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1. Introduction 
1.1 Project Overview 
The increasing demand for wireless communication services has led to severe spectrum 
congestion [1, 2, 3], particularly in urban areas where the radio frequency (RF) spectrum is often 
inefficiently allocated. For this reason, the QMUL Spectrum Sandbox initiative has been taken, 
which is a collaborative research effort aimed at advancing dynamic spectrum-sharing solutions 
to improve wireless network efficiency, particularly in underutilised spectrum bands. In 2019, 
Ofcom [4] set out two license products: 

• Shared Access License (SAL), which gives access to four spectrum bands (  MHz, 
 MHz,  MHz, and  MHz) [5] assuming rule compliance 

and non-interference with protected systems. 

• Local Access License (LAL), which provides a way for 3rd parties to access spectrum 
licensed to the UK’s Mobile Network Operators (MNOs) that is not currently in use nor 
planned for use in the near future [6]. 

Current spectrum licensing procedures are often time-consuming and administratively complex, 
where receiving a SAL can take about 6 to 12 months for approval, and LALs have an inherent 
high degree of uncertainty for access and continued operation due to the requirement to 
protect future incumbent MNO operations. This greatly limits their feasibility for commercial 
use. 

This project proposes a Dynamic Spectrum Access (DSA) framework, allowing automated, real-
time spectrum allocation in under two minutes, ensuring efficient usage while preventing 
harmful interference with primary mobile operators. By leveraging advanced modelling, 
machine learning, and real-world testing, this research aims to develop a scalable dynamic 
spectrum-sharing system. This project is led by a consortium comprising Queen Mary University 
of London (QMUL), Telet Research, Aetha Consulting, and Federated Wireless, each bringing 
specialised expertise in wireless communications, spectrum policy, and economic assessment. 

The project is structured into three key Work Packages (WPs) to comprehensively address 
spectrum-sharing feasibility, technical implementation, and economic impact. This is also shown 
in the form of a workflow diagram in Figure 1. 

1.2 Work Package Structure 

WP1: Spectrum Data Collection and Measurement (Led by Telet Research) 
WP1 focuses on real-world spectrum measurement and data collection to establish a 
foundation for dynamic spectrum assignment. The objectives include: 
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• Deploying 5G radio equipment (e.g., cellXica M5Q, Picocom PC802) to scan and collect 
real-time spectrum usage data. 

• Assessing interference conditions in urban and rural environments through practical field 
tests. 

• Validating dynamic assignment feasibility using Federated Wireless’s Spectrum Access 
System (SAS). 

• Conducting long-term studies on spectrum availability and impact. 

 

WP2: Simulation and Modelling of Dynamic Spectrum Sharing (Led by QMUL) 
WP2, which is the focus of this report, utilises simulation and modelling techniques to assess 
the scalability and impact of dynamic spectrum-sharing solutions. It builds upon the real-world 
data from WP1 to: 

• Develop an accurate simulation framework for spectrum sharing. 

• Analyse the performance of trade-offs under different deployment scenarios. 

• Investigate machine learning (ML)-based optimisation to enhance decision-making. 

Figure 1: Integration of spectrum sharing mechanism within project workflow (see, Q5 (Methodology) 
of Ref. [7]).



WP3: Economic and Regulatory Impact Assessment (Led by Aetha Consulting) 
WP3 evaluates the economic feasibility and regulatory implications of dynamic spectrum 
sharing. Key objectives include: 

• Quantifying economic benefits for different stakeholders. 

• Assessing the regulatory framework required for implementation. 

• Engaging with industry stakeholders through workshops to validate findings. 

• Developing a roadmap for large-scale adoption of dynamic spectrum licensing. 

1.3 Focus of this report: WP2 – Simulation and Modelling 
This report primarily covers WP2, which focuses on assessing the feasibility of dynamic 
spectrum assignment through advanced simulations and modelling techniques. The key aspects 
of WP2 include: 

1. Integration of Ray Tracing for Realistic Propagation Modelling:  
Unlike conventional statistical path loss models, which rely on empirical or stochastic 
formulations, this study employs ray tracing-based simulations to incorporate critical 
multipath effects, diffraction, and reflection mechanisms. This methodology provides a 
granular and physics-based representation of signal propagation, enhancing the fidelity 
of spectrum-sharing assessments in complex environments. Currently, Ofcom's coverage 
maps for base stations do not account for environmental factors, often assuming 
uniform circular coverage, which does not reflect actual propagation characteristics. In 
contrast, ray tracing provides a more detailed and realistic representation of coverage, 
typically revealing smaller coverage areas than those depicted by Ofcom. Based on the 
findings in this report, we recommend that Ofcom consider using more accurate models 
including ray tracing and machine learning models to maximise the usage of spectrum, 
mitigate coverage gaps (not-spots), and ensure more reliable mobile connectivity. Most 
importantly, it would be useful to revisit and modify legacy deterministic models based 
on accurate numerical and ML approaches. 

2. Validation Against Real-World Data through WP1 Integration: 
A key aspect of this work is the validation of simulation results against real-world 
measurement data from WP1. By systematically comparing simulated path loss and 
interference patterns with field measurements, this approach ensures regulatory 
compliance and industrial applicability while improving model reliability for real-world 
deployments. 



3. Dynamic spectrum sharing at 1800 MHz in Band 3: This study explores the feasibility of 
dynamic spectrum sharing in the 1800 MHz Band 3, a spectrum range traditionally 
allocated for mobile communication. The purpose is to eliminate existing mobile “not-
spots” by providing mobile coverage in many of those areas through smaller local mobile 
operators using Local Access Licensing in a more cost-effective manner than the national 
mobile operators such as EE, O2, Vodafone and Three. The investigation assesses 
interference management strategies, coexistence with incumbent users, and real-time 
spectrum access techniques, contributing to future spectrum efficiency enhancements. 

4. Optimising Base Station Deployment for Targeted Local Coverage in the 3800-4200 MHz 
Band: This analysis identifies optimal configurations and minimum base station 
deployments required to deliver effective local-area coverage within the 3800-4200 MHz 
band under Shared Access Licensing conditions, ensuring efficient spectrum use and 
interference avoidance with incumbent operators. Our findings aim to support cost-
effective infrastructure planning specifically tailored to private network deployments. 

5. Machine Learning (ML) for Path Loss and Interference Prediction: Traditional 
deterministic and empirical models for path loss estimation are often computationally 
intensive or lack adaptability to dynamic environments. This work leverages machine 
learning techniques to enhance propagation modelling accuracy, enabling the real-time 
prediction of interference levels. By integrating ML-based models, the study reduces 
computational overhead while improving spectrum allocation decisions. 

6. Enhancing environmental models using LiDAR data: OpenStreetMap (OSM) data, 
frequently used for urban environment modelling, often lacks fine-grained building 
details required for precise propagation simulations. To address this, an ML-driven 
approach is proposed to integrate LiDAR data, allowing for the automatic extraction of 
structural information and material properties. This fusion enhances environmental 
model accuracy, leading to more reliable spectrum-sharing simulations. 

1.4 Expected Outcomes of WP2 
The findings from WP2 will: 

• Provide a validated, data-driven framework for dynamic spectrum sharing. 

• Offer insights into AI-driven spectrum management and efficient interference mitigation. 

• Support WP3 by quantifying the technical and economic viability of dynamic spectrum 
licensing. 

• Contribute to regulatory discussions on scalable and secure spectrum access 
frameworks. 



2. Literature Review: Key Technologies and Strategies in 
Spectrum Sharing 
2.1 Ray Tracing: A High-Precision Approach to Signal Propagation 
Wireless communication systems rely on radio waves to transmit signals, but the propagation of 
these waves is influenced by complex interactions with the environment. Factors such as 
reflection, diffraction, refraction, and scattering significantly impact signal strength, coverage, 
and quality of service. Accurate propagation modelling is essential for predicting signal 
behaviour, estimating interference, and optimising spectrum-sharing strategies. 

Traditional empirical models, such as the Hata Model [8] and the Okumura Model [9], 
approximate path loss based on system parameters like frequency, antenna height, and terrain 
properties. While these models provide quick estimates of signal attenuation over large areas, 
they assume simplified propagation conditions and are valid only for environments that 
resemble their original calibration scenarios. Consequently, they fail to capture fine-grained 
spatial and temporal variations in urban and dense environments, where obstacles like 
buildings, trees, and vehicles create complex multipath effects. 

Unlike these empirical models, ray tracing is a deterministic approach that models 
electromagnetic waves as individual rays, tracing their interactions with physical surfaces in a 
given three-dimensional (3D) environment. Ray tracing accurately simulates multipath 
propagation by accounting for the laws of optics and wave physics, making it particularly 
suitable for urban and heterogeneous environments. 

Ray tracing treats radio waves as narrow beams of energy that travel in straight lines through a 
homogeneous medium. As these rays propagate, they interact with the environment in multiple 
ways, which influence signal behaviour [10]: 

Interaction Description

Line of sight (LOS) The ray travels directly from the transmitter 
to the receiver.

Reflection The ray reflects off the surface according to 
the law of reflection.

Refraction (transmission) The ray refracts as it moves into a new 
medium, according to the law of refraction.



Ray tracing models [11] perform numerical simulations to: 

• Predict the paths of rays from transmitters to receivers, considering multiple 
propagation effects. 

• Estimate signal strength, phase changes, and path loss for each ray based on 
environmental interactions. 

By leveraging high-fidelity 3D maps, ray tracing enables the precise modelling of radio 
environments under different spectrum-sharing scenarios. For example, in an urban 5G 
network, ray tracing can simulate reflections of skyscrapers, diffraction around street corners, 
and penetration losses through windows, ensuring accurate coverage predictions.  

Propagation Loss 

Effect of surface materials: 

An important factor in ray tracing-based propagation modelling is the impact of surface 
materials on reflection losses. Different building materials affect the absorption and reflection of 
electromagnetic waves, which influences overall signal propagation. The ray tracing model 
incorporates surface material properties into path loss calculations by considering their complex 
relative permittivity ( ), which describes how the material interacts with electric fields. 

The complex permittivity is given by: 

 

where:  is the real part of the relative permittivity, determining the ability of the material to 
store electrical energy,  is the imaginary part, related to the conductivity  of the material, 
which contributes to signal attenuation,  is the permittivity of free space,  is the frequency in 
Hz.  

Diffraction The ray diffracts off the surface according to 
the law of diffraction. One ray can spawn 
many diffracted rays.

Diffuse scattering The ray interacts with a rough surface such as 
the ocean or a building facade.

εr

εr = ε′￼r + jε′￼′￼r

ε′￼r
ε′￼′￼r σ

ε0 f



The imaginary part of permittivity is calculated as: 

 

For different building materials,  and  can be estimated using empirical formulas: 

 

 

where , , ,  are material-specific constants derived from experimental data. 

These calculations are guided by ITU-R recommendations, including ITU-R P.2040-3 [12] and 
ITU-R P.527-5 through ITU-R P.527-6 [13], which provide methods and reference values for 
estimating permittivity and conductivity across different frequencies. 

This material-aware ray tracing approach enables more realistic simulations by accounting for 
frequency-dependent reflection, refraction, and absorption effects. For example: 

• Glass windows cause partial transmission and reflection, affecting indoor penetration 
losses. 

• Concrete walls have high permittivity, leading to strong reflections and significant 
attenuation. 

• Metallic surfaces act as perfect reflectors, contributing to signal multipath effects. 
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σ
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Reflection loss: 

Figure 2 shows a reflection path from a transmitter site tx to a receiver site rx. 

The model determines polarisation and reflection loss using these steps. 

1. Track the propagation of the ray in 3-D space by calculating the propagation matrix . 
The matrix is a repeating product, where   is the number of reflection points. 

 

For each reflection, calculate  by transforming the global coordinates of the incident 
electromagnetic field into the local coordinates of the reflection plane, multiplying the 
result by a reflection coefficient matrix, and transforming the coordinates back into the 
original global coordinate system [15]. The equations for  and  are: 

 

Figure 2: Reflection of a Ray [14].
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where: 

• , , and  form a basis for the plane of incidence (the plane created by the 
incident ray and the surface normal of the reflection plane).  and  are 
perpendicular and parallel, respectively, to the plane of incidence. 

•  and  are the directions (in global coordinates) of the incident and exiting 
rays, respectively. 

