2.13.11 Page 4 of 7 | Total net area of external elements A Fabric heat loss, W/K = Sum (A x U) Party Wall 1 | um(A, m2) | | | .1400
(26)(3 | 30) + (32) =
0.0000 | = 38.32
0.00 | | | | (31)
(33)
(32) | |---|---|--------------------------------------|------------------------------|------------------------------|---|--|--|---
---|----------------------| | Thermal mass parameter (TMP = Cm / TF. List of Thermal Bridges K1 Element E2 Other lintels (including o E3 Sill E4 Jamb E24 Eaves (insulation at ceil P3 Party wall - Intermediate E16 Corner (normal) E25 Staggered party wall betwe E18 Party wall between dwelli P4 Party wall - Roof (insulat E14 Flat roof E17 Corner (inverted - interm Thermal bridges (Sum(L x Psi) calcula | ing level - inverted
floor between dwell:
eeen dwellings
ngs
ion at ceiling level | ings (in bloo
l)
n external an | | s) | 8.
8
25.
42.
15.
16.
2.
5.
39 | ength
1480
1480
22000
2500
0400
55000
0000
0000
0750
55000 | Psi-value
0.0500
0.0500
0.0500
0.2400
0.0000
0.0600
0.0600
0.1200
0.0800
-0.0900 | Tot
0.40
0.40
1.26
10.14
0.00
1.48
0.12
0.30
0.66
3.12
-0.49 | 74
74
74
00
00
00
00
50
00
00
00
00
60
50
17.4108 | | | Point Thermal bridges
Total fabric heat loss
Ventilation heat loss calculated mont | hlv (38)m = 0.33 x | (25)m × (5) | | | | (| 33) + (36) | (36a) =
+ (36a) = | 0.0000
55.7398 | (37) | | Jan Feb
(38)m 28.5809 28.4425
Heat transfer coeff
84.3207 84.1823 | Mar Apr
28.3069 27.6700
84.0467 83.4098 | May
27.5508
83.2906 | Jun
26.9961
82.7359 | Jul
26.9961
82.7359 | Aug
26.8933
82.6331 | Sep
27.2098
82.9495 | Oct
27.5508
83.2906 | Nov
27.7919
83.5317 | Dec
28.0439
83.7837 | | | Average = Sum(39)m / 12 = Jan Feb | Mar Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | 83.4092
Dec | (40) | | HLP 1.3903 1.3880
HLP (average)
Days in mont 31 28 | 1.3858 1.3753
31 30 | 1.3733 | 1.3642 | 1.3642 | 1.3625 | 1.3677 | 1.3733 | 1.3773 | 1.3814
1.3753
31 | (40) | | | | | | | | | | | | | | 4. Water heating energy requirements | | | | | | | | | | | | Assumed occupancy | | | | | | | | | 2.0000 | (42) | | Hot water usage for mixer showers
74.1464 73.0321
Hot water usage for baths | 71.4084 68.3017 | 66.0090 | 63.4523 | 61.9990 | 63.6104 | 65.3769 | 68.1220 | 71.2955 | 73.8623 | (42a) | | 0.0000 0.0000 Hot water usage for other uses | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (42b) | | 35.1115 33.8347
Average daily hot water use (litres/d | 32.5579 31.2812
lay) | 30.0044 | 28.7276 | 28.7276 | 30.0044 | 31.2812 | 32.5579 | 33.8347 | 35.1115
100.2800 | | | Jan Feb
Daily hot water use | Mar Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | 109.2579 106.8668
Energy conte 173.0377 152.1769
Energy content (annual) | 103.9663 99.5828
159.7923 136.3239 | 96.0134
129.2525 | 92.1799
113.3459 | 90.7266
109.7260 | 93.6148
115.9147 | 96.6580
119.1890 | 100.6800
136.6218
Total = S | 105.1302
149.7772
um(45)m = | 108.9738
170.6266
1665.7845 | | | Distribution loss (46)m = 0.15 x (45
25.9557 22.8265
Water storage loss: | 23.9689 20.4486 | 19.3879 | 17.0019 | 16.4589 | 17.3872 | 17.8783 | 20.4933 | 22.4666 | 25.5940 | (46) | | a) If manufacturer declared loss fac
Temperature factor from Table 2b
Enter (49) or (54) in (55)
Total storage loss | tor is known (kWh/c | day): | | | | | | | 150.0000
1.3938
0.5400
0.7527 | (48)
(49) | | 23.3325 21.0745 If cylinder contains dedicated solar | 23.3325 22.5798
storage | 23.3325 | 22.5798 | 23.3325 | 23.3325 | 22.5798 | 23.3325 | 22.5798 | 23.3325 | (56) | | 23.3325 21.0745 Primary loss 23.2624 21.0112 Combi loss 0.0000 0.0000 | 23.3325 22.5798
23.2624 22.5120
0.0000 0.0000 | 23.3325
23.2624
0.0000 | 22.5798
22.5120
0.0000 | 23.3325
23.2624
0.0000 | 23.3325
23.2624
0.0000 | 22.5798
22.5120
0.0000 | 23.3325
23.2624
0.0000 | 22.5798
22.5120
0.0000 | 23.3325
23.2624
0.0000 | (59) | | Total heat required for water heating
219.6327 194.2626
WWHRS -33.8966 -29.9784 | calculated for each
206.3872 181.4158
-31.3917 -25.9936 | n month
175.8474
-24.2251 | 158.4377 | 156.3209
-19.4307 | 162.5096
-20.6626 | 164.2808
-21.4476 | 183.2167
-25.2844 | 194.8691
-28.6441 | 217.2215
-33.2689 | (62) | | Solar input 0.0000 0.0000
FGHRS 0.0000 0.0000 | 0.0000 0.0000 | 0.0000 | -0.0000
0.0000
0.0000 | -0.0000
0.0000
0.0000 | -0.0000
0.0000
0.0000 | 0.0000 | -0.0000
0.0000
0.0000 | 0.0000 | 0.0000 | (63c) | | Output from w/h 185.7360 164.2842 | 174.9955 155.4222 | 151.6223 | 137.7082 | 136.8902 | | | 157.9323
h/year) = S | | 1899.4487 | (64) | | 12Total per year (kWh/year) Electric shower(s) 0.0000 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1899
0.0000 | | | Heat gains from water heating, kWh/mo: | nth | tal Energy us | sed by insta | antaneous el | lectric show | wer(s) (kWh | /year) = Su | m(64a)m = | 0.0000 | (64a) | | 94.8110 84.2674 | 90.4069 81.4012 | 80.2524 | 73.7610 | 73.7598 | 75.8176 | 75.7038 | 82.7027 | 85.8744 | 94.0093 | (65) | | 5. Internal gains (see Table 5 and 5a | | | | | | | | | | | | Metabolic gains (Table 5), Watts | | | | | | | | _ | | | | Jan Feb
(66)m 99.9976 99.9976
Lighting gains (calculated in Appendi | | | | | Aug
99.9976 | Sep
99.9976 | Oct
99.9976 | Nov
99.9976 | Dec
99.9976 | (66) | | 88.0572 97.4919 Appliances gains (calculated in Append | 88.0572 90.9924 | 88.0572 | 90.9924 | 88.0572 | 88.0572 | 90.9924 | 88.0572 | 90.9924 | 88.0572 | (67) | | 174.5832 176.3949 Cooking gains (calculated in Appendix | 171.8296 162.1107
L, equation L15 or | 149.8424
L15a), also | 138.3119 | 130.6089 | 128.7972 | 133.3625 | 143.0813 | 155.3497 | 166.8802 | (68) | | 32.9998 32.9998
Pumps, fans 3.0000 3.0000 | 32.9998 32.9998
3.0000 3.0000 | 32.9998 | | 32.9998
0.0000 | 32.9998
0.0000 | 32.9998
0.0000 | 32.9998
3.0000 | 32.9998
3.0000 | 32.9998
3.0000 | | | Losses e.g. evaporation (negative val
-79.9981 -79.9981 | ues) (Table 5)
-79.9981 -79.9981 | -79.9981 | | -79.9981 | -79.9981 | | -79.9981 | -79.9981 | -79.9981 | | | Water heating gains (Table 5)
127.4341 125.3979 | 121.5146 113.0572 | 107.8661 | 102.4458 | 99.1395 | 101.9053 | 105.1442 | 111.1595 | 119.2700 | 126.3565 | (72) | | Total internal gains
446.0738 455.2839 | 437.4007 422.1596 | 401.7650 | 384.7495 | 370.8049 | 371.7590 | 382.4984 | 398.2973 | 421.6114 | 437.2932 | (73) | | | | | | | | | | | | | | 6. Solar gains | | | | | | | | | | | | [Jan] | Area | Solar flux | | g | | FF | Acce | 55 | Gains | | SAP 10 Online 2.13.11 Page 5 of 7 | | | | | m2 | Table 6a
W/m2 | or | fic data
Table 6b | Specific
or Tab | data
le 6c | fact
Table | | W | | |---|---|--|---|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------|-------------------------------------|---|-------------------------| | Northeast
Southwest | | | 8.9
6.2 | 400
400 | 11.2829
36.7938 | | | 0 | .7000
.7000 | 0.77
0.77 | | 30.8270
70.1668 | | | Solar gains
Total gains | | 182.2693
637.5532 | | | 476.5302
878.2951 | | 466.1328
836.9377 | | | | 122.8320
544.4434 | 85.2230
522.5162 | | | 7. Mean inter | nal tempera | | | | | | | | | | | | | | Temperature d | uring heati | ng periods : | in the livi | ng area fro | m Table 9, I | Th1 (C) | | | | | | 21.0000 | (85) | | Utilisation f | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | tau
alpha
util living a | | 98.2248
7.5483
0.9982 | 98.3833
7.5589
0.9926 | 99.1346
7.6090
0.9563 | 99.2764
7.6184
0.8215 | 99.9421
7.6628
0.5993 | 99.9421
7.6628
0.4345 | 100.0663
7.6711
0.4930 | 99.6846
7.6456
0.7811 | 99.2764
7.6184
0.9791 | 98.9899
7.5993
0.9983 | 98.6921
7.5795
0.9997 | | | MIT | 20.1567 | 20.2960 | 20.5005 | 20.7703 | 20.9479 | 20.9956 | 20.9997 | 20.9992 | 20.9728 | 20.7334 | 20.3946 | 20.1325 | | | Th 2
util rest of | 19.7708 | 19.7725 | 19.7743 | 19.7823 | 19.7839 | 19.7909 | 19.7909 | 19.7922 | 19.7882 | 19.7839 | 19.7808 | 19.7776 | | | MIT 2 | 0.9992
18.8186 | 0.9970
18.9980 | 0.9874
19.2581 | 0.9274
19.5860 | 0.7403
19.7548 | 0.4891
19.7898 | 0.3154
19.7909 | 0.3643
19.7921 | 0.6652
19.7782 | 0.9589
19.5538 | 0.9969
19.1311 | 0.9994
18.7931 | (90) | | Living area f | 19.2528 | 19.4192 | 19.6612 | 19.9703 | 20.1420 | 20.1810 | 20.1831 | 20.1838 | | Living are
19.9366 | | | (92) | | Temperature a
adjusted MIT | | 19.4192 | 19.6612 | 19.9703 | 20.1420 | 20.1810 | 20.1831 | 20.1838 | 20.1658 | 19.9366 | 19.5410 | 0.0000
19.2277 | | | 8. Space heat | ing require | ment | _ | | | Utilisation
Useful gains
Ext temp. | | | Mar
0.9867
704.5126
6.5000 | Apr
0.9328
756.0033
8.9000 | May
0.7662
672.9395
11.7000 | Jun
0.5252
460.1319
14.6000 | Jul
0.3541
296.3849
16.6000 | Aug
0.4062
312.4807
16.4000 | Sep
0.7039
490.8696
14.1000 | 0.9623
584.1794
10.6000 | Nov
0.9965
542.5301
7.1000 | Dec
0.9993
522.1267
4.2000 | (95) | | Heat loss rat | | 1222.2567 | | 923.3680 | 703.1360 | 461.7515 | 296.4522 | 312.6667 | 503.1568 | | 1039.2216 | | | | Space heating
Space heating | 531.4654
requirement | 394.4337
t - total pe | | | 22.4662 | 0.0000 | 0.0000 | 0.0000
| 0.0000 | 143.9413 | 357.6179 | 548.2916
2417.5429 | | | Solar heating | 0.0000
contributi | 0.0000
on - total p | 0.0000
per year (ki | 0.0000
Wh/year) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.0000 | | | Space heating
Space heating | 531.4654 | | | 120.5026
tion - tota | | 0.0000
(kWh/year) | 0.0000 | 0.0000 | 0.0000 | | 357.6179 | 2417.5429 | | | Space heating | • | | | | | | | | | , | :) / (4) = | 39.8606 | (/ | | 9a. Energy re | | - Individua | l heating s | ystems, inc | luding micro | -CHP | | | | | | | | | Fraction of s
Fraction of s
Efficiency of
Efficiency of
Efficiency of | pace heat f
main space
main space | rom main sy:
heating sy:
heating sy: | stem(s)
stem 1 (in s
stem 2 (in s | %)
%) | m (Table 11) | | | | | | | 0.0000
1.0000
92.3000
0.0000
0.0000 | (202)
(206)
(207) | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating | 531.4654 | 394.4337 | | | 22.4662 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 143.9413 | 357.6179 | 548.2916 | (98) | | Space heating | 92.3000 | 92.3000 | 92.3000 | 92.3000 | 92.3000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 92.3000 | 92.3000 | 92.3000 | (210) | | Space heating Space heating | 575.8021 | 427.3388 | 323.7533 | 130.5553 | 24.3404 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 155.9494 | 387.4517 | 594.0321 | (211) | | Space heating | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (212) | | Space heating | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (213) | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating
Water heating | requiremen | | | | | | | | | | | | | | Efficiency of | water heat | | 174.9955 | 155.4222 | 151.6223 | 137.7082 | 136.8902 | 141.8470 | 142.8332 | 157.9323 | 166.2249 | 183.9526
79.8000 | (216) | | (217)m
Fuel for wate | | kWh/month | 85.2491 | 83.4957 | 80.8576 | 79.8000 | 79.8000 | 79.8000 | 79.8000 | 83.8523 | 85.7318 | 86.3534 | | | Space cooling | fuel requi | | | 186.1439 | 187.5178 | 172.5666 | 171.5416 | 177.7532 | 178.9890 | 188.3458 | 193.8894 | 213.0231 | | | (221)m
Pumps and Fa
Lighting | 0.0000
7.3041
18.2965 | 0.0000
6.5973
14.6782 | 0.0000
7.3041
13.2161 | 0.0000
7.0685
9.6827 | 0.0000
7.3041
7.4792 | 0.0000
7.0685
6.1105 | 0.0000
7.3041
6.8227 | 0.0000
7.3041
8.8685 | 0.0000
7.0685
11.5192 | 0.0000
7.3041
15.1139 | 0.0000
7.0685
17.0711 | 0.0000
7.3041
18.8051 | (231) | | Electricity g
(233a)m | enerated by | | dix M) (neg | ative quant: | | | | | -43.8532 | -35.3978 | -23.1639 | -17.8192 | | | Electricity g
(234a)m | | | | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | (234a) | | Electricity g
(235a)m | | | | | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | (235a) | | Electricity u
(235c)m | | | | | | | | | 0.0000 | 0.0000 | 0.0000 | | (235c) | | Electricity g
(233b)m | enerated by
-8.8584 | PVs (Append
-18.9004 | dix M) (nega
-38.0558 | ative quant:
-57.8717 | ity)
-77.2095 | -77.8112 | | | -47.0528 | -27.2471 | -11.8990 | -6.9842 | | | Electricity g
(234b)m | enerated by 0.0000 | wind turbin
0.0000 | nes (Append:
0.0000 | ix M) (nega
0.0000 | tive quantit
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234b) | | Electricity g
(235b)m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | (235b) | | Electricity u
(235d)m | 0.0000 | electricity
0.0000 | generated 1
0.0000 | 0.0000 | P (Appendix
0.0000 | N) (negati
0.0000 | ve if net g
0.0000 | eneration)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235d) | | Annual totals
Space heating | fuel - main | | | | | | | | | | | 2619.2231 | | | Space heating
Space heating | | | | | | | | | | | | 0.0000 | | SAP 10 Online 2.13.11 Page 6 of 7 | Residence of when because | | | 70.0000 | |---|---------------------------------|------------------|---| | Efficiency of water heater
Water heating fuel used
Space cooling fuel | | | 79.8000
2281.4570 (219)
0.0000 (221) | | Electricity for pumps and fans:
Total electricity for the above, kWh/year
Electricity for lighting (calculated in Appendix L) | | | 86.0000 (231)
147.6636 (232) | | Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) Appendix Q - special features | | | -999.2594 (233)
0.0000 (234)
0.0000 (235a)
0.0000 (235) | | Energy saved or generated Energy used Total delivered energy for all uses | | | -0.0000 (236)
0.0000 (237)
4135.0843 (238) | | 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP | | | | | Space heating - main system 1 | Energy
kWh/year
2619.2231 | 0.2100 | 550.0369 (261) | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating | 2281.4570 | 0.2100 | 0.0000 (373)
479.1060 (264)
1029.1428 (265) | | Pumps, fans and electric keep-hot
Energy for lighting | 86.0000
147.6636 | 0.1387 | 11 9293 (267) | | Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) | -485.7234
-513.5360 | | -65.0218
-64.4684
-129.4902 (269)
932.8943 (272)
15.3800 (273) | | 13a. Primary energy - Individual heating systems including micro-CHP | | | | | Space heating - main system 1 Total CO2 associated with community systems | kWh/year
2619.2231 | | kWh/year
2959.7221 (275)
0.0000 (473) | | Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot | 2281.4570
86.0000 | 1.1300
1.5128 | 2578.0464 (278)
5537.7685 (279)
130.1008 (281) | | Energy for lighting | 147.6636 | 1.5338 | 226.4914 (282) | | Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total Primary energy kWh/year Target Primary Energy Rate (TPER) | -485.7234
-513.5360 | | -726.0131
-236.6349
-962.6480 (283)
4931.7127 (286)
81.3100 (287) | SAP 10 Online 2.13.11 Page 7 of 7 | Dwelling Address | Unit 1, Highland Square , Bristol | |------------------------------|-----------------------------------| | Report Date | 05/03/2024 | | Property Type | Maisonette, Semi-Detached | | Floor Area [m ²] | 61 | This document is not an Energy Performance Certificat EPC) s required by the Energy Performance of Buildings Reg io SAP 10 Online 2.13.11 Page 1 of 4 #### Breakdown of property's energy performance Each feature is assessed as one of the following: | Very Poor | Poor | Average | Good | Very Good | |-----------------------|---|-----------------------|------|-------------------| | | | | | | | Feature | Description | | | gy
Performance | | Walls | Average thermal transmi | ttance 0.18 W/m²K | | Very Good | | Roof | Average thermal transmi | ttance 0.11 W/m²K | | Very Good | | Windows | High performance glazing | | | Good | | Main heating | Air source heat pump, radiators, electric | | | Good | | Main heating controls | Time and temperature zone control | | | Very Good | | Secondary heating | None | | | | | Hot water | From main system | | | Average | | Lighting | Good lighting e iciency | | | Good | | Air tightness | Air perm ity [AP5 | 4.5 m³/h.m² (assumed) | | Good | #### Primary Energy e The primary ener e for this operty per year is 56 kilowatt hour (kWh) per square metre #### Estimat d C emissions of the dwelling The estimed CO rating rovides an indication of the dwelling's impact on the environment in terms of carbon dio emissio; the higher the rating the less impact it has on the environment. The estimated CO emissions for this dwellings is: 0.3 per year With the recommended measures the potential CO emissions could be: per year SAP 10 Online 2.13.11 Page 2 of 4 #### Recommendations The recommended measures provided below will help to improve the energy efficiency of the dwelling. To reach the dwelling's potential energy rating all of the recommended measures shown below would need t installed. Having these measures installed individually or in any other order may give a different result wh pared w the cumulative potential rating. | Recommended measure | Typical | Potential Rating | lative | Cumulative | |---------------------|---------|-------------------|----------|------------| | | Yearly | after | s | Potential | | | Saving | measure installed | (per yea | Rating | #### Estimated energy use and potential savin s Estimated energy cost for this property over a year £555 Over a year you could save £0 The estimated cost and savings show how much the average househ would spend in this property heating, lighting and hot water. It not based on how energy is ed by the people living at the propert #### Contacting asses or and the accreditation scheme | Assessor contact details | | | | | |---------------------------|--|--|--|--| | Asse r name | | | | | | Assess accredita n number | | | | | | Email Address | | | | | SAP 10 Online 2.13.11 Page 3 of 4 | Accreditation scheme contact details | | | | | |--|--|--|--|--| | Accreditation scheme Elmhurst Energy Systems Ltd | | | | | | Telephone | | | | | | Email Address | | | | | | Assessment details | | | | |
--------------------------|---------------|--|--|--| | Related party disclosure | No related pa | | | | | Date of assessment | 05/03/202 | | | | | Date of certificate | 05/03/202 | | | | | Type of assessment | SAP w dwellin | | | | SAP 10 Online 2.13.11 Page 4 of 4 #### **Building Regulations England Part L (BREL) Compliance Report** Approved Document L1 2021 Edition, England assessed by Array SAP 10 program, Array Date: Tue 05 Mar 2024 08:41:59 | Project Information | | | | | | |---------------------|------------|-----------------|-------------------------|--|--| | Assessed By | | Building Type | Maisonette, Mid-terrace | | | | OCDEA Registration | EES/025661 | Assessment Date | 2024-03-05 | | | | Dwelling Details | | | | | |-------------------------|----------------------|------------------|-------------------|--| | Assessment Type | As designed | Total Floor Area | 92 m ² | | | Site Reference | Unit 4 | Plot Reference | PV | | | Address | Unit 1 Highland Squa | are, Bristol | • | | | Client Details | | | |----------------|---|--| | Name | Tebby & Son | | | Company | SF Tebby & Son | | | Address | Unit 11 Avon Gorge Industrial Estate , Bristol, BS2 9XX | | This report covers items included within the SAP calculations. It is not a complete report of regulations compliance. | 1a Target emission rate and dwelling emission | rate | | | | |--|---|----|--|--| | Fuel for main heating system | Electricity | | | | | Target carbon dioxide emission rate | 11.51 kgCO ₂ /m ² | | | | | Dwelling carbon dioxide emission rate | 3.33 kgCO ₂ /m ² | OK | | | | 1b Target primary energy rate and dwelling primary energy | | | | | | Target primary energy | 60.37 kWh _{PE} /m ² | | | | | Dwelling primary energy | 37.13 kWh _{PE} /m ² | OK | | | | 1c Target fabric energy efficiency and dwelling fabric energy efficiency | | | | | | Target fabric energy efficiency | 38.1 kWh/m² | | | | | Dwelling fabric energy efficiency | 37.4 kWh/m ² | OK | | | | 2a Fabric U-values | | | | | | |----------------------------------|---|----------------------------------|---|-----|--| | Element | Maximum permitted average U-Value [W/m²K] | Dwelling average U-Value [W/m²K] | Element with highest individual U-Value | | | | External walls | 0.26 | 0.18 | Walls (1) (0.18) | OK | | | Party walls | 0.2 | 0 | Party Wall (1) (0) | N/A | | | Curtain walls | 1.6 | 0 | N/A | N/A | | | Floors | 0.18 | 0.18 | Exposed Floor (0.18) | OK | | | Roofs | 0.16 | 0.11 | Roof (1) (0.11) | OK | | | Windows, doors, and roof windows | 1.6 | 1.31 | W01 (1.31) | OK | | | Rooflights | 2.2 | N/A | N/A | N/A | | | 2b Envelope elements (better than typically expected values are flagged with a subsequent (!)) | | | | | |--|----------------------------|------------------------------|--|--| | Name | Net area [m ²] | U-Value [W/m ² K] | | | | Exposed wall: Walls (1) | 71.34 | 0.18 | | | | Exposed wall: Walls (2) | 13.04 | 0.18 | | | | Party wall: Party Wall (1) | 65.88 | 0 (!) | | | | Party floor: Exposed Floor, Exposed Floor | 7.22 | 0.18 | | | | Exposed roof: Roof (1) | 53.98 | 0.11 | | | | 2c Openings (better than typically expected values are flagged with a subsequent (!)) | | | | | | |---|------------------------|-------------|--------------|------------------------------|--| | Name | Area [m ²] | Orientation | Frame factor | U-Value [W/m ² K] | | | W01, Windows | 2.38 | North East | 0.7 | 1.31 | | | W02, Windows | 2.38 | North East | 0.7 | 1.31 | | | W03, Windows | 2.38 | North East | 0.7 | 1.31 | | | W04, Windows | 4.41 | North East | 0.7 | 1.31 | | | W05, Windows | 2.38 | South East | 0.7 | 1.31 | | | W06, Windows | 0.53 | South West | 0.7 | 1.31 | | | W07, Windows | 0.53 | South West | 0.7 | 1.31 | | | 2d Thermal bridging (better than typically expected values are flagged with a subsequent (!)) | |---| | Building part 1 - Main Dwelling: Thermal bridging calculated from linear thermal transmittances for each junction | Date generated: 2024-03-05 08:41:59 | Main element | Junction detail | Source | Psi value
[W/mK] | Drawing / reference | |---------------|---|--|---------------------|---------------------| | External wall | E2: Other lintels (including other steel lintels) | Not government-approved scheme | 0.023 (!) | | | External wall | E3: Sill | Calculated by person with suitable expertise | 0.021 (!) | | | External wall | E4: Jamb | Calculated by person with suitable expertise | 0.016 (!) | | | External wall | E20: Exposed floor (normal) | Calculated by person with suitable expertise | 0.116 | | | External wall | E7: Party floor between dwellings (in blocks of flats) | Calculated by person with suitable expertise | 0.038 (!) | | | Party wall | P7: Exposed floor (normal) | Calculated by person with suitable expertise | 0.185 | | | Party wall | P3: Intermediate floor between dwellings (in blocks of flats) | SAP table default | 0 (!) | | | External wall | E16: Corner (normal) | Calculated by person with suitable expertise | 0.043 | | | External wall | E25: Staggered party wall between dwellings | Calculated by person with suitable expertise | 0.036 (!) | | | External wall | E18: Party wall between dwellings | Calculated by person with suitable expertise | 0.046 | | | External wall | E21: Exposed floor (inverted) | SAP table default | 0.32 | | | Party wall | P4: Roof (insulation at ceiling level) | Calculated by person with suitable expertise | 0.101 | | | Party wall | P8: Exposed floor (inverted) | Calculated by person with suitable expertise | 0.185 | | | External wall | E14: Flat roof | SAP table default | 0.16 | | | Roof | R8: Roof to wall (rafter) | SAP table default | 0.12 | | | External wall | E6: Intermediate floor within a dwelling | Calculated by person with suitable expertise | 0.001 (!) | | | 3 Air permeability (better than typically expected values are flagged with a subsequent (!)) | | | | | | | | | | |--|--|----|--|--|--|--|--|--|--| | Maximum permitted air permeability at 50Pa | 8 m ³ /hm ² | | | | | | | | | | Dwelling air permeability at 50Pa | 4.5 m ³ /hm ² , Design value | OK | | | | | | | | | Air permeability test certificate reference | | · | | | | | | | | | 4 Space heating | | | | | | | | | | |---|---------------|--|--|--|--|--|--|--|--| | Main heating system 1: Heat pump with radiators or underfloor heating - Electricity | | | | | | | | | | | Efficiency | 247.7% | | | | | | | | | | Emitter type | Radiators | | | | | | | | | | Flow temperature | 55°C | | | | | | | | | | System type | Heat Pump | | | | | | | | | | Manufacturer | Atlantic | | | | | | | | | | Model | Logic Air 8kW | | | | | | | | | | Commissioning | | | | | | | | | | | Secondary heating system: N/A | | | | | | | | | | | Fuel | N/A | | | | | | | | | | Efficiency | N/A | | | | | | | | | | Commissioning | | | | | | | | | | | 5 Hot water | | |--------------------------------------|--------------| | Cylinder/store - type: Cylinder | | | Capacity | 150 litres | | Declared heat loss | 2.09 kWh/day | | Primary pipework insulated | Yes | | Manufacturer | | | Model | | | Commissioning | | | Waste water heat recovery system 1 - | type: N/A | | Efficiency | | | Manufacturer | | | Model | | | 6 Controls | | | | |--|------------------------|--|---------| | Main heating 1 - type: Time and tempera | ature zone control by | arrangement of plumbing and electrical s | ervices | | Function | | | | | Ecodesign class | | | | | Manufacturer | | | | | Model | | | | | Water heating - type: Cylinder thermosta | at and HW separately | timed | | | Manufacturer | | | | | Model | | | | | 7 Lighting | | | | | Minimum permitted light source efficacy | 75 lm/W | | | | Lowest light source efficacy | 80 lm/W | | OK | | External lights control | N/A | | | | _ | | | | | 8 Mechanical ventilation | | | | | System type: N/A Maximum permitted specific fan power | N//A | | | | Specific fan power | N/A
N/A | | N/A | | Minimum permitted heat recovery | N/A | | IVA | | efficiency | 17/7 | | | | Heat recovery efficiency | N/A | | N/A | | Manufacturer/Model | 14/7 | | 14/7 | | Commissioning | | | | | | | | | | 9 Local generation | (4) | | | | Technology type: Photovoltaic system | | | | | Peak power | 1.045 kWp | | | | Orientation Pitch | South West 45° | | | | Overshading | None or very little | | | | Manufacturer | None or very little | | | | MCS certificate | | | | | | | | | | 10 Heat networks | | | | | N/A | | | | | 11 Supporting documentary evidence | | | | | N/A | | | | | | | | | | 12 Declarations | | | | | a. Assessor Declaration | office of the state of | starts of this DDEL Occupions Depart | | | | | entents of this BREL Compliance Report | | | | | nformation submitted for this dwelling for and that the supporting documentary | | | evidence (SAP Conventions, Appendi | • | • | | | documentary evidence required) has | | | | | Compliance Report. | been reviewed in the | course of preparing this BREL | | | оопірнаное пероп. | | | | | | | | | | Signed: | | Assessor ID: | | | Oignou. | | 7.000000110. | | | | | | | | Name: | | Date: | | | | | | | | h
Client Declaration | | <u> </u> | | N/A | Property Reference | Unit 4 | | | | | | | | Issued | on Date | 05/03 | /2024 | | |-------------------------------------|------------------------|----------|------------------------------------|---|------------|----------------------------|-------------------|---------------|--------------------|--------------|---------------------|------------------|----------------------------| | Assessment Reference | PV | | | | | Pro | p Type l | Ref | Tebby an | d Son G | arage | | | | Property | Unit 1 | , Highla | nd Square | , Bristol | | | | | | | | | | | SAP Rating | | | | 81 B | DER | | 3.33 | | Т | ER | 11 | .51 | | | Environmental | | | | 97 A | % DEF | ? < TER | | | | | | .07 | | | CO ₂ Emissions (t/year) | | | | 0.27 | DFEE | | 37.3 | 18 | Т | FEE | | .13 | | | Compliance Check | | | | See BREL | % DFE | E < TFE | | | | | 1.9 | | | | % DPER < TPER | | | | 38.50 | DPER | | 37.1 | 3 | Т | PER | | .37 | | | Assessor Details | | | | | | | | | A | \ssessoi | · ID U3 | 367-00 | 001 | | Client | | | | | | | | | | | | | | | SUMMARY FOR INPU | T DATA FO | R: Nev | v Build (A | As Designed) | | | | | | | | | | | Orientation | | | (. | Southwest | | | | | | | | | | | Property Tenture | | | | 1 | | | | | | | | | | | Transaction Type | | | | 6 | | | | | | | | | | | Transaction Type
Terrain Type | | | | Urban | | | | | | | | | | | 2. | | | | Maisonette, Mid-Te | rraco | | | | | | | | | | 1.0 Property Type Position of Flat | | | | Top-floor flat | iiace | | | | | | | | | | | | | | • | | | | | | | | | | | Which Floor | | | | 1 | | | | | | | | | | | 2.0 Number of Storeys | | | | 3 | | | | | | | | | | | 3.0 Date Built | | | | 2024 | | | | | | | | | | | 3.0 Property Age Band | | | | L | | | | | | | | | | | 4.0 Sheltered Sides | | | | 3 | | | | | | | | | | | 5.0 Sunlight/Shade | | | | Average or unknow | | | | | | | | | | | 6.0 Thermal Mass Parame | ter | | | Precise calculation | | | | | | | | | | | Thermal Mass | | | | N/A | | | | | kJ | l/m²K | | | | | 7.0 Electricity Tariff | | | | Standard | | | | | | | | | | | Smart electricity meter fi | itted | | | No | | | | | | | | | | | Smart gas meter fitted | | | | No | | | | | | | | | | | 7.0 Measurements | | | | | Наз | t Loss Po | orimete | r In | ternal Floo | or Area | Average | Stor | ey Heigh | | | | | | Basem | ent: | 0.00 r | n | | 0.00 m | 2 | _ | 0.00 r | n . | | | | | | Ground flo
1st Sto | rey: | 3.30 r
14.97 | m | | 4.86 m
59.81 n | n² | | 2.50 r
2.70 r | n | | | | | | 2nd Sto
3rd Sto | | 18.05
0.00 r | | | 27.28 n
0.00 m | | | 2.42 r
0.00 r | | | | | | | 4th Sto | rey: | 0.00 r
0.00 r | n | | 0.00 m
0.00 m | 2 | | 0.00 r
0.00 r | n | | | | | | 6th Sto | reý: | 0.00 r | n | | 0.00 m | 2 | | 0.00 r | n | | | | | | 7th Sto | rey: | 0.00 r | n | | 0.00 m | | | 0.00 r | n
——— | | 8.0 Living Area | | | | 27.28 | | | | | m | | | | | | 9.0 External Walls Description | Туре | Constr | ruction | | | Карра | | Nett Area | Shelter | Shelter | Opening | s Area | Calculation | | | Cavity Wall | | | oard on dabs, dense bloc | (W/m²K) | (kJ/m²K)
150.00 | Area(m²)
86.33 | (m²)
71.34 | Res
0.00 | None | 14.99 | | Type
r Gross Are | | Sloping Wall | Timber Frame | | avity, any outsi
framed wall (t | ide structure
two layers of plasterboard | 0.18 | 18.00 | 13.04 | 13.04 | 0.00 | None | 0.00 | Ente | r Gross Are | | 9.1 Party Walls | _ | | _ | | | | | | | _ | | | _ | | Description | Type | | Construc | tion | | | | | Kappa
(kJ/m²K) | Area
(m²) | Shelter
Res | SI | nelter | | Party Wall 1 | Filled Cav
Edge Sea | | Single pla
cavity | sterboard on both si | des, dense | cellular | blocks, | 0.00 | 70.00 | 65.88 | 0.00 | ١ | lone | | 9.2 Internal Walls | | - | - | | | | | | | | | | | | memai mana | | | | | | | | | | | | | | | Description | | | Constructi | ion | | | | | | | Kap
(k.l/n | | Area (m | | | | | | ion
ck, dense plaster | | | | | | | Kap
(kJ/n
100 | n²K) | Area (m
139.75 | SAP 10 Online 2.13.11 Page 1 of 4 | Description | Туре | Construc | ction | | Kappa G
(kJ/m²K)Ar | ea(m²) / | Nett
Area | | Shelter
Factor | Calculatio
Type | nOpenings | |--|---|-------------------------------------|--|--|--|--|----------------------|--------------------|-------------------|---|--| | External Roof 1 | External Flat
Roof | Plasterbo | ard, insulated flat roof | 0.11 | 9.00 5 | | (m²)
53.98 | None | 0.00 | Enter Gros
Area | s 0.00 | | 10.2 Internal Ceilings | | | | | | | | | | | | | Description
Internal Ceiling 1 | | Storey
+1 | Construction
Plasterboard ceili | ng, carpeted chip | board floor | | | | | | e a (m²)
2.14 | | 11.0 Heat Loss Floors | _ | | | | | | | | | | | | Description Exposed Floor | Type Exposed Floor - Solid | Storey Inde | | | U-Va
(W/m
0.1 | ¹K) | | Iter Code
None | F | nelter Kapp
