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We are the Environment Agency. We protect and improve the environment. 

We help people and wildlife adapt to climate change and reduce its impacts, including 
flooding, drought, sea level rise and coastal erosion.  

We improve the quality of our water, land and air by tackling pollution. We work with 
businesses to help them comply with environmental regulations. A healthy and diverse 
environment enhances people's lives and contributes to economic growth. 

We can’t do this alone. We work as part of the Defra group (Department for Environment, 
Food & Rural Affairs), with the rest of government, local councils, businesses, civil society 
groups and local communities to create a better place for people and wildlife. 
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Research at the Environment Agency 
Scientific research and analysis underpins everything the Environment Agency does. It 
helps us to understand and manage the environment effectively. Our own experts work 
with leading scientific organisations, universities and other parts of the Defra group to 
bring the best knowledge to bear on the environmental problems that we face now and in 
the future. Our scientific work is published as summaries and reports, freely available to 
all.  
 
This report is the result of research commissioned by the Environment Agency’s Chief 
Scientist’s Group. 
 
You can find out more about our current science programmes at 
https://www.gov.uk/government/organisations/environment-agency/about/research 
 
If you have any comments or questions about this report or the Environment Agency’s 
other scientific work, please contact research@environment-agency.gov.uk. 

 

Dr Robert Bradburne 
Chief Scientist 
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Introduction 
The Environment Agency’s Chief Scientist’s Group commissioned a review of the use of 
stochastic and other approaches in water resources planning, including their current use 
and limitations, potential developments and alternative options. 

Stochastic simulation methods have become an established way for water companies to 
create a larger sample of rainfall inputs for their hydrological and systems models, than 
from the observed record alone. But there has been little to no assessment of their use in 
practice, or appropriateness when considering future climate. This project aimed to review 
the science behind stochastic methods and the performance of existing products, whilst 
clarifying their strengths, weaknesses and appropriate uses, alongside an equivalent 
appraisal of alternative approaches. 

The project consisted of a review of the stochastic methods currently used by water 
companies, and the potential alternatives. This was primarily literature-based, including 
both academic and grey (e.g. water company documents) and the findings summarised in 
topic focused reviews (e.g. climate change). 

An overview of the reviews is presented in Environment Agency (2025). Review of 
stochastic and other approaches in water resource planning. Environment Agency, Bristol. 
This report is an annex to the summary report and presents the topic focussed reviews as 
written by the authors, with only minor editing of the format.   
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Narrative history of water resources planning 
in England in relation to droughts (strategic 
and operational) 
Chris Counsell, Mason Durant (with review and input from the author team) 

 

Glossary 

Term Meaning 

DO Deployable Output – the amount of water (Ml/d) that can be obtained from a system 
under specific conditions 

DP Drought Plan 

EVA Extreme Value Analysis 

LoS Levels of Service 

TUB Temporary Use Ban 

UKCP Deployable Output – the amount of water (Ml/d) that can be obtained from a system 
under specific conditions 

WRMP Drought Plan 

 

Introduction 
Within the latest WRMP process in England, stochastic datasets have emerged as the 
primary form of assessing water supply system performance under drought conditions. 
This section of the report charts their development using a narrative approach, combining 
literature and interview responses, to help understand how they have developed into the 
datasets that currently exist, the issues and benefits related to their implementation. This 
understanding is critical in capturing the practicalities of using stochastic datasets. The 
practicalities are then aligned with statistical issues related to stochastic methods for a 
number of important themes identified during the literature review and interviews. The 
report concludes by combining this collected information into a set of characteristics of an 
idealised dataset against which potential datasets and approaches may be assessed. 

 



7 of 92 

Long term water management and drought planning 
Water Resource Management Plans (WRMPs) outline the actions that water companies 
will undertake to ensure the security of water supply within their area over at least the next 
25 years. These plans are updated every five years (and reviewed annually) in an 
iterative, statutory process that was introduced as part of the Water Resources Act 2003. 
The first statutory plan was introduced in 2004. Prior to this, water companies had 
produced a voluntary plan in 1999. 

Planning within England (and Wales) has historically been done at a relatively local scale 
(albeit with generally increasing spatial scale over time as water companies have grown in 
size (Ofwat, 2006) and through regional and national scale planning). The current statutory 
process is for water companies to submit their WRMPs to the Secretary of State. Often the 
scale has presented challenges in responding sufficiently to some resource issues where 
water bodies (both surface water and groundwater) cross water company boundaries, or 
where there are water transfers between companies. Consequently, regional planning 
groups have been established to create more formal cooperation, starting in 1996 (Water 
Resources South East, 2017) and culminating in all 5 regional groups publishing 
multi-sector regional water resources plans in 2022 (Environment Agency, 2022). Prior to 
the publication of the latest regional plans, the National Framework for Water Resources 
(a national scale assessment of England’s long-term water needs) was published in 2020 
(Environment Agency, 2020).  

The publication of Drought Plans (DPs) is also a statutory process that must be 
undertaken every 5 years (originally every 3 years) under the Water Industry Act 1991. 
DPs must state how a water company will maintain a secure water supply and protect the 
environment during dry weather and drought in the nearer term. Historically, drought 
planning has been undertaken at a water company scale, however more recently, there 
have been examples of multi-sectoral and regional scale exercises in drought 
preparedness such as Arica (Thames Water, 2022). 

 

Narrative history of water resource planning in England 
in relation to droughts 
This section briefly summarises the history of water resource planning with respect to 
strategic and operational planning up to and including the introduction of stochastic 
weather generators. The development of the weather generators used in water resource 
planning in England and Wales is summarised, as well as how they have been applied to 
date. 

Prior to 2014, WRMPs largely used the worst historical drought to determine the 
Deployable Output (DO) of a water supply system against stated Levels of Service (LoS), 
effectively treating the worst historical drought as a design event (Southern Water, 2014). 
During this period (2009-2014), stochastic weather generation was expanding rapidly, both 
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within UK adaptation with the UK Climate Projections 2009 (UKCP09) Weather Generator 
(Jones et al., 2010) and more broadly within the academic literature (see Figure 1). 
Southern Water felt that the historical record was not sufficient to capture the events that 
affected their system and, for WRMP14, started to explore the use of stochastic weather 
generators to improve their assessments (Southern Water, 2014; Interview 1, personal 
communication, 23rd May 2023). 

Southern Water included stochastic methods within their Drought Plan in tandem with their 
WRMP14. These were used to test drought measures in response to drought events that 
have different characteristics such as timing or severity than those experienced 
historically. Since WRMP14, a number of other water companies have also used 
stochastic approaches for this purpose.  

 

 

Figure 1. Publication of stochastic related articles over time from the SCOPUS 
database. 
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History of stochastic approach development 

Stochastic approaches were introduced to water resource planning in the UK through the 
use of a stochastic weather generator within UKCP09. This was underpinned by a body of 
work, primarily undertaken by Newcastle University, on stochastic rainfall (e.g., Fowler 
et al., 2000, 2005; Cowpertwait et al., 2002; Kilsby et al., 2007) that primarily used the 
Neyman-Scott point process model with a spatial capability. The state of knowledge on 
climatic drivers and their relationship with UK weather is reviewed in Chapter 4 (see also 
Hannaford et al. 2023). There were a large number of users of the UKCP09 Weather 
Generator, and user feedback indicated a need for modelling across large areas with 
realistic spatial coherence and over long time scales (Interview 3, 2023). Southern Water 
subsequently procured a stochastic weather generator from Newcastle University, Atkins, 
and the University of East Anglia (Interview 3, 2023). A new approach was developed 
based on user requirements that was inherently spatial, closely fitting observations so as 
to provide credibility through validation, and used a model that could be run in a short time 
period (Interview 3, 2023). This model produces monthly rainfall at individual sites, which 
is subsequently downscaled to daily data and paired with potential evapotranspiration 
data. The stochastic dataset generated for Southern Water’s WRMP14 comprised of 17 
replicates of the 120 year-long historical record, combined into one single Very Long Time 
Series (VLTS) of 2,000 years (Southern Water, 2014).  

This model was then reviewed and updated by the Met Office in 2016 for the Water 
Resources East (WRE) region, including the addition of the East Atlantic pattern for the 
Anglian region and seasonally varying predictors (Dawkins et al., 2022). This model was 
subsequently used by Atkins to produce stochastic datasets for some water companies for 
WRMP19, comprising of 200 replicates of 88 years each totalling 17,600 years (Atkins, 
2020). For WRMP24, WRSE procured a stochastic weather generator from Atkins that 
covered the whole of England and Wales for the purposes of regional planning, during 
which the stochastic generator was updated (Atkins, 2020). This included: 

• The addition of a number of climate drivers, including the East Atlantic pattern, 
which has been shown to have a strong influence on rainfall variability both 
compared to and in combination with other existing predictors such as the NAO. 

• The interaction between the explanatory variables describing mean rainfall at each 
site. 

• The reduction of the period of fitting to 1950-1997 on the basis of the availability of 
robust climate data prior to 1950 and climate change impacts post 1997. 

• The improvement of a curve-fitting (bias correction) approach to improve the final 
model fit. 

The rationale for updating these aspects of the weather generator process was to improve 
the quality of drivers, improve the fit of the statistical model, unify the model across the 
country and reduce the impacts of bias correction to avoid implausible droughts (Atkins, 
2020). Atkins (2020) states that the (continued) use of bias correction is a debatable but 
necessary step to ensure that outputs adequately represent and extend the range of 
droughts within the historical record. The step is included to effectively constrain the 
uncertainty within the stochastic data to ensure the extremes look plausible (Interview 3, 
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2023). These improvements were based largely on aspirations of the modellers to improve 
the model representation of rainfall to known climate drivers and a response to peer 
review of the previous approach (Atkins, 2020). The stochastic dataset comprises of 400 
replicates of a 48 year period, comprising 19,200 years in total (Atkins, 2020). 

A number of shortcomings of the approach identified in 2016 (prior to updates for 
WRMP24) have been attempted to be solved by Dawkins et al. (2022) and the 
development of the Advanced Meteorological Explorer (AME) for the Anglian region. This 
is largely focused on high spatial and temporal resolution data, plausible long-duration 
drought characteristics (particularly reflecting droughts in the late 19th and early 20th 
century) and capturing known behaviour of UK rainfall variability (Dawkins et al., 2022). 
The strength of fit with the observed data as a result of the additional drivers and the bias 
correction process were also identified as driving reasons for creating a new approach 
(Interview 6, 2023). Dawkins et al. (2022) could (although not yet implemented) also be 
used to generate other variables such as potential evapotranspiration (PET), where 
previous methods have not been able to. This has been a particular limitation (which was 
traded-off against increased model complexity and run times) of previous methods where 
PET sequences were developed after the rainfall generation and based solely on the 
historical record (Atkins, 2020), thereby potentially under sampling the full range of 
temperatures that might be experienced. 

 

How stochastic datasets have been implemented to 
date 

Long term water resource and drought planning 

Stochastic datasets were procured as a means of testing water supply systems to events 
not seen within the observed historical record. For Southern Water in WRMP14, this 
meant focussing on the drought frequency and severity (due to not meeting stated Levels 
of Service), but also exploring the impacts of increased drought duration (including dry 
winters) and varying characteristics of drought onset (Southern Water, 2014). Southern 
Water (2014) identified an incoherence between the return period of a severe drought and 
the return period of drought measures, largely due to the issue of imperfect foresight. 
Interventions therefore need to be implemented prior to a severe drought hitting it’s 
maximum severity, meaning TUBs need to be implemented more frequently than the 
frequency of severe droughts. The consequences of using this stochastic approach for 
Southern Water were that MDO/ADO reduced by 15Ml/d or approximately 2.3% and PDO 
reduced by 13.8Ml/d or approximately 1.6% across all three of their water resource zones. 
This represented a change in frequency for TUBs implementation from 1 in 7 to 
1 in 10 years and Drought Permit or Order implementation from 1 in 10-15 to 
1 in 20 years. For WRMP14, Southern Water did not include stochastic events that were of 
a greater duration than those in the historical record, suggesting they were not comfortable 
in allowing the DO of the system to be influenced by such extremes. 
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Beyond WRMP14, a number of other water companies used stochastic datasets for 
WRMP19, largely in response to the need to examine system resilience to more extreme 
drought events than those contained within the historical record. The analyses within these 
WRMP19 assessments focussed on using the stochastic dataset as a means of testing 
water supply systems to events with return periods of 1 in 200 years and sometimes 
1 in 500 years (e.g., Thames Water, 2020), which also permitted a standardisation of 
impacts across these water companies (the use of return periods in general when applied 
to drought is outside the scope of this report). The 1 in 500 year return period (linked to 
system impacts, rather than return period of rainfall) has been adopted for WRMP24, with 
water companies required to plan to be resilient to an event of this severity by 2039 at the 
latest (Environment Agency, 2021a). 

In general, water companies currently use stochastic datasets to test their drought plans to 
more severe drought events than those seen historically. This usually entails more 
detailed examination of the drought triggers and protocols undertaken during a drought 
than the WRMP, as well as narrative on the development of drought conditions (e.g., 
Thames Water (2022); Yorkshire Water (2022b)). 

Stochastic demand 

As well as using stochastic datasets for supply side modelling, they could also be used to 
generate estimates of stochastic demand. It is known that demand variability, particularly 
during heatwaves, can have a significant impact on water supply system performance for 
some systems, and there are concerns that this is not currently captured within existing, 
demand profile-based, approaches (Durant and Counsell, 2023). A number of attempts 
have been made to generate these, with stochastic weather-based models having been 
developed by organisations including WRSE, Anglian Water, United Utilities, however as 
yet, none have been implemented within WRMP assessments (Interview 1, 2023; 
Interview 5, 2023; Interview 6, 2023) but this remains an ambition, with recent years 
highlighting the significant uncertainties associated with customer water use behaviour 
during different weather periods. Coherent stochastic demand scenarios have been 
generated for the Anglian region, but are yet to be incorporated within a WRMP setting 
(Interview 6, 2023). WRE did consider the effects on agricultural demand as part of their 
latest regional plan (Knox et al., 2018). 

Stochastic methods within bottom-up approaches 

Currently, the dominant approach to testing water supply systems within WRMPs is using 
a top-down, scenario-led approach, where climate data are run through impact models in a 
traditional modelling chain. In contrast, a number of academic studies (e.g., Borgomeo 
et al., 2015; Environment Agency, 2015; Prudhomme et al., 2015; Sauquet et al., 2019) 
have emphasised the potential benefits of adopting a stress testing or vulnerability led 
(bottom-up) approach to considering drought resilience and inform decision-making. 
Stress testing involves analysing the potential impacts of a given hazard (in this case 
drought) on a system, adopting a diverse set of droughts over a range of different 
severities to reveal thresholds of vulnerability (or tipping points) where the impacts 
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become particularly severe (Environment Agency, 2015). Climate evidence is then added 
to the outputs from stress testing to inform estimates of likelihood and plausibility (e.g., 
Prudhomme et al., 2015; Sauquet et al., 2019). Stress testing can be used to test 
alternative portfolios of interventions over a wide range of drought conditions of different 
severities, in order to quantify the impacts and potential benefits. 

In the latest WRMPs, stochastic datasets have been assimilated to produce a drought 
response surface akin to the outputs from a vulnerability-led approach (informed by the 
guidance within the Drought Vulnerability Framework; UKWIR, 2017) but this is not, per 
se, part of a bottom-up approach to assessing drought resilience and decision making. 
The resulting drought response surface (DRS) presents water supply system response to 
increasing stress (in this case intensity and duration of rainfall deficits), with an example 
presented in Figure 2, but is limited to the range of events present within the stochastic 
dataset. Further, these outputs have not been taken forward into the wider WRMP process 
to compare different option portfolios, alternative climate evidence and consequences of 
future policy options (e.g., impact of Environmental Destinations). 

 

Figure 2. An example Drought Response Surface (UKWIR, 2017), annotated with 
methods used to generate underlying data. 

 

Stochastic datasets and climate change 

Ever since the inception of stochastic approaches within water resources planning, they 
have been used alongside climate change factors to account for the impacts of future 
projected change at different time slices (Southern Water, 2014). Change factors are 
calculated by determining the mean change in a weather variable for each month from a 
baseline period (e.g., 1981-2000) to a future period (e.g., 2080-2099) and applying these 
mean monthly factors to the stochastic dataset. This approach has remained unchanged 
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up to WRMP24 where the guidance still recommends the use of change factors in the 
absence of compelling evidence to move to a different approach despite known drawbacks 
(Environment Agency, 2021b). The Advanced Meteorological Explorer (AME) has recently 
developed “future” stochastic data, conditioned on the UKCP18 regional projections that 
enables climate change to be represented without the use of change factors (Dawkins 
et al., 2022). As part of this approach within the AME, different climate drivers are also 
modelled compared with those experienced historically, increasing the natural variability 
sampled. However, such an approach introduces a complex set of challenges related to 
climate model credibility, including how much information should be taken from climate 
models, and how to validate the outputs. At the time of writing, there is no published 
evidence available that explores these challenges. This should be reviewed once it is 
made publicly available. Further review of climate change and stochastic datasets is given 
in Chapter 5.  

Extreme Value Analysis 

The implementation of stochastic datasets within the current planning framework in 
England and Wales requires the estimation of return periods of drought events to 
determine Levels of Service. There are two primary Extreme Value Analysis (EVA) 
approaches that have been used to compute return periods for both rainfall and system 
metrics – non-parametric and parametric approaches. The non-parametric approach (e.g., 
inverse ranking) is underpinned by the concept of the probability of an event being 
determined by the ranking of that event within a series and the length of the series. There 
are a number of ways of calculating this (e.g., Cunnane, Gringorten, California, Weibull), 
which make certain assumptions about the probability of events. Parametric approaches 
use a pre-determined statistical distribution that satisfies certain mathematical conditions. 
This distribution is then fitted to the data to determine the return period. In addition to the 
approach undertaken, there is also a difference in the way the data are processed to 
extract events on which the return period is assessed. For example, peaks-under-
threshold (e.g., river flows below Q95) or block minima (e.g., minimum flow storage over a 
12 month period). The use of either inverse ranking or parametric approaches is important 
because of a number of reasons: 

• Inverse ranking produces a single return period for a given value, or a single value 
for a given return period. This contrasts with parametric approaches in which the 
fitting process is often undertaken numerous times in a process called 
bootstrapping, which produces uncertainty associated with the fitting of the 
distribution. Often the shorter the observed data series, the larger the estimation 
uncertainty. 

• Parametric approaches can be used to determine return period beyond those 
observed. Inverse ranking cannot. 

