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1. Introduc4on 
1.1 Project Overview 
The increasing demand for wireless communica4on services has led to severe spectrum 
conges4on [1, 2, 3], par4cularly in urban areas where the radio frequency (RF) spectrum is oWen 
inefficiently allocated. For this reason, the QMUL Spectrum Sandbox ini4a4ve has been taken, 
which is a collabora4ve research effort aimed at advancing dynamic spectrum-sharing solu4ons 
to improve wireless network efficiency, par4cularly in underu4lised spectrum bands. In 2019, 
Ofcom [4] set out two license products: 

• Shared Access License (SAL), which gives access to four spectrum bands (  MHz, 
 MHz,  MHz, and  MHz) [5] assuming rule compliance 

and non-interference with protected systems. 

• Local Access License (LAL), which provides a way for 3rd par4es to access spectrum 
licensed to the UK’s Mobile Network Operators (MNOs) that is not currently in use nor 
planned for use in the near future [6]. 

Current spectrum licensing procedures are oWen 4me-consuming and administra4vely complex, 
where receiving a SAL can take about 6 to 12 months for approval, and LALs have an inherent 
high degree of uncertainty for access and con4nued opera4on due to the requirement to 
protect future incumbent MNO opera4ons. This greatly limits their feasibility for commercial 
use. 

This project proposes a Dynamic Spectrum Access (DSA) framework, allowing automated, real-
4me spectrum alloca4on in under two minutes, ensuring efficient usage while preven4ng 
harmful interference with primary mobile operators. By leveraging advanced modelling, 
machine learning, and real-world tes4ng, this research aims to develop a scalable dynamic 
spectrum-sharing system. This project is led by a consor4um comprising Queen Mary University 
of London (QMUL), Telet Research, Aetha Consul4ng, and Federated Wireless, each bringing 
specialised exper4se in wireless communica4ons, spectrum policy, and economic assessment. 

The project is structured into three key Work Packages (WPs) to comprehensively address 
spectrum-sharing feasibility, technical implementa4on, and economic impact. This is also shown 
in the form of a workflow diagram in Figure 1. 

1.2 Work Package Structure 

WP1: Spectrum Data Collec4on and Measurement (Led by Telet Research) 
WP1 focuses on real-world spectrum measurement and data collec4on to establish a 
founda4on for dynamic spectrum assignment. The objec4ves include: 
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• Deploying 5G radio equipment (e.g., cellXica M5Q, Picocom PC802) to scan and collect 
real-4me spectrum usage data. 

• Assessing interference condi4ons in urban and rural environments through prac4cal field 
tests. 

• Valida4ng dynamic assignment feasibility using Federated Wireless’s Spectrum Access 
System (SAS). 

• Conduc4ng long-term studies on spectrum availability and impact. 

 

WP2: Simula4on and Modelling of Dynamic Spectrum Sharing (Led by QMUL) 
WP2, which is the focus of this report, u4lises simula4on and modelling techniques to assess 
the scalability and impact of dynamic spectrum-sharing solu4ons. It builds upon the real-world 
data from WP1 to: 

• Develop an accurate simula4on framework for spectrum sharing. 

• Analyse the performance of trade-offs under different deployment scenarios. 

• Inves4gate machine learning (ML)-based op4misa4on to enhance decision-making. 

Figure 1: Integra4on of spectrum sharing mechanism within project workflow (see, Q5 (Methodology) 
of Ref. [7]).



WP3: Economic and Regulatory Impact Assessment (Led by Aetha Consul4ng) 
WP3 evaluates the economic feasibility and regulatory implica4ons of dynamic spectrum 
sharing. Key objec4ves include: 

• Quan4fying economic benefits for different stakeholders. 

• Assessing the regulatory framework required for implementa4on. 

• Engaging with industry stakeholders through workshops to validate findings. 

• Developing a roadmap for large-scale adop4on of dynamic spectrum licensing. 

1.3 Focus of this report: WP2 – Simula4on and Modelling 
This report primarily covers WP2, which focuses on assessing the feasibility of dynamic 
spectrum assignment through advanced simula4ons and modelling techniques. The key aspects 
of WP2 include: 

1. Integra4on of Ray Tracing for Realis4c Propaga4on Modelling:  
Unlike conven4onal sta4s4cal path loss models, which rely on empirical or stochas4c 
formula4ons, this study employs ray tracing-based simula4ons to incorporate cri4cal 
mul4path effects, diffrac4on, and reflec4on mechanisms. This methodology provides a 
granular and physics-based representa4on of signal propaga4on, enhancing the fidelity 
of spectrum-sharing assessments in complex environments. Currently, Ofcom's coverage 
maps for base sta4ons do not account for environmental factors, oWen assuming 
uniform circular coverage, which does not reflect actual propaga4on characteris4cs. In 
contrast, ray tracing provides a more detailed and realis4c representa4on of coverage, 
typically revealing smaller coverage areas than those depicted by Ofcom. Based on the 
findings in this report, we recommend that Ofcom consider using more accurate models 
including ray tracing and machine learning models to maximise the usage of spectrum, 
mi4gate coverage gaps (not-spots), and ensure more reliable mobile connec4vity. Most 
importantly, it would be useful to revisit and modify legacy determinis4c models based 
on accurate numerical and ML approaches. 

2. Valida4on Against Real-World Data through WP1 Integra4on: 
A key aspect of this work is the valida4on of simula4on results against real-world 
measurement data from WP1. By systema4cally comparing simulated path loss and 
interference panerns with field measurements, this approach ensures regulatory 
compliance and industrial applicability while improving model reliability for real-world 
deployments. 



3. Dynamic spectrum sharing at 1800 MHz in Band 3: This study explores the feasibility of 
dynamic spectrum sharing in the 1800 MHz Band 3, a spectrum range tradi4onally 
allocated for mobile communica4on. The purpose is to eliminate exis4ng mobile “not-
spots” by providing mobile coverage in many of those areas through smaller local mobile 
operators using Local Access Licensing in a more cost-effec4ve manner than the na4onal 
mobile operators such as EE, O2, Vodafone and Three. The inves4ga4on assesses 
interference management strategies, coexistence with incumbent users, and real-4me 
spectrum access techniques, contribu4ng to future spectrum efficiency enhancements. 

4. Op4mising Base Sta4on Deployment for Targeted Local Coverage in the 3800-4200 MHz 
Band: This analysis iden4fies op4mal configura4ons and minimum base sta4on 
deployments required to deliver effec4ve local-area coverage within the 3800-4200 MHz 
band under Shared Access Licensing condi4ons, ensuring efficient spectrum use and 
interference avoidance with incumbent operators. Our findings aim to support cost-
effec4ve infrastructure planning specifically tailored to private network deployments. 