actor (kJ/m
).00 75.0 | | | 11.1 Party Floors | | | | | | | | | | | | | Description | | Storey | Construction | | | | | | | | Area (m² | | Party Floor 1 | | Index
Lowest
occupied | Precast concrete planks | floor, screed, car | peted | | | | | (kJ/m²K)
30.00 | 47.73 | | 11.2 Internal Floors | | | | | | | | | | | | | Description | | Storey
Index | Construction | | | | | | | Kappa | | | Internal Floor 1 | | index | Plasterboard ceiling, car | peted chipboard f | loor | | | | | (kJ/m²K)
9.00 | 32.14 | | 12.0 Opening Types | | | | | | | | | | | | | Description | Data Source | Type | Glazing | | Glazing
Gap | Filling
Type | | -value | Frame
Type | Frame
Factor | U Value
(W/m²K) | | Windows | Manufacturer | Window | Double Low-l | Soft 0.05 | | Air Fille | ed | 0.63 | Wood | 0.70 | 1.31 | | 13.0 Openings | | | | | | | | | _ | | | | Name
W01 | Opening Ty
Windows | pe | Location
Cavity Wall | | Orient
North | | | Area (2.38 | | | tch
0 | | W02 | Windows | | Cavity Wall | | North | East | | 2.38 | 3 | | 0 | | W03
W04 | Windows
Windows | | Cavity Wall | | North
North | | | 2.38
4.4 | | | 0
0 | | W05 | Windows | | Cavity Wall
Cavity Wall | | South | | | 2.38 | | | 0 | | W06 | Windows | | Cavity Wall | | South | West | | 0.53 | 3 | | 0 | | W07 | Windows | | Cavity Wall | | South | West | | 0.53 | 3 | | 0 | | | | | - | | | | | | | | | | 14.0 Conservatory | | | None | | | | | | | | | | 14.0 Conservatory
15.0 Draught Proofing | | | None | | | | | % | | | | | - | | | | | | | | % | | | | | 15.0 Draught Proofing
16.0 Draught Lobby | | | 100
No | | | | | % | | | | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging | | | 100 | | | | | % | | | | | 15.0 Draught Proofing
16.0 Draught Lobby | | | 100
No |
Length | Psi | Adjusto | ed Re | % | | | Imported | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin | ng other steel linte | els) | 100 No Calculate Bridges Source Type Non Gov Approved Scho | emes 8.20 | 0.02 | 0.02 | | | | | No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill | ng other steel linte | els) | 100 No Calculate Bridges Source Type Non Gov Approved Sch Independently assessed | emes 8.20
8.20 | 0.02
0.02 | 0.02
0.02 | | | | | No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm | nal) | • | 100 No Calculate Bridges Source Type Non Gov Approved Schi Independently assessed Independently assessed Independently assessed | emes 8.20
8.20
23.67
3.12 | 0.02
0.02
0.02
0.12 | 0.02
0.02
0.02
0.12 | | | | | No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between d | nal)
dwellings (in block | • | No Calculate Bridges Source Type Non Gov Approved Scholndependently assessed Independently Index I | emes 8.20
8.20
23.67
3.12
31.46 | 0.02
0.02
0.02
0.12
0.04 | 0.02
0.02
0.02
0.12
0.04 | | | | | No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between d P7 Party Wall - Exposed | nal)
dwellings (in block
I floor (normal) | ss of flats) | 100 No Calculate Bridges Source Type Non Gov Approved Schi Independently assessed Independently assessed Independently assessed | 8.20
8.20
23.67
3.12
31.46
4.67 | 0.02
0.02
0.02
0.12 | 0.02
0.02
0.02
0.12 | | | | | No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between d P7 Party Wall - Exposed P3 Party wall - Intermedi (in blocks of flats) | nal)
dwellings (in block
I floor (normal) | ss of flats) | 100 No Calculate Bridges Source Type Non Gov Approved Schelndependently assessed Independently Atlanta (Independently Independently Independ | 8.20
8.20
23.67
3.12
31.46
4.67
14.45 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00 | | | | | No
No
No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between of P7 Party Wall - Exposed P3 Party Wall - Intermedi (in blocks of flats) E16 Comer (normal) | nal)
dwellings (in block
I floor (normal)
iate floor betweer | ss of flats) | No Calculate Bridges Source Type Non Gov Approved Scholadependently assessed Independently Indepen | 8.20
8.20
23.67
3.12
31.46
4.67
14.45 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00 | | | | | No
No
No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between d P7 Party Wall - Exposed P3 Party wall - Intermedi (in blocks of flats) | nal)
dwellings (in block
d floor (normal)
liate floor betweer | ss of flats) | 100 No Calculate Bridges Source Type Non Gov Approved Schelndependently assessed Independently Indepe | 8.20
8.20
23.67
3.12
31.46
4.67
14.45 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00 | | | | | No
No
No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between of P7 Party Wall - Exposed P3 Party wall - Intermedi (in blocks of flats) E16 Comer (normal) E25 Staggered party wall E18 Party wall between e121 Exposed floor (invertible) | nal) dwellings (in block floor (normal) liate floor betweer ll between dwellin dwellings rted) | ss of flats) n dwellings | Too No Calculate Bridges Source Type Non Gov Approved Schindependently assessed Independently Table K1 - Default | 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.04
0.05
0.32 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.04
0.05
0.32 | | | | | No
No
No
No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between d P7 Party Wall - Exposed P3 Party wall - Intermedi (in blocks of flats) E16 Comer (normal) E25 Staggered party wal E18 Party wall between E21 Exposed floor (inver P4 Party wall - Roof (insi | nal) dwellings (in block difloor (normal) liate floor betweer all between dwellin dwellings rted) sulation at ceiling be | ss of flats) n dwellings | Too No Calculate Bridges Source Type Non Gov Approved Schelindependently assessed Independently Indep | 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.04
0.05
0.32
0.10 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.04
0.05
0.32
0.10 | | | | | No
No
No
No
No
No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between of P7 Party Wall - Exposed P3 Party Wall - Intermedi (in blocks of flats) E16 Corner (normal) E25 Staggered party wall E18 Party wall between of E21 Exposed floor (inver P4 Party Wall - Roof (insight P8 Party Wall - Exposed E14 Flat roof | nal) dwellings (in block difloor (normal) liate floor betweer all between dwellin dwellings rted) sulation at ceiling be | ss of flats) n dwellings | No Calculate Bridges Source Type Non Gov Approved Schindependently assessed Independently Table K1 - Default | 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.04
0.05
0.32 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.04
0.05
0.32 | | | | | No
No
No
No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between of P7 Party Wall - Exposed P3 Party Wall - Intermedi (in blocks of flats) E16 Comer (normal) E25 Staggered party wall E18 Party wall between e21 Exposed floor (inver P4 Party wall - Roof (ins) P8 Party Wall - Exposed | nal) dwellings (in block of floor (normal) iate floor between all between dwellin dwellings rted) ulation at ceiling of floor (inverted) | ss of flats) n dwellings | No Calculate Bridges Source Type Non Gov Approved Scholadependently assessed Independently Independen | emes 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50
14.49
4.60
24.47 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.04
0.05
0.32
0.10
0.18 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.18 | | | | | No
No
No
No
No
No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between of P7 Party Wall - Exposed P3 Party wall - Intermedi (in blocks of flats) E16 Comer (normal) E25 Staggered party wal E18 Party wall between of E21 Exposed floor (inver P4 Party Wall - Roof (insi P8 Party Wall - Exposed E14 Flat roof R8 Roof to wall (rafter) | nal) dwellings (in block of floor (normal) iate floor between all between dwellin dwellings rted) ulation at ceiling of floor (inverted) | ss of flats) n dwellings | No Calculate Bridges Source Type Non Gov Approved Schindependently assessed Independently Applications Individual Independently Individual Individ | emes 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50
14.49
4.60
24.47 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.18
0.16
0.12 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.16 | | | | | No N | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between of P7 Party Wall - Exposed P3 Party Wall - Intermedi (in blocks of flats) E16 Comer (normal) E25 Staggered party wall E18 Party wall between of E21 Exposed floor (inver P4 Party Wall - Exposed E14 Flat roof R8 Roof to wall (rafter) E6 Intermediate floor with | nal) dwellings (in block of floor (normal) iate floor between all between dwellin dwellings rted) ulation at ceiling of floor (inverted) | ss of flats) n dwellings | No Calculate Bridges Source Type Non Gov Approved Schindependently assessed Independently I | emes
8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50
14.49
4.60
24.47 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.18
0.16
0.12 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.16 | | ference: | | | No N | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between d P7 Party Wall - Exposed P3 Party wall - Intermedi (in blocks of flats) E16 Comer (normal) E25 Staggered party wal E18 Party wall between E21 Exposed floor (inver P4 Party Wall - Roof (ins P8 Party Wall - Exposed E14 Flat roof R8 Roof to wall (rafter) E6 Intermediate floor with Y-value | nal) dwellings (in block of floor (normal) iate floor between all between dwellin dwellings rted) ulation at ceiling of floor (inverted) | ss of flats) n dwellings | No Calculate Bridges Source Type Non Gov Approved Schindependently assessed Independently | emes 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50
14.49
4.60
24.47 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.18
0.16
0.12 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.16 | | eference: | | ra | No N | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between of P7 Party Wall - Exposed P3 Party Wall - Intermedi (in blocks of flats) E16 Corner (normal) E25 Staggered party wall E18 Party wall between E21 Exposed floor (inver P4 Party Wall - Roof (inser P8 Party Wall - Exposed E14 Flat roof R8 Roof to wall (rafter) E6 Intermediate floor with Y-value 18.0 Pressure Testing | nal) dwellings (in block of floor (normal) iate floor between all between dwellin dwellings rted) ulation at ceiling of floor (inverted) | ss of flats) n dwellings | No Calculate Bridges Source Type Non Gov Approved Schindependently assessed Independently In | emes 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50
14.49
4.60
24.47 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.18
0.16
0.12 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.16 | | eference: | | d'a | No
No
No
No
No
No
No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between of P7 Party Wall - Exposed P3 Party wall - Intermedi (in blocks of flats) E16 Comer (normal) E25 Staggered party wall E18 Party wall between of E21 Exposed floor (inverteam of P8 Party Wall - Exposed E14 Flat roof R8 Roof to wall (rafter) E6 Intermediate floor with Y-value 18.0 Pressure Testing Designed APso | nal) dwellings (in block of floor (normal) iate floor between all between dwellin dwellings rted) ulation at ceiling of floor (inverted) | ss of flats) n dwellings | No Calculate Bridges Source Type Non Gov Approved Scholadependently assessed Independently In | emes 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50
14.49
4.60
24.47 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.18
0.16
0.12 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.16 | | eference: | | °a | No
No
No
No
No
No
No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between d P7 Party Wall - Exposed P3 Party wall - Intermedi (in blocks of flats) E16 Corner (normal) E25 Staggered party wall E18 Party wall between dE21 Exposed floor (inver P4 Party wall - Roof (insigher P8 Party Wall - Exposed E14 Flat roof R8 Roof to wall (rafter) E6 Intermediate floor with Y-value 18.0 Pressure Testing Designed APso Property Tested? | nal) dwellings (in block difloor (normal) iate floor between dwellings rted) ulation at ceiling if floor (inverted) thin a dwelling | ss of flats) n dwellings | No Calculate Bridges Source Type Non Gov Approved Schindependently assessed Independently Independent | emes 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50
14.49
4.60
24.47 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.18
0.16
0.12 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.16 | | eference: | | °a | No
No
No
No
No
No
No
No
No
No
No | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between of P7 Party Wall - Exposed P3 Party wall - Intermedi (in blocks of flats) E16 Comer (normal) E25 Staggered party wall E18 Party wall between of E21 Exposed floor (inverse P4 Party wall - Exposed E14 Flat roof R8 Roof to wall (rafter) E6 Intermediate floor with Y-value 18.0 Pressure Testing Designed APso Property Tested? Test Method | nal) dwellings (in block of floor (normal) iate floor between all between dwellin dwellings rted) sulation at ceiling of floor (inverted) thin a dwelling | ss of flats) n dwellings | No Calculate Bridges Source Type Non Gov Approved Schindependently assessed Independently Independent | emes 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50
14.49
4.60
24.47 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.18
0.16
0.12 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.16 | | eference: | | 'a | No N | | 15.0 Draught Proofing 16.0 Draught Lobby 17.0 Thermal Bridging 17.1 List of Bridges Bridge Type E2 Other lintels (includin E3 Sill E4 Jamb E20 Exposed floor (norm E7 Party floor between d P7 Party Wall - Exposed P3 Party wall - Intermedi (in blocks of flats) E16 Corner (normal) E25 Staggered party wall E18 Party wall between E21 Exposed floor (inver P4 Party Wall - Roof (insi P8 Party Wall - Exposed E14 Flat roof R8 Roof to wall (rafter) E6 Intermediate floor with Y-value 18.0 Pressure Testing Designed APso Property Tested? Test Method 19.0 Mechanical Ventilation | nal) dwellings (in block difloor (normal) liate floor between dwellings rted) ulation at ceiling of floor (inverted) thin a dwelling | as of flats) a dwellings ags devel) | No Calculate Bridges Source Type Non Gov Approved Schindependently assessed Independently Independent | emes 8.20
8.20
23.67
3.12
31.46
4.67
14.45
16.64
26.80
5.20
1.50
14.49
4.60
24.47 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.18
0.16
0.12 | 0.02
0.02
0.02
0.12
0.04
0.18
0.00
0.04
0.05
0.32
0.10
0.16 | | eference: | | ·°a | No N | SAP 10 Online 2.13.11 Page 2 of 4 | 21.0 Fixed Cooling System | No | | | | | | |--|----------------------------------|-----------------------|-------------------------|----|---------------------|-----------------| | 22.0 Lighting | | | | | | | | No Fixed Lighting | No | | | | | | | | Name
Lighting 1 | Efficacy
80.00 | Power
15 | ' | Capacity
1200 | Count
5 | | 24.0 Main Heating 1 | Database | | | | | | | Percentage of Heat | 100.00 | | | | % | | | Database Ref. No. | 106764 | | | | | | | Fuel Type | Electricity | | | | | | | SAP Code | 0 | | | | | | | In Winter | 247.69 | | | | | | | In Summer | 188.71 | | | | | | | Model Name | Logic Air 8kW | | | | | | | Manufacturer | Atlantic | | | | | | | System Type | Heat Pump | | | | | | | Controls SAP Code | 2207 | | | | | | | Delayed Start Stat | No | | | | | | | HETAS approved System | No | | | | | | | Oil Pump Inside | No | | | | | | | FI Case | 0.00 | | | | | | | Flue Type | None or Unknown | | | | | | | Fan Assisted Flue | No | | | | | | | Is MHS Pumped | Pump in heated sp | ace | | | | | | Heating Pump Age | 2013 or later | | | | | | | Heat Emitter | Radiators | | | | | | | Flow Temperature | Enter value | | | | | | | Flow Temperature Value | 55.00 | | | | | | | Boiler Interlock | No | | | | | | | 25.0 Main Heating 2 | None | | | | | | | 26.0 Heat Networks | None | | | | | | | Heat Source Fuel Type Heating U Heat source 1 None Heat source 2 None | Jse Efficiency F | Percentage Of
Heat | Heat Hea
Pow
Rati | er | ctrical Fuel Factor | Efficiency type | | Heat source 3 None Heat source 4 None Heat source 5 None | | | | | | | | Heat source 4 None
Heat source 5 None | | | | | | | | Heat source 4 None
Heat source 5 None | Main Heating 1 | | | | | | | Heat source 4 None Heat source 5 None 28.0 Water Heating | Main Heating 1 | | | | | | | Heat source 4 Heat source 5 None None 28.0 Water Heating Water Heating | | | | | | | | Heat source 4 None Heat source 5 None 28.0 Water Heating Water Heating SAP Code | 901 | | | | | | | Heat source 4 Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System | 901
No | | | | | | | Heat source 4 Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System
1 | 901
No
No | | | | | | | Heat source 4 None None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 | 901
No
No | | | | | | | Heat source 4 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel | 901
No
No
No | | | | | | | Heat source 4 Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System | 901 No No No No No | | | | | | | Heat source 4 Heat source 5 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day | 901 No No No No Yes | | | | | | | Heat source 4 None 28.0 Water Heating Water Heating SAP Code Flue Gas Heat Recovery System Waste Water Heat Recovery Instantaneous System 1 Waste Water Heat Recovery Instantaneous System 2 Waste Water Heat Recovery Storage System Solar Panel Water use <= 125 litres/person/day Summer Immersion | No No No No No Vo No No No No No | | | | | | SAP 10 Online 2.13.11 Page 3 of 4 | Immersion Only | Heating Hot V | Vater | | No | | | | | | | | | |---|------------------|-----------------|--------------|--------------|-----------|---------------|----------------------|-------------------|-------------|---------|-------------------------|------------------------| | 28.1 Showers | | | | | | | | | | | | | | Description | | | Shower Type | | | | Flow Rate
[I/min] | Rated Pov
[kW] | ver C | | Connected | I То | | 1 | | | Combi boiler | or unvented | hot wat | er system | 7.00 | | | No | | | | 28.3 Waste Water H | leat Recover | y System | | | | | | | | | | | | 29.0 Hot Water Cyli | inder | | | Hot Water | Cylinder | Г | | | | | | | | Cylinder Stat | | | | Yes | | | | | | | | | | Cylinder In Heat | ed Space | | | Yes | | | | | | | | | | Independent Tim | ne Control | | | Yes | | | | | | | | | | Insulation Type | | | | Measured I | LOSS | | | | | | | | | Cylinder Volume | : | | | 150.00 | | | | | | L | | | | Loss | | | | 2.09 | | | | | | kWh/day | / | | | Pipes insulation | | | | Fully insula | ted prin | nary pipework | (| | | | | | | In Airing Cupboa | nrd | | | No | | | | | | | | | | 31.0 Thermal Store | | | | None | | | | | | | | | | 32.0 Photovoltaic U | Jnit | | | One Dwelli | ng | | | | | | | | | Export Capable | Meter? | | | Yes | | | | | | | | | | Connected To D | welling | | | No | | | | | | | | | | Diverter | | | | No | | | | | | | | | | Battery Capacity | [kWh] | | | 0.00 | | | | | | | | | | PV Cells k | кWр | Orientation | Elevation | Overs | hading | FGHRS | MCS C | ertificate | Over | or T | MCS
Certificate | Panel
Manufacturer | | 1.04 | | South West | 45° | None (| Or Little | No | No | | 1.00 | | Reference | | | 34.0 Small-scale Hy | ydro | | | None | | | | | | | | | | Electricity Gener | rated | | | 0.00 | | | | | | | | | | Apportioned | | | | 0.00 | | | | | | kWh/Yea | аг | | | Connected to dw | velling's electr | icity meter | | Yes | | | | | | | | | | Electricity Gener | ration | | | Annual | | | | | | | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Au | g S | ер | Oct | Nov | / Dec | | Recommendations
Lower cost med
None
Further measur | asures | e even higher s | | ypical Cost | | Typical sav | ings per ye | ar <u>.</u> | R
SAP ra | | ter improven
Enviror | nent
nmental Impact | | | Solar water | heating | | | | | | | 0
0
0 | | | 0 | SAP 10 Online 2.13.11 Page 4 of 4 | Property Reference | e | l | Jnit 4 | | | | | | | Issu | ed on Da | ate | 05/03/2024 | | | | |---|--|-------------------------------------|-----------------------|--------------------|------------------|--------------------------------|----------------------|---|-----------------------|-------------|-----------------------------------|--|--|---|--|--| | Assessment Refer | rence | I | PV | | | | | Prop Type F | Ref | Tebby | and Sor | Garage | | | | | | Property | | · · | Jnit 1, Highland | Square, Bristol | | | | | | | | | | | | | | SAP Rating | | | | | 81 B | | DER | 3. | 33 | | TER | | 11.51 | | | | | Environmental | | | | | 97 A | 9 | % DER < TER | | | | | | 71.07 | | | | | CO ₂ Emissions (t/) | /ear) | | | | 0.27 | | DFEE | 37 | 7.38 | | TFEE | | 38.13 | 38.13 | | | | Compliance Check | Compliance Check | | | | | | % DFEE < TFE | EE | | | | | 1.97 | | | | | % DPER < TPER | | | | | 38.50 | | DPER | 37 | 7.13 | | TPEF | ₹ | 60.37 | | | | | Assessor Details | | | | | | | | | | | Asse | ssor ID | U367-00 | 01 | | | | Client | | | | | | | | | | | | | | | | | | SAP 10 WORKSHEET
CALCULATION OF D | | | | | | 7 2022) | | | - | | | | | | | | | 1. Overall dwell | ing charact | teristic | 3 | | | | | Area | -
-
- St | orev h | neight | | Volume | | | | | Ground floor
First floor
Second floor
Total floor area
Dwelling volume | TFA = (la |)+(lb)+(| lc)+(ld)+(le | e)(ln) | 9 | 1.9500 | | (m2)
4.8600
59.8100
27.2800 |)
(lb) x
(lc) x | 2
2
2 | (m)
2.5000
2.7000
2.4200 | (2b) =
(2c) =
(2d) = | (m3)
12.1500
161.4870
66.0176 | (lb) - (3h
(lc) - (3c
(ld) - (3c
(4) | | | | 2. Ventilation r | | | | | | | | | - | | | | m3 per hour | : | | | | Number of open c
Number of open f
Number of chimne
Number of flues
Number of blocke
Number of interm
Number of passiv
Number of fluele | lues ys / flues attached to attached to d chimneys ittent ext: e vents | o solid :
o other l
ract fan: | fuel boiler
neater | fire | | | | | | | | 0 * 20 =
0 * 35 =
0 * 20 =
5 * 10 = | 0.0000
0.0000
0.0000
0.0000
0.0000
50.0000 | (6b)
(6c)
(6d)
(6e)
(6f)
(7a) | | | | Infiltration due
Pressure test
Pressure Test Me
Measured/design
Infiltration rat
Number of sides | thod
AP50
e | ys, flue: | and fans | = (6a)+(6b) | +(6c)+(6d)+(| (6e)+(6f)+(| 6g)+(7a)+(7 | 7b)+(7c) = | = | 5 | 60.0000 | / (5) = | yes per hour
0.2086
Yes
Blower Door
4.5000
0.4336 | (8) | | | | Shelter factor
Infiltration rat | e adjusted | to incl | ude shelter | factor | | | | | | | | (19)] =
x (20) = | | | | | | Wind speed
Wind factor
Adj infilt rate | Jan
5.1000
1.2750 | Feb
5.0000
1.2500 | | | | Jun
3.8000
0.9500 | | | | 4 | Oct
1.3000
1.0750 | | | | | | | _ | 0.4285 | | | 0.3697
0.5683 | 0.3613
0.5653 | 0.3193
0.5510 | 0.3193
0.5510 | | | | .3613
).5653 | 0.3781
0.5715 | | | | | | 3. Heat losses a | | | | | | | | | - | | | | | | | | | Element | | | | Gross | Openings | Net | Area | U-value | A | хU | | -value | AxK | | | | | Windows (Uw = 1.
Exposed Floor
Cavity Wall
Sloping Wall
External Roof 1 | | | | 13.0400
53.9800 | m2
14.9900 | 14.
7.
71.
13.
53. | 3400
0400
9800 | W/m2K
1.2448
0.1800
0.1800
0.1800
0.1100 | 1.2 | 996 | 7
15
1 | kJ/m2K
5.0000
0.0000
8.0000
9.0000 | kJ/K
541.5000
10701.0000
234.7200
485.8200 | (27)
(28b)
(29a)
(29a)
(30) | | | | Total net area of Fabric heat loss Party Wall 1 Party Floor 1 Internal Wall 1 Internal Floor 1 Internal Ceiling | , W/K = Sur | | | | | 47.
139.
32. | (26) (3 | 30) + (32)
0.0000 | | | 10
1 | 0.0000
0.0000
0.0000
8.0000 | 4611.6000
1909.2000
13975.0000
578.5200
289.2600 | (32d)
(32c)
(32d) | | | | Heat capacity Cm
Thermal mass par
List of Thermal | ameter (TM
Bridges | | TFA) in kJ/ | m2K | | | | | (30) + (| | | | 362.4428 | | | | | K1 Eleme
E2 Other | | includin | g other stee | el lintels) | | | | | Length
8.2000 | | 0230 | | tal
.886 | | | | SAP 10 Online 2.13.11 Page 1 of 7 | E3 Sill E4 Jamb E40 Exposed floor E7 Party floor bet P7 Party Wall - E1 P3 Party wall - E1 E16 Corner (normal E25 Staggered part E18 Party wall bet E21 Exposed floor P4 Party wall - E2 E14 Flat roof R8 Roof to wall (1) E6 Intermediate f1 Thermal bridges (Sum(L x 1) Point Thermal bridges Total fabric heat loss Ventilation heat loss calc Jan (38)m 46.8031 Heat transfer coeff 100.2140 | 23
31
4
14
16
26
5
1
14
4
24 | .2000
.6700
.6700
.1200
.4640
.6700
.4500
.6400
.8000
.2000
.5960
.4700
.3200
.0500 | 0.0210
0.0160
0.1160
0.0380
0.1850
0.0000
0.0430
0.3200
0.1010
0.1850
0.1600
0.1200
0.0010 | 0.17
0.37
0.36
1.19
0.86
0.00
0.71
0.96
0.23
0.48
1.46
0.85
3.91
0.51
0.51
0.51 | 87
19
39
00
55
48
92
00
35
03
55
03 | (37) | | | | | | | |--|--
--|--|--|--|-----------------------|------------------------|-----------------------|-----------------------------------|-----------------------------------|--|----------------| | Average = Sum(39)m / 12 = | | 99.6557 | 98.3578 | 98.1149 | 96.9845 | 96.9845 | | | | | 98.3566 | | | HLP 1.0899 | Feb
1.0868 | Mar
1.0838 | Apr
1.0697 | May
1.0670 | Jun
1.0548 | Jul
1.0548 | Aug
1.0525 | Sep
1.0595 | Oct
1.0670 | Nov
1.0724 | Dec
1.0780 | | | HLP (average)
Days in mont 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 1.0697
31 | | | 4. Water heating energy re
Assumed occupancy
Hot water usage for mixer
85.9974
Hot water usage for baths | showers
84.6808 | kWh/year | | 77.0812 | 73.3397 | 70.3805 | 73.8400 | 75.5800 | 79.2858 | 83.1450 | 2.6515
85.9199 | | | 0.0000
Hot water usage for other | 0.0000
uses | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | 41.7838
Average daily hot water us | 40.2644
se (litres/ | 38.7450
/day) | 37.2256 | 35.7062 | 34.1868 | 34.1868 | 35.7062 | 37.2256 | 38.7450 | 40.2644 | 41.7838
117.2682 | | | Jan
Daily hot water use | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | 127.7812 | 124.9452
165.3278 | 121.4855
173.6002 | 116.9811
152.8066 | 112.7874
145.3379 | 107.5265
124.3508 | 104.5672
115.5499 | 109.5462
128.9379 | 112.8056
130.8489 | 118.0308
152.0946
Total = S | 123.4094
166.7919
um(45)m = | 127.7037
187.5422
1831.3046 | (45) | | Distribution loss (46)m = 28.2174 | | 45)m
26.0400 | 22.9210 | 21.8007 | 18.6526 | 17.3325 | 19.3407 | 19.6273 | 22.8142 | 25.0188 | 28.1313 | (46) | | Water storage loss:
Store volume
a) If manufacturer declar
Temperature factor from
Enter (49) or (54) in (55) | Table 2b | actor is km | own (kWh/d | lay): | | | | | | | 150.0000
2.0900
0.5400
1.1286 | (48)
(49) | | Total storage loss
34.9866 | 31.6008 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | (56) | | If cylinder contains dedic
34.9866
Primary loss 23.2624 | 31.6008
21.0112 | 34.9866
23.2624 | 33.8580
22.5120 | 34.9866
23.2624 | 33.8580
22.5120 | 34.9866
23.2624 | 34.9866
23.2624 | 33.8580
22.5120 | 34.9866
23.2624 | 33.8580
22.5120 | 34.9866
23.2624 | (59) | | Combi loss 0.0000 Total heat required for wa | | | | 0.0000
month
203.5869 | 0.0000
180.7208 | 0.0000 | 0.0000
187.1869 | 0.0000 | 0.0000 | 0.0000 | 0.0000
245.7912 | | | WWHRS 0.0000
PV diverter -0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (63a) | | Solar input 0.0000
FGHRS 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (63c) | | Output from w/h
246.3650 | 217.9398 | 231.8492 | 209.1766 | 203.5869 | 180.7208 | 173.7989 | 187.1869 | 187.2189 | 210.3436 | 223.1619 | 245.7912 | (64) | | 12Total per year (kWh/year
Electric shower(s) | | | | | | | lotal p | er year (xw | n/year) = 5 | um(64)m = | 2517.1396 | | | 0.0000 Heat gains from water heat | 0.0000 | 0.0000 | 0.0000
Tot | 0.0000
al Energy u | 0.0000
sed by inst | 0.0000
antaneous e | 0.0000
electric sho | 0.0000
wer(s) (kWh | 0.0000
/year) = Su | 0.0000
m(64a)m = | 0.0000 | (64a)
(64a) | | Heat gains from water heat
109.1478 | ting, kWh/m
97.0611 | nonth
104.3213 | 95.9042 | 94.9241 | 86.4426 | 85.0195 | 89.4710 | 88.6032 | 97.1706 | 100.5543 | 108.9570 | (65) | | | | | | | | | | | | | | | | 5. Internal gains (see Tab | ble 5 and 5 | 5a) | | | | | | | | | | | | Metabolic gains (Table 5),
Jan | | | | | | 71 | 3 | | 0 | | D | | | (66)m 132.5741
Lighting gains (calculated | 132.5741 | 132.5741 | 132.5741 | 132.5741 | 132.5741 | Jul
132.5741 | Aug
132.5741 | Sep
132.5741 | Oct
132.5741 | Nov
132.5741 | Dec
132.5741 | (66) | | 127.2048 Appliances gains (calculate | 140.8339 | 127.2048 | 131.4450 | 127.2048 | 131.4450 | 127.2048 | 127.2048 | 131.4450 | 127.2048 | 131.4450 | 127.2048 | (67) | | 242.6198
Cooking gains (calculated | 245.1374 | 238.7931 | 225.2867 | 208.2373 | 192.2133 | 181.5083 | 178.9906 | 185.3350 | 198.8414 | 215.8908 | 231.9148 | (68) | | 36.2574
Pumps, fans 0.0000 | 36.2574
0.0000 (69)
(70) | | Losses e.g. evaporation (r
-106.0593 | negative va
-106.0593 | alues) (Tab | le 5) | | | | | | | | | | | Water heating gains (Table
146.7040
Total internal gains | | 140.2168 | 133.2003 | 127.5861 | 120.0592 | 114.2736 | 120.2568 | 123.0601 | 130.6057 | 139.6587 | 146.4476 | (72) | | | 593.1797 | 568.9869 | 552.7042 | 525.8005 | 506.4897 | 485.7589 | 489.2245 | 502.6123 | 519.4241 | 549.7667 | 568.3394 | (73) | | | | | | | | | | | | | | | | 6. Solar gains | | | | | | | | | | | | | | [Jan] | | | | Solar flux
Table 6a
W/m2 | | | | FF
data
le 6c | Acce
fact
Table | ss
or
6d | Gains
W | | SAP 10 Online 2.13.11 Page 2 of 7 | Northeast
Southeast
Southwest | | | 1.0 | 800
600 | 11.2829
36.7938
36.7938 | | 0.6300
0.6300
0.6300 | 0 | .7000
.7000
.7000 | 0.770
0.770
0.770 | 00 | 39.8269
26.7623
11.9194 | (77) | |---|--
--|---|---|---|---|--|---|---|---|---|--|---| | C-1 | | | | | | | | | 275 5026 | 171 0040 | 05 4440 | CE (2001 | (02) | | Solar gains
Total gains | 7. Mean inter | nal temperat | | | | | | | | | | | | | | Temperature d | uring heating | ng periods | in the livi | ng area from | n Table 9, 1 | | | | | | | 21.0000 | (85) | | Utilisation f | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | tau
alpha | 7.1584 | 92.6369
7.1758 | 92.8938
7.1929 | 94.1196
7.2746 | 94.3526
7.2902 | 95.4523
7.3635 | 95.4523
7.3635 | | 95.0257
7.3350 | 94.3526
7.2902 | 93.8825
7.2588 | 93.3960
7.2264 | | | util living a | 0.9992 | 0.9979 | 0.9933 | 0.9637 | 0.8491 | 0.6284 | 0.4595 | 0.5184 | 0.8068 | 0.9803 | 0.9977 | 0.9994 | (86) | | Mon living | 20.1189 | 10 1521 | 10 4020 | 10 7506 | 10 0744 | 20 0250 | 20.9993
20.0378 | 20.9985 | | 20.7020
19.7414 | | | | | 24 / 16
24 / 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0
0
0 | 0 | 0 | 0 | 0 | | | 24 / 16
24 / 9
16 / 9
MIT
Th 2
util rest of | 28
20.5492 | 0
20.2451 | 0
20.4402 | 0
20.7229 | 0
20.9252 | 0
0
20.9927 | 20.9993 | 20.9985 | 0
20.9614 | 0
0
20.7020
20.0278 | 0
20.3692 | 10
20.2294 | (87) | | Th 2
util rest of | | | | | | | 20.0380 | | | | | | | | MIT 2
Living area f | 19.6023 | 0.9969
19.1521 | | 0.9454
19.7586 | 0.7903
19.9744 | 0.5385
20.0350 | 0.3595
20.0378 | 0.4115
20.0395 | | 0.9668
19.7414
Living area | 19.3204 | 19.1651 | (90) | | MIT
Temperature a | 19.8832 | 19.4764 | 19.7100 | 20.0447 | 20.2565 | 20.3191 | 20.3231 | 20.3240 | | 20.0264 | | | | | adjusted MIT | | 19.4764 | 19.7100 | 20.0447 | 20.2565 | 20.3191 | 20.3231 | 20.3240 | 20.2948 | 20.0264 | 19.6315 | 19.4809 | (93) | | | | | | | | | | | | | | | | | 8. Space heat | ing require | | | | | | | | | | | | | | | Jan | Feh | Mar | Apr | May |
Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Utilisation
Useful gains | 0.9988
657.0276 | 0.9962
737.3003 | 0.9885 | 0.9458 | 0.8054 | 0.5653 | 0.3893 | 0.4434
379.2180 | 0.7448 | 0.9668
668.3445 | 0.9957 | 0.9989 | | | Ext temp.
