

Recommendations for testing laboratories on achieving reliable identification and characterisation of microplastics with LD-IR



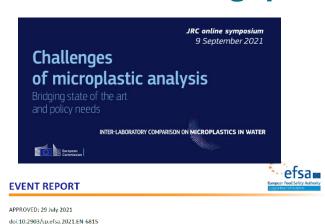
# **Microplastics pollution**

UK NATIONAL MEASUREMENT LABORATORY FOR CHEMICAL AND BID-MEASUREMENT HOSTED AT LGC

- Over 350 million tonnes of plastic waste are produced globally every year
- Once released to the environment plastics fragment into microplastics (MPs)

MPs are small solid particles composed of synthetic polymers that are non-biodegradable and < 5 mm in size according to ECHA, or 1 - 1 000 μm according to ISO/TR 21960:2020

**The 2020 EU's** Circular Economy Action Plan (**CEAP**) encourages sustainable consumption and prevention of plastic waste


#### **Current MPs' measurement requirenments:**

- Dinking Water Directive: (DWD 2020/2184) requirenment for measuring MPs in drinking water from January 2024
- Urban Wastewater Treatment Directive (UWWTD, 2024/3019) requirement for MPs monitoring
- Environmental Quality Standards Directive: under revision (surface water and groundwater)
- Regulatory framework on contaminants in food: need for development and harmonisation of analytical methods for measuring MPs in food





# Measurement gaps and challenges







Science of the Total Environment 772 (2021) 145071

Contents lists available at ScienceDirect

Science of the Total Environment

journal homopage: www.elsevier.com/locate/scitotenv



Results of WEPAL-QUASIMEME/NORMANs first global interlaboratory study on microplastics reveal urgent need for harmonization



L.M. van Mourik <sup>a,\*</sup>, S. Crum <sup>b</sup>, E. Martinez-Frances <sup>c</sup>, B. van Bavel <sup>c</sup>, H.A. Leslie <sup>a</sup>, J. de Boer <sup>a</sup>, W.P. Cofino <sup>b</sup>



EFSA Scientific Colloquium 25 – A coordinated approach to assess the human health risks of micro- and nanoplastics in food

- Harmonisation of definitions (analyte? relevent measurands?)
- Overcoming challenges arising from low levels and matrix complexity (reliable sample prep/filtration/ pre-concentration?)
- RTMs/RMs for instrument calibration, methods validation and quality control purposes
- Improved comparability amongs methods and laboratories to support environmental monitoring
  agencies and testing laboratories, policy makers and further research => harmonisation of methods



# Addressing metrological needs

#### Sample **Preparation**



fractionation (G-SPLITT and AF4)

filtration









size + number concentration (spICP-MS)

size + number concentration + chemical identification (LD-IR)



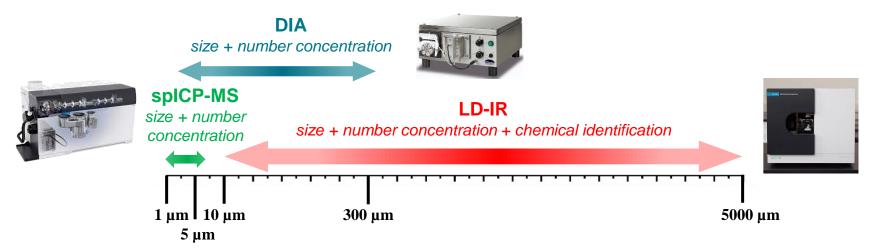
size + number concentration (DIA)

At **NML** we are addressing metrological needs through development of:

- Sample preparation strategies
- Complementary characterisation methods
- RTM/RM



- in suspension
- on solid support






# Platform development / Detection systems



- ✓ To better understand environmental and health impact arising from microplastics pollution, reliable methods for their detection and quantification are needed
- ✓ NML's *multimethod characetrisation platform* covers entire MPs size range by using 3 complemetary techniques:
  - single particle Inductively coupled plasma mass spectrometry (spICP-MS) / Dynamic Image Analysis (DIA) for small MPs
  - Laser Direct Infrared (LD-IR) / Dynamic Image Analysis (DIA) for larger MPs
- ✓ Addresses **key measurands:** particle size and number concentration
- ✓ Other important measurands: *chemical identification, morphology*







Determination of instruments' applicable size range, and accuracy in size characterisation



Can be verified using commercially available reference materials characterised for particle size

Verification of qualitative polymer identification



Can be verified (against reference library) using commercially available reference materials of varied sizes and known polymer composition

detection (i.e. instrument/technique specific)

#### Ш

Determination of instruments' applicable number concentration range, and accuracy in particle counting



Can be verified using samples with known particle number (solid or suspensions) characterised with orthogonal methods

#### IV

**Evaluation of** efficiency of sample preparation (via filtration)



Can be verified using particle suspension (matrix match) of known particle number concentration (characterised with orthogonal methods)

**Evaluation of** laboratory blank levels



Can be verified using ultrapure water (or blank solvent) prepared in the same way as a sample

sample prep.