5. Machine Learning (ML) for Path Loss and Interference Predic4on: Tradi4onal 
determinis4c and empirical models for path loss es4ma4on are oWen computa4onally 
intensive or lack adaptability to dynamic environments. This work leverages machine 
learning techniques to enhance propaga4on modelling accuracy, enabling the real-4me 
predic4on of interference levels. By integra4ng ML-based models, the study reduces 
computa4onal overhead while improving spectrum alloca4on decisions. 

6. Enhancing environmental models using LiDAR data: OpenStreetMap (OSM) data, 
frequently used for urban environment modelling, oWen lacks fine-grained building 
details required for precise propaga4on simula4ons. To address this, an ML-driven 
approach is proposed to integrate LiDAR data, allowing for the automa4c extrac4on of 
structural informa4on and material proper4es. This fusion enhances environmental 
model accuracy, leading to more reliable spectrum-sharing simula4ons. 

1.4 Expected Outcomes of WP2 
The findings from WP2 will: 

• Provide a validated, data-driven framework for dynamic spectrum sharing. 

• Offer insights into AI-driven spectrum management and efficient interference mi4ga4on. 

• Support WP3 by quan4fying the technical and economic viability of dynamic spectrum 
licensing. 

• Contribute to regulatory discussions on scalable and secure spectrum access 
frameworks. 



2. Literature Review: Key Technologies and Strategies in 
Spectrum Sharing 
2.1 Ray Tracing: A High-Precision Approach to Signal Propaga4on 
Wireless communica4on systems rely on radio waves to transmit signals, but the propaga4on of 
these waves is influenced by complex interac4ons with the environment. Factors such as 
reflec4on, diffrac4on, refrac4on, and scanering significantly impact signal strength, coverage, 
and quality of service. Accurate propaga4on modelling is essen4al for predic4ng signal 
behaviour, es4ma4ng interference, and op4mising spectrum-sharing strategies. 

Tradi4onal empirical models, such as the Hata Model [8] and the Okumura Model [9], 
approximate path loss based on system parameters like frequency, antenna height, and terrain 
proper4es. While these models provide quick es4mates of signal anenua4on over large areas, 
they assume simplified propaga4on condi4ons and are valid only for environments that 
resemble their original calibra4on scenarios. Consequently, they fail to capture fine-grained 
spa4al and temporal varia4ons in urban and dense environments, where obstacles like 
buildings, trees, and vehicles create complex mul4path effects. 

Unlike these empirical models, ray tracing is a determinis4c approach that models 
electromagne4c waves as individual rays, tracing their interac4ons with physical surfaces in a 
given three-dimensional (3D) environment. Ray tracing accurately simulates mul4path 
propaga4on by accoun4ng for the laws of op4cs and wave physics, making it par4cularly 
suitable for urban and heterogeneous environments. 

Ray tracing treats radio waves as narrow beams of energy that travel in straight lines through a 
homogeneous medium. As these rays propagate, they interact with the environment in mul4ple 
ways, which influence signal behaviour [10]: 

Interac9on Descrip9on

Line of sight (LOS) The ray travels directly from the transminer 
to the receiver.

Reflec4on The ray reflects off the surface according to 
the law of reflec4on.

Refrac4on (transmission) The ray refracts as it moves into a new 
medium, according to the law of refrac4on.



Ray tracing models [11] perform numerical simula4ons to: 

• Predict the paths of rays from transminers to receivers, considering mul4ple 
propaga4on effects. 

• Es4mate signal strength, phase changes, and path loss for each ray based on 
environmental interac4ons. 

By leveraging high-fidelity 3D maps, ray tracing enables the precise modelling of radio 
environments under different spectrum-sharing scenarios. For example, in an urban 5G 
network, ray tracing can simulate reflec4ons of skyscrapers, diffrac4on around street corners, 
and penetra4on losses through windows, ensuring accurate coverage predic4ons.  

Propaga'on Loss 

Effect of surface materials: 

An important factor in ray tracing-based propaga4on modelling is the impact of surface 
materials on reflec4on losses. Different building materials affect the absorp4on and reflec4on of 
electromagne4c waves, which influences overall signal propaga4on. The ray tracing model 
incorporates surface material proper4es into path loss calcula4ons by considering their complex 
rela4ve permiqvity ( ), which describes how the material interacts with electric fields. 

The complex permiqvity is given by: 

 

where:  is the real part of the rela4ve permiqvity, determining the ability of the material to 
store electrical energy,  is the imaginary part, related to the conduc4vity  of the material, 
which contributes to signal anenua4on,  is the permiqvity of free space,  is the frequency in 
Hz.  

Diffrac4on The ray diffracts off the surface according to 
the law of diffrac4on. One ray can spawn 
many diffracted rays.

Diffuse scanering The ray interacts with a rough surface such as 
the ocean or a building facade.

εr

εr = ε′ r + jε′ ′ r

ε′ r
ε′ ′ r σ

ε0 f



The imaginary part of permiqvity is calculated as: 

 

For different building materials,  and  can be es4mated using empirical formulas: 

 

 

where , , ,  are material-specific constants derived from experimental data. 

These calcula4ons are guided by ITU-R recommenda4ons, including ITU-R P.2040-3 [12] and 
ITU-R P.527-5 through ITU-R P.527-6 [13], which provide methods and reference values for 
es4ma4ng permiqvity and conduc4vity across different frequencies. 

This material-aware ray tracing approach enables more realis4c simula4ons by accoun4ng for 
frequency-dependent reflec4on, refrac4on, and absorp4on effects. For example: 

• Glass windows cause par4al transmission and reflec4on, affec4ng indoor penetra4on 
losses. 

• Concrete walls have high permiqvity, leading to strong reflec4ons and significant 
anenua4on. 

• Metallic surfaces act as perfect reflectors, contribu4ng to signal mul4path effects. 

ε′ ′ r =
σ

2πε0 f
.

ε′ r σ

ε′ r = a f b

σ = cf d

a b c d



 

Reflec4on loss: 

Figure 2 shows a reflec4on path from a transminer site tx to a receiver site rx. 

The model determines polarisa4on and reflec4on loss using these steps. 

1. Track the propaga4on of the ray in 3-D space by calcula4ng the propaga4on matrix . 
The matrix is a repea4ng product, where  is the number of reflec4on points. 

 

For each reflec4on, calculate  by transforming the global coordinates of the incident 
electromagne4c field into the local coordinates of the reflec4on plane, mul4plying the 
result by a reflec4on coefficient matrix, and transforming the coordinates back into the 
original global coordinate system [15]. The equa4ons for  and  are: 

 

Figure 2: Reflection of a Ray [14].
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where: 

• , , and  form a basis for the plane of incidence (the plane created by the 
incident ray and the surface normal of the reflec4on plane).  and  are 
perpendicular and parallel, respec4vely, to the plane of incidence. 

•  and  are the direc4ons (in global coordinates) of the incident and exi4ng 
rays, respec4vely. 