Heat loss rat | 4.3000
e W | 4.9000 | 6.5000 | 8.9000 | 11.7000 | 14.6000 | 16.6000 | 16.4000 | 14.1000 | 10.6000 | 7.1000 | 4.2000 | | | Space heating | | | | | | 554.6681 | 361.0821 | | 603.4935 | | | 1514.6374 | | | Space heating
Solar heating | requirement | | 387.2727
er year (kW | | 41.3438 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 190.8551 | 426.4398 | 655.7256
3031.5275 | (98a) | | Solar heating | 0.0000 | | 0.0000
per vear (ki | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Space heating | kWh | | | ,, | | | | | | | | | | | | | 483.3998 | 387.2727 | 173.4455 | 41.3438 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 190.8551 | 426.4398 | 655.7256 | (98c) | | Space heating
Space heating | requirement | | | | | | 0.0000 | 0.0000 | 0.0000 | | | 655.7256
3031.5275
32.9693 | | | | requirement | | | | | | 0.0000 | 0.0000 | 0.0000 | | | 3031.5275 | | | Space heating | requirement | t after sol | ar contribu | tion - total | l per year | (kWh/year) | | | 0.0000 | | | 3031.5275 | | | Space heating | requirement per m2 quirements | t after sol | ar contribu | tion - total | l per year | (kWh/year) | | | 0.0000 | | | 3031.5275
32.9693 | (99) | | Space heating 9a. Energy re Fraction of s. | requirements quirements pace heat fi | t after sol | ar contribu | ystems, inc | l per year | (kWh/year) | | | 0.0000 | | | 3031.5275
32.9693
0.0000
1.0000 | (99)
(201)
(202) | | Space heating 9a. Energy re Fraction of s | requirement per m2 quirements pace heat f: pace heat f: main space main space | - Individua - Individua - rom seconda rom main sy heating sy heating sy | ar contribu | tion - total ystems, incl ntary syster %) | l per year | (kWh/year) | | | 0.0000 | | | 3031.5275
32.9693 | (201)
(202)
(206)
(207) | | 9a. Energy re
Fraction of s
Fraction of s
Efficiency of
Efficiency of | requirement per m2 quirements pace heat fi main space main space secondary/: Jan | - Individua - Individua - rom seconda rom main sy heating sy supplementa Feb | ar contribu | tion - total ystems, incl ntary syster %) | l per year | (kWh/year) | | | 0.0000
Sep | | | 0.0000
1.0000
247.6858
0.0000 | (201)
(202)
(206)
(207) | | 9a. Energy re-
Fraction of s
Fraction of s
Efficiency of
Efficiency of
Space heating | requirements quirements pace heat f: pace heat f: pace heat f: pace main space main space secondary/: Jan requirement 673.0450 | Individua rom seconda rom main sy heating sy supplementa Feb t 483.3998 | ar contribu 1 heating s ry/suppleme stem (s) stem 1 (in stem 2 (in ry heating Mar 387.2727 | ystems, inci
ntary system
%)
%)
system, %
Apr
173.4455 | Luding micro | o-CHP | | | | (98c) | / (4) = | 0.0000
1.0000
247.6858
0.0000 | (201)
(202)
(206)
(207)
(208) | | Space heating 9a. Energy re Fraction of s Fraction of s Efficiency of Efficiency of Efficiency of Space heating Space heating | requirements quirements quirements pace heat fi pace heat fi pace nain space main space secondary/: Jan requirement 673.0450 efficiency 247.6858 | Individua Indivi | ar contribu l heating s ry/suppleme stem 1 (in stem 2 (in ry heating Mar 387.2727 ing system 247.6858 | ystems, inci | L per year Luding micro n (Table 11) | O-CHP | Jul | Aug | Sep | (98c)
Oct | / (4) = | 0.0000
1.0000
247.6858
0.0000
Dec | (99)
(201)
(202)
(206)
(207)
(208) | | 9a. Energy re-
Fraction of s
Fraction of s
Efficiency of
Efficiency of
Space heating | requirement per m2 quirements | - Individua Indi | ar contribu | ystems, inci | Luding micro n (Table 11) May 41.3438 | Jun | Jul
0.0000 | Aug
0.0000 | Sep
0.0000 | (98c)
Oct
190.8551 | / (4) = Nov 426.4398 | 0.0000
1.0000
247.6858
0.0000
Dec
655.7256 | (201)
(202)
(202)
(206)
(207)
(208) | | 9a. Energy re- Fraction of s Fraction of s Efficiency of Efficiency of Space heating Space heating | requirement per m2 quirements | Individua Indivi | l heating s stem(s) stem 1 (in stem 2 (in ry heating Mar 387.2727 ing system 247.6858 stem() 156.3565 ing system 0.0000 stem 2) | ystems, inci- ntary system %) %) Apr 173.4455 1) 247.6858 70.0264 2) 0.0000 | May 41.3438 247.6858 16.6920 0.0000 | Jun 0.0000 0.0000 0.0000 | Jul
0.0000
0.0000
0.0000 | Aug
0.0000
0.0000
0.0000 | Sep
0.0000
0.0000
0.0000
0.0000 | Oct
190.8551
247.6858
77.0553
0.0000 | Nov
426.4398
247.6858
172.1697
0.0000 | 0.0000
1.0000
247.6858
0.0000
Dec
655.7256
247.6858
264.7409 | (201)
(202)
(206)
(207)
(208)
(98)
(210)
(211)
(212) | | 9a. Energy re Fraction of s Fraction of s Efficiency of Efficiency of Space heating Space heating Space heating | quirements quirements quirements quirements pace heat fi main space main space secondary/: Jan requirement 673.0450 efficiency 247.6858 fuel (main 771.7334 efficiency 0.0000 fuel (main 0.0000 fuel (secondary) fuel (secondary) | - Individua - Individua - Tom main sy heating sy heating sy supplementa Feb t 483.3998 (main heat 247.6858 heating sy 195.1666 (main heat 0.0000 heating sy 0.0000 ndary) | ar contribu l heating s ry/suppleme stem 1 (in stem 2 (in ry heating Mar 387.2727 ing system 247.6858 stem) 156.3565 ing system 0.0000 stem 2) 0.0000 | ystems, inci- ntary system %) %) %) Apr 173.4455 170.0264 2) 0.0000 0.0000 | May 41.3438 247.6858 16.6920 0.0000 | Jun 0.0000 0.0000 0.0000 0.0000 | Jul
0.0000
0.0000
0.0000
0.0000 | Aug
0.0000
0.0000
0.0000
0.0000 | Sep
0.0000
0.0000
0.0000
0.0000 | Oct
190.8551
247.6858
77.0553
0.0000 | Nov
426.4398
247.6858
172.1697
0.0000
0.0000 | 0.0000
1.0000
247.6858
0.0000
Dec
655.7256
247.6858
264.7409
0.0000 | (201)
(202)
(206)
(207)
(208)
(98)
(210)
(211)
(212)
(213) | | 9a. Energy re Fraction of s Fraction of s Efficiency of Efficiency of Efficiency of Space heating Space heating Space heating Space heating Space heating | requirements quirements pace heat f: | | l heating s stem(s) stem 1 (in stem 2 (in ry heating Mar 387.2727 ing system 247.6858 stem() 156.3565 ing system 0.0000 stem 2) | ystems, inci- ntary system %) %) Apr 173.4455 1) 247.6858 70.0264 2) 0.0000 | May 41.3438 247.6858 16.6920 0.0000 | Jun 0.0000 0.0000 0.0000 | Jul
0.0000
0.0000
0.0000 | Aug
0.0000
0.0000
0.0000 | Sep
0.0000
0.0000
0.0000
0.0000 | Oct
190.8551
247.6858
77.0553
0.0000 | Nov
426.4398
247.6858
172.1697
0.0000 | 0.0000
1.0000
247.6858
0.0000
Dec
655.7256
247.6858
264.7409 | (201)
(202)
(206)
(207)
(208)
(98)
(210)
(211)
(212)
(213) | | 9a. Energy re- Fraction of s Fraction of s Efficiency of Efficiency of Efficiency of Space heating Space heating Space heating Space heating | requirements per m2 quirements pace heat f; an requirement 673.0450 efficiency 247.6858 fuel (main 271.7334 efficiency 0.0000 fuel (main 0.0000 fuel (main 0.0000 fuel (secon 0.0000) requirement | Tafter sol | ar contribu 1 heating s ry/suppleme stem 1 (in stem 2 (in ry heating Mar 387.2727 ing system 247.6858 stem) 156.3565 ing system 0.0000 stem 2) 0.0000 0.0000 | ystems, incl
ntary system
%)
%)
system, %
Apr
173.4455
1)
247.6858
70.0264
2)
0.0000
0.0000 | May 41.3438 247.6858 16.6920 0.0000 0.0000 | Jun 0.0000 0.0000 0.0000 0.0000 | Jul 0.0000 0.0000 0.0000 0.0000 0.0000 | Aug 0.0000 0.0000 0.0000 0.0000 0.0000 | Sep
0.0000
0.0000
0.0000
0.0000
0.0000 | Oct
190.8551
247.6858
77.0553
0.0000
0.0000 | Nov
426.4398
247.6858
172.1697
0.0000
0.0000 | 0.0000
0.0000
1.0000
247.6858
0.0000
Dec
655.7256
247.6858
264.7409
0.0000
0.0000 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) | | 9a. Energy re Fraction of s Fraction of s Efficiency of Efficiency of Space heating Water heating | requirement per m2 quirements | Tafter sol | ar contribu l heating s ry/suppleme stem 1 (in stem 2 (in ry heating Mar 387.2727 ing system 247.6858 stem) 156.3565 ing system 0.0000 stem 2) 0.0000 | ystems, inci- ntary system %) %) %) Apr 173.4455 170.0264 2) 0.0000 0.0000 | May 41.3438 247.6858 16.6920 0.0000 | Jun 0.0000 0.0000 0.0000 0.0000 0.0000 | Jul
0.0000
0.0000
0.0000
0.0000 | Aug
0.0000
0.0000
0.0000
0.0000 | Sep
0.0000
0.0000
0.0000
0.0000 | Oct
190.8551
247.6858
77.0553
0.0000 | Nov
426.4398
247.6858
172.1697
0.0000
0.0000 | 0.0000
1.0000
247.6858
0.0000
Dec
655.7256
247.6858
264.7409
0.0000
0.0000 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) | | Space heating 9a. Energy re Fraction of s Fraction of s Fraction of s Efficiency of Efficiency of Space heating Efficiency of | quirements quirements quirements quirements pace heat fi main space main space secondary/s Jan requirement 673.0450 efficiency 247.6858 fuel (main 271.7334 efficiency 0.0000 fuel (main 0.0000 fuel (main 0.0000 requirement 246.3650 water heatet 188.7089 r heating, l | Tafter sol | ar contribu | ystems, inci- ntary system %) %) %) Apr 173.4455 1) 247.6858 70.0264 2) 0.0000 0.0000 0.0000 | May 41.3438 247.6858 16.6920 0.0000 0.0000 203.5869 188.7089 | Jun 0.0000 0.0000 0.0000 0.0000 | Jul 0.0000 0.0000 0.0000 0.0000 0.0000 173.7989 | Aug 0.0000 0.0000 0.0000 0.0000 0.0000 | Sep
0.0000
0.0000
0.0000
0.0000
0.0000
187.2189 | Oct
190.8551
247.6858
77.0553
0.0000
0.0000 |
Nov
426.4398
247.6858
172.1697
0.0000
0.0000
223.1619 | 0.0000
1.0000
247.6858
0.0000
Dec
655.7256
247.6858
264.7409
0.0000
0.0000 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) (64) (216) (217) | | Space heating 9a. Energy re Fraction of s Fraction of s Fraction of s Efficiency of Efficiency of Efficiency of Space heating Space heating Space heating Space heating Space heating Space heating Efficiency of (217)m Fuel for wate Space cooling (221)m | quirements quirements quirements pace heat f; pace heat f; main space main space secondary/s Jan requirement 673.0450 efficiency 247.6858 fuel (main 271.7334 efficiency 0.0000 fuel (main 0.0000 fuel (secon 0.0000 requirement 246.3650 water heat 188.7089 reating, 1 130.5530 fuel require 0.0000 | Tafter sol Individua Indi | ar contribu l heating s ry/suppleme stem 1 (in stem 2 (in ry heating Mar 387.2727 ing system 247.6858 stem) 156.3565 ing system 0.0000 0.0000 231.8492 188.7089 122.8608 0.0000 | ystems, inci | May 41.3438 247.6858 16.6920 0.0000 0.0000 203.5869 188.7089 107.8841 0.0000 | Jun 0.0000 0.0000 0.0000 0.0000 0.0000 180.7208 188.7089 95.7670 0.0000 | Jul 0.0000 0.0000 0.0000 0.0000 0.0000 173.7989 188.7089 92.0989 0.0000 | Aug 0.0000 0.0000 0.0000 0.0000 0.0000 187.1869 188.7089 99.1935 0.0000 | Sep
0.0000
0.0000
0.0000
0.0000
0.0000
187.2189
188.7089
99.2104
0.0000 | Oct
190.8551
247.6858
77.0553
0.0000
0.0000
210.3436
188.7089
111.4646
0.0000 | Nov
426.4398
247.6858
172.1697
0.0000
0.0000
223.1619
188.7089
118.2572
0.0000 | 0.0000
1.0000
247.6858
0.0000
Dec
655.7256
247.6858
264.7409
0.0000
0.0000 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) (64) (216) (217) (219) (221) | | Space heating 9a. Energy re Fraction of s Fraction of s Efficiency of Efficiency of Efficiency of Space heating Water heating Water heating Efficiency of (217)m Fuel for wate Space cooling (221)m Pumps and Fa Lighting | quirements quirements quirements quirements pace heat fi main space main space secondary/s Jan requirement 673.0450 efficiency 247.6858 fuel (main 0.0000 fuel (main 0.0000 fuel (secon 0.0000 requirement 246.3650 water heat 188.7089 r heating, 130.5530 fuel requirement 0.0000 0.0000 31.1079 | Tafter solution to a feet a solution to a seconda crom main sy heating sy heating sy supplementa feb t 483.3998 (main heat 247.6858 heating sy 195.1666 (main heat 0.0000 heating sy 0.0000 to 217.9398 er 188.7089 kWh/month 115.4899 rement 0.0000 0.0000 24.9559 | ar contribu 1 heating s | ystems, inci- ystems, inci- ntary system % % % T73.4455 10 247.6858 70.0264 20 0.0000 0.0000 209.1766 188.7089 110.8462 0.0000 0.0000 10.4625 | May 41.3438 247.6858 16.6920 0.0000 0.0000 203.5869 188.7089 107.8841 0.0000 0.0000 | Jun 0.0000 0.0000 0.0000 0.0000 0.0000 180.7208 188.7089 95.7670 | Jul
0.0000
0.0000
0.0000
0.0000
0.0000
173.7989
188.7089
92.0989 | Aug
0.0000
0.0000
0.0000
0.0000
0.0000
187.1869
188.7089
99.1935 | Sep
0.0000
0.0000
0.0000
0.0000
0.0000
187.2189
188.7089
99.2104 | Oct
190.8551
247.6858
77.0553
0.0000
0.0000
210.3436
188.7089 | Nov
426.4398
247.6858
172.1697
0.0000
0.0000
223.1619
188.7089
118.2572 | 0.0000
1.0000
247.6858
0.0000
Dec
655.7256
247.6858
264.7409
0.0000
0.0000 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) (64) (216) (217) (219) (221) (231) | | Space heating 9a. Energy re | quirements quirement quire | Tafter solution to a feet a solution to the seconda cross and supplementa feb t 483.3998 (main heat 247.6858 heating sy 195.1666 (main heat 0.0000 heating sy 0.0000 the secondary) secondary 0 | ar contribu 1 heating s ry/suppleme stem 1 (in stem 2 (in ry heating Mar 387.2727 ing system 247.6858 stem) 156.3565 ing system 0.0000 0.0000 231.8492 188.7089 122.8608 0.0000 0.0000 22.4700 d.0000 22.4700 d.49.3127 | ystems, inci- ntary system %) %) %) %) %) ystems, inci- ntary system % Apr 173.4455 1) 247.6858 70.0264 2) 0.0000 0.0000 209.1766 188.7089 110.8462 0.0000 16.4625 atch -58.7771 | May 41.3438 247.6858 16.6920 0.0000 0.0000 203.5869 188.7089 107.8841 0.0000 12.7161 ity) -65.5787 | Jun 0.0000 0.0000 0.0000 0.0000 0.0000 180.7208 188.7089 95.7670 0.0000 10.3892 -61.7595 | Jul 0.0000 0.0000 0.0000 0.0000 173.7989 188.7089 92.0989 0.0000 0.0000 | Aug 0.0000 0.0000 0.0000 0.0000 187.1869 188.7089 99.1935 0.0000 0.0000 | Sep
0.0000
0.0000
0.0000
0.0000
0.0000
187.2189
188.7089
99.2104
0.0000
0.0000 | Oct
190.8551
247.6858
77.0553
0.0000
0.0000
210.3436
188.7089
111.4646
0.0000 | Nov 426.4398 247.6858 172.1697 0.0000 0.0000 223.1619 188.7089 118.2572 0.0000 0.0000 | 0.0000
0.0000
1.0000
247.6858
0.0000
Dec
655.7256
247.6858
264.7409
0.0000
0.0000 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) (64) (216) (217) (219) (221) (231) (232) | | Space heating 9a. Energy re Fraction of s Fraction of s Fraction of s Efficiency of Efficiency of Efficiency of Space heating Fraction of s Space heating Space heating Fraction of s Space heating Fraction of (217) m Fuel for wate Space cooling (221) m Fuel for wate Space cooling (233) m Electricity g (233a) m Electricity g (234a) m | requirement per m2 quirements | t after sol | ar contribu 1 heating s ry/suppleme stem 1 (in stem 2 (in ry heating Mar 387.2727 ing system 0.0000 0.0000 231.8492 188.7089 122.8608 0.0000 0.0000 dix M) (neg -49.3127 nes (Append | ystems, inci ntary system %) %) %) %ysystem, % Apr 173.4455 1) 247.6858 70.0264 2) 0.0000 0.0000 209.1766 188.7089 110.8462 0.0000 0.0000 10.64625 616.4625 ative quant: -58.7771 ix M) (negative of the company | May 41.3438 247.6858 16.6920 0.0000 0.0000 203.5869 188.7089 107.8841 0.0000 0.0000 12.7161 ity) -65.5787 ive quantive 0.0000 | Jun 0.0000 0.0000 0.0000 0.0000 0.0000 180.7208 188.7089 95.7670 0.0000 0.0000 10.3892 -61.7595 by) 0.0000 | Jul 0.0000 0.0000 0.0000 0.0000 0.0000 173.7989 188.7089 92.0989 0.0000 0.0000 11.6001 -60.8548 0.0000 | Aug 0.0000 0.0000 0.0000 0.0000 0.0000 187.1869 188.7089 99.1935 0.0000 0.0000 15.0782 | Sep
0.0000
0.0000
0.0000
0.0000
0.0000
187.2189
188.7089
99.2104
0.0000
0.0000
19.5851 | Oct 190.8551 247.6858 77.0553 0.0000 0.0000 210.3436 188.7089 111.4646 0.0000 0.0000 25.6967 | Nov 426.4398 247.6858 172.1697 0.0000 0.0000 223.1619 188.7089 118.2572 0.0000 0.0000 29.0244 | 3031.5275 32.9693 0.0000 1.0000 247.6858 0.0000 Dec 655.7256 247.6858 264.7409 0.0000 0.0000 245.7912 188.7089 188.7089 130.2489 0.0000 0.0000 31.9725 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) (64) (216) (217) (219) (221) (231) (232) (233a) | | Space heating 9a. Energy re Fraction of s Fraction of s Fraction of s Efficiency of Efficiency of Efficiency of Space heating Frace heating Space heating Space heating Space heating Space heating Efficiency of (21)m Fuel for wate Space cooling (221)m Pumps and Fa Lighting Electricity g (233a)m Electricity g Electricity g | quirements quirement quirem | t after sol | ar contribu 1 heating s | ystems, inci- ntary system %) %) %) %ystem, % Apr 173.4455 1) 247.6858 70.0264 2) 0.0000 0.0000 209.1766 188.7089 110.8462 0.0000 16.4625 ative quant: -58.7771 ix M) (negat 0.0000 tors (Appen: 0.0000 tors (Appen: 0.0000 | May 41.3438 247.6858 16.6920 0.0000 0.0000 203.5869 188.7089 107.8841 0.0000 0.27161 ity) -65.5787 cive quantif 0.0000 ix M) (negg | Jun 0.0000 0.0000 0.0000 0.0000 0.0000 180.7208 188.7089 95.7670 0.0000 10.3892 -61.7595 ty) 0.0000 attive quant. 0.0000 | Jul 0.0000 0.0000 0.0000 0.0000 173.7989 188.7089 92.0989 0.0000 11.6001 -60.8548 0.0000 ity) 0.0000 ye if net gr | Aug 0.0000 0.0000 0.0000 0.0000 0.0000 187.1869 188.7089 99.1935 0.0000 0.0000 15.0782 -55.9010 0.0000 | Sep
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
187.2189
188.7089
99.2104
0.0000
0.0000
19.5851
-47.1454 | Oct
190.8551
247.6858
77.0553
0.0000
0.0000
210.3436
188.7089
111.4646
0.0000
25.6967
-37.3828
0.0000
0.0000 | Nov
426.4398
247.6858
172.1697
0.0000
0.0000
223.1619
188.7089
118.2572
0.0000
29.0244
-23.4887 | 3031.5275 32.9693 0.0000 1.0000 247.6858 0.0000 Dec 655.7256 247.6858 264.7409 0.0000 0.0000 245.7912 188.7089 188.7089 130.2489 0.0000 0.0000 31.9725 -17.5738 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) (64) (217) (219) (221) (231) (232) (233a) (234a) | | Space heating | requirement per m2 quirements quirements pace heat fi deficiency 247.6858 fuel (main 217.7334 efficiency 0.0000 fuel (secon 0.0000 requirement 246.3650 requirement 188.7089 1 heating, l 13.1079 enerated by -20.6886 enerated by 0.0000 enerated by 0.0000 enerated by 0.0000 sed or net e 0.0000 enerated by 0.0000 | t after sol | ar contribu 1 heating s stem(s) stem(s) stem(s) stem 1 (in stem 2 (in ry heating Mar 387.2727 ing system 0.0000 co.0000 231.8492 188.7089 122.8608 0.0000 0.0000 22.4700 dix M) (neg -49.3127 nes (Append 0.0000 generated 1 0.0000 generated 3 0.00000 generated 3 0.0000 | ystems, inci ntary system %) %) %) %ystems, % Apr 173.4455 1) 247.6858 70.0264 2) 0.0000 0.0000 0.0000 209.1766 188.7089 110.8462 0.0000 16.4625 ative quant: -58.7771 ix M) (negat 0.0000 tors (Appencount) | May 41.3438 247.6858 16.6920 0.0000 0.0000 203.5869 188.7089 107.8841 0.0000 0.0000 ity) -65.5787 cive quanti 0.0000 ix M) (neg quanti 0.0000 (Appendix 0.0000) | Jun 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 180.7208 188.7089 95.7670 0.0000 0.0000 10.3892 -61.7595 ty) 0.0000 ative quant. 0.0000 N) (negation 0.0000 N) (negation 0.0000) | Jul 0.0000 0.0000 0.0000 0.0000 0.0000 173.7989 188.7089 92.0989 0.0000 0.0000 11.6001
-60.8548 0.0000 ity) 0.0000 ve if net go | Aug 0.0000 0.0000 0.0000 0.0000 0.0000 187.1869 188.7089 99.1935 0.0000 0.0000 15.0782 -55.9010 0.0000 0.0000 eneration) 0.0000 | Sep 0.0000 0.0000 0.0000 0.0000 0.0000 187.2189 188.7089 99.2104 0.0000 0.0000 19.5851 -47.1454 0.0000 0.0000 0.0000 | Oct 190.8551 247.6858 77.0553 0.0000 0.0000 210.3436 188.7089 111.4646 0.0000 25.6967 -37.3828 0.0000 0.0000 | Nov 426.4398 247.6858 172.1697 0.0000 0.0000 223.1619 188.7089 118.2572 0.0000 29.0244 -23.4887 0.0000 0.0000 0.0000 | 3031.5275 32.9693 0.0000 1.0000 247.6858 0.0000 Dec 655.7256 247.6858 264.7409 0.0000 0.0000 245.7912 188.7089 188.7089 130.2489 0.0000 0.0000 31.9725 -17.5738 0.0000 0.0000 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) (64) (216) (217) (219) (221) (231) (232) (233a) (234a) (235a) (235c) | | Space heating | requirements quirements quirements quirements pace heat fi main space main space main space secondary/s Jan requirement 673.0450 efficiency 247.6858 fuel (main 0.0000 fuel (main 0.0000 fuel (secon 0.0000 fuel (secon 188.7089 requirement 246.3650 water heat 188.7089 requirement 246.3650 water heat 188.7089 colono 0.0000 guel requirement 0.0000 onerated by -20.6886 enerated by 0.0000 | t after sol | ar contribu l heating s l heating s ry/suppleme stem 1 (in stem 2 (in ry heating Mar 387.2727 ing system 247.6858 stem) 156.3565 ing system 0.0000 0.0000 231.8492 188.7089 122.8608 0.0000 022.4700 dix M) (neg -49.3127 nes (Append 0.0000 tric genera 0.0000 dix M) (neg -20.4190 mes (Append 0.0000 dix M) (neg -20.4190 nes (Append | ystems, inci- ntary system %) %) %) %ystem, % Apr 173.4455 1) 247.6858 70.0264 2) 0.0000 0.0000 0.0000 209.1766 188.7089 110.8462 0.0000 16.4625 ative quant: -58.7771 ix M) (negative quant: -38.9052 0.0000 ative quant: -33.8052 ix M) (negative quant: | May 41.3438 247.6858 16.6920 0.0000 0.0000 0.0000 203.5869 188.7089 107.8841 0.0000 0.27161 ity) -65.5787 cive quanti 0.0000 ity) -48.0148 cive quanti 0.0000 ity) -48.0148 | Jun 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 180.7208 188.7089 95.7670 0.0000 0.03892 -61.7595 ty) 0.0000 ative quant 0.0000 N) (negati 0.0000 -49.5922 | Jul 0.0000 0.0000 0.0000 0.0000 0.0000 173.7989 188.7089 92.0989 0.0000 0.0000 11.6001 -60.8548 0.0000 ity) 0.0000 ve if net gr 0.00000 -49.1648 | Aug 0.0000 0.0000 0.0000 0.0000 0.0000 187.1869 188.7089 99.1935 0.0000 0.0000 15.0782 -55.9010 0.0000 0.0000 eneration) 0.0000 | Sep 0.0000 0.0000 0.0000 0.0000 0.0000 187.2189 188.7089 99.2104 0.0000 0.0000 19.5851 -47.1454 0.0000 0.0000 0.0000 0.0000 -29.2122 | Oct 190.8551 247.6858 77.0553 0.0000 0.0000 210.3436 188.7089 111.4646 0.0000 25.6967 -37.3828 0.0000 0.0000 0.0000 -15.2366 | Nov 426.4398 247.6858 172.1697 0.0000 0.0000 223.1619 188.7089 118.2572 0.0000 29.0244 -23.4887 0.0000 0.0000 0.0000 -5.9628 | 3031.5275 32.9693 0.0000 1.0000 247.6858 0.0000 Dec 655.7256 247.6858 264.7409 0.0000 0.0000 245.7912 188.7089 188.7089 130.2489 0.0000 0.0000 31.9725 -17.5738 0.0000 0.0000 -3.2602 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) (64) (216) (217) (219) (221) (2331) (233a) (234a) (235a) (235c) (233b) | | Space heating | quirements quirements quirements quirements quirements quirements quirements quirements quirement quiremen | t after sol | ar contribu 1 heating s 1 | ystems, inci | May 41.3438 247.6858 16.6920 0.0000 0.0000 0.0000 203.5869 188.7089 107.8841 0.0000 12.7161 ity) -65.5787 tive quanti 0.0000 ity) -48.0148 tive quanti 0.0000 ity) -48.0148 | Jun 0.0000 0.0000 0.0000 0.0000 0.0000 180.7208 188.7089 95.7670 0.0000 0.0000 10.3892 -61.7595 ty) 0.0000 ative quant 0.0000 N) (negati: 0.0000 -49.5922 ty) 0.0000 ative quant | Jul 0.0000 0.0000 0.0000 0.0000 173.7989 188.7089 92.0989 0.0000 0.0000 11.6001 -60.8548 0.0000 ve if net gr 0.0000 -49.1648 0.0000 | Aug 0.0000 0.0000 0.0000 0.0000 0.0000 187.1869 188.7089 99.1935 0.0000 0.0000 15.0782 -55.9010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | Sep 0.0000 0.0000 0.0000 0.0000 0.0000 187.2189 188.7089 99.2104 0.0000 0.0000 1.5851 -47.1454 0.0000 0.0000 0.0000 -29.2122 0.0000 | Oct 190.8551 247.6858 77.0553 0.0000 0.0000 210.3436 188.7089 111.4646 0.0000 0.0000 25.6967 -37.3828 0.0000 0.0000 -15.2366 0.0000 | Nov 426.4398 247.6858 172.1697 0.0000 0.0000 223.1619 188.7089 118.2572 0.0000 0.0000 29.0244 -23.4887 0.0000 0.0000 -5.9628 0.0000 | 3031.5275 32.9693 0.0000 1.0000 247.6858 0.0000 Dec 655.7256 247.6858 264.7409 0.0000 0.0000 245.7912 188.7089 188.7089 130.2489 0.0000 0.0000 31.9725 -17.5738 0.0000 0.0000 0.0000 -3.2602 0.0000 | (99) (201) (202) (206) (207) (208) (98) (210) (211) (212) (213) (215) (64) (216) (217) (219) (221) (231) (232) (233a) (234a) (235a) (235c) (233b) (234b) | | Space heating | requirement per m2 quirements | t after sol | ar contribu l heating s l heating s ry/suppleme stem 1 (in stem 2 (in ry heating Mar 387.2727 ing system 247.6858 stem) 156.3565 ing system 0.0000 0.0000 231.8492 188.7089 122.8608 0.0000 02.4700 dix M) (neg -49.3127 nes (Append 0.0000 dix M) (neg -20.4190 nes (Append 0.0000 dix M) (neg -20.0000 -20.00000 dix M) (neg -20.0000 dix M) (neg -20.0000 dix M) (neg -20.00000 dix M) (neg -20.00000 dix M) (neg -20.00000 dix M) (neg -20.00000 | ystems, inci- ntary system %) %) %) %ystem, % Apr 173.4455 1) 247.6858 70.0264 2) 0.0000 0.0000 0.0000 209.1766 188.7089 110.8462 0.0000 16.4625 ative quant: -58.7771 ix M) (negat 0.0000 tors (Appens 0.0000 ative quant: -33.8052 ix M) (negat 0.0000 ative quant: -33.8052 ix M) (negat 0.0000 tors (Appens | May 41.3438 247.6858 16.6920 0.0000 0.0000 0.0000 203.5869 188.7089 107.8841 0.0000 12.7161 ity) -65.5787 cive quanti 0.0000 ity) -48.0148 cive quanti 0.0000 ity) -48.0148 ive quanti 0.0000 ity) 1.0000 | Jun 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 180.7208 188.7089 95.7670 0.0000 10.3892 -61.7595 ty) 0.0000 ative quant. 0.0000 -49.5922 ty) 0.0000 ative quant. 0.0000 colour quant. 0.0000 10.0000 colour quant. 0.0000 colour quant. 0.0000 colour quant. 0.0000 colour quant. 0.0000 | Jul 0.0000 0.0000 0.0000 0.0000 0.0000 173.7989 188.7089 92.0989 0.0000 0.0000 11.6001 -60.8548 0.0000 ity) 0.0000 ve if net gr 0.0000 -49.1648 0.0000 ity) 0.0000 | Aug 0.0000 0.0000 0.0000 0.0000 0.0000 187.1869 188.7089 99.1935 0.0000 0.0000 15.0782 -55.9010 0.0000 0.0000 eneration) 0.0000 -40.7525 0.0000 0.0000 | Sep 0.0000 0.0000 0.0000 0.0000 0.0000 187.2189 188.7089 99.2104 0.0000 0.0000 19.5851 -47.1454 0.0000 0.0000 0.0000 0.0000 -29.2122 | Oct 190.8551 247.6858 77.0553 0.0000 0.0000 210.3436 188.7089 111.4646 0.0000 25.6967 -37.3828 0.0000 0.0000 0.0000 -15.2366 | Nov 426.4398 247.6858 172.1697 0.0000 0.0000 223.1619 188.7089 118.2572 0.0000 29.0244 -23.4887 0.0000 0.0000 0.0000 -5.9628 | 3031.5275 32.9693 0.0000 1.0000 247.6858 0.0000 Dec 655.7256 247.6858 264.7409 0.0000 0.0000 245.7912 188.7089 188.7089 130.2489 0.0000 0.0000 31.9725 -17.5738 0.0000 0.0000 -3.2602 | (201)
(202)
(206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(221)
(231)
(232)
(233a)
(235a)
(235a)
(235b) | SAP 10 Online 2.13.11 Page 3 of 7 | Space heating fuel - main system 1 Space heating fuel - main system 2 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel Electricity for pumps and fans: Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses | | | | 1223.9409
0.0000
0.0000
188.7089
1333.8746
0.0000
251.0584
-839.3408
0.0000
0.0000
0.0000
-0.0000
0.0000
1969.5330 | (213)
(215)
(219)
(221)
(231)
(232)
(233)
(234)
(235a)
(235a)
(235)
(236)
(237) | |--|--|--|----------------------------------|---|---| | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies | Energy
kWh/year
1223.9409
1333.8746
0.0000
251.0584 | kg CO2/kWh
0.1563
0.1408
0.0000
0.1443 | kg | Emissions
CO2/year
191.2888
0.0000
187.8229
379.1117
0.0000
36.2355 | (373)
(264)
(265)
(267) | | PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Dwelling Carbon Dioxide Emission Rate (DER) | -530.2265
-309.1143 | | | -70.7348
-38.1022
-108.8370
306.5101
3.3300 | (272) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting
Energy saving/generation technologies | Energy | 1.5207
0.0000 | : | ry energy
kWh/year
1932.1217
0.0000
0228.3682
3960.4899
0.0000
385.0818 | (473)
(278)
(279)
(281) | | PV Unit electricity used in dwelling PV Unit electricity exported Total Total Primary energy kWh/year Dwelling Primary energy Rate (DPER) | -530.2265
-309.1143 | | | -791.6190
-139.8203
-931.4394
3414.1323
37.1300 | (286) | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS | | | | | | | 1. Overall dwelling characteristics Ground floor First floor Second floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) Dwelling volume 91.9500 | 59.8100
27.2800 | | (2b) =
(2c) =
(2d) = | 161.4870
66.0176 | (1c) - (3c)
(1d) - (3d)
(4) | | 2. Ventilation rate | | | -2 | } | | | Number of open chimneys Number of open flues Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of blocked chimneys Number of intermittent extract fans Number of passive vents Number of flueless gas fires | | | 0 * 80 =
0 * 20 =
0 * 10 = | 0.0000
30.0000
0.0000 | (6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b) | | Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)+(7a)+$
Pressure test
Pressure Test Method
Measured/design AP50
Infiltration rate | (7b)+(7c) = | 30.0000 | Air changes
) / (5) =
Blo | per hour
0.1252
Yes
ower Door
5.0000
0.3752 | (17) | SAP 10 Online 2.13.11 Page 4 of 7 | Number of sides | sheltered | | | | | | | | | | | | (19) | |---|---|---|--|--|------------------------------|------------------------------|--|---|---|--|---|--|---| | Shelter factor
Infiltration rat | e adjusted | to includ | de shelter i | factor | | | | | (20) = 1 - | [0.075 x
1) = (18) | | 0.7750
0.2908 | | | Wind speed
Wind factor | Jan
5.1000
1.2750 | Feb
5.0000
1.2500 | Mar
4.9000
1.2250 | Apr
4.4000
1.1000 | May
4.3000
1.0750 | Jun
3.8000
0.9500 | Jul
3.8000
0.9500 | Aug
3.7000
0.9250 | Sep
4.0000
1.0000 | Oct
4.3000
1.0750 | Nov
4.5000
1.1250 | Dec
4.7000
1.1750 | | | Adj infilt rate
Effective ac | 0.3707
0.5687 | 0.3635
0.5661 | 0.3562
0.5634 | 0.3198
0.5511 | 0.3126
0.5489 | 0.2762
0.5382 | 0.2762
0.5382 | | | 0.3126
0.5489 | 3. Heat losses a | nd heat lo | ss paramet | er | | | | | | | | | | | | Element | | | | Gross
m2 | Openings
m2 | 2 | tArea
m2 | U-value
W/m2K | A x
W/ | K | -value
kJ/m2K | A x K
kJ/K | | | TER Opening Type
Exposed Floor
Cavity Wall
Sloping Wall
External Roof 1
Total net area o
Fabric heat loss
Party Wall 1 | f external | elements | Aum(A, m2) | 86.3300
13.0400
53.9800 | 14.9900 | 71
13
53
160 | .9900
.2200
.3400
.0400
.9800
.5700
(26)(5 | 1.1450
0.1300
0.1800
0.1800
0.1100
30) + (32) | | 6
2
2
8
9 | | | (27)
(28b)
(29a)
(29a)
(30)
(31)
(33)
(32) | | Thermal mass par | | IP = Cm / T | TFA) in kJ/r | n2K | | | | | | | | 362.4428 | (35) | | E3 Sill E4 Jamb E20 Expo E7 Party P7 Party P3 Party E16 Corn E25 Stag E18 Part E21 Expo P4 Party P8 Party E14 Flat R8 Roof | nt sed floor floor bet Wall - Ex wall - In Intels (wall - Intel floor bet wall - Intel floor bet wall bet wall bet wall - Ro wall - Ro floor wall - Ex roof to wall (r | (normal) ween dwell posed floo termediate) y wall bet ween dwell (inverted) of (insule posed floo after) | or (normal)
e floor betw
tween dwell:
lings | locks of fla
ween dwellir
ings
iling level) | gs (in bloo | cks of flat | s) | 8
8
23
3
31
4
14
16
26
5
1
14
4
24 | .2500
.2000
.2000
.1200
.4640
.4500
.4500
.6400
.8000
.2000
.5960
.4700
.3200 | si-value
0.0500
0.0500
0.0500
0.3200
0.1600
0.0900
0.0600
0.0600
0.1200
0.1200
0.1200
0.2400
0.0800
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600
0.0600 | Tot
0.41
0.41
1.18
0.99
2.20
0.74
0.00
1.49
1.60
0.31
0.48
1.73
1.10 | 00
00
35
84
27
27
00
80
20
00
88
80
30
76
89 | | | Thermal bridges
Point Thermal br
Total fabric hea | (Sum(L x P
idges | | | | | | | | | | (36a) =
+ (36a) = | 14.9078
0.0000 | | | Ventilation heat | loss calc | ulated mor | nthly (38)m
Mar | = 0.33 x (2 | 25)m x (5)
Mav | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Heat transfer co | 44.9777
eff
99.1144 | 44.7666
98.9034 | 44.5598
98.6965 | 43.5882
97.7249 | 43.4064
97.5432 | 42.5602
96.6969 | 42.5602
96.6969 | 42.4035
96.5402 | 42.8861
97.0229 | 43.4064
97.5432 | 43.7742
97.9109 | 44.1586
98.2954 | | | Average = Sum(39 |)m / 12 = | Feb | Mar | | | Jun | Jul | | | Oct | Nov | 97.7241 | | | HLP
HLP (average) | 1.0779 | 1.0756 | 1.0734 | Apr
1.0628 | May
1.0608 | 1.0516 | 1.0516 | Aug
1.0499 | Sep
1.0552 | 1.0608 | 1.0648 | Dec
1.0690
1.0628 | | | Days in mont | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | | | 4. Water heating | energy re | | |
) | | | | | | | | | | | Assumed occupanc
Hot water usage | for mixer | | 04.0505 | 01 0710 | 50 5400 | DE 5016 | B0 BB00 | TF 6000 | 77 7016 | 01 0501 | 04 0040 | 2.6515 | | | Hot water usage | 88.2264
for baths
0.0000 | | 84.9685
0.0000 | 0.0000 | 78.5438
0.0000 | 75.5016 | 73.7723 | 75.6898 | 77.7916
0.0000 | 0.0000 | 84.8342
0.0000 | 0.0000 | | | | for other 41.7838 | uses
40.2644 | 38.7450 | 37.2256 | | 34.1868 | 34.1868 | | 37.2256 | 38.7450 | 40.2644 | 41.7838 | (42c) | | Average daily ho | t water us
Jan | e (litres/
Feb | day)
Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | 119.3271
Dec | (43) | | | use
30.0103 | 127.1650 | 123.7135 | 118.4975 | 114.2500 | 109.6883 | 107.9591 | 111.3959 | 115.0172 | 119.8031 | 125.0986 | 129.6722 | | | Energy conte 2
Energy content (
Distribution los | annual) | | | 162.2171 | 153.8025 | 134.8746 | 130.5672 | 137.9315 | 141.8277 | | 178.2258
um(45)m = | | | | Water storage lo | 30.8857 | 27.1622 | 28.5215 | 24.3326 | 23.0704 | 20.2312 | 19.5851 | 20.6897 | 21.2742 | 24.3858 | 26.7339 | 30.4553 | (46) | | Store volume a) If manufactu Temperature fa Enter (49) or (5 Total storage lo | ctor from
4) in (55) | | actor is kno | own (kWh/da | чу): | | | | | | | 150.0000
1.3938
0.5400
0.7527 | (48)
(49) | | | 23.3325 | 21.0745
ated solar | 23.3325
storage | 22.5798 | 23.3325 | 22.5798 | 23.3325 | 23.3325 | 22.5798 | 23.3325 | 22.5798 | 23.3325 | (56) | | Primary loss
Combi loss | 23.3325
23.2624
0.0000 | 21.0745
21.0112
0.0000 | 23.3325
23.2624
0.0000 | 22.5798
22.5120
0.0000 | 23.3325
23.2624
0.0000 | 22.5798
22.5120
0.0000 | 23.3325
23.2624
0.0000 | 23.3325
23.2624
0.0000 | 22.5798
22.5120
0.0000 | 23.3325
23.2624
0.0000 | 22.5798
22.5120
0.0000 | 23.3325
23.2624
0.0000 | (59) | | WWHRS -
PV diverter
Solar input
FGHRS | 52.4994
40.3334 | 223.1669
-35.6712
-0.0000
0.0000 | 236.7379
-37.3529 | ed for each
207.3089
-30.9296
-0.0000
0.0000 | 200.3974
-28.8253 | | | | 186.9196
-25.5204
-0.0000
0.0000
0.0000 | -30.0858 | | 249.6303
-39.5865
-0.0000
0.0000
0.0000 | (63a)
(63b)
(63c) | | | | | 199.3851 | 176.3793 | 171.5721 | 155.3004 | 154.0416 | | 161.3992
er year (kWh | | | 2156.0381 | (64) | | 12Total per year
Electric shower(| | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 2156
0.0000 | (64) | | Heat gains from | | | | | | | | | wer(s) (kWh/ | | | 0.0000 | | SAP 10 Online 2.13.11 Page 5 of 7 | | 105.7392 | 93.8781 | 100.4985 | 90.0107 | 88.4152 | 80.9193 | 80.6895 | 83.1381 | 83.2312 | 91.3310 | 95.3336 | 104.7852 | (65) | |---|--------------------------|--------------------------|---------------------------|--------------------------|--------------------------------|-------------------------|---------------------------|--------------------|---------------------|----------------------------------|---------------------|---------------------------------------|----------------| | 5. Internal ga | | | | | | | | | | | | | | | Metabolic gair | | , Watts | | | | | | | C | 0-4 | V | D | | | (66)m
Lighting gains | 132.5741 | 132.5741 | 132.5741
 132.5741 | | | | | Sep
132.5741 | Oct
132.5741 | Nov
132.5741 | | (66) | | Appliances gai | 127.2048 | 140.8339 | 127.2048 | 131.4450 | 127.2048 | 131.4450 | 127.2048 | 127.2048 | 131.4450 | 127.2048 | 131.4450 | 127.2048 | (67) | | Cooking gains | 242.6198
(calculated | 245.1374
d in Append | 238.7931
lix L, equat: | 225.2867
ion L15 or 1 | 208.2373
L15a), also | 192.2133
see Table 5 | 181.5083
5 | | | 198.8414 | | 231.9148 | | | Pumps, fans | 36.2574
3.0000 | 36.2574
3.0000 | 36.2574
3.0000 | 36.2574
3.0000 | 36.2574
3.0000 | 36.2574
0.0000 | 36.2574
0.0000 | 36.2574
0.0000 | 36.2574
0.0000 | 36.2574
3.0000 | 36.2574
3.0000 | 36.2574
3.0000 | | | Losses e.g. ev
Water heating | -106.0593 | -106.0593 | | | -106.0593 | -106.0593 | -106.0593 | -106.0593 | -106.0593 | -106.0593 | -106.0593 | -106.0593 | (71) | | Total internal | 142.1225 | 139.6995 | 135.0786 | 125.0148 | 118.8377 | 112.3879 | 108.4536 | 111.7448 | 115.5989 | 122.7567 | 132.4077 | 140.8403 | (72) | | | | 591.4431 | 566.8487 | 547.5187 | 520.0521 | 498.8184 | 479.9390 | 480.7125 | 495.1511 | 514.5751 | 545.5157 | 565.7321 | (73) | | 6. Solar gains | 3 | | | | | | | | | | | | | | [Jan] | | | A | rea
m2 | Solar flux
Table 6a
W/m2 | Specif
or 1 | g
fic data
Table 6b | Specific
or Tab | FF
data
le 6c | Acces
facto
Table 6 | ss
or
id | Gains
W | | | Northeast | | | | | | | | | | | | | | | Southeast
Southwest | | | 2.30
1.00 | 800
600
 | 36.7938
36.7938 | | 0.6300
0.6300 | 0:
0: | .7000
.7000 | 0.770
0.770
0.770 | 10
10 | 26.7623
11.9194 | (77)
(79) | | Solar gains
Total gains | | | | | | | | | | | | | | | 7. Mean intern | | | | | | | | | | | | | | | Temperature du
Utilisation fa | actor for ga | ains for li | ving area, n | nil,m (see ' | Table 9a) | | | | | | | 21.0000 | (85) | | tau
alpha | Jan
93.4011 | Feb
93.6004 | Mar
93.7966 | Apr
94.7291 | May
94.9056 | Jun
95.7362 | Jul
95.7362 | Aug
95.8916 | Sep
95.4146 | Oct
94.9056 | Nov
94.5492 | Dec
94.1794 | | | util living ar | rea | | 0.9933 | 0.9640 | 0.8497 | 0.6314 | 0.4610 | | 0.8101 | 0.9808 | 0.9978 | | | | MIT | | 20.2569 | 20.4496 | 20.7252 | 20.9260 | 20.9926 | 20.9993 | | 20.9607 | 20.7030 | | | | | Th 2
util rest of h | | | 20.0226 | 20.0313 | 20.0330 | 20.0405 | 20.0405 | 20.0419 | | 20.0330 | | | | | MIT 2
Living area fr | 19.0132 | 0.9969
19.1743 | 0.9898
19.4208 | 0.9458
19.7662 | 0.7911
19.9801 | 0.5414
20.0375 | 0.3610
20.0404 | 0.4148
20.0416 | | 0.9675
19.7470
Living area | | 18.9944 | (90) | | MIT
Temperature ad | 19.3451 | 19.4955 | 19.7260 | 20.0508 | 20.2607 | 20.3209 | 20.3249 | 20.3255 | | 20.0307 | | | (92) | | adjusted MIT | 19.3451 | 19.4955 | 19.7260 | 20.0508 | 20.2607 | 20.3209 | 20.3249 | 20.3255 | 20.2968 | 20.0307 | 19.6399 | 19.3262 | (93) | | 8. Space heati | ing require | nent | | | | | | | | | | | | | Utilisation | Jan
0.9985 | Feb
0.9962 | Mar
0.9884 | Apr
0.9463 | May
0.8062 | Jun
0.5682 | Jul
0.3907 | Aug
0.4469 | Sep
0.7485 | Oct
0.9674 | Nov
0.9958 | Dec
0.9989 | (94) | | Useful gains
Ext temp. | 655.2518 | 735.5760 | 793.7790 | 850.8043 | | 549.3161
14.6000 | | | | 664.1153
10.6000 | | 630.6473 | (95) | | | 1491.1909 | 1443.5434 | 1305.3629 | 1089.7065 | 835.0394 | 553.1912 | 360.1867 | 378.9659 | 601.2294 | 919.8963 | 1227.7950 | 1486.8361 | (97) | | Space heating
Space heating | 621.9387 | | 380.6185
er year (kW) | | 40.9112 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 190.3010 | 423.7455 | 637.0045
2942.2832 | | | Solar heating | 0.0000
contribution | 0.0000
on - total | | 0.0000
Wh/year) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating
Space heating
Space heating | 621.9387
requirement | 475.7541
after sol | 380.6185
ar contribu | 172.0096
tion - tota | 40.9112
1 per year | 0.0000
(kWh/year) | 0.0000 | 0.0000 | 0.0000 | 190.3010
(98c) | 423.7455