•  and  are the directions (in global coordinates) of the horizontal 
polarisations for the incident and exiting rays, respectively. 

•  and  are the directions (in global coordinates) of the vertical polarisations 
for the incident and exiting rays, respectively. 

•  and  are the Fresnel reflection coefficients for the horizontal and vertical 
polarisations, respectively.  is the incident angle of the ray and  is the complex 
relative permittivity of the material. 

 

 

2. Project the propagation matrix  into a 2-by-2 polarisation matrix . The model rotates 
the coordinate systems for the transmitter and receiver so that they are in global 
coordinates. 

 

P0 = [
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	 	 where: 

•  and  are the directions (in global coordinates) of the horizontal  and 

vertical  polarisations, respectively, for the receiver. 

•  and  are the directions (in global coordinates) of the propagated 
horizontal and vertical polarisations, respectively. 

•  is the direction (in global coordinates) of the nominal vertical polarisation for 
the ray departing the transmitter. 

•  is the direction (in global coordinates) of the ray departing the transmitter. 

3. Specify the normalised horizontal and vertical polarisations of the electric field at the 
transmitter and receiver by using the 2-by-1 Jones polarisation vectors  and , 
respectively. If either the transmitter or receiver are unpolarised, then the model 

assumes  . 

4. Calculate the polarisation and reflection loss  by combining ,  and . 

 

Diffraction loss: 

The model calculates diffraction loss by using computations based on the Uniform Theory of 
Diffraction (UTD) [16]. 

For a first-order signal diffraction, the equation for path loss, , is: 

 

where: 

•  and  are polarisation vectors for the receiver and transmitter, respectively, 
specified as Jones vectors.  

•  is the diffraction matrix. 

Hin = P(Vtx × ktx)
Vin = PVtx

Hrx Vrx (Eθ)
(E∅)

Hin Vin

Vtx
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Jtx Jrx

Jtx = Jrx =
2
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The equation for the diffraction matrix contains three terms. 

• The first term is a geometric coupling matrix that rotates the polarisation vector from 
the basis of the ray coordinates to the basis of the edge-fixed incidence plane. The edge-
fixed incidence plane contains the ray and the edge. 

• The second term is a polarisation matrix containing diffraction coefficients for the local 
horizontal and vertical polarisations,  and , and an amplitude scaling factor. For 
more information about the diffraction coefficients and amplitude scaling factor, see [16] 
and [17]. 

• The third term is a geometric coupling matrix that rotates the polarisation vector from 
the basis of the edge-fixed incidence plane to the basis of the edge-fixed diffraction 
plane. The edge-fixed diffraction plane contains the diffracted ray and the edge. 

High-fidelity ray tracing models, such as those implemented in Remcom Wireless InSite provide 
the necessary computational power to simulate realistic propagation conditions. Figure 3 
illustrates an example of a ray tracing simulation for an urban environment, highlighting 
multipath propagation effects. 

Figure 3: Ray tracing visualisation of path loss in an urban environment. The transmitter (Tx) is marked 
in a red marker pin, receiver (Rx) in a blue marker pin. (a) Line of sight, (b) non-line of sight having a 
single reflection, (c) non-line of sight having a double reflection, (d) non-line of sight having single 
diffraction, (e) all possible combinations of rays.

D⊥ D∥



2.2 Communication Channels: Mapping Performance Across Spectrum 
Scenarios 
In addition to ray tracing, communication channel models provide a mathematical 
representation of the transmission medium, enabling the evaluation of network performance 
under different spectrum-sharing scenarios. An illustration of spectrum sharing and mechanism 
to allocate unused spectrum to the secondary base station, in our case a gNodeB (gNB) is shown 
in Figures 4 and 5, respectively. These models incorporate key parameters tabulated in Table 1 
according to the 3GPP standards for 5G NR [18]. 

 

Figure 5: A visual representation of the steps involved in dynamic spectrum access, from random PU 
occupancy generation to SU channel allocation based on key performance indicators (KPIs). 

Figure 4: Illustration of a change in spectrum allocation over time, showing areas occupied by 
primary mobile network operator (P-MNO), secondary gNodeB (S-gNB), and unused 
spectrum.



Table 1: Key parameters for 5G against 3GPP standards 

Parameter Band 3 Band n77 Description

Carrier Frequency 1805 MHz to 1880 
MHz (uplink) 
1710 MHz to 1785 
MHz (downlink) [19]

3700 MHz to 4200 
MHz (uplink and 
downlink) [19]

The frequency at 
which PDSCH 
operates.

Bandwidth Varies based on 
Resource Block and 
Subcarrier Spacing 
[20]

Varies based on 
Resource Block and 
Subcarrier Spacing 
[20]

Overall bandwidth 
allocated for PDSCH 

Subcarrier Spacing (SCS)
15 kHz 
30 kHz and 60 kHz 
(optional for specific 
scenarios) [21]

15 kHz  
30 kHz (standard for 
n77) 
60 kHz (optional for 
specific scenarios) 
[21]

Common spacings: 15 
kHz, 30 kHz, 60 kHz, 
or 120 kHz.

Modulation Scheme QPSK, 16QAM, 
64QAM, 256QAM 
[22]

QPSK, 16QAM, 
64QAM, 256QAM 
[22]

Types: QPSK, 16QAM, 
64QAM, or 256QAM.

Modulation and Coding 
Scheme (MCS)

Table 5.1.3.1-2: MCS 
index table 2 for 
PDSCH [23]

Table 5.1.3.1-2: MCS 
index table 2 for 
PDSCH [23]

MCS index determines 
modulation type and 
coding rate. 

 

Transport Block Size Varies based on MCS; 
can be significant 
depending on 
configuration

Varies based on MCS; 
can be substantial 
depending on 
configuration

Size of the data being 
transmitted, 
influenced by MCS.

Coding Rate Varies based on MCS; 
typically ranges from 
1/3 to 1 [24]

Varies based on MCS; 
typically ranges from 
1/3 to 1 [24]

Rate of error 
correction coding 
applied to the data.



WP2 employs a MATLAB-based channel model, parameterised according to empirical data from 
Work Package 1 (WP1), which captures real-world spectrum usage, interference conditions, and 
network load variations. This approach ensures that the simulated scenarios reflect actual 
deployment environments, enhancing the reliability and applicability of the findings. Moreover, 
the integration of bit-level simulations allows for the analysis of key performance indicators 
(KPIs), such as bit error rate (BER), throughput, and latency, under different spectrum-sharing 
configurations. Some of the KPIs are listed in Table 2. 

Resource Block (RB) 
Allocation

Varies based on 
Reference channel 
[24]

Varies based on 
Reference channel 
[24]

Number of resource 
blocks assigned to the 
PDSCH.

Time Allocation

For transmission scheme 1 of the PDSCH, the 
UE may assume that a gNB transmission on 
the PDSCH would be performed with up to 8 
transmission layers on antenna ports 
1000-1011 as defined in Clause 7.3.1.4 of [4, 
TS 38.211], subject to the DM-RS reception 
procedures in Clause 5.1.6.2. [27]

Duration in time 
domain (slots or 
symbols) for PDSCH.

Slot Configuration	 subcarrier spacing configuration μ varying 
along with Nsymb which also effect on the 
cyclic prefix [26]

Specific slots assigned 
for PDSCH 
transmission.

Reference Signal 
Configuration

Varies based on 
Reference channel 
[24]

Varies based on 
Reference channel 
[24]

DMRS configuration, 
including type and 
ports.

Power Control [25]

Wide Area BS (Note)  
Medium Range BS ≤ 
38 dBm  
Local Area BS ≤ 24 
dBm

Wide Area BS (Note)  
Medium Range BS ≤ 
38 dBm  
Local Area BS ≤ 24 
dBm

Settings for downlink 
power control and UE 
power control.



Table 2: KPIs in wireless communication channel model 

KPIs Definition Importance

Signal-to-Noise Ratio (SNR) Ratio of signal power to noise 
power.

Higher SNR indicates better 
signal quality and fewer 
errors.

Signal-to-Interference-plus-
Noise Ratio (SINR)

The ratio of signal power to 
the sum of interference and 
noise power.

Accounts for interference 
from other signals, crucial for 
multi-user communication.

Bit Error Rate (BER) The fraction of bits received 
in error over the total 
transmitted bits.

A lower BER indicates higher 
communication reliability.

Frame Error Rate (FER) The ratio of incorrectly 
received frames to the total 
transmitted frames.

Used in packet-switched 
networks to measure 
reliability.

Channel Capacity Maximum achievable data 
rate of the channel under 
given conditions.

Determines the theoretical 
limit for data transmission.

Throughput The actual amount of data 
successfully transmitted per 
second.

A real-world performance 
measure, lower than channel 
capacity due to losses.

Spectral Efficiency The number of bits 
transmitted per second per 
Hz of bandwidth.

Measures efficient utilisation 
of frequency spectrum.

Path Loss Reduction in signal strength 
as it propagates through 
space.

Affects coverage and power 
requirements.

Delay Spread The difference between the 
arrival times of the earliest 
and latest significant 
multipath components.

Affects inter-symbol 
interference (ISI) and 
equalisation requirements.

Latency The time delay in data 
transmission from source to 
destination.

Critical for real-time 
applications like VoIP and 
gaming.



 

While deterministic channel models offer a high degree of accuracy, they are computationally 
intensive, particularly when simulating large-scale networks. To address this challenge, hybrid 
approaches that combine ray tracing-based deterministic models with statistical approximations 
are being developed. This ensures a balance between simulation accuracy and computational 
efficiency, allowing for extensive parameter sweeps across different deployment scenarios. An 
example of a communication wireless channel model is shown in Figure 6. 

2.3 The Evolution of Spectrum Sharing: Approaches and Challenges 
The basic idea of spectrum sharing is to allow transceivers to use idle or underutilised spectrum 
bands temporally and geographically. Indeed, spectrum sharing is a promising strategy to tackle 
the imbalance between limited spectrum resources and unprecedented traffic demands [28]. 
We provide a survey of some of the techniques for spectrum sharing. 

2.3.1 CR-Based Spectrum Sharing 

Figure 6: 5G NR downlink physical layer processing chain, showing the transmitter and receiver 
functionalities, including channel estimation, equalization, and demodulation.



 

Cognitive radio (CR) is an effective technique to enhance spectrum efficiency and potentially 
ameliorate the spectrum scarcity problem [29]. By sensing the radio environment, cognitive 
users can adaptively configure transmitters and protect incumbent users. In general, a cognitive 
period consists of two phases: spectrum sensing and cognitive transmission. In the spectrum 
sensing phase, cognitive users sense the radio environment and collect spectrum information 
(e.g., occupation status, traffic, energy, channel gain). In the cognitive transmission phase, 
cognitive users select the best spectrum bands and adapt transmissions according to the 
collected spectrum information. A typical scenario of underlay spectrum sharing in a microcell is 
provided in Figure 7, where the macro-base station (M-BS) and macro user types of equipment 
(M-UEs) denote incumbent macro nodes. 

2.3.2 D2D-Based Spectrum Sharing 

Figure 7: A typical scenario of CR-based spectrum sharing. C-BS: 
Cognitive base station, C-UE: Cognitive user equipment [1].



 

Two users are allowed to communicate via a device-to-device (D2D) connection when they are 
close to each other and far away from the M-BS [30]. By reducing the communication distance, 
D2D communication can improve throughput, reduce energy consumption, and decrease 
latency. To enhance spectrum efficiency, it is suggested that D2D communications share the 
spectrum bands of M-UEs under the central management of the M-BS, namely, underlay D2D 
communication. There are usually three types of interference in an underlay D2D 
communication network, as shown in Figure 8: 

• Type I: interference from D2D communications to M-UE communications 

• Type II: interference from M-UE communications to D2D communications 

• Type III: interference from D2D communications to D2D communications 

The interference management between M-UE communications and D2D communications is the 
key issue in underlay D2D communications. 

Figure 8: Three types of interference in an underlay D2D communication network. DT: D2D transmitter; 
DR: D2D receiver [1].



2.3.3 IBFD-Based Spectrum Sensing 
In traditional wireless communications, a node is allowed to receive-transmit signals in 
orthogonal time slots (i.e., half-duplex mode) or simultaneously receive-transmit signals in 
orthogonal frequency bands (i.e., out-of-band full-duplex mode) due to implementation 
simplicity. Hence, two-time slots or two frequency bands are needed to accomplish a reception 
and a transmission. Both half-duplex mode and out-of-band full-duplex mode are inefficient in 
terms of spectrum efficiency. To deal with the issue, in-band full-duplex (IBFD) communication is 
proposed [31].  

