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Executive Summary 
 

 

1. Artificial Intelligence (AI) capabilities are advancing rapidly, with significant developments in 

foundation models like OpenAI’s ChatGPT. In 2024 alone, 165 new large-scale models of above 

a 100,000 exaFLOP (Floating Point Operation) training compute threshold were released, up 

from just 30 in 2022. 

 

2. UK AI compute demand is projected by McKinsey to grow, with the IT load growing from 1.8 

gigawatts (GW) in 2024, to as much as 13.6GW by 2035 in a high-demand scenario - a 7.5x 

increase.  

 

3. Inference is expected to overtake training as the dominant driver in UK AI compute demand, with 

some scenarios suggesting that up to 62% of future demand could come from Gen-AI inference 

by 2035. This shift will be driven by widespread adoption in sectors like retail, banking, and public 

services, where real-time, low-latency AI is also becoming more important. 

 

4. Even under optimistic conditions, current McKinsey projections suggest the UK’s compute supply 

could fall short. Without intervention, the UK could face a 5GW compute gap by 2030. This gap 

risks undermining national security, economic growth, and the UK’s ambition to lead in AI. 

 

5. Public sector compute demand could reach 0.2GW by 2030, 20 times more than the combined 

capacity of the UK’s current public flagship supercomputers, Isambard-AI and Dawn. This growth 

is largely driven by growing AI healthcare applications and complex modelling. 

 



 
 

 

6. Rising demand is partly balanced by more efficient models and hardware. Energy use per 

ChatGPT prompt has fallen by a factor of 10 since 2023.1 Considering this alongside potential 

increases in AI demand and the UK’s ambitious targets for electricity grid decarbonisations, we 

estimate that by 2035, the UK’s greenhouse gas emissions from AI compute could range from 

0.025 to 0.142 MtCO₂ – this is below 0.05% of the UK’s projected total emissions.2 

 

Note, future projections are based on modelling and analysis conducted by McKinsey & Company. It 

is intended to inform ongoing policy development and does not represent a final cross-cutting view of 

government. Scenario projections are subject to uncertainty and may evolve as further evidence and 

perspectives are incorporated. 

 

Introduction 
 

AI has the potential to transform the economy and society. The IMF estimates that the 

widespread adoption of AI could add up to 1.5% to annual productivity growth.3 Compute will be 

needed to underpin this transformation. From developing the latest AI models that increasingly need 

more compute to analyse the vast amounts of data these models rely on, to the growing inference 

requirements used to respond to AI prompts as adoption rises.  

 

Compute is essentially the computer chips used to process data, whether processing the 

training data to build AI models or processing user prompts. Compute can be broadly 

categorised into several types. Traditional workloads or general-purpose compute is typically powered 

by central processing units (CPUs) and support standard workloads like databases and web services. 

Graphics processing units (GPUs) were originally designed to render images and video but are now 

more widely used for AI and scientific computing. High-performance compute (HPC) clusters combine 

CPUs and GPUs to tackle complex scientific and AI problems, often housed in supercomputing 

facilities.  

 

AI capabilities are developing at a fast pace. Most developments in the last decade were enabled 

by machine learning – an approach to AI where models are trained by exposure to enormous 

amounts of data. More recently, there has been rapid AI developments following breakthroughs in 

foundation models. These are large AI systems capable of completing a range of different tasks, such 

as OpenAI’s ChatGPT model which can respond to and create text and images.  

 

Alongside this has been a rapid rise in the adoption of AI. Currently, 21% of UK businesses are 

using AI in July 2025, up from 13% a year ago.4 The most popular types of AI are text generation 

using large language models (9.6% of firms), followed by visual content creation (7.1%) and data 

processing using machine learning (5.3%).5 Consumer adoption is reportedly higher, with four-in-ten 

adults using AI chatbots for personal use at least monthly. 6  

  

These are key drivers of the rapid growth of the UK AI sector. The sector contributed £11.8bn in 

gross value added in 2024 and grew at a rate faster than the UK average.7 There were 650 new AI 

company registrations in 2024, meaning the total number of AI firms was over 5,800 in 2024. Just 

under one fifth (17%) of UK AI revenue is generated by AI infrastructure firms.8 

 

This annex sets out the latest evidence on AI compute to inform the development of the Compute 

Roadmap. From developments in the computing chips that make compute, to estimates of the current 

and future demand and supply of compute. Building on this foundational understanding, the following 

section explores the latest trends in compute technology that are driving these advancements. 

  

Trends in Compute 
 

As AI demand grows, AI-specific compute has appeared as a distinct category. This includes AI 

training compute, which requires massive GPU resources, or equivalents like Google’s tensor 



 
 

 

processing units (TPUs). AI-specific compute is also used to support inference, which involves 

running trained models to serve specific applications. Edge computing enables real-time processing 

by bringing computation closer to the data source. This is especially critical for applications that 

require ultra-low latency, such as autonomous vehicles. Cloud compute offers scalable access to 

these resources, while edge compute enables real-time AI processing closer to data sources.  

 

AI compute demand is driven by three converging forces: the rapid expansion of model size, 

ongoing growth in the scale and variety of datasets, and the accelerating adoption of AI across 

sectors. In 2024, 165 new large-scale models (above a 100,000 exaFLOP compute threshold) were 

released, up from just 30 in 2022.9 The growing number and complexity of models has been 

accompanied by significant growth in the size of datasets used to train models, which has grown by 

3.7x annually since 2010.10 Together, the computational power used in state-of-the-art AI training runs 

has been rising seven times faster than Moore’s Law.11 Machine learning chip performance has 

improved by 31% annually12, doubling roughly every 2.2 years.13 These gains can reduce the cost per 

FLOP. For example, the cost per token for OpenAI’s GPT-4o mini model has dropped 

by 99% compared to earlier models.14 While GPUs are becoming more efficient by delivering more 

performance per unit of energy or cost, the total cost of acquiring and operating them remains high, 

and the rapid growth in AI model size and usage is outpacing these efficiency gains. For example, the 

overall cost of training AI models has still increased by 2.6x per year since 2016.15 More complex 

models have led to better AI applications. Building on the recent increase’s outlined above, AI 

adoption is also expected to boom in the coming years, with developers continuously refining and 

deploying new models to meet evolving needs across healthcare, finance, retail, and public services. 

