

PERENCO UK LIMITED Tyne Field Pipeline Decommissioning Programme

June 2025

Consultation Version

Document Control

Approvals

	Name	Signature	Date
Prepared by	Claire Fowler Decommissioning Compliance Lead		
Reviewed by	Ollie Felmingham Decommissioning Manager		
Approved by	Jonathan White Perenco UK General Manager		

Revision Control

Revision No.	Reference	Changes/Comments	Issue Date
0	Internal Draft	Initial draft for internal review	06/01/21
1	Internal Draft	Internal comments actioned and submitted to OPRED	31/05/21
2	Draft V1	OPRED comments actioned	18/01/22
3	Draft V2	Updated following post-decom survey results	11/07/24
4	Draft V3	OPRED comments actioned	08/04/25
5	Draft V4	Issued for Consultation	16/06/25

Distribution List

Company	No. of Copies
Offshore Petroleum Regulator for Environment & Decommissioning (OPRED)	1
National Federation of Fishermen's Organisations (NFFO)	1
The Scottish Fishermen's Federation (SFF)	1
Northern Ireland Fish Producers' Organisation (NIFPO)	1
Global Marine Systems Limited	1
Arco British Limited, LLC	1
BP Exploration Operating Company Limited	1
Serica Energy Chinook Limited	1

Contents

1.	EXE	CUTIV	VE SUMMARY	8
	1.1	Dec	ommissioning Programme	8
	1.2	Req	uirement for Decommissioning Programme	8
	1.3	Intro	oduction	8
	1.3	.1	Description & Status of Tyne Field Installation	8
	1.3	.2	Description & Status of Tyne Field Pipelines & Associated Stabilisation Materials	9
	1.3	.3	Status of Tyne Scour Basin	11
	1.3	.4	Proposed Decommissioning Option for Pipelines & Stabilisation Materials	12
	1.4	Ove	rview of Pipelines Being Decommissioned	13
	1.4	.1	Pipelines	13
	1.5	Sum	mary of Proposed Decommissioning Programme	14
	1.6	Field	d Location Including Field Layout and Adjacent Facilities	16
	1.7	Indu	Istrial Implications	21
2.	DES	CRIP	TION OF ITEMS TO BE DECOMMISSIONED	22
	2.1	Pipe	lines Including Stabilisation Features	22
	2.2	Inve	ntory Estimate	24
3.	REIV	IOVA	AL AND DISPOSAL METHODS	24
	3.1	Pipe	lines	24
	3.2	Pipe	line Stabilisation Features	27
	3.3	Was	ste Streams	28
4.	ENV	IRON	IMENTAL APPRAISAL OVERVIEW	29
	4.1	Envi	ironmental Sensitivities (Summary)	29
	4.2	Pote	ential Environmental Impacts and Their Management	35
5.	INTE	RES	TED PARTY CONSULTATIONS	39
6.	PRO	GRA		40
	6.1	Proj	ect Management and Verification	40
	6.2	Post	t-Decommissioning Debris Clearance and Verification	40
	6.3	Sche	edule	40
	6.4	Cost	ts	41
	6.5	Clos	e Out	41
	6.6	Post	t-Decommissioning Monitoring and Evaluation	42
7.			TING DOCUMENTS	
8.	S29	HOLI	DER(S)LETTER(S) OF SUPPORT	43

9.	REFERENCES	.44
10.	APPENDICES	.45

Figures and Tables

Tables

Table 1.1: Changes in Scour Basin Volume at the Tyne Location	12
Table 1.2: Pipelines Being Decommissioned	13
Table 1.3: Pipelines Section 29 Notice Holders Details	13
Table 1.4: Summary of Decommissioning Programme	14
Table 1.5: Adjacent Facilities	18
Table 2.1: Pipeline/Flowline/Umbilical Information	22
Table 2.2: Pipeline crossing information	23
Table 2.3: Subsea Pipeline Stabilisation Features	23
Table 3.1: Pipeline Decommissioning Options	
Table 3.2: Outcome of Comparative Assessment	26
Table 3.3: Pipeline Stabilisation Features	28
Table 3.4: Waste Stream Management Methods	28
Table 3.5: Inventory Disposition	29
Table 4.1: Environmental Sensitivities	
Table 4.2 : Environmental Impact Management	
Table 5.1: Summary of Stakeholder Comments	39
Table 7.1 : Supporting Documents	42

Figures

Figure 1-1: NAVIMODEL extract with linear dimensions of scour basin showing total length of the	
exposed pipeline and mattresses within Tyne 500m SZ	11
Figure 1-2: Proposed rock berm design	13
Figure 1-3: Tyne Field Location in United Kingdom Continental Shelf (UKCS)	16
Figure 1-4: Tyne Field Layout	17
Figure 1-5: Adjacent Facilities	20
Figure 2-1: Pie Chart of Estimated Inventory (Pipelines)	24
Figure 3-1: Comparative Assessment Phases	25
Figure 6-1: Gantt Chart of Project Plan	41

Appendices

Appendix A: Drawings of Pipelines and	l Pipeline Stabilisation Features	15
---------------------------------------	-----------------------------------	----

Terms and Abbreviations

Abbreviation	Explanation	
%	Percentage	
1	Seconds	
0	Degree	
u	Inch	
AIS	Automatic Identification System	
ALARP	As Low as Reasonably Practicable	
BSH	Broad Scale Habitat	
BSL	Benthic Solutions Limited	
С	Circa	
СА	Comparative Assessment	
СЫ	Carbon Preference Index	
СОА	Coastal and Offshore Area	
СоР	Cessation of Production	
DESNZ	Department for Energy Security and Net Zero	
DECC	Department of Energy and Climate Change	
DoB	Depth of Burial	
DP	Decommissioning Programme	
EA	Environmental Appraisal	
E	East	
EBS	Environment Baseline Survey	
EEEGR	East of England Energy Group	
ESDV	Emergency Shut Down Valve	
EU	European Union	
FCS	Favourable Conservation Status	
HCS	Hydrocarbon Safe	
HL	Heavy Lift	
HOCI	Habitat of Conservation Importance	
HSEx	Health and Safety Executive	
ICES	International Council for the Exploration of the Seas	
Inde	Indefatigable	
LAT	Lowest Astronomical Tide	
LSA	Low Specific Activity	
km	Kilometres	
km ²	Square Kilometre	
kgm/3	Kilogram per cubic metre	

Abbreviation	Explanation	
m	Metres	
m²	Square Metre	
MARPOL	The International Convention for the Prevention of Pollution from Ships	
MBES	Multi-Beam Echo-Sounder	
MCZ	Marine Conservation Zone	
MEG	Mono Ethylene Glycol	
MM	McAdam (i.e., McAdam Subsea well)	
ММО	Marine Management Organisation	
MoD	Ministry of Defence	
MOAB	Mobile Offshore Application Barge	
MPA	Marine Protected Areas	
Ν	North	
N/A	Not Applicable	
NFFO	National Federation of Fishermen's Organisations	
NIFPO	Northern Ireland Fish Producers' Organisation	
nm	Nautical Miles	
NORM	Naturally Occurring Radioactive Material	
NRA	Navigational Risk Assessment	
NUI	Normally Unattended Installation	
NSTA	North Sea Transition Authority (formerly Oil & Gas Authority OGA)	
OEUK	Offshore Energies UK (formerly Oil & Gas UK OGUK)	
OGA	Oil & Gas Authority	
OPRED	Offshore Petroleum Regulator for Environment and Decommissioning	
Perenco	Perenco UK Limited	
PETS	Portal Environmental Tracking System	
PL	Pipeline	
РОВ	Personnel on Board	
PSR	Pipeline Safety Regulations	
PWA	Pipeline Works Authorisation	
RAG	Red/Amber/Green	
ROV	Remotely Operated Underwater Vehicle	
SAC	Special Area of Conservation	
SCAP	Supply Chain Action Plan	
SCANS	Small Cetacean Abundance of the North Sea	
S29	Section 29	
SEMS	Safety and Environmental Management System	

Abbreviation	Explanation	
SFF	The Scottish Fishermen's Federation	
SNS	Southern North Sea	
SPA	Special Protection Area	
SSS	Side Scan Sonar	
SZ	Safety Zone	
ТНС	Total Hydrocarbon Content	
ТОС	Total Organic Carbon	
UK	United Kingdom	
UKCS	UK Continental Shelf	
UKHO	UK Hydrographic Office	
UKOOA	United Kingdom Offshore Operators Association	

1. EXECUTIVE SUMMARY

1.1 Decommissioning Programme

This document contains the Decommissioning Programme (DP) for two offshore subsea pipelines (PL1220 and PL1221) which operate within the Tyne gas field in the Southern North Sea (SNS), and thirty-two concrete mattresses within the Tyne 500m Safety Zone (SZ).

The scope for this Tyne Pipeline DP includes the decommissioning of PL1220 and PL1221, from the bottom of the Tyne riser within the Tyne 500m SZ to the edge of the Trent 500m SZ, including the exposed pipeline sections and associated stabilisation materials (concrete mattresses) in the scour basin within the Tyne 500m SZ.

The Tyne riser sections, within the Tyne 500m SZ, were considered in the Tyne Installation DP. The installation was removed in 2019 during the Tyne Heavy Lift (HL) campaign (see Section 1.3). The decommissioning of the PL1220 and PL1221 pipeline and riser sections within the Trent 500m SZ have been excluded from this DP and will be detailed in separate DPs.

1.2 Requirement for Decommissioning Programme

Pipelines: In accordance with the Petroleum Act 1998, the Section 29 notice holders of the Tyne pipelines (see Table 1.3) are applying to the Offshore Petroleum Regulator for Environment and Decommissioning (OPRED) to obtain approval for decommissioning the pipelines detailed in Section 2.1 of this programme. (See also Section 8 – Section 29 Notice Holders Letter(s) of Support).

In conjunction with public, stakeholder and regulatory consultation, the decommissioning programme(s) is/are submitted without derogation and in compliance with national and international regulations and OPRED guidelines. The schedule outlined in this document is for a 3-year decommissioning project plan, which will commence in Q1 2026.

1.3 Introduction

1.3.1 Description & Status of Tyne Field Installation

This decommissioning programme explains the principles of the removal activities and is supported by an environmental appraisal (EA) and a comparative assessment (CA).

The Tyne field is located in Block 44/18a in the SNS, 57km east northeast of Trent field (Block 43/24a), approximately 188km off the coast of Norfolk and 184km off East Yorkshire. The Tyne Platform was located at Latitude: 54° 26′ 57″ N, Longitude: 02° 28′ 52″ E (Figure 1-3) situated within the Dogger Bank Special Area of Conservation (SAC).

The Tyne pipelines (PL1220 and PL1221), which are approximately 56 kilometres (km) in length, are located within Blocks 43/24, 43/25, 43/20, 44/16, 44/17 and 44/18 in the SNS. The closest landfall is 115km west of the westernmost extent of the pipelines. These infield pipelines connected the recently removed Tyne installation to the Trent installation (see Figure 1-4).

The Tyne Normally Unattended Installation (NUI) was installed in 1996, with maximum personnel on board (POB) of 12 and a temporary overnight shelter. Wet gas was exported through a 20 Inch (") Pipeline PL1220 to the Trent Platform Mobile Offshore Application Barge (MOAB) and Mono Ethylene Glycol (MEG) was imported through a 3" Pipeline PL1221 to the Tyne Installation. During installation, both pipelines were trenched and buried to a depth of 0.75m below the seabed.

Perenco UK Limited (Perenco) explored all avenues for continuing production from the Tyne Field as described in the Cessation of Production (CoP) document and concluded that due to a reduction of gas production, continued operations were uneconomical. Therefore, in preparation for decommissioning, the CoP documentation was submitted to the North Sea Transition Authority (NSTA) and approval was granted in November 2015.

A campaign was undertaken on the Tyne Platform in 2016 to render the Installation Hydrocarbon Safe (HCS) and the installation remained in Lighthouse Mode for 3 years.

The Tyne Installation DP was approved by OPRED on 24th January 2019. The Tyne Installation, the PL1220 and PL1221 riser sections, and 10.6m of the PL1220 and 13.5m of the PL1221 freespans were removed in December 2019. The Tyne subsea template was removed in June 2020. The onshore dismantlement and recovery were completed in December 2020.

1.3.2 Description & Status of Tyne Field Pipelines & Associated Stabilisation Materials

In 2016, during the HCS campaign, pipelines PL1220 and the piggy-backed PL1221 were cleaned, flushed, and isolated on the Topsides of the Tyne and Trent Platforms. Both pipelines were left filled with seawater. This work was completed under the approved Pipeline Work Authorisation (PWA) variation Consent Reference No.254/V/16.