The basic idea of IBFD communication is to enable a node to receive-transmit signals on the 
same spectrum band simultaneously. As shown in Figure 9, a node may receive-transmit the 
same signal when the node acts as an IBFD relay, and a node may also receive-transmit different 
signals when the node is an IBFD transceiver (both the M-BS and M-UE are IBFD transceivers in 
Figure 9b). Thus, an IBFD node needs only one timeslot or frequency band to accomplish a 
reception and a transmission. Compared to the half-duplex and out-of-band full-duplex 
communications, IBFD communication theoretically doubles the spectrum efficiency. However, 
the transmission of the IBFD node may cause severe self-interference in its reception. In 
particular, self-interference is generated at the IBFD relay in Figure 9a and is generated at each 
IBFD transceiver in Figure 9b. This brings about theoretical improvement of spectrum efficiency. 
Thus, the bottleneck of the IBFD communication is the self-interference cancellation technique. 

Figure 9: Two typical scenarios of IBFD communications: a) receive and transmit the same signal 
simultaneously; b) receive and transmit different signals simultaneously [1]. 



2.3.4 NOMA-Based Spectrum Sharing 
In the previous generations of mobile communications, time/frequency/code domains were 
divided into orthogonal channels for orthogonal multiple access (OMA). OMA can avoid co-
channel interference of multiple transmissions and reduce the processing complexity at 
receivers. However, OMA degrades the spectrum efficiency due to the exclusive channel 
occupation. To deal with the issue, NOMA is proposed and has been extensively studied in 
recent years. Different from OMA, NOMA allows the BS to schedule multiple users on a single 
channel at the same time and enhances the spectrum efficiency [32]. Although NOMA is 
generally a multiple-access technique, we can also regard it as a spectrum-sharing technique 
from the aspect that NOMA allows multiple transmissions on the same spectrum band at the 
same time and provides spectrum-sharing gains. 

 Figure 10: The principle of a two-user downlink basic NOMA transmission [1].



The key idea of the basic NOMA scheme is to exploit the power domain instead of time/
frequency/code domains. In particular, the transmissions in the basic NOMA scheme are 
allowed to share the same time/frequency/code but with different power levels. Although 
different transmission signals may cause co-channel interference with each other at receivers in 
the basic NOMA system, the receivers can mitigate the co-channel interference and extract 
desired components from the received signals with the successive interference cancellation 
(SIC) technique. In this way, the basic NOMA scheme enhances the spectrum efficiency 
compared with the OMA. The principle of a two-user downlink basic NOMA transmission is 
shown in Figure 10. 

2.4 Machine Learning for Smarter Spectrum Access and Interference 
Control 
Machine Learning (ML) is a subset of artificial intelligence (AI) that enables systems to learn 
patterns from data and make decisions without explicit programming. ML models improve their 
accuracy over time as they are exposed to more data, making them particularly useful for 
complex, data-driven applications. In the field of wireless communications, ML has emerged as 
a powerful tool for solving problems related to spectrum sharing, interference management, 
and dynamic resource allocation. Traditional spectrum management approaches rely on 
predefined models and static policies, which often fail to adapt to the ever-changing wireless 
environment. ML, by contrast, enables adaptive decision-making, allowing networks to optimise 
spectrum usage efficiently while minimising interference. 

ML has become a pivotal tool in enhancing spectrum sharing in wireless communications. By 
enabling systems to learn from data and make adaptive decisions, ML addresses the 
complexities of dynamic spectrum environments, leading to more efficient utilisation of 
available frequencies. In the realm of spectrum sensing, ML algorithms have been employed to 
improve the detection of available channels. For instance, deep learning models can analyse 
spectral data to identify underutilised frequencies, thereby facilitating more efficient spectrum 
sharing among users [33]. Regarding dynamic spectrum access, reinforcement learning 
techniques have been applied to enable systems to make real-time decisions about spectrum 
utilisation. These methods allow devices to adapt their transmission strategies based on the 
current spectrum environment, leading to improved coexistence and reduced interference [34].  
In terms of interference management, ML has been utilised to predict and mitigate interference 
among users. By analysing patterns in spectrum usage, ML models can forecast potential 
interference scenarios and adjust transmission parameters proactively to maintain 
communication quality [35].  Furthermore, ML has been explored in the context of federated 
learning for spectrum sharing, where multiple devices collaboratively learn a shared model 
while keeping their data localised. This approach enhances privacy and reduces the need for 
centralised data collection, which is beneficial in dynamic spectrum environments [36]. The 



incorporation of ML into WP2 not only reduces computational overhead but also enables real-
time adaptability, ensuring that spectrum resources are allocated dynamically based on current 
demand and environmental conditions. 

3. Simulation and Modelling Framework 
3.1 Simulation Approach and Tools Used 
Work Package 2 (WP2) of the Spectrum Sandbox ITT Project employs a MATLAB-based 
simulation framework to analyse and optimise dynamic spectrum-sharing solutions. The 
simulation framework integrates three core components: communication channel models, ray 
tracing techniques, and machine learning-driven interference prediction as shown in Figure 11. 
These elements work together to provide a realistic and comprehensive evaluation of wireless 
network performance under different deployment scenarios. Though machine learning is part of 
the next step moving forward beyond the project, it has been used preliminary (the prototype 
and internal working highlighted in §5) to showcase how it can be integrated into the system to 
predict realistic path loss under different deployment scenarios. 

 
Figure 11: Flow diagram between different components namely machine learning, ray tracing and 
communication channel model.



3.1.1 Choice of MATLAB as the Simulation Platform 
MATLAB is selected as the primary simulation tool due to its robust computational capabilities 
and seamless integration with specialised toolboxes such as: 

• Antenna Toolbox, which facilitates the design, analysis, and visualisation of antennas, 
ensuring accurate radiation pattern modelling. 

• 5G Toolbox, which enables simulation of 5G New Radio (NR) waveforms, resource 
allocation, and MIMO antenna configurations. 

• RF Propagation Toolbox, which supports ray tracing-based path loss estimation, enabling 
detailed urban and rural propagation modelling. 

MATLAB is also chosen for the following practical advantages: 

1. Cost-effectiveness and Licensing: MATLAB is cost-effective for academic researchers and 
universities that have campus-wide licenses. In contrast, commercial software such as 
Remcom Wireless InSite, which specialises in ray tracing simulations, can be prohibitively 
expensive for non-industrial users. 

2. Customisation and Flexibility: MATLAB allows users to define custom antenna patterns 
and propagation models, offering greater flexibility in wireless communication research. 
Many proprietary tools, including Remcom Wireless InSite, restrict customisation, 
making it difficult to tailor simulations to specific research requirements. 

By leveraging MATLAB’s built-in customisation, extensibility, and affordability, WP2 ensures that 
the simulation results are aligned with real-world network behaviour, improving the predictive 
accuracy of spectrum-sharing strategies. 

3.1.2. Ray Tracing for Realistic Environment Modeling 
The MATLAB ray tracing engine is employed to simulate: 

• Urban, suburban, and rural settings, ensuring that spectrum-sharing solutions are tested 
across a variety of topographies. 

• Fine-grained propagation effects, including multipath reflections, diffractions, and 
scattering, are essential for accurate interference prediction. 



Ray tracing ensures that WP2’s simulation framework closely replicates actual radio 
environments, thereby improving the reliability of spectrum-sharing strategies before field 
deployment. 

3.1.3 Machine Learning for Interference Prediction and Path Loss Estimation 
Machine learning (ML) technique integration into the simulation framework is part of the 
innovation work. ML primarily serves two purposes: 

• Improve path loss prediction accuracy, reducing the reliance on predefined empirical 
models. 

• Enhances building modelling and predicts material properties for more accurate 
environmental modelling. 

The concept of ML integration in our simulation framework is further detailed in Section 5. The 
integration of ML can enhance the efficiency and scalability of WP2’s modelling efforts, ensuring 
that simulations remain computationally feasible even for large-scale network deployments. 

3.2 Ray Tracing for Signal Propagation Analysis 
Ray tracing is a fundamental component of WP2’s simulation approach, providing realistic 
modelling of wireless signal propagation. The ray tracing methodology aligns with 3GPP 
standards, ensuring compliance with industry benchmarks. 

3.2.1 Frequency Bands and Deployment Scenarios 
WP2 evaluates spectrum-sharing solutions across two critical frequency bands: 

• Band 3 (1800 MHz): A widely used LTE frequency, essential for macrocell coverage and 
indoor penetration. 

• Band n77 (3800–4200 MHz): A mid-band frequency, widely utilised for 5G deployments, 
offering a balance between capacity and coverage. 

By analysing these bands, WP2 ensures that both existing and future spectrum-sharing solutions 
are assessed under realistic deployment conditions. 



3.2.2 Key Propagation Effects Considered 
Ray tracing models account for various real-world propagation effects, including: 

• Path Loss: The reduction in signal strength as the wave propagates through space. 

• Shadowing: Obstructions, such as buildings and trees, causing signal attenuation. 

• Multipath Fading: The interaction of signals travelling along different paths, leading to 
constructive or destructive interference. 

3.3 Communication Channel Model 
The communication channel model incorporated in the simulation and modelling plan is 
designed to adhere to 3GPP industry standards, as shown in Figure 12, for spectrum sharing, 
ensuring an accurate representation of real-world signal propagation and interference 
dynamics. Figure 12 shows an illustration of a 5G network setup with potential interference 
abiding by the 3GPP industry standards for spectrum sharing. 

 

Figure 12: Illustration of a 5G network setup with potential interference abiding by the 3GPP industry 
standards for spectrum sharing.



4. Insights from WP2: Validating and Benchmarking 
Performance 
4.1 Benchmarking Accuracy: Comparing Simulations with Real-World 
Data 
To ensure the accuracy and reliability of the ray tracing-based simulation used in WP2, it is 
essential to compare its performance with findings from established studies in the literature. A 
study by Zakaria et al. presented real-world measurements in urban and suburban 
environments at 3.5 GHz as shown in Figure 13 [37]. Comparison with this study indicates that 
the WP2 ray tracing simulation model demonstrates similar performance trends with that of the 
real-world measurements. This comparison also highlights areas where refinements are 

needed. For example, while the simulation effectively models diffraction and reflection effects, 

Figure 13: Validation of path loss simulation models against real-world measurements at 3.5 GHz [37]. 
(a) Indication of the route used for data collection in Dokki territory. (b) Indication of the route used for 
data collection in Faysal territory. (c) Comparison of measured and simulated path loss in Dokki 
territory as an example of an urban scenario. (d) Comparison of measured and simulated path loss in 
Faysal territory as an example of a suburban scenario.



differences in building material characterisation and transient obstacles such as moving vehicles 
and temporary structures contribute to observed deviations from real-world measurements. 

Beyond regulatory benchmarking, WP2 simulations are cross-validated against real-world data 
collected in WP1, which includes field measurements of received signal strength and path loss 
from Bath test sites. By aligning the simulated propagation characteristics with empirical 
observations, discrepancies can be identified and corrected, thereby refining the predictive 
capabilities of the ray tracing and machine learning-driven models. This validation is particularly 
crucial for ensuring that the simulated interference predictions and spectrum-sharing strategies 
are representative of actual network conditions. The simulation setup configuration is tabulated 
in Table 3. 

Table 3: MATLAB® simulation configuration 

The comparison with WP1 data, as shown in Figure 14, provides insights into how accurately the 
model captures real-world attenuation, multipath effects, and shadowing in diverse 
environments. Figure 14 takes into account one gNB situated on Green Park Road (Latitude: 
51.37933323, Longitude: -2.36481137) operating at 4080 MHz frequency (n77 Band). The data 

Transmitter Information

Frequency 4000 MHz (n77 Band)

Transmitting power 5.01 W (37 dBm)

Antenna height 5 m

Directionality Isotropic

Ray Tracing Propagation Model

Number of reflections 2

Number of diffractions 1

Building material Concrete

Terrain material Concrete

Receiver Information

Antenna height 1 m

Directionality Isotropic



points shown in the Figure are the path loss obtained from User Equipment with the Network 
Signal Guru software installed and latched to this particular gNB. 