A number of other issues arise when these reasons are intersected with a stochastic 
dataset comprised of a number of replicates, where the fitted series (e.g., 48 years) is 
shorter than the required return period (e.g., 1-in-500). For a comprehensive overview of 
the differences between stochastic replicates, see Chapter 2. The use of inverse ranking 
on each stochastic replicate is insufficient (inverse ranking can only give a maximum 
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return period equal to or less than the length of the series) and therefore the stochastic 
replicates must be joined together to create a longer series and determine more extreme 
return periods. This is a potential issue where the stochastic series is heavily fitted to the 
observed series – the frequency of droughts is fixed to that of the historical record and will 
alter the return period depending on the severity of the events experienced historically 
(e.g., Yorkshire Water, 2022). Consequently, if each replicate is to be assessed 
individually, a parametric approach must be used, however where a short series is 
available, estimation uncertainty will be high and will result in large ranges of possibilities 
of DO for a given return period (see Figure 3). It is possible that where conditions align, 
the inverse ranking approach and the median of the parametric approach align (e.g., in 
Figure 3, the red line fits with the dotted line), however this is location dependent. There 
are also questions around the assumption that all drought events belong to the same 
population and therefore can all be treated equally within a frequency analysis (UKWIR, 
2017).  

 

Figure 3. Comparison of EVA and inverse ranking approaches for the Bristol Water 
supply system. Historical inverse ranking is shown as points, historical EVA at the 
95% confidence interval as the purple shaded area, stochastic inverse ranking with 
400 replicates combined into one series as the red line, and stochastic EVA 
undertaken on each replicate as the grey lines.  Source: Bristol Water (2022) 

 

For stochastic generators that are explicitly tied to underlying climatological drivers, the 
replicates produced by stochastic generators are usually treated as independent. This may 
not always be the case, due to the dependence within drivers across replicates, effectively 
reducing the sample size, which subsequently reduces the largest return period that can 
be reliably determined from the dataset, and should also be considered where replicates 
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are combined into one series. This is particularly pertinent when generating data at the 
national scale, where relationships between drivers and weather variables vary in space, 
meaning droughts are not spatially coherent between regions. The LoS calculated from a 
stochastic dataset can therefore vary depending on the stochastic generation method as 
well as events themselves within the dataset. 

All stochastic generators are underpinned by observed data. There has been a general 
reduction in the density of rain gauges since the 1970s (Chapter 3) which impacts the 
ability of all stochastic frameworks to produce robust datasets. Stochastic frameworks 
need high quality data, that is collected in relevant locations, and has a long record. 
Greater consideration should be given to the density of the networks, location of 
instruments and continuous measurement if the quality of stochastic data is to be 
maintained or improved. Further discussion on the details of input data, including observed 
rainfall, are included within (Chapter 3). 

Models and tools 

As the use of stochastic approaches have become more widespread across the industry, 
there have been conflicts between the quantity of data available within the stochastic 
dataset and the capability of existing models (particularly water resource models) to run 
the quantity of data. This was particularly relevant where water resource models were only 
required to run the relatively short historical period, rather than the equivalent of 19,200 
years of stochastic data. This is compounded by the requirement to run a large number of 
climate change scenarios, as well as other scenarios including sustainability reductions. 
This conflict between quantity of data and model capacity necessitated the use of 
sampling approaches (such as Latin Hypercube Sampling) to reduce the length of model 
runs whilst retaining the range of uncertainty in the larger, unsampled dataset. The need 
for sampling is reducing as a result of improved rapid simulators that can be run flexibly on 
multi-core processors, where sampling can be more onerous than running all scenarios 
through a rapid simulator (Interview 5, 2023). 

Review of practical issues related to implementation 
Table 1 outlines practical issues related to the implementation of stochastic datasets, 
based on responses within interviews undertaken as part of this study, enabling a wider 
view of the issues and benefits of using stochastic datasets in practice. Interviews were 
undertaken either in person in a semi-structured format or as written responses to 
questions via email during May, June and July 2023. 
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Table 1. Overview of key issues with current stochastic approaches 

Issue Statistical issue Practical implication 

Spatial 
coherence 

Increasing the spatial coverage of the 
dataset comes with trade-offs. More 
sites are required, which increases 
processing time. There are issues with 
modelling spatial correlation over larger 
areas and retaining plausible extremes 
(Chapter 2). Interpolation may be a way 
of getting around this and is generally 
computationally cheap in comparison 
but may cause issues for areas with 
varied orography. In addition, the 
stochastic method needs to be able to 
deal with potentially different covariates 
or covariate relationships from one site 
or region to another. Further work is 
needed to understand about trade-offs 
between increasing the number of sites 
versus relying more on interpolation. 

Spatial coherence is an 
important requirement for 
inter-regional planning. 
Current approaches to match 
droughts between regions are 
proportionate, but there may 
be approaches that can deal 
with this a more coherent 
way. 

Stochastic 
outputs as 
historical 
replicates 

Methods that stochastically vary weather 
variables based on historical drivers 
may be under-sampling the historical 
uncertainty. Of these methods, there is 
a philosophical decision about how 
many drivers and how tightly to fit the 
model to the historical data. There is 
also a potential trade-off between the 
number of replicates and the need to fit 
to the historical weather variables. 

Is the historical a fair indicator 
of the future? Strict 
dependence on the historical 
drivers restricts the method of 
EVA. Not all historical 
uncertainty is being explored 
– greater uncertainty could be 
revealed by varying the 
underlying historical drivers in 
some way (e.g., 
stochastically, outputs from 
climate models) 

Climate 
change 

There are a number of statistical issues 
related to using change factors as a way 
of incorporating climate change 
information into water resource 
assessments. Climate change has been 
incorporated into a number of stochastic 
generating frameworks, some using 
change factors in a post-processing 
step, some using bias-corrected 

It is difficult to appraise the 
realism of a 1-in-500 drought 
plus climate change as a 
future drought. Assessing the 
severity of such events is also 
currently difficult. 
Notwithstanding this, change 
factors represent a simple 
solution that is relatively easy 
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Issue Statistical issue Practical implication 

variables from climate models within the 
stochastic model, and others using 
climate drivers (Chapter 5). There are a 
number of unknowns related to 
incorporating climate change into 
stochastic models, including which 
variables and covariates to include, how 
much information can and should be 
taken from the climate models, the 
representation of climate model 
uncertainty and whether to produce time 
slices (e.g., at global warming levels) or 
transient future projections (for 
emissions scenarios). 

to convey to stakeholders and 
one that those in the industry 
understand (Interview 5, 
2023). In addition, there is a 
simplicity in using the same 
underlying stochastic dataset 
to understand baseline and 
future risk. 

Plausibility 
of stochastic 
events 

 

Plausibility has been assessed using 
EVA and validating outputs statistically 
against the historical record. The 
plausibility of the events is assumed on 
the basis of the structure of the 
statistical model and the outcome of this 
validation step. There is no link back to 
the physical climate drivers that underly 
a particular event. 

The plausibility of stochastic 
events can be difficult to 
assess, but has been 
achieved using a weight of 
evidence approach within 
WRMP24 using the AME 
stochastic dataset (Interview 
6, 2023). This represents a 
plurality of approaches and 
datasets that permits 
qualitative assessment of 
plausibility. A large dataset 
means stochastic droughts 
are not examined in the same 
way as historical droughts 
(Interview 7, 2023), however 
they do permit a more 
probabilistic risk-based 
approach (Interview 5, 2023). 

Extreme 
Value 
Analysis 

The EVA method used alters the 
uncertainty associated with the 
estimation. Non-parametric approaches 
generally provide a single estimate, 
whereas parametric methods usually 
provide an estimation uncertainty.  

The method of EVA to use is 
dependent on a number of 
things – the dataset itself and 
the correlation structures, 
whether there is a difference 
between parametric and non-
parametric methods within a 
particular location, and the 
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methods of sampling or not 
that are used (Interview 3, 
2023). 

Users are relatively familiar 
with EVA and methods and a 
generally setup to deal with 
large datasets (Interview 2, 
2023). 

More generally, there is a 
mixed opinion on the use of 
the 1-in-500 and what this 
means in terms of both the 
science (of estimating the 1-
in-500) but also the knowing 
what risks are being adapted 
to. 

Computing 
power and 
resource 
requirements 

The statistical model framework has an 
impact on the computing power required 
to produce the stochastic outputs. 

A few water companies had 
issues with running a full 
stochastic dataset through 
the full modelling chain. This 
was largely where 
hydrological models were not 
available for some areas, or 
where water resource models 
or groundwater models were 
too resource intensive to 
undertake the required 
number of runs. There are 
also issues with re-calibrating 
models (particularly regional 
groundwater models 
(Interview 1, 2023)). Many 
companies already have, or 
have moved to, rapid system 
simulators that permit large 
numbers of model runs. The 
computing power to deal with 
the stochastic datasets as 
they currently are 
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implemented appears to be 
less of an issue.  

Drought 
event 
diversity 

The statistical model design will 
determine the drought event diversity, 
largely as a function of the historical 
observation data used for model 
calibration (both temporal and spatial 
components) and the parameters within 
the statistical model. Including more 
recent, climate change impacted 
droughts, may also want to be captured, 
but represent challenges to 
incorporating within a framework. 

Issues with stochastic 
methods not capturing issues 
relevant to a particular water 
resource system (e.g., spatial 
rainfall distribution within a 
large scale drought event, 
large scale blocking over a 
region) that underrepresents 
uncertainty.  

Observation 
data and 
calibration 
period 

A high density of observational data is 
required, particularly where gridded 
datasets are used, to ensure outputs are 
representative of local weather 
variability. Uncertainty in the 
observational data or choice of 
interpolation method may have an 
impact on the interpretation of results 
(Chapter 3). 

Practical issues can arise 
where the stochastic dataset 
is not based on the data used 
to calibrate a model, requiring 
the translation of data to 
arrive at stochastic impacts. 
There are issues where the 
models that require 
recalibration are large, 
computationally slow, or 
where responsibility lies 
within other organisations 
(Interview 1, 2023). 

Spatial 
coherence 

Increasing the spatial coverage of the 
dataset comes with trade-offs. More 
sites are required, which increases 
processing time. There are issues with 
modelling spatial correlation over larger 
areas and retaining plausible extremes 
(Chapter 2). Interpolation may be a way 
of getting around this and is generally 
computationally cheap in comparison 
but may cause issues for areas with 
varied orography. In addition, the 
stochastic method needs to be able to 
deal with potentially different covariates 

Spatial coherence is an 
important requirement for 
inter-regional planning. 
Current approaches to match 
droughts between regions are 
proportionate, but there may 
be approaches that can deal 
with this a more coherent 
way. 
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or covariate relationships from one site 
or region to another. Further work is 
needed to understand about trade-offs 
between increasing the number of sites 
versus relying more on interpolation. 

 

As well as points related to the stochastic datasets themselves, wider points were raised 
by respondents. These included: 

• Coherence across guidance documents, primarily the 1-in-500, climate change and 
stochastic methods documents (Interview 8, 2023). 

• Testing of methodologies proposed within guidance documents using worked 
examples. This would prevent some of the issues that water companies had to 
solve while delivering WRMPs (Interview 5, 2023; Interview 8, 2023). 

• Timely release of guidance documents prior to WRMP work commencing (Interview 
5, 2023). 

• Skill levels across the sector (including regulators) to deal with stochastic datasets 
and accompanying methods. This includes poor provision of taught courses at 
universities. An approach that considers all actors within the sector is needed to 
meet this challenge (Interview 3, 2023). 

• Whether the current complexity of modelling approaches reduce uncertainty 
sufficiently to be warranted. It is debatable as to whether the current resource 
intensive approaches improve the decision making position (Interview 8, 2023). 

• There is the potential for a collaborative test-bed for stochastic datasets that could 
permit combining the strengths of different stochastic approaches (Interview 6, 
2023). 
 

Summary 
In summary, stochastic datasets have been used widely across both operational and long 
term water resource planning over the last decade and are now well integrated into water 
company modelling procedures (Interview 2, 2023). Hydrological and water resource 
modelling capabilities have risen up to the challenge of large datasets, however a number 
of technical issues related to stochastic datasets and their implementation remain. These 
issues have been captured in the characteristics of the evidence base required for 
planning section below. 
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Characteristics of the evidence base required for 
planning 
There are a vast number of parameters and structures associated with stochastic 
approaches that may ultimately determine the dataset that is generated. Consequently, 
instead of considering how each (or combinations) of these may impact water resource 
modelling outcomes, it is perhaps more useful to consider the ideal characteristics of the 
evidence base that is required for water resource planning and consider the current and 
available approaches within this framework. 

The list below shows the characteristics of an idealised evidence base for water resource 
planning. This list can be considered applicable to all datasets, including historical 
observed, derived and climate change. 

• Nationally spatially coherent 
• High resolution (space and time) 
• Evidence to underpin event plausibility 
• Ability to represent "future droughts" (i.e. include a climate change signal) 
• Diversity of events (events with contrasting duration, intensity, frequency, spatial 

and temporal patterns) 
• Applicable to multiple sectors (e.g., multiple weather variables, heat waves, include 

stress events appropriate for agricultural and energy sectors) 
• Represent full range of uncertainties 
• Assessed prior to use and demonstrated  
• Industry consensus as to their application and interpretation 
• Can be used in a risk-based approach 
• Ability to effectively attribute event likelihood 
• Can be practicably applied for all systems and for all water stakeholder / receptors 

at a national scale across the industry 

The reasoning for including these characteristics is given below and is based on 
information gathered from interviews undertaken as part of this study as well as academic 
and industry grey literature. 

Nationally spatially coherent.  

As outlined above, water resource planning in England and Wales is being undertaken at 
both national and regional scales. Despite the statutory requirement for planning at a 
water company level, the requirement for water transfers and modelling of existing 
transfers from one region or water company to another requires that datasets are of a 
national scale (Interview 1, 2023; Interview 4, 2023). Whilst initial findings of this report 
indicate that this may be difficult to achieve within stochastic frameworks, it should be 
explored to understand if trade-offs or costs make it an acceptable proposition, and if it 
has a material impact on decision making.  
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High resolution (space and time).  

Climate datasets are required to be of at least daily temporal resolution to drive 
hydrological models that operate on these timescales. Temporal downscaling from 
monthly to daily is not trivial and the decisions about how this is done may impact drought 
timing and impacts for some water supply systems, particularly rapidly responding 
systems. High resolution spatial data are also required for some water resource 
applications (primarily hydrological modelling). This is more important in areas with small 
catchments with varied topography. Orographic differences may alter the climate in these 
areas.  

Evidence to underpin event plausibility. 

There is a need to demonstrate the plausibility of drought events where these may be 
driving investment. In this context, “plausibility” is defined as the extent to which droughts 
or their underlying processes may be validated against observational data.  

Ability to represent "future droughts".  

The current method of incorporating climate change using mean monthly change factors to 
perturb stochastic drought events does not capture the changes in frequency, inter-annual 
variability or spatial extent of drought events (Diaz-Nieto and Wilby, 2005; Fowler et al., 
2007). The events created using change factor approaches represent extreme events, 
however do not represent necessarily what a future drought might look like. Durant and 
Counsell (2023) outline a number of other issues related to bias correction and 
incorporation of climate change within water resource modelling. 

Diversity of events (duration, intensity, frequency, spatial pattern).  

A diversity of different events is required to ensure that all systems are tested to events 
outside those experienced historically and avoid biasing the resulting investment 
decisions. 

Applicable to multiple sectors.  

National, regional and water company planning all require consideration of sectors other 
than water supply to determine impacts and costs or benefits related to investment (e.g., 
Environment Agency, 2020; WRSE, 2022). Consequently, datasets used in water supply 
planning should be available and relevant for other sectors. 

Represent full range of uncertainties. 

The majority of planning frameworks require an exploration of a large range of uncertainty, 
regardless of whether a bottom-up or top-down approach is used (Durant and Counsell, 
2023). An idealised evidence base would incorporate the full range of uncertainties 
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associated with hydrological variability, however this will need to take into account 
uncertainty across multiple interconnected spheres, including society, policy and 
economic. There is a need for coherence across these areas where they intersect, such 
as the urban heat-island effect increasing temperatures and driving water demand, or 
increased greenhouse gas concentration as a result of policy decisions driving weather 
variability. The uncertainties where variables have to be estimated or generated should 
also be taken into account. 

Assessed prior to use and demonstrated.  

Interviews undertaken as part of this study highlighted the importance of testing datasets 
and demonstrating their use within the planning framework prior to use. Ideally, the 
evidence base used for planning and operational uses will have been rigorously tested to 
identify issues and demonstrated so that planners may easily recognise how it could be 
applied to their system or problem within the regulatory framework. 

Industry consensus as to their application and interpretation 

Prior to their use, a consensus across the industry as to how they should be applied and 
interpreted in the context of investment planning would encourage consistency and 
efficiency for future investment plans. 

Can be used in a risk-based approach 

Risk-based approaches can be classified as those that trade risk off against an expected 
benefit. In order to be used in a risk-based approach, a dataset doesn’t need to cover all 
uncertainties, but does need to permit the comparison of risk (this could be the risk 
conditional on a particular set of events) and benefit across different interventions.  

Ability to effectively attribute event likelihood 

Event likelihood is an important factor in decision making because it allows an 
understanding of what events to plan to once a tolerable level of risk is established and 
because it is relative, it allows comparison between regions. Despite issues related to 
estimating drought likelihood (summarised in Durant and Counsell (2023), it can also aid in 
describing differences in severity and frequency between drought events. 

Can be practicably applied for all systems and for all water stakeholder / 
receptors at a national scale across the industry 

The practicality of implementing a dataset or technique across multiple stakeholders and 
receptors at a large scale across the water industry is a key limiting factor that cuts across 
the characteristics listed above. Regardless of all the above criteria, if the approach is too 
resource intensive, it is unlikely to be implementable. 
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The recommendations report summarises current datasets against these idealised criteria, 
presents a gap analysis and recommendations for progress against the timeline of 
significant future WRMP planning dates. 
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Existing stochastic methods – A critique of 
statistical aspects 
Adam Griffin and Ye Liu (with review and input from the author team) 

Overview 
Statistical models generally concern the analysing of random variables that take value 
under a combined influence of known and unknown factors.  For example, the 
hour-to-hour rainfall variability at a particular location is the combined consequence of the 
long-term hydroclimatic conditions, the medium-term weather condition, the short-term 
cloud movement, and other known or unknown processes that generate seemingly 
random deviation from the expected trend. 

There are many names given to the part of the variability that can be attributed to the 
known and measurable processes and the part that cannot.  Here we refer to them as the 
covariate effect and the residual effect respectively.  This concept can also be 
demonstrated using a standard linear regression model where random variable 𝑌𝑌 is 
formulated as  𝑌𝑌 = 𝛽𝛽𝛽𝛽 + 𝜀𝜀 where 

• variable 𝛽𝛽 (also known as the covariate) represents a factor that partially 
determines the value of 𝑌𝑌 under some rescaling provided by the linear coefficient 𝛽𝛽; 
and 

• variable 𝜀𝜀 (also known as the error term) represents the residual, or the random 
deviation from the covariate effect of 𝛽𝛽𝛽𝛽. 