 

The growing demand for AI is shifting from model training to inference.16 This is the stage where 

a trained model is used to generate outputs, such as answering questions or making predictions. 

While each inference task is far less computationally intensive than training, it happens much more 

frequently and at scale. This makes both low latency and cost efficiency critical. For example, 

generating 10 tokens per second per user (equivalent to around 450 words per minute) may not 

sound large in isolation, but when multiplied across millions of users, it results in a substantial and 

continuous compute load.17 This throughput is also necessary to maintain a smooth, real-time user 

experience. In contrast, training involves teaching models using massive datasets and typically 

requires thousands of GPUs or TPUs running in parallel for extended periods. Training a model like 

GPT-4, for instance, is estimated to consume between 10MW and 100MW of power,18 highlighting its 

significantly higher computational demands compared to inference. 

 

Inference is becoming a dominant driver of compute demand, in particular Gen-AI 

applications, has implications for compute architecture. Compute architecture needs distinct 

levels of data granularity, also known as floating points (FP). For training, accuracy matters most, so 

FP16 or FP32 is preferred. In inference, speed, lower memory use, and reduced precision are 

priorities, making FP8 or FP4 common choices. More recent GPUs, like Nvidia’s Blackwell, have been 

prioritising FP8 inference performance as a result, as well as some compute systems taking a mixed 

approach overall.19 

 

Inference can account for the majority of total compute costs. While training models is a one-off 

investment, ongoing inference demand, especially as adoption of AI increases, will require a greater 

share of total compute. McKinsey research for DSIT estimates that inference’s share of total UK 

compute demand could rise from 16% in 2023 to 57-71% in 2035, depending on the forecast 

scenario. Already, it was estimated that OpenAI’s ChatGPT costs over $700,000 per day in cloud 

infrastructure in 2023, which is around 0.36 cents per query.20 The compute per token could increase 

by up to 1.3 times a year, although this estimate carries some uncertainty due to evolving model 

architectures and deployment strategies.21 This growth is largely driven by the increasing complexity 

and capability of AI models, such as their ability to process longer and more context-rich prompts from 

Gen-AI applications. This is only partially counteracted due to increases in algorithmic efficiency in 

how AI models work.22 For example, OpenAI found that by 2019, it took 44x less compute to reach the 

same ImageNet model performance as in 2012 due to better algorithms.23 

 



 
 

 

Low latency and sovereign capabilities requirements are also growing. Gen-AI applications often 

involve fast response requirements for text and voice interactions and are latency and sovereignty 

sensitive, so they need UK-based data centres. For example, in autonomous driving, low-latency AI 

models are essential for processing sensor data, such as LiDAR and camera feeds, in milliseconds to 

make split-second decisions like obstacle avoidance or speed adjustments.24 Another example is 

Singapore’s GovTech developed PAIR, an LLM-powered assistant used across 100 government 

agencies to draft emails and conduct research. This is a Gen-AI deployment that handles sensitive 

government data and thus runs in sovereign cloud infrastructure, illustrating the rising need for local 

inference capacity.25 These examples reflect a broader trend: as Gen-AI moves from experimentation 

to deployment, UK-based data centres are becoming critical to meet performance expectations and 

regulatory requirements. 

 
There is demand for compute to develop narrow models within the UK. AI training tasks are 

generally not latency sensitive, with over 100ms round-trip latency being acceptable, allowing for the 

use of overseas compute resources.26 However, sectors such as healthcare, energy, defence, and 

public services require complete sovereignty due to data sensitivity.27 For example, Congenica served 

as the exclusive clinical decision support partner for the NHS Genomic Medicine Service, performing 

all genomic data analysis within the UK.28 Similarly, AION, developed by Nostos Genomics, was 

clinically validated through the UK’s 100,000 Genomes Project and supports small labs in diagnosing 

rare diseases using sovereign genomic data.30 MILTON, a machine learning tool trained on data from 

nearly 500,000 UK Biobank participants, can predict over 1,000 diseases before diagnosis.31 These 

use cases highlight the need for domestic infrastructure to ensure compliance with data protection 

regulations and to maintain public trust in the use of sensitive health data. Future compute demand 

projections are shaped by these use cases. 

 

The Case for Intervention 
 

To ensure the UK remains competitive and resilient in the age of AI, government intervention 

in compute infrastructure is essential. Government intervention in this case is providing the 

infrastructure and resources needed for compute to ensure that critical national needs are met, 

particularly where the market falls short. This includes investing in public infrastructure, subsidising 

access for researchers and SMEs, prioritising high-impact public projects, enforcing secure data 

standards, and fostering cross-sector collaboration to meet national strategic needs. This section sets 

out the analytical and economic rationale for intervention, structured around the four strategic 

objectives of the UK Compute Roadmap. 