The cumulative distribution function (cdf) of the path loss for the WP1 measurement data 
(black solid line) and WP2 Ray Tracing method (blue solid line) are shown in Figure 15. Initially, 
we utilised the in-built isotropic antenna for the Ray Tracing method in MATLAB. However, this 
is different from the antenna used in the Bath test bed. The actual antenna used in the test bed, 
its specification and the radiation pattern are shown in Figure 16. Since we were unable to 
obtain the precise radiation pattern of the antennas deployed in the Bath city centre from Telet, 
we simulated the antenna in CST such that it approximately matches the radiation pattern of 
the actual antenna. Figure 17 shows our simulated radiation pattern of the 4-port 
omnidirectional antenna. As can be seen between Figures 16 and 17, the simulated radiation 
may not be an exact match but is approximately comparable to the one used for measurements. 
This is then incorporated into the Ray Tracing MATLAB to obtain the respective path loss. This is 
shown as a blue dotted line in Figure 14. We find from Figure 15 that the Ray Tracing method 
applied on the OSM file downloaded directly from the OpenStreetMap [38] website has a large 
portion of samples with optimistic values of the path loss. To account for more comparable 
results, we have incorporated OSM files obtained after processing LiDAR data. The LiDAR 
processing is explained more in detail under §5.2. The results of the path loss obtained by 
operating the Ray Tracing method on the LiDAR-based OSM file lead to a more reasonable 
agreement between the simulation and the measurement with about 40% data on the 
pessimistic side and 60% on the optimistic side. The discrepancy between the simulation and 
the measurement can be due to several factors: (a) dynamic real-world environment including 
moving objects such as vehicles, pedestrians causing shadowing, diffraction and time-varying 
multipath effects, (b) weather and atmospheric effects, (c) Tx power and hardware variability, 
(d) incomplete or simplified building and terrain representation. 



 

 

Figure 14: Path loss data around the Bath area using Telet gNBs. (a) WP1: field measurement, (b) WP2: 
Ray Tracing using OSM downloaded directly from OpenStreetMap [38] with in-built MATLAB isotropic 
antenna, (c) WP2: Ray Tracing using OSM downloaded directly from OpenStreetMap [38] with CST 
based 4-port omnidirectional antenna, (d) WP2: Ray Tracing using OSM obtained after processing on 
LiDAR data with in-built MATLAB isotropic antenna, (e) WP2: Ray Tracing using OSM obtained after ML 
processing on LiDAR data with CST based 4-port omnidirectional antenna.



 

Figure 15: Evaluating the performance of Ray Tracing simulations for path loss prediction in Bath City 
Center by comparing CDF curves with measured data, with and without the inclusion of LiDAR data, 
and antenna from CST Studio Suite.



 

Figure 16: (a) 4-port omnidirectional antenna used in Bath City Center test bed, (b) specifications of the 
antenna, (c) H-plane radiation pattern, (d) V-plane radiation pattern.



 

Figure 17: (a) 4-port omnidirectional antenna design in CST, (b) Simulated 3D radiation pattern of the 4-
port omnidirectional antenna in CST Studio Suite, (c) H-plane radiation pattern of the simulated 
antenna, (d) V-plane radiation pattern of the simulated antenna.



4.1.1 Testing in Rural and Urban Environments: Case Studies from Chalke Valley & 
Liverpool 
The Ray Tracing method was further applied to additional locations, including Chalke Valley and 
Liverpool, to represent rural and urban environments, respectively, at Band 3 (1.8 GHz) and n77 
(4 GHz) frequencies.  

 

Chalke Valley 

The Chalke Valley is a 13-mile valley in Wiltshire and Dorset, England. It stretches out along 
twisting lanes from Salisbury to Shaftesbury through quintessentially English villages and 
hamlets, against a backdrop of the rich, lush landscapes of the rivers Ebble and Chalke [39]. This 
is a classic example of a rural scenario. As part of the Cranborne Chase Area of Outstanding 
Natural Beauty, the valley boasts of patchwork farmland, chalk downland, rolling hills, rich green 
water meadows and sprawling bluebell woods. The location features low-rise buildings spread 
all over the place in small clusters with the majority being green coverage. For modelling 
purposes, we set the parameters the same as shown in Table 3 but with the exception that the 
“Terrain Material” is now chosen as “vegetation”. The coverage map for Band 3 and n77 can be 
found in Figure 18. Additionally, the cumulative distribution function (CDF) of path loss for this 
area is also illustrated in Figure 20. 

Liverpool 

Liverpool is a Cathedral and port city in Merseyside, England, situated on the eastern side of the 
Mersey Estuary, near the Irish Sea. Liverpool is the fifth largest city in the United Kingdom with 
one of the most densely populated areas in England with a population of over 1.5 million. The 
city is heavily developed with residential, commercial, and industrial buildings, extensive 
transport networks, and public amenities. All these contribute to Liverpool being classified as an 

Figure 18: Coverage plot in the region of Chalke Valley (a rural scenario) for an area of 200 m radius.



urban area. As a result, the MATLAB simulation setup has been kept identical to the one used in 
Bath and shown in Table 3. 

 

 

Figure 19: Coverage plot in the region of Liverpool (an urban scenario) for an area of 200 m radius.

Figure 20: Coverage plot in the region of Chalke Valley (a rural scenario) and Liverpool (an 
urban scenario) for an area of 200 m radius.



The resulting coverage map in this area is presented in Figure 19. Again, the cumulative 
distribution function (CDF) of path loss for this area is shown in Figure 20. As observed between 
Figure 18 and Figure 19, path loss is notably higher in Liverpool compared to Chalke Valley, 
which aligns with the well-established trend of increased path loss in urban environments due 
to higher building density and multipath propagation. Furthermore, the CDF curve for the n77 
frequency (4 GHz) is consistently shifted to the left compared to Band 3 (1.8 GHz), confirming 
the expected increase in path loss at higher frequencies. 

4.2 Bridging the Gap: Understanding Discrepancies and Material Effects 
To ensure a fair and meaningful comparison, the simulation settings were carefully chosen to 
align with the real-world measurement setup, maintaining consistency with actual deployment 
conditions. The simulation was conducted for Band n77 (3.8–4.2 GHz), which is one of the key 
frequency bands designated for testing within the QMUL Spectrum Sandbox. The environmental 
models used in the simulation were designed to replicate urban landscapes, incorporating 
structural and terrain materials predominantly composed of concrete, a common material in 
densely built environments. To enhance the realism of the propagation model, key effects such 
as diffraction, reflection, and shadowing were accounted for, ensuring that the impact of 
different surface materials on signal attenuation was accurately represented. 

Despite these efforts, discrepancies between the simulated results and real-world WP1 
measurement data were observed. These differences arise due to several factors, primarily 
environmental uncertainties, material property assumptions, and dynamic interference effects. 
Real-world measurement campaigns inherently include transient obstacles, such as moving 
vehicles, pedestrians, and temporary structures, which introduce signal variations that are 
difficult to fully capture in static 3D simulation models. As a result, localised differences in 
received signal strength between measured and simulated data were observed, particularly in 
areas where frequent obstructions were present. 

Another potential source of discrepancy is the generalisation of material properties within the 
ray tracing model. While the simulation employs ITU-R standardised material coefficients for 
buildings and surfaces, real-world structures exhibit variations in thickness, surface roughness, 
and material composition, leading to deviations in how signals interact with them. For example, 
real-world buildings may consist of a mix of glass, metal reinforcements, and varying concrete 
densities, affecting signal propagation in ways that standardised models may not fully capture. 
These material-dependent losses are particularly evident at higher frequencies, where 
reflections, diffractions, and absorptions are more sensitive to the specific characteristics of the 
medium. 



 

 

Moreover, limitations in antenna configuration and transmitter power settings contribute to 
differences between the simulated and measured plots. In the real-world WP1 measurements, 
details regarding the dynamic transmitter power were unknown, requiring assumptions to be 
made in the simulation. Consequently, a static antenna transmitter power and an 
omnidirectional CW antenna were used in the simulation setup to approximate the 
measurement conditions. Additionally, unknown factors such as interference from neighbouring 
wireless systems, atmospheric effects, and hardware variations in the measurement equipment 

Figure 21: Customising building materials using MATLAB in Ray Tracing. (a) The region of interest (ROI) 
is indicated in Pink. The inset shows the buildings within the ROI on a new map. (b) Buildings identified 
as 1, 2, and 3 are customised with materials glass (indicated by blue), brick (indicated by red) and metal 
(indicated by black), respectively. All the other buildings are customised with concrete material 
(indicated by light grey).

Figure 22: Ray Tracing path loss predictions for various building material (concrete, brick, glass, metal, 
hybrid) types in a rural scenario (Chalke Valley) along with Rural Macro (RMa) line of sight (LOS) model 
and RMa non-line of sight (NLOS) model.



may have further influenced the real-world results, leading to deviations from the simulated 
predictions.  

With a more precise understanding of the environment and building materials, more accurate 
ray tracing-based propagation models can be developed. How this improved knowledge can be 
obtained is further discussed in §6: Innovations and Future Directions as a flow diagram utilising 
more accurate LiDAR data to extract building and terrain material information. A small example 
of how this refined knowledge can be applied in ray tracing simulations is provided in Figure 21, 
illustrating how enhanced modelling techniques can reduce discrepancies between simulation 
and reality. Additionally, the effect of different building materials on path loss has been depicted 
in Figure 22, highlighting the significant role material properties play in propagation modelling. 

4.3 Interference Dynamics and Performance Evaluation For 5G Network 
in Band 3 and n77 

4.3.1 Band n77 gNodeB threshold simulation 
Based on the 5G NR downlink physical layer processing chain shown in Figure 6, we explored 
the relationship between the transmitting power of a 5G gNodeB (gNB) and the resulting 
Transport Success Rate (TBSR) between the UE and the MNO (Mobile Network Operator) with a 
specific reference point of  dBm received power at the UE in each of the modulation and 
coding schemes (MCS). This setup is illustrated in Figure 23 and the results are presented in 
Figure 24. The different lines illustrate the impact of the MCS on the TBSR performance.  

 

−70

Figure 23: Illustration of how increasing secondary gNB transmit power affects the TBSR from primary 
MNO to the UE in a 5G network.



 

 

Figure 24: Transport Block Success Rate (TBSR) vs. maximum tolerable received power from a gNB for a 
user equipment (UE) receiving -70 dBm from an MNO.

Figure 25: BLER and Throughput vs. MCS at SINR = 5 dB, 10 MHz BW



TBSR and the MCS are closely related performance metrics in wireless communication systems, 
particularly in 5G and LTE networks. The TBSR represents the percentage of successfully 
received transport blocks (TBs) without errors after decoding, whereas the MCS defines the 
modulation order and coding rate, determining how much data is transmitted within a transport 
block. MCS is a key parameter in link adaptation, dynamically adjusting the modulation and 
coding based on channel conditions to optimise data transmission. The relationship between 
MCS with Block Errors Rate (BLER) and throughput can be described as follows in Figure 25:  

i. Higher MCS values (higher-order modulation and lower coding redundancy): In good 
channel conditions, where the SNR and channel quality indicator (CQI) are high, the system 
selects a higher MCS (e.g., 256-QAM with a high coding rate). This increases spectral 
efficiency, allowing more bits per symbol, but also makes the transmission more vulnerable 
to errors. If channel conditions degrade due to interference or fading, TBSR drops as BLER 
increases, leading to retransmissions and lower throughput. 

ii. Lower MCS values (lower-order modulation and higher coding redundancy): In poor 
channel conditions, a lower MCS (e.g., QPSK or 16-QAM with a lower coding rate) is 
selected to improve transmission reliability. The lower MCS increases coding redundancy, 
making the transmission more robust against noise and interference. As a result, TBSR 
remains high since BLER is low, but at the cost of reduced throughput due to a lower bit-
per-symbol transmission rate. 

 

In the context of cell edge simulations, the scenario where the received power from the MNO is 
-100 dBm must be considered. Typically, -105 dBm is used as the cell coverage limit, but with an 
Additive White Gaussian Noise (AWGN) spectral density of -174 dBm/Hz, the total noise power 



increases from -107 dBm to -104 dBm. Given that this noise level may exceed the received MNO 
power of -105 dBm, the simulation assumes a received MNO power of -100 dBm per unit 
bandwidth to ensure a more realistic assessment of performance at the cell edge. 