In 2016, a pre-decommissioning Environmental Baseline Survey (EBS) was undertaken by Benthic Solutions Ltd (BSL) supported by Bibby HydroMap. The survey area included a 1 square kilometre (km²) area centred on the Tyne Platform, and a circa 250m wide corridor along the export pipeline and MEG line (PL1220/ PL1221) to the Trent Platform. The survey comprised Side Scan Sonar (SSS), single beam and Multi-beam Echo Sounders (MBES) [Ref. 4].

In 2017, a Depth of Burial (DoB) survey was carried out in 2017 along the length of the pipeline [Ref. 4]. The DoB survey data indicated that the average burial depth along the pipeline was 0.9m (Min:0.4m, Max:2.2m) with no reportable spans/exposures, except for exposed sections close to the Tyne Platform. No debris was identified during these surveys.

For the exposed sections within the Tyne 500m SZ, the survey data showed that from the base of the riser to the start of the existing mattress coverage, the gas export pipeline (PL1220) was in free span, with the piggy-backed MEG Pipeline (PL1221) in burial beneath it for a length of circa 22m. The free

span was considered a potential snagging hazard to other users of the sea once the jacket was removed.

In 2019 during the Tyne HL campaign, both PL1220 and PL1221 risers were cut at the seabed and the risers were removed with the jacket, (the PL1220 riser was 40.1m in length and the PL1221 riser was 39.1m in length).

An attempt was also made to remove the free spans within the Tyne 500m SZ. However, due to the 45-degree (°) pipeline bend protruding out of the jacket, the cutting tool could not reach as close to the Jacket as planned. Of the total as-found exposed pipeline length of 22m (from the 45° bend to the start of the mattresses) a total of 10.6m of the 20" pipeline (PL1220) and 13.5m of the 3" MEG pipeline (PL1221) was removed. These removed pipeline sections were transported onshore. This work was completed under the approved PWA variation Consent Reference No.114/V/18.

Between 2008 and 2019, a combination of debris surveys, Remotely Operated Underwater Vehicle (ROV) surveys, scour surveys, and general inspections of the PL1220 and PL1221 were conducted. The surveys have shown that scour is present at both ends of the Tyne pipelines due to the presence of hard infrastructure and strong water currents. The surveys also indicated that the pipelines at the approach of the Tyne Platform are covered by a historical rock placement. Additionally, rock placement protection is observed at three crossings of third-party assets.

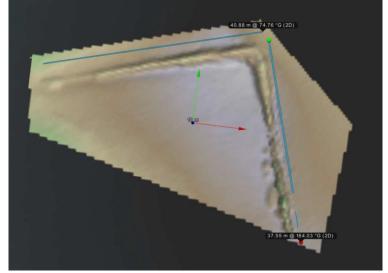
In 2022, post-decommissioning pipeline and benthic surveys were carried out along a 100m corridor of the pipelines and within the Tyne 500m SZ [Ref. 6, Ref.7]. A geophysical assessment of the survey results identified that infill of the scour basin within the Tyne 500m SZ scour basin has not progressed as had originally been assumed. Approximately 52m of pipeline and associated stabilisation material (concrete Armorflex type mattresses) remain exposed within the Tyne scour basin.

Outside of the remaining exposed sections within the Tyne scour basin, the pipelines were fully buried and are likely to remain buried over time due to their weight being heavier than the surrounding substrate. The additional weight from the seawater within the pipeline will likely lead to the pipeline migrating downwards should the seabed substrates become liquefied.

The Tyne mattresses were installed in 1996 and have been in-situ for more than 24 years. A total of 32 stabilisation mattresses were installed within the Tyne 500m SZ. The surveys carried out have identified that 26 of the 32 mattresses are exposed, and the remaining 6 of the 32 mattresses are fully buried. The exposed mattresses lie within the scour basin and rest on the seabed approximately 2m below the adjacent seabed level outside of the scour basin see Figure 1-1. These mattresses demonstrate colonisation by marine mobile and sessile epifauna species. Of the 26 exposed mattresses, 21 mattresses are still serving their original function as pipeline stabilisation material. The other 5 exposed mattresses are confirmed to be displaced from the pipeline and in poor condition. This is supported by the ROV inspection, which identified poor integrity of either the concrete material, steel wire and/or lifting loops, hence they have failed as their original function as a stabilisation feature.

The pre-and post-decommissioning surveys have indicated that scour is present at both ends of the Tyne pipelines due to the presence of hard infrastructure and strong water currents.

Page **10** of **49**



1.3.3 Status of Tyne Scour Basin

An assessment of the infill rate of the Trent scour basin within the Trent 500m SZ (which includes the end of the Tyne Pipeline) from recent geophysical surveys and associated Perenco scour basin analysis over the 10-year period has identified that the seabed infilling rate is not following the predicted pattern. In addition, three other exposure locations along the pipeline length were identified, one between two parallel crossings and two surrounded by areas of scour, totalling 196.1m in length. These are, however, non-reportable exposures with no free spans. Trent Installation scour basin and associated pipeline stabilisation materials will be detailed in a separate Trent Pipeline DP.

Bathymetry data spanning from 2012 to 2022 was overlaid using NAVIMODEL software (a point cloud data system used to analyse geophysical survey data for all Perenco subsea assets) to compare the seabed movements over the 10 years. This data focuses on a 1,648m² area around the previous existing Tyne Jacket and shows the extension of the scour basin (ref. Figure 1-1).

Figure 1-1: NAVIMODEL extract with linear dimensions of scour basin showing total length of the _______exposed pipeline and mattresses within Tyne 500m SZ

The removal of the Tyne Jacket in 2019 (and therefore the reduction of hard substrate within the area) was expected to significantly increase the rate of scour basin infill and thus lead to a reduction in the scour basin size. However, data from the surveys has shown an increase in the volume of the Tyne scour basin volume from 2019 to 2022 of approximately 1932m³. This increase is 50% less than the increase in the volume of the basin before the removal of the installation.

Based on the data currently available, it cannot be concluded for certain that the scour basin will infill over time. Rather, the position of the basin floor and geometry of the side slopes appear to change over time, in some periods showing evidence of accretion and in other periods of further lowering.

Table 1.1: Changes in Scour Basin Volume at the Tyne Location					
Year of Survey	f Survey 2012 2017 2019 2022			2022	
Approximate scour basin volume (m ³)	25,989	30,420	30,298	32,230	
Volume change between 2012 - 2017	+ ·	4431			
Volume change between 2017 – 2019		- 1	22		
Volume change between 2019 – 2022			+ 1932		
Volume change between 2012 – 2022		+	6241		

1.3.4 Proposed Decommissioning Option for Pipelines & Stabilisation Materials

Previous draft versions of this DP and CA had originally anticipated that the proposed decommissioning solution would be to leave the pipelines and stabilisation materials in-situ with natural remediation of the exposed pipeline ends and mattresses within the Tyne scour basin. However, following the results of the post-decommissioning surveys, the CA was updated [Ref.2, Tyne CA]. The updated CA indicates that the optimum solution is the in-situ decommissioning of the pipelines and pipeline stabilisation materials, with rock placement on snagging hazards, see section 3.1.

The potential environmental impacts associated with the proposed decommissioning activities have been assessed as part of the Tyne Pipelines Decommissioning Environmental Appraisal (EA) and are reported in an EA [Ref.3, Tyne EA] accompanying this DP. See section 4.2 of this DP for a summary of the appraisal. The EA concludes that the proposed Tyne pipeline decommissioning activities can be completed without causing a significant adverse impact on the environment, providing the proposed mitigation and management measures, as identified within the EA, are implemented.

Subject to the approval of this Tyne Pipeline DP, it is proposed that a rock placement campaign be carried out to cover the exposed pipeline ends and associated stabilisation material within the Tyne scour basin. The rock deposits will form a berm designed with a 1:3 slope to make it over trawlable, (see Figure 1-2). The berm will be completed under an approved deposit consent. The rock deposit will tie into the existing rock placement installed during the Platform installation.

Following remediation, subject to consultation with DESNZ and National Federation of Fishermen's Organisations (NFFO), a clean seabed certificate will be obtained to confirm that there are no snagging hazards which could be a risk to fishermen.

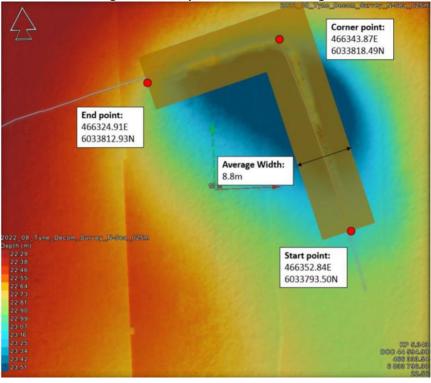


Figure 1-2: Proposed rock berm design

Before obtainment of the Clean Seabed Certificate, the Tyne 500m SZ will remain in place and will be marked on the UK Hydrographic Office (UKHO) Admiralty maps and recorded in the FishSAFE database. As previously agreed with the HSEx, once it is confirmed that the pipeline ends and stabilisation materials are no longer a snagging hazard, Perenco will request that the SZ be removed from the maps/database.

1.4 Overview of Pipelines Being Decommissioned

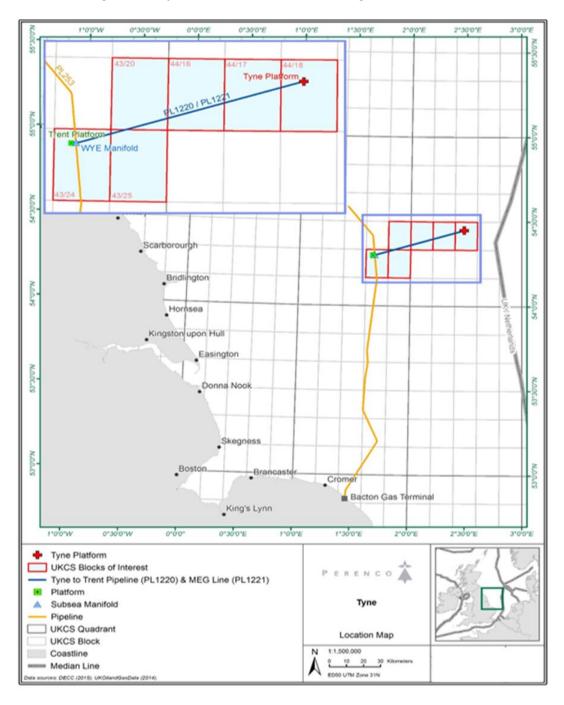
1.4.1 Pipelines

Table 1.2: Pipelines Being Decommissioned				
Number of Pipelines. Details given in Table 2.1	2			

Table 1.3: Pipelines Section 29 Notice Holders Details						
Section 29 Notice Holders	Equity Interest (%)					
Perenco UK Limited	04653066	100				
Arco British Limited, LLC	FC005677 BR001713	0				
BP Exploration Operating Company Limited	00305943	0				
Serica Energy Chinook Limited	SC335305	0				

1.5 Summary of Proposed Decommissioning Programme

Table 1.4: Summary of Decommissioning Programme					
Proposed Decommissioning Solution	Reason for Selection				
Pipelines, Flowlines & Umbilicals					
The pipeline ends within the Tyne 500m SZ to the edge of the Trent 500m SZ – Leave in	The proposed decommissioning solution was selected in accordance with the Tyne CA recommendation.				
situ with remediation of any snagging hazards.	The DoB survey indicated that the average burial depth along the pipeline was 0.9m (Min:0.4m, Max:2.2m) with no reportable spans/exposures, except for exposed sections close to the Tyne Platform. The pipelines have been cleaned, flushed, and filled with seawater, which changes the specific gravity and increases the depth of burial overtime.				
	The pipeline ends will be remediated with rock placement due to it being a potential snagging hazard.				
	The Tyne risers were removed with the Tyne installation and the Trent risers will be removed when the Trent Jacket is removed.				
Pipeline and related stabilisation	features				
Pipeline stabilisation features (concrete mattresses) – Leave in situ with remediation of any snagging hazards.	The proposed decommissioning solution was selected in accordance with the Tyne CA recommendation. The concrete mattresses are a combination of exposed, partially, or fully buried and still serve the purpose of stabilising the Tyne pipelines. If these mattresses are removed, it will leave exposed sections of the pipeline to potential future scouring, the forming of new free spans, and potential snagging hazards to other marine users. Thus, these sections of pipeline will need to be recovered or remediated with rock placement. This CA identified the preferred decommissioning was to leave in situ with remediation by rock placement on snagging hazards. The estimated quantity of rock would be 833 tonnes (assuming a block density of 2650kgm/3).				
Pipeline Crossings					
PLU4685 Hawksley EM WHPS to McAdam MM WHPS – left buried in situ.	PLU4685 crosses above the PL1220 and PL1221 and has been approved by OPRED to be left buried in situ in the Decommissioning Programmes for Caister-Murdoch System III Installations and Pipelines, CDP2.				
PL1922 Hawksley subsea wellhead to ESDV (Murdoch MD) - left buried in situ.	PL1922 crosses above the PL1220 and PL1221 and has been approved by OPRED to be left buried in situ in the Decommissioning Programmes for Caister-Murdoch System III Installations and Pipelines, CDP2.				