In a typical use case, a statistical model provides an approach for formulating the 
mathematical relation between the random variable, its covariate and residual effect, and 
subsequently performing statistical inferences for the parameters of the formulation.  
During the formulation, it is common to attribute as much of the variability of the random 
variable of interest to other known covariates as possible.  But it might not always be 
feasible or desirable to model a known physical relationship as a covariate in a statistical 
model due to reasons such as lack of data support or the added complexity of 
parametrising or fitting the statistical model.  Often this is left as an intentional choice of a 
statistical model with consideration of all modelling needs. 

The input data (see Chapter 3), climate predictors for stochastic modelling (see Chapter 4) 
and climate change (see Chapter 5) review provides a useful insight into the importance 
and availability of relevant hydroclimatic processes that can potentially act as the covariate 
effect to the rainfall.  This part of the review builds upon the insight gathered in the other 
sections and highlights the utilisation of input data, climate predictors and climate change 
factors in a statistical modelling framework. 

The review of the statistical model starts with some discussion on the temporal resolution 
of the generated rainfall data in Section 2; Section 3 focuses on choices of model 
formulation from the approaches under review, including their account for the covariate 
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effects and the structure imposed for the residual effect; Section 4 discusses some key 
considerations whilst implementing the reviewed approaches; finally Section 5 explains in 
more detail a selection of the key modelling techniques.  

 

Temporal resolution 

Motivation in the choice of temporal resolution 

The temporal resolution of the output rainfall data underpins several other modelling 
choices in the stochastic rainfall generator.  Here the temporal resolution refers specifically 
to the regular time interval over which the average rainfall volume is modelled and 
simulated. 

In general the requirement for fine temporal resolution (e.g., sub-hourly) is most important 
for flood risk management applications.  In contrast, rainfall generation for water resources 
planning tends to be over a coarser temporal resolution (e.g., daily or monthly).  This is 
because the consequence caused by droughts is usually reflected over a much longer 
period of rainfall accumulation and variability on a finer temporal resolution does not post 
any major impact (Barker et al., 2016).  Some stochastic rainfall generators will be more 
suited for either of the two applications; whilst others may be versatile enough to cover 
both cases. 

The choice of temporal resolution is also linked to the fact that the random variable of 
interest, i.e. rainfall depth over a certain duration, takes only non-negative values.  If a 
probability distribution is used to capture all possible values of rainfall, it is desirable that 
the probability distribution have a positive probability (denoted 𝑝𝑝0) of generating a zero 
value (i.e. dry spell) and a remaining (1 − 𝑝𝑝0) probability of generating some strictly 
positive value (i.e. the rainfall depth during a wet spell).  This type of distribution is referred 
to in the statistics literature as a mixture model of a discrete (wet versus dry) and a 
continuous (rainfall depth when wet) subpopulation.  The intermittent process model 
proposed in (Papalexiou, 2022) provides a typical formulation of this mixture distribution 
such that the rainfall is essentially a product of the binary wet-or-dry process and the 
continuous rainfall distribution. 

When aggregating the short-duration rainfall over a longer time interval, the sum of rainfall 
deviates further from zero.  When the aggregation time interval is sufficiently long (i.e. the 
temporal resolution sufficiently coarse), the resulting mixture model will carry a negligible 
probability 𝑝𝑝0 of landing on the zero value, such that the aggregated rainfall depth can be 
practically modelled as a single continuous distribution (instead of a mixture model).  

Implication of different temporal resolutions 

This differentiation in the temporal resolution broadly divides the approaches under review 
into two groups: 
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• High temporal resolution, i.e. daily or sub-daily data – (Chun et al., 2013) and 
(Dawkins et al., 2022) 

• Low temporal resolution, i.e. monthly data – (Serinaldi & Kilsby, 2012), (Atkins & 
WRSE, 2020)1 

Incorporating a mixture distribution for the high-resolution rainfall requires additional 
parameters which contributes to the overall complexity of the stochastic generator.  For 
example, (Dawkins et al., 2022) uses a three-state Markov Chain approach to model the 
switching between wet and dry spells with two dedicated parameters (i.e. the transient 
probabilities between wet and dry states in the Markov Chain model). The Neyman-Scott 
Rectangular Pulses model, as reviewed in (Chun et al., 2013) uses dedicated probability 
distributions to model the duration of wet or dry spells.  This is in contrast to the 
approaches designed for low-resolution rainfall, e.g., (Serinaldi & Kilsby, 2012), where the 
intermittency of wet and dry spells are not captured explicitly.   

It should be recognised that the added modelling flexibility to account for high-resolution 
intermittency of rainfall usually comes at a cost of modelling and fitting complexity.  With 
limited computation power, this added complexity might lead to simplification of other parts 
of the generator, e.g., the daily rainfall generator behind UKCP09, as reviewed in 
(Chun et al., 2013), does not account for the covariate effect in rainfall due to change in 
long-term hydroclimatic conditions.  In comparison, the low-resolution approaches can be 
easily formulated to account for the long-term hydroclimatic conditions.  (Dawkins et al., 
2022) explicitly captures the high-resolution intermittency as well as the long-term 
hydroclimatic conditions, at the cost of significantly more complex model parametrisation 
and lengthier model fitting process. 

Upscaling or downscaling 

On top of the primary temporal resolution, other durations are often of interest. In one 
direction, upscaling can take daily models and aggregate them into monthly or seasonal 
summaries. In the other direction, one can downscale to estimate daily or sub-daily time 
series from monthly outputs.  

As mentioned above, (Serinaldi & Kilsby, 2012) focus on monthly time series rather than 
upscaling daily data to avoid “overdispersion” where monthly variability is underestimated 
due to differences in the long-term characteristics of daily outputs compared to monthly. 
Alternatives approaches using daily outputs (e.g., Mehrotra et al., 2006) introduce a lot of 
extra complexity. Instead (Serinaldi & Kilsby, 2012) simply recommend the use of an 
alternative monthly model rather than upscaling, which may be more appropriate in many 

 

 

1 The final output from Atkins (2020) is daily rainfall data but the stochastic generation is 
technically over a monthly interval.  The daily resolution is achieved through post 
processing as discussed in Section 2.3. 
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cases, but complicate the comparison between monthly and daily series as they come 
from different models. 

In the case of downscaling from monthly to daily data as in (Atkins & WRSE, 2020), 
additional high-frequency data is required to reasonably simulate sub-monthly time series, 
especially if additional covariates are used. (Atkins & WRSE, 2020) use a small number of 
sample observed month profiles, which they draw on to simulate the days in a given 
month, simply by uniformly scaling the daily profile to match the generated month’s total. 
Profiles are drawn which most closely match the monthly statistics (total rainfall depth, for 
example). In the case of monthly statistics exceeding most observations (in the lowest 
20% of totals), one of the closest four months was chosen to introduce some variability in 
the extremes. No reasoning was given why four was chosen specifically, possibly 
suggesting it was via trial-and-error or expert judgement.  

In all the current approaches, different up- or down-scaling approaches can be applied to 
the monthly/daily data which comes directly out. (Atkins & WRSE, 2020) suggests just one 
such approach. However, the different mechanisms (wet/dry days vs months where zero 
rain is impossible in the model) can cause inconsistencies when trying to harmonise daily 
and monthly generators. 

Model formulation 
The main aspect which differs between the different models in operation are the way that 
covariates are applied and incorporated into the model, and the mechanisms used to get 
to the final timeseries of rainfall.  

Covariate effect  

Some of the older models, such as those used in UKCP09, simply fit the model 
parameters to observed rainfall series directly, not making use of other covariates in the 
model. A problem with not sufficiently accounting for possible covariates is the implicit 
assumption that the observed data is both stationary and representative of the scenario 
one wishes to generate rainfall for, which is a very questionable assumption given 
evidence of nonstationarity in the climate system (Kim and Onof, 2020). If the observed 
records are short, then there is likely an underestimate of the stochastic variability of the 
precipitation process, and it may lead to an inability to generate events similar to the most 
extreme storms or droughts observed, leading to an impact on our understanding of 
variability, hence our understanding of drought severity. The precise period of 
observations can also lead to biases in the rainfall generator, which present in a lack of 
drought events or a lack of extreme storm events. Both can be partially mitigated through 
the use of well-calibrated/modelled future covariates and seasonality metrics when trying 
to capture multi-decadal climatic variability. Note this is not the case for trying to capture 
variability of specific observed periods. For the most extreme events, monthly or annual 
statistics may not capture the full variability of the covariates, and so covariates with a 
higher temporal resolution are required to better capture the relationship between rainfall 
and covariates, at the cost of greater computational cost. On the other hand, if only 
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considering monthly timeseries outputs, then there is sometimes lower autocorrelation 
(Mills, 2005) in the rainfall series, reducing the need to account for it in a model. 

Typically, in the discussed generators, covariates are selected a priori, rather than through 
a model selection process (e.g. stepwise regression). Villarini and Serinaldi (2012) do 
consider this approach using AIC to choose the most appropriate GAMLSS using NAO 
and SOI (and their lags) as covariates; nearly all seasonal models need some form of 
each. Dawkins et al., (2022). No specific studies comparing non-covariate (e.g. Gaussian 
Noise) and covariate models have been found during this study. 

As discussed in Chapter 4, NAO (and seasonal variants) and SST are the key covariates 
that come up in most of the models. The Generalised Linear Model in (Chun et al., 2013) 
incorporated NAO into both the models of occurrence rate and magnitude of rainfall 
events, using cubic splines which are very flexible, but can lead to fitted models that are 
challenging to interpret. The extension in (Serinaldi & Kilsby, 2012) to a GAMLSS for the 
distribution of monthly total rainfall fits the covariates directly into the distribution 
parameters (location, scale, and shape) which can help with interpretability, and has the 
added benefit of being well supported in implementation and guidance for use. The 
problem with using NAO and SST as covariates for further generation of rainfall is the 
reliance on how NAO and SST are generated or applied. In (Serinaldi & Kilsby, 2012), 
NAO and SST were resampled from observations, rather than being parametrically 
simulated in their own right, which means that extremes beyond those observed are not 
available to feed into the rainfall generator itself. This is a common issue with this 
bootstrapping approach, which limits the generated values to those observed. A 
parametric model (drawing from a fitted extreme-value distribution based on the observed) 
may extend this range but justification of the extrapolation is required in application. 

(Atkins & WRSE, 2020) and (Dawkins et al., 2022) use similar (but many more) covariates, 
and cross-terms (products of, for example, NAO and SST), using a Bayesian penalised 
regression method, a systematic way of selecting covariate terms and cross-terms based 
on statistics of fit, which naturally sets the coefficients of covariates with low importance to 
zero. Again, due to the use of splines, these terms can become difficult to concisely 
describe, and neither (Atkins & WRSE, 2020) nor (Dawkins et al., 2022) specify which 
terms remain in the model after the penalised regression; the code suggests that all the 
terms are kept (though some coefficients were near-zero).  (Dawkins et al., 2022) also 
makes use of a random effects component which attempts to describe the impact of other 
unobserved covariates that have an effect on the rainfall magnitude. 

Across all the models, most of the covariate effect is constrained to the rainfall magnitude 
component of the generators. The wet-dry day mechanisms often only use seasonal cyclic 
patterns, although the GLM (Chun et al., 2013) also uses NAO, and the HMM 
(Dawkins et al., 2022) used Winter NAO in describing the transitions between wet and dry 
states. The HMM fits separate models for the wet-dry transition probabilities and the 
waiting time at each state (dry, wet and very wet). 

For more information, we refer to the climate predictors chapter (see Chapter 4) and the 
climate change chapter (see Chapter 5). 
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Residual effect 

The residual effect is collectively the causes of variability in the generated rainfall data that 
are not explicitly captured in the covariate effect.  As explained earlier, the residual effect 
is potentially attributable to known physical processes but has been intentionally chosen 
by the modelling approach to remain as an independent source of variability.  It should be 
noted that the residual effect is not the same as pure random noise.  In fact, there is 
usually a complicated structure imposed on the randomness to capture the observed 
spatial and temporal coherence in the rainfall data. 

Temporal coherence 

The temporal coherence in rainfall can be observed and therefore captured by statistical 
models over different time horizons.  As illustrated in the above section on ‘covariate 
effects’, it is considered relatively easy to attribute medium-to-long-term temporal 
variability to covariate effects.  In most cases where the covariate effect is present, the 
covariates are used to formulate the probability distribution of the rainfall for each 
timestep, e.g., the GLM method in (Chun et al., 2013) uses GCM outputs and the North 
Atlantic Oscillation (NAO) Index to form the probability of raining and the probability 
distribution of the amount of rain (if it rains) per timestep. The WRSE model (Atkins, 2020) 
does similarly. 

In many cases, the temporal correlation (or the autocorrelation) of the rainfall is captured 
by constructing the probability distribution based on the rainfall values from the previous 
timesteps.  For example, (Dawkins et al., 2022) uses a first-order Markov Chain to capture 
the temporal correlation which means the daily rainfall is generated based on the status of 
the previous day.  The GLM approach proposed by (Chandler & Wheater, 2002) and 
reviewed by (Chun et al., 2013) uses rainfall up to 7 days in advance to determine the 
distribution of rainfall (occurrence and amount).  

On a monthly temporal resolution, (Serinaldi & Kilsby, 2012) found that the temporal 
correlation is mostly already captured as a covariate effect by the autocorrelation in the 
hydroclimatic factors. Depending on whether this is the case, they propose a non-
parametric bootstrap resampling approach (for no residual autocorrelation) or the 
GAMLSS model coupled with a Gaussian copula (for residual autocorrelation). 

A carefully modelled autocorrelation is important as extreme drought events are a 
consequence of persistent sampling of zero or low rainfall values over an extended period 
of time.  For high-temporal-resolution approaches (where the number of low-rainfall 
simulations needs to be high due to the increased number of timesteps) or approaches 
without a climate-drive covariate effect (where the probability distribution of rainfall does 
not shrink in dry climate conditions), the capability for model to persistently draw samples 
from the lower-end of the rainfall distribution becomes paramount. 
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Spatial coherence 

In general, the spatial coherence in the rainfall refers to the fact that the rainfall over 
multiple spatial locations can be correlated.  These locations may be individual rain 
gauges where the rainfall data is collected, or individual cells in a regular grid over an 
area.  The full extent of the correlation may be the consequence of both the covariate 
effect (i.e. all locations fall under the same climate or weather system) and residual effect 
(i.e. some localised factor that affects only nearby locations).  The covariate effect is 
discussed above, so this section only covers the latter. 

The spatial coherence is only relevant to models that can be extended to multiple sites, 
i.e. (Atkins & WRSE, 2020; Dawkins et al., 2022; Serinaldi & Kilsby, 2012).  All three 
models use a variation of copula models (i.e. a multivariate probability distribution with 
transformed marginal distributions).  The two methods as stated and reviewed in 
(Chun et al., 2013) do not currently cover multiple sites but the GLM method is potentially 
extensible to do so, as per (Yang et al., 2005).  Subsequent developments have been 
made to the NSRP model (Burton et al., 2008) 

Accounting for the spatial coherence is important because a biased estimation of the 
spatial correlation will cause the areal aggregation to be biased as well.  In particular, an 
overestimated correlation means the areal rainfall is more extreme than reality, because 
the worst wet or dry patches are generated to occur concurrently more often than 
expected.  By the same logic, an underestimated spatial correlation means 
underestimated extremes. 

There are numerous options for quantifying the correlation between multiple random 
variables, e.g., the linear correlation coefficient.  In a study of extreme values, the extremal 
dependence is arguably one of the most relevant measures.  (Ledford & Tawn, 1996, 
1997) highlighted two main types of extremal dependence, i.e. asymptotic dependence 
and asymptotic independence.  This classification underpins the difference in the 
probability of observing concurrent (or joint) extreme values over multiple locations. 

Within the three relevant approaches, (Serinaldi & Kilsby, 2012) and (Atkins & WRSE, 
2020) use a Gaussian copula whereas (Dawkins et al., 2022) uses a vine copula.  The 
Gaussian copula is easy to fit and performs relatively well for non-extreme-value-focused 
analysis.  This is due to the fact that the Gaussian copula relies only on the pairwise linear 
correlation and is most suited for capturing the overall correlation.  On the other hand, it 
makes implicit assumptions that extreme values at  all locations are asymptotically 
independent, which means the probability of concurrent large values at multiple locations 
is enforced to converge to zero.  This assumption could be restrictive and it would be 
preferable to perform some statistical test of extremal dependence beforehand.  
Alternatively, a more flexible approach could be to use a copula model that can represent 
both types of extremal dependence.  The Gaussian copula also makes the assumption 
that the correlation between variables is constant for normal or extreme events, which 
again would require additional checking.   
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The vine copula is a more sophisticated copula model and benefits from its capability of 
modelling both types of extremal dependence.  (Simpson et al., 2021) gives a detailed 
study of the tail behaviour of the vine copula and finds it to be sufficiently flexible on a 
practical level. The main drawback of the vine copula is associated with the formulation (of 
the vine dependence structure) and the complex fitting process.  When combined with the 
rest of the stochastic generator model components, the fitting of a vine copula is 
computationally intensive, and potentially prohibitively so when considering high spatial 
dimensions (see Section 4.2 for some further discussion). 

 

Key implementation consideration 

EVA checking 

The extreme value theory (EVT) is a collection of theory and methodology centred around 
the description of the statistical properties of rare events.  These rare events (e.g., severe 
droughts) are typically characterised by certain associated random variables (e.g., rainfall 
deficit or cumulative rainfall) reaching an extreme level (e.g., high deficit or low cumulative 
rainfall). 

The extreme value analysis (EVA) refers to the study of observed rare events based on 
the EVT.  A distinct feature of the EVA, as opposed to the standard distribution fitting, is 
that the EVA focuses on the tail area of the probability distribution and is used to provide a 
scientific extrapolation to quantiles beyond the range of the data, e.g., the estimation of a 
1,000-year event (of 0.001 annual exceedance probability, or AEP) based on 50 years of 
data.  In this example, the lowest AEP that can be estimated empirically is approximately 
1/50 (or 0.02) which is still greater than 0.001, so the EVA needs to be performed. This 
1/50 estimate possibly a poor estimate. 