•  and  are the direc4ons (in global coordinates) of the horizontal 
polarisa4ons for the incident and exi4ng rays, respec4vely. 

•  and  are the direc4ons (in global coordinates) of the ver4cal polarisa4ons 
for the incident and exi4ng rays, respec4vely. 

•  and  are the Fresnel reflec4on coefficients for the horizontal and ver4cal 
polarisa4ons, respec4vely.  is the incident angle of the ray and  is the complex 
rela4ve permiqvity of the material. 

 

 

2. Project the propaga4on matrix  into a 2-by-2 polarisa4on matrix . The model rotates 
the coordinate systems for the transminer and receiver so that they are in global 
coordinates. 

 

P0 = [
1 0 0
0 1 0
0 0 1]

s p k
s p

kin kout

sin sout

pin pout

RH RV
α εr

RH(α) =
cos(α) − (εr − sin2(α))/ε2

r

cos(α) + (εr − sin2(α))/ε2
r

RV(α) =
cos(α) − εr − sin2(α)

cos(α) + εr − sin2(α)

P R
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Hin ∙ Vrx Vin ∙ Vrx]



 

 

  where: 

•  and  are the direc4ons (in global coordinates) of the horizontal  and 

ver4cal  polarisa4ons, respec4vely, for the receiver. 

•  and  are the direc4ons (in global coordinates) of the propagated 
horizontal and ver4cal polarisa4ons, respec4vely. 

•  is the direc4on (in global coordinates) of the nominal ver4cal polarisa4on for 
the ray depar4ng the transminer. 

•  is the direc4on (in global coordinates) of the ray depar4ng the transminer. 

3. Specify the normalised horizontal and ver4cal polarisa4ons of the electric field at the 
transminer and receiver by using the 2-by-1 Jones polarisa4on vectors  and , 
respec4vely. If either the transminer or receiver are unpolarised, then the model 

assumes . 

4. Calculate the polarisa4on and reflec4on loss  by combining ,  and . 

 

Diffrac4on loss: 

The model calculates diffrac4on loss by using computa4ons based on the Uniform Theory of 
Diffrac4on (UTD) [16]. 

For a first-order signal diffrac4on, the equa4on for path loss, , is: 

 

where: 

•  and  are polarisa4on vectors for the receiver and transminer, respec4vely, 
specified as Jones vectors.  

•  is the diffrac4on matrix. 

Hin = P(Vtx × ktx)
Vin = PVtx

Hrx Vrx (Eθ)
(E∅)

Hin Vin

Vtx

ktx

Jtx Jrx

Jtx = Jrx =
2

2 [1
1]

IL R Jtx Jrx

IL = − 20log10 J−1
rx RJtx

PLD

PLD = JV′ rxHdif f lJVtx,

JVrx JVtx

Hdif f l



 

The equa4on for the diffrac4on matrix contains three terms. 

• The first term is a geometric coupling matrix that rotates the polarisa4on vector from 
the basis of the ray coordinates to the basis of the edge-fixed incidence plane. The edge-
fixed incidence plane contains the ray and the edge. 

• The second term is a polarisa4on matrix containing diffrac4on coefficients for the local 
horizontal and ver4cal polarisa4ons,  and , and an amplitude scaling factor. For 
more informa4on about the diffrac4on coefficients and amplitude scaling factor, see [16] 
and [17]. 

• The third term is a geometric coupling matrix that rotates the polarisa4on vector from 
the basis of the edge-fixed incidence plane to the basis of the edge-fixed diffrac4on 
plane. The edge-fixed diffrac4on plane contains the diffracted ray and the edge. 

High-fidelity ray tracing models, such as those implemented in Remcom Wireless InSite provide 
the necessary computa4onal power to simulate realis4c propaga4on condi4ons. Figure 3 
illustrates an example of a ray tracing simula4on for an urban environment, highligh4ng 
mul4path propaga4on effects. 

Figure 3: Ray tracing visualisa4on of path loss in an urban environment. The transminer (Tx) is marked 
in a red marker pin, receiver (Rx) in a blue marker pin. (a) Line of sight, (b) non-line of sight having a 
single reflec4on, (c) non-line of sight having a double reflec4on, (d) non-line of sight having single 
diffrac4on, (e) all possible combina4ons of rays.

D⊥ D∥



2.2 Communica4on Channels: Mapping Performance Across Spectrum 
Scenarios 
In addi4on to ray tracing, communica4on channel models provide a mathema4cal 
representa4on of the transmission medium, enabling the evalua4on of network performance 
under different spectrum-sharing scenarios. An illustra4on of spectrum sharing and mechanism 
to allocate unused spectrum to the secondary base sta4on, in our case a gNodeB (gNB) is shown 
in Figures 4 and 5, respec4vely. These models incorporate key parameters tabulated in Table 1 
according to the 3GPP standards for 5G NR [18]. 

 

Figure 5: A visual representa4on of the steps involved in dynamic spectrum access, from random PU 
occupancy genera4on to SU channel alloca4on based on key performance indicators (KPIs). 

Figure 4: Illustra4on of a change in spectrum alloca4on over 4me, showing areas occupied by 
primary mobile network operator (P-MNO), secondary gNodeB (S-gNB), and unused 
spectrum.



Table 1: Key parameters for 5G against 3GPP standards 

Parameter Band 3 Band n77 Descrip9on

Carrier Frequency 1805 MHz to 1880 
MHz (uplink) 
1710 MHz to 1785 
MHz (downlink) [19]

3700 MHz to 4200 
MHz (uplink and 
downlink) [19]

The frequency at 
which PDSCH 
operates.

Bandwidth Varies based on 
Resource Block and 
Subcarrier Spacing 
[20]

Varies based on 
Resource Block and 
Subcarrier Spacing 
[20]

Overall bandwidth 
allocated for PDSCH 

Subcarrier Spacing (SCS)
15 kHz 
30 kHz and 60 kHz 
(op4onal for specific 
scenarios) [21]

15 kHz  
30 kHz (standard for 
n77) 
60 kHz (op4onal for 
specific scenarios) 
[21]

Common spacings: 15 
kHz, 30 kHz, 60 kHz, 
or 120 kHz.

Modula4on Scheme QPSK, 16QAM, 
64QAM, 256QAM 
[22]

QPSK, 16QAM, 
64QAM, 256QAM 
[22]

Types: QPSK, 16QAM, 
64QAM, or 256QAM.

Modula4on and Coding 
Scheme (MCS)

Table 5.1.3.1-2: MCS 
index table 2 for 
PDSCH [23]

Table 5.1.3.1-2: MCS 
index table 2 for 
PDSCH [23]

MCS index determines 
modula4on type and 
coding rate. 

 

Transport Block Size Varies based on MCS; 
can be significant 
depending on 
configura4on

Varies based on MCS; 
can be substan4al 
depending on 
configura4on

Size of the data being 
transmined, 
influenced by MCS.