PL2285 Cavendish to Murdoch – – left buried in situ.	PL2285 crosses above the PL1220 and PL1221 and has been approved by OPRED to be left buried in situ in the			
	Cavendish Decommissioning Programmes.			
PL3088 Cygnus B Crossing – left buried in situ.PL3088 is operational and crosses over the PL1220 and PL1221 pipelines. Therefore, it will be left in situ until PL3088 is decommissioned.				
Interdependencies				

Trent installation is still in place; therefore, the decommissioning of the pipelines within the Trent 500m SZ cannot take place. The decommissioning strategy for the Trent inventory will be detailed in a separate DP.

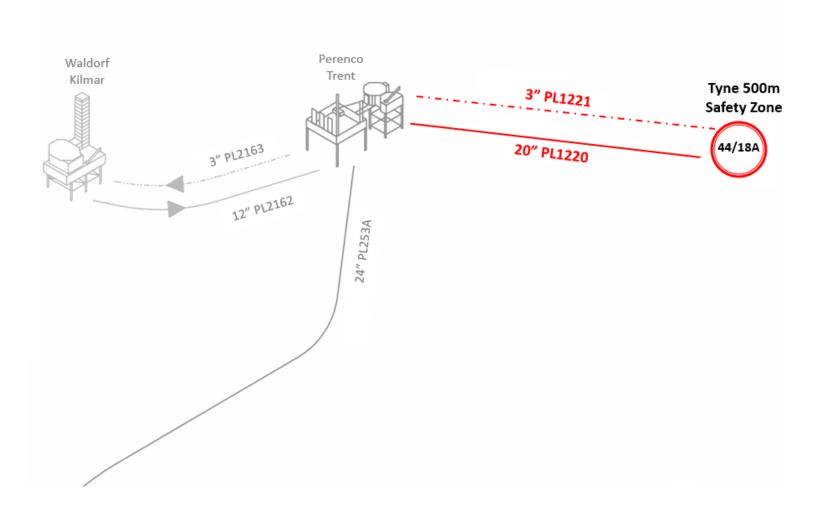

1.6 Field Location Including Field Layout and Adjacent Facilities

Figure 1-3: Tyne Field Location in United Kingdom Continental Shelf (UKCS)

Figure 1-4: Tyne Field Layout

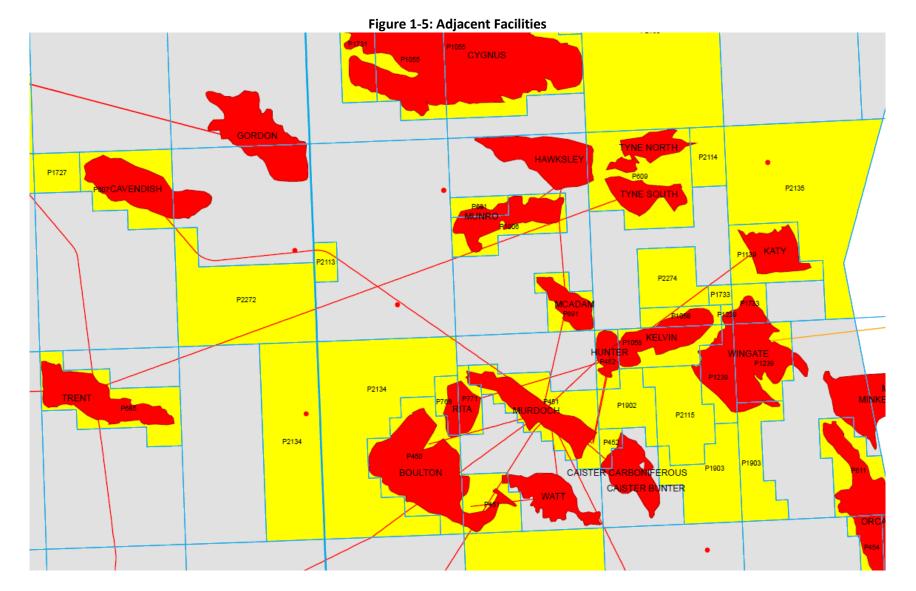


	Table 1.5: Adjacent Facilities							
Owner Operator	Name	Туре	Distance/Direction	Information	Status			
Perenco UK Limited	Trent	Platform	Trent is 56.5km southwest from Tyne.	Adjacent Platform	Out of use			
Chrysaor Production (U.K.) Limited	Katy	Platform	Katy is 13km southeast from Tyne.	Adjacent Platform	Out of use			
Chrysaor Production (U.K.) Limited	Kelvin	Platform	Kelvin is 13km south from Tyne.	Adjacent Platform	Out of use			
Chrysaor Production (U.K.) Limited	Munro MH	Platform	Munro is 12km southwest of Tyne.	Adjacent Platform	Out of use			
Chrysaor Production (U.K.) Limited	Hawksley EM	Subsea	Hawksley is 7.6km Northwest of Tyne.	Single slot template	Out of use			
ENI Energy E&P UK Limited	Cygnus A	Platform	Cygnus is 18km northwest of Tyne.	Adjacent Platform	Operational			
Wintershall Noordzee B.V.	Wingate	Platform	Wingate is 17km southeast of Tyne.	Adjacent Platform	Operational			
Chrysaor Production (U.K.) Limited	PLU4685	Pipeline crossing	PLU4685 crossing is 8.5km southwest of Tyne	108.5mm Electrohydra ulic Umbilical	Not in use			
Chrysaor Production (U.K.) Limited	PL1922 and PL1925	Pipeline crossing	PL1922 and PL1925 crossing is 8.5km southwest of Tyne	12" Gas pipeline	Not in use			
INEOS UK SNS Limited	PL2284 and PL2285	Pipeline crossing	PL2284 and PL2285 crossing is 26.5km southwest of Tyne	2" Methanol pipeline	Not in use			
ENI UK Limited	PL3088 Cygnus B Crossing	Pipeline crossing	PL3088 crossing is 55km southwest of Tyne	Pipeline junction	Operational			

Tampnet AS	MCCS Fibre optic cable	Telecommu nication	The Tampnet cable is 14km east of PL1220 PL1221	1.65" fibre optic cable adjacent to PL1220 PL1221	Operational		
	Impacts of Decommissioning Proposals						
The decommissioning of Tyne pipelines will have no impact on adjacent facilities. The pipelines are already flushed, cleaned, buried, and filled with seawater. All 3 rd party pipelines cross over the top of the Tyne Pipelines, and as we intend to leave the Tyne pipelines in situ, the proposal will not impact the current and future pipeline decommissioning proposals from the other 3 rd party operators at the Tyne pipeline crossings.							
	Should the Tyne pipelines at the crossings be impacted by any proposals from a 3 rd party operator Perenco will discuss and agree on any actions that are required with OPRED.						

1.7 Industrial Implications

The Tyne Pipeline DP has been planned carefully to recognise synergies and efficiencies. Engineering and planning consider the potential integration of various activities.

All contracts will be tendered according to Perenco procedures. Suppliers' offers will be assessed along many criteria, including: their technical ability and capacity to execute the work in a safe and efficient manner that minimises the impact on the environment; the commercial offer; and the experience of carrying out this type of operation in the UKCS.

Due to the minimal work scope anticipated with leaving the pipelines in situ, Perenco does not envisage that a Supply Chain Action Plan (SCAP) will be required for this Pipeline DP. Perenco will engage with the NSTA Supply Chain team to gain agreement that a SCAP is not required.

Perenco is an active participant in various industry initiatives, including:

- a) Offshore Energies United Kingdom (OEUK) Supply Chain Forum
- b) OEUK Decommissioning Forum
- c) OEUK Wells Forum
- d) East of England Energy Group (EEEGR)

Current operational contracts for items such as potential vessel sharing and logistical support will be implemented to support decommissioning activities and wider business optimisation.

2. DESCRIPTION OF ITEMS TO BE DECOMMISSIONED

2.1 Pipelines Including Stabilisation Features

	Table 2.1: Pipeline/Flowline/Umbilical Information								
Description	Pipeline Number	Diameter (")	Length (km)	Description of Component Parts	Product Conveyed	From-To End Points	Burial Status	Pipeline Status	Current Content
Export Line	PL1220	20	56.08	X65 Steel with Coal Tar Enamel and Concrete Weight Coating	Gas	PL1220 Tyne Subsea Pipeline Cut Location #2 at EL-18.700 to Trent Platform Pig Trap	Trenched & buried, except for 52m of exposure within the 500m exclusion zone scour basin and non- reportable exposures outside the Tyne 500m exclusion zone.	Out of Use	Seawater
MEG Line	PL1221	3	56.156	X52 Steel with Fusion Bonded Epoxy coating	Chemicals	PL1221 Trent Platform 3" Ball Valve to Tyne Subsea Pipeline Cut Location #2 at EL- 18.700	Trenched & buried, except for 52m of exposure within the 500m exclusion zone scour basin and non- reportable exposures outside the Tyne 500m exclusion zone.	Out of Use	Seawater

Note 1: Pipeline length considered for this DP is the original pipeline length as per the PWA consent (Ref: 2/W/96), minus the Tyne pipeline riser and the section of the pipelines within the Trent 500m SZ. This aligns with the scope of the DP outlined in Section 1.2 of this DP.

It should be noted that a variation to the PWA consent was approved by the NSTA (Ref: PA/2584) for the removal of the Tyne riser and the pipeline free span. The PWA consent now reflects the current length of the pipeline, accounting for the sections already removed during the completed decommissioning campaigns detailed in Section 1.3. The removal of the Trent pipeline riser will be included in the Trent Installation DP. The PWA consent (2/W/96) will be updated in due course to reflect the removal of the PL1220/PL1221 Trent pipeline risers.

Table 2.2: Pipeline crossing information						
Pipeline, umbilical or cable description	Location (WGS84 Decimal)	Protection				
PLU 4685 108.5mm Electrohydraulic Umbilical	54.42627390°N, 02.35511161°E	Buried under deposited rock				
PL1922 12" gas pipeline and PL1925 3" Methanol pipeline	54.42636406°N, 02.35560374°E	Buried under deposited rock				
PL2284 and PL2285 2.37" Methanol pipeline	54.37701840°N, 02.08851033°E	Buried left in situ				
PL3088 Cygnus B Crossing Pipe junction	54.30084895°N, 01.67626267°E	Operational				
Tampnet AS	54.43065269°N, 02.37922621°E	Operational				

	Table 2.3: Subsea Pipeline Stabilisation Features						
Stabilisation Feature	Total Number	Weight (Te)	Location	Exposed/Buried/Condition			
Concrete Mattresses	32	743 (Total)	Covering the pipeline approach to the Tyne Platform location. All (32) mattresses are within Platform 500m SZ.	It has been established from recent surveys that 6 of the 32 mattresses are fully buried and 26 mattresses are partially exposed. Of the 26 exposed mattresses, 21 mattresses rest on top of the pipeline and are still serving their original function as pipeline stabilisation material. The remaining 5 mattresses are confirmed to be in poor condition. They are displaced from the pipeline and have failed.			
Grout Bags	50 (Estimate)	125 (Total Estimate)	Supporting Riser	There is no evidence of grout bags from the recent surveys; it is therefore assumed that they are completely buried below the seabed or have been widely dispersed.			

2.2 Inventory Estimate

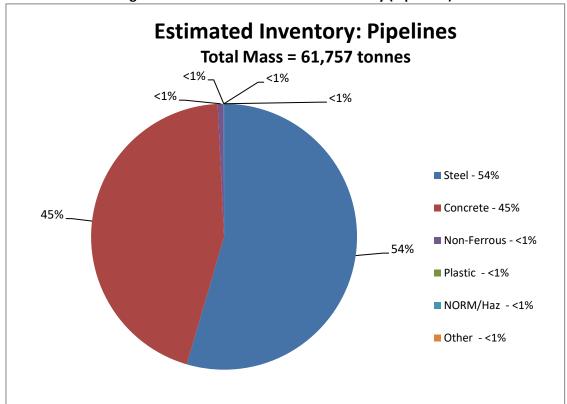


Figure 2-1: Pie Chart of Estimated Inventory (Pipelines)

3. <u>REMOVAL AND DISPOSAL METHODS</u>

In line with the waste hierarchy, in which the preferred option is the prevention of waste, followed by the reduction or reuse of waste, the preferred decommissioning option of leaving it in situ with natural remediation will prevent the generation of waste.