When a stochastic rainfall generator is validated, it is desirable that the probability of 
encountering severe droughts within the stochastic series matches the historical data.  
Ideally the consistency should be observed over different return periods (RPs) or annual 
exceedance probabilities.  Within this aim, an EVA check is observed in most of the 
reviewed literature as a standard model or outcome validation step.  In most cases, the 
EVA check follows these key steps: 

1. Identify individual drought events based on the rainfall or a derived drought-related 
index 

2. Define the key variables (i.e. attributes) of interest for the identified drought events 
3. Estimate the extreme values of the key variable over a range of RPs or AEPs  
4. Apply step 1 to 3 to both the observed and the stochastic rainfall series and 

compare the outcome of step 3 

Step 1 – event identification 

The EVA usually requires the data under analysis to be independently and identically 
distributed (IID). Therefore, it is important to identify individual drought events from the 
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stochastic or observed rainfall series. The identification of drought events can be 
performed based on various drought-related indices derived from the rainfall. 

• (Chun et al., 2013) and (Serinaldi & Kilsby, 2012) both use the Drought Severity 
Index (DSI) as proposed by (Phillips and McGregor, 1998) to identify events.  In 
particular (Serinaldi & Kilsby, 2012) uses a range of time scales for the DSI 
calculation. 

• (Dawkins et al., 2020) uses the 36-month rainfall Deficit Drought Index (DDI). 
• (Atkins & WRSE, 2020) uses the summer average Rainfall Deficit Index (RDI). 

Figure X-1 shows an example of the calculated DSI3 index (DSI over a three-month 
period) based on the observed or the stochastic rainfall series. 

 

Figure 1: DSI3 series based on the observed (solid line) versus the stochastic 
(quantiles shown in colours) rainfall at the NRFA station 28031 (source: Figure 6 
from Chun et al., 2013). 

 

Typically a drought event is considered to have initiated when the corresponding drought-
related index exceeds a certain threshold.  Similarly the event is considered to have 
terminated when the index falls below the threshold.  This identification method is similar 
to the peaks-over-threshold (POT) declustering method seen in the EVT literature such as 
Smith & Weissman, 1994 

Whilst this is a theoretically justified method for identifying IID extreme events, the 
outcome of the identification can be sensitive to certain parameters used in the process, 
namely the threshold or the event separation window (also known as the Smith’s runs 
period (Smith & Weissman, 1994)).  In particular an event separation window of D days, 
say, would merge two identified events into a single event if the start of the second event 
is less than D days away from the end of the first event.  The papers which describe 
current practice have very little discussion around the choice or the implication of the 
threshold and event separation window. However, more generally several papers have 
discussed choices of threshold and separation window in the scope of drought indices. 
(Tallaksen et al., 1997) tests the sensitivity of extracted drought events to variation in the 
event separation window (or inter-event time as they called it). (Fleig et al., 2006) similarly 
tests sensitivity of drought deficit volume and duration to choice of different inter-event 
time windows. (Parry et al., 2016)(Parry et al., 2016)(Parry et al., 2016)(Parry et al., 
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2016)(Parry et al., 2016)(Parry et al., 2016)(Parry et al., 2016) tests sensitivity of drought 
termination characteristics to choice of several parameters for event selection. 

Step 2 – definition of key variables 

Various attributes such as the duration, magnitude and severity of droughts have been 
used in the literature.  In general an EVA check based on a wider variety of statistics 
would provide better assurance of the quality of the stochastic series  (Serinaldi & Kilsby, 
2012 and Dawkins et al. 2022). 

(Chun et al., 013) and (Atkins  & WRSE, 2020) only perform the EVA check based on the 
original drought index.  (Dawkins et al., 2022) used three attributes – magnitude, duration, 
and severity.  (Serinaldi & Kilsby, 2012) used four attributes – drought maxima, severity, 
duration, and interarrival time. 

Step 3 – estimation of extreme values 

Both non-parametric (empirical) methods and parametric methods have been used in the 
literature to obtain estimates of extreme levels for the drought variables. 

The non-parametric method refers to statistical estimation without making explicit 
assumptions about the underlying distribution of the studied variable.  They include the 
inverse-ranking method, plotting position (e.g., Weibull method or Weibull plotting position) 
as used in the reviewed literature.  These methods are more reasonable for RPs shorter 
than the total length of the data but cannot be used for extrapolation to higher RPs. 

(Atkins & WRSE, 2020) discusses the option of joining the stochastic series to form a 
single long series.  This is potentially a viable option but the underlying probabilistic 
assumptions need to be justified, depending on how covariates are used. 

On the other hand, parametric methods refer to the use of certain probability distributions 
to capture the statistical behaviour of the studied variable.  These methods allow 
extrapolation to high RPs (beyond the length of the data) but require additional complex 
distribution fitting exercise.  For example, (Atkins & WRSE, 2020) highlights the fact that 
multiple fitting methods could potentially be used. 

(Atkins &WRSE, 2020) is the only study that presents an EVA including parametric 
estimation of extreme values.  However the distributions used in the study is not in line 
with the best practice of the EVA, e.g., the only theoretically justified distribution for the 
POT values is the Generalised Pareto Distribution (GPD), not the Weibull or the 
Generalised Extreme Value (GEV) distribution as used in that study (Coles, 2001).  

Step 4 – comparison of estimated extreme values 

The output from step 3 is usually in the form of a curve whereby the x-axis is the AEP (or 
RP) and the y-axis is the estimated extreme levels of the studied variable or drought 
attribute.  Sometimes the axes may be swapped.  For the observed or historical data, 
there is a single curve per variable.  For the stochastic series, there is one curve for each 
individual stochastic series so the outcome is a collection of curves and quantiles are 
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usually taken to form a confidence interval (CI).  A standard operation as seen in the 
literature is to compare the relative position of the observed curve with the full range or the 
CI from the stochastic series.  In an ideal situation, the observed curve should lie 
comfortably within the CI whereas the full range of the stochastic series should provide 
more or less extreme versions of the observed curve. 

Figure X-2 gives an example of such a comparison based on extreme level rainfall.  
Similar figures can be found in (Chun et al., 2013), (Serinaldi & Kilsby, 2012), (Atkins & 
WRSE, 2020) and (Dawkins et al., 2022). 

 

Figure 2: Illustration of an EVA comparison between observed and simulated 
extreme rainfall levels (source: Fig.5 Chun et al. 2013). 

 

Regardless of which method is being used (parametric vs non-parametric) in step 3, it 
should be recognised that there are uncertainties associated with the estimated values.  
For example, the inverse-ranking method assigns an N-year RP to the worst event the 
N-year period, whereas there is approximately 50% chance that the true RP of the worst 
event is greater than 2N or less than N/2 based on probabilistic calculation.  Similar model 
fitting uncertainty exists with the parametric methods too. 

For a robust EVA checking, it is recommended that the output from the extreme value 
estimation be considered jointly with the underlying estimation uncertainty.  So instead of a 
single curve, a presentation involving a CI for the observed data and each individual 
stochastic series should be considered.  The latter will be challenging to visualise so a 
simple convolution of distributions can be used to combine the CIs from all the stochastic 
series.  This additional consideration might lead to additional insight given the large 
uncertainty caused by the relatively few data points per time series. 
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Computation / implementation costs 

A key reason to use stochastic rainfall generators instead of using process-based 
meteorological models is to reduce the computation time or resources. Many of the 
models which have been used in practice, (Atkins & WRSE, 2020; Jones et al., 2010; 
Serinaldi & Kilsby, 2012) involve quite simple models which can be combined with an even 
simpler random seed generator to generate the stochastic rainfall series. This is beneficial 
for smaller companies and projects where resources (time, computational power) may be 
limited. On the other hand, (Dawkins et al., 2022) admits to requiring a large amount of 
computation time to simulate rainfall at more than a few sites simultaneously, due to high 
number of parameters being fitted with complex dependencies. For the HMM portion of the 
(Dawkins et al., 2022) model, it took 40 hours, 8 CPUs and 50GB of memory for each of 
the 39 sites (over 38000 days per site). For all other methods, the amount of time and 
memory required is very small, mostly consisting of the size of the input data being used. 

On top of this, while there are few decisions required in fitting the GAMLSS of (Serinaldi & 
Kilsby, 2012), the monthly downscaling of (Atkins & WRSE, 2020), or the GLMs of 
(Chun et al., 2013, there is additional statistical knowledge or expertise to visually inspect 
outputs of the Markov Chain Monte Carlo methods of (Dawkins et al., 2022; Jones et al., 
2010), where prior distributions and acceptance probabilities must be adjusted to give 
reasonable results. This should be taken into account depending on the size of the study 
region in future projects. 

Set up of simulations under different climate scenarios  

There are three approaches in principle to handle the impact of different climate scenarios 
on the generation of rainfall and consequently the drought event data. 

The first approach post-processes the stochastic model output, while the second approach 
is based on transforming the rainfall value of an initial data set to match the statistics from 
a target climate scenario. In both approaches the transformation is guided by a set of 
change factors derived by calculating the difference between baseline observations with 
future climate scenarios (need cross-referencing to the CC review). 

The third approach explicitly captures the impact of climate scenario in the stochastic 
generation process through the use of the covariate effect (Section 3.1).  For example, 
(Serinaldi & Kilsby, 2012) uses the NAO and SST index to capture the climate impact and 
(Atkins & WRSE, 2020) extends this to a set of eight hydroclimatic drivers.  (Chun et al., 
2013) and (Dawkins et al., 2022) also present explicit modelling mechanism to capture the 
impact. 

Under the third approach, an ensemble of hydroclimatic covariates from the required 
climate scenario will be used to pre-parameterise the stochastic generator so that the 
resulting stochastic rainfall series would endorse the desired climate pattern. When the 
total number of simulations is constrained, there might a trade-off between the size of the 
ensemble and the number of simulations per ensemble member. However the former is 
usually pre-determined by the source of the hydroclimatic data. 
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In contrast to the handling of future climate uncertainty (via the ensemble of hydroclimatic 
conditions), our review finds that the stochastic generation under the present day scenario 
does not sufficiently explore the uncertainty embedded in the hydroclimatic condition. This 
uncertainty arises when the historical hydroclimatic conditions are assumed to be a fair, or 
in some cases the only, representation of the present day climate.   

For example, the AME framework from (Dawkins et al., 2022) reuses the same SNAO, 
WNAO, EA and SST values as observed for present day rainfall simulation.  (Serinaldi & 
Kilsby, 2012) uses a resampling scheme to draw alternative samples from the observed 
NAO and SST values, which creates relatively more temporal variability but is still confined 
to the observed range of values. The consequence from such approaches is essentially an 
under-sampling of variability, as acknowledged in (Dawkins et al., 2022), and highlighted 
by some existing reviews such as (Beven, 2021).  A potential fix for this might be to echo 
the treatment of future climate uncertainty and generate an ensemble of present-day 
hydroclimate conditions allowing for more and less extreme values.  Both statistical or 
physics-based models could be considered for the generation of this present-day 
ensemble. 

For in depth discussion of limitations and recommendations for applying climate change 
scenarios for hydrological projections, please see Chapter 5. 

Recommendation 
1. Select an appropriate stochastic generator with consideration of the modelling 

mechanism suitable, spatial and temporal resolution of the output, as well as the 
overall computational complexity of model fitting and simulation. 

 
Benefit: The choice of the modelling approach is made in an optimal way so that the 
modelled features are of direct impact on the problem to resolve, and the model 
complexity is compatible with the modelling and computation resources available. 
Effort: Low. 
Due to the different consideration and model formulation for the daily or monthly models, 
the users should consider carefully the most appropriate temporal resolution based on the 
problem they are trying to solve. This is particularly important as it is challenging to ensure 
the statistical consistency between the original stochastic series and the upscaled or 
downscaled series. This decision should be made jointly with the data availability and the 
user’s appetite for model complexity. However it could be argued that a monthly timestep 
would be more suited for water resources planning purposes provided all other factors are 
indifferent between the two choices. 

Additionally, the mechanics of the different stochastic generators are suited to different 
applications: drought events, long-term average rainfall patterns, flood events. Therefore, 
the stochastic model should be chosen to most appropriately reflect this. For example, the 
Markov model of (Dawkins et al., 2022) has a focus on a rain/no-rain daily model, which is 
more suited to identifying short-duration rainfall events, rather than long-duration drought 
events. 
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A comprehensive collection of key features such as high temporal resolution, spatio-
temporal coherence, and reliable covariate effects can jointly lead to a high model 
complexity and consequently prohibitive computation cost.  The users are encouraged to 
take care when specifying their modelling needs and place their resources accordingly. 

2. Follow a rigorous evidence-based process to select the most optimal set of 
covariates. 

Benefit: The covariate-driven model is supported by the most relevant set of covariates, 
which are selected based on a rigorous, justifiable and repeatable process.  The influence 
of any spurious correlation between the covariate and output rainfall is minimised. 
Effort: Moderate. 
Within the reviewed literature, a lot of work has been done to propose suitable covariates 
for the stochastic generation.  A rigorous process should be followed to select the most 
optimal set of covariates by considering their statistical properties, such as the significance 
of the correlation between the covariates and the output rainfall, as well as the practical 
implications, e.g., the reliability of the input data, etc.  The user could refer to common 
statistical model selection techniques for suitable hypothesis testing procedures to use 
(Davison, 2003). 

3. Understand and communicate clearly the implication of resampling the covariates 
over the same observation period.  

Benefit: Unintended biases in the frequency of extreme drought events is avoided.  
Effort: Moderate. 
If a chosen stochastic generation method is driven by covariates, it is of paramount 
importance to understand the implication of reusing or resampling the covariates over the 
same observation period.  In general, the most extreme covariate value in an N-year 
period may have a very different natural recurring frequency than once-in-N-years.  The 
users of a covariate-driven stochastic generation method are strongly recommended to 
consider and test the sensitivity to rare observations, e.g., by placing them on a higher or 
lower natural frequency.  The assumption that the observation period (of the covariates) is 
an unbiased reflection of the simulated period needs to be backed by compelling 
evidence. 

4. Follow the best practice of the EVA with clear quantification of model fitting 
uncertainty when estimating the return period or return level of rare events. 

Benefit: The extrapolation of extreme (low) rainfall beyond observed range is derived 
using rigorous and theoretically justifiable approaches. 
Effort: Low to Moderate. 
The review also finds that the best practice of the EVA is not always followed, nor is the 
uncertainty of the model fitting fully captured.  The related statistical methods are mature 
and abundant, and these two aspects ought to be well covered for any EVA checking of 
the stochastic series. 
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5. Consider the use of multivariate statistical models that are more suited for 
capturing the tail dependence between the modelled variables in the spatio-
temporal processes. 

Benefit: The estimation bias is minimised for measures that are a function of multiple 
direct generator outputs (e.g., the total rainfall over a few modelling cells, or the number of 
consecutive months when the rainfall is below an extremely low threshold) especially 
when one or more of these generator outputs are extreme. 
Effort: High. 
Over the past decade, several spatio-temporal rainfall generation methods have been 
proposed.  They are typically fitted to the observation data so that a pre-defined set of 
statistics are kept consistent between the observation and the simulated data.  When 
extreme drought events are concerned, it can be argued that the selection of statistics 
ought to include those better reflecting the tail dependence of multiple distributions (e.g., 
rainfall at different spatial locations or at different timesteps). 
(Ledford and Tawn, 1996, 1997) provide a good summary of the theory and key statistics 
around tail dependence.  The conditional approach proposed in (Heffernan and Tawn, 
2004) or the wider group of suitable copula-based models (Joe, 2014) can be considered 
for explicitly capturing the tail dependence.  It should be noted that most copula models 
make implicit assumptions about the type of tail dependence so the users should test the 
tail property of the generated data and ensure its consistency with the observation data. 

One key parameter that underpins the joint extrapolation of multivariate (or spatial) 
random variables to extreme levels is termed the coefficient of tail dependence as defined 
in (Ledford and Tawn, 1996, 1997). The coefficient of tail dependence measures the 
relative rate at which two variables converges to the upper limit of their respective 
marginal distribution. It is recommended that the users verify the supported range of this 
coefficient of the chosen distribution when selecting a suitable model. This is potentially a 
challenging task due to the asymmetry of dependence observed in many spatial 
processes, e.g., variable A is more dependent on B than B on A in the joint tail area of the 
distribution. 
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Climate input data 
Maliko Tanguy and Amulya Chevuturi (with review and input from the author team) 

 

Introduction 
Stochastic weather generators rely on mimicking the behaviour of the observed weather 
data using statistical relationships and lack any explicit physical basis (Jones et al., 2010). 
Thus, these approaches are completely dependent on the variability of the input data. The 
quality of the input data feeding into weather generators is therefore paramount, with 
larger sample size of input data providing higher confidence in the synthetic time series 
generated. This requires benchmarking against accurate and long observational records 
(Barker et al., 2019). In this chapter, we present insights on observational datasets, 
drawing examples from various sources, including HadUK, CEH-GEAR and rainfall rescue 
datasets. These examples are used to highlight key issues related to climate input data, 
even though these datasets may or may not be used for stochastic studies. 

 

Input data quality and homogeneity of long time series 
Given the significance of input data in stochastic methods, most studies in this domain 
meticulously curate their datasets, by comparing different observational datasets and 
model simulations for selected sites over UK (Atkins, 2020). Extending the observational 
record can be beneficial to constructing stochastic models. For example, Serinaldi and 
Kilsby (2012) used rainfall data from 1860-2002 over six catchments. However, the rainfall 
data (Jones et al., 2004; 2006) originates from two distinct sources: raingauge data from 
1860-1980 (Jones, 1984) and the UK Met Office 5km gridded data from 1980-2002 (Perry 
and Hollis, 2005). Despite previous testing for homogeneity issues prior to merging these 
datasets (Jones et al., 2004), we have concerns that still persist regarding potential data 
disparities: the earlier period comes from point observations, whereas the latest part is 
taken from a gridded dataset obtained from interpolation (please see the detailed 
discussion below). Some stochastic methods have incorporated long timeseries of rainfall 
from gauge data (e.g., the Generalized Linear Model (GLM) approach of Leith et al. 2005) 
and this approach was originally tested using data from Heathrow, Birmingham and 
Manchester airports (Leith, 2005). However, accurate and long observed record of rainfall 
data are only available over few locations in the UK, and thus the stochastic studies use 
multiple sources of datasets. This issue becomes even more relevant as recent stochastic 
studies have shifted from regional analyses to nationwide assessments, increasingly 
relying on gridded datasets rather than point observations. 