Coding Rate Varies based on MCS; 
typically ranges from 
1/3 to 1 [24]

Varies based on MCS; 
typically ranges from 
1/3 to 1 [24]

Rate of error 
correc4on coding 
applied to the data.



WP2 employs a MATLAB-based channel model, parameterised according to empirical data from 
Work Package 1 (WP1), which captures real-world spectrum usage, interference condi4ons, and 
network load varia4ons. This approach ensures that the simulated scenarios reflect actual 
deployment environments, enhancing the reliability and applicability of the findings. Moreover, 
the integra4on of bit-level simula4ons allows for the analysis of key performance indicators 
(KPIs), such as bit error rate (BER), throughput, and latency, under different spectrum-sharing 
configura4ons. Some of the KPIs are listed in Table 2. 

Resource Block (RB) 
Alloca4on

Varies based on 
Reference channel 
[24]

Varies based on 
Reference channel 
[24]

Number of resource 
blocks assigned to the 
PDSCH.

Time Alloca4on

For transmission scheme 1 of the PDSCH, the 
UE may assume that a gNB transmission on 
the PDSCH would be performed with up to 8 
transmission layers on antenna ports 
1000-1011 as defined in Clause 7.3.1.4 of [4, 
TS 38.211], subject to the DM-RS recep4on 
procedures in Clause 5.1.6.2. [27]

Dura4on in 4me 
domain (slots or 
symbols) for PDSCH.

Slot Configura4on subcarrier spacing configura4on μ varying 
along with Nsymb which also effect on the 
cyclic prefix [26]

Specific slots assigned 
for PDSCH 
transmission.

Reference Signal 
Configura4on

Varies based on 
Reference channel 
[24]

Varies based on 
Reference channel 
[24]

DMRS configura4on, 
including type and 
ports.

Power Control [25]

Wide Area BS (Note)  
Medium Range BS ≤ 
38 dBm  
Local Area BS ≤ 24 
dBm

Wide Area BS (Note)  
Medium Range BS ≤ 
38 dBm  
Local Area BS ≤ 24 
dBm

Seqngs for downlink 
power control and UE 
power control.



Table 2: KPIs in wireless communica4on channel model 

KPIs Defini9on Importance

Signal-to-Noise Ra4o (SNR) Ra4o of signal power to noise 
power.

Higher SNR indicates bener 
signal quality and fewer 
errors.

Signal-to-Interference-plus-
Noise Ra4o (SINR)

The ra4o of signal power to 
the sum of interference and 
noise power.

Accounts for interference 
from other signals, crucial for 
mul4-user communica4on.

Bit Error Rate (BER) The frac4on of bits received 
in error over the total 
transmined bits.

A lower BER indicates higher 
communica4on reliability.

Frame Error Rate (FER) The ra4o of incorrectly 
received frames to the total 
transmined frames.

Used in packet-switched 
networks to measure 
reliability.

Channel Capacity Maximum achievable data 
rate of the channel under 
given condi4ons.

Determines the theore4cal 
limit for data transmission.

Throughput The actual amount of data 
successfully transmined per 
second.

A real-world performance 
measure, lower than channel 
capacity due to losses.

Spectral Efficiency The number of bits 
transmined per second per 
Hz of bandwidth.

Measures efficient u4lisa4on 
of frequency spectrum.

Path Loss Reduc4on in signal strength 
as it propagates through 
space.

Affects coverage and power 
requirements.

Delay Spread The difference between the 
arrival 4mes of the earliest 
and latest significant 
mul4path components.

Affects inter-symbol 
interference (ISI) and 
equalisa4on requirements.

Latency The 4me delay in data 
transmission from source to 
des4na4on.

Cri4cal for real-4me 
applica4ons like VoIP and 
gaming.



 

While determinis4c channel models offer a high degree of accuracy, they are computa4onally 
intensive, par4cularly when simula4ng large-scale networks. To address this challenge, hybrid 
approaches that combine ray tracing-based determinis4c models with sta4s4cal approxima4ons 
are being developed. This ensures a balance between simula4on accuracy and computa4onal 
efficiency, allowing for extensive parameter sweeps across different deployment scenarios. An 
example of a communica4on wireless channel model is shown in Figure 6. 

2.3 The Evolu4on of Spectrum Sharing: Approaches and Challenges 
The basic idea of spectrum sharing is to allow transceivers to use idle or underu4lised spectrum 
bands temporally and geographically. Indeed, spectrum sharing is a promising strategy to tackle 
the imbalance between limited spectrum resources and unprecedented traffic demands [28]. 
We provide a survey of some of the techniques for spectrum sharing. 

2.3.1 CR-Based Spectrum Sharing 

Figure 6: 5G NR downlink physical layer processing chain, showing the transminer and receiver 
functionalities, including channel estimation, equalization, and demodulation.



 

Cogni4ve radio (CR) is an effec4ve technique to enhance spectrum efficiency and poten4ally 
ameliorate the spectrum scarcity problem [29]. By sensing the radio environment, cogni4ve 
users can adap4vely configure transminers and protect incumbent users. In general, a cogni4ve 
period consists of two phases: spectrum sensing and cogni4ve transmission. In the spectrum 
sensing phase, cogni4ve users sense the radio environment and collect spectrum informa4on 
(e.g., occupa4on status, traffic, energy, channel gain). In the cogni4ve transmission phase, 
cogni4ve users select the best spectrum bands and adapt transmissions according to the 
collected spectrum informa4on. A typical scenario of underlay spectrum sharing in a microcell is 
provided in Figure 7, where the macro-base sta4on (M-BS) and macro user types of equipment 
(M-UEs) denote incumbent macro nodes. 

2.3.2 D2D-Based Spectrum Sharing 

Figure 7: A typical scenario of CR-based spectrum sharing. C-BS: 
Cogni4ve base sta4on, C-UE: Cogni4ve user equipment [1].



 

Two users are allowed to communicate via a device-to-device (D2D) connec4on when they are 
close to each other and far away from the M-BS [30]. By reducing the communica4on distance, 
D2D communica4on can improve throughput, reduce energy consump4on, and decrease 
latency. To enhance spectrum efficiency, it is suggested that D2D communica4ons share the 
spectrum bands of M-UEs under the central management of the M-BS, namely, underlay D2D 
communica4on. There are usually three types of interference in an underlay D2D 
communica4on network, as shown in Figure 8: 

• Type I: interference from D2D communica4ons to M-UE communica4ons 

• Type II: interference from M-UE communica4ons to D2D communica4ons 

• Type III: interference from D2D communica4ons to D2D communica4ons 

The interference management between M-UE communica4ons and D2D communica4ons is the 
key issue in underlay D2D communica4ons. 

Figure 8: Three types of interference in an underlay D2D communica4on network. DT: D2D transminer; 
DR: D2D receiver [1].