The results presented in Table 4 demonstrate that increasing the bandwidth from 5 MHz to 10 
MHz results in a reduction in SNR across all MCS levels. This degradation is particularly 
pronounced for higher-order modulation schemes, such as 16-QAM and 64-QAM. This trend 
aligns with theoretical expectations, as in a scenario with fixed total transmission power, 
doubling the bandwidth from 5 MHz to 10 MHz leads to a 3 dB increase in noise power, thereby 
reducing the available SNR. 

Consequently, as the bandwidth increases, the receiver experiences a higher AWGN power, 
leading to an overall reduction in SNR. The impact of this SNR degradation varies across 
different MCS levels. For lower MCS levels (QPSK at MCS 1 and 4), the degradation is relatively 
minor because the gNBs signal remains the dominant factor influencing noise levels, allowing 
the receiver to maintain a more stable SNR. In contrast, for higher MCS levels (16-QAM and 64-
QAM at MCS 7, 10, and 13), the drop in SNR is more significant, closely aligning with the 
theoretical 3 dB prediction. This is because, at higher MCS levels, AWGN becomes the dominant 
noise factor, making the signal more susceptible to degradation as bandwidth increases.  

This trend highlights the increased sensitivity of higher-order modulations to noise power, 
reinforcing the importance of power control, error correction, and adaptive equalisation 
techniques in mitigating SNR losses in wideband 5G transmissions. 

Overall, these results highlight the critical interplay between bandwidth, modulation scheme, 
and power control in 5G NR networks. The observed SNR degradation at higher bandwidths 
suggests that receivers must be equipped with advanced equalisation and interference 
mitigation techniques to compensate for the power-spreading effect. Additionally, the adaptive 
power control observed in the gNB transmission suggests that 5G systems intelligently regulate 
power levels to optimise performance across different bandwidth configurations. These findings 
reinforce the importance of dynamic modulation and power adaptation strategies to ensure 
consistent network reliability and spectral efficiency in varying bandwidth scenarios. 

4.3.2 Band n77 TDD synchronisation simulation 



 

We also looked at the scenarios where the different TDD synchronisation and asynchronisation 
of downlink (and uplink) from (and to) the secondary gNB can affect the performance of a 
primary MNO interacting with a UE. The scenario is illustrated in Figure 26. 

First, the impact of the uplink transmission from the secondary gNB on the downlink 
performance of the primary MNO is analysed. This scenario, depicted in Figure 11, involves the 
primary BS communicating with UE1, while UE2 interacts with the secondary BS. Various DL:UL 
ratios are considered, and the resulting impact is illustrated in Figure 27, with threshold gNB 
received power values listed in Table 5. As observed in Figure 27, the uplink interference is 
minimal due to the frequency separation between DL and UL, where the downlink operates at a 
higher frequency. 

A specific MCS, code rate and modulation scheme is considered, and the observed trends 
remain consistent across different configurations of these parameters. 

Figure 26: Illustration of Primary BS Downlink (DL1) and Secondary BS Uplink/Downlink (DL2/UL2) 
signal synchronisation, showing scenarios with perfect synchronisation, 50% asynchronisation, and 
100% synchronisation.



 

Table 5: Threshold gNB power in maintaining 85% TBSR from MNO for different downlink-uplink ratios. 

4.3.3 Band 3 cross Bandwidth simulation 
Next, the impact of the downlink transmission from the secondary gNB on the downlink 
performance of the primary MNO is analysed.  The centre frequency of operation is set at Band 
3 1.8 GHz. We take the following two scenarios considering the subcarrier spacing (SCS) to be 
the same in both cases to understand the impact of the downlink: 

Figure 27: Impact of different UL/DL ratios on the TBSR performance as a function of gNB transmit 
power.

DL: UL MCS Code Rate Modulation Max gNB Power 
(dBm)

3:7 13 526/1024 QPSK -105.744

4:6 13 526/1024 QPSK -105.78

5:5 13 526/1024 QPSK -105.572

6:4 13 526/1024 QPSK -105.842

7:3 13 526/1024 QPSK -105.728

8:2 13 526/1024 QPSK -105.585

9:1 13 526/1024 QPSK -105.77



• Same bandwidth (BW)  

• Different BW 

Table 6 presents a comparison of interference with different MNO and gNB bandwidth 
configurations. The evaluated scenarios include MNO bandwidths of 60 MHz alongside gNB 
bandwidths of 10 MHz, 20MHz, 30MHz, 40 MHz, 50 MHz, and 60 MHz. The increase in MNO 
bandwidth leads to a rise in AWGN power, which exceeds -105 dBm, making signal decoding 
infeasible in the simulation. To ensure that the gNB remains the dominant interference source, 
the MNO received power is fixed at -70 dBm, and the gNB received power is fixed at -81 dBm. 

It can be observed that in each of the scenarios, the interference from gNBs decreases (i.e., 
MCS increases) as the gNB bandwidth increases. This is evident from the fact that MCS levels 
define the modulation order and coding rate, determining how much SNR is required for 
reliable decoding. Higher MCS values demand significantly higher SNR, meaning even small 
increases in interference from neighbouring transmitters disrupt the signal decoding process, 
leading to higher packet error rates. With increasing gNB bandwidth, the SNR for the MNO 
decreases, hence higher MCS can keep up with tolerable TBSR. 

The results show that the more bandwidths overlap the less interference appears. The impact of 
interference is not only determined by total power but also by how that power is distributed 
across the spectrum. With same-bandwidth interference, the total interfering power is 
concentrated only within the same occupied frequency range as the MNO’s signal, making it 
more manageable for equalisation and filtering techniques to compensate for. In contrast, when 
the interfering base station has a larger bandwidth, its power is spread across a wider frequency 
range, reducing the power spectral density (PSD) per Hz. The lower PSD per Hz reduces the total 
interference power within the overlapping range. 



An interesting observation arises when the MNO and gNB operate the same bandwidth while 
operating at fixed power levels of -70 dBm for the MNO and -81 dBm for the gNB. The results 
indicate MCS is higher for a 40 MHz bandwidth than for a 60 MHz bandwidth. Specifically, when 
both the MNO and gNB operate at 40 MHz, a greater number of MCS levels are achievable 
compared to operations at 60 MHz. 

This trend suggests that as the operation bandwidth increases, interference also increases, 
leading to higher SNR requirements to achieve the same MCS levels. Consequently, the ability to 
sustain high MCS levels is reduced at larger bandwidths, emphasising the trade-off between 
bandwidth expansion and interference management in co-channel operation. 

4.3.4 Throughput coverage 
A simulation of throughput coverage in Bath city centre was conducted, as illustrated in Figure 
28. The figure provides a comparative visualisation of throughput (in Mbps) during a simulated 
handoff scenario, where a user transitions between the coverage areas of two base stations. 
The images labelled (a) and (b) correspond to different inter-site distances, offering insights into 
the optimal minimum separation required between the base stations to ensure a seamless 
handoff. 

This analysis is crucial for optimising network planning and deployment in urban environments, 
where maintaining consistent connectivity is essential for user experience. A poorly optimised 
handoff region can lead to high packet loss, increased latency, and degraded Quality of Service 
(QoS), particularly for applications such as video streaming, online gaming, and real-time 
communications. By determining the ideal base station separation, network operators can 
minimise handoff failures, reduce call drops, and improve overall throughput, ultimately 
enhancing the efficiency and reliability of mobile communication networks.  

By simulating the TBSR for each transmission, the throughput coverage map can be generated. 
The throughput coverage maps provide an insightful visualisation of the impact of interference 
and signal propagation on 5G NR network performance. The simulation results indicate that 
high throughput regions, represented by red and yellow areas, are primarily concentrated near 
the primary base station, where the received signal strength is high, and the impact of 
interference is minimal. These regions benefit from higher-order modulation schemes, such as 
64-QAM or 256-QAM, which enable increased data rates. As the distance from the base station 
increases or interference levels rise, throughput degrades progressively, as seen in the transition 
from green to blue regions. The analysis highlights that interference from a secondary base 
station significantly influences throughput distribution. In scenarios where the interfering 
transmitter operates at a high-power level, a notable reduction in throughput is observed across 
the coverage area. The presence of dark blue and purple zones indicates areas with severe 
degradation in signal quality, likely due to high interference levels, substantial path loss, or the 



use of lower-order modulation schemes such as QPSK with a low coding rate. This suggests that 
interference mitigation strategies, such as power control and adaptive resource allocation, are 
crucial in maintaining network performance. 

 

 

A key implication of Figure 29 is their relevance to network densification in 5G deployments. 
The results provide quantitative insights into how closely base stations can be placed while 
ensuring minimal interference. By adjusting transmission power and optimising resource 
allocation, spectral efficiency can be maximised while preserving an acceptable quality of 

Figure 28: Visualisation of a change in throughput during the handoff scenario as a user moves from 
the coverage area of one base station (blue square) to another (orange triangle), when the distance 
between the two base stations is (a) 350 m and (b) 280 m.

Figure 29: Visualisation of an area within which a second gNB cannot be deployed. 



service (QoS). The study demonstrates the necessity of balancing cell density with interference 
management to maintain high network throughput. Future work can extend this analysis by 
incorporating real-world propagation conditions and dynamic user mobility models to further 
refine network planning strategies. 

4.4 Challenges, Limitations and Considerations 
Despite the promising findings of WP2, several challenges must be addressed to further 
enhance the accuracy, efficiency, and applicability of the simulation and modelling framework. A 
key limitation arises from the computational complexity of high-fidelity ray tracing simulations, 
which require substantial processing power. The detailed modelling of electromagnetic wave 
propagation, including multipath effects, diffraction, scattering, and material interactions, 
significantly increases computational demands. Consequently, the number of simulated 
scenarios is inherently constrained by available hardware resources, necessitating a careful 
selection of representative environments to balance accuracy and feasibility. To overcome these 
computational limitations, we propose the integration of Machine Learning (ML) techniques as 
a complementary approach to traditional ray tracing. ML can be leveraged to optimise 
simulation efficiency, predict propagation characteristics, and enhance the fidelity of results 
without requiring exhaustive ray tracing calculations. The specific methodologies and 
implementation strategies for this integration are detailed in the next section, Innovations and 
Future Directions. 

Another challenge stems from the limited material libraries available in MATLAB-based Ray 
Tracing. Currently, predefined databases for buildings, terrain, and surface materials are 
insufficient for capturing the full complexity of real-world environments. This limitation reduces 
the accuracy of simulated results, particularly in diverse urban and rural landscapes where 
material properties significantly impact signal propagation. Moreover, the lack of detailed 
environmental representation restricts the ability to model intricate electromagnetic 
interactions. To address this issue, Machine Learning can be employed to generate high-
resolution environmental models, which can then be incorporated into the Ray Tracing 
framework. By utilising ML-based algorithms to infer and reconstruct missing material data, a 
more precise and realistic representation of physical environments can be achieved. This 
approach enables the creation of customised and highly detailed simulation scenarios, thereby 
improving the accuracy of signal propagation analysis and optimising network performance 
predictions. 

Additionally, data integration from WP1 presents a significant challenge, as harmonising real-
world measurement data with simulated models requires meticulous calibration and validation 
efforts. Field measurements collected in WP1 serve as a vital benchmark for assessing the 
accuracy of ray tracing and machine learning-based predictions. However, discrepancies 



between measured and simulated results often arise due to differences in environmental 
conditions, transient obstructions, and variations in hardware configurations. Addressing these 
inconsistencies requires iterative refinements, where simulation parameters such as material 
properties, antenna configurations, and interference sources are continuously adjusted to 
improve alignment with real-world observations. The process of fine-tuning these models 
demands a comprehensive approach, incorporating machine learning-based calibration 
techniques and enhanced geospatial data integration to bridge the gap between theory and 
practice. 



5. Innovations and Future Directions 
5.1 AI-Powered Path Loss Prediction: A Smarter Alternative to 
Traditional Models 
The increasing complexity of urban, suburban, and rural environments necessitates a robust 
method for predicting wireless path loss. Given that ray tracing models take a long time to 
simulate, a robust and efficient solution is essential. In this work, we develop a machine 
learning pipeline that leverages simulation data generated by ray tracing models as well as real-
world measurement data. The primary objective is to predict the path loss at any receiver point 
when the map of an area and the transmitter location are provided. Initially, the model is 
trained using simulated data from the Bath area and later validated on real measurement data. 
This pipeline is designed for scalability and can be extended to different geographies by 
adapting to various environmental characteristics. 