Typically, for any hydrological application, any errors or uncertainties associated with the 
input data propagate in any subsequent analysis, but especially in stochastic methods, 
which are so dependent on the input data (Jones et al., 2010). Input rainfall data was 
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shown to be one of the most important sources of uncertainty in hydrological applications, 
accounting for up to 50% of the error in river flow simulations (Bardossy et al., 2022). This 
is particularly important as there are well-known weaknesses to the input data; observed 
rainfall derived from weather stations/gauges (Lewis et al., 2018) or radar systems 
(Chan et al., 2018) have well-documented quality issues. Raingauge data, which are 
widely considered the closest estimate to ‘the truth’, can have large uncertainties, mostly 
from under catch issues which can reach 10% in winter in the UK, resulting in a mismatch 
between the amount of rain or snowfall collected by the raingauge and the actual amount 
reaching the surface. In addition, changes in instrumentation and standard installation 
practice raises concerns over the homogeneity of certain long time series (Muchan and 
Dixon, 2019). Moreover, under catch of precipitation totals in standard rain gauges has 
been shown to be even greater with snowfall (e.g., Colli et al. 2020). In particular, for the 
England and Wales Precipitation (EWP) time series, snow was prevalent in the earlier part 
of the record, before the effects of anthropogenic warming became noticeable. It is 
therefore believed that winter precipitation is significantly underestimated in the earlier part 
of the record, widely overestimating winter wetting trends in the 20th century in England 
and Wales (Murphy et al., 2020). Thus, it is essential to consider the limitations of the input 
data before using them to train stochastic models, to minimize and estimate uncertainty in 
our applications.  

Stochastic studies expecting to work with long rainfall record need improved data over the 
earlier period of the rainfall records over the UK, especially before 1910. A recent initiative 
has significantly improved the rainfall record for the earlier years through the participation 
of citizen scientists to digitize millions of hand-written observations for hourly to daily 
rainfall (and other variables) from the UK National Meteorological Archive (Hawkins et al., 
2019; Craig and Hawkins, 2020). This project has substantially increased the data points 
from rainfall gauges before 1960 over the UK (Hawkins et al., 2022; Figure 1), especially 
compared to the rainfall gauges used for CEH-GEAR (Tanguy et al., 2021; Figure 2) and 
the HadUK rainfall dataset (Hollis et al., 2019) version 1.0 (Figure 3). The additional data 
has shown to improve the representation of total monthly rainfall and individual storm 
representation (Craig and Hawkins, 2020).  
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Figure 1: Density and distribution of rainfall gauges in v1.1.0 of the Rainfall Rescue 
dataset for specific years between 1866 to 1906. [Source: Hawkins et al., 2022].   

 

 

 

Figure 2: Density and distribution of rainfall gauges used to derive CEH-GEAR daily 
rainfall on 1st of January of (a) 1910, (b) 1935, (a) 1960, (b) 1961, (a) 1974, (b) 2012 
[Source: Keller et al., 2015].  
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Figure 3: Number of rainfall stations available in HadUK-Grid v1.0 (orange), the raw 
Rainfall Rescue observations (grey), and v1.1 of the Rainfall Rescue dataset (black) 
between 1677 and 2019 at monthly timescales. [Source: Hawkins et al., 2022]. 

 

Spatial coverage and gridded datasets 
Early studies, such as Serinaldi and Kilsby (2012) only used a handful of stations to train 
their stochastic models, raising concerns about spatial coherence and representativeness 
across catchments. The latest studies include a greater number of sites to not only 
improve spatial coverage in each water region within England and Wales, but also focus 
on locations which are of interest to regional water companies (e.g., high altitude sites). 
With extensive spatial coverage for all regions, the outputs from these studies can be 
brought together for national assessments (Atkins, 2020). However, it is important to 
consider and minimize discontinuities that may arise from merging different data sources 
or interpolation errors when extracting point data from gridded datasets (discussed more in 
detail later). In the Water Resources Management Plan 2019 (WRMP19) planning cycle, 
water companies used catchment average daily precipitation data from gridded products 
or rainfall station data over 45-60 sites per region, with each region having a bespoke 
model fitted over 1920-1997. Building on WRMP19, Atkins (2020) used high quality 
precipitation observations from 1950-1997 over 195 sites (with 50-80 sites per region) 
extracted from 1km HadUK rainfall data (Hollis et al., 2019) based on stringent site 
identification criteria. Some studies cover specific regions, for example the Anglian region, 
which has “complicated water resource situations” (Dawkins et al., 2022) i.e., they are 
prone to droughts due to low rainfall amounts and their dependency on aquifers and 
reservoirs, and thus have large implications on the water resources. Dawkins et al. (2022) 
used HadUK 1km gridded rainfall data over 39 sites in the Anglian region to run the 
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Advanced Meteorology Explorer (AME) model over 105 years from 1914-2018, after strict 
quality checks. 

Although some weather generator studies use only rainfall gauge data as input (e.g., Leith, 
2005) and some use the whole gridded dataset as input for their weather generators (e.g., 
Jones et al., 2010); most stochastic studies reviewed here extract rainfall observations at 
different study sites from gridded observation datasets (e.g., Atkins 2020; Dawkins et al., 
2022). However, site observations derived from gridded rainfall datasets may have 
differences from actual station data due to the application of data interpolation (Dawkins 
et al., 2022). Interpolated data is usually not able to represent the observed extreme 
rainfall, from sources like convective storms, and thus deviates from station data for 
certain events. This issue is more noticeable when the density and distribution of 
underlying stations for the gridded dataset is quite sparse (Legg, 2015). Keller et al. (2015) 
showed that the error in rainfall estimate in gridded CEH-GEAR data increases with the 
distance to the closest raingauge. The number of stations over the highland regions in the 
UK have always been quite low compared to rest of the country, but it was especially low 
before 1910 (Keller et al, 2015; Figure 2). The number of UK rain gauges increased 
steadily until 1960-1970 and then fell in the subsequent years for both CEH-GEAR 
(Keller et al., 2015; Figure 4) and HadUK rainfall datasets (Hollis et al., 2019). Although 
CEH-GEAR and HadUK rainfall datasets have inherent differences due to their respective 
generation methods (discussed in detail later), they also exhibit significant similarities 
(Figure 5) due to overlaps in the underlying station data. 

 

Figure 4: Number of UK rain gauges used to derive CEH-GEAR gridded rainfall for 
(a) monthly rainfall (prior to 1960 there is only one gauge used); and (b) daily rainfall 
[Source: Keller et al., 2015].   

 

Regions with sparse gauge distribution for rainfall gridded data relies more on data 
interpolation and thus, the choice of using gridded datasets rather than station data 
directly, especially for heterogeneous regions like the highlands, is a strong limitation of 
stochastic methods. To overcome this, some studies apply stochastic methods directly to 
the whole grid (i.e., all the grid points) of the dataset rather than interpolating the gridded 
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data to point locations (Jones et al., 2010). The other option is that studies perform 
stronger quality control check to identify unusual behaviour and large difference between 
station and gridded datasets over the study sites. For example, in Dawkins et al. (2022), 
quality checks consider the differences in the rainfall distributions related to proportion of 
zero rainfall days and variance of daily rainfall on an annual basis. Thus, data is only used 
for the period that passes the stringent checks, which was from 1914-2018, even though 
the data is available from 1891 onwards. The “limited” study period in this case coincides 
with periods of good spatial coverage of rain gauges. While prioritizing data quality and 
truncating series may enhance overall accuracy, it's crucial to acknowledge the risk of 
overlooking significant drought events and not capturing all the patterns of natural 
variability. Dawkins et al. (2022) missed the extended drought from the 1890s to 1910, 
highlighting the trade-offs inherent in decisions related to truncating the input data. 

An important point to consider is that the choice of gridded datasets may also have an 
impact on the stochastic weather generator output. Atkins (2020) showed that rainfall 
datasets like CEH-GEAR and HadUK can have inherent differences arising from the 
selection of rain gauges, quality control approaches applied, and the interpolation methods 
used. However, the study noted that differences stemming from the model updates has a 
greater impact on the output time series compared to the choice of input data.  These 
differences can be larger for high rainfall events (Figure 5a) or regions at higher elevations 
(Figure 5b), as shown by initial analysis conducted by UKCEH (unpublished). Simpson 
and McCarthy (2018) also showed that sampling strategies employed to derive different 
rainfall gridded products lead to significant differences in the resulting estimate of extreme 
rainfall, which can locally have important impacts. 

 

  

Figure 5: (a) Right-hand tail (with bins of rainfall greater than 10 mm/day) of the 
histogram for CEH-GEAR (red) and HadUK (blue) rainfall dataset. (b) Scatter plot 
between elevation and rainfall for each grid point of CEH-GEAR (red) and HadUK 
(blue) rainfall datasets [Source: Preliminary analysis]. 
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Ingesting the historic rescued rainfall data mentioned in the previous section 
(Hawkins et al., 2022) has significantly improved UK rainfall gridded data (HadUK rainfall 
data version 1.2), and global reanalysis datasets (Slivinski et al., 2019; Hawkins et al., 
2023). Using gridded datasets that have more observations will be beneficial for future 
stochastic studies, especially at daily timescales.  

In the case of model-based climate gridded datasets being used as input for stochastic 
weather generators, the considerations have been discussed in the Climate Change 
chapter (see Chapter 5). Using gridded datasets allows for models to incorporate future 
scenarios using climate model projections (Chun et al., 2013). Further, alternative input 
datasets can also be considered to train the stochastic models for future projections like 
eFLaG and large ensemble runs which have transient climate change simulations (also 
discussed in Chapter 5 for more details). However, the inclusion of climate projections 
introduces further climate model-related uncertainties into the stochastic modelling 
process (for more details please see Chapter 5).  

Some studies post-process point-data output from stochastic weather generators to create 
catchment-scale rainfall and river flow data. The catchment averages are calculated as 
weighted averages over Thiessen polygons (Atkins, 2020) or HadUK catchment averages 
(Dawkins et al., 2022). Catchment averages provide a more reliable representation than 
single grid point data, as they prevent the interpolation errors arising due to the grid point 
distance from gauge observations. However, applying catchment averages may be 
partially leading to the biases in river flows of the weather generators (Dawkins et al., 
2022), and the choice of interpolation method can have a significant effect on the result 
(e.g., Yang and Xing, 2021; Antal et al., 2021). 

 
Consideration on PET method 
All the studies in the UK using stochastic weather generators discussed so far generally 
focus mainly on rainfall. Indeed, multiple studies have demonstrated that hydrological 
models are much more sensitive to errors in rainfall than to errors in potential 
evapotranspiration (PET), especially in temperate climate such as the UK (Bastola et al., 
2011; Guo et al., 2017; Paturel et al., 1995). Although calibrating the rainfall-runoff models 
should be performed with PET derived from weather generators, it is important to validate 
the generated PET. Errors in PET have shown to have a potential effect on simulated river 
discharges especially for high and low flows (Samadi, 2016). For example, the choice of 
PET calculation method can have a significant impact to modelled runoff and river flows 
(Oudin et al. 2005). PET estimates may vary depending on the methods applied for their 
calculation (e.g., Kingston et al., 2009), and have variable performance, even after 
calibration (Tanguy et al., 2018). Moreover, many studies suggest that PET is going to 
become increasingly important as future warming is certain (Robinson et al., 2022) and the 
significance of evaporative demand is anticipated to increase in future droughts (Reyniers 
et al., 2023). Vicente-Serrano et al. (2022) shows that a sharp increase in the atmospheric 



50 of 92 

evaporative demand is expected to drive a rise in the severity of future droughts. More 
generally, the two recent severe droughts to impact the UK, in 2018 (Turner et al. 2021) 
and 2022 (Barker et al. 2024) have been associated with very arid summer conditions, 
with very high evaporation losses during periods of exceptional temperatures. Thus, it is 
important for future drought studies over the UK to consider changes in both PET and 
rainfall (Glenis et al., 2015) for better representation of future drought variability and 
characteristics and that the choice of PET method are tested and validated. 

 

Summary of recommendations 
1. Prioritise high-quality, homogeneous input datasets. When using gridded datasets 

instead of point observations, prioritize those with extensive underlying observations, 
incorporating historical rescued rainfall data to improve long-term records (Hawkins 
et al., 2022). In general, ensure the use of consistent rainfall datasets to increase 
robustness of results. 
Benefit: Enhances the accuracy and reliability of stochastic hydrological simulations, 
leading to more informed decision-making and planning. 
Effort: Low to Moderate. Acquiring and curating extensive datasets demands time and 
resources, but the long-term benefits outweigh the initial effort. Some of these 
improvements have already been incorporated in open-source datasets (HadUK: 
Met Office, 2018; MIDAS: Met Office, 2012). 

2. Review the fitness-for-purpose of the rainfall network with a view to its utility for 
supporting larger-scale regional drought assessments. This could potentially lead to 
increasing the number of monitoring sites to enhance spatial representation, or 
prioritising under-sampled areas and high-elevation sites, or exploring alternative 
methods for regional rainfall measurement. Alternatively, opt for high quality gridded 
datasets. 
Benefit: Ensures that the data collected aligns with the needs of regional drought 
assessments, with good spatial representation. 
Effort: High. Assessing and potentially expanding monitoring sites can require 
significant resources, especially if the need for a substantial increase in the number of 
monitoring sites is identified. However, optimizing existing networks or exploring 
alternative measurement methods might involve less effort. 

3. Estimate the uncertainty arising from irreducible errors in underlying observation data 
(observational uncertainty), from the choice of input dataset or the choice of 
interpolation method, and acknowledge the effect of these in the interpretation of 
results. 
Benefit: Estimating and accounting for uncertainty due to errors in data and 
methodology improves the credibility of water resources assessments. Acknowledging 
these uncertainties enhances the transparency and trustworthiness of the results. 
Effort: Moderate. The effort for this recommendation primarily involves statistical 
analysis to quantify uncertainties and developing a clear framework for reporting them. 
While this analysis demands a level of expertise, it wouldn’t necessarily require 
substantial additional data collection.  
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4. Due to the growing importance of potential evapotranspiration (PET) in future climate 
scenarios, there is a need to test and validate various PET calculation methods and its 
impact on calibration of models and subsequently the results. 
Benefit: Using the best PET method after testing and validating different calculation 
methods will offer a more accurate representation of hydrological simulations, 
especially with growing trends of evaporative demand driven by increasing 
temperature. 
Effort: Low to Moderate. Testing various calculation methods demands time for 
analysis and validation, but is generally quite simple. 

 

Conclusion 
In summary, the quality and selection of rainfall input data are pivotal for the reliability of 
stochastic weather generators. Ensuring data accuracy, consistency, and coverage, 
especially for historical records, is essential. Moreover, future studies should also consider 
the choice of method to estimate potential evapotranspiration for a more comprehensive 
understanding of future drought dynamics in a warming world. 
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Climate Predictors 
Amulya Chevuturi and Maliko Tanguy (with review and input from the author team) 

Introduction 
Stochastic weather generators, for water resources applications in England, typically use 
the relationship between climate predictors and local rainfall patterns as a basis for 
stochastic simulation. Originally, these generators utilized observed indices such as the 
North Atlantic Oscillation (NAO; Jones et al., 1997) and sea surface temperatures (SSTs) 
of specific areas of the North Atlantic Ocean (Serinaldi and Kilsby, 2012) to generate 
synthetic rainfall datasets, which were employed for water resources planning in the UK 
(Water UK, 2016; Atkins, 2020). These climate predictors are selected based on their 
strong relationships with rainfall in the specific region of interest. For instance, Sea 
Surface Temperature (SST) domains within the North Atlantic adjacent to the UK (e.g., 
Dawkins et al., 2022), and associated indices such as NAO, Atlantic Multi-decadal 
Oscillation (AMO) (Brown, 2008) have been found to exhibit significant correlations with 
UK rainfall. Beyond the Atlantic, there are weak influences from the Pacific Ocean indices 
such as El Niño-Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) 
(Brown, 2008). In addition to oceanic predictors (e.g., NAO index, SSTs, sea level 
pressure), some studies also use local atmospheric variables from the North Atlantic 
region (e.g., relative humidity and temperature) and related indices of East Atlantic (EA), 
East Atlantic West Russian (EAWR) and Scandinavia (SCA) patterns (West et al., 2022) 
as predictors in their stochastic weather generators (Chun et al., 2013).  

Atlantic Predictors of UK Rainfall 
The climate indicators over the Atlantic have varying influence on the regional rainfall 
variability over UK; for example, NAO has stronger influence on western UK winter rainfall 
(West et al., 2019). Please refer to Figure 1, sourced from West et al. (2019), illustrating 
the diverse regional effects of the NAO on winter and summer rainfall in the UK, 
summarising the findings from historical literature. Therefore, it is crucial for stochastic 
weather generators to incorporate the strongest predictor-precipitation relationships 
available (Lister, et al. 2018). In line with this principle, Atkins and the UK Met Office 
enhanced the original Serinaldi and Kilsby (2012) model by including EA index for 
generating rainfall for Water Resources East (previously East Anglian) region (Chapter 1) 
and this predictor has been adopted in other studies focused on the same region, such as 
Lister et al. (2018) and Dawkins et al. (2022The same model was further improved by 
including several additional climate predictors (EAWR, SCA, AMO), which were selected 
after rigorous testing of correlation strengths between the predictor and precipitation over 
different stations using different sources of predictor datasets, for different time periods 
and seasons (Atkins, 2020). It should be noted that the precise implementation of these 
models and the predictor combinations is not made clear in the reports, and has not been 
published in the peer-reviewed literature. This refinement resulted in a more accurate 
model fit, i.e., reduced mean absolute error in the stochastic rainfall output, particularly for 
regions where the NAO exerts a weaker influence, ultimately enabling a single model to 
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represent the temporal and spatial variations of rainfall across the entire country. Recent 
stochastic methods have combined the model selection step, based on different climate 
predictors, along with model fitting to gain additional flexibility in identifying influential 
climate drivers for specific regional rainfall within UK (Dawkins et al., 2022). However, 
excessive number of predictors result in complex, computationally intensive models, which 
due to overfitting lead to inaccurate representation of rainfall variability (e.g., Semenov, 
2008).  In stochastic models, the definite causal relationship between predictor and rainfall 
is important, rather than just the strong statistical connection between the two, as that 
lends confidence to the multiple rainfall realisations that are produced using this 
relationship.  

The impacts of seasonally varying climate predictors, such as North Atlantic SSTs, on 
rainfall variability, particularly in the European context, have been demonstrated (e.g., 
Sutton and Hodson, 2005; Dunstone, 2018; Smith et al., 2018). Therefore, incorporating 
seasonally varying indices into stochastic weather generators can enhance their 
performance. In Dawkins et al. (2022) models were fitted with different predictors for 
different seasons. The EA index and regional SST anomalies were used for all seasons, 
while the NAO indices derived from mean sea level pressure varied depending on whether 
it was summer or winter. 

 

Figure 1: Generalised influence of the NAO on regional UK winter and summer 
rainfall patterns summarised from historical studies [Source: West et al. (2019)]. 