2.3.3 IBFD-Based Spectrum Sensing 
In tradi4onal wireless communica4ons, a node is allowed to receive-transmit signals in 
orthogonal 4me slots (i.e., half-duplex mode) or simultaneously receive-transmit signals in 
orthogonal frequency bands (i.e., out-of-band full-duplex mode) due to implementa4on 
simplicity. Hence, two-4me slots or two frequency bands are needed to accomplish a recep4on 
and a transmission. Both half-duplex mode and out-of-band full-duplex mode are inefficient in 
terms of spectrum efficiency. To deal with the issue, in-band full-duplex (IBFD) communica4on is 
proposed [31].  

The basic idea of IBFD communica4on is to enable a node to receive-transmit signals on the 
same spectrum band simultaneously. As shown in Figure 9, a node may receive-transmit the 
same signal when the node acts as an IBFD relay, and a node may also receive-transmit different 
signals when the node is an IBFD transceiver (both the M-BS and M-UE are IBFD transceivers in 
Figure 9b). Thus, an IBFD node needs only one 4meslot or frequency band to accomplish a 
recep4on and a transmission. Compared to the half-duplex and out-of-band full-duplex 
communica4ons, IBFD communica4on theore4cally doubles the spectrum efficiency. However, 
the transmission of the IBFD node may cause severe self-interference in its recep4on. In 
par4cular, self-interference is generated at the IBFD relay in Figure 9a and is generated at each 
IBFD transceiver in Figure 9b. This brings about theore4cal improvement of spectrum efficiency. 
Thus, the bonleneck of the IBFD communica4on is the self-interference cancella4on technique. 

Figure 9: Two typical scenarios of IBFD communica4ons: a) receive and transmit the same signal 
simultaneously; b) receive and transmit different signals simultaneously [1]. 



2.3.4 NOMA-Based Spectrum Sharing 
In the previous genera4ons of mobile communica4ons, 4me/frequency/code domains were 
divided into orthogonal channels for orthogonal mul4ple access (OMA). OMA can avoid co-
channel interference of mul4ple transmissions and reduce the processing complexity at 
receivers. However, OMA degrades the spectrum efficiency due to the exclusive channel 
occupa4on. To deal with the issue, NOMA is proposed and has been extensively studied in 
recent years. Different from OMA, NOMA allows the BS to schedule mul4ple users on a single 
channel at the same 4me and enhances the spectrum efficiency [32]. Although NOMA is 
generally a mul4ple-access technique, we can also regard it as a spectrum-sharing technique 
from the aspect that NOMA allows mul4ple transmissions on the same spectrum band at the 
same 4me and provides spectrum-sharing gains. 

 Figure 10: The principle of a two-user downlink basic NOMA transmission [1].



The key idea of the basic NOMA scheme is to exploit the power domain instead of 4me/
frequency/code domains. In par4cular, the transmissions in the basic NOMA scheme are 
allowed to share the same 4me/frequency/code but with different power levels. Although 
different transmission signals may cause co-channel interference with each other at receivers in 
the basic NOMA system, the receivers can mi4gate the co-channel interference and extract 
desired components from the received signals with the successive interference cancella4on 
(SIC) technique. In this way, the basic NOMA scheme enhances the spectrum efficiency 
compared with the OMA. The principle of a two-user downlink basic NOMA transmission is 
shown in Figure 10. 

2.4 Machine Learning for Smarter Spectrum Access and Interference 
Control 
Machine Learning (ML) is a subset of ar4ficial intelligence (AI) that enables systems to learn 
panerns from data and make decisions without explicit programming. ML models improve their 
accuracy over 4me as they are exposed to more data, making them par4cularly useful for 
complex, data-driven applica4ons. In the field of wireless communica4ons, ML has emerged as 
a powerful tool for solving problems related to spectrum sharing, interference management, 
and dynamic resource alloca4on. Tradi4onal spectrum management approaches rely on 
predefined models and sta4c policies, which oWen fail to adapt to the ever-changing wireless 
environment. ML, by contrast, enables adap4ve decision-making, allowing networks to op4mise 
spectrum usage efficiently while minimising interference. 

ML has become a pivotal tool in enhancing spectrum sharing in wireless communica4ons. By 
enabling systems to learn from data and make adap4ve decisions, ML addresses the 
complexi4es of dynamic spectrum environments, leading to more efficient u4lisa4on of 
available frequencies. In the realm of spectrum sensing, ML algorithms have been employed to 
improve the detec4on of available channels. For instance, deep learning models can analyse 
spectral data to iden4fy underu4lised frequencies, thereby facilita4ng more efficient spectrum 
sharing among users [33]. Regarding dynamic spectrum access, reinforcement learning 
techniques have been applied to enable systems to make real-4me decisions about spectrum 
u4lisa4on. These methods allow devices to adapt their transmission strategies based on the 
current spectrum environment, leading to improved coexistence and reduced interference [34].  
In terms of interference management, ML has been u4lised to predict and mi4gate interference 
among users. By analysing panerns in spectrum usage, ML models can forecast poten4al 
interference scenarios and adjust transmission parameters proac4vely to maintain 
communica4on quality [35].  Furthermore, ML has been explored in the context of federated 
learning for spectrum sharing, where mul4ple devices collabora4vely learn a shared model 
while keeping their data localised. This approach enhances privacy and reduces the need for 
centralised data collec4on, which is beneficial in dynamic spectrum environments [36]. The 



incorpora4on of ML into WP2 not only reduces computa4onal overhead but also enables real-
4me adaptability, ensuring that spectrum resources are allocated dynamically based on current 
demand and environmental condi4ons. 

3. Simula4on and Modelling Framework 
3.1 Simula4on Approach and Tools Used 
Work Package 2 (WP2) of the Spectrum Sandbox ITT Project employs a MATLAB-based 
simula4on framework to analyse and op4mise dynamic spectrum-sharing solu4ons. The 
simula4on framework integrates three core components: communica4on channel models, ray 
tracing techniques, and machine learning-driven interference predic4on as shown in Figure 11. 
These elements work together to provide a realis4c and comprehensive evalua4on of wireless 
network performance under different deployment scenarios. Though machine learning is part of 
the next step moving forward beyond the project, it has been used preliminary (the prototype 
and internal working highlighted in §5) to showcase how it can be integrated into the system to 
predict realis4c path loss under different deployment scenarios. 

 
Figure 11: Flow diagram between different components namely machine learning, ray tracing and 
communica4on channel model.



3.1.1 Choice of MATLAB as the Simula4on Plaxorm 
MATLAB is selected as the primary simula4on tool due to its robust computa4onal capabili4es 
and seamless integra4on with specialised toolboxes such as: 

• Antenna Toolbox, which facilitates the design, analysis, and visualisa4on of antennas, 
ensuring accurate radia4on panern modelling. 

• 5G Toolbox, which enables simula4on of 5G New Radio (NR) waveforms, resource 
alloca4on, and MIMO antenna configura4ons. 