5.1.1 Data Preparation and Feature Extraction 
OpenStreetMap Data and Regional Division 

The base map data is sourced from OpenStreetMap (OSM). The Bath area is divided into several 
key regions—Bath City Centre, Bath South, Bath North, Bath Southeast, and Bath West—to 
capture a diverse range of building geometries and environmental conditions. The input for our 
machine learning pipeline comprises both simulated data (from the ray tracing model) and 
features extracted from the OSM map. 

Building Feature Extraction 

For each building, the following features are derived: 

• Height ( ): Provided either directly in the map or set to a default value. 

• Centroid Coordinates ( ): Calculated as the geometric centre of the building 
polygon. 

• Area ( ): The total area enclosed by the building footprint. 

• Perimeter ( ): The length of the building’s boundary. 

• Circularity ( ): A shape descriptor. 

These features are assembled into a feature vector for each building, which is normalised later. 
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Transmitter and Receiver Data: The ray tracing simulations provide pairs of transmitter and 
receiver coordinates along with the corresponding path loss measurements. The final data 
structure combines the Tx/Rx locations into an 8-dimensional input for subsequent regression 
tasks. 

5.1.2 Model Architecture 
Our approach employs a dual-model system that integrates a transformer-based module for 
encoding building features with a residual path loss encoder for regression as shown in Figure 
30.  

 

Transformer Pooling Model: The Transformer Pooling Model aggregates building features using 
a transformer encoder. Its key steps are as follows: 

• Input Projection: The 6-dimensional building feature vector is linearly projected to a 
higher-dimensional hidden space. 

• Layer Normalisation: Applied immediately after the projection to stabilise the training 
process. 

• Transformer Encoder: Consists of multiple layers of self-attention and feed-forward 
networks. The attention mechanism is given by: 

 

	 where  denote the query, key, and value matrices respectively, and  is the 	 	  

	 dimensionality of the key. 

Figure 30: Introduced Machine Learning Based Dual Model System for predicting the Path Loss.
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• Mean Pooling: After the transformer layers, the features are aggregated using a simple 
mean operation. 

• Final Projection and Activation: The aggregated feature vector is passed through a fully 
connected layer and activated by ReLU. 

Residual Path Loss Encoder: The second model in our pipeline is a Residual Path Loss Encoder. It 
accepts an 8-dimensional vector, which is a concatenation of the transformer-derived building 
embedding and the Tx/Rx location information, and outputs a scalar prediction for path loss. 
The residual blocks in this model follow the form: 

 

where  is a transformation performed by a fully connected layer (possibly with dropout) and 
the addition ensures that the original input   is retained through the block, enabling better 
gradient flow during training. 

A series of such blocks are stacked with increasing and then decreasing dimensionality, 
culminating in a final linear layer that outputs the predicted path loss value. This structure helps 
the network learn complex, nonlinear relationships while preserving information from the 
original inputs. 

Loss Function: To train the model, we use the Smooth L1 Loss defined as: 

 

This loss function is less sensitive to outliers than the mean squared error and provides a 
balance between L1 and L2 loss behaviours. 

5.1.3 Fine-Tuning for Accuracy: Optimising the Learning Process 
Data Loading and Batching 

The training data is organised by map folders where each folder contains an OSM file and the 
corresponding simulation data in Excel format. A custom data loader is used to: 

y = ReLU(f (x)) + x

f (x)
x

L(x, y) =
0.5(x − y)2, if x − y < 1

x − y − 0.5, otherwise



• Parse the OSM file to extract building features. 

• Read and filter the simulation data. 

• Concatenate and batch the data appropriately. 

The data are grouped by map ID to compute building embeddings on the fly for each unique 
region. 

Optimiser and Learning Rate Scheduling: The models are jointly trained using the AdamW 
optimiser. The learning rate is dynamically adjusted using an Exponential Learning Rate 
scheduler defined by:  

where ​  is the learning rate at iteration  and  is a decay factor (typically close to 1, e.g., 
0.999999). Gradient clipping is employed to prevent exploding gradients, with the norm of the 
gradients clipped to a maximum value. 

5.1.4 Measuring Success: Evaluating the AI Model’s Performance 
For evaluating the model performance, one transmitter location in Bath City Centre is taken into 
consideration. These sites provide a controlled yet diverse set of conditions within a densely 
built urban environment, allowing for a thorough assessment of the model’s prediction 
capabilities under real-world propagation scenarios. This evaluation framework not only 
facilitates direct comparison with simulated data but also helps in identifying specific areas for 
further model enhancement and calibration. The trained machine learning predicted the 182 
receiver points path loss with an average of 8.745 dB accuracy. Furthermore, to illustrate this 
validation loss, a CDF plot of the path loss between the two models and the path loss field plot 
at the Bath City Centre are shown in Figure 31 and Figure 32, respectively. Table 7 shows 
specifically the superiority of ML over RT in terms of computational time, i.e., ML is 1000x faster 
than RT. 

This is worth mentioning that the 1000x increase does not result from MATLAB inefficiency 
specifically (RT methods perform thousands of individual ray-path computations that can take 
several minutes or even hours for extensive regions, depending on their complexity. This is 
particularly true for upper 6GHz, where the wavelength is shorter, requiring higher resolution in 
the Ray-Tracing algorithm), but rather from the inherent computational complexity of the RT 
propagation method, which the ML model significantly simplifies once trained. In other words, 
the large speed increase comes from shifting away from physics-based calculations (traditionally 
slow and detailed) to predictive ML-based methods (fast and approximate). This advancement 
provides regulators like Ofcom and spectrum users with a powerful, rapid, yet still reliable way 

ηt+1 = γ ηt

ηt t γ



to manage spectrum sharing and interference scenarios, significantly enhancing efficiency and 
reducing the cost and time associated with spectrum management. 

In addition to the substantial speed improvements demonstrated by our machine learning (ML) 
model, there is significant potential for extending this approach toward real-time spectrum 
management. Specifically, ML models could predict spectrum usage dynamically, adapting 
rapidly to changing network conditions and user demands. By accurately forecasting usage 
patterns and interference potential, ML would facilitate unprecedented levels of spectrum 
sharing, even among multiple MNOs and diverse spectrum users simultaneously. 

Again, implementing ML-driven spectrum prediction can significantly reduce reliance on 
physical spectrum sensing devices. By accurately predicting spectrum occupancy based on 
historical usage, environmental conditions, and other context-specific data, ML models 
minimise the need for extensive real-time monitoring hardware, leading to lower infrastructure 
costs (through reducing hardware installation and operational costs), reduced operational 
complexity (through maintaining fewer devices), improved scalability and flexibility (through 
reducing the reliance on dense deployments of spectrum sensors), complementary sensing 
capability, enhanced responsiveness and reliability. 

 
Figure 31: CDF comparison between Ray Tracing model and Machine Learning 



Table 7: Comparison in the processing time between the MATLAB-based Ray Tracing model and 
Python-based Machine Learning model for predicting path loss between one Tx and one Rx. 

 

5.1.5 Key Observations: Strengths and Weaknesses of AI-Based Predictions 
Training Dynamics 

During training, we observed that the integration of the transformer pooling model significantly 
improved the extraction of spatial features from the OSM data. The use of residual blocks in the 
path loss encoder allowed better information retention and gradient flow. In early epochs, the 
loss decreases rapidly as the model learns the basic mapping from inputs to outputs; however, 
fine-tuning in later epochs is crucial to handle the complex interactions between building 
geometry and signal propagation. 

Programming 
Language

Hardware Processing 
Power 
(GHz)

Time for simulating 
one Tx and one Rx 

(sec)

Ray Tracing MATLAB R2024b 2.90 ~ 10

Machine Learning Python 3.11.7 2.749 ~ 0.01

Figure 32: Path loss field plot in the Bath City Center using: (a) Ray Tracing method and (b) Machine 
Learning method.



5.1.6 Refining the Model: Future Enhancements for Better Accuracy 
Enhancements can be achieved by incorporating additional parameters from the OSM maps 
such as road networks, vegetation, and other urban features—to further bridge the gap 
between simulation data and real-world measurements. Moreover, increasing the diversity of 
the training dataset to include a wider range of scenarios from urban, suburban, and rural areas 
can significantly enhance the model’s generalisability. Finally, integrating an active learning 
pipeline would enable the model to continuously update its parameters as new measurement 
data become available, thereby improving its accuracy over time. 

 

In addition to the potential enhancements mentioned earlier, further improvements can be 
made by expanding the model to cover the entire UK map. When extending the geographical 
boundaries, it is critical to ensure that the expansion preserves the distinct characteristics of 
urban, suburban, and rural areas (Figure 33). This involves the careful design of boundary 
expansion strategies that maintain the inherent diversity of the UK's landscape. By incorporating 

Figure 33: A scalable approach for path loss prediction in the UK by expanding the geographical 
boundary.



representative data from densely built urban centres, moderately developed suburban regions, 
and sparsely populated rural areas, the model can be trained to capture the unique propagation 
conditions and structural variations present across different environments. This approach not 
only enhances the model's generalisability but also improves prediction accuracy when applied 
to varied real-world scenarios throughout the UK. 

The developed machine learning pipeline demonstrates the feasibility of predicting wireless 
path loss by combining simulated ray tracing data with real-world OSM features. By leveraging a 
transformer-based module for spatial feature extraction and a residual network for regression, 
the pipeline effectively learns complex relationships that govern signal propagation in diverse 
environments. 

Future work will focus on scaling the model to cover larger geographic areas, such as the entire 
UK, and developing specialised sub-models for distinct environments. The ensemble approach—
where urban, suburban, and rural predictions are combined—could provide a more robust and 
generalisable prediction system. In addition, the adoption of an active learning strategy 
promises continuous improvement as more data becomes available. 

5.1.7 Use Case: Base Station Optimisation Methodology 
In radio network planning, optimal transmitter placement is critical for ensuring reliable 
coverage across a target region. In urban environments, physical obstacles (e.g., buildings) can 
significantly affect signal propagation, making it challenging to achieve good coverage with 
minimal infrastructure. This section presents a gradient-based optimisation approach that 
integrates: 

1. A Transformer-based model to summarise the built environment (buildings, geometry, 
and other features). 

2. A Path Loss prediction model to forecast signal strength between a transmitter and 
arbitrary receiver points. 

3. A cost function designed to balance coverage performance, coverage overlap, 
transmitter proximity constraints, and the overall number of transmitters. 

By iteratively refining transmitter coordinates using gradient descent, the method converges on 
an effective layout under real-world constraints derived from OpenStreetMap (OSM) data. 

Data Preparation 



Data preparation ensures the optimisation routine has all necessary inputs: (1) Region 
boundaries, (2) building footprints and attributes, (3) receiver grid, (4) (optional) street nodes 
for projection. 

OSM Data Extraction 

1. Boundaries: 

• The .osm file includes bounding box tags (min_lat, min_lon, max_lat, max_lon) or 
sufficient node data to deduce these. 

• These limits define the rectangular region in which transmitters may be placed 
and across which coverage must be ensured. 

2. Building data: 

• Each building footprint in OSM is stored as a collection of nodes (latitude–
longitude points). 

• By iterating over these nodes and forming polygons, we can calculate: centroid 
(mean location of the building), perimeter (distance around the polygon), area 
(size of the building footprint), circularity (a shape descriptor relating area and 
perimeter), height. 

• These features capture how buildings might obstruct or reflect signals. 

3. Street data (optional): 

• The .osm file also holds highway or road elements. 

• Extracting and storing the nodes (lat–lon pairs) of these roads allows an optional 
step later where each transmitter is snapped to the closest street node. 

Building Vector Encoding 

1. Rationale: Buildings significantly influence signal propagation. However, explicitly 
modelling each building for path loss can be cumbersome. 

2. Transformer Pooling model: 

• Takes in a list of building feature vectors (height, area, etc.) for the region. 

• Processes them via a small Transformer encoder, aggregating the features into a 
single environment vector (bld_vec). 

• This vector effectively represents the overall urban environment’s complexity. 



Such an encoding step helps the subsequent path loss model adapt to different contexts (e.g., 
dense high-rise areas vs. suburban regions). 