 

To ensure skilful generation of rainfall, stochastic generators must incorporate the most 
influential climate drivers available as predictors, as demonstrated in Atkins (2020). North 
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Atlantic climate variability has been widely recognized as a key contributor to European 
precipitation, including that of the UK (e.g., Marshall et al., 2001). Particularly during the 
winter season, the NAO plays a significant role (e.g., López-Moreno and Vicente-Serrano, 
2008), but to a much lesser extent during the summer (Folland et al., 2009). Beyond the 
NAO, other atmospheric patterns in the North Atlantic, such as the EA pattern (Hall and 
Hanna, 2018), EAWR pattern (e.g., Parry et al., 2012), and SCA pattern (e.g., Hannaford 
et al., 2011), significantly impact regional precipitation in the UK.  Additionally, rainfall 
responses may be represented more accurately by considering the interactions between 
different atmospheric circulation patterns. For example, studies have shown that the 
combined influence of the NAO and EA patterns modulates the position of pressure 
systems across the British Isles. Studies have shown that for some parts of southern UK, 
the phases of the EA pattern could dampen or even reverse the rainfall signal expected 
from a given NAO phase (Mellado-Moore and Renfrew 2009; Cano et al. 2019; West et al. 
2022). Some low frequency modes of variability such as the decadal variability in the North 
Atlantic SSTs, known as the AMO also influence European rainfall during the summer 
season (e.g., Dong et al., 2013). These lower frequency modes of variability at multi-
annual and decadal timescales can improve the representation of rainfall variability for 
models operating on longer time steps, due to the slowly varying nature of such indictors.  

The climate forcings originating from the North Atlantic exert their influence on European 
climate by modulating the Atlantic storm track (e.g., Seierstad et al., 2007; Vallis and 
Gerber, 2008).  As a result, these drivers have been extensively employed in stochastic 
weather generators, as mentioned earlier in this work. However, the excessive utilization 
of predictors can lead to overfitting the model, as evidenced by studies conducted for other 
regions (e.g., Qian et al., 2008; Semenov, 2008) as mentioned before. Therefore, it is 
advisable for researchers and practitioners to exercise caution in employing an excessive 
number of predictors to fit their models, particularly considering the limited investigation of 
this issue in the context of stochastic generators applied to UK rainfall. 

Teleconnections from beyond the Atlantic 
While the North Atlantic region has been a primary focus of research, recent studies have 
highlighted the importance of considering teleconnections from beyond the region to gain 
a comprehensive understanding of UK drought drivers. Exploring such teleconnections 
with remote regions will allow researchers to unravel the intricate interactions and climate 
dynamics that influence drought occurrences in the UK. Many studies reviewed in 
Brönnimann et al. (2007) show impacts of ENSO on the European climate, with some 
focusing specifically on UK (Wilby, 1993; Svensson and Prudhomme, 2005). The 
correlation between polar Eurasian patterns and the North Atlantic Oscillation (NAO) has 
shown significant influence on UK droughts (Wedgbrow et al., 2002). Folland et al. (2015) 
demonstrated the impact of teleconnections from the Pacific Ocean, specifically La Niña 
events, and the quasi-biennial oscillation of stratospheric winds on droughts in the English 
Lowlands. Conversely, El Niño patterns have been strongly correlated with high spring 
precipitation in Southern England (Van Oldenborgh et al., 2000). The Pacific Decadal 
Oscillation (PDO) causes a three-month delayed impact on north-west and south-east 
rainfall regions within the UK (Figure 2a), modulated by the different phases of AMO 
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(Figure 2b). This lagged influence is more pronounced for streamflow compared to rainfall 
(Svensson and Hannaford, 2019).  

Non-stationarity in teleconnection between rainfall and 
climate predictors 
It is important to note that the influence of teleconnections under investigation can vary 
depending on the input data period due to inherent long-term variabilities in the 
relationships between the large-scale climate predictors and UK hydrology (Rust et al., 
2021). For instance, studies have shown non-stationarity in the relationship between NAO 
and European precipitation due to decadal shifts in the NAO pressure centre (e.g., 
Vicente-Serrano and López-Moreno, 2008). Links between North Atlantic circulation 
patterns and European streamflows show a 7-years cycle post mid 1980’s not seen over 
the earlier periods (Lorenzo-Lacruz et al., 2022). This non-stationarity in the context of a 
changing climate further introduces significant uncertainty (Woolings and Blackburn, 
2012), which will have implications for using weather generators to make decisions 
regarding future water resource management (e.g., Kilsby et al., 2007). While correlations 
between UK rainfall and climate predictors tend to be stronger over shorter time periods 
compared to longer ones (Lister et al., 2018), utilizing a shorter observational period to 
train weather generators may result in the omission of significant historical drought events, 
despite achieving a better model fit (Atkins, 2020). However, the utilization of longer 
periods of teleconnections in stochastic models faces challenges due to poor quality and 
lack of availability of historical climate predictor and rainfall datasets prior to 1950s (Atkins, 
2020). To address this limitation, researchers often merge datasets from various sources 
to create a more comprehensive record (e.g., Dawkins et al., 2020). However, it is 
important to note that this merging process can introduce additional uncertainties to the 
model, stemming from inherent differences in the datasets and potential data quality 
issues during the historical period (please see Chapter 3 for detailed discussion). Another 
approach that stochastic modelling studies use is to draw alternative samples of the 
climate predictors from the observed values by resampling (Serinaldi and Kilsby, 2012) or 
parametric modelling (Chun et al., 2013) (please see Chapter 2 for detailed discussion). 

Recommendations  
Our findings underscore the evolving nature of the study of UK rainfall drivers and 
subsequent droughts. Recent research by our group has unveiled a substantial impact of 
freshwater incursion and sea salinity changes in the North Atlantic Ocean on both UK 
rainfall and streamflow with long lead times (Chevuturi et al., under review.). These factors 
play a crucial role in modulating North Atlantic Ocean temperatures, thereby influencing 
the hydrological patterns in the region. In light of these developments, future studies 
focusing on stochastic models for UK rainfall should consider incorporating additional 
predictors from the latest scientific research, to enhance the accuracy of rainfall 
projections. By exploring a broader range of drivers, researchers and practitioners alike 
can improve the quality and reliability of generated rainfall data. Nevertheless, when 
increasing the number of climate predictors in the stochastic model it is crucial to strike the 
right balance between improving the predictive power of the stochastic model and the 
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inherent risk of model overfitting. It's worth noting that these drivers may exhibit regional 
varying influences on UK rainfall, thereby introducing the possibility of region dependant 
overfitting concerns. This suggests that different predictors or combinations of predictors 
might be needed for different regions, which would lead to regionally inconsistent 
simulations. The best approach might be to have a master set of predictors, for the 
stochastic modelling of a region, in which the different predictors get switched on and off 
based on the correlations between the predictor subset and rainfall for different sub-
regions. 

Furthermore, even if recent developments and emerging predictors are incorporated into 
newer generations of stochastic simulators, there will always be a proliferation of new 
predictors (or improvements in existing predictors) as our process understanding of the 
drivers of UK hydroclimatic variability continues to grow. There is an ongoing need for 
communication and collaboration between industry practitioners and hydroclimate 
researchers to ensure regular updates to operational practices. 

 

                

Figure 2: The UK divided into (a) two precipitation regions. (b) Correlations between 
three-month aggregations of PDO and two rainfall regions from 1961–2016, with 
rainfall lagged three months after the PDO. The correlations are stratified on AMO 
phase: AMO < −0.05 (dashed blue line); AMO ≥ −0.05 (thick solid red line); all AMO 
regardless of phase (thin solid black line). Significant correlations are circled 
[Source: Svensson and Hannaford, 2019]. 

 

Summary of limitations 
• The most influential predictor varies depending on the studied region and missing 

influential predictors could potentially result in a loss of accuracy in the stochastic 
model output. 

(
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• Non-stationarity of teleconnections in the face of current and future climate conditions, 
posing challenges for accurately modelling their impacts. 

• Restricted availability of predictors in historical datasets, hampering the ability to 
encompass key extreme events. 

• Prevalence of regional-scale studies and associated predictors, limiting the 
generalizability of findings to broader contexts or larger spatial scales (see Spatial 
Coherence Section in Chapter 2). 

• Require balancing the risk of overfitting due to inclusion of an excessive number of 
predictors with the need to include the most influential predictors for a given region to 
prevent compromising the reliability and robustness of results 

Summary of recommendations 
• Broadening the range of predictors by incorporating insights from emerging research 

on climate drivers (e.g., Lorenzo-Lacruz et al., 2022; Chevuturi et al., under review) 
Benefit: By keeping up with the latest research in the field, the operational stochastic 
models can be improved to have the best predictors representing the rainfall variability, 
which would ultimately improve stochastic rainfall output. 
Effort: Moderate to High. Thorough evaluation and validation through extensive peer-
reviewed research establishes widely accepted climate predictors to be used. For 
example, the slowly varying lower frequency modes of variability in the SSTs can be 
used to improve the representation of rainfall variability at multi-annual and decadal 
timescales. Operational models would need to keep up with the ever-evolving 
landscape of hydroclimatic research and would need to constantly test and then 
upgrade their models with any new research findings. However, additional predictors 
and other complexities, like non-linear relationships, should only be introduced to 
stochastic models if there is clear and well demonstrated benefits to the applications of 
interest.  

• Balancing improving the predictive power of the stochastic model vs. the inherent risk 
of model overfitting when increasing the number of climate predictors being used 
Benefit: This would prevent model overfitting while capturing the maximum range of 
rainfall variability in the stochastic simulations.  
Effort: Low to Moderate. To weigh the benefits of using large number of climate 
predictors against the overfitting of the stochastic model requires stringent testing via 
multiple stochastic runs as done in Atkins (2020). This can be computationally 
intensive but should be done at the testing phase of the study. Based on the response 
of sub-region rainfall variability to different predictors, it might be best to use only the 
relevant sub-set of predictors for each region. Further, it should be considered that 
depending on the water resources planning use cases, perhaps alternative simpler 
models are more than up to the task rather than increasingly complex stochastic 
models.  

• Enhancing the representation of seasonal variation in rainfall through the inclusion of 
seasonally varying indices as in Dawkins et al. (2022) 
Benefit: Using seasonally varying climate predictors allows for better representation of 
rainfall variability in the stochastic output, as the climate teleconnections vary with 
seasons (e.g., West et al., 2019). 
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Effort: Low to Moderate. There is existing research on seasonally varying 
teleconnections of UK rainfall (e.g., Sutton and Hodson, 2005; Dunstone, 2018; 
Smith et al., 2018) which can be integrated into the stochastic weather generators. 
However, the challenge lies in testing and implementing this approach for every climate 
predictor, given the complexities involved in running seasonally varying stochastic 
simulations. Alternatively, as in Atkins (2020), the month of the year can be used as an 
input predictor to represent the inter-seasonal variability. 

• Considering the effects of non-stationarity, including decadal shifts and long-term 
variability, particularly in the context of a changing climate (see Chapter 5) 
Benefit: Understanding changes in teleconnections over time is crucial for 
representing the uncertainty in stochastic rainfall simulations and ensuring the most 
accurate representation of rainfall variability. 
Effort: High. Incorporating all aspects of teleconnection variability into a stochastic 
weather generator may require a time-varying stochastic model for each region, which 
can be resource intensive.  

• Improving the availability and quality of predictor data by selecting the best time period, 
best sources of datasets (see Chapter 3) or using approaches to derive alternative 
samples of predictors from observations (see Chapter 2)  
Benefit: Improving quality of climate predictor data will provide accurate representation 
of rainfall teleconnections and ultimately the simulated rainfall output.  
Effort: Low to Moderate. Atkins (2020) suggested that climate predictor data for UK 
rainfall has higher quality mid 1950s onwards and specifically tested multiple sources 
of climate predictor datasets before using them for stochastic models. Further, rather 
than just using fixed predictor dataset, alternative samples of the climate predictors can 
be derived from the observed values using resampling (Serinaldi and Kilsby, 2012) or 
modelling (Chun et al., 2013). However, operational stochastic modelling for water 
resource planning should always research/test the climate predictors datasets for 
accuracy before implementing them operationally. 
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Climate Change 
Amulya Chevuturi and Maliko Tanguy (with review and input from the author team) 

Introduction 
Climate is undergoing significant changes due to anthropogenic warming, leading to an 
increase in hydrological extreme event frequency, and these events are expected to be 
more severe than rare “worst historic” events (Water UK, 2016). To effectively address 
these challenges, it is imperative to make long-term investments in infrastructure 
development for climate change adaptation. There is a high degree of certainty over future 
temperature increase from warming. However, the response of atmospheric circulation to 
the future warming is uncertain, leading to significant uncertainties in the potential rainfall 
changes. There is, therefore, a need to incorporate climate projections and the associated 
uncertainty in water resources planning, as more extreme events are expected due to 
anthropogenic warming in the future climate. At the same time, even in the absence of 
anthropogenic warming, there could be a risk of being exposed to more extreme events 
than witnessed in the historic record (e.g., Thompson et al. 2017) - any record-breaking 
events expected by chance may not be represented in the limited sample of historic 
observations in the current climate (Water UK, 2016). 

To include the extreme events when planning for future water resources over UK, 
stochastic approaches are widely implemented, such as to model droughts with intensities 
surpassing the historical record (Anderton et al., 2015) or to create ensemble of rainfall 
simulations for different subregions of UK (Atkins, 2020).  However, with the changing 
climate it has become imperative that we include future climate variability into these 
stochastic simulations. 

Stochastic approaches implementing the impact of 
climate change  
Climate change scenarios can be incorporated into stochastic weather generators through 
three approaches: post-processing of output, stochastic model fitting, and input of climate 
drivers. In the post-processing method, the approach most widely used in practice in the 
water industry, uses change factor methodology. Change factors for different climate 
scenarios, are derived from future flow projections (Water UK, 2016) or rainfall projections 
(Atkins, 2020),and applied to stochastically generated output, i.e., the sequences derived 
from stochastic generation applied to observational records. Alternatively, in the stochastic 
model fitting approach, future projections of the stochastic output are produced by fitting a 
stochastic model to perturbed observations generated by applying the change factors 
derived from climate model simulations to the observations (e.g., Chun et al., 2013; 
Manning et al., 2009). A final approach is to directly use drivers derived from future climate 
projections as predictors in stochastic models, as suggested in Serinaldi & Kilsby (2012). 
Alternatively, a new unpublished study is exploring the use of UK climate projections 
based on specific global mean surface temperature thresholds (Chapter 1), as also 
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outlined in Brown et al. (2014). For more details of stochastic simulations under different 
climate scenarios using the third approach, please see Chapter 2. In practice, the last two 
approaches have not been widely implemented. 

Change factor method 
As previously discussed, the incorporation of climate change scenarios into stochastic 
weather generators commonly involves the use of the change factor methodology (e.g., 
Wilks 2010) and can be used in both post-processing or stochastic model fitting approach. 
This methodology derives change factors for specific variables by comparing baseline 
observations with future climate projections from various climate model scenarios at 
different time slices (e.g., Kilsby et al., 2007). Multiplicative factors are typically used for 
variables like rainfall, while additive factors are employed for other climate variables such 
as temperature (Glenis et al., 2015). To capture the spatial and temporal variations of 
climate change impacts, the change factors may vary across months and catchments 
(Atkins, 2020). Stochastic models generally focus on the mean climate and thus can only 
use change factors associated with the mean (see also Chapter 1). Meanwhile UKCP09 
weather generator work with higher order statistics such as variance, skewness, 
autocorrelation, and proportion of dry days, and thus, they can incorporate perturbations 
related to not only the mean but also all these higher order statistics (Jones et al., 2010). 
However, the change factors with higher order statistics cannot be applied to all stochastic 
models.  

Benefits of the climate change methods 
Stochastic methods provide a somewhat reliable representation of the impact of global 
climate change on local-scale rainfall, generating consistent and reasonably realistic 
precipitation patterns (Chun et al., 2013) at any suitable temporal and spatial resolutions 
(e.g., Kilsby et al., 2007; Harris et al., 2014). The change factor methodology, employed in 
stochastic weather generators, offers computational efficiency (Jones et al., 2010) and 
flexibility to generate precipitation time series representing different climate scenarios or 
climate models (Kilsby et al., 2007). While some approaches discussed earlier may not 
provide the transient evolution of future climate in their output (e.g., UKCP09 in Chun 
et al., 2013; AME in Dawkins et al., 2022), certain methods incorporate climate change 
over time by utilizing non-stationary change factors (e.g., UKCP09 in Glenis et al., 2015) 
or incorporating global climate covariates that capture long-term variability (e.g., GLM in 
Chun et al., 2013). Stochastic models can also estimate uncertainties arising from climate 
models and natural climatic variability through the sampling of multiple change factors in 
the weather generator and repeated realizations of climate projections, respectively 
(Glenis et al., 2015). 

Limitation of the climate change methods 
Despite the advantages of employing stochastic methods in climate change studies, there 
are several limitations to the use of change factors. Firstly, the assumption of similarity 
between past and future climates in terms of variability and seasonality is not valid 
(Diaz-Neito and Wilby, 2005). Moreover, most weather generators lack basis in physical 
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climate processes, further compromising their ability to accurately represent the changing 
climate (Jones et al., 2010). The empirical relationships utilized by stochastic models to 
mimic the physical world are not guaranteed to remain valid under future climate 
conditions (Diaz-Neito and Wilby, 2005) and has potential implications with adequately 
reflecting changes to future drought frequency, magnitude, persistence and spatial 
extents. For more details on the non-stationarity of the predictor-to-rainfall relationship 
please see Chapter 4. Additionally, the inadequate representation of observed 
relationships between climate drivers and UK rainfall in climate models raises doubts 
about the skill and accuracy of the resulting stochastic climate simulation (Chun et al., 
2013).  

Although certain studies mention the suitability of weather generators for climate change 
analysis, they do not evaluate and implement these methods (e.g., Serenaldi and Kilsby). 
Dawkins et al. (2022) mentions incorporating UK climate projections into Advanced 
Meteorology Explorer (AME) stochastic rainfall weather generator as part of future work, to 
generate rainfall simulations at any global mean temperature However, this work is yet to 
be published, although interviews given to our group suggest that the work in this direction 
is ongoing (Chapter 1). Further, review of the existing literature suggests that the few 
studies which explicitly evaluated limitations or quantified the associated uncertainties for 
the stochastically generated rainfall projections over UK, use the change factor method 
rather than directly applying projections to stochastic weather generators (e.g., Glenis 
et al., 2015). 