/ (4) = | 2942.2832 | | | 9a. Energy req | | | | | | | | | | | | | | | Fraction of sp | ace heat fi | rom seconda | ry/supplemen | | | | | | | | | 0.0000 | | | Fraction of sp
Efficiency of
Efficiency of
Efficiency of | main space
main space | heating sy
heating sy | stem 1 (in stem 2 (in | %) | | | | | | | | 1.0000
92.3000
0.0000
0.0000 | (206)
(207) | | Space hostin- | Jan
remuirement | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating Space heating | 621.9387 | 475.7541 | 380.6185 | | 40.9112 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 190.3010 | 423.7455 | 637.0045 | (98) | | Space heating | 92.3000
fuel (main | 92.3000
heating sy | 92.3000
stem) | 92.3000 | 92.3000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 92.3000 | 92.3000 | 92.3000 | (210) | | Space heating | 673.8231
efficiency | 515.4432
(main heat | 412.3710
ing system 2 | 2) | 44.3241 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 206.1766 | | 690.1457 | | | Space heating | | heating sy | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating | fuel (secon | ndary) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 3.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 3.0000 | 0.0000 | (213) | SAP 10 Online 2.13.11 Page 6 of 7 | Water heating | | | | | | | |---|---|--------------|--|-----------|---|--| | Water heating requirement 212.1659 187.4957 199.3851 176.3793 171.5721 155.3004 154. | 0416 159.9401 | 161.3992 | 179.0808 | 189.2342 | | | | Efficiency of water heater (217)m 86.3236 86.0563 85.4857 84.0035 81.3882 79.8000 79. | 8000 79.8000 | 79.8000 | 84.1963 | 85.8123 | 79.8000
86.3841 | | | Fuel for water heating, kWh/month 245.7798 217.8756 233.2380 209.9665 210.8070 194.6121 193. | 0346 200.4261 | 202.2546 | 212.6944 | 220.5211 | 243.1509 | (219) | | Space cooling fuel requirement (221)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (221) | | Pumps and Fa 7.3041 6.5973 7.3041 7.0685 7.3041 7.0685 7.5
Lighting 26.4306 21.2036 19.0915 13.9873 10.8042 8.8271 9.5 | 3041 7.3041
8559 12.8111 | | 7.3041
21.8331 | | 7.3041
27.1652 | | | Electricity generated by PVs (Appendix M) (negative quantity) (233a)m -30.8211 -44.6104 -65.8046 -75.9780 -83.6196 -78.6382 -77. | | | | | -26.5114 | | | Electricity generated by wind turbines (Appendix M) (negative quantity) (234a)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity generated by hydro-electric generators (Appendix M) (negative quantity) | 0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity used or net electricity generated by micro-CHP (Appendix N) (negative if | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity generated by PVs (Appendix M) (negative quantity) (233b)m -14.0566 -29.9011 -60.0562 -91.1267 -121.4089 -122.3440 -120. | | | | | -11.0925 | | | Electricity generated by wind turbines (Appendix M) (negative quantity) | 0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity generated by hydro-electric generators (Appendix M) (negative quantity) (235b)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity used or net electricity generated by micro-CHP (Appendix N) (negative if 1 (235d)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | net generation) | | 0.0000 | 0.0000 | | | | Annual totals kWh/year | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating fuel - main system 1
Space heating fuel - main system 2 | | | | | 3187.7391 | (213) | | Space heating fuel - secondary
Efficiency of water heater | | | | | 0.0000
79.8000 | | | Water heating fuel used
Space cooling fuel | | | | | 2584.3607
0.0000 | | | Electricity for pumps and fans: | | | | | | | | Total electricity for the above, kWh/year
Electricity for lighting (calculated in Appendix L) |
 | | | 86.0000
213.3105 | | | Energy saving/generation technologies (Appendices M ,N and Q) | | | | | | | | PV generation Wind generation | | | | | -1514.9530
0.0000 | | | Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) | | | | | 0.0000 | | | | | | | | | | | Appendix Q - special features Energy saved or generated | | | | | -0.0000 | (236) | | Energy saved or generated
Energy used | | | | | 0.0000 | (237) | | Energy saved or generated | | | | | | (237) | | Energy saved or generated
Energy used | | | | | 0.0000 | (237) | | Energy saved or generated Energy used Total delivered energy for all uses | | | | | 0.0000
4556.4572 | (237) | | Energy saved or generated Energy used Total delivered energy for all uses | Energy
kWh/year | | ion factor
kg CO2/kWh | | 0.0000 | (237) | | Energy saved or generated Energy used Total delivered energy for all uses |
Energy | | kg CO2/kWh
0.2100 | k | 0.0000
4556.4572
Emissions | (237)
(238) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 | Energy
kWh/year | 1 | 0.2100 | k | 0.0000
4556.4572
Emissions
g CO2/year
669.4252
0.0000
542.7158 | (237)
(238)
(261)
(373)
(264) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot | Energy
kWh/year
3187.7391 | 1 | 0.2100 | k | 0.0000
4556.4572
Emissions
g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293 | (237)
(238)
(261)
(373)
(264)
(265)
(267) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting | Energy
kWh/year
3187.7391
2584.3607
86.0000 | 1 | kg CO2/kWh
0.2100 | k | 0.0000
4556.4572
Emissions
g CO2/year
669.4252
0.0000
542.7158
1212.1410 | (237)
(238)
(261)
(373)
(264)
(265)
(267) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105 | 1 | 0.2100
0.2100
0.2100
0.1387
0.1443 | k | 0.0000
4556.4572
Emissions
g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873 | (237)
(238)
(261)
(373)
(264)
(265)
(267) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105 | 1 | 0.2100
0.2100
0.2100
0.1387
0.1443 | k | 0.0000
4556.4572
Emissions
g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873
-94.6205
-101.6121
-196.2326 | (261)
(373)
(264)
(267)
(268) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system l Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105 | 1 | 0.2100
0.2100
0.2100
0.1387
0.1443 | k | 0.0000
4556.4572
Emissions
g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105 | 1 | 0.2100
0.2100
0.2100
0.1387
0.1443 | k | 0.0000
4556.4572
Emissions
g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873
-94.6205
-101.6121
-196.2326
1058.6249 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105 | 1 | 0.2100
0.2100
0.2100
0.1387
0.1443 | k | 0.0000
4556.4572
Emissions
g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873
-94.6205
-101.6121
-196.2326
1058.6249 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year | Energy
kWh/year
3187.7391
2584.3607
86.0000
213.3105
-705.8886
-809.0645 | 1 | CO2/kWh
0.2100
0.2100
0.1387
0.1443
0.1340
0.1256 | k | 0.0000 4556.4572 Emissions g CO2/year 669.4252 0.0000 542.7158 1212.1410 11.9293 30.7873 -94.6205 -101.6121 -196.2326 1058.6249 11.5100 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) | Energy kWh/year 3187.7391 2584.3607 86.0000 213.3105 -705.8886 -809.0645 | Primary enem | 0.2100
0.2100
0.2100
0.1387
0.1443 | k | 0.0000
4556.4572
Emissions
g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.9293
30.7873
-94.6205
-101.6121
-196.2326
1058.6249 | (261)
(373)
(264)
(264)
(267)
(268)
(269)
(272)
(273) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems | Energy kWh/year 3187.7391 2584.3607 86.0000 213.3105 -705.8886 -809.0645 Energy kWh/year 3187.7391 | Primary ene | CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1340 0.1256 crgy factor kg CO2/kWh 1.1300 | k | Emissions
g CO2/year
669.4252
0.0000
542.7158
1212.1410
11.923
30.7873
-94.6205
-101.6121
-196.2326
1058.6249
11.5100
ary energy
kWh/year
3602.1451
0.0000 | (261)
(373)
(264)
(265)
(268)
(269)
(272)
(273) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating (other fuel) Space and water heating | Energy kWh/year 3187.7391 2584.3607 86.0000 213.3105 -705.8886 -809.0645
Energy kWh/year 3187.7391 2584.3607 | Primary ene: | cg CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1340 0.1256 cgg factor kg CO2/kWh 1.1300 1.1300 | k
Prim | 0.0000 4556.4572 Emissions g CO2/year 669.4252 0.0000 542.7158 1212.1410 11.9293 30.7873 -94.6205 -101.6121 -196.2326 1058.6249 11.5100 ary energy kWh/year 3602.1451 0.0000 2920.3276 6522.4728 | (261)
(373)
(264)
(265)
(267)
(268)
(272)
(273)
(273)
(275)
(473)
(279) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) | Energy kWh/year 3187.7391 2584.3607 86.0000 213.3105 -705.8886 -809.0645 Energy kWh/year 3187.7391 | Primary ene: | CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1340 0.1256 crgy factor kg CO2/kWh 1.1300 | k | 0.0000 4556.4572 Emissions g CO2/year 669.4252 0.0000 542.7158 1212.1410 11.9293 30.7873 -94.6205 -101.6121 -196.2326 1058.6249 11.5100 ary energy kWh/year 3602.1451 0.0000 02920.3276 | (261)
(373)
(261)
(373)
(264)
(265)
(267)
(268)
(272)
(273)
(273)
(273) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies | Energy kWh/year 3187.7391 2584.3607 86.0000 213.3105 -705.8886 -809.0645 Energy kWh/year 3187.7391 2584.3607 86.0000 213.3105 | Primary ener | cg CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1340 0.1256 cg CO2/kWh 1.1300 1.5128 1.5338 | Prim | 0.0000 4556.4572 Emissions g CO2/year 669.4252 0.0000 542.7158 1212.1410 11.9293 30.7873 -94.6205 -101.6121 -196.2326 1058.6249 11.5100 ary energy kWh/year 3602.1451 0.0000 2920.3276 6522.4728 130.10827 | (261)
(373)
(261)
(373)
(264)
(265)
(267)
(268)
(272)
(273)
(273)
(273) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling | Energy kWh/year 3187.7391 2584.3607 86.0000 213.3105 -705.8886 -809.0645 Energy kWh/year 3187.7391 2584.3607 86.0000 | Primary ene) | CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1340 0.1256 crgy factor kg CO2/kWh 1.1300 1.5128 | Prim | 0.0000 4556.4572 Emissions g CO2/year 669.4252 0.0000 542.7158 1212.1410 11.9293 30.7873 -94.6205 -101.6121 -196.2326 1058.6249 11.5100 ary energy kWh/year 3602.1451 0.0000 2920.3276 6522.4728 130.1008 327.1827 | (261)
(373)
(261)
(373)
(264)
(265)
(267)
(268)
(272)
(273)
(273)
(273)
(278)
(278)
(278)
(278)
(281)
(282) | | Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP 13a. Carbon dioxide emissions - Individual heating systems including micro-CHP 15pace heating - main system 1 Total CO2 associated with community systems Water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling | Energy kWh/year 3187.7391 2584.3607 86.0000 213.3105 -705.8886 -809.0645 Energy kWh/year 3187.7391 2584.3607 86.0000 213.3105 -705.8886 | Primary ene) | rgy factor rgy factor 1.1300 1.1300 1.1300 1.1300 1.1300 1.1300 1.14954 | Prim | 0.0000 4556.4572 Emissions g CO2/year 669.4252 0.0000 542.7158 1212.1410 11.9293 30.7873 -94.6205 -101.6121 -196.2326 1058.6249 11.5100 ary energy kWh/year 3602.1451 0.0000 2920.3276 6522.4728 130.1008 327.1827 | (261)
(373)
(264)
(265)
(267)
(268)
(272)
(273)
(273)
(273)
(273)
(273)
(279)
(281)
(282) | SAP 10 Online 2.13.11 Page 7 of 7 | Dwelling Address | Unit 1, Highland Square , Bristol | |------------------------------|-----------------------------------| | Report Date | 05/03/2024 | | Property Type | Maisonette, Mid-Terrace | | Floor Area [m ²] | 92 | This document is not an Energy Performance Certificat EPC) s required by the Energy Performance of Buildings Reg io SAP 10 Online 2.13.11 Page 1 of 4 #### Breakdown of property's energy performance Each feature is assessed as one of the following: | Very Poor | Poor | Average | Good | Very Good | | | | |-----------------------|--------------------------|--------------------------|------|-------------------|--|--|--| | Feature | Description | | | gy
Performance | | | | | Walls | Average thermal transmi | ttance 0.18 W/m²K | 5/// | Very Good | | | | | Roof | Average thermal transmi | ttance 0.11 W/m²K | | Very Good | | | | | Floor | Average thermal transmi | Very Good | | | | | | | Windows | High performance glazin | High performance glazing | | | | | | | Main heating | Air source heat pump, ra | diators, electric | | Good | | | | | Main heating controls | Time and temperature z | contro | | Very Good | | | | | Secondary heating | None | | | | | | | | Hot water | From main sys m | From main sys m | | | | | | | Lighting | Good ligh g efficien | | | Good | | | | | Air tightness | Air perme 50] = | 4.5 h.m² (assumed) | | Good | | | | #### Primary Energy use The primary energy use for this property per year is 33 kilowatt hour (kWh) per square metre #### Estim ted CO₂ missions of the dwelling The estimated ing provides an indication of the dwelling's impact on the environment in terms of carbon dioxide emissions; the higher the rating the less impact it has on the environment. The estimated CO emissions for this dwellings is: 0.3 per year SAP 10 Online 2.13.11 Page 2 of 4 With the recommended measures the potential CO emissions could be: (per year #### Recommendations The recommended measures provided below will help to improve the energy efficiency of the dwelli To reach the dwelling's potential energy rating all of the recommended measures shown would d to be installed. Having these measures installed individually or in any other order may give a different result omp d with the cumulative potential rating. | Recommended measure | Typical | Potential Rati | C ulative | Cumulative | |---------------------|---------|----------------|------------|------------| | | Yearly | after | avings | Potential | | | Saving | measure insta | (per year) | Rating | #### Estimated energy use and potential aving Estimated energy cost for this property over a year £654 Over a year you could save £0 The estimated cost and saving how how much the average hou ld would spend in this property heating, lighting and hot water. It not based on how e is used by the people living at the pr #### Containg the ssessor and the accreditation scheme | As | sessor contact details | |---------------------------------|------------------------| | Assessor name | | | Assessor's accreditation number | | | Email Address | | SAP 10 Online 2.13.11 Page 3 of 4 | Accreditation scheme contact details | | | | | | | | |--------------------------------------|-----------------------------|--|--|--|--|--|--| | Accreditation scheme | Elmhurst Energy Systems Ltd | | | | | | | | Telephone | | | | | | | | | Email Address | | | | | | | | | Assessment details | | | | | | | | |--------------------------|---------------|--|--|--|--|--|--| | Related party disclosure | No related pa | | | | | | | | Date of assessment | 05/03/202 | | | | | | | | Date of certificate | 05/03/202 | | | | | | | | Type of assessment | SAP w dwellin | | | | | | | #### **Building Regulations England Part L (BREL) Compliance Report** Approved Document L1 2021 Edition, England assessed by Array SAP 10 program, Array Date: Tue 05 Mar 2024 08:41:59 | Project Information | | | | | | | | |---------------------|------------|-----------------|---------------------------|--|--|--|--| | Assessed By | | Building Type | Maisonette, Semi-detached | | | | | | OCDEA Registration | EES/025661 | Assessment Date | 2024-03-05 | | | | | |
Dwelling Details | | | | |-------------------------|--------------------------------|------------------|--------------------| | Assessment Type | As designed | Total Floor Area | 100 m ² | | Site Reference | Unit 6 (HMO) | Plot Reference | Residual | | Address | Unit 1 Highland Square, Bristo | l | | | Client Details | | |----------------|---| | Name | Tebby & Son | | Company | SF Tebby & Son | | Address | Unit 11 Avon Gorge Industrial Estate , Bristol, BS2 9XX | This report covers items included within the SAP calculations. It is not a complete report of regulations compliance. | 1a Target emission rate and dwelling emission | rate | | | | | | |---|---|----|--|--|--|--| | Fuel for main heating system | Electricity | | | | | | | Target carbon dioxide emission rate | 10.1 kgCO ₂ /m ² | | | | | | | Dwelling carbon dioxide emission rate | 3.97 kgCO ₂ /m ² | ОК | | | | | | 1b Target primary energy rate and dwelling primary energy | | | | | | | | Target primary energy | 52.7 kWh _{PE} /m ² | | | | | | | Dwelling primary energy | 41.55 kWh _{PE} /m ² | ОК | | | | | | 1c Target fabric energy efficiency and dwelling | fabric energy efficiency | | | | | | | Target fabric energy efficiency | 33.7 kWh/m ² | | | | | | | Dwelling fabric energy efficiency | 32.4 kWh/m ² | ОК | | | | | | 2a Fabric U-values | • | | | | |----------------------------------|---|----------------------------------|---|-----| | Element | Maximum permitted average U-Value [W/m²K] | Dwelling average U-Value [W/m²K] | Element with highest individual U-Value | | | External walls | 0.26 | 0.18 | Walls (1) (0.18) | OK | | Party walls | 0.2 | 0 | Party Wall (1) (0) | N/A | | Curtain walls | 1.6 | 0 | N/A | N/A | | Floors | 0.18 | 0.14 | Exposed Floor (0.18) | OK | | Roofs | 0.16 | 0.11 | Roof (1) (0.11) | OK | | Windows, doors, and roof windows | 1.6 | 1.31 | W01 (1.31) | OK | | Rooflights | 2.2 | N/A | N/A | N/A | | 2b Envelope elements (better than typically expected values are flagged with a subsequent (!)) | | | | | | | | | |--|----------------------------|------------------------------|--|--|--|--|--|--| | Name | Net area [m ²] | U-Value [W/m ² K] | | | | | | | | Exposed wall: Walls (1) | 55.27 | 0.18 | | | | | | | | Exposed wall: Walls (2) | 4.11 | 0.18 | | | | | | | | Party wall: Party Wall (1) | 133.64 | 0 (!) | | | | | | | | Ground floor: Heatloss Floor 1, Heatloss Floor 1 | 52.33 | 0.13 | | | | | | | | Upper floor: Exposed Floor, Exposed Floor | 9.59 | 0.18 | | | | | | | | Exposed roof: Roof (1) | 18.06 | 0.11 | | | | | | | | 2c Openings (better than typically expected values are flagged with a subsequent (!)) | | | | | | | | | |---|------------------------|-------------|--------------|------------------------------|--|--|--|--| | Name | Area [m ²] | Orientation | Frame factor | U-Value [W/m ² K] | | | | | | W01, Windows | 3.48 | South West | 0.7 | 1.31 | | | | | | W02, Windows | 3.48 | North West | 0.7 | 1.31 | | | | | | W03, Windows | 3.48 | North West | 0.7 | 1.31 | | | | | | W04, Windows | 3.48 | South West | 0.7 | 1.31 | | | | | | W05, Windows | 3.49 | South West | 0.7 | 1.31 | | | | | | W06, Windows | 1.26 | South West | 0.7 | 1.31 | | | | | | 2d Thermal bridging (better than typically expected values are flagged with a subsequent (!)) | |---| | Building part 1 - Main Dwelling: Thermal bridging calculated from linear thermal transmittances for each junction | | Main element | Junction detail | Source | Psi value
[W/mK] | Drawing / reference | | |---------------|---|--|---------------------|---------------------|--| | External wall | E2: Other lintels (including other steel lintels) | Not government-approved scheme | 0.023 (!) | | | | External wall | E3: Sill | Calculated by person with suitable expertise | | | | | External wall | E4: Jamb | Calculated by person with suitable expertise | 0.016 (!) | | | | External wall | E24: Eaves (insulation at ceiling level - inverted) | SAP table default | 0.15 | | | | Party wall | P3: Intermediate floor between dwellings (in blocks of flats) | SAP table default | 0 (!) | | | | External wall | E16: Corner (normal) | Calculated by person with suitable expertise | 0.043 | | | | External wall | E25: Staggered party wall between dwellings | Calculated by person with suitable expertise | 0.036 (!) | | | | External wall | E18: Party wall between dwellings | Calculated by person with suitable expertise | 0.046 | | | | External wall | E14: Flat roof | SAP table default | 0.16 | | | | External wall | E17: Corner (inverted - internal area greater than external area) | Calculated by person with suitable expertise | -0.073 | | | | Party wall | P1: Ground floor | Calculated by person with suitable expertise | 0.093 | | | | Party wall | P5: Roof (insulation at rafter level) | Calculated by person with suitable expertise | 0.101 | | | | External wall | E5: Ground floor (normal) | Calculated by person with suitable expertise | 0.047 | Marmox Spec | | | External wall | E20: Exposed floor (normal) | Calculated by person with suitable expertise | 0.116 | | | | External wall | E21: Exposed floor (inverted) | SAP table default | 0.32 | | | | External wall | E22: Basement floor | Calculated by person with suitable expertise | -0.08 | | | | External wall | E19: Ground floor (inverted) | SAP table default | 0.1 | | | | External wall | E6: Intermediate floor within a dwelling | Calculated by person with suitable expertise | 0.001 (!) | | | | Party wall | P7: Exposed floor (normal) | Calculated by person with suitable expertise | 0.185 | | | | Party wall | P8: Exposed floor (inverted) | Calculated by person with suitable expertise | 0.185 | | | | 3 Air permeability (better than typically expected values are flagged with a subsequent (!)) | | | | | | | |--|--|----|--|--|--|--| | Maximum permitted air permeability at 50Pa 8 m³/hm² | | | | | | | | Dwelling air permeability at 50Pa | 4.5 m ³ /hm ² , Design value | OK | | | | | | Air permeability test certificate reference | | | | | | | | 4 Space heating | | | | | | | | |---------------------------------------|---|--|--|--|--|--|--| | Main heating system 1: Heat pump with | Main heating system 1: Heat pump with radiators or underfloor heating - Electricity | | | | | | | | Efficiency | 248.6% | | | | | | | | Emitter type | Radiators | | | | | | | | Flow temperature | 55°C | | | | | | | | System type | Heat Pump | | | | | | | | Manufacturer | Atlantic | | | | | | | | Model | Logic Air 8kW | | | | | | | | Commissioning | | | | | | | | | Secondary heating system: N/A | | | | | | | | | Fuel | N/A | | | | | | | | Efficiency | N/A | | | | | | | | Commissioning | | | | | | | | | 5 Hot water | | | | |--|------------------------|--|----------| | Cylinder/store - type: Cylinder | | | | | Capacity | 150 litres | | | | Declared heat loss | 2.09 kWh/day | | | | Primary pipework insulated | Yes | | | | Manufacturer | | | | | Model | | | | | Commissioning | | | | | Waste water heat recovery system 1 - | type: N/A | | | | Efficiency | | | | | Manufacturer | | | | | Model | | | | | 6 Controls | | | | | | ature zone control by | arrangement of plumbing and electrical s | ervices | | Function | ataro zono controi by | arrangement of planteing and electrical e | 01 11000 | | Ecodesign class | | | | | Manufacturer | | | | | Model | | | | | Water heating - type: Cylinder thermosta | t and HW separately | timed | | | Manufacturer | at and rive separately | umeu | | | Model | | | | | Model | | | | | 7 Lighting | | | | | Minimum permitted light source efficacy | 75 lm/W | | | | Lowest light source efficacy | 80 lm/W | | OK | | External lights control | N/A | | | | O Machanical vandilation | | | | | 8 Mechanical ventilation | | | | | System type: N/A | A / / A | | | | Maximum permitted specific fan power | N/A | | N1/A | | Specific fan power | N/A | | N/A | | Minimum permitted heat recovery | N/A | | | | efficiency | 21/2 | | 1 | | Heat recovery efficiency | N/A | | N/A | | Manufacturer/Model | | | | | Commissioning | | | | | 9 Local generation | | | | | N/A | | | | | | | | | | 10 Heat networks | | | | | N/A | | | | | 11 Supporting documentary evidence | | | | | N/A | | | | | | | | | | 12 Declarations | | | | | a. Assessor Declaration | | | | | | | intents of this BREL Compliance Report | | | | | nformation submitted for this dwelling for | | | | | and that the supporting documentary | | | evidence (SAP Conventions, Appendi | x 1 (documentary evi | dence) schedules the minimum | | | documentary evidence required) has | been reviewed in the | course of preparing this BREL | | | Compliance Report. | | | | | | | | | | | | | | | Signed: | | Assessor ID: | | | | | | | | | | | | | Name: | | Date: | | | | | | | | b. Client Declaration | | | | | N/A | | | | | Post Defense | | | | | | | | | | | - d D-4- | | | | |------------------------------------|-------------------------------|------------|-----------------------------------|--------------------|---
--|--|----------------------------|----------------------------|--|--|------------------------|--|----------------------------| | Property Reference | | 6 (HMO) | | | | | | _ | D (| | ed on Date | 00. | 03/2024 | | | Assessment Reference | | idual | | | | | Pro | р Туре | Ref | Tebby | and Son G | arage | | | | Property | Unit | 1, Highla | nd Square | , Bristol | | | | | | | | | | | | SAP Rating | | | | 83 B | | DER | | 3.9 | 7 | | TER | • | 10.10 | | | Environmental | | | | 96 A | | % DER | < TER | | | | | (| 60.69 | | | CO ₂ Emissions (t/year) | | | | 0.37 | | DFEE | | 32.3 | 38 | | TFEE | ; | 33.69 | | | Compliance Check | | | | See BR | REL | % DFE | E < TFEI | E | | | | | 3.91 | | | % DPER < TPER | | | | 21.16 | | DPER | | 41. | 55 | | TPER | | 52.70 | | | Assessor Details | | | | | | | | | | | Assesso | r ID | J367-00 | 001 | | Client | | | | | | | | | | | | | | | | SUMMARY FOR INPU | T DATA FO | DR: Nev | v Build (A | As Desi | gned) | | | | | | | | | | | Orientation | | | • | Northea | | | | | | | | | | | | Property Tenture | | | | 1 | 151 | | | | | | | | | | | Transaction Type | | | | 6 | | | | | | | | | | | | Terrain Type | | | | Urban | | | | | | | | | | | | 1.0 Property Type | | | | | ette, Semi-De | tached | | | | | | | | | | Position of Flat | | | | | -floor flat | | | | | | | | | | | Which Floor | | | | 1 | | | | | | | | | | | | 2.0 Number of Storeys | | | | 2 | | | | | | | | | | | | 3.0 Date Built | | | | 2024 | | | | | | | | | | | | 3.0 Property Age Band | | | | L | | | | | | | | | | | | 4.0 Sheltered Sides | | | | 3 | | | | | | | | | | | | 5.0 Sunlight/Shade | | | | Average or unknown | | | | | | | | | | | | 6.0 Thermal Mass Parame | ter | | | Precise | calculation | | | | | | | | | | | Thermal Mass | | | | N/A | | | | | | | kJ/m²K | | | | | 7.0 Electricity Tariff | | | | Standar | rd | | | | | | | | | | | Smart electricity meter fi | itted | | | No | | | | | | | | | | | | Smart gas meter fitted | | | | No | | | | | | | | | | | | 7.0 Measurements | Basemer
Ground floo
1st Store
2nd Store
3rd Store
4th Store
5th Store
6th Store
7th Store | nt:
vr:
y:
y:
y:
y:
y:
y: | 1 Loss Pe
0.00 n
19.20 r
13.06 r
18.05 r
0.00 n
0.00 n
0.00 n | n
m
m
m
n
n | er In | 0.00
52.3
47.7
27.2
0.00
0.00
0.00 | loor Area) m² 3 m² 8 m² 8 m² 0 | Avera | 9e Store 0.00 r 2.50 r 2.70 r 2.42 r 0.00 r 0.00 r 0.00 r 0.00 r | n
n
n
n
n
n | | 8.0 Living Area | | | | 17.50 | | | | | | | m² | | | | | 9.0 External Walls Description | Туре | Constr | uction | | | | Kappa
(kJ/m²K) | | Nett Area
) (m²) | Shelter
Res | Shelter | Openii | ngs Area | Calculation
Type | | | Cavity Wall | filled ca | wity, any outs | ide structure | | 0.18 | 150.00 | 73.94 | 55.27 | 0.00 | None | 18.6 | | r Gross Area | | Basement Wall | Cavity Wall | | wall : plasterb
wity, any outs | | os, dense block,
e | 0.18 | 150.00 | 4.11 | 4.11 | 0.00 | None | 0.00 | Ente | r Gross Area | | 9.1 Party Walls | | | | | | | | | | | | | | | | Description Party Wall 1 | Type Filled Ca Edge Se | avity with | Single pla | | d on both side | es, dense | cellular t | olocks, | U-Value
(W/m²K)
0.00 | | K) (m²) | Shelter
Res
0.00 | | helter
None | | 9.2 Internal Walls
Description | 2490 00 | | Construct | ion | | | | | | | | | арра | Area (m² | | Internal Wall 1 | | | Dense bloo | ck, dense | plaster | | | | | | | | /m²K)
00.00 | 135.60 | SAP 10 Online 2.13.11 Page 1 of 4 | 10.0 External Roofs
Description | Туре | Construc | tion | | | Kappa
kJ/m²K)A | | Nett
Area | | Shelte
Factor | | onOpening | |--|--|-----------------------|---|--|---|---|--|--|--|---|--------------------------------------|--| | External Roof 1 | External Flat
Roof | Plasterbo | ard, in | sulated flat roof | 0.11 | 9.00 | 18.06 | (m²)
18.06 | None | 0.00 | Enter Gro | ss 0.00 | | 10.1 Party Ceilings
Description | | Const | ructio | n | | | | | | | Kappa
(kJ/m²K) | Area (m²) | | Party Ceiling 1 | | Precas | st cond | crete planks floor, screed, | carpeted | | | | | | 30.00 | 43.86 | | 10.2 Internal Ceilings Description Internal Ceiling 1 | | Storey
Lowest occu | ıpied | Construction
Other | | | | | | | | ea (m²)
38.19 | | 11.0 Heat Loss Floors Description | Туре | Storey Index | ĸ | Construction | | | /alue | Sh | elter Code | | | pa Area(m | | Heatloss Floor 1
Exposed Floor | Ground Floor - Soli
Exposed Floor -
Solid | d Lowest occu
+1 | pied | Suspended concrete floor, carp
Other | peted | 0 | m²K)
.13
.18 | | None
None | ' | Factor (kJ/n
0.00 75.
0.00 40. | 00 52.33 | | 11.2 Internal Floors Description Internal Floor 1 | | Storey
Index | Cons | struction
r | | | | | | | Kappa
(kJ/m²K
40.00 | Area (m²
)
38.19 | | 12.0 Opening Types | | | | | | | | | | | | | | Description Windows | Data Source
Manufacturer | Type
Window | | Glazing Double Low-F Soft | 0.05 | Glazing
Gap | Filli ı
Typ
Air Fi | e | G-value
0.63 | Frame
Type
Wood | Frame
Factor
0.70 | U Value
(W/m²K)
1.31 | | SOlid dooor | Manufacturer | Solid Doo | Г | Bodbic Low-L Cont | 0.00 | | Air Fi | | 0.00 | Wood | 0.70 | 1.31 | | 13.0 Openings Name W01 W02 W03 W04 W05 W06 | Opening Ty
Windows
Windows
Windows
Windows
Windows | ype | | Location Cavity Wall Cavity Wall Cavity Wall Cavity Wall Cavity Wall Cavity Wall | | Souti
North
North
Souti
Souti | ntation
h West
h West
h West
h West
h West | | Area (
3.48
3.48
3.48
3.48
1.26 | 3 ° 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | Р | itch
0
0
0
0
0 | | 7700 | Willdows | | | Cavity Wall | | Souti | i west | | 1.20 | • | | U | | 14.0 Conservatory | | | | None | | | | | | | | | | 15.0 Draught Proofing | | | Ĺ | 100 | | | | | % | | | | | 16.0 Draught Lobby | | | | No | | | | | | | | | | 17.0 Thermal Bridging | | | | Calculate Bridges | | | | | | | | | | 17.1 List of Bridges | | | | | | | | | • | | | | | Bridge Type E2 Other lintels (includi E3 Sill E4 Jamb E24 Eaves (insulation a P3 Party wall - Intermed | at ceiling level - inv | verted) | Non
Inder
Inder
Table | rce Type Gov Approved Schemes bendently assessed bendently assessed to EK1 - Default to K1 - Default | Length
9.19
9.19
25.20
7.26
40.59 | Psi
0.02
0.02
0.02
0.15
0.00 | Adjus
0.0
0.0
0.0
0.1
0.0 | 2
2
2
5 | eference: | | | Imported
No
No
No
No
No | | (in blocks of flats) E16 Corner (normal) E25 Staggered party w E18 Party wall between E14 Flat roof E17 Corner (inverted – | dwellings | | Inde
Inde
Table | pendently assessed
pendently assessed
pendently assessed
e K1 - Default
pendently assessed | 11.40
6.40
13.90
6.90
7.70 | 0.04
0.04
0.05
0.16
-0.07 | 0.0
0.0
0.0
0.1
-0.0 | 4
5
6 | | | | No
No
No
No
No | | external area) P1 Party wall - Ground P5 Party wall - Roof (in: E5 Ground floor (norma
E20 Exposed floor (norma
E21 Exposed floor (inve
E22 Basement floor
E19 Ground floor (inve
E6 Intermediate floor w
P7 Party Wall - Expose
P8 Party Wall - Expose | sulation at rafter le
al)
mal)
erted)
ted)
ithin a dwelling
d floor (normal) | evel) | Inde
Inde
Inde
Table
Inde
Inde
Inde | pendently assessed
pendently assessed
pendently assessed
pendently assessed
e K1 - Default
pendently assessed
e K1 - Default
pendently assessed
pendently assessed
pendently assessed
pendently assessed | 27.54
6.50
13.88
2.16
5.04
4.11
4.11
10.91
4.34
0.93 | 0.09
0.10
0.05
0.12
0.32
-0.08
0.10
0.00
0.18
0.18 | 0.0
0.1
0.0
0.1
0.3
-0.0
0.1
0.0
0.1 | 0
5 M
2
2
8
0
0
8 | larmox Sp | ec | | No
No
No
No
No
No
No
No | | Y-value | | | | 0.07 | | | | | W/m²K | | | | | 18.0 Pressure Testing | | | | Yes | | | | |] | | | | | Designed AP ₅₀ | | | | 4.50 | | | | |]
 m³/(h.m² | 2) ക 50 | Pa | | | Property Tested? | | | | Yes | | | | |] | , w 50 | . ч | | | Test Method | | | | Blower Door | | | | |] | | | | | | | | L | | | | | | J | | | | SAP 10 Online 2.13.11 Page 2 of 4 | Mechanical Ventilation Mechanical Ventilation System Present | No | | | | | | | |---|------------------|-----------------------|-----|--------------------------
-----------|-------------|-----------------| | | 140 | | | | | | | | 20.0 Fans, Open Fireplaces, Flues | | | | | | | | | 21.0 Fixed Cooling System | No | | | | | | | | 22.0 Lighting | | | | | _ | | | | No Fixed Lighting | No Name | Efficacy | Por | wer | | pacity | Count | | | Lighting 1 | 80.00 | | 5 | 0 | 1200 | 5 | | 24.0 Main Heating 1 | Database | | | | | | | | Percentage of Heat | 100.00 | | | | % | | | | Database Ref. No. | 106764 | | | | | | | | Fuel Type | Electricity | | | | | | | | SAP Code | 0 | | | | | | | | In Winter | 248.59 | | | | | | | | In Summer | 188.24 | | | | | | | | Model Name | Logic Air 8kW | | | | | | | | Manufacturer | Atlantic | | | | | | | | System Type | Heat Pump | | | | | | | | Controls SAP Code | 2207 | | | | | | | | Delayed Start Stat | No | | | | | | | | HETAS approved System | No | | | | | | | | Oil Pump Inside | No | | | | | | | | FI Case | 0.00 | | | | | | | | Flue Type | None or Unknown | 1 | | | | | | | Fan Assisted Flue | No | | | | | | | | Is MHS Pumped | Pump in heated s | pace | | | | | | | Heating Pump Age | 2013 or later | • | | | | | | | Heat Emitter | Radiators | | | | | | | | Flow Temperature | Enter value | | | | | | | | Flow Temperature Value | 55.00 | | | | | | | | Boiler Interlock | No | | | | | | | | 25.0 Main Heating 2 | None | | | | | | | | | | | | | | | | | 26.0 Heat Networks | None | | | | | | | | Heat Source Fuel Type Heating U | Jse Efficiency | Percentage Of
Heat | P | leat El
ower
Ratio | lectrical | Fuel Factor | Efficiency type | | Heat source 1 None
Heat source 2 None | | | | | | | | | Heat source 3 None | | | | | | | | | Heat source 4 None Heat source 5 None | | | | | | | | | 28.0 Water Heating | | | | | | | | | Water Heating | Main Heating 1 | | | | | | | | SAP Code | 901 | | | | | | | | Flue Gas Heat Recovery System | No | | | | | | | | Waste Water Heat Recovery Instantaneous System 1 | No | | | | | | | | Waste Water Heat Recovery Instantaneous System 2 | No | | | | | | | | Waste Water Heat Recovery Storage System | No | | | | | | | | | | | | | | | | | Solar Panel | No | | | | | | | | Solar Panel Water use <= 125 litres/person/day | No
Yes | | | | | | | SAP 10 Online 2.13.11 Page 3 of 4 Cold Water Source From header tank **Bath Count** Supplementary Immersion No No Immersion Only Heating Hot Water 28.1 Showers **Shower Type** Description Flow Rate Rated Power Connected Connected To [l/min] [kW] Combi boiler or unvented hot water system Combi boiler or unvented hot water system Combi boiler or unvented hot water system 7.00 7.00 1 2 3 No No 7.00 28.3 Waste Water Heat Recovery System 29.0 Hot Water Cylinder Hot Water Cylinder Cylinder Stat Yes Yes Cylinder In Heated Space Independent Time Control Yes Insulation Type Measured Loss Cylinder Volume 150.00 Loss kWh/day Pipes insulation Fully insulated primary pipework In Airing Cupboard 31.0 Thermal Store None 34.0 Small-scale Hydro None **Electricity Generated** 0.00 0.00 Apportioned kWh/Year Connected to dwelling's electricity meter Yes **Electricity Generation Annual** Mar Apr May Jun Aug Oct Nov Dec Recommendations Lower cost measures None Further measures to achieve even higher standards | | Timinal Cont | Torrigal and the second | Ratings af | ter improvement | |---------------------|--------------|--------------------------|------------|----------------------| | | Typical Cost | Typical savings per year | SAP rating | Environmental Impact | | Solar water heating | | | 0 | 0 | | _ | | | 0 | 0 | | | | | 0 | 0 | Page 4 of 4 SAP 10 Online 2.13.11 | Property Reference | | | Jnit 6 (HMO) | | | | | | | Issued on Da | | 05/03/2024 | | |---|--|-------------------------------------|-------------------------|---|---------------------------|--|-------------------------|--|---|---|--|--|--| | Assessment Refer | rence | | Residual | | | | | Prop Type R | lef Te | ebby and Son | Garage | | | | Property | | | Jnit 1, Highland | Square , Bristol | | | | | | | | | | | SAP Rating | | | | | 83 B | | DER | 3.9 | 97 | TER | | 10.10 | | | Environmental | | | | | 96 A | | % DER < TER | ₹ | | | | 60.69 | | | CO ₂ Emissions (t/) | year) | | | | 0.37 | | DFEE | 32 | .38 | TFEE | | 33.69 | | | Compliance Chec | k | | | | See BREL | | % DFEE < TF | EE | | | | 3.91 | | | % DPER < TPER | | | | | 21.16 | | DPER | 41 | .55 | TPER | 1 | 52.70 | | | Assessor Details | | | | | | | | | | Asse | ssor ID | U367-000 |)1 | | SAP 10 WORKSHEET | FOR New R | build /Ac | Designed) | (Version 10 | 2 February | 7 2022) | | | | | | | | | CALCULATION OF D | | | | | | , 2022)
 | | | | | | | | | 1. Overall dwell | ing charac | teristic |
3 | | | | | | | | | | | | Ground floor
First floor
Total floor area
Dwelling volume | TFA = (la | i)+(1b)+(| lc)+(ld)+(le |)(ln) | 10 | 00.1100 | | 47.7800 | | 2.7000 | (2b) =
(2c) = | Volume
(m3)
130.8250
129.0060
259.8310 | (lb) - (3
(lc) - (3
(4) | | 2. Ventilation r | ate | | | | | | | | | | I | n3 per hour | | | Number of open of
Number of open f
Number of filmes
Number of flues
Number of blocke
Number of interm
Number of passiv
Number of fluele | lues ys / flues attached t attached t d chimneys ittent ext e vents | o solid :
o other !
ract fan: | fuel boiler
neater | fire | | | | | | | 0 * 35 =
0 * 20 =
4 * 10 = | 0.0000
0.0000
0.0000
0.0000
40.0000
0.0000 | (6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b) | | Infiltration due
Pressure test
Pressure Test Me
Measured/design
Infiltration rat
Number of sides | thod
AP50 | ys, flue: | s and fans | = (6a)+(6b) | +(6c)+(6d)+(| (6e) + (6f) + (| (6g)+(7a)+(| 7b)+(7c) = | | | / (5) = | 0.1539
Yes
310wer Door
4.5000
0.3789 | (8) | | Shelter factor
Infiltration rat | e adjusted | l to incl | ude shelter | factor | | | | | (20) = 1 - (2) | [0.075 x
1) = (18) | (19)] =
x (20) = | 0.7750
0.2937 | | | Wind speed
Wind factor
Adj infilt rate | | | Mar
4.9000
1.2250 | | | Jun
3.8000
0.9500 | Jul
3.8000
0.9500 | | Sep
4.0000
1.0000 | Oct
4.3000
1.0750 | | | | | | 0.3744 | | 0.3598
0.5647 | | | 0.2790
0.5389 | 0.2790
0.5389 | | 0.2937
0.5431 | | | | | | 3. Heat losses a | nd heat lo | ss parame | eter | | | | | | | | | | | | Windows (Uw = 1.