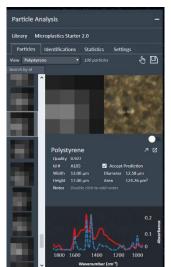




Determination of instruments' applicable size range, and accuracy in size characterisation



Can be verified using commercially available reference materials characterised for particle size Ш


Verification of qualitative polymer identification



Can be verified
(against reference
library) using
commercially available
reference materials of
varied sizes and
known polymer
composition



### Particle size and chemical identification by LD-IR











#### Model sample: PS particles

10 µm PS Duke (Thermo)

20 µm PS Duke (Thermo)

30 µm PS Duke (Thermo)

40 µm PS Duke (Thermo)

| Nb of PS partic | les detected | Mean Diameter (μm) | StDev | RSD% | Size Recovery *(%) |
|-----------------|--------------|--------------------|-------|------|--------------------|
| PS10µm          | 29           | 12.6               | 2.3   | 18.0 | 125.3              |
| PS20μm          | 31           | 23.4               | 2.5   | 10.5 | 111.7              |
| PS30μm          | 17           | 32.2               | 3.2   | 10.0 | 106.6              |
| PS40μm          | 23           | 41.9               | 3.0   | 7.1  | 93.8               |

<sup>\*</sup>From particle size provided by manufacturer, characterised by optical microscopy

- All particles identified correctly as PS, across tested size range
- Measured particle size in agreement with size provided by the manufacturer, across tested range
- Larger uncertainties associated with recoveries observed for sizes close to the size LOD of the instrument



<sup>\*\*</sup>HQI describes how closely the spectrum of the sample matches that in the reference library



#### Ш

Determination of instruments' applicable number concentration range, and accuracy in particle counting



Can be verified using samples with known particle number (solid or suspensions) characterised with orthogonal methods

#### IV

Evaluation of efficiency of sample preparation (via filtration)



Can be verified using particle suspension (matrix match) of known particle number concentration (characterised with orthogonal methods)



# **Particle counting**

In the absence of solid samples with known particle number, particle suspensions can be used to evaluate **accuracy in particle counting** but this involves **sample prep via filtration!** 

Several filtration systems are available, but in all cases:

It might be difficult to deposit particles in the middle of the filter

Particles might dissociate from the filter









#### Solution:



Typical scanning filter area (~16mm), can be divided into smaller parts then data combined

Deposition area can be reduced:

in-house cut silicon-seal

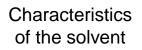


#### Solution:

Reduce electrostatic forces



Ohaus ION-100A (static ionizer)




# Sample preparation via filtration



#### What to consider?

Characteristics of MPs



Particle loses upon filtration (e.g. sticking to glassware)

Particle agglomeration/aggregation (including coffee ring effect) upon filtration





# EU directive 2020/2184: "The analysis procedure shall be considered acceptable, if the recovery rate is within the range of 100% to +/- 40%"

- Recovery rate can be calculated using particle suspension with known particle number concentration by comparing particle number counted with LD-IR vs. particle number present in the filtered suspension
- In the absence of reference materials characterised for particle number concentration, an orthogonal technique (e.g. Optical Particle Analyser) can be used to characterise particle suspension prior to filtration



#### 

Determination of instruments' applicable number concentration range, and accuracy in particle counting

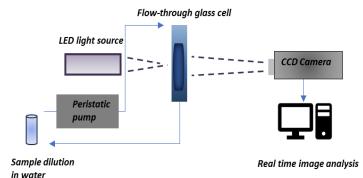


Can be verified using samples with known particle number (solid or suspensions) characterised with orthogonal methods

#### IV

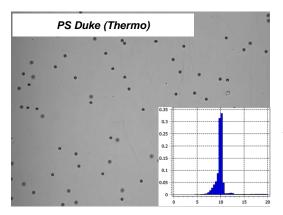
Evaluation of efficiency of sample preparation (via filtration)




Can be verified using particle suspension (matrix match) of known particle number concentration (characterised with orthogonal methods)

In the absence of Certified Reference Materials (CRMs) characterised for particle number concentration, testing laboratories could use <u>orthogonal methods</u> to assign a value to in-house quality control materials




# Orthogonal approach: *Dynamic Image Analysis (DIA)*





#### **Working Principle:**

- ✓ particle suspension is pumped through the flow-through cell illuminated by a LED light source
- ✓ high resolution CCD camera (1024 x 768 pixel) takes images continuously, which are analysed in real-time with build-in software



| Material | Mean size (µm) | Size recovery (%) | Particle number concentration (kg <sup>-1</sup> ) | Number concentration recovery (%)* |
|----------|----------------|-------------------|---------------------------------------------------|------------------------------------|
| PS Duke  | 10.04 ± 0.10   | 99.7              | (3.76 ± 0.15) E+09*                               | 96.0                               |