Receiver Grid Generation 

1. Evenly spaced grid: 

• A grid of points is laid across the bounding box in latitude-longitude space. For 
example, a 50 × 50 grid yields 2500 receiver points. 

• At each of these points, we will predict coverage strength. 

2. Purpose: 

• Ensures a comprehensive sampling of the region’s signal quality. 

• The optimisation routine attempts to guarantee that each grid point meets a 
minimum path loss threshold (i.e., is “covered”). 

Path Loss Prediction Model 

A neural network called PathLossEncoder predicts how strong (in dB) the signal is likely to be at 
any receiver location, given: 

1. The building vector (bld_vec) – summarising the region. 

2. Transmitter coordinates – latitude and longitude of the transmitter. 

3. Receiver coordinates – latitude and longitude of the grid point. 

The model outputs a numerical value interpreted as the predicted path loss (PL). Internal details 
often include: 

• Fully Connected Layers: The network consists of linear transformations with non-linear 
activations (e.g., Leaky ReLU). 

• Batch Normalisation / Dropout: Enhances stability and helps the model generalise. 

Interpretation: In this particular code structure, a higher PL value corresponds to better signal 
strength The model is trained (before optimisation) on a dataset of known transmitter-receiver 
pairs and measured or simulated path loss. 

Cost Function 



The cost function encodes the network planner’s objectives. Specifically: 

1. Coverage (Uncovered Penalty) 

• Each grid point’s effective coverage is computed by summing the coverage indicators 
from all transmitters. 

• If a point’s coverage sum is below 1 (meaning no transmitter provides sufficient 
signal), we add a penalty. 

2. Overlap Penalty 

• If the sum of indicators at a point exceeds 1, we interpret it as “redundant 
coverage”. 

• While some overlap can be beneficial, excessive overlap is penalised to avoid 
resource waste. 

3. Transmitter Separation Penalty 

• A minimum distance min_tx_sep\text{min\_tx\_sep}min_tx_sep is enforced 
between transmitters.  

• If any pair is too close, a penalty is added proportionally to how much they violate 
the separation constraint. 

4. Transmitter Count Penalty 

• The total cost increases linearly or quadratically (depending on the chosen factor) 
with the number of transmitters. 

• This encourages solutions that use fewer transmitters, assuming coverage goals can 
still be met. 

Formally, these penalty terms are summed into a single scalar, which the optimiser attempts to 
minimise. Crucially, all these terms are differentiable (thanks to the careful design of the 
coverage indicator via a sigmoid function), allowing gradient-based optimisation. 

Optimisation Procedure 

Initialisation 

1. Random placement: We specify a target number of transmitters, say . Each 
transmitter’s latitude and longitude are initialised randomly within the bounding box. 

N



2. Trainable parameters: These coordinates (lat–lon) become PyTorch parameters, meaning 
they will be updated automatically via gradient descent. 

Gradient Descent 

1. Compute predictions: For each transmitter-receiver pair (in the coverage grid), predict 
the path loss via PathLossEncoder. Convert these predictions into coverage indicators 
(using a threshold-based sigmoid). 

2. Calculate cost: Sum penalties for coverage shortfalls, overlap, transmitter proximity 
violations, and total transmitter count. 

3. Backpropagation: PyTorch calculates how sensitive each cost component is to the 
transmitter coordinates. 

4. Parameter update: An optimiser (e.g., Adam) moves each transmitter coordinate in the 
direction that reduces the overall cost. 

Additional Constraints & Techniques 

1. Bounding box clamping: After each iteration, transmitter coordinates are “clamped” to 
remain within the bounding box, so they never drift outside. 

2. Street projection: If realistic deployment requires placing transmitters on actual streets, 
we can snap each updated transmitter to the closest street node. The .osm file’s highway 
data helps identify these possible locations. 

Early stopping 

We track changes in the cost function. If cost improvement falls below a certain threshold for a 
predetermined number of iterations (“patience”), the process halts early. This avoids 
unnecessary computation once it appears we have plateaued near a good solution. 

Finding the Optimal Number of Transmitters 

1. Candidate range: Rather than fixing the transmitter count, the procedure can be run 
multiple times for a range of values (e.g., 2 to 25). 

2. Compare final costs: For each fixed number of transmitters, we note the minimised cost 
after the optimisation loop is completed. 

3. Select best: We choose the number of transmitters that yields the lowest final cost. This 
typically reflects an ideal balance between coverage and infrastructure expense. 



Coverage Identification 

After obtaining an optimised solution, the final layout is assessed visually: 

1. Radial Boundary Computation: For each transmitter, we sample multiple radial directions 
(e.g., 36 angles). We step outward from the transmitter, predicting path loss at small 
increments (e.g., 0.001° each). Once the path loss dips below the coverage threshold for 
too many consecutive steps, we mark that boundary point. 

2. Polygon formation: Connecting these boundary points yields a “coverage polygon” 
around each transmitter. These polygons can be plotted to show how far coverage 
extends in each direction. 

Through this data-driven, gradient-based approach, radio planners can identify transmitter 
placements that achieve desired coverage while minimising overlapping, meeting separation 
constraints, and limiting the total number of transmitters. The integration of real geographic 
data (OSM) and neural network-based path loss predictions provides a modern, flexible 
framework suited to a variety of urban environments. 

 

Application of ML Path Loss Model in Bath and London for n77 Frequency Band 



The locations of gNB are optimised to determine what number of gNBs. The cost function is 
based on uncovered penalty, overlap penalty, minimum separation penalty, transmitter count 
penalty.  

Bath 

The optimised coverage map for Bath city centre is shown in Figure 34(a), featuring 20 gNBs, 
which is concluded from cost function evaluation shown in Figure 34b). This demonstrates 
comprehensive coverage, ensuring that all areas receive signal strength of at least -105 dBm (no 
dark blue area). The geodesic distance between 2 gNBs, shown in Figure 34(c), is spread across 
400 to 900 meters. 

London 

The optimised coverage map for London Blackfriars is shown in Figure 35(a), featuring 11 gNBs, 
which is concluded from the cost function evaluation shown in Figure 35(b). This demonstrates 
comprehensive coverage, ensuring that all areas receive signal strength of at least -105 dBm (no 
dark blue area). The geodesic distance between 2 gNBs, shown in Figure 35(c), appears mostly 
around 600 meters. 

 

Application of ML Path Loss Model in Bath and London for Band 3 

Figure 35: (a) Received coverage signal map for London Blackfriars at n77 frequency band, (b) cost 
function vs number of transmitters, (c) count of geodesic distances between each of 2 gNBs.



The location of gNBs is optimised to determine the number of gNBs using ML. The cost function 
is based on the Overlap with the MNO Penalty, Uncovered Penalty, Overlap with the gNB 
Penalty, Minimum Separation Penalty, and Transmitter Count Penalty. 

Bath 

The optimised coverage map Figure 36(a) for Bath city centre, featuring six gNBs. Figure 36(b) 
indicates that when more gNBs are included in the coverage area, the cost function varies for 
ML, suggesting there are multiple options for “maximum signal coverage” for minimal 
interference. We chose 10 transmitters in total, of which 6 are new gNBs. The distance between 
2 gNBs appears to be mostly 500 meters (Figure 36c). 

London 

The optimised coverage map Figure 37(a) for London Blackfriars, featuring four gNBs, Figure 37b 
indicates that when more gNBs are included in the coverage area, the cost function increases 
for ML, suggesting only 8 (4 new ones) B3 transmitters are allowed for minimal interference. 
The average distance between 2 gNBs is 550 meters (Figure 37c). 

 

Figure 36: (a) Received coverage signal map for the Bath City Centre at Band 3, (b) cost function vs 
number of transmitters, (c) count of geodesic distances between each of 2 gNBs.



 

5.2 Enhancing Simulations with LiDAR: Improving Environmental 
Accuracy 
The advancement of wireless communication systems, particularly in the domain of spectrum 
sharing and urban propagation modelling, necessitates precise environmental characterisation. 
A critical innovation in this regard is the integration of deep learning methodologies with open-
source geospatial databases, as illustrated in Figure 38. This approach significantly enhances the 
fidelity of radio wave propagation simulations by improving the accuracy of environmental 
representations. 

The efficacy of ray-tracing models is inherently dependent on the granularity and precision of 
the simulated environment. OpenStreetMap (OSM), a widely utilized open-access geographic 
dataset, provides extensive spatial information, encompassing building footprints, vegetation 
coverage, fences, and utility infrastructure. Among these, the structural attributes of buildings 
exert the most profound influence on urban propagation modelling. However, the quality of 
building-related data retrieved from OSM—particularly building heights—exhibits substantial 
limitations. These inaccuracies stem from the constraints of community-driven data annotation 
and the inherent challenges of human perception in satellite image-based geospatial mapping. 

Figure 37: (a) Received coverage signal map for London Blackfriars at Band 3, (b) cost function vs 
number of transmitters, (c) count of geodesic distances between each of 2 gNBs.



 

Figure 38: Utilising machine learning to extract geological information, classify materials, and determine 
material properties from LiDAR, satellite, and OSM data to construct a comprehensive 3D city model for 
ray-tracing applications. 

Beyond geometric accuracy, the electromagnetic properties of urban entities play a pivotal role 
in ray-tracing simulations. Structural surfaces exhibit diverse material compositions, including 
concrete, brick, stone, and metal, each influencing electromagnetic wave interactions through 
distinct permittivity and conductivity properties. Unfortunately, such material-specific data is 
rarely available in OSM, further limiting the precision of conventional propagation models. 

Deep learning offers a transformative potential for extracting critical environmental attributes 
from multiple heterogeneous data sources. The proposed ensemble deep learning framework, 
illustrated in Figure 36, integrates both structured and unstructured datasets to refine urban 
environment representation with superior accuracy. Key advancements include: 

1. Building and Vegetation Heights: Aerial Light Detection and Ranging (LiDAR) data 
provides highly precise vertical measurements, offering a robust solution for the 
accurate estimation of entity heights. LiDAR’s established efficacy in vertical imaging 
makes it indispensable for refining three-dimensional urban models. 

2. Entity Footprints and Boundary Delineation: LiDAR point clouds, when processed using 
deep learning-based classification techniques, facilitate the extraction of fine-grained 
boundaries for various urban entities. Additionally, high-resolution satellite imagery can 
be incorporated into the ensemble model, leveraging its superior horizontal resolution 
to enhance planimetric accuracy. 

3. Material Characterisation for Electromagnetic Modeling: The intensity of LiDAR returns 
is intrinsically linked to surface material properties, offering a promising avenue for 



material classification. By analysing reflectance variations, deep learning algorithms can 
infer the composition of building facades, road surfaces, and other urban elements. This 
enables the estimation of key electromagnetic properties such as permittivity and 
conductivity, thereby significantly improving the realism of propagation simulations. 

In summary, the proposed deep learning-driven approach for environmental modelling bridges 
critical gaps in conventional geospatial datasets. By integrating LiDAR, satellite imagery, and 
data-driven material classification, this methodology enables a highly precise and 
electromagnetically relevant representation of urban environments, thus advancing the 
reliability of next-generation wireless communication simulations. 

To address these limitations, as Proof of Concept, we developed a methodology leveraging Lidar 
(Light Detection and Ranging) data to derive more precise building footprint and height 
information, which can be seamlessly integrated into ray tracing models for enhanced 
environmental simulation fidelity. The improved environmental model we derived provides a 
close resemblance to the experimental data.  

5.2.1 Data Source 
The Lidar data utilised in this study is sourced from the Environment Agency National Lidar 
Programme [40], which provides high-resolution elevation data at a 1-meter spatial resolution 
across England. Aerial Lidar data, a form of point cloud data, offers highly accurate topographic 
elevation measurements of the Earth's surface. The dataset follows the ASPRS LAS 1.4 
classification standard, categorising elements such as ground, low, medium, and high 
vegetation, as well as buildings. This classification enables the precise extraction of building 
distribution, footprints, and heights within the study area. 

Figure 39 illustrates the process of acquiring LiDAR data for the area surrounding Bath City 
Centre via the National LiDAR Programme website. To obtain the required dataset, the user first 
delineates the area of interest by defining a polygon. Subsequently, the desired data category 
can be specified and downloaded. 



 

Figure 39: Downloading Lidar data from the Defra web interface. The tiles which are visible in the map 
can be selected by the polygon tool and downloaded. 