The uncertainties associated with stochastic weather generators may be exacerbated 
when used to generate events in a future climate. For instance, the UKCP09 weather 
generator's inability to accurately simulate very extreme events poses a problem, 
especially considering the expected worsening of extreme events in the future 
(Jones et al., 2010). Additionally, biases present in the models at different sites and the 
lack of spatial relationships between sites during the current period can persist in future 
projections, introducing further potential errors (Chun et al., 2013). Climate models and 
their projections exhibit biases stemming from factors such as model dynamics 
(Berthou et al., 2020), resolution, parametrization (Chan et al., 2013), domain extent, and 
driving data (Chan et al., 2018), among other intricacies. Consequently, projections, 
especially for precipitation, have a large spread between climate models when 
downscaled to the catchment-scale, as the models cannot accurately represent local-scale 
dynamics (Smith et al., 2013). 

Recommendations  
To enhance the reliability of stochastic models to explore the hydrological impacts of 
climate change, a comprehensive assessment and mitigation of inherent biases in these 
models are essential (Chun et al., 2013).  To improve reliability in climate projections, 
studies could implement approaches to aid climate model selection like machine learning 
techniques (e.g., Jewson and Hawkins, 2018) and correct the biases in the projections by 
comparing model projections with observational data using bias correction methods (e.g., 
Lafon et al., 2012; Cloke et al., 2012; Klein et al., 2021). However, it should be noted that 
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there is a wide range of bias correction methods which corrects for biases in different 
aspects of the model data (e.g., in mean, spread, trend or extremes). For bias-correcting 
climate projections, trend preserving methods are considered very important, which 
represent the long-term mean well, but may unduly influence extremes and small-scale 
features (e.g., Hempel et al., 2013). While applying bias-correction, it should also be 
considered that the use of different bias-correction methods could increase the overall 
range of uncertainty (see Maraun, 2016). Therefore, it is crucial to robustly and 
systematically assess whether bias-correction methods are suitable for the intended needs 
before implementation. 

The simple change factor approach can be complemented by comparing results with the 
direct use of bias-corrected projections (Cloke et al., 2012; Smith et al., 2013) or by 
employing perturbed weather generator methods (Fatichi et al., 2011). Instead of a single 
set of change factors, the effects of natural climate variability can be estimated by 
re-sampling the observed time series to generate a wide range of change factor sets (e.g., 
Ledbetter et al. 2011) which can be used to perturb stochastic weather generator output or 
fit stochastic models. Model biases may be improved if output is benchmarked against 
observed or reconstructed historical data from different sites (Barker et al., 2019), thereby 
underscoring the importance of a robust and representative observational record (Chapter 
3). Further, rather than focusing on only improving the accuracy of climate projections, 
quantifying and framing uncertainties is equally crucial in climate change studies (e.g., 
Glenis et al., 2015), as it enables informed decision-making (Harris et al., 2014). 
Consequently, incorporating large ensembles of transient scenarios under a changing 
climate proves beneficial for stochastic models (e.g., Manning et al., 2009; Chun et al., 
2013), enabling the development of a probabilistic framework to aid decision-making 
(Kilsby et al., 2007). Furthermore, alternative methods for water resource projections 
should be considered. For example, the use of emulators applying extreme value 
distributions to generate rainfall simulations at various global carbon dioxide concentration 
levels (Brown et al., 2014), or employing a storyline approach to navigate uncertainty in 
future climate risks (Sillmann et al., 2020); please see Chapter 6 for details on alternative 
methods. 

Summary of limitations 
• Inaccurate representation of future climate due to lack of physical basis in weather 

generators. 
• Sources of uncertainty include the assumption of constant variability in the change 

factor method and limited knowledge of how drivers of UK rainfall respond to climate 
change. Insufficient quantification of uncertainties in climate projections. 

• Exacerbation of inherent biases and limitations of models with future climate 
applications may lead to cascade of uncertainty. 

Summary of recommendations 
• Prioritise integration of climate change influence for future methodological refinements 

and improvements for stochastic modelling  
Benefit: Incorporating climate change impacts into stochastic modelling will enhance 
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the resilience of water resource infrastructure decisions by ensuring their relevance 
and effectiveness in future conditions. 
Effort: Moderate to high. While climate change is presently integrated into stochastic-
based methodologies, typically through simplistic techniques like change factors (e.g., 
Jones et al., 2010), fully incorporating climate change methodologies into stochastic 
models, encompassing non-stationarity and diverse uncertainties, presents a 
significant challenge. However, to maintain the applicability of stochastic outputs in 
future climate scenarios, it is crucial to assess various approaches to climate change 
adaptation within these frameworks. 

• Improve climate model biases by benchmarking climate model output against good 
quality data. 
Benefit: Evaluating and benchmarking climate models against good quality 
observations allows for the best quality climate projections to be used as input for 
stochastic models.    
Effort: Low to Moderate. Many methods and frameworks are available for climate 
model evaluation and benchmarking (e.g., Watson-Parris et al., 2022) that should be 
applied before using the climate model projections to calculate change factors. 
However, finding good quality source of observations over the correct time period to 
benchmark models can be challenging (see Chapter 3). 

• Thoroughly assess and address the biases inherent in stochastic models to enhance 
their reliability in future climate studies. 
Benefit: Reducing biases in stochastic model output would allow for improved future 
projections by preventing from errors propagating through the stochastic modelling 
chain. 
Effort: Low to Moderate. Bias-corrected climate projections, widely used in climate 
studies, are readily available or can be computed with existing packages (see the point 
above). However, selecting the optimal bias-correction method for stochastic modelling 
output, presents a challenge, as different methods may address only specific bias 
features, such as in mean, spread, trend or extremes, rather than dealing with all types 
of biases comprehensively. Bias-correction methods should be systematically and 
robustly evaluated before implementation. For optimal results, it is recommended to 
apply bias-correction to both climate model projections and stochastic model output. 

• Accurately quantify uncertainties in stochastic future projections to support informed 
decision-making. 
Benefit: Quantifying uncertainty enhances the credibility of the climate projections and 
might ultimately help in narrowing uncertainty by using methods such as emergent 
constraints (Hall et al., 2019). 
Effort: Moderate to high. There are existing studies that provide methods to 
quantifying uncertainties in stochastic weather generators (e.g., Glenis et al., 2015). 
However, implementing such methods while dealing with different kinds of 
uncertainties: model, scenario, and internal variability; and ultimately aiming to narrow 
the band of uncertainty (Hawkins and Sutton, 2009) can be quite challenging. This 
challenge is particularly relevant when transitioning these methodologies and findings 
into practical applications, where pragmatic considerations demand a careful balance 
between costs and benefits.     
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• Explore the use of large ensembles of different transient scenarios under changing 
climate in stochastic models to evaluate their robustness and effectiveness. 
Benefit: Using large ensemble projections allows for the quantification of uncertainties, 
while transient runs capture the dynamic evolution of climate variables, effectively 
representing the non-stationarity inherent in climate projections. 
Effort: Moderate to high. Many multi-model, large ensemble future climate projections 
of transient scenarios, that are bias-corrected, are readily available (e.g., CMIP6 
simulations), and can be directly applied to stochastic weather generators. However, 
this process can escalate as high effort, particularly when considering the multitude of 
combinations between climate projections with large ensembles and many stochastic 
realizations.  

• Consider the appropriateness of alternative methods to complement existing 
approaches to enhance future water resource planning (see Chapter 6) 
Benefit: Considering diverse approaches to future water resource planning allows for a 
more comprehensive understanding of future scenarios and ultimately results in more 
robust and adaptable strategies. 
Effort: High. Evaluating multiple alternative methods would need a lot of resources as 
it would require coordinated planning to compare different methods on a standardized 
basis for variety of criteria.   
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Alternative Approaches  
Rosanna Lane and Alison Kay (with review and input from the author team) 

Introduction  
In addition to stochastic datasets, a number of other approaches have been implemented 
to do a similar job to stochastic approaches, i.e., to provide a way of producing drought 
events more severe than those observed in the historical record. As such, these provide 
‘alternative approaches’ that could be applied in a UK water resources planning context, to 
test the resilience of supply systems – and some have in fact already been used in an 
applied setting.  Here, in line with the project brief, we survey the literature to understand 
(and classify) the range of approaches that could be used as credible alternatives to 
stochastic methods.  

We have classified these other possible cross-cutting approaches to water resource 
planning into five broad categories: 

1. Extending the historical record: Relatively short instrumental/observational 
records contain a limited number of drought events. Extending the record back in 
time can increase the number of recognised events, and include events more 
extreme than those experienced in the recent past. This is perhaps the most 
obvious way to produce droughts more severe than current observational records, 
by expanding the historical coverage of the records themselves.   

2. Synthetic droughts: synthetically-created droughts, that have no physical basis, or 
which can be guided by historical experience/physical reasoning, can be used to 
test water supply systems.  

3. Scenario-neutral methods and sensitivity- / stress-testing frameworks: 
Scenario-neutral methods (e.g., response surfaces) and sensitivity- / stress-testing 
frameworks, aim to assess the sensitivity of a system to a systematic set of 
changes in key drivers.   

4. Large ensembles: By providing multiple climate simulations of historical (or future) 
periods, large ensembles provide a larger number of drought events than available 
from limited observational records, and can help to identify plausible extremes. 

5. Storylines / HILL events / H++ scenarios: Storylines are physically self-consistent 
and plausible scenarios, which could be based on alternative realisations of past 
events or possible future events. They often focus on high-impact events, often 
referred to as High Impact Low Likelihood (HILL) events, but typically do not have 
probabilities attached to them. Similarly, H++ scenarios represent extreme climate 
change scenarios that typically lie beyond the 10th-90th percentile ranges often 
presented from model ensembles.  

It should be noted that other categories, and different boundaries between them, may have 
been used in the literature, as there is overlap between the approaches and it is not 
necessarily the case that a particular study falls clearly into one category rather than 
another.  



74 of 92 

The approaches can be considered complementary, and multiple approaches are often 
used together. For example, storylines can be a useful way to distil results from large 
ensembles into a manageable yet representative set of scenarios for practitioners / 
policymakers (Clark et al., 2016), and both methods to extend the historical record and 
large ensembles can be used to define the bounds of scenario-neutral methods 
(Chan et al., 2023; Quinn et al., 2020). These approaches should therefore not be 
considered in isolation, but as a set of alternative approaches that can be complementary 
in helping to inform water resource planning.   

The following section describes each of the categories above in more detail, using 
examples from the literature. Note that large ensembles are differentiated from stochastic 
approaches here as they typically use physically-based climate models with rare outcomes 
that are spatially and internally consistent, rather than statistical models (Chan et al., 2023; 
Kelder et al., 2022). 

 

Other approaches for water resource planning  

Extending the historical record 

A key limitation for water resource planning is the length of the observed time-series, with 
a limited number of observed droughts. Short observational records mean there are few 
drought events to test water supply systems against, the observations do not represent the 
full range of events that could arise from natural climate variability, and there are large 
uncertainties when trying to define extreme (e.g., 100-year return period) events. One 
approach to overcome this is to extend the historical record back in time, with options 
including: the use of stations with long observational records, recovering/rescuing 
previously lost observations, infilling/ statistical / modelling methods to extend observed 
time-series, documentary sources (such as newspapers and journals) to confirm past 
drought events, and paleo-climatology approaches.  

A recent rainfall data rescue and recovery initiative has been successful in improving the 
UK rainfall record over earlier years. Hawkins et al. (2023) used a citizen science 
approach to digitise, quality control and make available over 3 million rainfall observations 
from 1677 to 1960, that were previously stored as hand written observations on paper 
sheets. This has significantly improved and extended UK rainfall records (Chapter 3).  

A number of studies have extended rainfall and temperature observations back through 
the 1800s, to re-construct historic rainfall or streamflow droughts across the British Isles 
(Barker et al., 2019; Hanel et al., 2018; Lennard et al., 2016; Murphy et al., 2020; 
Noone et al., 2017; Spraggs et al., 2015; Watts et al., 2012). For example, Watts et al. 
(2012) aimed to use long severe droughts of the 19th Century to test water companies’ 
water supply and drought plans for events outside of recent experience. They used river 
flows that had been reconstructed back to 1800, based on a statistical model with inputs of 
monthly rainfall records and long-term average evapotranspiration (Jones et al., 2006; 
Wade et al., 2006). In an innovative modelling approach, they invited water managers and 
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regulators from two case study systems to be part of the modelling process. This involved 
water managers responding to developing drought conditions, and applying different 
drought measures with respect to the drought management plans, with no prior knowledge 
of the drought magnitude or duration. For this exercise, the major advantage of using 
artificial droughts based on historical events (the droughts were created by stacking 
together past episodes) over entirely synthetically generated droughts was that events 
were more plausible and realistic – so water managers could fully engage without 
questions over whether the drought events were credible.  

More recently, Murphy et al. (2020) and Noone et al. (2017) explored past droughts for 
Britain and Ireland using the standardised precipitation index (SPI), and Barker et al. 
(2019a) used reconstructed flow time series to characterise UK droughts back to 1891. 
Noone et al. (2017a) developed a drought catalogue for Ireland extending back to 1765. 
They used infilled/extended rainfall time-series back to 1850, and monthly precipitation 
reconstructions back to 1765 (Pauling et al., 2006), with key drought events confirmed 
through historical sources such as newspaper archives. This revealed that recent decades 
(1990s onwards) are unrepresentative of the longer-term drought climatology, and 
identified a number of major drought events with diverse characteristics to strengthen the 
evidence base for future drought and water resource planning (Figure ). Murphy et al. 
(2020) similarly reconstruct droughts for the British Isles, identifying a major ‘forgotten’ 
drought in 1765-1768, which offers an extreme benchmark scenario for stress-testing the 
resilience of water systems. Barker et al. (2019) further focused on streamflow droughts, 
identified using the standardised streamflow index (SSI), shedding light on regionally 
important events as well as events that had been poorly documented (such as during the 
post-war years in the 1940s).  Studies have also used reconstructed historical streamflow 
drought events to test water supply systems (Lennard et al., 2016; Spraggs et al., 2015).  

Whilst reconstructions are based on the historical record, they are often derived using a 
model which will likely contain some uncertainty. The size and nature of this uncertainty 
will depend on the method employed, but should be recognised when comparing historical 
reconstructions with other methods.  
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Figure 1: Drought duration against maximum intensity for the droughts identified by 
Noone et al. (2017) based on infilled/extended precipitation time-series. Circle size 
represents duration, colour relates to intensity. Figure reproduced from Noone et al. 
(2017). 

 

The use of paleo-records provides the opportunity to extend records even further back in 
time, but with considerable assumptions and uncertainties. This includes reconstructions 
from climate proxies, such as tree ring widths (Cooper et al., 2013; Wilson et al., 2013), 
tree ring stable isotopes (Loader et al. 2020), and crop harvest date (Pribyl, 2020; 
Pribyl et al., 2012). While most research on climate proxies focuses on temperature/ 
precipitation, some studies have also used proxy information to reconstruct 
monthly/annual streamflow (Stagge et al., 2018; Viorica et al., 2023). Despite very large 
uncertainties, these can help to better understand long term streamflow variability and 
trends.  

A number of studies have used tree ring information as a proxy for spring-summer 
precipitation totals, to produce reconstructions extending back over 1000 years. For 
example, Wilson et al. (2013) and (Cooper et al., 2013) use tree ring-width data from oak 
trees to reconstruct spring/summer precipitation for southern-central England, and 
East Anglia, respectively. Their results were broadly consistent, with similarity in the most 
prominent wet/dry periods, but more recent studies have highlighted inconsistencies 
between the statistical properties of observations and these reconstructions (Bothe et al., 
2019). Studies using tree ring stable isotopes produced more promising results, as 
demonstrated by Loader et al. (2020) in their reconstruction of May-August precipitation 
totals for England and Wales back to 1201. While these very long precipitation time-series 
provide opportunities to explore extreme droughts of the past, a key issue is the lack of 
winter precipitation information. An additional consideration regarding paleoclimate 
reconstruction is apparent in (Wilson et al., 2013), where critical droughts in the calibration 
period are not well represented in the model used to convert tree ring width to 
precipitation. Involvement of those that will use the dataset is important to ensure the 
paleoclimate model reflects the phenomena of interest. 

For reconstruction of temperature, one possible proxy is the starting date of grain harvest. 
(Pribyl et al. (2012) present a reconstruction of medieval April-July temperatures for 
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East Anglia, based on dates of the onset of grain harvest from manorial accounts. They 
used a linear regression to derive temperature from grain harvest dates for 1256-1431, 
calibrated on grain harvest dates for 1768-1816 when instrumental temperature records 
were available. Reconstructed temperature time-series could be used alongside 
reconstructed precipitation to explore extreme droughts of the past, but again there is a 
lack of data available for autumn/winter periods and large uncertainties.   

For all methods that involve reconstruction or extension of records, the climate change 
signal means that previous periods, before the coverage of most instrumental records over 
the last c.50 years, may not be representative of the current climate. This applies 
especially in terms of temperature, although appraisals of nonstationarity in precipitation 
have become increasingly confident, especially in winter, and in northern and western 
areas of the UK.    

 

Put another way, in a warming world, ‘the past is the key to the future’ breaks down as an 
argument. However, this is only a limitation if we try and use historical drought events 
directly, under an assumption of future recurrence. In reality, this constraint is well known 
in historical climate/paleo communities, but such reconstructions continue to be pursued, 
because knowledge of past extremes is still valuable information on past variability, that 
can be used to test the resilience of our current systems. Historical data is only one strand 
of evidence for assessing risk, along with climate model chains, extreme value analysis 
and so on. To return to the theme of this section on the use of such information in 
planning: past events derived through such approaches could be used for example, in 
‘stress tests’, storylines or the various other approaches outlined in this report, alongside 
events from stochastic methods, future climate runs and so on. It is worth re-emphasising 
that this limitation also applies with stochastic estimation approaches – they only provide 
many more realisations of the current climate, and hence also have to account for climate 
change when applied in future contexts (Chapter 5).  

Finally, as noted in Hannaford et al. 2024 “While the past may not be so readily a guide to 
the future in a warming world, at the same time observed historical droughts represent an 
important benchmark of drought risk, given that these events have actually unfolded – they 
also offer the opportunity to learn from past experiences in drought management”. 
Reconstruction of past events enables learning from real-world events that have been 
influential in shaping the evolution of water supply systems and management practices 
(e.g. Taylor et al. 2006), and which have impacted the environment and societies over 
very long timeframes (e.g. Pribyl et al. 2020). Given the anticipated magnitudes of future 
climate change over even the 21st Century timeframes, such learning has important 
benefits beyond the more immediate technical implementation of water resource planning.  
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Synthetic Droughts 

Synthetic droughts (droughts created manually but systematically, that have no formal 
physical basis) have been used in both long-term water resources planning and 
operational drought management settings. Synthetic droughts have been used within the 
Drought Vulnerability Framework, in combination with Extreme Value Analysis, to underpin 
the Drought Response Surface (UKWIR, 2017), which is present in both WRMPs and 
Drought Plans, including assimilation of stochastic datasets where available. Drought 
events are generated by taking percentages of the long-term average precipitation (/temp) 
over specific durations covering alternative timings (start and end of the event). The 
response surface is built up by considering all permutations of these combinations of long-
term average, event start, event end, etc – as illustrated in the following section. A similar 
approach is often taken to build scenarios of near-term future climate both within a 
Drought Plan (Thames Water, 2017) and within a drought event itself 
(Environment Agency, 2022), and statistics of the percentage of the long term average are 
used to describe river flows and precipitation in near-real time (e.g., Environment Agency, 
(2023)). This type of event generation is relatively simple and provides a means of altering 
the severity and duration of droughts on an event basis that is linked to the historical 
climatology of an area. It is therefore very useful for building stress tests, sampling across 
a range of different event types, as described in the following section.  