Perenco has assessed options for the reuse of the pipeline in situ however, none have been identified or have proven commercial or technically viable. Reuse options have been addressed within the COP document approved by the NSTA.

3.1 Pipelines

Decommissioning Options: The decommissioning options are considered as detailed in Table 3.1 below. Key to Options – Pipelines:

- Option 1 Complete Removal a) Cut and Lift (subsea cuts) b) Reverse installation (surface cuts).
- Option 2 Partial Removal a) Cut and Lift (scour basin).
- Option 3 Leave in-situ with Remediation a) Reburial and backfilling of scour basin. (Except mattresses) b) Leave in-situ and rock placement of the scour basin (including mattress).

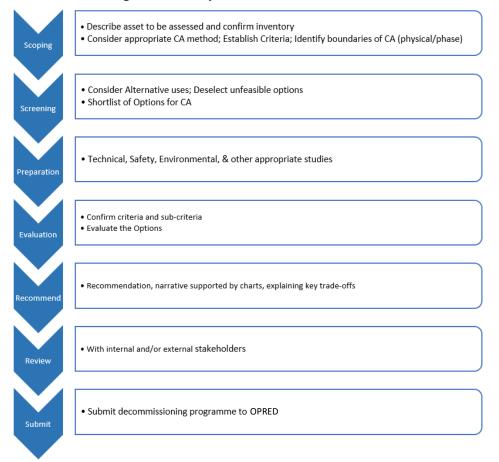

• Option 4 – Leave without remediation a) no reported exposures leave in situ.

Table 3.1: Pipeline Decommissioning Options					
Pipeline or Group (as per Pipeline Work Authority (PWA))Condition of Line/GroupWhole or Part of Pipeline/GroupDecommissioning Options Considered					
PL1220 ¹	HCS, Trenched and buried	Whole except within Trent 500m SZ	1a,1b, 2a, 3a,3b, 4a		
PL1221 ¹	HCS, Trenched and buried	Whole except within Trent 500m SZ	1a,1b, 2a, 3a,3b, 4a		

¹ Pipeline Works Authorisation (PWA) 2/W/96

Comparative Assessment Method:

The CA was carried out in accordance with section 7 of OEUK Guidance for Comparative Assessment [OEUK, (2015)], i.e., using a combination of methods A, B and C, and a Red/Amber/Green (RAG) system. This approach includes a combination of quantitative and qualitative assessment against the CA criteria and sub-criteria, focussing on key and significant differentiators, with further exploration of the outcome by way of a sensitivity analysis. Further details are presented within section 5.1.3 of the CA report [Ref. 2, Tyne CA].

Figure 3-1: Comparative Assessment Phases

Outcome of Comparative Assessment:

Perenco has assessed all available options for the decommissioning of pipelines PL1220 and PL1221. The preferred decommissioning option of leaving it in situ will prevent the generation of waste.

Perenco has assessed options for re-use of the pipeline in situ, however none have been identified, or have proven commercially or technically unviable. Reuse options were addressed within the COP document approved by the NSTA. None of the pipelines are candidates for carbon capture, use and storage.

As determined by the CA, it was concluded that the best option is for the pipelines to be left in situ, with monitoring at an agreed interval. This aligns with the waste hierarchy, in which the preferred option is the prevention of waste, followed by the reduction or reuse of waste.

Scores across all criteria were very similar between option 3b and option 4a, except for the environmental and safety criteria. Options 2a, 3a and 3b scored lower for the safety criteria due to the reduced snagging risk of removing or burying the exposed pipelines, while option 4a scored lower at the environmental criteria due to the zero impact on the seabed.

While scores were almost identical between option 3b (Leave in situ with remediation by rock placement of the scour basin) and option 4a (Leave in situ without remediation), Perenco wishes to progress with option 3b as this option represents the lowest overall impact across all remaining criteria after committing to the option with the lowest safety impact score.

A summary of the justification for the selected option is presented in Table 3.2, with the weighting charts presented in Section 2. Full details are provided in the CA report. The potential impacts associated with the preferred option are presented in the Pipelines Environmental Appraisal (EA).

	Table 3.2: Outcome of Comparative Assessment						
Pipeline or Group (as per PWA)	Recommended Option	Justification					
PL1220 (2/W/96)	Within Tyne 500m SZ – PL1220 & concrete mattresses. Leave in-situ under rock placement.	Rock placement of snagging hazards (option 3b) remained consistently the lowest CA score option for all scenarios. This indicates that the preferred option is not being determined by any one specific criteria, with all contributing to the outcome. [Ref 2, Tyne CA]					
PL1221 (2/W/96)	Within Tyne 500m SZ – PL1221. Leave in-situ under rock placement.	Rock placement of snagging hazards (option 3b) remained consistently the lowest CA score option for all scenarios. This indicates that the preferred option is not being determined by any one specific criteria, with all contributing to the outcome. [Ref 2, Tyne CA]					
PL1220 (2/W/96)	Within Trent 500m SZ – PL1220. To be considered in Trent DP / CA	Not covered under this DP					
PL1221 (2/W/96)	Within Trent 500m SZ – PL1221. To be considered in Trent DP / CA	Not covered under this DP					

PL1220 (2/W/96)	Remaining section - PL1220. Leave in-situ	As this is outside the scour basin, Option 4a is a negligible preferred score over Option 3b when compared under equal weighting for the main criteria. [Ref 2, Tyne CA]
PL1221 (2/W/96)	Remaining section – PL1221. Leave in-situ	As this is outside the scour basin, Option 4a is a negligible preferred score over Option 3b when compared under equal weighting for the main criteria. For future detail refer to [Ref 2, Tyne CA]

The CA sub-criteria which differentiate the preferred decommissioning from other decommissioning methods include impacts on other users of the sea, the safety of offshore personnel, impacts on the condition/status of Marine Protected Areas (MPAs), and level of seabed disturbance.

The EA provides an assessment of any potential impacts associated with the selected decommissioning option [Ref. 3, Tyne EA]; see Section 4, Environmental Appraisal Overview within this DP, which provides a summary of the assessment carried out.

3.2 Pipeline Stabilisation Features

While scores were almost identical between Option 3b (Leave in situ with remediation by rock placement of the scour basin) and Option 4a (Leave in situ without remediation), Perenco wishes to progress with Option 3b as this option represents the lowest overall impact across all remaining criteria after committing to the option with the lowest safety impact score.

As a result, the decommissioning option is to leave it in situ with remediation by rock placement of the scour basin (Table 3-3). This outcome does carry within it several obligations that will be discussed and agreed with OPRED, including the requirement to carry out an overtrawl survey (or other agreed non-intrusive method) of the Tyne 500m SZ when relevant to confirm a lack of snagging hazard after rock placement. Additionally, periodic post decommissioning surveys will be completed to confirm that the pipelines remain buried under the rock and do not present a snagging hazard, as well as the monitoring of the scour basin.

In line with the CA outcome, Perenco considers the key aspects which could generate impacts and would, therefore, be included in a detailed assessment within the EA to be:

- Physical presence of infrastructure decommissioned in situ in terms of snagging risk and residual impacts.
- Seabed disturbance from rock placement of the scour basin.

A detailed assessment of impacts, both positive and negative, on the environment and society is presented within the Tyne pipelines and stabilisation materials EA, which has been submitted alongside this DP.

Table 3.3: Pipeline Stabilisation Features			
Stabilisation Features	Number	Option	Disposal Route (if applicable)
Exposed concrete mattress over pipelines	21	21 to remain in situ covered with rock placement	N/A
Completely buried mattresses	6	6 to remain buried in situ	N/A
Exposed concrete mattress displaced from pipeline	5	5 to remain in situ covered with rock placement	N/A
Historic rock placement	N/A	N/A	N/A
Grout bags (buried)	50 (estimate)	50 to remain buried in situ	N/A

3.3 Waste Streams

Table 3.4: Waste Stream Management Methods		
Waste Stream	Removal and Disposal Method	
Bulk Liquids	There will be no bulk liquid removal needed for the proposed decommissioning activity.	
Marine Growth	All marine growth will remain in its current location, as both pipelines are to be decommissioned in situ.	
NORM/LSA Scale	Both pipelines were made HCS (flushed, cut, and filled with seawater) in 2016. Due to this NORM/LSA testing will not be required for this decommissioning activity.	
Asbestos	Not required for this decommissioning activity.	
Other Hazardous Wastes	Both pipelines were made HCS (flushed, cut, and filled with seawater) in 2016. A survey for hazardous waste will therefore not be required for this decommissioning activity.	
Onshore Dismantling Sites There will be no disposal needed for the proposed decommiss activity. If this change and an onshore site is required, OPRED contacted, and an appropriate licensed site will be selected dismantling site must demonstrate a proven disposal track and waste stream management throughout the deconst process and demonstrate their ability to deliver re-use and reoptions.		

Table 3.5: Inventory Disposition			
	Total Inventory (Te)	Planned (Te) to Shore	Planned Left in Situ
Pipelines	61,757	0	61,757

4. ENVIRONMENTAL APPRAISAL OVERVIEW

4.1 Environmental Sensitivities (Summary)

Table 4.1: Environmental Sensitivities		
Environmental Receptor	Main Features	
Conservation Interests	 Dogger Bank Special SAC – 0km The recently removed Tyne Platform and approximately 40km (75%) of the associated pipelines (PL1220/ PL1221) lie within the boundary of the Dogger Bank SAC. The site is designated for its Annex I habitat under the European Union (EU) Habitats Directive 'Sandbanks which are slightly covered by sea water all the time' and is the largest single continuous expanse of shallow sandbank in UK waters, extending into both Dutch and German waters. The extensive sublittoral sandbank in the SNS was formed by glacial processes and later submerged by sea level rise. Southern North Sea SAC – 0km The conservation objective for the Southern North Sea SAC is "To ensure that the integrity of the site is maintained and that it makes an appropriate contribution to maintaining Favourable Conservation Status (FCS) for Harbour Porpoise in UK waters". The site features Annex II species of the EU Habitats Directive, such a Harbour porpoise (Phocoena phocoena). Special Protection Area (SPA) >40km There are no inshore SPAs located <40km from the Tyne Pipelines. Coastal and Offshore Annex II species The conservation objective for the Southern North Sea SAC is "To ensure that the integrity of the site is maintained and that it makes an appropriate contribution to maintaining Favourable Conservation Status (FCS) for Harbour Porpoise in UK waters". The conservation objective for the Southern North Sea SAC is "To ensure that the integrity of the site is maintained and that it makes an appropriate contribution to maintaining Favourable Conservation Status (FCS) for Harbour Porpoise in UK waters". The Southern North Sea SAC lists Harbour porpoise (Phocoena phocoena) as its protected feature making the reduction of noise in this environment a key objective. Harbour porpoise have been recorded in the vicinity of the project area for all months, with offshore sightings peaking in the early t	