 

Building a modern public compute ecosystem providing the capacity and certainty UK 

researchers and innovators need: 

 

The UK’s compute demand is projected to grow, driven by the widespread adoption of AI 

across science, the economy and the public services. However, access to compute remains a 

significant barrier, particularly for researchers, startups, and SMEs. High setup and operating costs, 

such as GPUs costing up to £36,000 for a Nvidia H100 GPU, can prevent researchers from entering 

the AI market. 33 As a result, the UK’s innovation potential is constrained, with much of its AI research 

capacity currently reliant on private actors. The market failure lies in the under-provision of public 

compute resources, which are essential for AI research and innovation. The UK must invest in a 

robust and scalable public compute infrastructure to meet the growing demands of AI research and 

development. In the UK, demand for such resources far exceeds supply. UKRI’s AI GPU cluster was 

oversubscribed by 350% last year as per UKRI reporting and commercial cloud costs are prohibitively 

high.  

 

Government intervention in AI compute directly addresses an existing market failure of the 

under-provision of public goods. Government programmes such as the AI Research Resource 

(AIRR) are critical to expanding access for researchers, SMEs, and mission-driven projects. By 



 
 

 

addressing the oversubscription of existing resources and high commercial cloud costs, the UK can 

democratise access to compute and unlock innovation potential across academia and industry.  

 

Putting Compute to Use, Powering Innovation Across the Public and Private Sector 

 

It is essential to ensure that compute is directed toward high-impact, mission-driven projects. 

By prioritising access for foundational science, national AI programmes, and SMEs, the government 

can ensure that compute becomes a catalyst for transformation across public services and national 

priorities. 

 

AI is already delivering real-world impact in areas aligned with the government’s Plan for 

Change. From virtual biopsies to AI-assisted IVF and predictive analytics in cardiology, UK 

researchers are pioneering applications that improve lives and reduce costs. Yet, these breakthroughs 

depend on access to compute infrastructure that is secure, scalable, and mission aligned. For 

example, RETFound is the first AI foundation model in ophthalmology, developed by researchers at 

UCL and Moorfield’s Eye Hospital to diagnose eye diseases based on historic eye scan images. The 

model was trained with 8-16 Nvidia A100 GPUs over one month using 1.6 million retinal 

images.34  Assuming it operated continuously for one month, this equates to approximately 2,300 to 

4,600 kWh.35 However, compromises to the sophistication of the training model were made due to 

limited compute resources and the need to store data securely. For example, the resolution of eye 

scan images was reduced from 1000 x 1000 pixels to 128 x 128 pixels. Additionally, the batch size 

was reduced to fit into the available resources, which increased the time needed to train the model.36  

 

This surge in AI-driven R&D directly supports the UK Government’s missions to improve 

public services through advanced technologies, strengthen scientific leadership, and drive 

economic growth through innovation. The UK has had notable early success in leveraging AI for 

science to improve lives and deliver commercial impact, for example:  

 

o Clinicians at Imperial College Healthcare NHS Trust and researchers at Imperial College 

London, and University of St Andrews have used advanced AI to make IVF treatments more 

effective. This AI had to analyse thousands of high-resolution microscope images, a process 

requiring considerable GPU time which required training a complex neural network on a large 

dataset of medical images.37 

o Glasgow University spinout Chemify has raised £36m of investment to digitise chemistry and 

automate chemistry laboratories by combining AI and robotics. Such systems rely on both 

cloud compute for training and on-premises edge compute for real-time experiment control.38 

o AIRE is an AI model designed by researchers at Imperial College to support clinical decision-

making by analysing patient history and imaging scans (electrocardiogram (ECG)), improving 

diagnostic outcomes through predictive analytics.39 

o Researchers at NIHR IBTC have shown combining medical imaging with AI can be used to 

provide a ‘virtual biopsy’ for cancer patients, by extracting information about the chemical 

makeup of lung tumours from medical scans. Processing image data in real time to be 

clinically useful demands reliable local compute resources.40 

  

Building AI Infrastructure to Keep the UK at the Cutting Edge of AI Development 

 

To ensure the UK can lead at the frontier of AI, government intervention must prioritise the 

development of cutting-edge AI infrastructure that supports both the training and deployment 

of advanced models. This includes investment in high-performance computing, AI-optimised data 

centres, and specialised hardware such as GPUs and TPUs. As AI adoption accelerates across 

sectors, from healthcare and finance to manufacturing and public services, the demand for scalable, 

low-latency, and energy-efficient compute infrastructure is growing exponentially. Without intervention, 

the UK risks falling behind global competitors who are rapidly expanding their AI capabilities through 

sovereign infrastructure and public-private partnerships.  

 

Through initiatives like AI Growth Zones, the UK is laying the groundwork for a new generation 



 
 

 

of AI infrastructure capable of delivering at least 6GW of AI-ready capacity by 2030. These 

zones will not only anchor national-scale training and inference but also serve as platforms for 

innovation, investment, and regional growth. By embedding compute infrastructure within a broader 

ecosystem of energy, talent, and research, the UK can accelerate AI adoption across sectors, from 

healthcare and defence to finance and manufacturing, while ensuring that the benefits of AI are 

realised across the country. This forward-looking approach positions the UK to lead in the global AI 

race, not just as a consumer of technology, but as a builder of the infrastructure that powers it. 

 

Creating Sovereign, Secure and Sustainable Capability 

 

Compute infrastructure is no longer just a technical asset; it is a strategic enabler. The UK 

must act decisively to avoid over-reliance on foreign infrastructure, which poses risks to data 

sovereignty, latency-sensitive applications, and national resilience. Sovereign compute capacity is 

particularly critical for sectors like defence, healthcare, and public services. Moreover, the UK has a 

strong foundation in chip design and systems engineering. By investing in domestic infrastructure and 

supporting UK-based innovation, the government can build strategic advantage across the AI and 

compute value chain. 

 

Without intervention, the UK could face the potential risk of lagging in its efforts to become a 

strategic leader in AI. Other countries are also boosting their AI compute capacity. France is 

investing €109 billion to build competitive and independent infrastructure41. Meanwhile, India is 

focusing on democratising compute access through public-private partnerships, supported by a $1.3 

billion commitment to expand infrastructure and subsidise AI resources for vital sectors.42 These 

approaches exemplify how nations leverage unique strengths to overcome compute challenges, 

offering potential pathways for the UK to bolster its AI aspirations.  