Once the data is downloaded, we can visualise the classified Lidar data using Geographic 
Information System (GIS) software such as QGIS or Python language. A visualisation of classified 
LiDAR data of Bath City Centre is shown in Figure 40(a). 

5.2.2 Methodology 
Building Footprint Extraction 

To delineate building footprints, we extracted Lidar data points classified as buildings and 
generated a raster layer, representing a two-dimensional projection of the point cloud onto the 
Earth's surface. Since only the building-classified points were retained, the resultant raster 
contained discrete structures corresponding to building locations. These structures were then 
vectorised through a polygonisation process to generate convex hulls around each detected 
building, effectively delineating their footprints. The vectorised data enables conversion into 
multiple GIS file formats, including OSM and GPKG, facilitating its integration into ray tracing 
simulations. 



 

Building Height Extraction 

A critical prerequisite for accurate building height estimation is the establishment of a Digital 
Terrain Model (DTM), which represents the bare-earth elevation. To construct the DTM, we 
extracted ground-classified Lidar points and projected them onto a raster layer, effectively 
generating a continuous surface model. Data gaps in the rasterised terrain were interpolated to 
ensure a seamless and accurate DTM representation. 

Following the DTM construction, we derived the Digital Surface Model (DSM), which 
encapsulates the elevation variations due to both natural and anthropogenic features. This was 
achieved by incorporating all non-noise Lidar classifications into a rasterised elevation model. 
The absolute height of objects on the Earth's surface was then computed as the difference 
between the DSM and DTM, expressed mathematically as: 

 

Figure 40: a) The Lidar data of Bath-CC, classified between buildings, vegetation and ground. b) The 
height variation on the earth's surface. c) The buildings, with height colour-coded. d) A 3D view of 
Bath-CC generated using the processed Lidar data.

height = DSM − DTM



Figure 40(b) shows the variation of height across Bath City Centre using the LiDAR data. To 
determine building heights, the previously extracted building footprints were overlaid onto the 
DSM-derived height variation data. The mean zonal height statistic of the height layer within 
each vectorised footprint was calculated, providing an estimate of the average building height. 
This derived metric serves as a reliable representation of building height information extracted 
from Lidar data. 

Figure 40(c) shows the extracted building footprints, coloured based on the average height of 
the building. The accurately extracted height shows the reducing trend of building heights when 
moving away from the city centre. Figure 40(d) is a three-dimensional visualisation of the 
extracted buildings, overlayed on the OpenStreetMap data. A comparison between the LiDAR-
processed OSM file and the OSM file obtained from the OpenStreetMap [38] is shown in Figure 
41. It can be observed that LiDAR provides much better resolution of the building structures in a 
given area. 

 

Software and Processing Tools 

Lidar data processing and geospatial analysis were conducted using QGIS, an open-source GIS 
software widely employed for terrain and environmental modelling. Figure 42(a) shows the 
QGIS interface. The vectorised building footprints were converted to the OSM format using 
JOSM (Java OpenStreetMap Editor). To ensure adherence to OSM standards, a custom Python 
script was developed for post-processing, standardising building annotations and height 
attributes to facilitate seamless integration with MATLAB-based ray tracing simulations. Figure 
42(b) shows the example data before processing, while Figure 42(c) shows the results after 
being processed from the Python code.  

Figure 41: Bath City Center. (a) OSM from OpenStreetMap [38], (b) OSM from QGIS after LiDAR 
analysis. (Inset: Google Earth Map)



 

The proposed Lidar-based methodology significantly enhances the accuracy of building 
footprint and height estimation, addressing the inherent limitations of community-annotated 
OSM data. By leveraging high-resolution Lidar elevation datasets, the resulting geospatial 
models offer improved precision for ray tracing simulations, as demonstrated earlier, ultimately 
contributing to more reliable urban propagation modelling and environmental analysis. 

Thus, we observe that Ray tracing combined with LiDAR provides detailed and accurate 
representation of the physical environment (buildings, vegetation), significantly improving 
propagation predictions compared to traditional deterministic models.  Deterministic methods, 
such as empirical or statistical models (e.g., ITU-R models, Hata-Okumura), typically provide 
generalised predictions that may not adequately capture local variations or complex urban/
suburban geometries. In contrast, RT with LiDAR captures precise geometries and material 
properties, resulting in more realistic and reliable predictions. More precise predictions directly 
enable more accurate interference modelling, facilitating more effective spectrum sharing and 
efficient spatial reuse. 

 

Figure 42:  a) The QGIS interface to process the Lidar data to derive the building footprints and heights. 
b) The OSM data after post-processing using the python code. c)The un-processed OSM data produced 
using the Lidar data, with custom attributes.



Moving towards Ray Tracing, supported by high-resolution LiDAR data would enable Ofcom and 
other stakeholders to leverage significantly more precise propagation information. This 
approach can greatly improve spectrum allocation efficiency, interference management, and 
overall utilization of bands designated for shared or private access. 

Typically, when compared to deterministic or empirical models, RT combined with LiDAR can 
yield differences of 5 to 15 dB or more in predicted propagation losses, depending on 
environment complexity and frequency. This improvement translates directly into more 
accurate and less conservative interference coordination and frequency reuse criteria, 
potentially freeing significant additional spectrum resources. 

At upper 6 GHz, propagation conditions become increasingly sensitive to environment-specific 
clutter and multipath scenarios. RT and LiDAR significantly improve the predictive accuracy of 
link quality and interference levels in these environments. This is particularly important as at 
those higher frequencies there is greater path loss and increased sensitivity to physical 
obstructions, and thus, RT and LiDAR can allow tighter coordination and denser spatial reuse. 
Hence, the increased accuracy of RT and LiDAR allows less conservative interference 
management, enabling more effective sharing scenarios and a higher density of deployments 
without unacceptable interference. For Ofcom, embracing this modelling approach would 
support: (1) More precise licensing conditions, (2) better-informed policy decisions on 
coexistence criteria, including potentially reduced protection distances, and (3) enhanced 
flexibility and efficiency in shared band management. For SAL licensees, this would mean: (1) 
reduced deployment costs through optimized infrastructure planning, (2) increased certainty 
and reliability of service performance, and (3) improved spectrum efficiency, potentially 
allowing greater bandwidth and higher-quality services. 

For the next phase of this research, we will develop the deep learning framework mentioned 
earlier, integrating Lidar data with satellite imagery, photogrammetry, and OpenStreetMap data 
to develop a more sophisticated and precise urban model. Deep learning techniques, 
particularly CNNs, graph neural networks transformer-based architectures, even multi-modal 
architectures exhibit exceptional promise in automated feature extraction, classification, and 3D 
reconstruction for combined geospatial data. By capitalising on our expertise in deep learning, 
we aim to develop data-driven urban models that significantly enhance the accuracy of 
electromagnetic wave propagation simulations and other computational models reliant on 
precise geospatial data. 



6. Conclusion 
The work presented in this report marks a significant advancement in the development of high-
fidelity simulation frameworks for dynamic spectrum sharing. Within WP2 of the Spectrum 
Sandbox ITT Project, we have integrated ray tracing, machine learning, and real-world 
measurement data to enhance the accuracy of signal propagation modelling and interference 
prediction. These contributions are crucial for designing efficient spectrum-sharing strategies 
that align with real-world network conditions and regulatory frameworks.  

A major achievement of this work is the integration of machine learning (ML) techniques which 
represent a significant innovation in propagation modeling and interference mitigation. ML-
based models have been utilised to improve the accuracy of path loss estimation, material 
classification, and dynamic interference prediction. Unlike static propagation models, ML-driven 
approaches allow for adaptive learning, where the models refine their predictions based on 
continuous data acquisition. This capability is particularly beneficial for spectrum-sharing 
scenarios, where interference patterns fluctuate due to the presence of multiple network 
operators and dynamic spectrum access users. Not only that, but it also reduces the time of 
simulation for predicting path loss humongous by the order of . This can help with providing 
very high-resolution data for an area in comparatively much less time. The use of LiDAR data has 
further improved environmental modelling accuracy, filling gaps in traditional datasets such as 
OpenStreetMap (OSM). 

This study also examines critical deployment considerations for spectrum sharing, particularly 
within the 1800 MHz (Band 3) and 3800–4200 MHz (n77) bands. In Band 3, we explore the 
feasibility of dynamic spectrum access, ensuring efficient coexistence with incumbent users 
while minimizing interference. Additionally, we address coverage gaps ("not-spots") by 
determining the minimum number of base stations required to eliminate these gaps while 
maintaining reliable connectivity. For the 3800–4200 MHz spectrum, we extend our analysis to 
optimize base station deployment for targeted local area coverage and robust connectivity. The 
key distinction between our approaches for Band 3 and n77 lies in their respective deployment 
strategies: 

• Band 3 (1800 MHz): Since incumbent Mobile Network Operators (MNOs) are already 
present, our focus is on eliminating mobile not-spots. Here, smaller local mobile 
operators can cost-effectively extend coverage using dynamic spectrum sharing, 
facilitating Local Access Licensing (LAL). 

• n77 (3800–4200 MHz): In contrast, this band primarily enables Shared Access Licensing 
(SAL). Base stations can be deployed to provide local coverage without interfering with 
existing incumbent operators, ensuring an optimal balance between spectrum efficiency 
and network expansion. 
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These insights are crucial for network planning and infrastructure optimisation, allowing 
operators to balance coverage, capacity, and cost-effectiveness in future spectrum-sharing 
frameworks. 

Despite the promising results, several challenges remain. One of the primary limitations of ray 
tracing-based simulation is its high computational complexity. Simulating large-scale 
environments with full multipath analysis requires significant processing power, limiting the 
number of scenarios that can be tested within practical time constraints. Additionally, while ITU-
R standards provide generalised material properties, real-world variations in dielectric 
constants, surface roughness, and construction materials introduce discrepancies between 
simulated and measured data. These uncertainties affect the precision of attenuation and 
reflection modelling, particularly in dense urban environments where multiple interactions 
influence signal propagation. 

Another challenge lies in interference modelling, particularly in dynamic spectrum-sharing 
environments where neighbouring cells operate at varying power levels. The tolerance to inter-
cell interference decreases with increasing Modulation and Coding Scheme (MCS), meaning that 
high-throughput transmissions become more susceptible to degradation in the presence of 
strong adjacent-channel signals. The static power assumptions used in the current simulation 
framework do not fully capture the adaptive nature of real-world power control mechanisms, 
leading to variations in observed vs. predicted performance. Future enhancements will 
incorporate real-time power adaptation models, improving the accuracy of interference 
mitigation strategies. 

Looking ahead, several key areas of future research and development have been identified to 
enhance the scope and effectiveness of the simulation framework.  

1. Computational optimisations, such as GPU-accelerated ray tracing and hybrid ML-physics 
models, will be explored to reduce simulation time without sacrificing accuracy.  

2. Implement ML-driven approaches for improved extraction of building and terrain 
features using LiDAR data. The objective is to reduce discrepancies in path loss 
predictions between simulated results and empirical data. 

3. Increase the accuracy of antenna radiation pattern modelling and material property 
databases through additional field measurements and lab validations. 

4. Extend the geographic and environmental diversity of the tested scenarios, focusing on 
varied rural, suburban, and dense urban settings to further generalise findings. 

5. Conduct comprehensive field trials to validate real-time spectrum access decision-
making algorithms developed during WP1, assessing their performance under varied 
operational conditions. 



6. Continue refining ML models for path loss and interference prediction, improving their 
adaptability and real-time applicability, and integrate these into dynamic spectrum-
sharing decisions. 

7. Deeper integration of AI-driven real-time spectrum allocation techniques will enable 
dynamic network adaptation, allowing systems to intelligently reconfigure frequency 
allocations based on evolving interference conditions.  

8. Increase stakeholder workshops and industry consultations to ensure the technological, 
regulatory, and economic findings remain relevant and impactful for policy and practical 
deployments. 

The findings of WP2 provide a strong foundation for future spectrum-sharing research, 
regulatory decision-making, and industrial deployments. By combining rigorous theoretical 
modelling, data-driven validation, and practical deployment insights, this work contributes to 
the advancement of next-generation wireless networks, ensuring efficient spectrum utilisation, 
improved connectivity, and robust interference management. As spectrum scarcity continues to 
challenge wireless communication, the innovations presented in this study pave the way for 
smarter, more adaptable, and more resilient wireless ecosystems. 
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