Table 4.1: Environmental Sensitivities		
Environmental Receptor	Main Features	
	located 115km, and 170km respectively from the nearest coastline (up to 5 individuals per 25km ²) (Russell et al., 2017).	
	Harbour seal (Phoca vitulina) at-sea utilisation of waters surrounding Tyne is very low due to the considerable distance to shore (less than one individual per 25km ²) (Russell et al., 2017).	
	Seabed Sediments	
	The following European Nature Information System seabed classifications have been identified in the vicinity of the Tyne pipelines (Connor et al., 2004; DECC, 2016; Ocean Ecology, 2022):	
	 A5:15: Infralittoral coarse sediment; A5.14: Circalittoral coarse sediment; A5.23: Infralittoral fine sand; A5.24: Infralittoral muddy sand; A5.25: Circalittoral fine sand; A5.26: Circalittoral muddy sand; A5.43: Infralittoral mixed sediments; A5.44. Circalittoral mixed sediments. 	
	Benthic Fauna	
	Environmental baseline surveys were completed in 2016 and 2022 to assess changes in seabed chemistry and benthic fauna. Across both surveys Total Organic Carbon (TOC), Total Hydrocarbons Content (THC) and heavy and trace metal concentration were all found to be relatively low and consistent.	
Seabed	Based on pre- and post-decommissioning data, some variations in sediment type and composition were observed across the Tyne field with finer sediments within the decommissioned Platform stations compared to pipeline stations. However, most stations belonged to Broad Scale Habitat (BSH) A5.2, followed by stations falling into BSH A5.4 and BSH A5.1. These are among the most common habitats found in offshore settings across the UK coast and BSH A5.1 and A5.2 are considered a component of Habitat of Conservation Importance (HOCI) 'Subtidal sands and gravels'.	
	Chemical analysis of TOC was tested at the post Platform decommissioning seabed samples. Concentrations around the Tyne Platform ranged from 0.04% at station TY_06 to 0.08% at station TY_10 with an average value (± SE) of 0.06% across the Tyne Platform. Along the Tyne pipeline, TOC concentrations ranged from 0.08% at station ENV_P05 to 0.25% at station ENV_P02 with an average value (± SE) across the pipeline of 0.017%. In general, the samples reflected a more homogeneous sediment texture and consolidation across the Tyne Platform sediments than across the pipeline's sediments. No trend was observed between mud content in the sediment and percentage contribution of TOC or moisture content.	
	Samples collected at the pre- and post- Platform decommissioning surveys show similar THC concentrations to pre-Platform decommissioning surveys. The mean concentrations of THC recorded around Tyne Platform are 1,888.18 \pm 209.34µg.kg-1 and along the pipeline of 3,524µg.kg-1 \pm	

Table 4.1: Environmental Sensitivities			
Environmental Receptor	Main Features		
Receptor	613.2μg.kg-1 are lower than the background levels from United Kingdom Offshore Operators Association (UKOOA) dataset (Ocean Ecology, 2022). To determine whether the decommissioning of the Tyne field has had a significant impact on the hydrocarbon content of sediments, the THC and Carbon Preference Index (CPI) of sediments were compared between both decommissioning surveys. Values between pre- and post-decommissioning surveys show no statistically significant differences over time, suggesting that decommissioning activities across the Tyne field resulted in no measurable impact on the local environment. When comparing the concentrations of key metals with post and pre- decommissioning data, no statistically significant differences were found between the concentrations of arsenic, lead, and barium over time, suggesting that contamination resulting from the decommissioning of the Tyne field was minimal and resulted in no measurable impact on the local environment. Benthic faunal communities in the vicinity of the Tyne pipelines showed minor variation in terms of individual abundance, species richness and species composition; as would be expected given the homogeneity of the sediment, energetic environment, and depth within the area. From a previously conducted survey, the infaunal community was determined to dominate over the epifaunal community and was primarily dominated by annelids, including the polychaetes Goniada aculate and Ophelia limacine.		
Fish	Seabed macrofauna surveys indicated similar results between surveys. Fish spawning areas There are potential fish spawning areas in ICES rectangles 37F1 and 37F2 for cod (Gadus morhua), herring (Clupea harengus), lemon sole (Microstomus kitt), mackerel (Scomber scombrus), Horse mackerel (Trachurus trachurus) Nephrops (Nephrops norvegicus), plaice (Pleuronectes platessa), sandeels (Ammodytidae marinus), sole (Solea solea), sprat (Sprattus sprattus) and whiting (Merlangius merlangus) (Coull et al., 1998; Ellis et al., 2012; Aires et al, 2014). Fish nursery areas In addition to the spawning grounds described above, the waters of International Council for the exploration of the sea (ICES) rectangles 37F1 and 37F2 also act as nursery areas for anglerfish (Lophius piscatorius), blue whiting (Micromesistius poutassou) cod (G. morhua), European hake (Merluccius merluccius), herring (C. harengus), mackerel (S. scombrus), lemon sole (M. kitt), ling (Molva molva), Nephrops (Nephrops norvegicus), sandeels (A. marinus), sprat (S. sprattus), spurdog (Squalus acanthias), tope shark (Galeorhinus galeus) and whiting (M. merlangus) (Coull et al., 1998; Ellis et al., 2012).		
Fisheries	Fishing effort within ICES rectangles 37F1 and 37F2 primarily takes place between May and October and is dominated by traps, trawls, dredges, and seine nets. Data presented within the Navigational Risk Assessment (NRA) indicates fishing vessel activity on Automatic Identification System (AIS) (15m		

Table 4.1: Environmental Sensitivities		
Environmental Receptor	Main Features	
	length and above) to be moderate in the area. The main fishing vessels operating in the area were UK and Dutch trawlers. Landings (by weight) are dominated by demersal fisheries, which comprise 65% of landings, with shellfish contributing to the remaining 35%. However, fisheries value is split equally between demersal (50%) and shellfish (50%) species. Both species and Nephrops dominate fisheries landings and value (Marine Scotland, 2021).	
	The relative abundance and density of cetaceans in the vicinity of the Tyne location can be derived from data obtained during the Small Cetacean Abundance of the North Sea (SCANS-III) aerial and ship-based surveys. PL1220 / PL1221 are situated within the SCANS-III block 'O' and was surveyed by air (Hammond, 2013). The density of the harbour porpoise within the SCANS-III Block O is higher than the total surveyed area, suggesting that the area may be important for these species. Densities for white-beaked dolphin were a magnitude lower. In addition to the aforementioned cetacean, other species have been	
Marine Mammals	observed or have been modelled to have presence in the North Sea (Waggitt JJ et al., 2019). These include the Atlantic white-sided dolphin (Lagenorhynchus acutus), Risso's dolphin (Grampus griseus), short-beaked common dolphin (Delphinus delphis), and killer whale (Orcinus orca). It is evident that harbour porpoises are the most abundant species in the North Sea compared to other species identified.	
	Two species of pinnipeds; grey seal (Halichoerus grypus) and the harbour (or common) seal (Phoca vitulina) are found in the North Sea around the English east coast. Both species are listed under Annex II of the EC Habitats Directive and protected under the Conservation of Seals Act 1970 (from 0 to 12nm from the coast) and listed as UK Biodiversity Action Plan priority marine species. The Trent Platform is located 115km and the Tyne Platform is located 170km from the nearest coastline, and thus the distribution of grey and harbour seals in the vicinity of Tyne pipelines are low (1 individual per 25km ²) and very low (less than 1 individual per 25km ²) respectively (Russell et al., 2017).	
Birds	The offshore waters of the SNS are visited by numerous seabirds, mainly for feeding purposes in and around the shallow sandbanks. Regional Sea 2 also includes several areas suitable for cliff nesting seabirds and some of the most important sites for wintering and passage waterbirds in a national and international context, including the Wash and Thames Estuary. Therefore, individuals found offshore in the vicinity of the Tyne location may originate from onshore colonies or be passing migrants. Numbers of seabirds are generally lower in Regional Sea 2 compared to further north, [BEIS (2016), UK Offshore Energy Strategic Environmental Assessment 3 (OESEA3)].	
	The most common species of seabird found in this area of the SNS include Northern fulmar, Great Skua, Black legged kittiwake, Great black backed gull, Common gull, Lesser black backed gull, Herring gull, Common guillemot, Razorbill, Little auk and Atlantic puffin (Kober, et al.,2016).	

Table 4.1: Environmental Sensitivities		
Environmental Receptor	Main Features	
	Fulmars are present in highest numbers during the early and late breeding seasons, leading to peak densities in September. Kittiwakes are widely distributed throughout the year. Lesser black-backed gull are mainly summer visitors, while in contrast guillemot numbers are greatest during winter months. In addition, substantial numbers of terns migrate northwards through the offshore North Sea area in April and May, with return passage from July to September (BEIS, 2016).	
Onshore Communities	Only low levels of vessel derived waste are associated with the decommissioning option. All waste produced from the Tyne decommissioning activities will be transported to an onshore decommissioning facility. Perenco will ensure the chosen site(s) comply with all relevant permitting and legislative requirements. No onshore communities are expected to be affected by the DP.	
Other Users of the Sea	ShippingThe density of shipping traffic in the SNS is relatively high due to the presence of fishing vessels, some ferries between the UK and the rest of Europe and cargo and offshore support vessels (DECC, 2016). The waters surrounding the Tyne pipelines are described as having 'High' shipping activity (OGA, 2016). Estimated national shipping density (total vessels) in 2014 in Block 44/18 was 200-500 vessels (Marine Management Organisation (MMO), 2019). Additionally, a NRA commissioned by Perenco in 2016 identified the area as having high shipping density, with an estimated 2,095 vessels per year passing within 10nm of the Tyne location. This corresponds to an average of 5 to 6 vessels per day. The majority of these vessels were defined as cargo vessels [Ref.8, Anatec ,2016].Oil and Gas IndustryThe Trent and Tyne fields lie in a collection of gas fields in the SNS and therefore oil and gas activity surrounding the Tyne pipelines is high. The nearest platforms are the Chrysaor Production (U.K.) Limited owned Munro MH Platform (12km west) and Katy KT Platform (13km southeast). The Tyne to Trent (PL1220/PL1221) pipelines traverses Block 44/18 connecting the Tyne Platform to the Trent Platform in Block 43/24.Five pipelines traverse the PL1220/PL1221 pipelines. In addition, the pipelines are also traversed by MCCS Fibre optic cable operated by Tampnet.Offshore Wind FarmsFour offshore windfarms are located north of the project area (Creyke Beck A, Creyke Beck B, Sofia and, Teesside A), the closest of which to the project area is the Creyke Beck A at a distance of 36km. To the south of the project area lies Hornsea 1, 2 & 3 offshore windfarms.The nearest carbon capture and storage lease site is located approximately 20km west of the Trent end of the PL1220/PL1221 pipelines.Dred	

Table 4.1: Environmental Sensitivities		
Environmental Receptor	Main Features	
	65km south of the project area. A single aggregate extraction area called E1 is located 55km northeast of the previous Tyne Platform location on the other side of the Netherlands/UK median line.	
	Military Activity	
	UKCS Blocks 43/24, 43/25, 43/20, 44/16, 44/17 and 44/18 lie within a known Ministry of Defence (MoD) practice and exercise area (DECC, 2016). However, there are no restrictions identified by the MoD for UKCS Blocks 43/24, 43/25, 43/20, 44/16, 44/17 and 44/18 (OGA, 2019).	
	Wrecks	
	There are circa 38 wrecks recorded within 50km the project area, however none are recorded as protected (MMO, 2019). The closest wreck to the Tyne area is located approximately 65m from the PL1220/PL1221 pipelines. Two 'dangerous wrecks' are located approximately 11km northeast of the Tyne Platform.	
	Telecommunications	
	The Tampnet telecommunications cables are located to the East of the project area. Running north/south, the shortest distance between the project area and the Tampnet cable is 11km at the previous Tyne Platform location.	
Atmosphere	Local atmospheric emissions will be influenced by vessel movements and associated activities during the proposed decommissioning operations. It is expected that these emissions will be localised to the area of interest.	

4.2 Potential Environmental Impacts and Their Management

A key consideration when planning and finalising the decommissioning of the Tyne pipelines is a clear understanding of the surrounding environment. The physical, biological, and socio-economic environments have been considered to understand the full potential for the programme to interact with the environment. The appropriate controls will be adopted to mitigate negative impacts.

Environmental Impact Assessment Summary:

The potential environmental impacts associated with the proposed decommissioning activities have been assessed as part of the Tyne Pipelines Decommissioning Environmental Appraisal and are reported in an EA 200605-S-REP-0009 accompanying this DP.

The EA identifies potential environmental impacts by identifying interactions between the proposed decommissioning activities and the associated environmental receptors. Impacts identified as potentially significant associated with the proposed decommissioning activities have been grouped within the EA under the following EA section headings:

- Physical presence Infrastructure left in situ (Section 7.3.1).
- Seabed disturbance (Section 7.3.2).

Any cumulative and transboundary impacts have been assessed within these sections.

The EA also describes the proposed mitigation measures designed to avoid or reduce the identified potential environmental impacts to as low as reasonably practicable (ALARP) and how these will be managed in accordance with the Perenco Safety and Environmental Management System (SEMS) while considering responses from stakeholders.

The EA concludes that the Tyne pipelines decommissioning activities can be completed without causing significant adverse impact to the environment, providing the proposed mitigation and management measures, as identified within the EA, are implemented. In addition, the assessment of potential cumulative impacts indicated that there would be no significant impacts and no significant transboundary impacts expected to occur as a result of the decommissioning operations.