• RF Propaga4on Toolbox, which supports ray tracing-based path loss es4ma4on, enabling 
detailed urban and rural propaga4on modelling. 

MATLAB is also chosen for the following prac4cal advantages: 

1. Cost-effec4veness and Licensing: MATLAB is cost-effec4ve for academic researchers and 
universi4es that have campus-wide licenses. In contrast, commercial soWware such as 
Remcom Wireless InSite, which specialises in ray tracing simula4ons, can be prohibi4vely 
expensive for non-industrial users. 

2. Customisa4on and Flexibility: MATLAB allows users to define custom antenna panerns 
and propaga4on models, offering greater flexibility in wireless communica4on research. 
Many proprietary tools, including Remcom Wireless InSite, restrict customisa4on, 
making it difficult to tailor simula4ons to specific research requirements. 

By leveraging MATLAB’s built-in customisa4on, extensibility, and affordability, WP2 ensures that 
the simula4on results are aligned with real-world network behaviour, improving the predic4ve 
accuracy of spectrum-sharing strategies. 

3.1.2. Ray Tracing for Realis4c Environment Modeling 
The MATLAB ray tracing engine is employed to simulate: 

• Urban, suburban, and rural seqngs, ensuring that spectrum-sharing solu4ons are tested 
across a variety of topographies. 

• Fine-grained propaga4on effects, including mul4path reflec4ons, diffrac4ons, and 
scanering, are essen4al for accurate interference predic4on. 



Ray tracing ensures that WP2’s simula4on framework closely replicates actual radio 
environments, thereby improving the reliability of spectrum-sharing strategies before field 
deployment. 

3.1.3 Machine Learning for Interference Predic4on and Path Loss Es4ma4on 
Machine learning (ML) technique integra4on into the simula4on framework is part of the 
innova4on work. ML primarily serves two purposes: 

• Improve path loss predic4on accuracy, reducing the reliance on predefined empirical 
models. 

• Enhances building modelling and predicts material proper4es for more accurate 
environmental modelling. 

The concept of ML integra4on in our simula4on framework is further detailed in Sec4on 5. The 
integra4on of ML can enhance the efficiency and scalability of WP2’s modelling efforts, ensuring 
that simula4ons remain computa4onally feasible even for large-scale network deployments. 

3.2 Ray Tracing for Signal Propaga4on Analysis 
Ray tracing is a fundamental component of WP2’s simula4on approach, providing realis4c 
modelling of wireless signal propaga4on. The ray tracing methodology aligns with 3GPP 
standards, ensuring compliance with industry benchmarks. 

3.2.1 Frequency Bands and Deployment Scenarios 
WP2 evaluates spectrum-sharing solu4ons across two cri4cal frequency bands: 

• Band 3 (1800 MHz): A widely used LTE frequency, essen4al for macrocell coverage and 
indoor penetra4on. 

• Band n77 (3800–4200 MHz): A mid-band frequency, widely u4lised for 5G deployments, 
offering a balance between capacity and coverage. 

By analysing these bands, WP2 ensures that both exis4ng and future spectrum-sharing solu4ons 
are assessed under realis4c deployment condi4ons. 



3.2.2 Key Propaga4on Effects Considered 
Ray tracing models account for various real-world propaga4on effects, including: 

• Path Loss: The reduc4on in signal strength as the wave propagates through space. 

• Shadowing: Obstruc4ons, such as buildings and trees, causing signal anenua4on. 

• Mul4path Fading: The interac4on of signals travelling along different paths, leading to 
construc4ve or destruc4ve interference. 

3.3 Communica4on Channel Model 
The communica4on channel model incorporated in the simula4on and modelling plan is 
designed to adhere to 3GPP industry standards, as shown in Figure 12, for spectrum sharing, 
ensuring an accurate representa4on of real-world signal propaga4on and interference 
dynamics. Figure 12 shows an illustra4on of a 5G network setup with poten4al interference 
abiding by the 3GPP industry standards for spectrum sharing. 

 

Figure 12: Illustra4on of a 5G network setup with poten4al interference abiding by the 3GPP industry 
standards for spectrum sharing.



4. Insights from WP2: Valida4ng and Benchmarking 
Performance 
4.1 Benchmarking Accuracy: Comparing Simula4ons with Real-World 
Data 
To ensure the accuracy and reliability of the ray tracing-based simula4on used in WP2, it is 
essen4al to compare its performance with findings from established studies in the literature. A 
study by Zakaria et al. presented real-world measurements in urban and suburban 
environments at 3.5 GHz as shown in Figure 13 [37]. Comparison with this study indicates that 
the WP2 ray tracing simula4on model demonstrates similar performance trends with that of the 
real-world measurements. This comparison also highlights areas where refinements are 

needed. For example, while the simula4on effec4vely models diffrac4on and reflec4on effects, 

Figure 13: Valida4on of path loss simula4on models against real-world measurements at 3.5 GHz [37]. 
(a) Indica4on of the route used for data collec4on in Dokki territory. (b) Indica4on of the route used for 
data collec4on in Faysal territory. (c) Comparison of measured and simulated path loss in Dokki 
territory as an example of an urban scenario. (d) Comparison of measured and simulated path loss in 
Faysal territory as an example of a suburban scenario.



differences in building material characterisa4on and transient obstacles such as moving vehicles 
and temporary structures contribute to observed devia4ons from real-world measurements. 

Beyond regulatory benchmarking, WP2 simula4ons are cross-validated against real-world data 
collected in WP1, which includes field measurements of received signal strength and path loss 
from Bath test sites. By aligning the simulated propaga4on characteris4cs with empirical 
observa4ons, discrepancies can be iden4fied and corrected, thereby refining the predic4ve 
capabili4es of the ray tracing and machine learning-driven models. This valida4on is par4cularly 
crucial for ensuring that the simulated interference predic4ons and spectrum-sharing strategies 
are representa4ve of actual network condi4ons. The simula4on setup configura4on is tabulated 
in Table 3. 

Table 3: MATLAB® simula4on configura4on 

The comparison with WP1 data, as shown in Figure 14, provides insights into how accurately the 
model captures real-world anenua4on, mul4path effects, and shadowing in diverse 
environments. Figure 14 takes into account one gNB situated on Green Park Road (La4tude: 
51.37933323, Longitude: -2.36481137) opera4ng at 4080 MHz frequency (n77 Band). The data 

Transmitter Information

Frequency 4000 MHz (n77 Band)

Transmitting power 5.01 W (37 dBm)

Antenna height 5 m

Directionality Isotropic

Ray Tracing Propagation Model

Number of reflections 2

Number of diffractions 1

Building material Concrete

Terrain material Concrete

Receiver Information

Antenna height 1 m

Directionality Isotropic



points shown in the Figure are the path loss obtained from User Equipment with the Network 
Signal Guru soWware installed and latched to this par4cular gNB. 