Heatloss Floor 1
Exposed Floor
Cavity Wall
Basement Wall
External Roof 1
Total net area of
Fabric heat loss
Party Wall 1
Party Ceiling 1
Internal Wall 1
Internal Floor 1
Internal Ceiling | f external, W/K = Su | element:
m (A x U | s Aum(A, m2) | Gross
m2
73.9400
4.1100
18.0600 | Openings
m2
18.6700 | 18.
52.
9.
55.
4.
18.
158.
133.
43.
135.
38. | 1100
0600
0300 | W/m2K
1.2448
0.1300
0.1800
0.1800
0.1800
0.1100
(30) + (32)
0.0000 | W/1/
23.239
6.802:
1.726:
9.948:
0.739:
1.986:
= 44.444:
0.000: | K 1 9 9 9 9 7 1 1 2 2 4 1 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 | 0.0000
0.0000
9.0000
0.0000
0.0000
0.0000
0.0000 | 383.6000
8290.5000
616.5000
162.5400
9354.8000
1315.8000
13560.0000
1527.6000 | (27)
(28a)
(28b)
(29a)
(29a)
(30)
(31)
(33)
(32)
(32b)
(32c)
(32d)
(32e) | | Heat capacity Cm
Thermal mass par
List of Thermal
K1 Eleme
E2 Other | ameter (TM
Bridges
nt | IP = Cm / | TFA) in kJ/ | | | | | | (30) + (32)
Length P:
9.1850 |) + (32a).
si-value
0.0230 | (32e) =
Tot
0.21 | 406.1901 | | SAP 10 Online 2.13.11 Page 1 of 7 | P3 Party E16 Corr E25 Stag E18 Part E14 Flat E17 Corr P1 Party P5 Party E5 Grour E20 Expc E21 Expc E22 Base E19 Grour E6 Inter P7 Party Prarty P8 Party Thermal bridges | E4 Jamb E24 Laves (insulation at ceiling level - inverted) E24 Eaves (insulation at ceiling level - inverted) F3 Party wall - Intermediate floor between dwellings (in blocks of flats) E16 Corner (normal) E25 Staggered party wall between dwellings E25 Staggered party wall between dwellings E18 Party wall between dwellings E18 Party wall between dwellings E19 Farty wall between dwellings E10 Corner (inverted - internal area greater than external area) E17 Corner (inverted - internal area greater than external area) E18 Farty wall - Ground floor E19 Farty wall - Roof (insulation at rafter level) E59 Ground floor (normal) E20 Exposed floor (normal) E21 Exposed floor (inverted) E22 Exposed floor (inverted) E23 Basement floor E40 Ground floor (inverted) E51 Ground floor (inverted) E62 Intermediate floor within a dwelling E70 Farty Wall - Exposed floor (normal) E61 Intermediate floor within a dwelling E70 Farty Wall - Exposed floor (normal) E70 Farty Wall - Exposed floor (normal) E71 Farty Wall - Exposed floor (normal) E72 Farty Wall - Exposed floor (normal) E73 Farty Wall - Exposed floor (normal) E74 Farty Wall - Exposed floor (normal) E75 Farty Wall - Exposed floor (normal) E77 Farty Wall - Exposed floor (normal) E78 Farty Wall - Exposed floor (normal) E79 Farty Wall - Exposed floor (normal) E70 E71
Farty Wall - Exposed floor (normal) E72 Farty Wall - Exposed floor (normal) E73 Farty Wall - Exposed floor (normal) | | | | | | | | | | 0.19
0.40
1.08
0.00
0.49
0.23
0.63
1.10
-0.56
2.56
0.65
0.65
0.25
1.61
-0.32
0.41
0.01 | 32
90
00
02
04
94
40
21
12
22
65
24
06
28
88
10
09 | (36) | |---|---|-------------------------|-------------------------|------------------------|-------------------------|-------------------------|----------------------|----------------------|----------------------|-----------------------------------|--|--|--------------| | | | | | | | | | | (| 33) + (36) | | 55.0438 | (37) | | Ventilation heat
(38)m
Heat transfer co | Jan
48.8832
eff | Feb
48.6498 | Mar
48.4210 | Apr
47.3464 | May
47.1453 | Jun
46.2093 | Jul
46.2093 | Aug
46.0360 | Sep
46.5698 | Oct
47.1453 | Nov
47.5520 | Dec
47.9773 | | | Average = Sum(39 | | 103.6936 | 103.4648 | 102.3901 | 102.1891 | 101.2531 | 101.2531 | 101.0797 | 101.6136 | 102.1891 | 102.5958 | 103.0210
102.3892 | (39) | | HLP
HLP (average)
Days in mont | Jan
1.0381
31 | Feb
1.0358
28 | Mar
1.0335
31 | Apr
1.0228 | May
1.0208 | Jun
1.0114
30 | Jul
1.0114
31 | Aug
1.0097
31 | Sep
1.0150
30 | Oct
1.0208
31 | Nov
1.0248
30 | Dec
1.0291
1.0228
31 | (40) | | | | | | | | | | | | | | | | | 4. Water heating | | | | | | | | | | | | | | | Assumed occupance Hot water usage | for mixer | showers | 04 5455 | 03 4054 | 70 7607 | 74 0205 | 71 0150 | 75 4500 | 77 2200 | 01 0154 | 04.0500 | 2.7405 | | | Hot water usage | 87.8734
for baths
0.0000 | | 0.0000 | 0.0000 | 78.7627
0.0000 | 74.9396
0.0000 | 71.9158 | 75.4508
0.0000 | 77.2288 | 0.0000 | 0.0000 | 87.7942
0.0000 | | | Hot water usage | | | 39.5907 | 38.0382 | 36.4856 | 34.9330 | 34.9330 | 36.4856 | 38.0382 | 39.5907 | 41.1433 | 42.6959 | | | Average daily ho | | | | 0010002 | 0011000 | 0113000 | 0113000 | 0011000 | 0010002 | 03.0307 | 1111100 | 119.8269 | | | Daily hot water | Jan
use | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Energy conte 1
Energy content (| 192.2206
(annual) | 127.6714
168.9351 | 177.3881 | 119.5336
156.1408 | 115.2483
148.5091 | 109.8726
127.0641 | 106.8488
118.0711 | 111.9364
131.7512 | 115.2670
133.7039 | 120.6061
155.4132
Total = S | 126.1021
170.4312
Sum(45)m = | 130.4901
191.6343
1871.2626 | (45) | | | 28.8331 | | 26.6082 | 23.4211 | 22.2764 | 19.0596 | 17.7107 | 19.7627 | 20.0556 | 23.3120 | 25.5647 | 28.7451 | (46) | | Water storage lo
Store volume
a) If manufactu
Temperature fa
Enter (49) or (5 | urer decla
actor from
54) in (55 | Table 2b | actor is kno | own (kWh/d | ay): | | | | | | | 150.0000
2.0900
0.5400
1.1286 | (48)
(49) | | Total storage lo | 34.9866 | 31.6008 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | (56) | | _ | 34.9866
23.2624 | 31.6008
21.0112 | 34.9866
23.2624 | 33.8580
22.5120 | 34.9866
23.2624 | 33.8580
22.5120 | 34.9866
23.2624 | 34.9866
23.2624 | 33.8580
22.5120 | 34.9866
23.2624 | 33.8580
22.5120 | 34.9866
23.2624 | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | 0.0000 | 221.5471
0.0000 | 235.6371
0.0000 | 212.5108
0.0000 | 206.7581
0.0000 | 183.4341 | 176.3201
0.0000 | 190.0002
0.0000 | 190.0739 | 213.6622
0.0000 | 226.8012
0.0000 | 249.8833
0.0000 | | | Solar input | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Output from w/h | | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | | | | 0.0000 | | | | | 12Total per year | r (kWh/yea | | 235.6371 | 212.5108 | 206.7581 | 183.4341 | 176.3201 | | | | 226.8012
Sum(64)m = | | (64) | | Electric shower | 0.0000 | 0.0000 | 0.0000 | | | 0.0000
sed by inst | | 0.0000 | | | 0.0000
m(64a)m = | 0.0000 | | | Heat gains from 1 | water hea
110.5126 | ting, kWh/m
98.2605 | nonth
105.5807 | | | | | | | | 101.7644 | | | | | | | | | | | | | | | | | | | 5. Internal gain | ns (see Ta | ble 5 and 5 | āa) | | | | | | | | | | | | Metabolic gains | (Table 5) | Watte | Mar | | May | | Jul | Aug | Sep | Oct | Nov | Dec | | | (66)m l | 137.0271 | 137.0271 | 137.0271 | 137.0271 | 137.0271 | 137.0271 | 137.0271 | 137.0271 | 137.0271 | | 137.0271 | | (66) | | Appliances gains | 31.4313
(calcula | 145.5132
ted in Appe | 131.4313
endix L, eq | 135.8123
uation L13 | 131.4313
or L13a), a | 135.8123
lso see Tab | 131.4313
le 5 | | | | | 131.4313 | (67) | | Cooking gains (c | 256.5055 | 259.1672 | 252.4597 | 238.1804 | 220.1552 | 203.2141 | 191.8964 | 189.2347 | 195.9421 | 210.2215 | 228.2467 | 245.1878 | (68) | | Pumps, fans | 36.7027
0.0000 | 36.7027
0.0000 | 36.7027
0.0000 | 36.7027
0.0000 | 36.7027
0.0000 | | | 36.7027
0.0000 | 36.7027
0.0000 | 36.7027
0.0000 | | 36.7027
0.0000 | | | | 109.6217 | -109.6217 | | | -109.6217 | -109.6217 | -109.6217 | -109.6217 | -109.6217 | -109.6217 | -109.6217 | -109.6217 | (71) | | | 148.5384 | | 141.9096 | 134.7400 | 129.0033 | 121.3122 | 115.4003 | 121.5141 | 124.3785 | 132.0888 | 141.3394 | 148.2763 | (72) | | Total internal o | gains
500.5832 | 615.0095 | 589.9087 | 572.8408 | 544.6979 | 524.4467 | 502.8361 | 506.2881 | 520.2411 | 537.8497 | 569.5065 | 589.0035 | (73) | | | | | | | | | | | | | | | | | 6. Solar gains | SAP 10 Online 2.13.11 Page 2 of 7 | [Jan] | | | | rea
m2 | Solar flux
Table 6a
W/m2 | Speci
or | g
fic data
Table 6b | Specific
or Tab | FF
data
le 6c | Acce
fact
Table | or | Gains
W | | |---|--|---|--|----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------|--------------------------------------|--------------------------------------|-------------------------------------|--|-------------------------| | Southwest
Northwest | | | 11.7
6.9 | 100 | | | 0.6300
0.6300 | 0 | .7000
.7000 | 0.77
0.77 | | 131.6751
23.9996 | | | Solar gains
Total gains | | | | | | | | | | | | | | | 7. Mean inter | | | ing season) | | | | | | | | | | | | Temperature of | | | | | | Thl (C) | | | | | | 21.0000 | (85) | | tau | Jan
108.6866 | Feb
108.9313 | Mar
109.1721 | Apr
110.3180 | May
110.5350 | 111.5568 | | | | | | Dec
109.6424 | | | alpha
util living a | 8.2458
area | 8.2621
0.9974 | | 8.3545
0.9388 | 8.3690
0.7837 | 8.4371
0.5594 | 8.4371
0.4033 | | 8.4107
0.7157 | 8.3690
0.9659 | 8.3398
0.9976 | 8.3095
0.9996 | (86) | | Living
Non living
24 / 16 | | | | 20.8482 | 20.9727 | 20.9984 | 20.9999 | 20.9998 | 20.9896 | 20.8207 | 20.5120 | 20.2654 | | | Non living
24 / 16
24 / 9 | | | | 19.9299
0
0 | 0 | 20.0733
0
0 | 20.0738
0
0 | 0 | 0 | 0 | 0 | 19.2069
0
0 | | | 16 / 9
MIT | 28
20.6358 | 0
20.4304 | 20.6175 | 0
20.8482 | 20.9727 | 0
20.9984 | 0
20.9999 | 0
20.9998 | 0
20.9896 | 0
20.8207 | 0
20.5120 | 10
20.3682 | (87) | | Th 2
util rest of | | 20.0536
0.9961 | | 20.0644
0.9103 | 20.0661
0.7184 | 20.0738 | 20.0738 | 20.0753
0.3591 | 20.0708
0.6272 | 20.0661
0.9431 | | 20.0592
0.9994 | | | MIT 2
Living area f
 19.7240
fraction | 19.4131 | 19.6505 | 19.9299 | | 20.0733 | 20.0738 | 20.0752 | 20.0664 | 19.9072
Living are | 19.5252
a / (4) = | 19.3605
0.1748 | (90)
(91) | | MIT
Temperature a
adjusted MIT | adjustment | | | 20.0905 | 20.2106 | 20.2350 | 20.2357 | 20.2368 | 20.2278 | | 19.6977 | 19.5366
0.0000
19.5366 | | | aajastea mii | 15.0054 | 13.3310 | 15.0150 | 20.0303 | 20.2100 | 20.2550 | 20.2557 | 20.2300 | 20.2270 | 20.0003 | 15.0577 | 13.3300 | (55) | | 8. Space heat | ting require | ment | 0 | | | | | Utilisation
Useful gains
Ext temp. | 755.5015 | | 966.5951 | | May
0.7291
849.2738
11.7000 | Jun
0.4936
569.8046
14.6000 | Jul
0.3333
368.1029
16.6000 | | Sep
0.6427
616.8190
14.1000 | Oct
0.9431
797.3193
10.6000 | Nov
0.9952
753.7583
7.1000 | Dec
0.9992
720.7087
4.2000 | (95) | | Heat loss rat | te W
1619.5341 | | 1378.1075 | | | 570.5607 | 368.1261 | 387.8277 | 622.6641 | | 1292.4684 | | | | Space heating
Space heating | 642.8402 | | 306.1652
per vear (kW | | 15.1913 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 126.5476 | 387.8712 | 639.3081
2652.5029 | (98a) | | Solar heating | g kWh
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Solar heating
Space heating | g kWh | | 306.1652 | - | 15.1913 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 126.5476 | 387.8712 | | | | Space heating
Space heating | | t after sol | lar contribu | tion - tota | l per year | (kWh/year) | | | | (98c |) / (4) = | 2652.5029
26.4959 | | | | | | | | | | | | | | | | | | 9a. Energy re | equirements | - Individua | al heating s | ystems, inc | luding micr | o-CHP | | | | | | | | | Fraction of s
Fraction of s
Efficiency of
Efficiency of
Efficiency of | space heat f
f main space
f main space | rom main sy
heating sy
heating sy | ystem(s)
ystem 1 (in
ystem 2 (in | 용)
용) | m (Table 11 |) | | | | | | 0.0000
1.0000
248.5876
0.0000
0.0000 | (202)
(206)
(207) | | Space heating | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating | 642.8402 | 429.7618 | 306.1652
ting system | | 15.1913 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 126.5476 | 387.8712 | 639.3081 | (98) | | Space heating | 248.5876
g fuel (main | 248.5876
heating sy | 248.5876
ystem) | 248.5876 | 248.5876 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 248.5876 | 248.5876 | 248.5876 | | | Space heating | | | | 42.1652
2)
0.0000 | 6.1111
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating | | | ystem 2) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating | g fuel (seco
0.0000 | ndary)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating | g requiremen | | | | | | | | | | | | | | Efficiency of | f water heat | 221.5471
er
188.2367 | | 212.5108
188.2367 | 206.7581
188.2367 | 183.4341
188.2367 | 176.3201
188.2367 | 190.0002
188.2367 | 190.0739
188.2367 | 213.6622
188.2367 | 226.8012
188.2367 | 249.8833
188.2367
188.2367 | (216) | | Fuel for wate | er heating, | kWh/month | | 112.8955 | | 97.4486 | 93.6693 | 100.9368 | 100.2367 | 113.5072 | 120.4872 | 132.7495 | | | Space cooling
(221)m | g fuel requi
0.0000 | rement
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (221) | | Pumps and Fa
Lighting
Electricity | 32.7159 | 0.0000
26.2459
PVs (Apper | 23.6315 | 0.0000
17.3135
ative quant | 0.0000
13.3734
ity) | 0.0000
10.9262 | 0.0000
12.1997 | 0.0000
15.8576 | 0.0000
20.5975 | 0.0000
27.0250 | 0.0000
30.5246 | 0.0000
33.6251 | | | (233a)m
Electricity | 0.0000
generated by | 0.0000
wind turb | 0.0000
ines (Append | 0.0000
lix M) (nega | 0.0000
tive quanti | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | (234a)m
Electricity (
(235a)m | 0.0000
generated by
0.0000 | 0.0000
hydro-elec
0.0000 | ctric genera | 0.0000
tors (Apper
0.0000 | 0.0000
dix M) (neg
0.0000 | 0.0000
ative quant
0.0000 | 0.0000
(ity)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity (
(235c)m | used or net
0.0000 | electricity
0.0000 | y generated
0.0000 | by micro-CH
0.0000 | P (Appendix
0.0000 | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity (| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (233b) | | Electricity (
(234b)m
Electricity (| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
itv) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234b) | | (235b)m | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235b) | SAP 10 Online 2.13.11 Page 3 of 7 | Electricity used or net electricity generated by micro-CHP (Appendix N) (negative if (235d)m 0.00000 0.000000 | f net generation) | 0.0000 0.000(| 188.236
1358.447
0.000
0.000
264.035
0.000
0.000
0.000 | 3 (211)
0 (213)
0 (215)
7 (219)
0 (221)
0 (221)
0 (231)
8 (232)
0 (234)
0 (235a)
0 (235a)
0 (235)
0 (236)
0 (237) | |---|--|---------------------------------------|---|--| | 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Total CO2, kg/year EPC Dwelling Carbon Dioxide Emission Rate (DER) | Energy
kWh/year
1067.0293
1358.4477
0.0000
264.0358 | 0.157;
0.1400
0.0000 | h kg CO2/yea
3 167.895
0.000
8 191.299
359.195
0 0.000
3 38.108
397.304 | r
9 (261)
0 (373)
7 (264)
6 (265)
0 (267)
5 (268) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Total Primary energy kWh/year Dwelling Primary energy Rate (DPER) | Energy | kg CO2/kWl
1.582
1.520
0.000 | 5 1688.559
0.000
7 2065.798
3754.357 | r
0 (275)
0 (473)
0 (278)
0 (279)
0 (281)
0 (282)
9 (286) | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS 1. Overall dwelling characteristics Ground floor
First floor Total floor area TFA = (la)+(lb)+(lc)+(ld)+(le)(ln) 100.1100 Dwelling volume | Area
(m2)
52,3300
47.7800 | |) (m3
0 (2b) = 130.825
0 (2c) = 129.006 |)
0 (lb) - (3b
0 (lc) - (3c
(4) | | Number of open chimneys Number of open flues Number of open flues Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of blocked chimneys Number of intermittent extract fans Number of passive vents Number of flueless gas fires | | | m3 per hou 0 * 80 = 0.000 0 * 20 = 0.000 0 * 10 = 0.000 0 * 20 = 0.000 0 * 35 = 0.000 0 * 20 = 0.000 4 * 10 = 40.000 0 * 10 = 0.000 0 * 40 = 0.000 | 0 (6a)
0 (6b)
0 (6c)
0 (6d)
0 (6e)
0 (6f)
0 (7a)
0 (7b) | | Infiltration due to chimneys, flues and fans = (6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)+(6g)+(6g)+(6g)+(6g)+(6g)+(6g)+(6g | | (20) = 1 - [0.075 | 0.403
x (19)] = 0.775 | 9 (8)
s
r
0 (17)
9 (18)
3 (19) | | | Jul Aug
3.8000 3.7000 | Sep Oct
4.0000 4.3000 | | 0 (22) | SAP 10 Online 2.13.11 Page 4 of 7 | Wind factor
Adj infilt rate | 1.2750 | 1.2500 | 1.2250 | 1.1000 | 1.0750 | 0.9500 | 0.9500 | 0.9250 | 1.0000 | 1.0750 | 1.1250 | 1.1750 | (22a) | |--|--|--|--|---|--|---|---|---|---|---|--|---
--| | Effective ac | 0.3991
0.5797 | 0.3913
0.5766 | 0.3835
0.5735 | 0.3444
0.5593 | 0.3365
0.5566 | 0.2974
0.5442 | 0.2974
0.5442 | 0.2896
0.5419 | 0.3131
0.5490 | 0.3365
0.5566 | 0.3522
0.5620 | 0.3678
0.5677 | | | LIICCUIVE do | 0.3737 | 0.5700 | 0.5755 | 0.5555 | 0.5500 | 0.5442 | 0.5442 | 0.5415 | 0.5450 | 0.5500 | 0.3020 | 0.3077 | (23) | | | | | | | | | | | | | | | | | 3. Heat losses | | | | | | | | | | | | | | | Element | | | | Gross | Openings | Net | tArea | U-value | Ах | יז ד | -value | AxK | | | TER Opening Typ | ne (IIw = 1 | 20) | | m2 | m2 | 2 | m2
.6700 | W/m2K
1.1450 | W/F
21.3779 | K | kJ/m2K | kJ/K | | | Heatloss Floor
Exposed Floor | | 201 | | | | 52 | .3300
.5900 | 0.1300
0.1300 | 6.8029
1.2467 | 9 | | | (28a)
(28b) | | Cavity Wall
Basement Wall | | | | 73.9400
4.1100 | 18.6700 | 55 | .2700
.1100 | 0.1800
0.1800 | 9.9486 | 6 | | | (29a)
(29a) | | External Roof 1 | | 1 -1 | | 18.0600 | | 18 | .0600 | 0.1100 | 1.9866 | | | | (30) | | Total net area
Fabric heat los | | | | | | | (26) (3 | 30) + (32) = | | | | | (31) | | Party Wall 1 | | | | | | 133 | .6400 | 0.0000 | 0.0000 | J | | | (32) | | Thermal mass pa
List of Thermal | Bridges | MP = Cm / 1 | [FA] in kJ/m | n2K | | | | | | | | 410.5713 | (35) | | K1 Elem
E2 Othe | | (including | other steel | l lintels) | | | | | ngth Pa
1850 | 0.0500 | Tot
0.45 | | | | E3 Sill
E4 Jamb | | | | | | | | | 1850
2000 | 0.0500
0.0500 | 0.45
1.26 | | | | E24 Eav
P3 Part | ves (insula
v wall - I | tion at cei
ntermediate | iling level
e floor betw | - inverted)
ween dwellin | ngs (in bloo | ks of flat: | 3) | | 2600
5870 | 0.2400 | 1.74 | | | | | rner (norma | | tween dwelli | inas | | | | 11. | 4000 | 0.0900
0.0600 | 1.02 | | | | E18 Par
E14 Fla | rty wall be | tween dwell | lings | 90 | | | | 13. | 9000 | 0.0600 | 0.83
0.55 | 40 | | | E17 Cor | | | | reater than | external an | rea) | | 7. | 7000 | -0.0900
0.0800 | -0.69
2.20 | 30 | | | P5 Part | | oof (insula | ation at rai | fter level) | | | | 6. | 5000 | 0.0800 | 0.52
2.22 | 00 | | | E20 Exp | oosed floor
oosed floor | (normal) | | | | | | 2. | 1600 | 0.3200 | 0.69 | 12 | | | E22 Bas | sement floo | r` ′ |) | | | | | 4. | | 0.3200 | 1.61
0.28 | 77 | | | E6 Inte | | loor withir | n a dwelling | J | | | | 10. | 9100 | 0.0700
0.0000 | 0.28
0.00 | 00 | | | P8 Part | y Wall - E | xposed floo | or (normal)
or (inverted | | | | | | 3400
9300 | 0.1600
0.2400 | 0.69
0.22 | 32 | | | Thermal bridges
Point Thermal b | oridges | Psi) calcul | Lated using | Appendix K) | | | | | | | (36a) = | 14.7649
0.0000 | | | Total fabric he | | | | | | | | | (33 | 3) + (36) | + (36a) = | 56.8674 | (37) | | Ventilation hea | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | (38)m
Heat transfer c | 49.7025
coeff | 49.4373 | 49.1773 | 47.9562 | 47.7277 | 46.6642 | 46.6642 | 46.4672 | 47.0738 | 47.7277 | 48.1899 | 48.6731 | (38) | | Average = Sum(3 | | | 106.0447 | 104.8235 | 104.5951 | 103.5315 | 103.5315 | 103.3346 | 103.9412 | 104.5951 | 105.0573 | 105.5405
104.8224 | (39) | | | | | | | | | | | | | | | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | HLP
HLP (average) | Jan
1.0645 | Feb
1.0619 | Mar
1.0593 | Apr
1.0471 | May
1.0448 | Jun
1.0342 | Jul
1.0342 | Aug
1.0322 | Sep
1.0383 | Oct
1.0448 | Nov
1.0494 | Dec
1.0542
1.0471 | (40) | | | | 1.0619 | | | | | | | | | | 1.0542 | (40) | | HLP (average) | 1.0645 | 1.0619 | 1.0593 | 1.0471 | 1.0448 | 1.0342 | 1.0342 | 1.0322 | 1.0383 | 1.0448 | 1.0494 | 1.0542
1.0471 | (40) | | HLP (average) | 1.0645 | 1.0619 | 1.0593 | 1.0471 | 1.0448 | 1.0342 | 1.0342 | 1.0322 | 1.0383 | 1.0448 | 1.0494 | 1.0542
1.0471 | (40) | | HLP (average) | 1.0645
31
 | 1.0619
28
equirements | 1.0593
31
31
3 (kWh/year) | 1.0471
30 | 1.0448 | 1.0342 | 1.0342 | 1.0322 | 1.0383 | 1.0448 | 1.0494 | 1.0542
1.0471 | (40) | | HLP (average) Days in mont 4. Water heatin Assumed occupan | 1.0645
31
ag energy r | 1.0619
28
equirements | 1.0593
31
31
3 (kWh/year) | 1.0471
30 | 1.0448 | 1.0342 | 1.0342 | 1.0322 | 1.0383 | 1.0448 | 1.0494 | 1.0542
1.0471 | | | HLP (average) Days in mont 4. Water heatin Assumed occupan Hot water usage | 1.0645 31 ag energy r acy e for mixer 90.1511 | 1.0619
28
equirements
showers
88.7963 | 1.0593
31
31
3 (kWh/year) | 1.0471
30 | 1.0448 | 1.0342 | 1.0342 | 1.0322 | 1.0383 | 1.0448 | 1.0494 | 1.0542
1.0471
31 | (42) | | HLP (average) Days in mont 4. Water heatin Assumed occupan Hot water usage | 1.0645 31 ag energy r acy for mixer 90.1511 for baths 0.0000 | 1.0619
28
equirements
showers
88.7963
0.0000 | 1.0593
31
3 (kWh/year) | 1.0471
30 | 1.0448 | 1.0342 | 1.0342 | 1.0322
31 | 1.0383
30 | 1.0448 | 1.0494
30 | 1.0542
1.0471
31 | (42)
(42a) | | HLP (average) Days in mont 4. Water heatin Assumed occupan Hot water usage Hot water usage | 1.0645 31 ag energy r acy e for mixer 90.1511 0.0000 e for other 42.6959 | 1.0619
28
equirements
showers
88.7963
0.0000
uses
41.1433 | 1.0593
31
3 (kWh/year)
86.8221
0.0000
39.5907 | 30 | 1.0448 31 | 1.0342 30 77.1486 | 1.0342 31 75.3817 | 1.0322 | 1.0383
30
79.4887 | 1.0448
31
82.8264 | 1.0494
30
86.6848 | 1.0542
1.0471
31
2.7405
89.8057
0.0000
42.6959 | (42)
(42a)
(42b)
(42c) | | HLP (average) Days in mont 4. Water heatin Assumed occupan Hot water usage | 1.0645 31 ag energy r ccy for mixer 90.1511 for baths 0.0000 for other 42.6959 not water u | 1.0619 28 | 1.0593
31
3 (kWh/year)
86.8221
0.0000
39.5907
/day) | 83.0448
0.0000
38.0382 | 80.2573
0.0000
36.4856 | 77.1486
0.0000
34.9330 | 75.3817
0.0000
34.9330 | 77.3410
0.0000
36.4856 | 1.0383
30
79.4887
0.0000
38.0382 | 82.8264
0.0000
39.5907 | 1.0494
30
86.6848
0.0000
41.1433 | 1.0542
1.0471
31
2.7405
89.8057
0.0000
42.6959
121.9307 | (42)
(42a)
(42b)
(42c) | | HLP (average) Days in mont 4. Water heatin Assumed occupan Hot water usage Hot water usage Average daily h Daily hot water | 1.0645 31 ag energy r ccy for mixer 90.1511 e for baths 0.0000 e for other 42.6959 not water u Jan use | 1.0619 28 equirements showers 88.7963 0.0000 uses 41.1433 se (litres/ | 1.0593
31
3 (kWh/year)
86.8221
0.0000
39.5907
(day) | 1.0471
30
83.0448
0.0000
38.0382
Apr | 1.0448
31
80.2573
0.0000
36.4856 | 77.1486
0.0000
34.9330
Jun | 75.3817
0.0000
34.9330
Jul | 1.0322
31
77.3410
0.0000
36.4856 | 1.0383
30
79.4887
0.0000
38.0382
Sep | 1.0448
31
82.8264
0.0000
39.5907
Oct | 1.0494
30
86.6848
0.0000
41.1433 | 1.0542
1.0471
31
2.7405
89.8057
0.0000
42.6959
121.9307
Dec | (42)
(42a)
(42b)
(42c)
(43) | | HLP (average) Days in mont 4. Water heatin Assumed occupan Hot water usage Hot water usage Average daily h Daily hot water Energy conte | 1.0645 31 ag energy r coy e for mixer 90.1511 c 0.0000 e for other 42.6959 not water u Jan r use 132.8470 210.3972 | 1.0619
28
 | 1.0593
31
3 (kWh/year)
86.8221
0.0000
39.5907
/day) | 83.0448
0.0000
38.0382 | 80.2573
0.0000
36.4856 | 77.1486
0.0000
34.9330 | 75.3817
0.0000
34.9330 | 77.3410
0.0000
36.4856 | 1.0383
30
79.4887
0.0000
38.0382
Sep
117.5268 | 1.0448
31
82.8264
0.0000
39.5907
Oct
122.4171
166.1189 | 1.0494
30
86.6848
0.0000
41.1433
Nov
127.8281
182.1146 | 1.0542
1.0471
31
2.7405
89.8057
0.0000
42.6959
121.9307
Dec
132.5016
207.4655 | (42)
(42a)
(42b)
(42c)
(43) | | HLP (average) Days in mont 4. Water heatin Assumed occupan Hot water usage Hot water usage Average daily h Daily hot water | ng energy r or y for mixer 90.1511 for other 42.6959 not water u Jan r use 132.8470 210.3972 (annual) 958 (46) m | 1.0619
28
equirements
88.7963
0.0000
uses
41.1433
se (litres/
Feb
129.9396
185.0323
= 0.15 x (4 | 1.0593
31
3 (kWh/year)
86.8221
0.0000
39.5907
(day)
Mar
126.4128
194.2918 | 1.0471
30
83.0448
0.0000
38.0382
Apr
121.0830
165.7565 | 1.0448
31
80.2573
0.0000
36.4856
May
116.7429
157.1583 | 1.0342
30
77.1486
0.0000
34.9330
Jun
112.0816
137.8175 | 75.3817
0.0000
34.9330
Jul
110.3147
133.4161 | 1.0322
31
31
77.3410
0.0000
36.4856
Aug
113.8265
140.9410 | 1.0383
30
79.4887
0.0000
38.0382
Sep
117.5268
144.9223 | 1.0448
31
82.8264
0.0000
39.5907
Oct
122.4171
166.1189
Total = St | 1.0494
30
86.6848
0.0000
41.1433
Nov
127.8281
182.1146
um(45) m = | 1.0542
1.0471
31
2.7405
89.8057
0.0000
42.6959
121.9307
Dec
132.5016
207.4655
2025.4320 | (42)
(42a)
(42b)
(42c)
(43)
(44)
(45) | | HLP (average) Days in mont 4. Water heatin Assumed occupan Hot water usage Hot water usage Average daily h Daily hot water Energy conte Energy content Distribution lo | 1.0645 31 31 31 31 31 31 31 31 31 31 31 31 31 | 1.0619
28
equirements
88.7963
0.0000
uses
41.1433
se (litres/
Feb
129.9396
185.0323
= 0.15 x (4 | 1.0593
31
3 (kWh/year)
86.8221
0.0000
39.5907
(day)
Mar
126.4128
194.2918 |
1.0471
30
83.0448
0.0000
38.0382
Apr
121.0830 | 1.0448
31
80.2573
0.0000
36.4856
May
116.7429 | 1.0342
30
77.1486
0.0000
34.9330
Jun
112.0816 | 1.0342
31
75.3817
0.0000
34.9330
Jul
110.3147 | 1.0322
31
 | 1.0383
30
79.4887
0.0000
38.0382
Sep
117.5268 | 1.0448
31
82.8264
0.0000
39.5907
Oct
122.4171
166.1189 | 1.0494
30
86.6848
0.0000
41.1433
Nov
127.8281
182.1146 | 1.0542
1.0471
31
2.7405
89.8057
0.0000
42.6959
121.9307
Dec
132.5016
207.4655
2025.4320
31.1198 | (42)
(42a)
(42b)
(42c)
(43)
(44)
(45) | | HLP (average) Days in mont 4. Water heatin Assumed occupan Hot water usage Hot water usage Average daily h Daily hot water Energy conte Energy content Distribution lo Water storage l Store volume a) If manufact | 1.0645 31 ag energy r cy for mixer 90.1511 for baths 0.0000 for other 42.6959 for water u Jan 132.8470 210.3972 (annual) loss (46) m 31.5596 loss: | 1.0619 28 | 1.0593
31
3 (kWh/year)
86.8221
0.0000
39.5907
(day)
Mar
126.4128
194.2918 | 1.0471
30
83.0448
0.0000
38.0382
Apr
121.0830
165.7565
24.8635 | 1.0448
31
80.2573
0.0000
36.4856
May
116.7429
157.1583
23.5737 | 1.0342
30
77.1486
0.0000
34.9330
Jun
112.0816
137.8175 | 75.3817
0.0000
34.9330
Jul
110.3147
133.4161 | 1.0322
31
31
77.3410
0.0000
36.4856
Aug
113.8265
140.9410 | 1.0383
30
79.4887
0.0000
38.0382
Sep
117.5268
144.9223 | 1.0448
31
82.8264
0.0000
39.5907
Oct
122.4171
166.1189
Total = St | 1.0494
30
86.6848
0.0000
41.1433
Nov
127.8281
182.1146
um(45) m = | 1.0542
1.0471
31
2.7405
89.8057
0.0000
42.6959
121.9307
Dec
132.5016
207.4655
2025.4320
31.1198
150.0000
1.3938 | (42)
(42a)
(42b)
(42c)
(43)
(44)
(45)
(46)
(47)
(48) | | HLP (average) Days in mont 4. Water heatin Assumed occupan Hot water usage Hot water usage Average daily h Daily hot water Energy conte Energy content Distribution lo Water storage 1 Store volume a) If manufact Temperature f Enter (49) or (| 1.0645 31 genergy r ncy for mixer 90.1511 for baths 0.0000 for other 42.6959 not water u Jan 132.8470 210.3972 (annual) SS (46)m 31.5596 loss: curer decla actor from | 1.0619 28 | 1.0593
31
3 (kWh/year)
86.8221
0.0000
39.5907
(day)
Mar
126.4128
194.2918 | 1.0471
30
83.0448
0.0000
38.0382
Apr
121.0830
165.7565
24.8635 | 1.0448
31
80.2573
0.0000
36.4856
May
116.7429
157.1583
23.5737 | 1.0342
30
77.1486
0.0000
34.9330
Jun
112.0816
137.8175 | 75.3817
0.0000
34.9330
Jul
110.3147
133.4161 | 1.0322
31
31
77.3410
0.0000
36.4856
Aug
113.8265
140.9410 | 1.0383
30
79.4887
0.0000
38.0382
Sep
117.5268
144.9223 | 1.0448
31
82.8264
0.0000
39.5907
Oct
122.4171
166.1189
Total = St | 1.0494
30
86.6848
0.0000
41.1433
Nov
127.8281
182.1146
um(45) m = | 1.0542
1.0471
31
2.7405
89.8057
0.0000
42.6959
121.9307
Dec
132.5016
207.4655
2025.4320
31.1198
150.0000 | (42)
(42a)
(42b)
(42c)
(43)
(44)
(45)
(46)
(47)
(48)
(49) | | HLP (average) Days in mont 4. Water heatin Assumed occupan Hot water usage Hot water usage Average daily h Daily hot water Energy contee Energy contee Energy contee Temperature for volume a) If manufact Temperature for Enter (49) or (Total storage 1 | ng energy r ory for mixer 90.1511 for baths 0.0000 for other 42.6959 tot water u Jan r use 132.8470 210.3972 (annual) 305.596 toss: curer decla factor from (54) in (55) toss 23.3325 | 1.0619 28 | 1.0593
31
31
86.8221
0.0000
39.5907
(day)
Mar
126.4128
194.2918
45)m
29.1438 | 1.0471
30
83.0448
0.0000
38.0382
Apr
121.0830
165.7565
24.8635 | 1.0448
31
80.2573
0.0000
36.4856
May
116.7429
157.1583
23.5737 | 1.0342
30
77.1486
0.0000
34.9330
Jun
112.0816
137.8175 | 75.3817
0.0000
34.9330
Jul
110.3147
133.4161 | 1.0322
31
31
77.3410
0.0000
36.4856
Aug
113.8265
140.9410 | 1.0383
30
79.4887
0.0000
38.0382
Sep
117.5268
144.9223 | 1.0448
31
82.8264
0.0000
39.5907
Oct
122.4171
166.1189
Total = St | 1.0494
30
86.6848
0.0000
41.1433
Nov
127.8281
182.1146
um(45) m = | 1.0542
1.0471
31
2.7405
89.8057
0.0000
42.6959
121.9307
Dec
132.5016
207.4655
2025.4320
31.1198
150.0000
1.3938
0.5400 | (42)
(42a)
(42b)
(42c)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(55) | | HLP (average) Days in mont 4. Water heatin Assumed occupan Hot water usage Hot water usage Hot water usage Energy conte Energy content Distribution lo Water storage l Store volume a) If manufact Temperature f Enter (49) or (Total storage l If cylinder con | ng energy r cry for mixer 90.1511 for baths 0.0000 for other 42.6959 to water u Jan r use 132.8470 210.3972 (annual) bas (46)m 31.5596 loss 23.3325 tains dedi 23.3325 tains dedi 23.3325 | 1.0619 28 | 1.0593
31
31
3 (kWh/year)
86.8221
0.0000
39.5907
/day)
Mar
126.4128
194.2918