Table 4.2 : Environmental Impact Management		
Activity	Main Impacts	Management
Decommissioning Pipelines and Stabilisation Features (Leave in situ with remediation)	Seabed Disturbance	 Perenco will apply for a Deposit Consent for the deposition of rock material after approval of DP by OPRED. Use of fall pipe ROV to deploy the rock mass over the targeted area to ensure maximum overtrawlability with minimum rock use and seabed disturbance. Use of optimal rock berm design to minimise rock requirement for an effective overtrawlable berm. Vessels will use dynamic positioning instead of anchors. Overtrawl survey conducted by non-intrusive methods when possible or optimised to allow survey completion with minimal sweeps. No infrastructure to be removed unless identified as a snagging hazard during the overtrawl survey. Perenco will commit to a series of post-decommissioning legacy surveys to focus on the status of the score basin and seabed natural regeneration of the rock placement. Post-decommissioning debris clearance, surveys and monitoring shall be carried out using non-intrusive methodologies such as SSS, ROVs, etc.
Decommissioning Pipelines and Stabilisation Features (Leave in situ with remediation) – continued.	Physical Presence Infrastructure	 All offshore decommissioning and survey activities will be notified to stakeholders prior to vessels undertaking these activities. Notifications will be sent out via kingfisher navigation bulletins and direct notification with the fishing industry. In addition, the 500m SZ will remain in operation during the decommissioning activities limiting exposure of other sea users to the presence of these vessels. All vessels will operate a manned bridge policy and have active AIS positioning in operation so other vessels can identify the decommissioning vessels via radar.

	Table 4.2 : Environme	ntal Impact Management
Activity	Main Impacts	Management
		 Suitable size of rock used for the decommissioning activity to minimise the snagging risk for fishing gear. The Tyne pipelines are currently shown on Admiralty Charts, the FishSAFE system and the NSTA Infrastructure data systems (NSTA Open Data). Post-decommissioning surveys will be undertaken to confirm lack of snagging hazards and obtain clear seabed verification. This will ensure there is no residual risk to other sea users. Non-intrusive verification techniques will be considered in the first instance, but if deemed necessary, seabed clearance may require conventional overtrawl survey methods. Any snagging hazard identified will be reviewed and discussed with OPRED on the appropriate method of remediation. Perenco will commit to a series of post-decommissioning legacy surveys to confirm that the pipelines remain buried and does not pose a risk to other sea users. The frequency of such surveys will be agreed with OPRED as part of the decommissioning close out reporting arrangements, although it is anticipated that this will be based on a risk-based approach. During the period over which monitoring is required, the burial status of the infrastructure decommissioned in situ would be reviewed and any necessary remedial action undertaken to ensure it does not pose a risk to other sea users.
Energy and Emissions	Although the project will produce atmospheric emissions and consume energy to undertake (both onshore and offshore), these activities are required to be undertaken to meet decommissioning obligations for the	Best practices will be employed to minimise this environmental footprint. This includes optimal remediation operations and survey planning and procurement of vessels which operate effective EMS minimising their emissions.
	infrastructure. These contributions are far below any thresholds for emissions in the UKCS or on a	Future legacy survey frequency will be determined and agreed with OPRED, however the resulting emissions from these surveys are

	Table 4.2 : Environmental Impact Management				
Activity	Main Impacts	Management			
	global scale and are not significantly larger than general vessel operations in the region.	determined to be negligible as they will be extremely small in the context of UKCS and global emissions.			
Operational Discharges to Sea	Prior to decommissioning activities, pipework and subsea flowlines have been cleaned to an agreed standard with OPRED. Any potential residual volumes are expected to be minimal and have previously been considered under the individual permit consent applications for the decommissioning activities through the Portal Environmental Tracking System (PETS).	Vessel based discharges will be limited to those generally associated with vessel operations and controlled via established methods under (Convention on Marine Pollution). Approved contractor procedures will assess and minimise vessel-based discharges. Any residual hydrocarbons, if present within the pipelines, will continue to dissipate slowly. It should be noted that the pipelines have been cut and open to seawater since 2016.			
Waste Generation	All waste generated from decommissioning activities, which will be limited to two operational vessels waste, will be handled, and recovered or disposed of in line with existing waste management legislation following the principles of the waste hierarchy.	Raw materials will be returned to shore with the expectation to recycle the majority of the returned non-hazardous material. Other non-hazardous waste which cannot be reused or recycled will be disposed of to a landfill site. Hazardous waste will be disposed of in accordance with established waste legislation. Only licensed contractors will be used for waste handling and treatment/disposal.			
Physical Presence of Vessels in Relation to Other Sea Users	The requirement to deploy vessels to the area for the preferred decommissioning option will be limited to a single fall pipe ROV vessel and a single survey vessel. Further legacy survey frequency is expected to be agreed with OPRED and will consist of a single vessel per survey. The project area has a moderate amount of shipping activity within it, which will not be significantly increased due to project activity.	It is not anticipated that vessel movements would require a significant exclusion area to operate within (circa 1km), instead the impacts of this presence will be managed via standard maritime navigational rules. Furthermore, the decommissioning activity will be located within the existing 500m SZ designation given by the previously installed Tyne Platform.			

5. INTERESTED PARTY CONSULTATIONS

Tat	ole 5.1: Summary of Stakeholder Co	mments
Who	Comment	Response
	Statutory Consultations	
NSTA		Perenco has consulted with NSTA under S29(2A) of the Petroleum Act.
NFFO		
SFF		
NIFPO		
Global Marine Systems		
	Other Consultations	
Public		
	Informal Stakeholder Consultatio	ns
МСА		
HSEx		
Environment Agency		
ММО		
ИКНО		

6. **PROGRAMME MANAGEMENT**

6.1 **Project Management and Verification**

The decommissioning surveys for the Tyne Platform are covered under the Tyne Installation DP. However, the platform and pipeline surveys will be carried out within the same survey campaign. Perenco standard procedures for operational control and hazard identification and management will be used. Where possible the work will be coordinated with other decommissioning operations in the SNS. Perenco will monitor and track the process of consents and the consultations required as part of this process.

6.2 Post-Decommissioning Debris Clearance and Verification

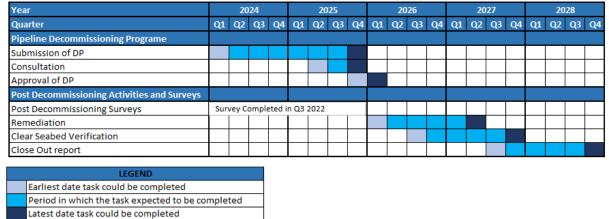
In 2022 a post-decommissioning pipeline survey and benthic survey were carried out along a 100m corridor of the pipelines and within the Tyne 500m SZ [Ref. 6, N-Sea (2022), Tyne Platform Post Decommissioning MBES and Environmental Survey 2022, and Ref. 7, Ocean Ecology (2022)], Tyne Platform Post-Decommissioning Seabed Environment Survey]. Any debris identified during these surveys (along the pipelines and within the Tyne 500m SZ) was recovered for onshore disposal or recycling in line with existing disposal methods.

Subject to approval of this Tyne Pipeline DP, it is proposed that a rock placement campaign be carried out inside the Tyne 500m SZ to cover the exposed pipeline ends and associated stabilisation material within the Tyne scour basin. Rock placement was determined as the optimum solution for both pipelines following analysis of the survey results and the CA. It was discussed at Perenco-OPRED quarterly meetings from January 2022 to May 2024. A rock berm engineering design was commissioned, which determined a berm of 0.5m cover height (excluding the concrete mattresses on top of the pipeline) with a total rock requirement of 833te will provide an overtrawlable berm whilst minimising total rock volume.

Additionally, a clean seabed certificate will be obtained in accordance with guidance from DESNZ and NFFO. If deemed required, an overtrawl will be conducted by the NFFO to confirm the clear seabed. These activities relate to the Tyne area up to, but not including, the Trent 500m SZ.

Before the obtainment of the Clean Seabed Certificate, the Tyne 500m SZ will remain in place and will be marked on the UK Hydrographic Office (UKHO) Admiralty maps and recorded in the FishSAFE database. As previously agreed with the HSEx, once it is confirmed that the pipeline ends and stabilisation materials are no longer a snagging hazard, Perenco will request that the Tyne SZ be removed from the maps/database.

Any requirement for future legacy monitoring based on the results of the pre and post decommissioning surveys will be agreed with OPRED as part of the closeout process, see Section 6.6.


6.3 Schedule

A number of decommissioning activities have been carried out prior to the submission of the Pipeline DP, as detailed in Section 1.3. This work has been carried out under the appropriate permitting regime for the activity, i.e., OPRED, NSTA and HSEx.

The remaining decommissioning activities include remediation of the exposed pipeline sections and associated stabilisation within the Tyne scour basin, an overtrawl survey (or equivalent) to confirm a clear seabed, and the completion of the Close Out Report. The final Close Out Report is expected to be submitted by Q4 2028. The proposed remediation within the Tyne Scour basin to the pipeline will be completed before the completion of the clear seabed verification.

Figure 6.1, below, provides the timeline of all decommissioning activities in relation to this DP, both those already completed and those to be completed.

Figure 6-1: Gantt Chart of Project Plan

6.4 Costs

The decommissioning costs detailed within this Pipeline DP has been provided to OPRED.

6.5 Close Out

In accordance with the OPRED Guidelines, a Close Out Report will be submitted to OPRED explaining any variations from the DP. A combined Tyne Installation and Pipeline Close Out Report will be submitted within approximately 12 months of the completion of the offshore decommissioning scope, including debris removal, post-decommissioning surveys, and any required remediation along the length of the pipeline.

In the Close Out Report, the company responsible for the subsequent management of ongoing residual liabilities for any infrastructure left in situ will be detailed. That company will also be the contact point for any third-party claims arising from damage caused by any remains from the Tyne Pipeline DP.

6.6 Post-Decommissioning Monitoring and Evaluation

The results of the post decommissioning surveys will be compared with the surveys carried out before decommissioning commenced. The results of the post-decommissioning surveys and the comparison will be provided to OPRED within the Close Out Report.

The Close Out Report will provide a proposed frequency for any further surveys. The frequency of the surveys will be agreed upon with OPRED as part of the decommissioning close out reporting arrangements; it is anticipated that this will be based on a risk-based approach. During the period over which monitoring is required, the burial status of the infrastructure decommissioned in situ would be reviewed and any necessary remedial action undertaken to ensure it does not pose a risk to other sea users.

	Table 7.1 : Supporting Documents				
Ref	Title	Document Number			
1	Tyne Field Installation Decommissioning Programme.	DECOM-2020-Tyne-QS-Q-016			
2	Tyne Pipelines Comparative Assessment.	200605-S-REP-0008			
3	Tyne Pipelines and Stabilisation Materials Decommissioning Environmental Appraisal Report.	200605-S-REP-0009			
4	Bibby Hydromap (2017). Pre-Decommissioning Environmental Baseline and Debris Survey Campaign, Volume 2 – Debris Survey – Tyne Platform.	Bibby Hydromap Project No: 2017-001, April 2017			
5	Debris Detection and Bathymetric Survey, Tyne Platform Bibby HydroMap.	Project No: 2016-004 Date: March 2016 - Perenco (2016) Pipeline Acoustic Survey Volume 2			
6	Tyne Platform Post Decommissioning MBES and Environmental Survey 2022, N-Sea Offshore Wind Ltd.	NSO-PJ00292-RR-DC-SUR-002 Rev 2 - N-Sea (2022)			
7	Tyne Platform Post-Decommissioning Seabed Environment Survey.	OEL_NSEPER0422_TYNE_TCR - Ocean Ecology (2022).			
8	Navigational Risk Assessment Tyne Platform decommissioning.	A3815-PER-NRA-1 - Anatec (2016).			
9	Tyne Comparative Assessment Scoping Report.	200605-S-REP-0006			
10	Tyne Environmental Appraisal Scoping Report	200605-S-REP-0010_Rev 0			

7. <u>SUPPORTING DOCUMENTS</u>

8. <u>S29 HOLDER(S)LETTER(S) OF SUPPORT</u>

9. <u>REFERENCES</u>

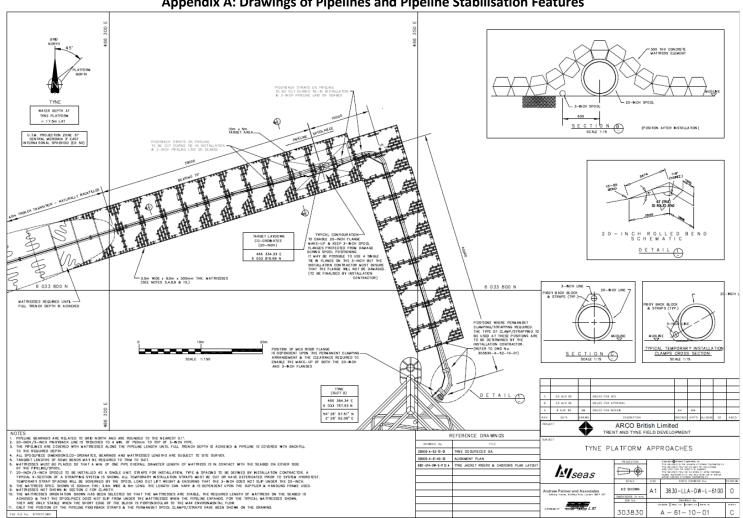
Hammond, P.S., MacLeod, K., Berggren, P., Borchers, D.L., Burt, L., Canadas, A (2013). Cetacean abundance and distribution in European Atlantic shelf waters to inform conservation and management. Biological conservation. 107-122.