Mean ± standard deviation, n=45

\*Particle number conc theoretically calculated, assuming bulk density of PS, mass fraction and size characterised by optical microscopy

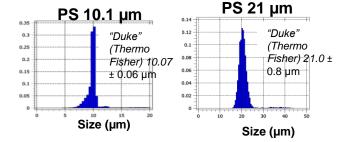
- Particle size measured with DIA in agreement with the size provided by the manufacturer
- Particle number concentration in agreement with value calculated theoretically using size and PS mass fraction



# Complementarity between LD-IR and DIA



LD-IR





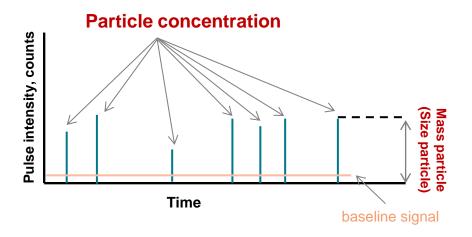

|          | Particle size (μm)    |                          |  |  |
|----------|-----------------------|--------------------------|--|--|
| Sample   | LD-IR (mean ± stdev)* | DIA (mean ± stdev, n=15) |  |  |
| PS 20 μm | 24.8 ± 2.5            | 20.5 ± 4.0               |  |  |
| PS 10 μm | 12.7 ± 2.6            | 10.04 ± 0.10             |  |  |

\*Mean ± stdev from 100 PS particles deposited on a gold filter





LD-IR detected and identified as PS 100% of deposited particles


Agreement between DIA and LD-IR for MPs size determination achieved



# Orthogonal approach: single particle (sp) ICP-MS







#### Working Principle:

- ✓ Each transient peak or pulse represents a single particle event – number of peaks represents
   particle number concentration
- ✓ Signal intensity represents mass of element per particle, which for known geometry and chemical composition can be translated to particle size
- ✓ From baseline signal information about the dissolved ions
- ✓ Detection of MPs through <sup>12</sup>C or <sup>13</sup>C



# Complementarity between (sp)ICP-MS and DIA



#### spICP-MS



|                 | PSL 5 μm Particle number concentration (g <sup>-1</sup> ) |                                                            |  |
|-----------------|-----------------------------------------------------------|------------------------------------------------------------|--|
| Technique       | Mean (g <sup>-1</sup> )                                   | Expanded uncertainty, <i>k=2</i> (g <sup>-1</sup> ) (REU%) |  |
| spICP-MS (n=45) | 8.38 E+05                                                 | 1.99 E+05 (23.7%)                                          |  |
| (DIA) (n=45)    | 8.24 E+05                                                 | 4.24 E+04 (5.1 %)                                          |  |



REU% Relative expanded uncertainty Polystyrene Latex (PSL)

Agreement between DIA and spICP-MS for MPs number concentration results obtained









Can be verified using ultrapure water (or blank solvent) prepared in the same way as a sample



# Laboratory blank levels

Laboratory
blank levels
can
significantly
influence
particle
number
measured in
the sample
and should
be
evaluated!



### **Keeping blanks under control:**

- Laboratory floors made of washable material and cleaned frequently
- Laminar flow cabinet at least ISO Class 5 (3520 particles/m³)
- Cotton or antistatic lab coats

#### **Evaluation and reporting:**

- Blanks (ultrapure or pyrogenic water) should be evaluated within each sample batch, prepared using the same procedure as samples
- Reported results (on samples) should be presented without prior subtraction of blank values
- Blanks should be reported along samples

Determination of the Limit of particle detection (LOD) and quantification (LOQ)

**LOD** = (mean 
$$_{n \text{ blanks}}$$
 + 3 x StDev  $_{n \text{ blanks}}$ )

**LOQ** = (mean  $_{n \text{ blanks}}$  + 10 x StDev  $_{n \text{ blanks}}$ )

Priority Polymers according to EU Directive: *Methodology to measure microplastics in water intended for human consumption*: PS, PP, PE, PET, PVC, PA, PU, PTFE, PC, PMMA.





# **Summary**



- LD-IR is a promising technique allowing determination of MPs size (and morphology) and chemical composition
- Steps required to achieve reliable particle characterisation with LD-IR have been proposed and discussed
- Performance of LD-IR have been evaluated using model MPs composed of PS in size ranging from 10-40 μm achieving good agreement with values determined using orthogonal approaches
- Complementarity of DIA/spICP-MS has been investigated using PS microparticles and good agreement obtained



# **Acknowledgements**









Department for Science, Innovation & Technology



**Government Chemist** 