45)m
29.1438
actor is known | 1.0471
30
83.0448
0.0000
38.0382
Apr
121.0830
165.7565
24.8635
own (kWh/da | 1.0448
31
80.2573
0.0000
36.4856
May
116.7429
157.1583
23.5737
ay): | 1.0342
30
77.1486
0.0000
34.9330
Jun
112.0816
137.8175
20.6726 | 1.0342
31
75.3817
0.0000
34.9330
Jul
110.3147
133.4161
20.0124 | 1.0322
31
77.3410
0.0000
36.4856
Aug
113.8265
140.9410
21.1412 | 1.0383
30
79.4887
0.0000
38.0382
Sep
117.5268
144.9223
21.7383 | 1.0448
31
82.8264
0.0000
39.5907
Oct
122.4171
166.1189
Total = St
24.9178 | 1.0494
30
86.6848
0.0000
41.1433
Nov
127.8281
182.1146
cum(45) m =
27.3172 | 1.0542
1.0471
31
2.7405
89.8057
0.0000
42.6959
121.9307
Dec
132.5016
207.4655
2025.4320
31.1198
150.0000
1.3938
0.5400
0.7527
23.3325
23.3325 | (42)
(42a)
(42b)
(42c)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(55)
(56)
(57) | | HLP (average) Days in mont 4. Water heatin Assumed occupan Hot water usage Hot water usage Hot water usage Energy conte Energy conte Energy content Distribution lo Water storage 1 Store volume a) If manufact Temperature f Enter (49) or (Total storage 1 If cylinder con Primary loss Combi loss | 1.0645 31 31 31 31 31 31 31 32 40 40 40 40 40 40 40 40 40 4 | 1.0619 28 | 1.0593
31
31
3 (kWh/year)
86.8221
0.0000
Mar
126.4128
194.2918
45)m
29.1438
actor is kmo
23.3325
r storage
23.3325
23.325
23.2624
0.0000 | 1.0471
30
83.0448
0.0000
38.0382
Apr
121.0830
165.7565
24.8635
own (kWh/da
22.5798
22.5798
22.5798
22.5120
0.0000 | 1.0448
31
80.2573
0.0000
36.4856
May
116.7429
157.1583
23.5737
ay):
23.3325
23.3325
23.3252
40.0000 | 77.1486
0.0000
34.9330
Jun
112.0816
137.8175
20.6726 | 75.3817
0.0000
34.9330
Jul
110.3147
133.4161
20.0124 | 1.0322
31
77.3410
0.0000
36.4856
Aug
113.8265
140.9410
21.1412 | 1.0383
30
79.4887
0.0000
38.0382
Sep
117.5268
144.9223
21.7383 | 1.0448
31
82.8264
0.0000
39.5907
Oct
122.4171
166.1189
Total = Si
24.9178 | 1.0494
30
86.6848
0.0000
41.1433
Nov
127.8281
182.1146
um(45)m =
27.3172 | 1.0542
1.0471
31
2.7405
89.8057
0.0000
42.6959
121.9307
Dec
132.5016
207.4655
2025.4320
31.1198
150.0000
1.3938
0.5400
0.7527
23.3325 | (42)
(42a)
(42b)
(42c)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59) | | HLP (average) Days in mont 4. Water heatin Assumed occupan Hot water usage Hot water usage Hot water usage Average daily h Daily hot water Energy contetenergy contetenergy contetenergy content of the storage | 1.0645 31 31 31 31 31 31 31 31 31 3 | 1.0619 28 | 1.0593 31 31 36 (kWh/year) 86.8221 0.0000 39.5907 /day) Mar 126.4128 194.2918 45)m 29.1438 actor is known | 1.0471
30
83.0448
0.0000
38.0382
Apr
121.0830
165.7565
24.8635
own (kWh/da
22.5798
22.5798
22.5798
22.5120
0.0000 | 1.0448
31
80.2573
0.0000
36.4856
May
116.7429
157.1583
23.5737
ay):
23.3325
23.3325
23.2624
0.0000
month | 1.0342
30
77.1486
0.0000
34.9330
Jun
112.0816
137.8175
20.6726
22.5798
22.5798
22.5798
22.5798
22.5120
0.0000 | 75.3817
0.0000
34.9330
Jul
110.3147
133.4161
20.0124
23.3325
23.3325
23.3325
23.2624 | 1.0322
31
77.3410
0.0000
36.4856
Aug
113.8265
140.9410
21.1412 | 1.0383
30
79.4887
0.0000
38.0382
Sep
117.5268
144.9223
21.7383
22.5798
22.5798
22.5798
22.5120
0.0000 | 1.0448
31
82.8264
0.0000
39.5907
Oct
122.4171
166.1189
Total = St
24.9178 | 1.0494
30
86.6848
0.0000
41.1433
Nov
127.8281
182.1146
um(45) m =
27.3172
22.5798
22.5798
22.5798
22.5798 | 1.0542
1.0471
31
2.7405
89.8057
0.0000
42.6959
121.9307
Dec
132.5016
207.4655
2025.4320
31.1198
150.0000
0.7527
23.3325
23.3325
23.2624 |
(42)
(42a)
(42b)
(42c)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59)
(61) | | HLP (average) Days in mont 4. Water heatin Assumed occupan Hot water usage Hot water usage Average daily h Daily hot water Energy conte Energy content Distribution lo Water storage l Store volume a) If manufact Temperature f Enter (49) or (Total storage l If cylinder con Primary loss Combi loss Total heat requ | 1.0645 31 31 31 31 31 32 42.6959 10t water u Jan r use 132.8470 210.3972 (annual) bas (46)m : 31.5596 coss 23.3325 23.325 23.325 23.325 23.325 23.2624 0.0000 ired for w 256.9921 -41.2133 | 1.0619 28 | 1.0593 31 31 3 (kWh/year) 86.8221 0.0000 39.5907 day) Mar 126.4128 194.2918 45)m 29.1438 actor is kmd 23.3325 c storage 23.3325 c storage 23.3325 c storage 23.3252 0.0000 ageniculate 240.8867 | 1.0471
30
83.0448
0.0000
38.0382
Apr
121.0830
165.7565
24.8635
own (kWh/da | 1.0448
31
80.2573
0.0000
36.4856
May
116.7429
157.1583
23.5737
ay):
23.3325
23.3325
23.2624
0.0000
month | 1.0342
30
77.1486
0.0000
34.9330
Jun
112.0816
137.8175
20.6726
22.5798
22.5798
22.5798
22.5798
22.5120
0.0000 | 1.0342
31
75.3817
0.0000
34.9330
Jul
110.3147
133.4161
20.0124
23.3325
23.3325
23.3325
23.2624
0.0000 | 1.0322
31
31
77.3410
0.0000
36.4856
Aug
113.8265
140.9410
21.1412
23.3325
23.3325
23.3325
23.2624
0.0000 | 1.0383
30
79.4887
0.0000
38.0382
Sep
117.5268
144.9223
21.7383
22.5798
22.5798
22.5798
22.5798
22.5120
0.0000 | 1.0448
31
82.8264
0.0000
39.5907
Oct
122.4171
166.1189
Total = St
24.9178
23.3325
23.3325
23.3325
23.2624
0.0000 | 1.0494
30
86.6848
0.0000
41.1433
Nov
127.8281
182.1146
lum(45) m =
27.3172
22.5798
22.5798
22.5798
22.5798
22.5798 | 1.0542
1.0471
31
2.7405
89.8057
0.0000
42.6959
121.9307
Dec
132.5016
207.4655
2025.4320
31.1198
150.0000
0.7527
23.3325
23.3325
23.3325
23.3252
0.0000 | (42)
(42a)
(42b)
(42c)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59)
(61)
(62)
(63a) | | HLP (average) Days in mont 4. Water heatin Assumed occupan Hot water usage Hot water usage Hot water usage Energy conte Energy content Distribution lo Water storage 1 Store volume a) If manufact Temperature f Enter (49) or (Total storage 1 If cylinder con Primary loss Combi loss Total heat requi | 1.0645 31 31 31 31 31 32 42.6959 10t water u Jan r use 132.8470 210.3972 (annual) bas (46)m : 31.5596 coss 23.3325 23.325 23.325 23.325 23.325 23.2624 0.0000 ired for w 256.9921 -41.2133 | 1.0619 28 | 1.0593 31 31 36 (kWh/year) 86.8221 0.0000 39.5907 /day) Mar 126.4128 194.2918 45)m 29.1438 actor is kmc 23.3325 r storage 23.3325 r storage 23.3252 0.0000 ng calculate 240.8867 -38.1677 -0.0000 0.00000 | 1.0471
30
83.0448
0.0000
38.0382
Apr
121.0830
165.7565
24.8635
own (kWh/da
22.5798
22.5798
22.5798
22.5798
22.5798
22.5798
22.5798
22.5798
23.6044
-0.0000
210.8484
-31.6044
-0.0000
0.00000 | 1.0448
31
80.2573
0.0000
36.4856
May
116.7429
157.1583
23.5737
ay):
23.3325
23.2624
0.0000
month
203.7532
-29.4541
-0.0000
0.0000 | 1.0342
30
77.1486
0.0000
34.9330
Jun
112.0816
137.8175
20.6726
22.5798
22.5798
22.5798
22.5798
22.5798
22.5120
0.0000
182.9093
-25.2041
-0.0000
0.0000 | 75.3817
0.0000
34.9330
Jul
110.3147
133.4161
20.0124
23.3325
23.3325
23.2624
0.0000
180.0110
-23.6248
-0.0000 | 1.0322
31
77.3410
0.0000
36.4856
Aug
113.8265
140.9410
21.1412
23.3325
23.3325
23.3252
23.2624
0.0000
187.5359
-25.1226
-0.0000
0.0000 | 1.0383
30
79.4887
0.0000
38.0382
Sep
117.5268
144.9223
21.7383
22.5798
22.5798
22.5598
22.5798
22.5798
22.5798
22.5798
22.5798 | 1.0448
31
82.8264
0.0000
39.5907
Oct
122.4171
166.1189
Total = Si
24.9178
23.3325
23.3325
23.3325
23.32624
0.0000
212.7138
-30.7421
-0.0000
0.00000 | 1.0494 30 86.6848 0.0000 41.1433 Nov 127.8281 182.1146 um(45)m = 27.3172 22.5798 22.5798 22.5798 22.5798 22.5790 0.0000 277.2064 -34.8270 -0.0000 0.0000 | 1.0542
1.0471
31
2.7405
89.8057
0.0000
42.6959
121.9307
Dec
132.5016
207.4655
2025.4320
31.1198
150.0000
0.7527
23.3325
23.3325
23.3252
40.0000
254.0604
-40.4501
-0.0000
0.0000 | (42)
(42a)
(42b)
(42c)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59)
(61)
(62)
(63a)
(63b)
(63c) | | HLP (average) Days in mont 4. Water heatin Assumed occupan Hot water usage Hot water usage Hot water usage Average daily h Daily hot water Energy contee Energy content Distribution lo Water storage l Store volume a) If manufact Temperature f Enter (49) or (Total storage l If cylinder con Primary loss Combi loss Total heat requ WWHRS PV diverter Solar input FGRS Output from w/h | 1.0645 31 31 31 31 31 31 31 31 31 3 | 1.0619 28 28 28 28 29 20 21.0745 | 1.0593 31 31 36 (kWh/year) 86.8221 0.0000 39.5907 day) Mar 126.4128 194.2918 45)m 29.1438 actor is known kno | 1.0471
30
83.0448
0.0000
38.0382
Apr
121.0830
165.7565
24.8635
own (kWh/da
22.5798
22.5798
22.5120
0.0000
ed for each
210.8484
-31.6044
-0.0000
0.0000
0.0000 | 1.0448 31 80.2573 0.0000 36.4856 May 116.7429 157.1583 23.5737 Ay): 23.3325 23.3252 23.32624 0.0000 0.0000 0.0000 0.0000 0.0000 | 1.0342
30
77.1486
0.0000
34.9330
Jun
112.0816
137.8175
20.6726
22.5798
22.5798
22.5120
0.0000
182.9093
-25.2041
-0.0000
0.0000
0.0000 | 75.3817
0.0000
34.9330
Jul
110.3147
133.4161
20.0124
23.3325
23.3325
23.2624
0.0000
180.0110
-23.6248
0.0000
0.0000
0.0000 | 1.0322
31
77.3410
0.0000
36.4856
Aug
113.8265
140.9410
21.1412
23.3325
23.3325
23.2624
0.0000
187.5359
-25.1226
-0.0000
0.0000 | 1.0383
30
79.4887
0.0000
38.0382
Sep
117.5268
144.9223
21.7383
22.5798
22.5798
22.5798
22.5120
0.0000
190.0142
-26.0771
-0.0000
0.0000
0.0000 | 1.0448
31
82.8264
0.0000
39.5907
Oct
122.4171
166.1189
Total = Si
24.9178
23.3325
23.3325
23.32624
0.0000
212.7138
-30.7421
-0.0000
0.0000
0.0000 | 1.0494 30 86.6848 0.0000 41.1433 Nov 127.8281 182.1146 um(45)m = 27.3172 22.5798 22.5798 22.5798 22.5120 0.0000 227.2064 -34.8270 -0.0000 0.0000 0.0000 | 1.0542
1.0471
31
2.7405
89.8057
0.0000
42.6959
121.9307
Dec
132.5016
207.4655
2025.4320
31.1198
150.0000
0.7527
23.3325
23.3255
23.2624
0.0000
254.0604
-40.4501
-0.0000
0.0000 | (42)
(42a)
(42b)
(42c)
(43)
(44)
(45)
(46)
(47)
(48)
(55)
(56)
(57)
(59)
(61)
(62)
(63a)
(63c)
(63c)
(63c)
(63d) | | HLP (average) Days in mont 4. Water heatin | 1.0645 31 31 31 31 31 31 31 31 31 3 | 1.0619 28 | 1.0593 31 31 36 (kWh/year) 86.8221 0.0000 39.5907 /day) Mar 126.4128 194.2918 45)m 29.1438 actor is kmc 23.3325 r storage 23.3325 r storage 23.3252 0.0000 ng calculate 240.8867 -38.1677 -0.0000 0.00000 | 1.0471
30
83.0448
0.0000
38.0382
Apr
121.0830
165.7565
24.8635
own (kWh/da
22.5798
22.5798
22.5120
0.0000
ed for each
210.8484
-31.6044
-0.0000
0.0000
0.0000 | 1.0448 31 80.2573 0.0000 36.4856 May 116.7429 157.1583 23.5737 Ay): 23.3325 23.3252 23.32624 0.0000 0.0000 0.0000 0.0000 0.0000 | 1.0342
30
77.1486
0.0000
34.9330
Jun
112.0816
137.8175
20.6726
22.5798
22.5798
22.5798
22.5798
22.5798
22.5120
0.0000
182.9093
-25.2041
-0.0000
0.0000 | 75.3817
0.0000
34.9330
Jul
110.3147
133.4161
20.0124
23.3325
23.3325
23.2624
0.0000
180.0110
-23.6248
-0.0000 | 1.0322
31
31
77.3410
0.0000
36.4856
Aug
113.8265
140.9410
21.1412
23.3325
23.3325
23.3252
40.0000
187.5359
-25.1226
-0.0000
0.0000
162.4133 | 1.0383
30
79.4887
0.0000
38.0382
Sep
117.5268
144.9223
21.7383
22.5798
22.5798
22.5598
22.5798
22.5798
22.5798
22.5798
22.5798 | 1.0448
31
82.8264
0.0000
39.5907
Oct
122.4171
166.1189
Total = St
24.9178
23.3325
23.3325
23.32624
0.0000
212.7138
-30.7421
-0.0000
0.0000
0.0000
181.9717 | 1.0494 30 86.6848 0.0000 41.1433 Nov 127.8281 182.1146 182.1146 45)m = 27.3172 22.5798 22.5798 22.5798 22.5798 22.5120 0.0000 277.2064 -34.8270 -0.0000 0.0000 192.3794 |
1.0542
1.0471
31
2.7405
89.8057
0.0000
42.6959
121.9307
Dec
132.5016
207.4655
2025.4320
31.1198
150.0000
1.3938
0.5400
0.77527
23.3325
23.2624
0.0000
254.0604
-40.4501
-0.0000
0.0000
0.0000 | (42)
(42a)
(42b)
(42c)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59)
(61)
(63a)
(63a)
(63a)
(63c)
(63d)
(63c)
(63d)
(64)
(64) | | HLP (average) Days in mont 4. Water heatin Assumed occupan Hot water usage Hot water usage Hot water usage Average daily h Daily hot water Energy contee Energy content Distribution lo Water storage l Store volume a) If manufact Temperature f Enter (49) or (Total storage l If cylinder con Primary loss Combi loss Total heat requ WWHRS PV diverter Solar input FGRS Output from w/h | 1.0645 31 31 ag energy r cry for mixer 90.1511 for baths 0.0000 for other 42.6959 not water u Jan r use 132.8470 210.3972 (annual) bas (46)m : 31.5596 sator from (54) in (55 curer decla factor (55) curer decla factor from (54) in (55 curer decla factor from (55) (54) curer decla factor from (55) | 1.0619 28 | 1.0593 31 31 36 (kWh/year) 86.8221 0.0000 39.5907 /day) Mar 126.4128 194.2918 45)m 29.1438 actor is known | 1.0471 30 83.0448 0.0000 38.0382 Apr 121.0830 165.7565 24.8635 own (kWh/da 22.5798 22.5798 22.5798 22.5120 0.0000 ed for each 210.8484 -31.6044 -31.6044 -0.0000 0.0000 179.2440 | 1.0448
31
80.2573
0.0000
36.4856
May
116.7429
157.1583
23.5737
ay):
23.3325
23.3252
4 0.0000
month
203.7532
-29.4541
-0.0000
0.0000
174.2991 | 1.0342
30
77.1486
0.0000
34.9330
Jun
112.0816
137.8175
20.6726
22.5798
22.5798
22.5120
0.0000
182.9093
-25.2041
-0.0000
0.0000
0.00000
157.7052 | 1.0342
31
75.3817
0.0000
34.9330
Jul
110.3147
133.4161
20.0124
23.3325
23.3325
23.3325
23.2624
0.0000
180.0110
-23.6248
-0.0000
0.0000
0.0000
156.3861 | 1.0322
31
77.3410
0.0000
36.4856
Aug
113.8265
140.9410
21.1412
23.3325
23.3325
23.3325
23.2624
0.0000
187.5359
-25.1226
-0.0000
0.0000
162.4133
Total pe | 1.0383
30
79.4887
0.0000
38.0382
Sep
117.5268
144.9223
21.7383
22.5798
22.5798
22.5120
0.0000
190.0142
-26.0771
-0.0000
0.0000
163.9370
er year (kWh, | 1.0448 31 82.8264 0.0000 39.5907 Oct 122.4171 166.1189 Total = St 24.9178 23.3325 23.3252 23.32524 0.0000 0.0000 0.0000 0.0000 181.9717 /year) = St | 1.0494 30 86.6848 0.0000 41.1433 Nov 127.8281 182.1146 um(45) m = 27.3172 22.5798 22.5798 22.5798 22.5798 22.5798 22.5120 0.0000 227.2064 -34.8270 -0.0000 0.0000 192.3794 um(64) m = | 1.0542
1.0471
31
2.7405
89.8057
0.0000
42.6959
121.9307
Dec
132.5016
207.4655
2025.4320
31.1198
150.0000
0.7527
23.3325
23.3252
23.32624
0.0000
254.0604
-40.4501
-0.0000
0.0000
0.0000
213.6103
2191.1124
2191 | (42)
(42a)
(42b)
(42c)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(55)
(56)
(57)
(59)
(61)
(63a)
(63a)
(63a)
(63c)
(63d)
(64)
(64) | | HLP (average) Days in mont 4. Water heatin Assumed occupan Hot water usage Hot water usage Hot water usage Energy conte Energy conte Energy content Distribution lo Water storage l Store volume a) If manufact Temperature f Enter (49) or (Total storage l If cylinder con Primary loss Combi loss Total heat requ WWHRS PV diverter Solar input FGRRS Output from w/h | 1.0645 31 31 31 31 31 31 31 31 32 31 32 31 31 | 1.0619 28 | 1.0593 31 31 36 (kWh/year) 86.8221 0.0000 39.5907 /day) Mar 126.4128 194.2918 45)m 29.1438 actor is kmc 23.3325 23.3252 240.0000 200.0000 0.00000 0.00000 | 1.0471 30 83.0448 0.0000 38.0382 Apr 121.0830 165.7565 24.8635 own (kWh/da 22.5798 22.5798 22.5120 0.0000 ed for each 210.8844 -31.6044 -0.0000 0.0000 179.2440 0.0000 | 1.0448 31 80.2573 0.0000 36.4856 May 116.7429 157.1583 23.5737 Ay): 23.3325 23.32524 0.0000 month 203.7532 -29.4541 -0.0000 0.0000 174.2991 | 1.0342
30
77.1486
0.0000
34.9330
Jun
112.0816
137.8175
20.6726
22.5798
22.5798
22.5120
0.0000
182.9093
-25.2041
-0.0000
0.0000
157.7052 | 1.0342
31
75.3817
0.0000
34.9330
Jul
110.3147
133.4161
20.0124
23.3325
23.3325
23.2624
0.0000
180.0110
-23.6248
-0.0000
0.0000
156.3861 | 1.0322
31
77.3410
0.0000
36.4856
Aug
113.8265
140.9410
21.1412
23.3325
23.3325
23.2624
0.0000
187.5359
-25.1226
-0.0000
0.0000
162.4133
Total pe | 1.0383
30
79.4887
0.0000
38.0382
Sep
117.5268
144.9223
21.7383
22.5798
22.5798
22.5120
0.0000
190.0142
-26.0771
-0.0000
0.0000
163.9370 | 1.0448 31 82.8264 0.0000 39.5907 Oct 122.4171 166.1189 Total = Si 24.9178 23.3325 23.3325 23.32624 0.0000 212.7138 -30.7421 -0.0000 0.0000 0.0000 181.9717 /year) = Si 0.0000 | 1.0494 30 86.6848 0.0000 41.1433 Nov 127.8281 182.1146 um(45)m = 27.3172 22.5798 22.5798 22.5798 22.5120 0.0000 227.2064 -34.8270 -0.0000 0.0000 192.3794 um(64)m = 0.0000 | 1.0542
1.0471
31
2.7405
89.8057
0.0000
42.6959
121.9307
Dec
132.5016
207.4655
2025.4320
31.1198
150.0000
1.3938
0.5400
0.77527
23.3325
23.2624
0.0000
254.0604
-40.4501
-0.0000
0.0000
0.0000 | (42)
(42a)
(42b)
(42c)
(43)
(44)
(45)
(46)
(47)
(48)
(55)
(56)
(57)
(59)
(61)
(63c)
(63a)
(63b)
(63c)
(63d)
(64)
(64)
(64) | SAP 10 Online 2.13.11 Page 5 of 7 | 5. Internal ga | ains (see Ta | able 5 and |
5a) | | | | | | | | | | | |----------------------------------|--------------------------|-------------------------|-------------------------|------------------------|-------------------------|--------------------------|--------------------|--------------------|--------------------|------------------------|-----------------|-----------------------|--------------| | Metabolic gair | | | | | | | | | | | | | | | (66)m | Jan | Feb | Mar | Apr
137.0271 | May
137.0271 | Jun
137.0271 | Jul
137.0271 | Aug
137.0271 | Sep
137.0271 | Oct
137.0271 | Nov
137.0271 | Dec
137.0271 | (66) | | Lighting gains | 131.4313 | 145.5132 | 131.4313 | 135.8123 | 131.4313 | 135.8123 | 131.4313 | 131.4313 | 135.8123 | 131.4313 | 135.8123 | 131.4313 | (67) | | Appliances gai | ins (calcula
256.5055 | ated in App
259.1672 | endix L, eq
252.4597 | uation L13
238.1804 | or L13a), a
220.1552 | lso see Tab.
203.2141 | le 5
191.8964 | 189.2347 | 195.9421 | 210.2215 | 228.2467 | 245.1878 | | | Cooking gains | (calculated | d in Append | ix L, equat | ion L15 or | Ll5a), also | see Table 36.7027 | 5 | 36.7027 | | 36.7027 | 36.7027 | 36.7027 | . , | | Pumps, fans
Losses e.g. ev | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 0.0000 | 0.0000 | 0.0000 | | 3.0000 | | 3.0000 | | | | -109.6217 | -109.6217 | | | -109.6217 | -109.6217 | -109.6217 | -109.6217 | -109.6217 | -109.6217 | -109.6217 | -109.6217 | (71) | | Total internal | 144.1303 | 141.6545 | 136.9327 | 126.6493 | 120.3375 | 113.7469 | 109.7268 | 113.0898 | 117.0280 | 124.3420 | 134.2036 | 142.8201 | (72) | | Total Internal | | 613.4430 | 587.9319 | 567.7501 | 539.0320 | 516.8814 | 497.1626 | 497.8638 | 512.8905 | 533.1029 | 565.3707 | 586.5473 | (73) | | | | | | | | | | | | | | | | | 6. Solar gains |
3 | [Jan] | | | A | m2 | Table 6a | Speci
or | fic data | Specific | data | facto | or | Gains
W | | | | | | | 100 | W/M2 | OF . | | | 7000 | nable (| 00 | | (70) | | Southwest
Northwest | | | 6.9 | 600 | 11.2829 | ;
)
 | 0.6300 | | .7000 | 0.770 | 00 | 131.6751
23.9996 | | | Solar gains
Total gains | 155.6747 | 273.1433 | 394.9008 | 524.7924 | 620.2060 | 629.9704 | 601.4287 | 528.0675 | 439.5401 | 307.5906 | 187.9141 | 132.2857 | (83) | | Total gains | 754.8499 | 886.5862 | 982.8326 | 1092.5426 | 1159.2381 | 1146.8518 | 1098.5913 | 1025.9313 | 952.4306 | 840.6935 | 753.2848 | 718.8330 | (84) | | | | | | | | | | | | | | | | | 7. Mean intern | | | | | | | | | | | | | | | Temperature du
Utilisation fa | uring heating | ng periods | in the livi | ng area from | m Table 9,
Table 9a) | | | | | | | 21.0000 | (85) | | +=== | Jan | Feb | Mar | Apr | May | Jun
110.2785 | Jul
110.2785 | Aug
110.4887 | Sep
109.8439 | Oct
109.1572 | Nov
108.6770 | Dec
108.1794 | | | | 8.1423 | | | | | 8.3519 | | | | 8.2771 | | | | | | 0.9995 | 0.9977 | 0.9906 | 0.9460 | 0.7998 | 0.5752 | 0.4145 | 0.4629 | 0.7341 | 0.9704 | 0.9979 | 0.9996 | (86) | | MIT
Th 2
util rest of h | 20.2643 | 20.4064
20.0321 | 20.5949
20.0342 | 20.8312
20.0443 | 20.9672
20.0462 | 20.9979
20.0549 | 20.9999
20.0549 | 20.9997
20.0566 | 20.9871
20.0516 | 20.8043
20.0462 | | 20.2423
20.0384 | | | MIT 2 | 0.9992 | | 0.9853
19.6041 | 0.9194
19.8932 | 0.7339
20.0257 | 0.4918
20.0542 | 0.3256
20.0549 | 0.3682
20.0565 | 0.6431 | 0.9495
19.8710 | | | | | Living area fr | raction | | | 20.0572 | 20.1903 | 20.2192 | 20.2201
| | fLA = | Living area
20.0342 | a / (4) = | 0.1748 | (91) | | Temperature ac
adjusted MIT | djustment | | | | | 20.2192 | 20.2201 | | | 20.0342 | | 0.0000 | | | aujusteu HII | 19.3702 | 19.3404 | 15.7773 | 20.0372 | 20.1903 | 20.2192 | 20.2201 | 20.2214 | 20.2103 | 20.0342 | 19.65/1 | 19.3409 | (53) | | | | | | | | | | | | | | | | | 8. Space heati | ing requirer | | | | | | | | | | | | | | | Jan | Feb | Mar | Apr | May | Jun
0.5064 | Jul | Aug | Sep | Oct | Nov | Dec | | | Utilisation
Useful gains | 753.9933 | 882.7081 | 966.5368 | 1004.9404 | 863.0450 | 580.7726 | 374.7649 | 394.8003 | 627.6988 | | 750.0833 | | (94)
(95) | | Ext temp.
Heat loss rate | ∍ W | | | | | 14.6000 | | 16.4000 | 14.1000 | 10.6000 | 7.1000 | 4.2000 | (96) | | Space heating | | 1556.9763 | 1407.9844 | 1169.5346 | 888.0387 | 581.7642 | 374.7959 | 394.8828 | 635.1282 | 986.7677 | 1319.2156 | 1598.8177 | (97) | | Space heating | requirement | | 328.4370
er year (kW | | 18.5953 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 140.4515 | 409.7753 | 655.1238
2757.9143 | (98a) | | Solar heating
Solar heating | 0.0000 | 0.0000
on - total | 0.0000
per year (ki | 0.0000
Wh/year) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Space heating | kWh | | 328.4370 | | 18.5953 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 140.4515 | 409.7753 | | (98c) | | Space heating
Space heating | requirement | | | | | | | | | |) / (4) = | 2757.9143
27.5488 | 9a. Energy rec | | | | | | | | | | | | | | | Fraction of sp
Fraction of sp | pace heat fi | rom main sy | stem(s) | | m (Table II | .) | | | | | | 1.0000 | (202) | | Efficiency of
Efficiency of | main space | heating sy | stem 2 (in | %) | | | | | | | | 92.3000
0.0000 | (207) | | Efficiency of | | | | _ | | | | | | | | 0.0000 | (208) | | Space heating | | | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating | efficiency | (main heat | | 1) | 18.5953 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 140.4515 | 409.7753 | 655.1238 | | | Space heating | fuel (main | | stem) | 92.3000 | 92.3000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 92.3000 | 92.3000 | 92.3000 | | | Space heating | 686.7990
efficiency | 490.9082
(main heat | 355.8364
ing system | 2) | 20.1466 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 152.1684 | 443.9602 | 709.7766 | | | Space heating | 0.0000
fuel (main | 0.0000
heating sy | 0.0000
stem 2) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (212) | | Space heating | 0.0000 | 0.0000
ndary) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (213) | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating
Water heating | | | | | | | | | | | | | | | | 215.7787 | 190.6686 | 202.7190 | 179.2440 | 174.2991 | 157.7052 | 156.3861 | 162.4133 | 163.9370 | 181.9717 | 192.3794 | 213.6103 | (64) | | | | | | | | | | | | | | | | SAP 10 Online 2.13.11 Page 6 of 7 | Efficiency of water heater (217)m 86.3275 85.9297 85.1354 83.1543 80.5874 79.8000 7 | 79.8000 79.8000 | 79.8000 | 83.4859 | 85.7116 | 79.8000
86.4039 | | |---|---|------------------------|---|-------------------|--|--| | Fuel for water heating, kWh/month 249.9536 221.8891 238.1136 215.5558 216.2859 197.6255 19 | 95.9726 203.5254 | 205.4349 | 217.9670 | 224.4496 | 247.2230 | (219) | | Space cooling fuel requirement (221)m 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | 7.3041 7.3041
10.1834 13.2368 | 7.0685
17.1932 | 7.3041
22.5585 | 7.0685
25.4797 | 7.3041
28.0678 | | | Electricity generated by PVs (Appendix M) (negative quantity) (233a)m -33.3301 -48.1257 -70.8212 -81.5673 -89.5920 -84.1816 -8 | 83.1119 -77.6390 | -68.2800 | -55.8655 | -37.0315 | -28.6818 | (233a) | | | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234a) | | Electricity generated by hydro-electric generators (Appendix M) (negative quantity) (235a)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235a) | | Electricity used or net electricity generated by micro-CHP (Appendix N) (negative i (235c)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235c) | | Electricity generated by PVs (Appendix M) (negative quantity) (233b)m -15.5301 -32.9983 -66.2090 -100.3669 -133.6314 -134.6366 -13 | 33.0886 -112.2958 | -81.7710 | -47.5374 | -20.8440 | -12.2592 | (233b) | | | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234b) | | Electricity generated by hydro-electric generators (Appendix M) (negative quantity) (235b)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235b) | | Electricity used or net electricity generated by micro-CHP (Appendix N) (negative i (235d)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Annual totals kWh/year | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235d) | | Space heating fuel - main system 1
Space heating fuel - main system 2 | | | | | 2987.9895
0.0000 | | | Space heating fuel - main officers Space heating fuel - secondary Efficiency of water heater | | | | | 0.0000
79.8000 | (215) | | Water heating fuel used
Space cooling fuel | | | | | 2633.9959 | (219) | | Electricity for pumps and fans: | | | | | | (222) | | Total electricity for the above, kWh/year
Electricity for lighting (calculated in Appendix L) | | | | | 86.0000
220.3978 | | | Energy saving/generation technologies (Appendices M ,N and Q) | | | | | | (===) | | PV generation Wind generation | | | | | -1649.3959
0.0000 | | | Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) | | | | | 0.0000 | (235a) | | Appendix Q - special features | | | | | | ` ' | | Energy saved or generated | | | | | -0.0000 | (236) | | Energy saved or generated
Energy used
Total delivered energy for all uses | | | | | -0.0000
0.0000
4278.9874 | (237) | | Energy used | | | | | 0.0000 | (237) | | Energy used Total delivered energy for all uses | | | | | 0.0000 | (237) | | Energy used Total delivered energy for all uses | | | | | 0.0000
4278.9874 | (237)
(238) | | Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP | Energy
kWh/year | | ion factor | k | 0.0000
4278.9874
Emissions
g CO2/year | (237)
(238) | | Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems | Energy
kWh/year
2987.9895 | 1 | rg CO2/kWh
0.2100 | k | 0.0000
4278.9874
Emissions
g CO2/year
627.4778
0.0000 | (237)
(238)
(261)
(373) | | Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating | Energy
kWh/year
2987.9895
2633.9959 | 1 | 0.2100 | kı | 0.0000
4278.9874
Emissions
g CO2/year
627.4778
0.0000
553.1391
1180.6169 | (237)
(238)
(261)
(373)
(264)
(265) | | Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) | Energy
kWh/year
2987.9895 | 1 | rg CO2/kWh
0.2100 | kı | 0.0000
4278.9874
Emissions
g CO2/year
627.4778
0.0000
553.1391 | (237)
(238)
(261)
(373)
(264)
(265)
(267) | | Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies | Energy
kWh/year
2987.9895
2633.9959
86.0000
220.3978 | 1 | 0.2100
0.2100
0.1387
0.1443 | lei | 0.0000
4278.9874
Emissions
g CO2/year
627.4778
0.0000
553.1391
1180.6169
11.9293
31.8102 | (237)
(238)
(261)
(373)
(264)
(265)
(267)
(268) | | Energy used Total delivered energy for all uses 12a. Carbon
dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported | Energy
kWh/year
2987.9895
2633.9959
86.0000 | 1 | 0.2100 | lo | 0.0000
4278.9874
Emissions
g CO2/year
627.4778
0.0000
553.1391
1180.6169
11.9293
31.8102 | (261)
(373)
(264)
(265)
(267)
(268) | | Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year | Energy
kWh/year
2987.9895
2633.9959
86.0000
220.3978 | 1 | 0.2100
0.2100
0.2100
0.1387
0.1443 | lo | 0.0000 4278.9874 Emissions g CO2/year 627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 1010.7335 | (261)
(373)
(261)
(373)
(265)
(267)
(268) | | Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total | Energy
kWh/year
2987.9895
2633.9959
86.0000
220.3978 | 1 | 0.2100
0.2100
0.2100
0.1387
0.1443 | lo | 0.0000 4278.9874 Emissions g CO2/year 627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 | (261)
(373)
(261)
(373)
(265)
(267)
(268) | | Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year | Energy
kWh/year
2987.9895
2633.9959
86.0000
220.3978 | 1 | 0.2100
0.2100
0.2100
0.1387
0.1443 | lo | 0.0000 4278.9874 Emissions g CO2/year 627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 1010.7335 | (261)
(373)
(261)
(373)
(265)
(267)
(268) | | Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year | Energy
kWh/year
2987.9895
2633.9959
86.0000
220.3978
-758.2276
-891.1682 | 1 | 0.2100
0.2100
0.2100
0.1387
0.1443 | lo | 0.0000 4278.9874 Emissions g CO2/year 627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 1010.7335 | (261)
(373)
(261)
(373)
(265)
(267)
(268) | | Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) | Energy
kWh/year
2987.9895
2633.9959
86.0000
220.3978
-758.2276
-891.1682 | ?
Primary ene: | CG CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1341 0.1256 | k:
Prim | 0.0000 4278.9874 Emissions g CO2/year 627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 1010.7335 10.1000 | (261)
(373)
(264)
(265)
(267)
(268)
(269)
(272)
(273) | | Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity used in dwelling Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 | Energy
kWh/year
2987.9895
2633.9959
86.0000
220.3978
-758.2276
-891.1682 | 1 | CG CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1341 0.1256 | kı | 0.0000 4278.9874 Emissions g CO2/year 627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 1010.7335 10.1000 ary energy kWh/year 3376.4282 | (261)
(373)
(261)
(373)
(264)
(265)
(267)
(268)
(272)
(273) | | Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) | Energy kWh/year 2987.9895 2633.9959 86.0000 220.3978 -758.2276 -891.1682 Energy kWh/year | ?