Waggitt JJ, Evans PGH, Andrada K, Banks AN, Boisseau O, Bolton M, Bradbury G, Brereton T, Camphuysen CJ, Durinck J, Felce T, Fijn RC, Garcia-Baron I, Garthe S, Geelhoed SCV, Gilles A, Goodall M, Haelters J, Hamilton S, Hartny-Mills L, Hodgins N, James K, Jessopp M, Kavanagh AS, Leopold M, Lohrengel K, Louzao M, Markones N, Martínez-Cedeia J, Cadhla OÓ, Perry SL, Pierce GJ, Ridoux V, Robinson KP, Santos MB, Saavedra C, Skov H, Stienen EWM, Sveegaard S, Thompson P, Vanermen N, Wall D, Webb A, Wilson J, Wanless S, and Hiddink JG, 2019. Distribution maps of cetacean and seabird populations in the North-East Atlantic. Journal of Applied Ecology, 57: pp.253-269.

Russell, D.J.F., Jones, E.L. and Morris, C.D. (2017). Updated Seal Usage Maps: The Estimated at-sea Distribution of Grey and Harbour Seals. Scottish Marine and Freshwater Science, 8 (25).

Kober, K., Webb, A., Win, I., Lewis, M., O'Brien, S., Wilson, L.J. & Reid, J.B. (2010). An analysis of the numbers and distribution of seabirds within the British Fishery Limit aimed at identifying areas that qualify as possible marine SPAs, JNCC Report No. 431. JNCC, Peterborough, ISSN 0963-8091.

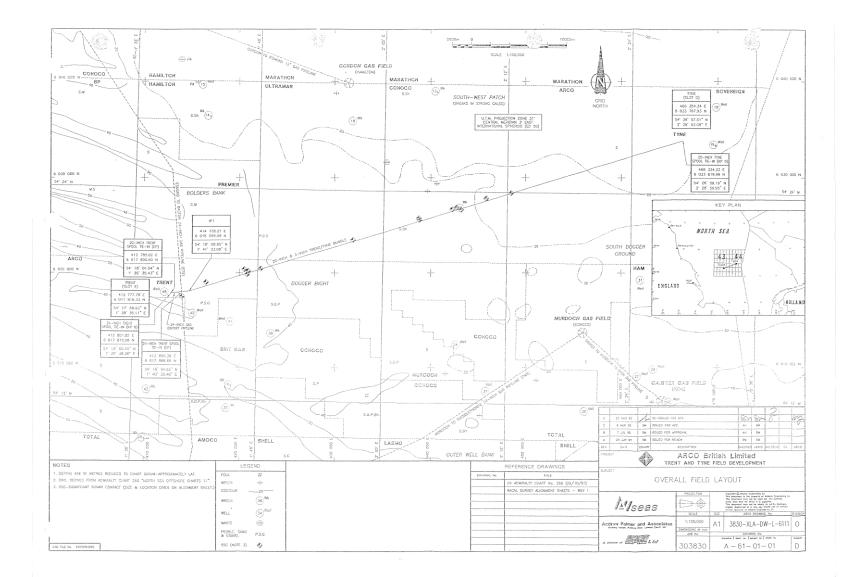
BEIS (2016). UK Offshore Energy Strategic Environmental Assessment 3 (OESEA3). Available from https://www.gov.uk/government/consultations/uk-offshore-energy-strategic-environmental-assessment-3-oesea3 [Accessed April 2023].


Marine Scotland (2021) Final 2021 effort data by ICES rectangle. https://data.marine.gov.scot/dataset/2020-scottish-sea-fisheries-statistics-fishing-effort-andquantity-and-value-landings-ices [Accessed July 2023].

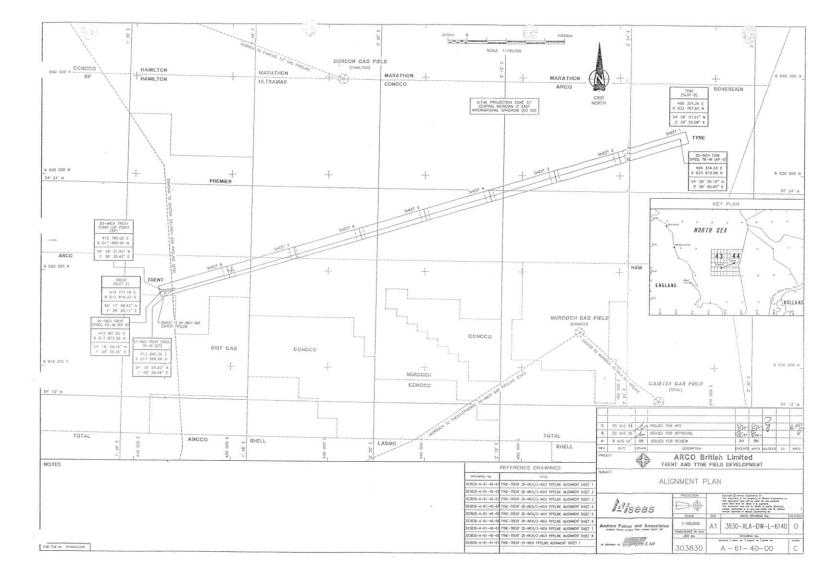
BEIS (2018). Guidance notes - Decommissioning of Offshore Oil and Gas Installations and Pipelines.

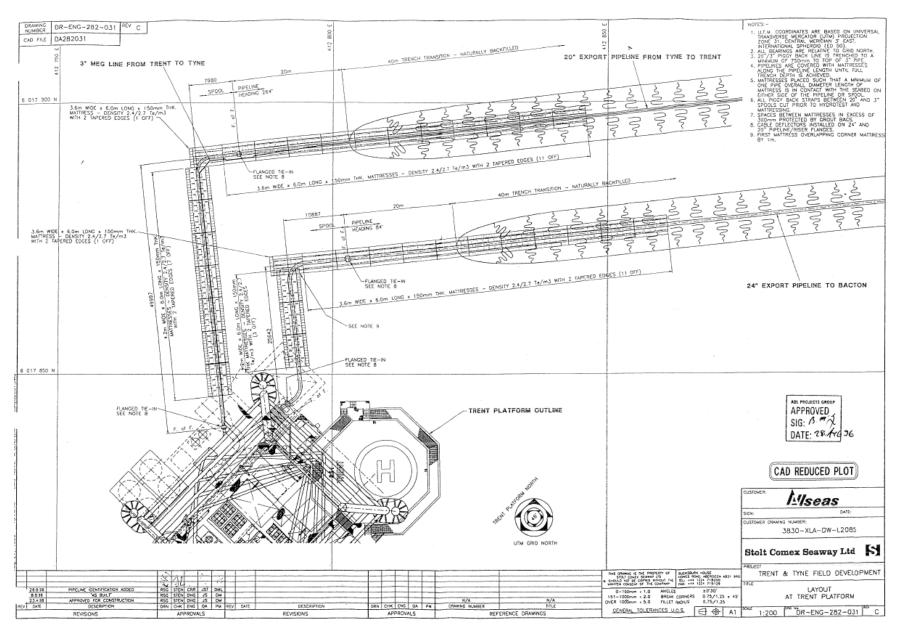
OEUK (2015). Guidelines for Comparative Assessment, Issue 1, October 2015.

APPENDICES 10.