 

Compute Demand 
 

Compute demand is rising across all parts of the economy. The rapid expansion of Gen-AI 

inferencing, particularly within consumer-facing applications is expected to dominate demand due to 

increasing interaction frequency and model complexity. McKinsey’s 2025 global analysis reported that 

71% of companies now use Gen-AI in at least one function, with marketing and sales leading the 

way.43 Adoption is highest in sectors that are expected to benefit from AI the most, such as the 

Information and communications sector (37% adoption rate, well above the all-sector average of 18%) 

and Professional, scientific and technical activities (32%).44 A closer look at the distinct use cases for 

inference and training helps understand the nuances of compute demand.  

 

Total UK compute demand projected to be between 4-7 times higher than today’s demand by 

2035.45 DSIT commissioned McKinsey to model both demand and supply of compute over the next 10 

years. This generated three scenario-based demand projections, shaped by varying assumptions 

around AI adoption and technical progress. The range in projections reflect the inherent uncertainty 

surrounding the evolution of AI and that they largely depend on existing trends continuing. This is 

preliminary analysis and does not represent an agreed government forecast of demand and supply of 

compute in the UK: we will continue to refine this analysis to develop a refined picture on the future 

balance between supply and demand. 

 



 
 

 

Table 1: UK Compute Demand Scenario based projections by 2035, in GW (IT Load Capacity) 

 High  Medium Low 

 GW % of total GW % of total GW % of total 

Total Compute 
Demand 

13.6  9.6  7.4  

AI 11.2 82% 7.2 75% 5.0 68% 

Private 
Sector 

10.9 97% 6.9 96% 4.8 96% 

Public Sector 0.3 3% 0.3 4% 0.2 4% 

Traditional 2.4 18% 2.4 25% 2.4 32% 

 

The main scenario is for total compute demand to grow from 1.8GW in 2024 to 9.6GW by 2035 

(Table 1), driven by steadily increasing AI integration across sectors. However, this could vary 

between 7.4GW and 13.6GW. UK AI compute demand is measured here in gigawatts (GW) of IT 

load – a proxy for power needed to run the required hardware. 1GW of compute capacity can 

correspond to operating about 1 million high-end GPUs.46  

 

Specific AI compute demand is expected to be 13 times higher by 2035.47 Traditional compute 

demand is expected to grow 6% annually on average between 2024 and 2035, which is five times 

slower than for AI compute demand (27%).48 Consequently, while AI was only a third of total demand 

in 2024, it’s share will rise dramatically to a three-quarters by 2035 (Figure 1).  

 

Figure 1: UK Compute Demand by use case type in the Medium Scenario, 2025-2035 GW 

 
It is expected that a high proportion of this compute growth will be from the private sector. In 

the medium scenario, private sector demand steadily increases to 6.1GW by 2030 or 12,000 

exaFLOPs, while public sector demand remains relatively modest, rising from 0.1GW to 0.2GW over 

the same period (Figure 2) 49 This trend reflects the increased use of AI applications in Gen-AI and 

inferencing. 
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Figure 2: UK Compute Demand by user type in the Medium Scenario, 2025-2035 GW 

 
 

Public sector demand alone could need up to 0.2GW of compute capacity by 2030, primarily 

driven by inference in healthcare uses.50 This is the equivalent of up to an additional 420 

ExaFLOPs.51 To put that in perspective, it means requiring 20 times more compute than University of 

Bristol’s ‘Isambard-AI’ supercomputer and University of Cambridge’s ‘Dawn’ supercomputer 

combined. Isambard-AI and Dawn currently provide less than 0.01GW of sustained compute.52 This is 

because the public sector is more likely to use large, complex datasets for use cases such as 

modelling and simulations.  

 

Compute Supply 
 

AI data centres have evolved to meet the unique demands of AI workloads. Unlike traditional 

data centres that support general-purpose computing, AI data centres are purpose-built for high-

intensity tasks. They rely heavily on GPUs and other accelerators rather than CPUs. They require 

advanced cooling systems due to higher energy demands and use high-performance storage to 

manage vast volumes of unstructured data. These centres are designed for rapid scaling and are 

driving a surge in global infrastructure investment. The UK has limited supercomputing facilities. Most 

of the world’s 500 fastest supercomputers are in the US and China.53  

 

While AI workloads can technically be hosted anywhere in the world, this introduces 

challenges around data control, latency, and regulatory compliance. Investing in sovereign 

compute enables the growth of AI data centres while ensuring long-term resilience. Sovereign 

compute refers to computing infrastructure and data that is physically located in the UK, which could 

be either owned or directly controlled by the UK Government. This includes publicly owned 

supercomputers like ARCHER2 and Isambard-AI, as well as government-rented capacity within UK-

based data centres. 

 

Specialised hardware 

 

Over the past decade, GPUs have become a cornerstone of AI development, particularly for 

training deep learning models.54 Their architecture makes them fundamental to AI and machine 

learning algorithms.55 For example, a Nvidia Tesla V100 GPU has 5,120 cores, while a high-end Intel 

Xeon CPU has 28 cores, enabling greater parallel processing and more tasks to be done 

simultaneously. It means GPUs can be up to 100 times faster than CPUs.56 Companies like Nvidia 

and AMD have been at the forefront of developing high-performance GPUs that significantly 

accelerate the training process.57  
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AI has also led to further advancements in hardware. 58 New chips like Tensor Processing Units 

(TPUs), Neural Processing Units (NPUs) and application-specific integrated circuits (ASICs), and 

field-programmable gate arrays (FPGAs) have been developed to meet performance and efficiency 

demands.59 TPUs and NPUs are custom designed to run AI tasks faster and more energy efficient. 