Primary ene:
} | CG CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1341 0.1256 | k
Prim | 0.0000 4278.9874 Emissions g CO2/year 627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 1010.7335 10.1000 ary energy kWh/year 3376.4282 0.0000 2976.4154 | (261)
(373)
(261)
(373)
(264)
(265)
(267)
(268)
(272)
(273)
(273) | | Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot | Energy kWh/year 2987.9895 2633.9959 86.0000 220.3978 -758.2276 -891.1682 Energy kWh/year 2987.9895 2633.9959 86.0000 | Primary ener | CG CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1341 0.1256 CG CO2/kWh 1.1300 1.1300 1.5128 | kı
Prim | 0.0000 4278.9874 Emissions g CO2/year 627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 1010.7335 10.1000 ary energy kWh/year 3376.4282 0.0000 2976.4154 6352.8436 130.1008 | (261)
(373)
(264)
(264)
(267)
(268)
(269)
(272)
(273)
(273) | | Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting | Energy
kWh/year
2987.9895
2633.9959
86.0000
220.3978
-758.2276
-891.1682
Energy 1
kWh/year
2987.9895
2633.9959 | Primary ener | CG CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1341 0.1256 CG CO2/kWh 1.1300 1.1300 | kı
Prim | 0.0000 4278.9874 Emissions g CO2/year 627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 1010.7335 10.1000 ary energy kWh/year 376.4282 0.0000 2976.4154 | (261)
(373)
(264)
(264)
(267)
(268)
(269)
(272)
(273)
(273) | | Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling Energy saving/generation technologies PV Unit electricity used in dwelling | Energy kWh/year 2987.9895 2633.9959 86.0000 220.3978 -758.2276 -891.1682 Energy kWh/year 2987.9895 2633.9959 86.0000 220.3978 -758.2276 | Primary enem | CG CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1341 0.1256 CG CO2/kWh 1.1300 1.5128 1.5338 1.4956 | kı
Prim | 0.0000 4278.9874 Emissions g CO2/year
627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 1010.7335 10.1000 ary energy kWh/year 3376.4282 0.0000 2976.4154 6352.8436 130.1008 338.0535 | (261)
(373)
(261)
(373)
(264)
(265)
(267)
(268)
(272)
(273)
(273)
(273)
(278)
(279)
(281)
(282) | | Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies | Energy kWh/year 2987.9895 2633.9959 86.0000 220.3978 -758.2276 -891.1682 Energy kWh/year 2987.9895 2633.9959 86.0000 220.3978 | Primary enem | cg CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1341 0.1256 cgy factor cg CO2/kWh 1.1300 1.5128 1.5338 | kı
Prim | 0.0000 4278.9874 Emissions g CO2/year 627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 1010.7335 10.1000 ary energy kWh/year 3376.4282 0.0000 0976.4154 6352.8436 130.1038 338.0535 | (261)
(373)
(264)
(265)
(267)
(268)
(272)
(273)
(273)
(273)
(273)
(279)
(279)
(282) | SAP 10 Online 2.13.11 Page 7 of 7 | Dwelling Address | Unit 1, Highland Square , Bristol | |------------------------------|-----------------------------------| | Report Date | 05/03/2024 | | Property Type | Maisonette, Semi-Detached | | Floor Area [m ²] | 100 | This document is not an Energy Performance Certificat EPC) s required by the Energy Performance of Buildings Reg io SAP 10 Online 2.13.11 Page 1 of 4 #### Breakdown of property's energy performance Each feature is assessed as one of the following: | Very Poor | Poor | Average | Good | Very Good | | |-----------------------|---|--|------|-------------------|--| | | | | | | | | Feature | Description | | | gy
Performance | | | Walls | Average thermal transmi | ttance 0.18 W/m²K | | Very Good | | | Roof | Average thermal transmi | ttance 0.11 W/m²K | | Very Good | | | Floor | Average thermal transmi | Average thermal transmittance 0.14 W/m²K | | | | | Windows | High performance glazing | | | Good | | | Main heating | Air source heat pump, radiators, electric | | | Good | | | Main heating controls | Time and temperature z contro | | | Very Good | | | Secondary heating | None | | | | | | Hot water | From main sys m | | | Average | | | Lighting | Good ligh g efficien | | | Good | | | Air tightness | Air perme 50] = | 4.5 h.m² (assumed) | | Good | | #### Primary Energy use The primary energy use for this property per year is 39 kilowatt hour (kWh) per square metre #### Estim ted CO₂ missions of the dwelling The estimated ing provides an indication of the dwelling's impact on the environment in terms of carbon dioxide emissions; the higher the rating the less impact it has on the environment. The estimated CO emissions for this dwellings is: 0.4 per year SAP 10 Online 2.13.11 Page 2 of 4 With the recommended measures the potential CO emissions could be: C per year #### Recommendations The recommended measures provided below will help to improve the energy efficiency of the dwelli To reach the dwelling's potential energy rating all of the recommended measures shown would d to be installed. Having these measures installed individually or in any other order may give a different result omp d with the cumulative potential rating. | Recommended measure | Typical | Potential Rati | C ulative | Cumulative | |---------------------|---------|----------------|------------|------------| | | Yearly | after | avings | Potential | | | Saving | measure insta | (per year) | Rating | #### Estimated energy use and potential aving Estimated energy cost for this property over a year £628 Over a year you could save £0 The estimated cost and saving how how much the average hou ld would spend in this property heating, lighting and hot water. It not based on how e is used by the people living at the pr ### Containg the ssessor and the accreditation scheme | Assessor contact details | | | | | |---------------------------------|--|--|--|--| | Assessor name | | | | | | Assessor's accreditation number | | | | | | Email Address | | | | | SAP 10 Online 2.13.11 Page 3 of 4 | Accreditation scheme contact details | | | | | |--|--|--|--|--| | Accreditation scheme Elmhurst Energy Systems Ltd | | | | | | Telephone | | | | | | Email Address | | | | | | Assessment details | | | | | |--------------------------|---------------|--|--|--| | Related party disclosure | No related pa | | | | | Date of assessment | 05/03/202 | | | | | Date of certificate | 05/03/202 | | | | | Type of assessment | SAP w dwellin | | | | #### **Building Regulations England Part L (BREL) Compliance Report** Approved Document L1 2021 Edition, England assessed by Array SAP 10 program, Array Date: Tue 05 Mar 2024 08:42:00 | Project Information | | | | | | |---------------------|------------|-----------------|---------------------------|--|--| | Assessed By | | Building Type | Maisonette, Semi-detached | | | | OCDEA Registration | EES/025661 | Assessment Date | 2024-03-05 | | | | Dwelling Details | | | | |-------------------------|------------------------------|------------------|--------------------| | Assessment Type | As designed | Total Floor Area | 100 m ² | | Site Reference | Unit 6 (HMO) | Plot Reference | PV | | Address | Unit 1 Highland Square, Bris | tol | | | Client Details | | |----------------|---| | Name | Tebby & Son | | Company | SF Tebby & Son | | Address | Unit 11 Avon Gorge Industrial Estate , Bristol, BS2 9XX | This report covers items included within the SAP calculations. It is not a complete report of regulations compliance. | 1a Target emission rate and dwelling emission | rate | | | | |--|---|----|--|--| | Fuel for main heating system | Electricity | | | | | Target carbon dioxide emission rate | 10.1 kgCO ₂ /m ² | | | | | Dwelling carbon dioxide emission rate | 2.88 kgCO ₂ /m ² | OK | | | | 1b Target primary energy rate and dwelling primary energy | | | | | | Target primary energy | 52.7 kWh _{PE} /m ² | | | | | Dwelling primary energy | 32.22 kWh _{PE} /m ² | OK | | | | 1c Target fabric energy efficiency and dwelling fabric energy efficiency | | | | | | Target fabric energy efficiency | 33.7 kWh/m ² | | | | | Dwelling fabric energy efficiency | 32.4 kWh/m ² | OK | | | | 2a Fabric U-values | | | | | | | |--------------------|---|----------------------------------|---|-----|--|--| | Element | Maximum permitted average U-Value [W/m²K] | Dwelling average U-Value [W/m²K] | Element with highest individual U-Value | | | | | External walls | 0.26 | 0.18 | Walls (1) (0.18) | OK | | | | Party walls | 0.2 | 0 | Party Wall (1) (0) | N/A | | | | Curtain walls | 1.6 | 0 | N/A | N/A | | | | Floors | 0.18 | 0.14 | Exposed Floor (0.18) | OK | | | | Roofs | 0.16 | 0.11 | Roof (1) (0.11) | OK | | | | Windows, doors, | 1.6 | 1.31 | W01 (1.31) | OK | | | | and roof windows | | | | | | | | Rooflights | 2.2 | N/A | N/A | N/A | | | | 2b Envelope elements (better than typically expected values are flagged with a subsequent (!)) | | | | | | |--|----------------------------|------------------------------|--|--|--| | Name | Net area [m ²] | U-Value [W/m ² K] | | | | | Exposed wall: Walls (1) | 55.27 | 0.18 | | | | | Exposed wall: Walls (2) | 4.11 | 0.18 | | | | | Party wall: Party Wall (1) | 133.64 | 0 (!) | | | | | Ground floor: Heatloss Floor 1, Heatloss Floor 1 | 52.33 | 0.13 | | | | | Upper floor: Exposed Floor, Exposed Floor | 9.59 | 0.18 | | | | | Exposed roof: Roof (1) | 18.06 | 0.11 | | | | | 2c Openings (better than typically expected values are flagged with a subsequent (!)) | | | | | | |---|------------------------|-------------|--------------|------------------------------|--| | Name | Area [m ²] | Orientation | Frame factor | U-Value [W/m ² K] | | | W01, Windows | 3.48 | South West | 0.7 | 1.31 | | | W02, Windows | 3.48 | North West | 0.7 | 1.31 | | | W03, Windows | 3.48 | North West | 0.7 | 1.31 | | | W04, Windows | 3.48 | South West | 0.7 | 1.31 | | | W05, Windows | 3.49 | South West | 0.7 | 1.31 | | | W06, Windows | 1.26 | South West | 0.7 | 1.31 | | | 2d Thermal bridging (better than typically expected values are flagged with a subsequent (!)) | |---| | Building part 1 - Main Dwelling: Thermal bridging calculated from linear thermal transmittances for each junction | | Main element | Junction detail | Source | Psi value
[W/mK] | Drawing / reference | |---------------|---|--|---------------------|---------------------| | External wall | E2: Other lintels (including other | Not government-approved | 0.023 (!) | Telefelioe | | | steel lintels) | scheme | | | | External wall | E3: Sill | Calculated by person with suitable expertise | 0.021 (!) | | | External wall | E4:
Jamb | Calculated by person with suitable expertise | 0.016 (!) | | | External wall | E24: Eaves (insulation at ceiling level - inverted) | SAP table default | 0.15 | | | Party wall | P3: Intermediate floor between dwellings (in blocks of flats) | SAP table default | 0 (!) | | | External wall | E16: Corner (normal) | Calculated by person with suitable expertise | 0.043 | | | External wall | E25: Staggered party wall between dwellings | Calculated by person with suitable expertise | 0.036 (!) | | | External wall | E18: Party wall between dwellings | Calculated by person with suitable expertise | 0.046 | | | External wall | E14: Flat roof | SAP table default | 0.16 | | | External wall | E17: Corner (inverted - internal area greater than external area) | Calculated by person with suitable expertise | -0.073 | | | Party wall | P1: Ground floor | Calculated by person with suitable expertise | 0.093 | | | Party wall | P5: Roof (insulation at rafter level) | Calculated by person with suitable expertise | 0.101 | | | External wall | E5: Ground floor (normal) | Calculated by person with suitable expertise | 0.047 | Marmox Spec | | External wall | E20: Exposed floor (normal) | Calculated by person with suitable expertise | 0.116 | | | External wall | E21: Exposed floor (inverted) | SAP table default | 0.32 | | | External wall | E22: Basement floor | Calculated by person with suitable expertise | -0.08 | | | External wall | E19: Ground floor (inverted) | SAP table default | 0.1 | | | External wall | E6: Intermediate floor within a dwelling | Calculated by person with suitable expertise | 0.001 (!) | | | Party wall | P7: Exposed floor (normal) | Calculated by person with suitable expertise | 0.185 | | | Party wall | P8: Exposed floor (inverted) | Calculated by person with suitable expertise | 0.185 | | | 3 Air permeability (better than typically expected values are flagged with a subsequent (!)) | | | | | | | | | |--|--|----|--|--|--|--|--|--| | Maximum permitted air permeability at 50Pa | 8 m ³ /hm ² | | | | | | | | | Dwelling air permeability at 50Pa | 4.5 m ³ /hm ² , Design value | OK | | | | | | | | Air permeability test certificate reference | | | | | | | | | | 4 Space heating | | |---------------------------------------|---| | Main heating system 1: Heat pump with | n radiators or underfloor heating - Electricity | | Efficiency | 248.6% | | Emitter type | Radiators | | Flow temperature | 55°C | | System type | Heat Pump | | Manufacturer | Atlantic | | Model | Logic Air 8kW | | Commissioning | | | Secondary heating system: N/A | | | Fuel | N/A | | Efficiency | N/A | | Commissioning | | | 5 Hot water | | | | |---|-------------------------|---|------------| | Cylinder/store - type: Cylinder | 450 14 | | | | Capacity | 150 litres | | | | Declared heat loss | 2.09 kWh/day | | | | Primary pipework insulated | Yes | | | | Manufacturer | | | | | Model | | | | | Commissioning | | | | | Waste water heat recovery system 1 - | type: N/A | | | | Efficiency | | | | | Manufacturer | | | | | Model | | | | | 6 Controls | | | | | | oturo zono control bu | arrangement of plumbing and electrical | nom do o o | | Main heating 1 - type: Time and temper | alure zone control by | arrangement of plumbing and electrical s | services | | Function | | | | | Ecodesign class | | | | | Manufacturer | | | | | Model | | | | | Water heating - type: Cylinder thermost | at and HW separately | timed | | | Manufacturer | | | | | Model | | | | | 7 Lighting | | | | | Minimum permitted light source efficacy | 75 lm/W | | | | Lowest light source efficacy | 80 lm/W | | OK | | External lights control | N/A | | UK | | External lights control | IN/A | | | | 8 Mechanical ventilation | | | | | System type: N/A | | | | | Maximum permitted specific fan power | N/A | | | | Specific fan power | N/A | | N/A | | Minimum permitted heat recovery | N/A | | 1.4 | | efficiency | | | | | Heat recovery efficiency | N/A | | N/A | | Manufacturer/Model | 14/74 | | IV/A | | Commissioning | | | | | | | | | | 9 Local generation | | | | | Technology type: Photovoltaic system | (1) | | | | Peak power | 1.045 kWp | | | | Orientation | South West | | | | Pitch | 45° | | | | Overshading | None or very little | | | | Manufacturer | | | | | MCS certificate | | | | | | | | | | 10 Heat networks | | | | | N/A | | | | | 11 Supporting documentary evidence | | | | | N/A | | | | | 14/74 | | | | | 12 Declarations | | | | | a. Assessor Declaration | | | | | This declaration by the assessor is co | onfirmation that the co | ntents of this BREL Compliance Report | | | | | formation submitted for this dwelling for | | | | | and that the supporting documentary | | | evidence (SAP Conventions, Append | | | | | documentary evidence required) has | | | | | Compliance Report. | | TIMES OF PROPERTING WITE BILLE | | | Compilation Report. | | | | | | | | | | Signed | | Assessor ID: | | | Signed: | | | | | | | /\ddcddoi ib. | | | | | 7.0303301 12. | | | Name: | | Date: | | #### b. Client Declaration N/A | Property Reference | Unit 6 | (HMO) | | | | | | | Issued | d on Date | 05/ | 03/202 | 4 | | | |------------------------------------|---------------------------------|-------------|--|---|---|--|----------------------------|-----------|---|--|------------------------|--|----------------------------|--|--| | Assessment Reference | PV | | | Prop Type Ref Tebb | | | | | | | Tebby and Son Garage | | | | | | Property | Unit 1 | Highland | Square , Bri | Bristol | | | | | | | | | | | | | SAP Rating | | | 83 | ВВ | DER | | 2.8 | 3 | | TER | | 10.10 | | | | | Environmental | | | 97 | 'A | % DER | R < TER | | | | | | 71.49 | | | | | CO ₂ Emissions (t/year) | | | 0.3 | 0.25 DFEE 32.38 | | | | | TFEE | | 33.69 | | | | | | Compliance Check | | | Se | ee BREL | % DFE | E < TFEE | | | | | | 3.91 | | | | | % DPER < TPER | | | 38 | 3.86 | DPER | | 32.2 | 22 | | TPER | | 52.70 | | | | | Assessor Details | | | | | | | | | | Assesso | r ID | U367-(| 0001 | | | | Client | | | | | | | | | | | | | | | | | SUMMARY FOR INPU | IT DATA FO | R: New E | Build (As I | Designed) | | | | | | | | | | | | | Orientation | | | No | ortheast | | | | | | | | | | | | | Property Tenture | | | 1 | | | | | | | | | | | | | | Transaction Type | | | 6 | | | | | | | | | | | | | | Terrain Type | | | Ur | ban | | | | | | | | | | | | | 1.0 Property Type | | | Ma | aisonette, Semi-D | etached | | | | | | | | | | | | Position of Flat | | | Gr | ound-floor flat | | | | | | | | | | | | | Which Floor | | | 1 | | | | | | | | | | | | | | 2.0 Number of Storeys | | | 2 | | | | | | | | | | | | | | 3.0 Date Built | | | 20 | 24 | | | | | | | | | | | | | 3.0 Property Age Band | | | L | | | | | | | | | | | | | | 4.0 Sheltered Sides | | | 3 | | | | | | | | | | | | | | 5.0 Sunlight/Shade | | | Av | erage or unknowr | | | | | | | | | | | | | 6.0 Thermal Mass Parame | ter | | Pr | ecise calculation | | | | | | | | | | | | | Thermal Mass | | | N/ | A | | | | | k | J/m²K | | | | | | | 7.0 Electricity Tariff | | | St | andard | | | | | | | | | | | | | Smart electricity meter f | itted | | No |) | | | | | | | | | | | | | Smart gas meter fitted | | | No |) | | | | | | | | | | | | | 7.0 Measurements | | | | Basemei
Ground flor
1st Store
2nd Store
3rd Store
4th Store
5th Store
6th Store
7th Store | nt:
or:
ey:
ey:
ey:
ey:
ey: | t Loss Pe
0.00 m
19.20 n
13.06 n
18.05 n
0.00 m
0.00 m
0.00 m
0.00 m | n
n
n
n
i
i | r In | 0.00 r
0.00 r
52.33
47.78
27.28
0.00 r
0.00 r
0.00 r
0.00 r | m²
m²
m²
m²
m²
m²
m²
m² | Avera | ge Sto
0.00
2.50
2.70
2.42
0.00
0.00
0.00
0.00 | m
m
m
m
m
m | | | | 8.0 Living Area | | | 17 | 7.50 | | | | | n | n² | | | | | | | 9.0 External Walls Description | Туре | Constructi | ion | | [I_Value | Kappa | Gross | Nett Area | Shelter | Shelter | Openi | nas Ar | ea Calculatio | | | | Cavity Wall | Cavity Wall | Cavity wall | : plasterboard | on dabs, dense block, | | (kJ/m²K) /
150.00 | | | Res
0.00 | None | 18.6 | _ | Type
ter Gross Ar | | | | Basement Wall | Cavity Wall | Cavity wall | any outside st
: plasterboard
; any outside st | on dabs, dense block, | 0.18 | 150.00 | 4.11 | 4.11 | 0.00 | None | 0.00 |) En | ter Gross An | | | | 9.1 Party Walls | | | | | | | | | | | | | | | | | Description Party Wall 1 | Type Filled Cav Edge Sea | ity with Si | onstructior
ingle plaster
avity | n
board on both sid | es, dense | cellular b | olocks, | | Kappa
(kJ/m²K)
70.00 | Area
(m²)
133.64 | Shelter
Res
0.00 | , | Shelter
None | | | | 9.2 Internal Walls | | ., | | | | | | | | | | | | | | | Description | | | nstruction | | | | | | | | (k | appa
J/m²K) | Area (r | | | | Internal Wall 1 | | De | nse block, d | ense plaster | | | | | | | 1 | 00.00 | 135.60 | | | SAP 10 Online 2.13.11 Page 1 of 4 | 10.0 External Roofs
Description | Туре | Construc | tion | | | Kappa
kJ/m²K)A | | Nett
Area | | Shelte
Factor | | onOpening |
---|--|-----------------------|--------------------------------|--|---|---|---|--|--|-----------------------|---------------------------|--| | External Roof 1 | External Flat
Roof | Plasterbo | ard, in | sulated flat roof | 0.11 | 9.00 | 18.06 | (m²)
18.06 | 8 None | 0.00 | Enter Gro
Area | oss 0.00 | | 10.1 Party Ceilings
Description | | Const | ructio | n | | | | | | | Kappa | Area (m² | | Party Ceiling 1 | | Precas | st cond | crete planks floor, screed, | carpeted | | | | | | (kJ/m²K)
30.00 | 43.86 | | 10.2 Internal Ceilings Description Internal Ceiling 1 | | Storey
Lowest occu | pied | Construction
Other | | | | | | | А | rea (m²)
38.19 | | 11.0 Heat Loss Floors Description | Туре | Storey Index | K | Construction | | U-1 | /alue | Sh | elter Code | | Shelter Ka | ppa Area(m | | Heatloss Floor 1
Exposed Floor | Ground Floor - Solid
Exposed Floor -
Solid | d Lowest occu | pied | Suspended concrete floor, carp
Other | peted | 0 | / m²K)
1.13
1.18 | | None
None | I | 0.00 75 | m²K)
.00 52.33
.00 9.59 | | 11.2 Internal Floors Description Internal Floor 1 | | Storey
Index | Cons | struction
r | | | | | | | Kappa
(kJ/m²h
40.00 | | | 12.0 Opening Types | | | | | | | | | | | | | | Description Windows | Data Source
Manufacturer | Type
Window | | Glazing Double Low-F Soft | 0.05 | Glazing
Gap | g Filli ı
Typ
Air Fi | e e | G-value
0.63 | Frame
Type
Wood | Factor | | | SOlid dooor | Manufacturer | Solid Doo | r | Bodbie Low L Colt | 0.00 | | Air Fi | | 0.00 | Wood | | 1.31 | | 13.0 Openings Name W01 W02 W03 W04 W05 W06 | Opening Ty
Windows
Windows
Windows
Windows
Windows | ype | | Location
Cavity Wall
Cavity Wall
Cavity Wall
Cavity Wall
Cavity Wall
Cavity Wall | | Sout
Nortl
Nortl
Sout
Sout | ntation
h West
h West
h West
h West
h West
h West | | Area (
3.48
3.48
3.48
3.48
1.26 | 3
3
3
3 | ı | Pitch
0
0
0
0
0 | | *************************************** | VVIIIUOWS | | | | | 3000 | II VVCSt | | 1.20 | | | - | | 14.0 Conservatory | | | | None | | | | | | | | | | 15.0 Draught Proofing
16.0 Draught Lobby | | | | 100
No | | | | |] %
] | | | | | 17.0 Thermal Bridging | | | | Calculate Bridges | | | | |] | | | | | 17.1 List of Bridges | | | | oulculate Driages | | | | | J | | | | | Bridge Type E2 Other lintels (includi E3 Sill E4 Jamb E24 Eaves (insulation a P3 Party wall - Intermed | at ceiling level - inv | verted) | Non
Indep
Indep
Table | cce Type Gov Approved Schemes bendently assessed bendently assessed 2 K1 - Default 3 K1 - Default | Length
9.19
9.19
25.20
7.26
40.59 | Psi
0.02
0.02
0.02
0.15
0.00 | Adjus
0.0
0.0
0.0
0.1
0.0 | 2
2
2
5 | eference: | | | Imported
No
No
No
No
No | | (in blocks of flats) E16 Corner (normal) E25 Staggered party w E18 Party wall between E14 Flat roof E17 Corner (inverted – external area) | dwellings | | Inder
Inder
Table | pendently assessed
pendently assessed
pendently assessed
e K1 - Default
pendently assessed | 11.40
6.40
13.90
6.90
7.70 | 0.04
0.04
0.05
0.16
-0.07 | 0.0
0.0
0.0
0.1
-0.0 | 4
5
6 | | | | No
No
No
No
No | | P1 Party wall - Ground P5 Party wall - Roof (in E5 Ground floor (norma E20 Exposed floor (nor E21 Exposed floor (inve E22 Basement floor E19 Ground floor (inve E6 Intermediate floor w P7 Party Wall - Expose P8 Party Wall - Expose | sulation at rafter le
al)
mal)
erted)
ted)
ithin a dwelling
d floor (normal) | evel) | Inder | pendently assessed
pendently assessed
pendently assessed
pendently assessed
e K1 - Default
pendently assessed
e K1 - Default
pendently assessed
pendently assessed
pendently assessed
pendently assessed | 27.54
6.50
13.88
2.16
5.04
4.11
4.11
10.91
4.34
0.93 | 0.09
0.10
0.05
0.12
0.32
-0.08
0.10
0.00
0.18
0.18 | 0.0
0.1
0.0
0.1
0.3
-0.0
0.1
0.0
0.1 | 0
5 M
2
2
0
8
0
8 | larmox Sp | ec | | No
No
No
No
No
No
No
No
No | | Y-value | | | | 0.07 | | | | | W/m²K | | | | | 18.0 Pressure Testing | | | | Yes | | | | |] | | | | | Designed AP ₅₀ | | | | 4.50 | | | | | m³/(h.m² | ²) <i>ര</i> ു ട്വ | Pa | | | Property Tested? | | | _ | Yes | | | | |] | , w 50 | . u | | | Test Method | | | | Blower Door | | | | |] | | | | | | | | L | | | | | | 1 | | | | SAP 10 Online 2.13.11 Page 2 of 4 | Mechanical Ventilation Mechanical Ventilation System Present | No | | | | | | | |---|------------------|-----------------------|-----|--------------------------|----------|-------------|-----------------| | | 140 | | | | | | | | 20.0 Fans, Open Fireplaces, Flues | | | | | | | | | 21.0 Fixed Cooling System | No | | | | | | | | 22.0 Lighting | | | | | _ | | | | No Fixed Lighting | No Name | Efficacy | Pov | /or | Ca | pacity | Count | | | Lighting 1 | 80.00 | 15 | | , | 1200 | 5 | | 24.0 Main Heating 1 | Database | | | | | | | | Percentage of Heat | 100.00 | | | | % | | | | Database Ref. No. | 106764 | | | | | | | | Fuel Type | Electricity | | | | | | | | SAP Code | 0 | | | | | | | | In Winter | 248.59 | | | | | | | | In Summer | 188.24 | | | | | | | | Model Name | Logic Air 8kW | | | | | | | | Manufacturer | Atlantic | | | | | | | | System Type | Heat Pump | | | | | | | | Controls SAP Code | 2207 | | | | | | | | Delayed Start Stat | No | | | | | | | | HETAS approved System | No | | | | | | | | Oil Pump Inside | No | | | | | | | | FI Case | 0.00 | | | | | | | | Flue Type | None or Unknown | 1 | | | | | | | Fan Assisted Flue | No | | | | | | | | Is MHS Pumped | Pump in heated s | pace | | | | | | | Heating Pump Age | 2013 or later | | | | | | | | Heat Emitter | Radiators | | | | | | | | Flow Temperature | Enter value | | | | | | | | Flow Temperature Value | 55.00 | | | | | | | | Boiler Interlock | No | | | | | | | | 25.0 Main Heating 2 | None | | | |
7 | | | | | | | | | <u> </u> | | | | 26.0 Heat Networks | None | | | | | | | | Heat Source Fuel Type Heating L | Jse Efficiency | Percentage Of
Heat | Po | leat Ele
ower
atio | ectrical | Fuel Factor | Efficiency type | | Heat source 1 None
Heat source 2 None | | | | | | | | | Heat source 3 None | | | | | | | | | Heat source 4 None Heat source 5 None | | | | | | | | | 28.0 Water Heating | | | | | | | | | Water Heating | Main Heating 1 | | | | | | | | SAP Code | 901 | | | | | | | | Flue Gas Heat Recovery System | No | | | | | | | | Waste Water Heat Recovery Instantaneous System 1 | No | | | | | | | | Waste Water Heat Recovery Instantaneous System 2 | No | | | | | | | | Waste Water Heat Recovery Storage System | No | | | | | | | | Tradic Trace Treat Tecovery elorage Cyclem | | | | | | | | | Solar Panel | No | | | | | | | | | No
Yes | | | | | | | SAP 10 Online 2.13.11 Page 3 of 4 Cold Water Source From header tank **Bath Count** Supplementary Immersion No No Immersion Only Heating Hot Water 28.1 Showers Description **Shower Type** Flow Rate Rated Power Connected Connected To [l/min] [kW] 7.00 7.00 Combi boiler or unvented hot water system Combi boiler or unvented hot water system No Combi boiler or unvented hot water system No 7.00 28.3 Waste Water Heat Recovery System 29.0 Hot Water Cylinder Hot Water Cylinder Cylinder Stat Yes Yes Cylinder In Heated Space Independent Time Control Yes Insulation Type Measured Loss Cylinder Volume 150.00 Loss 2.09 kWh/day Fully insulated primary pipework Pipes insulation In Airing Cupboard 31.0 Thermal Store None 32.0 Photovoltaic Unit One Dwelling **Export Capable Meter?** Yes Connected To Dwelling No Diverter No Battery Capacity [kWh] 0.00 PV Cells kWp Orientation Elevation Overshading FGHRS MCS Certificate Overshading Panel Factor Certificate Manufacturer Reference South West 45° 1.00 1.04 None Or Little No No 34.0 Small-scale Hydro None 0.00 **Electricity Generated** 0.00 kWh/Year Apportioned Yes Connected to dwelling's electricity meter **Electricity Generation** Annual Mar Apr May Jun Jul Aug Oct Nov Dec Recommendations None Further measures to achieve even higher standards Ratings after improvement Typical Cost Typical savings per year SAP rating Environmental Impact Solar water heating ŏ ŏ SAP 10 Online 2.13.11 Page 4 of 4 | Property Reference | | | nit 6 (HMO) | | | | | | | Issued on Da | | 05/03/2024 | | |--|---|---------------------------------------|-------------------------|---|-------------------
--|-------------------------|---|--|--|--|--|--| | Assessment Refe | rence | P\ | | | | | | Prop Type F | Ref To | ebby and Son | Garage | | | | Property | | Ur | nit 1, Highland | Square , Bristol | | | | | | | | | | | SAP Rating | | | | | 83 B | | DER | 2.8 | 38 | TER | | 10.10 | | | Environmental | | | | | 97 A | | % DER < TER | ₹ | | | | 71.49 | | | CO ₂ Emissions (t/ | year) | | | | 0.25 | | DFEE | 32 | .38 | TFEE | | 33.69 | | | Compliance Chec | k | | | | See BREL | | % DFEE < TF | EE | | | | 3.91 | | | % DPER < TPER | | | | | 38.86 | | DPER | 32 | .22 | TPER | ł . | 52.70 | | | Assessor Details | | | | | | | | | | Asse | ssor ID | U367-000 |)1 | | Client | | | | | | | | | | | | | | | SAP 10 WORKSHEET
CALCULATION OF I | | | | | | 2022) | | | | | | | | | 1. Overall dwell Ground floor First floor Total floor area Dwelling volume | | | |)(ln) | 10 | 0.1100 | | 47.7800 | | 2.7000 | (2b) =
(2c) = | Volume
(m3)
130.8250
129.0060
259.8310 | (lb) - (3
(lc) - (3
(4) | | 2. Ventilation r | ate | | | | | | | | | | I | n3 per hour | | | Number of open of
Number of open f
Number of chimne
Number of flues
Number of flues
Number of interm
Number of passiv
Number of fluele | lues ys / flues attached t attached t d chimneys ittent ext e vents | o solid fu
o other he
ract fans | el boiler | fire | | | | | | | 0 * 35 =
0 * 20 =
4 * 10 = | 0.0000
0.0000
0.0000
0.0000
40.0000
0.0000 | (6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b) | | Infiltration due
Pressure test
Pressure Test Me
Measured/design
Infiltration rat
Number of sides | thod
AP50 | ys, flues | and fans | = (6a)+(6b) | + (6c) + (6d) + (| 6e)+(6f)+(| (6g)+(7a)+(| 7b)+(7c) = | | 40.0000 | / (5) = | 0.1539
Yes
310wer Door
4.5000
0.3789 | (8) | | Shelter factor
Infiltration rat | e adjusted | l to includ | de shelter | factor | | | | | (20) = 1 - (2 | [0.075 x
1) = (18) | (19)] =
x (20) = | 0.7750
0.2937 | | | Wind speed
Wind factor
Adj infilt rate | | | Mar
4.9000
1.2250 | | | Jun
3.8000
0.9500 | Jul
3.8000
0.9500 | | Sep
4.0000
1.0000 | Oct
4.3000
1.0750 | | | | | | 0.3744 | | 0.3598
0.5647 | | | 0.2790
0.5389 | 0.2790
0.5389 | | 0.2937
0.5431 | | | | | | 3. Heat losses a | nd heat lo | ss paramet | er | | | | | | | | | | | | Element Windows (Uw = 1. Heatloss Floor 1 Exposed Floor Cavity Wall Basement Wall External Roof 1 Total net area of Fabric heat loss Farty Wall 1 Party Ceiling 1 Internal Wall 1 Internal Floor 1 Internal Floor 1 Internal Ceiling | f external, W/K = Su | .elements
m (A x U) | | Gross
m2
73.9400
4.1100
18.0600 | Openings m2 | 18.
52.
9.
55.
4.
18.
158.
133.
43.
135.
38. | 1100
0600
0300 | W/m2K
1.2448
0.1300
0.1800
0.1800
0.1800
0.1100
30) + (32)
0.0000 | W/
23.239
6.802
1.726
9.948
0.739
1.986
= 44.444
0.000 | K 9 7 9 7 7 2 4 6 15 8 15 6 6 7 3 10 4 4 | 0.0000
0.0000
9.0000
0.0000
0.0000
0.0000
0.0000 | 383.6000
8290.5000
616.5000
162.5400
9354.8000
1315.8000
13560.0000
1527.6000 | (27)
(28a)
(28b)
(29a)
(29a)
(30)
(31)
(33)
(32)
(32b)
(32c)
(32d)
(32e) | | Heat capacity Cm
Thermal mass par
List of Thermal
K1 Eleme
E2 Other | ameter (TM
Bridges
nt | IP = Cm / 1 | OFA) in kJ/ | | | | | | (30) + (32
Length P
9.1850 |) + (32a).