Appendix A: Drawings of Pipelines and Pipeline Stabilisation Features

Page **45** of **49**


IRENT ITE-IN SPOOL API - SL X65 SAW 19.0 609.6 50 21.0 1.5 AL-ZN-IN ANODES Smm ASPINUT POWARL OR 29 (SEE NOTE 1.1) 40 3400 1500 UNTRENCHED +60.0°C TO -30.0°C	PIPELINE API - 5L X65 SAW 16.0 0609.6 N/A N/A AL-ZN-IN ANODES Smm ACRWL DBWEL, GR 26 3400 1500 TRENCHED (0.3mr COVER)	ETS TRE-IN SPOOL API - SL X65 SAW 19.0 609.6 50 21.0 1.5 AL-ZN-H ANODES 5cm ASPAUL SWEL OR 28 (SEE NOTE 1.) SEE NOTE 1.) 40 3400	MATERAL, TYPE GRADE MANUFACURING PROCESS WALL THICKNESS (mm) QUISDE DAMETER (mm) BEND RADUS BEND RADUS CORROSION ALLOWANCE (mm) CORROSION PROTECTION / MATERIAL ANT-CORROSION COATING CONCRETE DENSITY (kg/m ³) FLANCE CLASS	IRENT TIE-IN SPOCI API - SL X52 SEAMESS 10.0 88-9 JO (SEE NOTE 2) 10.0 0 N/A N/A N/A 1500	PIPELINE API - SL X52 SEAMLESS 10.0 88.9 N/A N/A 0 M/A 0,5mm FBE N/A N/A N/A 1500	TYNE TIE-IN S API - 5L X52 SEAMLESS 10.0 30 (SEE MOTE) 0 0,0 N/A 0.5mm FBE N/A N/A
X65 SAW 19.0 609.6 50 21.0 1.5 AL_ZH_TN ANODES 5mm ASPHUT PAWAG (R 28 (SEE NOTE 1.) 40 3400 1500 UNTRENCHED +60.0°C T0 -30.0°C	X65 - SAW 16.6 - 609.8 - N/A - N/A - N/A - N/A - N/A - N/A - N - ML-ZN-IN ANODES Smm K7PML DWARL GR 28 (SEE NOTE 1.) - 40 3400 - - 1500 - - -	X65 SAW 13.0 609.6 50 21.0 1.5 AL-2N-BLANDES Scm ASPAUL DAWEL OF 28 (SEE NOTE 1.) (SEE NOTE 1.) 3400 1500 1500	GRADE MANUFACTURING PROCESS WALL THICKNESS (nm) GUISDE DAWETER (nm) EEND RADUST REND WALL THICKNESS (nm) CORROSION ALLOWANCE (nm) CORROSION PROTECTION / MATERIAL MIT-CORROSION COATING CONCRETE DENSITY (kg/m ³) FLANCE CLASS	X52	X52 SEAMLESS 10.0 86.9 N/A N/A N/A 0 N/A N/A N/A N/A	X52 SEAMLESS 10.0 88.9 30 (SEE NOTE 10.0 0 N/A 0.5mm FBE N/A
SAW 19.0 609.6 50 21.0 1.5 AL_ZH-IN ANDES 5mm ASPIAU DAWL OR 28 (SEE WOTE 1.) 40 3400 1500 UNTRENCHED +60.0°C T0 -30.0°C	SAW 16.0 - 609.6 - N/A - N/A - 1.5 AL-24-IN ANODES Smm APPHAL BUNKL GR 28 (SEE NOTE 1.) 40 3400 1500	SAW 19.0 609.6 50 21.0 1.5 AL-2N-H1 ANOPES Som ACPAUL ENABL OR 28 (SEE NOTE 1.) (SEE NOTE 1.) 40 3400 1500	GRADE MANUFACTURING PROCESS WALL THICKNESS (nm) GUISDE DAWETER (nm) EEND RADUST REND WALL THICKNESS (nm) CORROSION ALLOWANCE (nm) CORROSION PROTECTION / MATERIAL MIT-CORROSION COATING CONCRETE DENSITY (kg/m ³) FLANCE CLASS	X52	X52 SEAMLESS 10.0 86.9 N/A N/A N/A 0 N/A N/A N/A N/A	X52 SEAMLESS 10.0 88.9 30 (SEE NOTE 10.0 0 N/A 0.5mm FBE N/A
19.0 609.6 50 21.0 1.5 AL-2N-TN ANODES 5mm ASPNUT BWMB, CR 28 (SEE NOTE 1.) 40 3400 1300 1300 WITTERCHED +60.0°C TO -30.0°C	SAW 16.0 - 609.6 - N/A - N/A - 1.5 AL-24-IN ANODES Smm APPHAL BUNKL GR 28 (SEE NOTE 1.) 40 3400 1500	19.0 609.6 50 21.0 1.5 6 AL-Z24-MI ANODES 5em ASPAUL SWAEL OR 28 (SEE NOTE 1.) 40 3400	MANUFACTURING PROCESS WALL THEXNESS (mm) GUISOL DAVETER (mm) BEND RADIUS BEND RADIUS BEND WALL THEXNESS (mm) CORREGISON ALLOWANCE (mm) CORREGISON PROTECTION / MATERIAL ANTI-CORREGISON COATING CONCRETE DENSITY (kg/m ³) FLANCE CLASS	SEAMESS 10.0 88.9 30 (SEE NOTE 2), 0 N/A 0, N/A N/A N/A	SEAMLESS 10.0 88.9 N/A 0 N/A 0.5mm FBE N/A N/A N/A	SEAMLESS 10.0 88.9 30 (SEE NOTE 10.0 0 N/A 0.5mm FBE N/A
609.6 50 21.0 1.5 AL-ZH-IN ANODES 5mm ASPAUL PAWLO CR 28 (SEE NOTE 1.) 40 3400 1500 UNTRENCHED +60.0°C T0 -30.0°C	609.6 //A N/A //A N/A //A 1.5 AL-24-IN ANODES Smm APPHAL EWALL GR 28 (SEE NOTE 1.) 40 3400 1500 1500	609.6 50 21.0 1.5 AL-2N-81 ANODES 5-m KSPWLF ENWEL 01.28 (SEE NOTE 1.) 40 3400	OUTSIDE DIAMETER (mm) BEND RADIUS BEND WALL HICKNESS (mm) CORROSION ALLOWANCE (mm) CORROSION PROTECTION / MATERIAL MITI-CORROSION COATING CONCRETE DENSITY (kg/m 3) FLANCE CLASS	10.0 88.9 30 (SEE NOTE 2) 10.0 0 N/A 0.5mm FBE N/A N/A	10.0 88.9 N/A N/A 0 N/A 0.5mm FBE N/A N/A	10.0 88.9 30 (SEE NOTE 10.0 0 N/A 0.5mm FBE N/A
50 21.0 1.5 AL-ZM-IN ANODES 5mm ASPINUT PUMAD, GR 28 (SEE NOTE 1.) 3400 1300 UNITEENCHED +60.0°C 10 -30.0°C	N/A ∕ N/A ∕ 1.5 A24-1N MAR 28 Smm ASPHAT EWNEL GR 28 (SEE NOTE 1.) 40 3400 1500 1500	50 21.0 1.5- AL-ZN-BI ANOES 5cm ASPAUL DAVEL (07.82 (SEE NDTE 1.) 40 3400 1500	BEND FADUUS BEND FADUUS CORROSION ALLOWANCE (mm) CORROSION PROTECTION / MATERIAL ANTI-CORROSION COATING CONCRETE COATING THEOREMS (mm) CONCRETE DENSITY (kg/m ³) FLANCE CLASS	88.9 JD (SEE NOTE 2.) 10.0 N/A N/A N/A N/A N/A	88.9 N/A N/A 0 N/A 0.5em FBE N/A N/A	88.9 30 (SEE NOTE 10.0 0 N/A 0.5mm FBE N/A
21.0 1.5 AL-ZN-IN ANODES Smm ASPICIT RAWB, GR 28 (SEE NOTE 1.) 40 3400 1500 UNITRENCHED +60.0°C T0 -30.0°C	N/A 1.5 AL-ZN-IN ANODES Smm ASPRUT DWWEL GR 28 (SEE NOTE 1.) 40 3400 1500	21.0 1.5 AL-2N-IN ANODES S=m ASPHALT ENAMEL GR 28 (SEE NOTE 1.) 3400 1500	BEND WALL THICKNESS (mm) CORROSION ALLOWANCE (mm) CORROSION PROTECTION / MATERIAL ANTI-CORROSION OCATIONO CONCRETE COATING THICKNESS (mm) CONCRETE DENSITY (kg/m 3) FLANGE CLASS	10.0	N/A 0 N/A 0.5mm FBE N/A N/A	30 (SEE NOTE 10.0 0 N/A 0.5mm FBE N/A
1.5 AL-ZN-IN ANODES Smm ASPAUL DWAL GR 29 (SEE NOTE 1.) 3400 1500 UNITEENCHED +60.0°C 10 -30.0°C	1.5 AL-ZH-IN ANODES 5mm ASPHUT ENMEL GR 28 (SEE NOTE 1.) 40 3-00	1.5 AL-ZN-BI ANODES 5mm KSPMLT ENMEL OF 28 (SEE NOTE 1.) 40 3400 1500	CORROSION ALLOWANCE (mm) CORROSION PROTECTION / MATERIAL ANTI-CORROSION COATING CONCRETE DENSITY (kg/m ³) FLANCE CLASS	10.0	N/A 0 N/A 0.5mm FBE N/A N/A	0 N/A 0.5mm FBE N/A
AL-ZN-TK ANODES Smm ASPIALT BAWAR, GR 28 (SE NOTE 1.) 40 3400 1500 UNITRENCHED +60.0°C TO -30.0°C	AL-ZN-IN ANODES 5mm ASPHALE UNAMEL CR 26 (SEE NOTE 1.) 40 3400 1500	AL-ZN-IN ANOCES Smm ASPHALT ENAMEL CR 28 (SEE NOTE 1.) 40 3400 1500	CORROSION PROTECTION / MATERIAL ANTI-CORROSION COATING CONCRETE COATING THICKNESS (mm) CONCRETE DENSITY (kg/m ³)	N/A 0.5mm FBE N/A N/A	N/A 0.5mm F8E N/A N/A	N/A 0.5mm FBE N/A
Smm ASPHALT DWWD, CR 28 (SEE NOTE 1.) 40 3400 1500 UNITENCHED +60.0°C TO -30.0°C	5mm ASPHALT ENAMEL GR 28 (SEE NOTE 1.) 40 3400 1500	Smm ASPHALT ENAMEL CR 28 (SEE NOTE 1.) 40 3400 1500	ANTI-CORROSION COATING CONCRETE COATING THICKNESS (mm) CONCRETE DENSITY (kg/m ³) FLANCE CLASS	0.5mm FBE	0.5mm_F8E N/A N/A	N/A 0.5mm FBE N/A
Smm ASPHALT DWWD, CR 28 (SEE NOTE 1.) 40 3400 1500 UNITENCHED +60.0°C TO -30.0°C	(SEE NOTE 1.) 40 3400 1500	(SEE NOTE 1.) 40 3400 1500	CONCRETE COATING THICKNESS (mm) CONCRETE DENSITY (kg/m ³) FLANGE CLASS	0.5mm FBE	N/A N/A	0.5mm FBE N/A
(SEE NOTE 1.) 40 3400 1500 UNTRENCHED +60.0°C TO -30.0°C	(SEE NOTE 1.) 40 3400 1500	(SEE NOTE 1.) 40 3400 1500	CONCRETE COATING THICKNESS (mm) CONCRETE DENSITY (kg/m ³) FLANGE CLASS	N/A N/A	N/A N/A	N/A
3400 1500 UNTRENCHED +60.0°C TO -30.0°C	3400	3400	CONCRETE DENSITY (kg/m 3) FLANGE CLASS	N/A	N/A	
3400 1500 UNTRENCHED +60.0°C TO -30.0°C	3400	1500	FLANGE CLASS			LN/A
1500 UNTRENCHED +60.0°C TO -30.0°C	1500	1500		1500	1600	
UNTRENCHED +60.0°C TO -30.0°C		L			1500	1500
+60.0°C TO -30.0°C	TRENCHED (0.3m COVER)		TRENCHED/UNTRENCHED	UNTRENCHED	TRENCHED	UNTRENCHED
		UNTRENCHED	PIGGYBACK SUPPORT SPACING (m)	6	6	UNTRENCHED 6
	+60.0°C TO -30.0°C	+60.0°C TO -30.0°C	DESIGN TEMPERATURE RANGE	+50.0°C TO +2.0°C	+50.0°C TO +2.0°C	
139.3 BARG	+60.0 C 10 -30.0 C 139.3 BARG	+60.0 C 10 -30.0 C	· · · · · · · · · · · · · · · · · · ·	+50.0°C 10 +2.0°C 165 BARG	+50.0°C TO +2.0°C 165 BARG	+50.0°C TO +2.0
(2020 PSIG)	(2020 PSIG)	(2020 PSIG)	DESIGN PRESSURE	(2393 PSIG)	(2393 PSIG)	165 BARG (2393 PSIG)
209.0 BARG	209.0 BARG	209.0 BARG	HYDROTEST PRESSURE	247.5 BARG	247.5 BARG	247.5 BARG
(3030 PSIG)	(3030 PSIG)	(3030 PSIG)		(3589 PSIG)	(3589 PSIG)	(3589 PSIG)
AL-ZN-IN ANODES	N/A N/A 6.0 6.0 3.0 AL-2N-IN ANODES m CTE 5mm ASPHALT ENAMEL G (SEE NOTE 1.) 75 50 50		10 BACION TE-IN SPOCE	End EHGL	AND AND CONTRACTOR	∰
3400	3400	1500	20-INCH/3-INCH		No. 20	ы.) ¥, (ж.
3400 1500 1	3400 1500 N/A	1500 1500		2	<u> </u>	¥.) ¥. (¥.
3400 1 1500 1 UNTRENCHED TREE	3400 1500 N/A ENCHED (0.75m COVER TO TOP OF 3-th	1500 1500 INCH LINE) UNTRENCHED			<u> </u>	5.) 5. (55
3400 1 1500 1 UNTRENCHED TREE •94.0°C TO -10.0°C	3400 1500 N/A ENCHED (0.75m COVER TO TOP OF 3-IN +94.0°C TO -10.0°C	1500 1500 NCH LINE) UNTRENCHED +94.0°C TO -10.0			<u> </u>	
3400 1 1500 1 UNTRENCHED TREI 94.0°C T0 -10.0°C 1 139.3 BARG	3400 1500 N/A ENCHED (0.75m COVER TO TOP OF 3B +94.0°C TO -10.0°C 139.3 BARC	1500 1500 NCH LNE) UNTRENCHED +94.0°C T0 -10.0 139.3 BARG		KP 0.0	<u> </u>	10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
3400 1 1500 1 UNTRENCHED TREE •94.0°C TO -10.0°C	3400 1500 N/A ENCHED (0.75m COVER TO TOP OF 3-IN +94.0°C TO -10.0°C	1500 1500 NCH LINE) UNTRENCHED +94.0°C TO -10.0		The CO	<u> </u>	ин.) ин. ин.)
TY	PORT LINE API-N SPOOL API-SL X65 SAW 21.0 508 508 508 6.0 -ZN-NIA KOOCSS Sm CTC PL 10 ASS Sm	PORT LINE FROM TYNE T ME THE-INI SPOOL	PORT LINE FROM TYNE TO TRENT ME TE-NI SPOOL	PORT LINE FROM TYNE TO TRENT PIPELINE PIPELINE PRI-SL X65 SAW SAW SAW SAW SAN SOB N/A SOB N/A SOB SOB SOB SOB SOB SOB SOB SOB SOB SOB <t< th=""><th>PORT LINE FROM TYNE TO TRENT NE TIE-NI SPOOL Image: State Stat</th><th>PORT LINE FROM TYNE TO TRENT API-SL PPELINE API-SL PROST SSS API-SL SSS SSM SAW SSS SAW SSS SSO SSO SOB N/A SOB N/A SOB N/A SOB SOB SOB N/A SOB N/A SOB N/A SOB N/A SOB SOB MARCES Env SOD 6.0 6.0 3.0 N/A 23.0 AL-ZN-NR ANDOES Som ASPHALT ENAMEL CRANCE</th></t<>	PORT LINE FROM TYNE TO TRENT NE TIE-NI SPOOL Image: State Stat	PORT LINE FROM TYNE TO TRENT API-SL PPELINE API-SL PROST SSS API-SL SSS SSM SAW SSS SAW SSS SSO SSO SOB N/A SOB N/A SOB N/A SOB SOB SOB N/A SOB N/A SOB N/A SOB N/A SOB SOB MARCES Env SOD 6.0 6.0 3.0 N/A 23.0 AL-ZN-NR ANDOES Som ASPHALT ENAMEL CRANCE



Page **47** of **49**

P E R E N C O