For example, Google’s first-gen TPU delivered between 15-30 times speed-up on inference with up to 

80 times less energy compared to a contemporary CPU.60 In 2024, the trend accelerated with the 

integration of AI chipsets into consumer devices like PCs, enabling on-device intelligence and hybrid 

AI processing.61 Looking ahead, the AI hardware landscape is expected to diversify further, with 

innovations in AI companion devices, wearables, and edge computing solutions.62 These 

developments will be driven by demand for real-time, low-latency AI experiences and the 

commercialisation of emotionally intelligent, IP-integrated AI products.63 

 

Edge computing is leading to hardware changes. Hardware for on-device AI is improving to run 

advanced models locally. This is gaining traction for applications that demand low latency and real-

time processing, such as autonomous vehicles, industrial IoT, and smart cities. IDC estimates that 

global spending on edge computing is set to grow by 13.8%, reaching $380bn by 2028.64 This is 

driving investment in tinyML and energy-efficient chips that can perform inference on smartphones, 

sensors and vehicles. 

 

This evolution in hardware is also closely tied to the varying compute needs across sectors. In 

healthcare, AI supports tasks like real-time image analysis, patient monitoring, and genomic studies, 

requiring robust computational power. For example, Queen's University Belfast develops AI diagnostic 

tools that process medical images with remarkable speed and accuracy. 65 This relies on specialised 

accelerators and FPGAs for efficient, low-latency performance. 66 In Convolutional Neural Net (CNN) 

inference tasks, FPGAs have proven 5 times faster latency (30 milliseconds vs 150 milliseconds) and 

over 6 times greater energy efficiency compared to GPUs.68 

 

In scientific research, compute demands are often more intensive.69 Applications such as climate 

modelling, astrophysics, and materials science require high levels of floating-point precision and 

massive parallel processing.70 Such need large-scale data analysis and high-performance computing 

tasks. For example, the Multimodal Universe is the largest dataset designed for AI models, having 

been trained on 100TB of data.71   

 

However, to fully use this specialised hardware, organisations must also invest in skills and 

talent. AI professionals who directly use AI compute also need the related skills and training to use it 

effectively.72 The complexity of modern compute environments, which include specialised hardware 

such as GPUs, TPUs, and NPUs, requires a deep understanding of their architecture and 

functionality.  

 

Data centres 

 

Increased demand for AI is expected to drive the UK’s data centre design.73 The design of data 

centres to support AI compute is evolving, reflecting the changing demands of AI workloads and the 

increasing focus on factors like latency, data sovereignty, and resilience. There is a growing need for 

faster digital connectivity between racks, which is especially critical for latency-sensitive AI tasks that 

often require response times in the range of 15–200 milliseconds.75 The ability to build infrastructure 

that is tailored to optimise interconnect speeds and reduce bottlenecks. The broader trend is toward a 

hybrid76 and distributed model.77 Large, centralised sites are complemented by smaller, 

geographically dispersed facilities. This includes edge deployments and decentralised architectures to 

support the diverse needs of AI applications.78 

 

Simultaneously, there is also an increasing interest in decentralised data centre strategies. The 

growth in micro data centres and edge computing means that data and compute resources are 

distributed across multiple locations rather than relying on a single central point.79 This approach 

offers potential benefits in terms of enhanced security by reducing the risk of a single point of failure, 



 
 

 

improved data privacy by allowing users more control over their information, and increased reliability 

through geographic redundancy.80   

 

The growth of global over local hyperscalers of the UK’s data centre supply carries significant 

implications for the UK. A hyperscaler is a large-scale data centre that provides cloud computing 

infrastructure and services at massive scale. Global hyperscalers offer benefits such as the rapid 

development of large-scale facilities like data centre campuses, insourced AI hardware that reduces 

dependency on other hardware developers, and support for large-scale international enterprises 

requiring substantial capacity.81 However, this approach also comes with risks, including a potential 

loss of economic benefits from local construction and operation,82 as global hyperscalers often rely on 

imported equipment and talent.83 Additionally, there may be concerns regarding data sovereignty,84 as 

locally constructed data centres could still allow foreign access to sensitive information.85 

Furthermore, global hyperscalers typically charge higher margins,87 leading to increased costs for 

consumers, and their dominance may overshadow local hyperscalers or co-locators, limiting local 

capacity development.  

 

Projected Compute Supply 

 
Around 1.8GW of UK’s IT load (power capacity) is currently used to power around 330 data 
centres around the country.89 This includes both workloads with a critical dependency on UK data 
centres (either given latency and/or data sovereignty requirements) and those that can be satisfied 
abroad.90 There is a dominant hyperscaler presence through leasing wholesale co-locators, and this 
accounts for 58% of the DCs in the UK (Figure 3).91 Historically, UK’s estimated share of global 
hyperscaler DC capital expenditure has been around 9% and is expected to fall to 5% by 2030.92 This 
could be driven by power costs, total lead times,93 construction costs and availability of land.  
 