si-value
0.0230 | (32e) =
Tot
0.21 | 406.1901 | | SAP 10 Online 2.13.11 Page 1 of 7 | E3 Sill E4 Jamb E24 Eav P3 Part; E16 Corr E25 Sta: E18 Par E17 Corr P1 Part; P5 Part; E5 Groun E20 Expp E21 Exp E22 Bas: E19 Groot E6 Inte: P7 Part; P8 Part; Thermal bridges Point Thermal b. Total fabric her | 25
7
40
11
6
13
6
27
6
13
2
5
4
4
4
10 | .1850
.2000
.2600
.5870
.4000
.9000
.9000
.7000
.5400
.5000
.8800
.1600
.0400
.1100
.1100
.9100
.9300 | 0.0210
0.0160
0.1500
0.0000
0.0430
0.0360
0.1600
-0.0730
0.0930
0.1010
0.0470
0.1160
0.3200
-0.0800
0.0010
0.1850
0.1850 | 0.19
0.40
1.08
0.00
0.49
0.23
0.63
1.10
-0.56
0.65
0.65
0.25
1.61
-0.32
0.41
0.01
0.80
0.17
(36a) = | 32
90
00
02
94
40
21
12
12
24
06
28
88
10
09 | | | | | | | | | |---|---|---|--|---|--|--------------------|--------------------|--------------------|--------------------|--------------------|-----------------------|----------------------|----------------| | Ventilation hear | t loss cal
Jan | lculated mon
Feb | nthly (38)m
Mar | = 0.33 x (| 25)m x (5)
May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | (38)m
Heat transfer c | 48.8832 | 48.6498 | 48.4210 | 47.3464 | 47.1453 | 46.2093 | 46.2093 | 46.0360 | 46.5698 | 47.1453 | 47.5520 | 47.9773 | (38) | | | 103.9270 | 103.6936 | 103.4648 | 102.3901 | 102.1891 | 101.2531 | 101.2531 | 101.0797 | 101.6136 | 102.1891 | 102.5958 | 103.0210
102.3892 | (39) | | Average - Dum(o | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | HLP | 1.0381 | 1.0358 | 1.0335 | 1.0228 | 1.0208 | 1.0114 | 1.0114 | 1.0097 | 1.0150 | 1.0208 | 1.0248 | 1.0291 | (40) | | HLP (average)
Days in mont | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 1.0228 | 4 Water bestin | | | | | | | | | | | | | | | 4. Water heating | | | | | | | | | | | | | | | Assumed occupano
Hot water usage | | r showers | | | | | | | | | | 2.7405 | (42) | | | 87.8734 | 86.5281 | 84.5455 | 81.4954 | 78.7627 | 74.9396 | 71.9158 | 75.4508 | 77.2288 | 81.0154 | 84.9588 | 87.7942 | (42a) | | Hot water usage | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (42b) | | Hot water usage | for other 42.6959 | uses
41.1433 | 39.5907 | 38.0382 | 36.4856 | 34.9330 | 34.9330 | 36.4856 | 38.0382 | 39.5907 | 41.1433 | 42.6959 | (42c) | | Average daily h | ot water u | use (litres, | /day) | | | | | | | | | 119.8269 | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Daily hot water | use
130.5693 | 127.6714 | 124.1362 | 119.5336 | 115.2483 | 109.8726 | 106.8488 | 111.9364 | 115.2670 | 120.6061 | 126.1021 | 130.4901 | (44) | | Energy conte :
Energy content | 192.2206 | | 177.3881 | 156.1408 | 148.5091 | 127.0641 | 118.0711 | 131.7512 | 133.7039 | 155.4132 | 170.4312
um(45)m = | 191.6343 | | | Distribution los | ss (46)m | | | | | | | | | | | | | | Water storage 1 | 28.8331
oss: | 25.3403 | 26.6082 | 23.4211 | 22.2764 | 19.0596 | 17.7107 | 19.7627 | 20.0556 | 23.3120 | 25.5647 | 28.7451 | (46) | | Store volume
a) If manufact | | ared loss f | actor is low | oum (MATh/d | latr/\ • | | | | | | | 150.0000
2.0900 | | | Temperature fo | actor from | n Table 2b | uccol is an | OWII (AWII) G | ay,. | | | | | | | 0.5400 | (49) | | Enter (49) or (5
Total storage 1 | | 5) | | | | | | | | | | 1.1286 | (55) | | _ | 34.9866 | 31.6008 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | (56) | | If cylinder con | 34.9866 | 31.6008 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | 34.9866 | 33.8580 | 34.9866 | 33.8580 | 34.9866 | (57) | | Primary loss
Combi loss | 23.2624
0.0000 | 21.0112
0.0000 | 23.2624
0.0000 | 22.5120
0.0000 | 23.2624
0.0000 | 22.5120
0.0000 | 23.2624
0.0000 | 23.2624
0.0000 | 22.5120
0.0000 | 23.2624
0.0000 | 22.5120
0.0000 | 23.2624
0.0000 | | | Total heat requi | ired for w | water heati | ng calculate | ed for each | month | | | | | | | | | | WWHRS | 250.4696
0.0000 | 221.5471
0.0000 | 235.6371
0.0000 | 212.5108
0.0000 | 206.7581
0.0000 | 183.4341
0.0000 | 176.3201
0.0000 | 190.0002
0.0000 | 190.0739
0.0000 | 213.6622
0.0000 | 226.8012
0.0000 | 249.8833
0.0000 | | | PV diverter
Solar input
FGHRS | -0.0000 | -0.0000 | -0.0000 | -0.0000 | -0.0000
0.0000 | -0.0000 | -0.0000 | -0.0000 | -0.0000 | -0.0000
0.0000 | -0.0000 | -0.0000
0.0000 | (63b)
(63c) | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | | 0.0000 | | | | | Output from w/h | | 221.5471 | 235.6371 | 212.5108 | 206.7581 | 183.4341 | 176.3201 | | | | | | | | 12Total per year | r (kWh/vea | ar) | | | | | | Total p | er year (kW | h/year) = S | um(64)m = |
2557.0976
2557 | | | Electric shower | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | | | | | | al Energy u | | | | | | | 0.0000 | | | Heat gains from | water nea
110.5126 | 98.2605 | montn
105.5807 | 97.0128 | 95.9785 | 87.3448 | 85.8578 | 90.4065 | 89.5525 | 98.2741 | 101.7644 | 110.3176 | (65) | 5. Internal gain | | | | | | | | | | | | | | | Metabolic gains | (Table E) | Motte | | | | | | | | | | | | | | Jan | Feb | Mar | Apr | May
137.0271 | Jun
137 0271 | Jul | Aug | Sep | Oct | Nov | Dec
137 0271 | (66) | | Lighting gains | (calculate | ed in Appen | dix L, equat | tion L9 or | L9a), also | see Table 5 | | | | | | | | | Appliances gains | | | | | 131.4313
or L13a), a | | | 131.4313 | 135.8123 | 131.4313 | 135.8123 | 131.4313 | (67) | | | 256.5055 | 259.1672 | 252.4597 | 238.1804 | 220.1552 | 203.2141 | 191.8964 | 189.2347 | 195.9421 | 210.2215 | 228.2467 | 245.1878 | (68) | | | 36.7027 | 36.7027 | 36.7027 | 36.7027 | 36.7027 | 36.7027 | 36.7027 | 36.7027 | | | | 36.7027 | | | Pumps, fans
Losses e.g. eva | 0.0000
poration | 0.0000
(negative v | 0.0000
alues) (Tabi | 0.0000
le 5) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (70) | | -: | 109.6217 | -109.6217 | | | -109.6217 | -109.6217 | -109.6217 | -109.6217 | -109.6217 | -109.6217 | -109.6217 | -109.6217 | (71) | | Water heating g | | | 141.9096 | 134.7400 | 129.0033 | 121.3122 | 115.4003 | 121.5141 | 124.3785 | 132.0888 | 141.3394 | 148.2763 | (72) | | Total internal | gains | | | | 544.6979 | | | | | | 569.5065 | 589.0035 | | | | | | | 1.2.0400 | | | 1121001 | | | | | 222.3000 | , | | | | | | | | | | | | | | | | | 6. Solar gains | SAP 10 Online 2.13.11 Page 2 of 7 | [Jan] | | | | rea
m2 | Solar flux
Table 6a
W/m2 | Speci
or | g
fic data
Table 6b | Specific
or Tab | FF
data
le 6c | Acce
fact
Table | or | Gains
W | | |---|--|---|--|----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------|--------------------------------------|--------------------------------------|-------------------------------------|--|-------------------------| | Southwest
Northwest | | | 11.7
6.9 | 100 | | | 0.6300
0.6300 | 0 | .7000
.7000 | 0.77
0.77 | | 131.6751
23.9996 | | | Solar gains
Total gains | | | | | | | | | | | | | | | 7. Mean inter | rnal tempera | | | | | | | | | | | | | | Temperature of | | | | | | Thl (C) | | | | | | 21.0000 | (85) | | tau | Jan
108.6866 | Feb
108.9313 | Mar
109.1721 | Apr
110.3180 | May
110.5350 | 111.5568 | | | | | | Dec
109.6424 | | | alpha
util living a | 8.2458
area
n 9994 | 8.2621
0.9974 | | 8.3545
0.9388 | 8.3690
0.7837 | 8.4371
0.5594 | 8.4371
0.4033 | | 8.4107
0.7157 | 8.3690
0.9659 | 8.3398
0.9976 | 8.3095
0.9996 | | | Living
Non living
24 / 16 | | | | 20.8482 | 20.9727 | 20.9984 | 20.9999 | 20.9998 | 20.9896 | 20.8207 | 20.5120 | 20.2654 | ` ' | | Non living
24 / 16
24 / 9 | | | | 19.9299
0
0 | 0 | 20.0733
0
0 | 20.0738
0
0 | 0 | 0 | 0 | 0 | 19.2069
0
0 | | | 16 / 9
MIT | 28
20.6358 | 0
20.4304 | 20.6175 | 0
20.8482 | 0
20.9727 | 0
20.9984 | 0
20.9999 | 0
20.9998 | 0
20.9896 | 0
20.8207 | 0
20.5120 | 10
20.3682 | (87) | | Th 2
util rest of | | 20.0536
0.9961 | | 20.0644
0.9103 | 20.0661
0.7184 | 20.0738 | 20.0738 | 20.0753
0.3591 | 20.0708
0.6272 | 20.0661
0.9431 | 20.0627
0.9960 | 20.0592
0.9994 | | | MIT 2
Living area f | 19.7240
fraction | 19.4131 | 19.6505 | 19.9299 | | 20.0733 | 20.0738 | 20.0752 | 20.0664 | 19.9072
Living are | 19.5252
a / (4) = | 19.3605
0.1748 | (90)
(91) | | MIT
Temperature a
adjusted MIT | adjustment | | 19.8196
19.8196 | 20.0905 | 20.2106 | 20.2350 | 20.2357 | 20.2368 | 20.2278 | | 19.6977 | 19.5366
0.0000
19.5366 | | | aajastea mii | 13.0034 | 15.5510 | 15.0150 | 20.0303 | 20.2100 | 20.2550 | 20.2557 | 20.2300 | 20.2270 | 20.0003 | 13.0377 | 13.3300 | (55) | | 8. Space heat | ting require | ment | 0 | | | | | Utilisation
Useful gains
Ext temp. | 755.5015 | | 966.5951 | | May
0.7291
849.2738
11.7000 | Jun
0.4936
569.8046
14.6000 | Jul
0.3333
368.1029
16.6000 | | Sep
0.6427
616.8190
14.1000 | Oct
0.9431
797.3193
10.6000 | Nov
0.9952
753.7583
7.1000 | Dec
0.9992
720.7087
4.2000 | (95) | | Heat loss rat | te W
1619.5341 | | 1378.1075 | | | 570.5607 | 368.1261 | 387.8277 | 622.6641 | | 1292.4684 | | | | Space heating
Space heating | 642.8402 | | 306.1652
per vear (kW | | 15.1913 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 126.5476 | 387.8712 | 639.3081
2652.5029 | | | Solar heating | g kWh
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Solar heating
Space heating | g kWh | | 306.1652 | - | 15.1913 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 126.5476 | 387.8712 | 0.0000 | | | Space heating
Space heating | | t after sol | lar contribu | tion - tota | ıl per year | (kWh/year) | | | | (98c |) / (4) = | 2652.5029
26.4959 | | | | | | | | | | | | | | | | | | 9a. Energy re | equirements | - Individua | al heating s | ystems, inc | luding micr | o-CHP | | | | | | | | | Fraction of s
Fraction of s
Efficiency of
Efficiency of
Efficiency of | space heat f
f main space
f main space | rom main sy
heating sy
heating sy | ystem(s)
ystem 1 (in
ystem 2 (in | 용)
용) | em (Table 11 |) | | | | | | 0.0000
1.0000
248.5876
0.0000
0.0000 | (202)
(206)
(207) | | Space heating | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating | 642.8402 | 429.7618 | 306.1652
sing system | | 15.1913 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 126.5476 | 387.8712 | 639.3081 | (98) | | Space heating | 248.5876
g fuel (main | 248.5876
heating sy | 248.5876
/stem) | 248.5876 | 248.5876 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 248.5876 | 248.5876 | 248.5876 | | | Space heating | | | 123.1619
sing system
0.0000 | 42.1652
2)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating | g fuel (seco
0.0000 | ndary)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating | g requiremen | | | | | | | | | | | | | | Efficiency of | f water heat | 221.5471
er
188.2367 | | 212.5108
188.2367 | 206.7581
188.2367 | 183.4341
188.2367 | 176.3201
188.2367 | 190.0002
188.2367 | 190.0739
188.2367 | 213.6622
188.2367 | 226.8012
188.2367 | 249.8833
188.2367
188.2367 | (216) | | Fuel for wate | er heating, | kWh/month | 125.1812 | 112.8955 | 109.8394 | 97.4486 | 93.6693 | 100.9368 | 100.2367 | 113.5072 | 120.4872 | 132.7495 | | | Space cooling
(221)m | g fuel requi
0.0000 | rement
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (221) | | Pumps and Fa
Lighting
Electricity | 32.7159 | | 0.0000
23.6315
ndix M) (neg | 0.0000
17.3135
ative quant | 0.0000
13.3734
(ity) | 0.0000
10.9262 | 0.0000
12.1997 | 0.0000
15.8576 | 0.0000
20.5975 | 0.0000
27.0250 | 0.0000
30.5246 | 0.0000
33.6251 | | | (233a)m
Electricity | -20.7063
generated by | -31.7310
wind turbi | -49.0953
ines (Append | -58.4465
lix M) (nega | -65.8373
tive quanti | | -61.6276 | -56.5507 | -47.6304 | -37.2376 | -23.4939 | -17.5986 | | | (234a)m
Electricity (
(235a)m | 0.0000
generated by
0.0000 | 0.0000
hydro-elec
0.0000 | 0.0000
tric genera
0.0000 | 0.0000
tors (Apper
0.0000 | 0.0000
dix M) (neg
0.0000 | 0.0000
ative quant
0.0000 | 0.0000
(ity)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity (
(235c)m | used or net
0.0000 | electricity
0.0000 | generated
0.0000 | by micro-CH
0.0000 | IP (Appendix
0.0000 | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity (233b)m | -4.1576 | -9.5512 | -20.6364 | -34.1358 | -47.7561 | -48.8099 | -48.3921 | -40.1029 | -28.7272 | -15.3818 | -5.9577 | -3.2354 | (233b) | | Electricity (
(234b)m
Electricity (| 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
ity) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234b) | | (235b)m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235b) | SAP 10 Online 2.13.11 Page 3 of 7 | Electricity used or net electricity generated by micro-CHP (Appendix N) (negative if net generated) (235d)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - main system 2 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel Electricity for pumps and fans: Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) Appendix Q - special features Energy saved or generated Energy used Total
delivered energy for all uses | ration) 0.0000 | 0.0000 | 0.0000 | 0.00 | 1067.029
0.000
0.000
188.236
1358.447
0.000
264.035 | (211)
(213)
(213)
(215)
(215)
(217)
(219)
(221)
(231)
(232)
(233)
(234)
(235)
(235)
(235)
(236)
(237) | (1) | |--|--|--------|---|--|--|---|-----| | 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP | | | | | | | | | Space heating - main system 1 100 Total CO2 associated with community systems Water heating (other fuel) 13: Space and water heating Pumps, fans and electric keep-hot | Energy
Wh/year
67.0293
58.4477
0.0000
64.0358 | | factor
CO2/kWh
0.1573
0.1408
0.0000
0.1443 | | Emission
kg CO2/yea
167.895
0.000
191.299
359.195
0.000
38.108 | r
9 (261)
0 (373)
7 (264)
6 (265)
0 (267) | | | PV Unit electricity used in dwelling -5: | 32.4968
06.8441 | | 0.1333
0.1235 | | -70.982
-37.906
-108.889
288.414
2.880 | 7
4 (269) | | | l3a. Primary energy - Individual heating systems including micro-CHP | | | | | | | | | Space heating - main system 1 10 Total CO2 associated with community systems Water heating (other fuel) 13: Space and water heating Pumps, fans and electric keep-hot Energy for lighting 2: | Energy
Wh/year
67.0293 | | CO2/kWh
1.5825 | | rimary energ
kWh/yea
1688.559
0.000
2065.798
3754.357
0.000
404.987 | 0 (275)
0 (473)
0 (278)
0 (279)
0 (281) | | | | 32.4968
06.8441 | | 1.4926
0.4534 | | -794.800
-139.113
-933.914
3225.429
32.220 | 8
3 (283)
6 (286) | | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS | | | | | | | | | | Area
(m2)
52.3300
47.7800 | (lb) x | height (m) 2.5000 2.7000 3d)+(3e) | (2b)
(2c) | Volum
(m3
= 130.825
= 129.006
= 259.831 |)
0 (1b)
0 (1c)
(4) | | | 2. Ventilation rate | | | | | | | | | Number of open chimneys Number of open flues Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of blocked chimneys Number of intermittent extract fans Number of passive vents Number of flueless gas fires Infiltration due to chimneys, flues and fans = (6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)+(7a)+(7b)- Pressure test Pressure Test Method | +(7c) = | | 40.0000 | 0 * 80 : 0 * 20 : 0 * 10 : 0 * 20 : 0 * 35 : 0 * 20 : 0 * 10 : 0 * 40 : 0 * | = 0.000
= 0.000
= 0.000
= 0.000
= 0.000
= 40.000
= 0.000
nges per hou | 0 (6a)
0 (6b)
0 (6c)
0 (6d)
0 (6e)
0 (7a)
0 (7b)
0 (7c)
r | | SAP 10 Online 2.13.11 Page 4 of 7 | Measured/design | | | | | | | | | | | | 5.0000 | | |--|---
---|--|---|--|---|---|---|---|--|--|--|--| | Infiltration rat
Number of sides
Shelter factor | | | | | | | | | (20) = 1 - | IO 07E + | (10)1 - | 0.4039
3
0.7750 | (19) | | Infiltration rat | e adjuste | d to includ | e shelter f | actor | | | | | | 1) = (18) | | 0.3131 | | | Wind speed
Wind factor
Adj infilt rate | Jan
5.1000
1.2750 | Feb
5.0000
1.2500 | Mar
4.9000
1.2250 | Apr
4.4000
1.1000 | May
4.3000
1.0750 | Jun
3.8000
0.9500 | Jul
3.8000
0.9500 | Aug
3.7000
0.9250 | Sep
4.0000
1.0000 | Oct
4.3000
1.0750 | Nov
4.5000
1.1250 | Dec
4.7000
1.1750 | | | Effective ac | 0.3991
0.5797 | 0.3913
0.5766 | 0.3835
0.5735 | 0.3444
0.5593 | 0.3365
0.5566 | 0.2974
0.5442 | 0.2974
0.5442 | 0.2896
0.5419 | 0.3131
0.5490 | 0.3365
0.5566 | 0.3522
0.5620 | 0.3678
0.5677 | | | | | | | | | | | | | | | | | | 3. Heat losses a | and heat l | | | | | | | | | | | | | | Element | | | | Gross
m2 | Openings
m2 | | tArea
m2 | U-value
W/m2K | A x | K | -value
kJ/m2K | A x K
kJ/K | (0.7) | | TER Opening Type
Heatloss Floor 1
Exposed Floor
Cavity Wall
Basement Wall
External Roof 1 | | | | 73.9400
4.1100
18.0600 | 18.6700 | 52
9
55
4
18 | .6700
.3300
.5900
.2700
.1100 | 1.1450
0.1300
0.1300
0.1800
0.1800
0.1100 | 21.377
6.802
1.246
9.948
0.739
1.986 | 9
7
6
8 | | | (27)
(28a)
(28b)
(29a)
(29a)
(30) | | Total net area of
Fabric heat loss
Party Wall 1 | | | Aum (A, m2) | | | | .0300
(26)(3
.6400 | 30) + (32) =
0.0000 | = 42.102
0.000 | | | | (31)
(33)
(32) | | Thermal mass par
List of Thermal | | MP = Cm / T | FA) in kJ/m | 2K | | | | | | | | 410.5713 | (35) | | K1 Eleme E2 Other E3 Sill E4 Jamb E24 Eave P3 Party E16 Corr E25 Stag E18 Part E14 Flat E17 Corr P1 Party P5 Party E5 Grout E20 Expc E21 Expc E22 Bass E19 Grot E6 Inter | ent clintels is (insular wall - Inter (normal grered parry wall ber croof ler (inversed floor rosed floor meent floor mediate f. Wall - E. | tion at ceintermediate lity wall bet tween dwell ted - interround floor oof (insula normal) (inverted) red (inverted) cor within xposed floor wyosed floor wyosed floor wyosed floor floor work of the correction | ween dwelli
ings
nal area gr
tion at raf
a dwelling
or (normal) | - inverted) een dwellir ngs eater than ter level) | ngs (in bloc | | s) | 9
9
9.5
7
400
111.
6
133.
6
6
7,
27.
6
133.
2.
5,
4
4
40. | .1850
.2000
.2000
.2600
.5870
.4000
.9000
.9000
.7000
.5400
.8800
.1600
.0400 | si-value
0.0500
0.0500
0.0500
0.2400
0.0600
0.0600
0.0600
0.0800
0.0800
0.0800
0.1600
0.3200
0.3200
0.3200
0.0700
0.0700
0.0700
0.0700
0.1600
0.2400 | Total 0.45; 0.45; 1.26; 1.74; 0.00; 1.02; 0.38; 0.55; -0.69; 2.20; 0.52; 2.22; 0.69; 1.61; 0.28; 0.00; 0.69; 0.22; | 33
33
30
30
24
40
40
40
40
20
20
20
20
20
20
20
20
20
20
20
20
20 | (36) | | Point Thermal br
Total fabric hea | ridges | isi, caicai | acca asing | Appendia K | | | | | (3 | 3) + (36) | (36a) =
+ (36a) = | 0.0000
56.8674 | | | Ventilation heat | Jan
49.7025 | culated mon
Feb
49.4373 | thly (38)m
Mar
49.1773 | = 0.33 x (2
Apr
47.9562 | 25)m x (5)
May
47.7277 | Jun
46.6642 | Jul
46.6642 | Aug
46.4672 | Sep
47.0738 | Oct
47.7277 | Nov
48.1899 | Dec
48.6731 | (38) | | Heat transfer co
Average = Sum(39 | .06.5699 | | 106.0447 | 104.8235 | 104.5951 | 103.5315 | 103.5315 | 103.3346 | 103.9412 | 104.5951 | 105.0573 | 105.5405
104.8224 | (39) | | HLP | Jan
1.0645 | Feb
1.0619 | Mar
1.0593 | Apr
1.0471 | May
1.0448 | Jun
1.0342 | Jul
1.0342 | Aug
1.0322 | Sep
1.0383 | Oct
1.0448 | Nov
1.0494 | Dec
1.0542 | (40) | | HLP (average)
Days in mont | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 1.0471
31 | | | | | | | | | | | | | | | | | | 4. Water heating | | | (kWh/year) | | | | | | | | | | | | Assumed occupand
Hot water usage | y
for mixer | showers | | | | | | | | | | 2.7405 | | | Hot water usage | 90.1511
for baths
0.0000 | | 86.8221
0.0000 | 0.0000 | 80.2573
0.0000 | 77.1486 | 75.3817
0.0000 | 77.3410 | 79.4887
0.0000 | 0.0000 | 0.0000 | 89.8057
0.0000 | | | | for other 42.6959 | uses
41.1433 | 39.5907 | 38.0382 | 36.4856 | 34.9330 | 34.9330 | 36.4856 | 38.0382 | 39.5907 | 41.1433 | 42.6959
121.9307 | (42c) | | Average daily ho | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | (43) | | Daily hot water Energy conte 2 | 32.8470 | | 126.4128
194.2918 | 121.0830
165.7565 | 116.7429
157.1583 | 112.0816
137.8175 | 110.3147
133.4161 | 113.8265
140.9410 | 117.5268
144.9223 | 122.4171
166.1189 | 127.8281
182.1146 | 132.5016
207.4655 | | | Energy content
Distribution los | | | 5)m
29.1438 | 24.8635 | 23.5737 | 20.6726 | 20.0124 | 21.1412 | 21.7383 | Total = St
24.9178 | um(45)m = 27.3172 | 2025.4320
31.1198 | (46) | | Water storage lo
Store volume | ss: | | | | | 20.0720 | 20.0124 | 211112 | 21.7505 | 24.3170 | 27.5172 | 150.0000 | (47) | | a) If manufactu
Temperature fa
Enter (49) or (5
Total storage lo | ctor from
(4) in (55) | Table 2b | ctor is kno | wn (kwn/da | iy): | | | | | | | 1.3938
0.5400
0.7527 | (49) | | If cylinder cont | 23.3325
ains dedic | | | 22.5798 | 23.3325 | 22.5798 | 23.3325 | 23.3325 | 22.5798 | 23.3325 | 22.5798 | 23.3325 | | | Primary loss
Combi loss | 23.3325
23.2624
0.0000 | 21.0112
0.0000 | 23.3325
23.2624
0.0000 | 22.5798
22.5120
0.0000 | 23.3325
23.2624
0.0000 | 22.5798
22.5120
0.0000 | 23.3325
23.2624
0.0000 | 23.3325
23.2624
0.0000 | 22.5798
22.5120
0.0000 | 23.3325
23.2624
0.0000 | 22.5798
22.5120
0.0000 | 23.3325
23.2624
0.0000 | (59) | | WWHRS -
PV diverter
Solar input | 256.9921
-41.2133
-0.0000
0.0000
0.0000 | 227.1180
-36.4494
-0.0000
0.0000 | | d for each 210.8484 -31.6044 -0.0000 0.0000 | month
203.7532
-29.4541
-0.0000
0.0000
0.0000 | 182.9093
-25.2041
-0.0000
0.0000
0.0000 | 180.0110
-23.6248
-0.0000
0.0000
0.0000 | 187.5359
-25.1226
-0.0000
0.0000
0.0000 | -26.0771
-0.0000
0.0000 | 212.7138
-30.7421
-0.0000
0.0000
0.0000 | 227.2064
-34.8270
-0.0000
0.0000
0.0000 | 254.0604
-40.4501
-0.0000
0.0000
0.0000 | (63a)
(63b)
(63c) | SAP 10 Online 2.13.11 Page 5 of 7 | 12Total per ye | ar (kWh/yea | | 202.7190 | 179.2440 | 174.2991 | 157.7052 | 156.3861 | | | 181.9717
h/year) = Si | | | (64) |
---|-------------------------|-------------------------|---------------------------|------------------------|--------------------------------|-----------------------|---------------------|---------------------|---------------------|--------------------------|---------------------|-----------------------|--------------| | Electric showe | er(s)
0.0000 | 0.0000 | 0.0000 | 0.0000
Tot | 0.0000
al Energy u | 0.0000 | 0.0000 | 0.0000 | | | 0.0000
n(64a)m = | | | | Heat gains fro | m water hea
107.2330 | ating, kWh/
95.1918 | month
101.8780 | | 89.5311 | _ | | 84.1388 | | 92.5105 | 5. Internal ga | ins (see Ta | able 5 and | 5a) | | | | | | | | | | | | Metabolic gain | s (Table 5) | , Watts | | | | | | | | | | _ | | | (66)m
Lighting gains | 137.0271 | | | 137.0271 | 137.0271 | | | Aug
137.0271 | Sep
137.0271 | Oct
137.0271 | Nov
137.0271 | Dec
137.0271 | (66) | | Appliances gai | 131.4313 | 145.5132 | 131.4313 | 135.8123 | 131.4313 | 135.8123 | 131.4313 | 131.4313 | 135.8123 | 131.4313 | 135.8123 | 131.4313 | (67) | | Cooking gains | 256.5055
(calculated | 259.1672
d in Append | 252.4597
lix L, equat: | 238.1804
ion L15 or | 220.1552
L15a), also | 203.2141
see Table | 191.8964
5 | | | 210.2215 | 228.2467 | 245.1878 | (68) | | Pumps, fans | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 36.7027
3.0000 | 36.7027
0.0000 | 36.7027
0.0000 | 36.7027
0.0000 | 36.7027
0.0000 | 36.7027
3.0000 | 36.7027
3.0000 | 36.7027
3.0000 | | | Losses e.g. ev
Water heating | -109.6217 | -109.6217 | | | -109.6217 | -109.6217 | -109.6217 | -109.6217 | -109.6217 | -109.6217 | -109.6217 | -109.6217 | (71) | | Total internal | 144.1303 | | 136.9327 | 126.6493 | 120.3375 | 113.7469 | 109.7268 | 113.0898 | 117.0280 | 124.3420 | 134.2036 | 142.8201 | (72) | | Total Intellial | | 613.4430 | 587.9319 | 567.7501 | 539.0320 | 516.8814 | 497.1626 | 497.8638 | 512.8905 | 533.1029 | 565.3707 | 586.5473 | (73) | | | | | | | | | | | | | | | | | 6. Solar gains | | | | | | | | | | | | | | | [Jan] | | | | rea | Solar flux | Ci | g | C: 5: - | FF | Acces | | Gains | | | | | | | m2
 | Solar flux
Table 6a
W/m2 | or or | Table 6b | or Tab | le 6c | facto
Table (| 5d | W | | | Southwest
Northwest | | | 11.7 | 100
600 | 36.7938
11.2829 | | 0.6300
0.6300 | 0 | .7000
.7000 | 0.770
0.770 | 00
00 | 131.6751
23.9996 | (79)
(81) | | | 155 6949 | | | | | | | | 400 5401 | 005 5006 | 100 0141 | 100 0055 | (00) | | Solar gains
Total gains | 754.8499 | 886.5862 | 982.8326 | 1092.5426 | 1159.2381 | 1146.8518 | 1098.5913 | 1025.9313 | 952.4306 | 840.6935 | 753.2848 | 718.8330 | (84) | | | | | | | | | | | | | | | | | 7. Mean intern | al temperat | ture (heati | ng season) | | | | | | | | | | | | Temperature du | ring heatin | ng periods | in the livi | ng area fro | m Table 9, 1 | Thl (C) | | | | | | 21.0000 | (85) | | Utilisation fa | Jan | Feb | Mar | Apr | | Jun | Jul
110,2785 | Aug
110.4887 | Sep
109.8439 | Oct
109.1572 | Nov
108.6770 | Dec
108.1794 | | | alpha
util living ar | 8.1423 | 8.1601 | | | | 8.3519 | 8.3519 | 8.3659 | 8.3229 | 8.2771 | 8.2451 | 8.2120 | | | _ | 0.9995 | 0.9977 | 0.9906 | 0.9460 | 0.7998 | 0.5752 | 0.4145 | 0.4629 | 0.7341 | 0.9704 | 0.9979 | 0.9996 | | | MIT
Th 2
util rest of h | 20.0299 | | 20.5949
20.0342 | 20.8312
20.0443 | 20.9672
20.0462 | 20.9979
20.0549 | 20.9999
20.0549 | 20.9997
20.0566 | 20.9871
20.0516 | 20.8043
20.0462 | | | | | MIT 2 | 0.9992 | | 0.9853
19.6041 | 0.9194
19.8932 | 0.7339
20.0257 | 0.4918
20.0542 | 0.3256
20.0549 | 0.3682
20.0565 | 0.6431
20.0459 | 0.9495
19.8710 | 0.9966
19.4805 | | | | Living area fr | | | 19.7773 | | 20.1903 | 20.2192 | 20.2201 | 20.2214 | fLA = | Living area
20.0342 | a / (4) = | 0.1748 | (91) | | Temperature ad
adjusted MIT | ljustment
19.3702 | 19.5464 | 19.7773 | 20.0572 | 20.1903 | 20.2192 | 20.2201 | 20.2214 | 20.2105 | 20.0342 | 19.6571 | 0.0000
19.3489 | (93) | | | | | | | | | | | | | | | | | 8. Space heati | Utilisation | | Feb
0.9956 | | Apr
0.9198 | | Jun
0.5064 | Jul
0.3411 | | Sep
0.6590 | 0.9492 | Nov
0.9957 | | | | Useful gains
Ext temp.
Heat loss rate | 4.3000 | | | | 863.0450
11.7000 | 580.7726
14.6000 | 374.7649
16.6000 | 394.8003
16.4000 | 627.6988
14.1000 | 797.9889
10.6000 | 750.0833
7.1000 | 718.2750
4.2000 | | | | 1606.0302 | 1556.9763 | 1407.9844 | 1169.5346 | 888.0387 | 581.7642 | 374.7959 | 394.8828 | 635.1282 | 986.7677 | 1319.2156 | 1598.8177 | (97) | | Space heating | 633.9154 | | 328.4370
er year (kW | | 18.5953 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 140.4515 | 409.7753 | 655.1238
2757.9143 | (98a) | | Solar heating | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Solar heating
Space heating | kWh | | ger year (m
328.4370 | | 18.5953 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 140 4515 | 409 7753 | 0.0000
655.1238 | (98c) | | Space heating
Space heating | requirement | | | | | | 0.0000 | 0.0000 | 0.0000 | | / (4) = | 2757.9143
27.5488 | | | | - | 9a. Energy req | | | | | | | | | | | | 0.0000 | (201) | | Fraction of sp
Efficiency of | ace heat fi | rom main sy | stem(s) | | m (labic ii, | , | | | | | | 1.0000
92.3000 | (202) | | Efficiency of
Efficiency of | main space | heating sy | stem 2 (in | 8) | | | | | | | | 0.0000 | (207) | | Course Nove 1 | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating
Space heating | 633.9154 | 453.1082 | 328.4370 | | 18.5953 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 140.4515 | 409.7753 | 655.1238 | (98) | | Space heating | 92.3000 | 92.3000 | 92.3000 | | 92.3000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 92.3000 | 92.3000 | 92.3000 | (210) | | | | | 355.8364 | 128.3941 | 20.1466 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 152.1684 | 443.9602 | 709.7766 | (211) | SAP 10 Online 2.13.11 Page 6 of 7 | Space heating efficiency (main heating system 2) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (212) | |--|--|----------------------------|--|-------------------|---|--| | Space heating fuel (main heating system 2) | | | | | 0.0000 | | | Space heating fuel (secondary) | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0. | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating Water heating requirement | | | | | | | | | 5.3861 162.4133 | 163.9370 | 181.9717 | 192.3794 | 213.6103
79.8000 | | | (217)m 86.3275 85.9297 85.1354 83.1543 80.5874 79.8000 79. | 9.8000 79.8000 | 79.8000 | 83.4859 | 85.7116 | 86.4039 | | | | 5.9726 203.5254 | 205.4349 | 217.9670 | 224.4496 | 247.2230 | (219) | | Space cooling fuel requirement (221)m 0.0000
0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (221) | | | 7.3041 7.3041
0.1834 13.2368 | 7.0685
17.1932 | 7.3041
22.5585 | 7.0685
25.4797 | 7.3041
28.0678 | | | Electricity generated by FVs (Appendix M) (negative quantity) (233a)m -33.3301 -48.1257 -70.8212 -81.5673 -89.5920 -84.1816 -83. | | -68.2800 | -55.8655 | -37.0315 | -28.6818 | | | Electricity generated by wind turbines (Appendix M) (negative quantity) | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity generated by hydro-electric generators (Appendix M) (negative quantity) | | | | | | | | Electricity used or net electricity generated by micro-CHP (Appendix N) (negative if | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity generated by PVs (Appendix M) (negative quantity) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235c) | | (233b)m -15.5301 -32.9983 -66.2090 -100.3669 -133.6314 -134.6366 -133.
Electricity generated by wind turbines (Appendix M) (negative quantity) | 3.0886 -112.2958 | -81.7710 | -47.5374 | -20.8440 | -12.2592 | (233b) | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234b) | | | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235b) | | (235d)m 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0. | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235d) | | Annual totals kWh/year
Space heating fuel - main system 1 | | | | | 2987.9895 | | | Space heating fuel - main system 2
Space heating fuel - secondary | | | | | 0.0000 | | | Efficiency of water heater
Water heating fuel used | | | | | 79.8000
2633.9959 | (219) | | Space cooling fuel | | | | | 0.0000 | (221) | | Electricity for pumps and fans: | | | | | | (001) | | Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) | | | | | 86.0000
220.3978 | | | Energy saving/generation technologies (Appendices M ,N and Q) | | | | | | | | PV generation Wind generation | | | | | -1649.3959
0.0000 | | | Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) | | | | | 0.0000 | | | | | | | | 0.0000 | (235) | | Appendix Q - special features | | | | | 0.0000 | | | Appendix Q - special features Energy saved or generated Energy used | | | | | -0.0000
0.0000 | (236)
(237) | | Appendix Q - special features
Energy saved or generated | | | | | -0.0000 | (236)
(237) | | Appendix Q - special features Energy saved or generated Energy used | | | | | -0.0000
0.0000 | (236)
(237) | | Appendix Q - special features Energy saved or generated Energy used | | | | | -0.0000
0.0000 | (236)
(237) | | Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses | Energy | Emissio: | n factor | | -0.0000
0.0000 | (236)
(237) | | Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP | Energy
kWh/year | kg | CO2/kWh | k | -0.0000
0.0000
4278.9874
Emissions
g CO2/year | (236)
(237)
(238) | | Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems | Energy
kWh/year
2987.9895 | kg | 0.2100 | k | -0.0000
0.0000
4278.9874
Emissions
g CO2/year
627.4778
0.0000 | (236)
(237)
(238)
(261)
(373) | | Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating | Energy
kWh/year
2987.9895
2633.9959 | kg | CO2/kWh
0.2100
0.2100 | k | -0.0000
0.0000
4278.9874
Emissions
g CO2/year
627.4778
0.0000
553.1391
1180.6169 | (236)
(237)
(238)
(261)
(373)
(264)
(265) | | Appendix 0 - special features Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) | Energy
kWh/year
2987.9895 | kg | 0.2100 | k | -0.0000
0.0000
4278.9874
Emissions
g CO2/year
627.4778
0.0000
553.1391 | (236)
(237)
(238)
(261)
(373)
(264)
(265)
(267) | | Appendix 0 - special features Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies | Energy
kWh/year
2987.9895
2633.9959
86.0000
220.3978 | kg | CO2/kWh
0.2100
0.2100
0.1387
0.1443 | k | -0.0000
0.0000
4278.9874
Emissions
g CO2/year
627.4778
0.0000
553.1391
1180.6169
11.9293
31.8102 | (261)
(373)
(261)
(373)
(264)
(267)
(268) | | Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported | Energy
kWh/year
2987.9895
2633.9959
86.0000 | kg | CO2/kWh
0.2100
0.2100
0.1387 | k | -0.0000
0.0000
4278.9874
Emissions
G CO2/year
627.4778
0.0000
553.1391
1180.6169
11.9293
31.8102 | (236)
(237)
(238)
(261)
(373)
(264)
(267)
(267)
(268) | | Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling | Energy
kWh/year
2987.9895
2633.9959
86.0000
220.3978 | kg | CO2/kWh
0.2100
0.2100
0.1387
0.1443 | k | -0.0000
0.0000
4278.9874
Emissions
g CO2/year
627.4778
0.0000
553.1391
1180.6169
11.9293
31.8102 | (236)
(237)
(238)
(261)
(373)
(264)
(267)
(267)
(268) | | Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total | Energy
kWh/year
2987.9895
2633.9959
86.0000
220.3978 | kg | CO2/kWh
0.2100
0.2100
0.1387
0.1443 | k | -0.0000
0.0000
4278.9874
Emissions
g CO2/year
627.4778
0.0000
553.1391
1180.6169
11.9293
31.8102
-101.6764
-111.9465
-213.6229 | (261)
(373)
(238)
(261)
(373)
(264)
(267)
(268) | | Appendix 0 - special features Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling
PV Unit electricity exported Total Total CO2, kg/year | Energy
kWh/year
2987.9895
2633.9959
86.0000
220.3978 | kg | CO2/kWh
0.2100
0.2100
0.1387
0.1443 | k | -0.0000 0.0000 4278.9874 Emissions g CO2/year 627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 1010.7335 | (261)
(373)
(238)
(261)
(373)
(264)
(267)
(268) | | Appendix 0 - special features Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year | Energy
kWh/year
2987.9895
2633.9959
86.0000
220.3978 | kg | CO2/kWh
0.2100
0.2100
0.1387
0.1443 | k | -0.0000 0.0000 4278.9874 Emissions g CO2/year 627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 1010.7335 | (261)
(373)
(238)
(261)
(373)
(264)
(267)
(268) | | Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) | Energy
kWh/year
2987.9895
2633.9959
86.0000
220.3978
-758.2276
-891.1682 | kg | CO2/kWh
0.2100
0.2100
0.1387
0.1443
0.1341
0.1256 | k | -0.0000 0.0000 4278.9874 Emissions g CO2/year 627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 1010.7335 | (261)
(373)
(238)
(261)
(373)
(264)
(267)
(268) | | Appendix 0 - special features Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) | Energy
kWh/year
2987.9895
2633.9959
86.0000
220.3978
-758.2276
-891.1682 | kg
Primary energy
kg | CO2/kWh
0.2100
0.2100
0.1387
0.1443
0.1341
0.1256 | k | -0.0000 0.0000 4278.9874 Emissions g CO2/year 627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 101.7335 10.1000 ary energy | (261)
(237)
(238)
(261)
(373)
(264)
(267)
(268)
(269)
(272)
(273) | | Appendix 0 - special features Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems | Energy
kWh/year
2987.9895
2633.9959
86.0000
220.3978
-758.2276
-891.1682
Energy F
kWh/year
2987.9895 | kg
Primary energ
kg | CO2/kWh
0.2100
0.2100
0.1387
0.1443
0.1341
0.1256
y factor
CO2/kWh
1.1300 | Prim | -0.0000 0.0000 4278.9874 Emissions GCO2/year 627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 1010.7335 10.1000 ary energy kWh/year 3376.4282 0.0000 | (236)
(237)
(238)
(261)
(373)
(264)
(267)
(268)
(269)
(272)
(273) | | Appendix 0 - special features Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating | Energy
kWh/year
2987.9895
2633.9959
86.0000
220.3978
-758.2276
-891.1682
Energy
kWh/year
2987.9895
2633.9959 | kg
Primary energy
kg | CO2/kWh
0.2100
0.2100
0.1387
0.1443
0.1341
0.1256
y factor
CO2/kWh
1.1300
1.1300 | k | -0.0000 0.0000 4278.9874 Emissions g CO2/year 627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 1010.7335 10.1000 ary energy kWh/year 3376.4282 0.0000 2976.4154 | (236)
(237)
(238)
(238)
(261)
(263)
(264)
(265)
(267)
(268)
(272)
(273)
(273) | | Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) | Energy
kWh/year
2987.9895
2633.9959
86.0000
220.3978
-758.2276
-891.1682
Energy F
kWh/year
2987.9895 | kg
Primary energy
kg | CO2/kWh
0.2100
0.2100
0.1387
0.1443
0.1341
0.1256
y factor
CO2/kWh
1.1300 | k | -0.0000 0.0000 4278.9874 Emissions GCO2/year 627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 1010.7335 10.1000 ary energy kWh/year 3376.4282 0.0000 | (261)
(373)
(238)
(261)
(373)
(264)
(267)
(268)
(267)
(272)
(273)
(273) | | Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies | Energy kWh/year 2987.9895 2633.9959 86.0000 220.3978 -758.2276 -891.1682 Energy kWh/year 2987.9895 2633.9959 86.0000 220.3978 | kg
Primary energ
kg | CO2/kWh
0.2100
0.2100
0.1387
0.1443
0.1341
0.1256
y factor
CO2/kWh
1.1300
1.1300
1.5128
1.5338 | Prim | -0.0000 0.0000 4278.9874 Emissions g CO2/year 627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 1010.7335 10.1000 ary energy kWh/year 3376.4282 0.0000 2976.4154 6352.8436 130.1038 | (261)
(373)
(238)
(261)
(373)
(264)
(267)
(268)
(267)
(272)
(273)
(273) | | Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling Pumps, fans and electric keep-hot Energy saving/generation technologies PV Unit electricity used in dwelling | Energy
kWh/year
2987.9895
2633.9959
86.0000
220.3978
-758.2276
-891.1682
Energy F
kWh/year
2987.9895
2633.9959
86.0000 | kg
Primary energ
kg | CO2/kWh
0.2100
0.2100
0.1387
0.1443
0.1341
0.1256
y factor
CO2/kWh
1.1300
1.1300
1.5128 | Prim | -0.0000 0.0000 4278.9874 Emissions GCO2/year 627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 1010.7335 10.1000 ary energy kWh/year 3376.4282 0.0000 2976.4154 6352.8436 6352.8436 | (236)
(237)
(238)
(238)
(261)
(373)
(264)
(265)
(267)
(268)
(272)
(273)
(273)
(273)
(278)
(279)
(281)
(282) | | Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including
micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total | Energy kWh/year 2987.9895 2633.9959 86.0000 220.3978 -758.2276 -891.1682 Energy kWh/year 2987.9895 2633.9959 86.0000 220.3978 -758.2276 | kg
Primary energ
kg | CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1341 0.1256 y factor CO2/kWh 1.1300 1.1300 1.5128 1.5338 | Prim | -0.0000 0.0000 4278.9874 Emissions g CO2/year 627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 1010.7335 10.1000 ary energy kWh/year 3376.4282 0.0000 2976.4154 6352.8436 130.1008 338.0535 | (236)
(237)
(238)
(238)
(261)
(373)
(264)
(265)
(267)
(268)
(272)
(273)
(273)
(273)
(278)
(279)
(282) | | Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported | Energy kWh/year 2987.9895 2633.9959 86.0000 220.3978 -758.2276 -891.1682 Energy kWh/year 2987.9895 2633.9959 86.0000 220.3978 -758.2276 | kg
Primary energ
kg | CO2/kWh 0.2100 0.2100 0.1387 0.1443 0.1341 0.1256 y factor CO2/kWh 1.1300 1.1300 1.5128 1.5338 | Prim | -0.0000 0.0000 4278.9874 Emissions g CO2/year 627.4778 0.0000 553.1391 1180.6169 11.9293 31.8102 -101.6764 -111.9465 -213.6229 100.0703 10.1000 ary energy kWh/year 3376.4282 0.0000 2976.4154 6352.8436 6352.8436 6352.8436 6352.8436 | (261)
(373)
(238)
(261)
(373)
(264)
(267)
(268)
(267)
(272)
(273)
(273)
(273)
(278)
(279)
(279)
(281)
(282) | SAP 10 Online 2.13.11 Page 7 of 7 | Dwelling Address | Unit 1, Highland Square , Bristol | |------------------------------|-----------------------------------| | Report Date | 05/03/2024 | | Property Type | Maisonette, Semi-Detached | | Floor Area [m ²] | 100 | This document is not an Energy Performance Certificat EPC) s required by the Energy Performance of Buildings Reg io SAP 10 Online 2.13.11 Page 1 of 4 #### Breakdown of property's energy performance Each feature is assessed as one of the following: | Very Poor | Poor | Average | Good | Very Good | |-----------------------|--------------------------|--------------------|------|-------------------| | | | | | | | Feature | Description | | | gy
Performance | | Walls | Average thermal transmi | ttance 0.18 W/m²K | | Very Good | | Roof | Average thermal transmi | ttance 0.11 W/m²K | | Very Good | | Floor | Average thermal transmi | Very Good | | | | Windows | High performance glazin | Good | | | | Main heating | Air source heat pump, ra | Good | | | | Main heating controls | Time and temperature z | Very Good | | | | Secondary heating | None | | | | | Hot water | From main sys m | Average | | | | Lighting | Good ligh g efficien | Good | | | | Air tightness | Air perme 50] = | 4.5 h.m² (assumed) | | Good | #### Primary Energy use The primary energy use for this property per year is 29 kilowatt hour (kWh) per square metre #### Estim ted CO₂ missions of the dwelling The estimated ing provides an indication of the dwelling's impact on the environment in terms of carbon dioxide emissions; the higher the rating the less impact it has on the environment. The estimated CO emissions for this dwellings is: 0.3 per year SAP 10 Online 2.13.11 Page 2 of 4 With the recommended measures the potential CO emissions could be: 0 per year #### Recommendations The recommended measures provided below will help to improve the energy efficiency of the dwelli To reach the dwelling's potential energy rating all of the recommended measures shown would d to be installed. Having these measures installed individually or in any other order may give a different result omp d with the cumulative potential rating. | Recommended measure | Typical | Potential Rati | C ulative | Cumulative | |---------------------|---------|----------------|------------|------------| | | Yearly | after | avings | Potential | | | Saving | measure insta | (per year) | Rating | #### Estimated energy use and potential aving Estimated energy cost for this property over a year £628 Over a year you could save £0 The estimated cost and saving how how much the average hou ld would spend in this property heating, lighting and hot water. It not based on how e is used by the people living at the pr ## Containg the ssessor and the accreditation scheme | As | ssessor contact details | | |---------------------------------|-------------------------|--| | Assessor name | | | | Assessor's accreditation number | | | | Email Address | | | SAP 10 Online 2.13.11 Page 3 of 4 | Accreditation scheme contact details | | | | | | | |--------------------------------------|-----------------------------|--|--|--|--|--| | Accreditation scheme | Elmhurst Energy Systems Ltd | | | | | | | Telephone | | | | | | | | Email Address | | | | | | | | Assessment details | | | | | | |--------------------------|---------------|--|--|--|--| | Related party disclosure | No related pa | | | | | | Date of assessment | 05/03/202 | | | | | | Date of certificate | 05/03/202 | | | | | | Type of assessment | SAP w dwellin | | | | | #### BRIDGING THE PERFORMANCE GAP Building Energy Experts is an award-winning sustainability consulting, testing, and retrofit company. We help housebuilders, homeowners, architects, and planners to design robust sustainability strategies, calculate energy profiles, and model the energy performance of new buildings.