Scenario neutral methods and sensitivity- / stress-testing frameworks 

Scenario-neutral methods offer a bottom-up approach to water resource planning, 
focusing on understanding system sensitivity (Broderick et al., 2019).  

One scenario-neutral approach is the use of response surfaces to characterise system 
sensitivity to incremental changes in temperature/ precipitation (Anderton et al., 2015; 
Prudhomme et al., 2015; Whateley et al., 2014), as shown in the examples given in Figure 
1. Response surfaces have been used to characterise runoff sensitivity to climate variation 
(Arnell, 1996; Němec and Schaake, 1982), and were further developed by  Prudhomme 
et al. (2010) in the context of flood risk. (Prudhomme et al. (2010) carried out thousands of 
hydrological model simulations per catchment to explore flood peak sensitivity to changes 
in the mean annual values and seasonality of precipitation and temperature. They then 
overlaid an ensemble of climate projections on the catchment response surfaces, to 
calculate how many scenarios the Government’s 20% allowance for climate change was 
appropriate for. This demonstrates a key advantage of the approach – that once response 
surfaces have been generated for a catchment, it is possible to rapidly assess different 
climate scenarios/ policy options without having to repeat hydrological model simulations. 

The response surface approach has since been used to assess water resource system 
vulnerability to droughts and changing low flows (Anderton et al., 2015; Prudhomme et al., 
2015; Sauquet et al., 2019; Whateley et al., 2014). Prudhomme et al. (2015) developed 
response surfaces looking at how low flows in two contrasting UK catchments responded 
to changes in rainfall and temperature, demonstrating the utility of the method in 
understanding future pressures on water resources. (Whateley et al., 2014) generated 
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response surfaces looking at the cost of water supply shortfalls, and how this relates to 
changing temperature and precipitation. They demonstrate how these can be used to 
identify the ‘climate robustness’ of different water supply systems and/or management 
options, based on the proportion of the response surface space over which the system 
provides acceptable performance. (Anderton et al., 2015) present response surfaces for 
the impact of variations in drought duration (months) and intensity (rainfall deficit) against 
water supply system metrics (such as total unfilled demand), as shown in Figure 1. They 
highlighted that these response surfaces could be a useful screening tool, to estimate a 
water supply system’s response to untested droughts of the past or future.  

 

Figure 1: Example response surfaces, showing proportion of unfilled water 
resources demand in Barmouth given variations in drought duration (x axes) and 
drought intensity (rainfall deficit, y axes). Reproduced from Anderton et al., 2015). 

Another complementary scenario-neutral approach is to carry out systematic stress tests 
to understand drought sensitivity to changes in driving variables (Anderton et al., 2015; 
Hellwig et al., 2021). For example, Hellwig et al. (2021) carried out a stress test to explore 
drought sensitivity to precipitation seasonality. They increased winter and decreased 
summer precipitation by +/- 5%, 10%, 15%, 20% and 30% while increasing temperatures 
over the whole year. This helped to improve understanding of how a seasonal shift of 
recharge would impact groundwater and baseflow drought across Germany.   
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Response surfaces have been implemented within water resource planning through the 
Drought Vulnerability Framework (UKWIR, 2017) and have been included within water 
companies Drought Plans (e.g., (Thames Water, 2022)) to describe water supply system 
vulnerability. These surfaces can have climate change superimposed upon them, and may 
be derived from either synthetic (systematically altered climate variables) or stochastic 
data (UKWIR, 2017). 

Large Ensembles 

By providing multiple climate model simulations of historical (or future) periods, large 
ensembles provide a larger sample of extreme events than available from limited 
observational records – even in the context of very long rescued or reconstructed records 
(2.1). They can therefore help to identify plausible extremes that have no precedent in the 
observed record. Large ensembles can comprise; a) multiple climate model structures, 
b) perturbations to model physical parameters, c) sampling of initial conditions. Options b) 
and c) often derive from a single GCM, whilst option a) includes multi-model ensembles 
such as CMIP5/CMIP6. Climate model and perturbed physics ensembles (a & b) are 
generally used to understand climate modelling uncertainties, for example in the 
simulation of future low flow or drought events (Lane and Kay, 2021). Initial condition 
ensembles (c) can be useful for separating the effects of natural variability from other 
climate modelling uncertainties (Deser et al., 2020).  

A number of studies have used transient climate model output from multi-model GCM 
ensembles or single model perturbed-parameter ensembles (PPEs) to assess changing 
flows and drought risk across the UK (Dobson et al., 2020; Fung et al., 2013; 
Kay et al., 2018; Lane et al., 2022; Lane and Kay, 2021; Lopez et al., 2009; Marx et al., 
2018; Rudd et al., 2019). As one of the first studies to apply a PPE to drought risk, 
(Lopez et al., 2009) demonstrate that the large ensemble approach provides a better 
understanding of the possible ranges of future outcomes and enables decision makers to 
more easily compare the merits of different management options. Borgomeo et al. (2018) 
show how large ensembles can be used to support risk-based decision-making and 
identify investments that are resilient to future uncertainties, within the context of London’s 
water supply system, using the MaRIUS dataset. This dataset has been used in other 
water supply settings in the UK, including the National Framework (Environment 
Agency, 2020), and by Thames Water as a means of testing present and future drought 
coherence between the Thames and Severn catchments (Thames Water, 2020). This 
does not represent a use of the dataset as a central part of the planning process, however 
as a means of testing a specific characteristic of a particular water transfer option. 

Initial condition ensembles are based on a single climate or weather forecasting model, 
with perturbations made to the initial conditions of each ensemble member (often referred 
to as Single Model Initial-condition Large Ensembles – SMILEs). A key advantage of 
SMILEs is that they focus on the aleatoric uncertainties (due to randomness arising from 
internal climate variability), as opposed to PPEs where aleatoric and epistemic 
uncertainties are combined (Chan et al., 2023; Shepherd, 2019). They therefore offer an 
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opportunity to more robustly sample the range of extreme events that are possible within 
climate variability (Mankin et al., 2020).  

An example is the UNSEEN (UNprecedented Simulated Extremes using ENsembles) 
technique, which uses the Met Office near-term climate prediction system to provide 
multiple simulations of the current climate (Thompson et al., 2017). Analysis of these data 
showed a high chance of exceeding monthly rainfall records in many parts of the UK 
(Thompson et al., 2017). An extension of the approach used a nested convection-
permitting model to investigate intense summer daily rainfall, and estimated that a 
damaging storm in July 2007 could plausibly have had 50-100% more rainfall in the day 
(Kent et al., 2022). Brunner and Slater, (2022) took a similar approach to directly 
investigate extreme floods by pooling an ensemble of reforecasts from the European 
Flood Awareness System. They conclude that such ensemble pooling is an efficient 
approach to increase sample size to derive more robust local and regional flood estimates, 
provided hydrological model performance is good. However, use of such forecast-system 
datasets for meteorological or hydrological drought is less straightforward because of the 
more prolonged nature of droughts, given the way the ensembles are performed 
(Kelder et al., 2022). Recently, (Chan et al., 2023) have used the EC-Earth time-slice large 
ensemble output to generate a large set of plausible droughts, and subsequently to 
estimate the chance of unprecedented drought events. These initial condition ensemble 
approaches therefore are of great value for vastly increasing our sample of events that 
could have been observed; improving understanding of plausible extremes within current 
climate variability even without climate change (which can be explored separately).  

Storylines 

Storylines offer another complementary approach to support water resources planning, 
that have been applied recently in the UK (Chan et al., 2023, 2022; Fung et al., 2022) and 
elsewhere (Gessner et al., 2022; van der Wiel et al., 2021; van Tiel et al., 2023; 
Zhang et al., 2020). Storylines are physically self-consistent and plausible scenarios, 
which could be based on alternative realisations of past events or plausible future 
pathways (Shepherd et al., 2018). Generally, storylines focus on plausibility rather than 
probability, often focusing on high-impact events which could pose significant risks to 
society (Sillmann et al., 2021).  

The storylines approach can be used to identify plausible low-likelihood but high impact 
drought events, or ‘climate surprises’, which can then be used to stress-test water 
resource systems (Sillmann et al., 2021; Woo, 2021). One example of this is Chan et al. 
(2022) who identifies physical climate storylines based on alternative realisations of past 
extreme droughts. They do this by looking at different ways that the 2010-2012 UK 
drought could have unfolded, given different initial conditions, seasonal precipitation, an 
extra dry year and climate change. Their results confirmed the importance of dry winters in 
the development of multi-year UK droughts, highlighting vulnerability to a ‘third dry winter’ 
storyline. They show that perturbing an observed event to create downward 
counterfactuals of how the event could have turned out worse could be beneficial from a 
risk awareness perspective. The results suggest there was considerable scope for a worse 
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drought to have occurred, and conditions for all storylines could have resulted in more 
severe drought conditions than other past droughts (1975-76 and 1989-93). The third dry 
winter scenario has not been used by every water company, but by those that may have a 
vulnerability to such long droughts where other datasets used (e.g., stochastic) potentially 
do not sufficiently test such events (South East Water, 2019).  

There is also the opportunity to combine probabilistic approaches (such as the UNSEEN 
estimates of the chance of extremes) with the storyline approach to sample for plausible 
worst cases of specific concern within the large sample of plausible events generated 
using a large ensemble. For example, van der Wiel et al. (2021) used a storyline approach 
to help understand how the 2018 European Drought could have been more severe under 
global warming, based on event analogues selected from a large climate ensemble. 
Similarly, (Chan et al., 2023) sampled for drought storylines characterized by specific 
conditions (such as dry spring followed by dry summer and dry autumn followed by dry 
winter). Extreme event storylines could be used to stress test water resource systems. 

Another example of a storylines approach is given in Hellwig et al. (2021), who carried out 
a sequence of stress tests that altered known droughts from the past. These included 
1) exploring drought sensitivity to antecedent recharge conditions, by modelling known 
historic drought years with systematic reductions in the 3-, 9-, and 24-month antecedent 
recharge conditions; and 2) exploring system recovery from drought, with a simulation 
starting with the most severe historic drought conditions and testing how long it would take 
to recover under different recharge conditions (Error! Reference source not found.). The 
results improved understanding of groundwater drought sensitivity to meteorological 
forcing across Germany, highlighting the spatially heterogeneous groundwater response to 
changes in recharge.   

Storylines can also be used to help interpret climate model output – distilling a large 
number of climate simulations into a manageable set of storylines that encompass key 
features and the range of plausible events (Chan et al., 2023; Clark et al., 2016; 
Shepherd et al., 2018; Sillmann et al., 2021). It can be difficult to interpret ensemble 
climate output, especially if projected changes for certain variables (such as rainfall) can 
span a wide range of uncertainty in both magnitude and direction. The use of an ensemble 
mean smooths out extreme events and results in features of events between individual 
model runs being merged, leading to a washed-out response that no longer relates to any 
individual model simulation (Shepherd et al., 2018; Zappa et al., 2021). Taking a more 
probabilistic approach, such as looking at the most likely future river flow/ drought changes 
across multi-model ensembles, may risk paying insufficient attention to plausible 
high-impact but low likelihood events that are of most concern to decision-makers 
(Sutton, 2019). Developing storylines from climate simulations to help communicate the 
uncertainties from large ensembles overcomes these issues as the storyline approach 
seeks to understand the relevant casual factors that have led to an extreme event and ask 
how those factors could have made the event worse (such as with climate change). Thus, 
individual storylines need not be associated with probabilities as they represent alternative 
plausible hypotheses, recognizing that the lack of statistical significance (i.e. wide 
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uncertainty ranges) does not dismiss the potential for significant changes in risk 
(Rodrigues and Shepherd, 2022; Zappa et al., 2021).  

Another key advantage of the storylines approach is its use for evaluating risk from 
compound events, going beyond just climate change and looking at other potential 
stresses to water systems (Bevacqua et al., 2023, 2021).  

Shepherd et al. (2018) summarises four key reasons for taking a storylines approach in 
climate impact analyses. First, it improves risk awareness by providing information in a 
way that is intuitive; storylines draw on our natural tendency to value information on lived-
events rather than statistical likelihoods when evaluating risk. Second, storylines can be 
framed in a context that is relevant to specific decision-makers, and is particularly effective 
for considering risks from compound events which may not arise from a purely statistical 
method. Third, it can help with partitioning model uncertainties, by considering storylines 
for different aspects of model uncertainty instead of generalising across a large ensemble 
where all uncertainties are combined. Finally, it can be used to explore the bounds of 
plausibility, exploring mechanisms that are not currently captured by GCMs (for example 
due to incomplete physics, insufficient sampling or insufficient resolution).   

 

Advantages and limitations 
A summary of the key advantages / issues with each of the discussed alternative methods 
for water resource planning is given in Table 1.  
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Table 1: Summary of the key advantages/ problems with alternative methods for 
water resources planning.  

Approach Advantages Problems 

Extending 
the 
historical 
record  

1. Provides a larger sample 
of extreme events than the 
observational time-series 

2. Events are plausible and 
realistic 

3. Improves understanding of 
climate variability 

1. Limited numbers of new 
events 

2. Large uncertainties in 
historical data 

3. Does not incorporate 
climate change 

Scenario-
neutral / 
sensitivity 
frameworks 

1. Can identify management 
options that are robust to a 
wide range of possible 
futures  

2. Separate to climate 
projections, but can be 
combined 

3. Improves understanding of 
system vulnerabilities 

1. Choice of the variables and 
magnitude of changes 
shown on response 
surfaces has a large impact 
on the results 

2. Can only show two 
variables at once: 
simplification of a complex 
problem 

3. Some perturbations not 
realistic 

Large 
ensembles 

1. Give a much greater 
sample of extreme events 

2. More physically-based 
than statistical or 
stochastic methods for 
generating extremes 

3. Simulations are spatially 
and internally consistent – 
can look at climate drivers 
of rare events 

4. SMILEs isolate effects of 
internal climate variability 

1. Climate models may 
contain biases/ missing 
processes for simulation of 
extremes  

2. Large volumes of data – 
challenge to distil into 
useful information, run 
models and visualise 

3. An individual SMILE does 
not consider uncertainties 
associated with different 
climate model structures  

Storylines 
1. Basing storylines around 

real events gives them 
plausibility 

2. Can be combined with 
scenario-neutral 
approaches and large 
ensembles to explore low-
likelihood but high impact 
events, like a third dry 
winter, to stress-test 
systems  

3. Helpful in planning to have 
options distilled into a 
discrete set of storylines 

1. Event storylines focus on 
individual events and it may 
be difficult to generalize  

2. Hard to assign likelihoods 
to individual storylines 

3. Cannot be used to assess 
the likely characteristics of 
extreme future droughts 
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Summary of recommendations 
• Create and utilise long time-series of plausible flows to test the resilience of water 

resource systems to climate variability. These could be developed through a range 
of different approaches, including 1) extending the historical record back in time 
using modelling approaches and/or proxy data, 2) collating output from large 
climate ensembles and using them to drive hydrological models. 
Benefit: Extended time-series better represent the range of drought events that are 
plausible within our current climate, ensuring that risk assessments are not biased 
by the limited observational record. 
Effort: Moderate to high. Historic flow reconstructions and flow derived from climate 
ensembles are freely available to download for selected sites (Hannaford et al., 
2022; Smith et al., 2018). Further development of longer-term reconstructions e.g., 
using longer rescued climate data would be a significant investment. Work on 
proxies is advanced, but developing these into useable time series for risk 
assessment (and appraisal of their utility via proof-of-concepts) would require more 
significant investment. 

• Develop plausible high-impact but low likelihood future drought scenarios to explore 
possible extreme droughts. This could be through the use of drought storylines 
developed around past events, or rare events extracted from large climate model 
ensembles.  
Benefit: A set of high-impact storylines can be an effective way to stress-test water 
systems, and highlight potential failures.  
Effort: Moderate. Use of a discrete set of storylines reduces computational 
demands while focusing on the most extreme events. There is currently significant 
planned work on developing storylines for extreme drought under various projects 
(CANARI, Climate+) that could be leveraged to support such investments. 

• Use scenario-neutral methods (such as response surfaces and stress testing 
frameworks) to assess the sensitivity of water resources systems.   
Benefit: Scenario-neutral methods can help to identify management options that 
are robust to a range of possible futures, and improve understanding of system 
vulnerabilities. They improve understanding of potential future pressures on 
systems while remaining independent from specific climate projections.   
Effort: Moderate. Large numbers of model runs may be required to develop 
response surfaces, but modelling doesn’t need to be repeated when new climate 
projections are released.  

• Combine multiple alternative approaches for a more complete understanding of the 
robustness of water resource systems.  
Benefit: These alternate approaches are complementary, and there are similarities 
in approach between the storyline, scenario-neutral and stress testing approaches. 
A set of alternative approaches would be complementary in helping to inform water 
resource planning. It would be beneficial to explore ways to combined and ‘mix and 
match’ these approaches, developing a modular toolkit to allow multiple approaches 
to be applied, according to the particular water resource system in question, in a 
consistent way (that is, with consistent datasets and methods for combination). 
Such an approach could be explored through demonstrators/case studies that could 
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pave the way for the development of guidance that advises on which methods to 
use in what circumstances, and how they can be effectively combined (and when 
they should not).  
Effort: High.  Some of these approaches have been developed and applied in 
relative isolation and while there have been some efforts to integrate these, 
significant new work would be required to develop and test these approaches in 
combination, and apply them to water supply systems. Pilot/demonstration 
approaches in a limited number of cases/systems would be more tractable. 
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Would you like to find out more about us or 
your environment? 
Then call us on 

03708 506 506 (Monday to Friday, 8am to 6pm) 

Email: enquiries@environment-agency.gov.uk 

Or visit our website 

www.gov.uk/environment-agency 

Incident hotline  
0800 807060 (24 hours) 

Floodline  
0345 988 1188 (24 hours) 

Find out about call charges (https://www.gov.uk/call-charges) 

Environment first 
Are you viewing this onscreen? Please consider the environment and only print if 
absolutely necessary. If you are reading a paper copy, please don’t forget to reuse and 
recycle. 
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