Figure 3: UK data centre capacity, 2024 IT load capacity (GW)  

 
 
High implied training costs for a model could deter private investment developers from 
locating in UK to abroad. The UK total lead time is over two years compared to the US, driven by 
planning delays.94 The UK’s construction costs are high versus Europe and US, with London ranked 
as most expensive city for construction by the ICC index 2024.95 The UK’s power costs are around 
four times higher than the US in 2023.96 It’s estimated that the implied training cost, if ChatGPT-4 was 
trained in the UK, is about £9.5bn.97 This is around a £1bn cost difference between the US, largely 
driven by the operating cost for a large-scale data centre required to support compute (e.g., 1GW for 
ChatGPT-4).98 The UK is a less attractive market for training from an operating cost only 
perspective.99 Spain may be a more attractive market for LLM developers to locate their European 
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hubs given more favourable conditions.100 
 
Figure 4: Implied training cost and data centre operating cost for ChatGPT-4 (2023) within each 
country per watt101 

Future UK compute supply could increase to 5.4-11GW by 2035, driven by AI data centre 
growth (Table 2).102 McKinsey’s analysis models three UK data centre (DC) supply scenarios: low, 
medium, and high. The scenarios are driven by variations in investment flows, regulatory efficiency, 
and infrastructure readiness. This is preliminary analysis and does not represent a final government 
view of supply of compute in the UK: we will continue to refine this analysis. 
 
In the low scenario, persistent planning and connection delays, coupled with declining market 
attractiveness, constrain capacity growth to 5.4 GW by 2035.103 The medium scenario assumes 
resolution of connection delays but retains structural challenges such as high electricity costs and 
complex planning permissions, enabling capacity to reach 8.5 GW by 2035 (Figure 4).104 The high 
scenario envisions significant policy and infrastructure reforms that enhance the UK’s 
competitiveness, allowing it to attract a greater share of global hyperscaler capital expenditure and 
scale capacity to 11 GW.105 Despite efforts to increase supply, a significant compute gap remains, 
posing challenges that need to be addressed. 
 
Table 2: UK Compute Supply Scenario based projections by 2035, in GW (IT Load Capacity) 

 High  Medium Low 

 GW % of total GW % of 
total 

GW % of total 

Total Compute 
Demand 

11.0  8.5  5.4  

AI 8.2 75% 6.0 71% 3.6 67% 

Traditional 2.8 25% 2.5 29% 1.8 33% 
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Figure 5: UK Compute Supply in the Medium Scenario, 2025-2035 GW 

 
 

Compute Gap 
 

Without intervention, analysis indicates that the UK could face up to a 5GW ‘Compute Gap’ 

within the next five years.106 The UK’s compute supply could nearly double to 3.3GW in 2030. This 

is based on the announced project pipeline and growth in data centre investment to satisfy growth in 

Gen-AI workloads.107 This means the UK’s market share of global data centre capacity could shrink 

from 3% to 1.5% from 2024-30. Coupled with UK compute demand expected to grow faster to 5.1-

8.5GW that won’t be met by UK supply, leads to a large compute gap by 2030. This excludes 

significant frontier model training growth in the UK, which would be added to this demand. 

 

Figure 6: Demand and Supply across low, medium and high scenarios by 2030, GW 
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By 2030, limited domestic compute capacity could seriously affect the UK economy. It may 

prevent the country from meeting sovereign needs like NHS or national security use cases that 

require secure, local data processing. Latency-sensitive technologies, such as autonomous vehicles 

and high-frequency trading, may be held back because they rely on real-time compute that can’t be 

outsourced. A growing dependence on foreign infrastructure could increase exposure to global supply 

chain risks, potentially disrupting access and raising costs. It would also weaken the UK’s ambition to 

be an “AI maker, not an AI taker,” by limiting its ability to develop and deploy advanced AI models.  

 

The UK public sector is facing a significant projected increase in AI compute demand, with 

forecasts suggesting up to a 22-fold rise between 2024 and 2030 in a high-demand scenario. 

This is equivalent to an added 420 ExaFLOPs.108 This surge underpins the AIRR programme’s x20 

target, which is based on scaling current capacity (Isambard-AI and Dawn supercomputers) to meet 

future needs. However, even with this planned expansion, a substantial supply gap stays. In the high-

demand scenario, public sector AI demand alone would nearly match the entire proposed AIRR 

capacity, while in medium and low scenarios, the gap persists but is less severe. The AIRR 

investment is therefore positioned as a critical supply-side intervention to close this gap, particularly 

for public sector AI use cases. Yet, given the scale of demand from other sectors like education and 

SMEs, the programme will not be able to meet all needs. This highlights the necessity of a prioritised 

access model to ensure that the most critical public sector applications are supported.  

 

The environmental impacts of compute must also be considered alongside supply challenges. 

 

Environmental Impact of Compute 
 

AI workloads are driving a sharp rise in electricity demand.109 The escalation in energy demand 

is being driven by rising adoption of Gen-AI.110 This increases demand for power-intensive 

processors, such as GPU and specialised AI chips, used to train and deploy advanced models. 

Gemini Ultra reportedly needed 35 MW to train, and future frontier models could demand gigawatt-

scale power by 2029.111 When including inference demand, energy requirements are even larger. 

Epoch estimates that a long input of 10k tokens (like a short paper or long magazine article) is 

estimated to cost per query around 2.5 watt-hours.112 However, offsetting the large energy demand is 

an improvement in chip efficiency. For example, AMD’s Raden RX 6000 GPUs are 54% more energy 

efficient than the earlier generation of chips.113 

 

Some projections show that by 2030, global energy consumption by AI-optimised data centres could 

surpass the total electricity currently used by Japan each year.114 Specifically, these centres are 

expected to consume more than 945 TWh globally by 2030.115 DSIT’s AI environmental impacts 

model estimates that UK’s greenhouse gas emissions from AI compute could range from 0.025 to 

0.142 MtCO₂ by 2035, equivalent to below 0.05% of the UK’s projected total emissions116 (Figure 7). 

This largely depends on how aggressively the UK decarbonises its energy grid and how fast AI 

adoption grows. This could be equivalent to the annual emissions of approximately 5,000 to 23,600 

UK households.117 As shown in Figure 8, even under medium AI demand scenario, emissions could 

double between an ambitious scenario (which assumes a fully decarbonised electricity mix by 2035) 

and a business-as-usual scenario. This is driven largely by indirect emissions from the power 

generation supplying electricity-intensive data centres.  