The cumula4ve distribu4on func4on (cdf) of the path loss for the WP1 measurement data 
(black solid line) and WP2 Ray Tracing method (blue solid line) are shown in Figure 15. Ini4ally, 
we u4lised the in-built isotropic antenna for the Ray Tracing method in MATLAB. However, this 
is different from the antenna used in the Bath test bed. The actual antenna used in the test bed, 
its specifica4on and the radia4on panern are shown in Figure 16. Since we were unable to 
obtain the precise radia4on panern of the antennas deployed in the Bath city centre from Telet, 
we simulated the antenna in CST such that it approximately matches the radia4on panern of 
the actual antenna. Figure 17 shows our simulated radia4on panern of the 4-port 
omnidirec4onal antenna. As can be seen between Figures 16 and 17, the simulated radia4on 
may not be an exact match but is approximately comparable to the one used for measurements. 
This is then incorporated into the Ray Tracing MATLAB to obtain the respec4ve path loss. This is 
shown as a blue doned line in Figure 14. We find from Figure 15 that the Ray Tracing method 
applied on the OSM file downloaded directly from the OpenStreetMap [38] website has a large 
por4on of samples with op4mis4c values of the path loss. To account for more comparable 
results, we have incorporated OSM files obtained aWer processing LiDAR data. The LiDAR 
processing is explained more in detail under §5.2. The results of the path loss obtained by 
opera4ng the Ray Tracing method on the LiDAR-based OSM file lead to a more reasonable 
agreement between the simula4on and the measurement with about 40% data on the 
pessimis4c side and 60% on the op4mis4c side. The discrepancy between the simula4on and 
the measurement can be due to several factors: (a) dynamic real-world environment including 
moving objects such as vehicles, pedestrians causing shadowing, diffrac4on and 4me-varying 
mul4path effects, (b) weather and atmospheric effects, (c) Tx power and hardware variability, 
(d) incomplete or simplified building and terrain representa4on. 



 

 

Figure 14: Path loss data around the Bath area using Telet gNBs. (a) WP1: field measurement, (b) WP2: 
Ray Tracing using OSM downloaded directly from OpenStreetMap [38] with in-built MATLAB isotropic 
antenna, (c) WP2: Ray Tracing using OSM downloaded directly from OpenStreetMap [38] with CST 
based 4-port omnidirec4onal antenna, (d) WP2: Ray Tracing using OSM obtained aWer processing on 
LiDAR data with in-built MATLAB isotropic antenna, (e) WP2: Ray Tracing using OSM obtained aWer ML 
processing on LiDAR data with CST based 4-port omnidirec4onal antenna.



 

Figure 15: Evalua4ng the performance of Ray Tracing simula4ons for path loss predic4on in Bath City 
Center by comparing CDF curves with measured data, with and without the inclusion of LiDAR data, 
and antenna from CST Studio Suite.



 

Figure 16: (a) 4-port omnidirec4onal antenna used in Bath City Center test bed, (b) specifica4ons of the 
antenna, (c) H-plane radia4on panern, (d) V-plane radia4on panern.



 

Figure 17: (a) 4-port omnidirec4onal antenna design in CST, (b) Simulated 3D radia4on panern of the 4-
port omnidirec4onal antenna in CST Studio Suite, (c) H-plane radia4on panern of the simulated 
antenna, (d) V-plane radia4on panern of the simulated antenna.



4.1.1 Tes4ng in Rural and Urban Environments: Case Studies from Chalke Valley & 
Liverpool 
The Ray Tracing method was further applied to addi4onal loca4ons, including Chalke Valley and 
Liverpool, to represent rural and urban environments, respec4vely, at Band 3 (1.8 GHz) and n77 
(4 GHz) frequencies.  

 

Chalke Valley 

The Chalke Valley is a 13-mile valley in Wiltshire and Dorset, England. It stretches out along 
twis4ng lanes from Salisbury to ShaWesbury through quintessen4ally English villages and 
hamlets, against a backdrop of the rich, lush landscapes of the rivers Ebble and Chalke [39]. This 
is a classic example of a rural scenario. As part of the Cranborne Chase Area of Outstanding 
Natural Beauty, the valley boasts of patchwork farmland, chalk downland, rolling hills, rich green 
water meadows and sprawling bluebell woods. The loca4on features low-rise buildings spread 
all over the place in small clusters with the majority being green coverage. For modelling 
purposes, we set the parameters the same as shown in Table 3 but with the excep4on that the 
“Terrain Material” is now chosen as “vegeta4on”. The coverage map for Band 3 and n77 can be 
found in Figure 18. Addi4onally, the cumula4ve distribu4on func4on (CDF) of path loss for this 
area is also illustrated in Figure 20. 

Liverpool 

Liverpool is a Cathedral and port city in Merseyside, England, situated on the eastern side of the 
Mersey Estuary, near the Irish Sea. Liverpool is the fiWh largest city in the United Kingdom with 
one of the most densely populated areas in England with a popula4on of over 1.5 million. The 
city is heavily developed with residen4al, commercial, and industrial buildings, extensive 
transport networks, and public ameni4es. All these contribute to Liverpool being classified as an 

Figure 18: Coverage plot in the region of Chalke Valley (a rural scenario) for an area of 200 m radius.



urban area. As a result, the MATLAB simula4on setup has been kept iden4cal to the one used in 
Bath and shown in Table 3. 

 

 

Figure 19: Coverage plot in the region of Liverpool (an urban scenario) for an area of 200 m radius.

Figure 20: Coverage plot in the region of Chalke Valley (a rural scenario) and Liverpool (an 
urban scenario) for an area of 200 m radius.



The resul4ng coverage map in this area is presented in Figure 19. Again, the cumula4ve 
distribu4on func4on (CDF) of path loss for this area is shown in Figure 20. As observed between 
Figure 18 and Figure 19, path loss is notably higher in Liverpool compared to Chalke Valley, 
which aligns with the well-established trend of increased path loss in urban environments due 
to higher building density and mul4path propaga4on. Furthermore, the CDF curve for the n77 
frequency (4 GHz) is consistently shiWed to the leW compared to Band 3 (1.8 GHz), confirming 
the expected increase in path loss at higher frequencies. 

4.2 Bridging the Gap: Understanding Discrepancies and Material Effects 
To ensure a fair and meaningful comparison, the simula4on seqngs were carefully chosen to 
align with the real-world measurement setup, maintaining consistency with actual deployment 
condi4ons. The simula4on was conducted for Band n77 (3.8–4.2 GHz), which is one of the key 
frequency bands designated for tes4ng within the QMUL Spectrum Sandbox. The environmental 
models used in the simula4on were designed to replicate urban landscapes, incorpora4ng 
structural and terrain materials predominantly composed of concrete, a common material in 
densely built environments. To enhance the realism of the propaga4on model, key effects such 
as diffrac4on, reflec4on, and shadowing were accounted for, ensuring that the impact of 
different surface materials on signal anenua4on was accurately represented. 