 

Figure 7: GHG Emissions under three decarbonisation scenarios split by high, medium and 

low AI deployment (2025-2035)  

 



 
 

 

 
 

AI data centres also place heavy demands on water, primarily for cooling. Up to 40% of a data 

centre’s total energy consumption can be for cooling. Factors like increased energy requirements for 

GPUs, higher density server arrangements, and AI processes running continuously makes it more of 

a challenge for AI data centres specifically.120 This has spurred investment into new cooling solutions, 

such as using liquid immersion cooling where servers are submerged in coolant and can reduce 

energy use by 30% compared to traditional air cooling.121 However, a recent study found that training 

GPT-3 in Microsoft US data centres (which are more efficient) consumed around 700,000 litres of 

water.122 This means that global AI-related water withdrawal is expected to reach 4.2–6.6 billion m³ by 

2027,123 comparable to the annual water use of several countries.124 Under a medium deployment 

scenario, cumulative water use could reach 1.6 trillion cubic metres by 2035, with a range of 1.1–1.9 

trillion cubic metres depending on decarbonisation assumptions (Figure 8).  

 

Figure 8: Water use under three decarbonisation scenarios split by high, medium and low AI 

deployment (2025-2035) 

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

160,000

Low
demand

Medium
demand

High
demand

Low
demand

Medium
demand

High
demand

Low
demand

Medium
demand

High
demand

Ambitious grid decarbonisation Business-as-usual grid
decarbonisation

Pessimistic grid decarbonisation

T
h

o
u
s
a

n
d
s
 C

O
2

Direct Indirect



 
 

 

 

 

Conclusion 
 

The UK's AI compute needs are diverse and growing, particularly in latency-sensitive sectors like 

banking, retail, healthcare, and public services. While the current data centre supply meets sovereign 

demand, a potential compute gap could hinder economic growth, affect national security, and increase 

reliance on foreign resources. 

 

Without intervention, the UK's compute supply could reach only 3.3GW, while demand could exceed 

8.5GW. This gap risks undermining national security, economic growth, and the UK's ambition to lead 

in AI. Public sector demand, while smaller than private, has unique requirements (security, latency) 

that make domestic provision non-optional; planning must account for these needs to avoid mission-

critical shortfalls (for example, in healthcare AI).  

 

These findings reinforce the rationale for the actions set out in the UK Compute Roadmap, particularly 

the expansion of public compute infrastructure through the AIRR, the development of AI Growth 

Zones, and the prioritisation of sovereign and sustainable compute solutions. Together, these 

initiatives aim to ensure that the UK’s compute ecosystem is equipped to meet future demand, 

support national missions, and secure long-term strategic advantage. 
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Annex A: AI Rapid Evidence Review Methodology 
 

A rapid evidence review was conducted to find trends around hardware, data centre design and use 

cases. These were partially helped by four different Deep Research tools, Copilot, Gemini, Perplexity 

and EPPI Reviewer. Each AI tool was fed the same research questions, then the output was cross-

referenced and merged to form the report.  

 

• What are the latest developments in compute design? How will these affect future trends? 

How does this change between training and inference uses?  

• How do specialised chips improve efficiency and performance of inference tasks compared to 

general purpose GPUs?  

• To what extent are we likely to see a divergence in specialised hardware for training and 

inference?  

• Is there evidence that certain hardware is, or will be, specialised for specific types of model 

training? (e.g. specialisation for specific architectures)  

• What are the trends in the balance of inference vs training compute demand and how is this 

likely to play out in future?  

• What are the trends in the balance of compute demand for narrow vs general AI models and 

how is this likely to play out in future?  

• Do different domains (e.g. science, health, finance) require different hardware stocks? If so, 

why?  

• What are trends in the layout of AI compute data centres? To what extent are we seeing more 

large, consolidated sites vs distributed sites?  

• What are the recent trends and developments in distributed training techniques for AI 

models? How do these advancements impact the scalability and efficiency of training large AI 

models?  

• For what use cases is distributed compute most useful?  

• What do all these trends mean for future energy demands for AI compute data centres?  

• What do all these trends mean for future water demands for AI compute data centres?  

• What about water impacts?  

 

 

Annex B: McKinsey Demand and Supply Model 

Methodology 
 

DSIT commissioned McKinsey to provide a 10-year projection of future compute demand and supply. 

This model is crucial for understanding the potential growth in compute requirements driven by the 

rapid adoption of AI across various sectors. By forecasting both demand and supply, it aims to identify 

potential gaps and ensure that the UK can meet is compute needs, particularly for public sector AI 

uses. 

 

The method involves forecasting both demand and supply based on various assumptions about AI 

adoption, technical progress for semiconductors and AI development, and other factors. The model 

uses historical data, expert interviews, and industry investment projections to inform the analysis. This 

analysis is intended to inform ongoing policy development and does not represent a final cross-cutting 

view of government. Scenario projections are subject to uncertainty and may evolve as further 

evidence and perspectives are incorporated. 

 

Compute Supply  

 



 
 

 

These forecasts are informed by semiconductor supply chain orders and global industry investment 

projections, accounting for ongoing construction delays and the UK’s share of the global market given 

context like the UK being relatively unattractive given higher power costs.  

 

To forecast the full potential of data centre growth, McKinsey estimated current expansions to data 

centres, planned and announced investments, and unannounced investments. For these first two 

categories, the S&P 451 Dataset was used to find announcements and when the data centres would 

be operational. For unannounced data centre construction, this was calculated by estimating the UK’s 

share of global capital investment by the top five global hyperscalers, including the split by wholesale 

co-locators versus owned and operated buildouts. The UK’s share was informed from expert 

interviews. Internal estimates were then applied to translate capital investments into gigawatt capacity, 

guided by the McKinsey Global Data Centre Model and global hyperscaler expert interviews. 

 

The above provides a forecast of data centre construction between 2025 to 2030. To extend the 

forecast to 2035, the 2025-30 compound annual growth rate was extrapolated further. This was 

further informed through expert interviews and other limiting factors, such as the increase in UK grid 

power supply during the same period, specifically assessing the proportion of this power supply given 

to data centres using the McKinsey Global Energy Perspective. 

 

Different supply scenarios were constructed to illustrate the effect of different growth constraints for 

data centres. This included the impact of connection queue delays - the time needed to power both 

planned and unplanned data centres. This involved evaluating the proportion of data centre 

announcements that may not materialise, and insights gathered from expert interviews. Additionally, 

an assessment of power supply expansion plans was also considered to decide the feasibility of 

increasing data centre capacity while ensuring adequate access for non-data centre users. This 

assessment relied on data sources from NESO Future Energy Scenarios. 

 

Within the supply forecast, there is a breakdown for high-performance computing (HPC) supply. This 

involved first finding the current baseline of HPC capacity using the Top500 list of supercomputers. 

This is then combined with public press information to find new supercomputers that are either under 

construction or planned, along with their estimated capacities, to estimate how this might change over 

time. 

 

Compute Demand 

  

Compute demand consists of AI and traditional compute, both broken down further by public and 

private sector demand. AI compute demand can also be broken down further into training and 

inference needs, with the latter considering the needs for business-to-business (B2B) and business-

to-consumer (B2C) AI inference compute demand. These were estimated separately but combined to 

provide an estimate of total compute demand. 

 

To assess B2B use case inferencing for the period 2025-2035, McKinsey analysed the full potential of 

AI automation and value creation by industry. The analysis calculated Gen-AI spending by firms 

based on industry-specific adoption rates and the compute intensity of use case archetypes. This 

spending was then converted into implied compute demand, measured in power capacity, using an 

estimate of operational expenditure per watt. 

 

For B2C use case inferencing from 2025 to 2030, McKinsey forecasted the number of daily 

interactions that a connected individual would have with a Large Language Model (LLM). This 

forecast was combined with the compute needed per interaction, which was derived from historical 

development trends. Compute estimates for the 2030-2035 period were extrapolated in line with 

global adoption trends. 

 

In evaluating frontier training and small-to-medium model training for the period 2025-2030, McKinsey 

established a baseline using the known training costs of organisations such as OpenAI. Comparisons 

were drawn to similar industry players and their market positions. Historical growth rates in training 



 
 

 

costs were then used to forecast future costs, which were converted into gigawatts using OPEX cost 

per watt. These calculations were conducted for the pre-2030 period, while figures for 2031 to 2035 

were extrapolated in line with global market expectations. 

 

For other accelerated compute workloads between 2025 and 2030, McKinsey relied on global 

demand data for AI-ready servers, informed by Nvidia’s chip shipment forecasts. The part of compute 

demand not addressed by Gen-AI was classified as ‘other accelerated’ compute workloads. 

Meanwhile, for traditional compute growth within data centres, this was based on global CPU 

shipment data. Calculations for 2025-2030 period were performed using a bottom-up methodology, 

with projections for 2030-2035 aligned with global market estimates. 

 

In analysing public sector AI growth from 2025 to 2030, McKinsey applied a method like that used for 

B2B Gen-AI, incorporating general efficiency gains from automation and research and development 

(R&D) efforts. This analysis included sectors such as public services, healthcare, and defence. 

Projections for the period beyond 2030 were extrapolated based on global market trends. 

 

Compute Gap 

 

Comparing the compute supply and demand forecasts can indicate whether there will be a gap in the 

UK’s capacity. Overall, there are nine combinations of forecast scenarios, though McKinsey expects 

the UK to be in a base-supply and medium-demand scenario. This suggests that total compute supply 

would rise from 1.8GW in 2024 to 3.3GW in 2030, while total compute demand would rise from 

1.8GW in 2024 to 6.3GW in 2030, resulting in a 3GW in 2030 compute gap. For AI specific demand, 

the compute gap is slightly smaller at 2.7GW in 2030. 

 

The compute demand and supply forecasts could be influenced by several factors that may alter their 

trajectory. A significant improvement in future model performance, surpassing benchmarks such as 

DeepSeek in 2025, might allow Gen-AI demand to be met with reduced compute requirements, 

resulting in a smaller gap. However, this improvement could indirectly increase Gen-AI adoption due 

to enhanced capabilities and reliability. Additionally, an increase in UK data centre investments 

beyond expectations, driven by improved economics or strategic/geopolitical motivations, could also 

reduce the gap. Conversely, if Gen-AI fails to scale whether globally or locally within the UK, 

potentially due to regulatory challenges, economic shortcomings, or supply chain obstacles—the 

compute gap could lessen as expected benefits and investment pipelines fail to materialise. These 

factors collectively highlight the dynamic and multifaceted nature of the compute gap's development. 

 

 

Annex C: AI Environmental Impacts Model 
 

DSIT commissioned Cambridge Econometrics to assess the environmental impacts arising from the 

operation of AI systems, with projections extending to 2035. Direct environmental impacts include the 

consequences from the development and operation of AI systems. While indirect environmental 

impacts refer to the harm associated with the construction and production of essential AI hardware 

and technologies. 

 

A key input to the AI Environmental Impacts Model is the number of GPUs needed to meet a specific 

level of AI demand. This is then converted into electricity consumption based on the assumptions 

within the McKinsey Compute Demand and Supply model. Total AI electricity demand is multiplied by 

a series of quantitative environmental coefficients to assess the size of direct and indirect 

environmental impacts in terms of GHG emissions, water consumption, and material and land use. 
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