Despite these efforts, discrepancies between the simulated results and real-world WP1 
measurement data were observed. These differences arise due to several factors, primarily 
environmental uncertain4es, material property assump4ons, and dynamic interference effects. 
Real-world measurement campaigns inherently include transient obstacles, such as moving 
vehicles, pedestrians, and temporary structures, which introduce signal varia4ons that are 
difficult to fully capture in sta4c 3D simula4on models. As a result, localised differences in 
received signal strength between measured and simulated data were observed, par4cularly in 
areas where frequent obstruc4ons were present. 

Another poten4al source of discrepancy is the generalisa4on of material proper4es within the 
ray tracing model. While the simula4on employs ITU-R standardised material coefficients for 
buildings and surfaces, real-world structures exhibit varia4ons in thickness, surface roughness, 
and material composi4on, leading to devia4ons in how signals interact with them. For example, 
real-world buildings may consist of a mix of glass, metal reinforcements, and varying concrete 
densi4es, affec4ng signal propaga4on in ways that standardised models may not fully capture. 
These material-dependent losses are par4cularly evident at higher frequencies, where 
reflec4ons, diffrac4ons, and absorp4ons are more sensi4ve to the specific characteris4cs of the 
medium. 



 

 

Moreover, limita4ons in antenna configura4on and transminer power seqngs contribute to 
differences between the simulated and measured plots. In the real-world WP1 measurements, 
details regarding the dynamic transminer power were unknown, requiring assump4ons to be 
made in the simula4on. Consequently, a sta4c antenna transminer power and an 
omnidirec4onal CW antenna were used in the simula4on setup to approximate the 
measurement condi4ons. Addi4onally, unknown factors such as interference from neighbouring 
wireless systems, atmospheric effects, and hardware varia4ons in the measurement equipment 

Figure 21: Customising building materials using MATLAB in Ray Tracing. (a) The region of interest (ROI) 
is indicated in Pink. The inset shows the buildings within the ROI on a new map. (b) Buildings iden4fied 
as 1, 2, and 3 are customised with materials glass (indicated by blue), brick (indicated by red) and metal 
(indicated by black), respec4vely. All the other buildings are customised with concrete material 
(indicated by light grey).

Figure 22: Ray Tracing path loss predic4ons for various building material (concrete, brick, glass, metal, 
hybrid) types in a rural scenario (Chalke Valley) along with Rural Macro (RMa) line of sight (LOS) model 
and RMa non-line of sight (NLOS) model.



may have further influenced the real-world results, leading to devia4ons from the simulated 
predic4ons.  

With a more precise understanding of the environment and building materials, more accurate 
ray tracing-based propaga4on models can be developed. How this improved knowledge can be 
obtained is further discussed in §6: Innova4ons and Future Direc4ons as a flow diagram u4lising 
more accurate LiDAR data to extract building and terrain material informa4on. A small example 
of how this refined knowledge can be applied in ray tracing simula4ons is provided in Figure 21, 
illustra4ng how enhanced modelling techniques can reduce discrepancies between simula4on 
and reality. Addi4onally, the effect of different building materials on path loss has been depicted 
in Figure 22, highligh4ng the significant role material proper4es play in propaga4on modelling. 

4.3 Interference Dynamics and Performance Evalua4on For 5G Network 
in Band 3 and n77 

4.3.1 Band n77 gNodeB threshold simula4on 
Based on the 5G NR downlink physical layer processing chain shown in Figure 6, we explored 
the rela4onship between the transmiqng power of a 5G gNodeB (gNB) and the resul4ng 
Transport Success Rate (TBSR) between the UE and the MNO (Mobile Network Operator) with a 
specific reference point of  dBm received power at the UE in each of the modula4on and 
coding schemes (MCS). This setup is illustrated in Figure 23 and the results are presented in 
Figure 24. The different lines illustrate the impact of the MCS on the TBSR performance.  
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Figure 23: Illustra4on of how increasing secondary gNB transmit power affects the TBSR from primary 
MNO to the UE in a 5G network.



 

 

Figure 24: Transport Block Success Rate (TBSR) vs. maximum tolerable received power from a gNB for a 
user equipment (UE) receiving -70 dBm from an MNO.

Figure 25: BLER and Throughput vs. MCS at SINR = 5 dB, 10 MHz BW



TBSR and the MCS are closely related performance metrics in wireless communica4on systems, 
par4cularly in 5G and LTE networks. The TBSR represents the percentage of successfully 
received transport blocks (TBs) without errors aWer decoding, whereas the MCS defines the 
modula4on order and coding rate, determining how much data is transmined within a transport 
block. MCS is a key parameter in link adapta4on, dynamically adjus4ng the modula4on and 
coding based on channel condi4ons to op4mise data transmission. The rela4onship between 
MCS with Block Errors Rate (BLER) and throughput can be described as follows in Figure 25:  

i. Higher MCS values (higher-order modula4on and lower coding redundancy): In good 
channel condi4ons, where the SNR and channel quality indicator (CQI) are high, the system 
selects a higher MCS (e.g., 256-QAM with a high coding rate). This increases spectral 
efficiency, allowing more bits per symbol, but also makes the transmission more vulnerable 
to errors. If channel condi4ons degrade due to interference or fading, TBSR drops as BLER 
increases, leading to retransmissions and lower throughput. 

ii. Lower MCS values (lower-order modula4on and higher coding redundancy): In poor 
channel condi4ons, a lower MCS (e.g., QPSK or 16-QAM with a lower coding rate) is 
selected to improve transmission reliability. The lower MCS increases coding redundancy, 
making the transmission more robust against noise and interference. As a result, TBSR 
remains high since BLER is low, but at the cost of reduced throughput due to a lower bit-
per-symbol transmission rate. 

 

In the context of cell edge simula4ons, the scenario where the received power from the MNO is 
-100 dBm must be considered. Typically, -105 dBm is used as the cell coverage limit, but with an 
Addi4ve White Gaussian Noise (AWGN) spectral density of -174 dBm/Hz, the total noise power 



increases from -107 dBm to -104 dBm. Given that this noise level may exceed the received MNO 
power of -105 dBm, the simula4on assumes a received MNO power of -100 dBm per unit 
bandwidth to ensure a more realis4c assessment of performance at the cell edge. 

The results presented in Table 4 demonstrate that increasing the bandwidth from 5 MHz to 10 
MHz results in a reduc4on in SNR across all MCS levels. This degrada4on is par4cularly 
pronounced for higher-order modula4on schemes, such as 16-QAM and 64-QAM. This trend 
aligns with theore4cal expecta4ons, as in a scenario with fixed total transmission power, 
doubling the bandwidth from 5 MHz to 10 MHz leads to a 3 dB increase in noise power, thereby 
reducing the available SNR. 

Consequently, as the bandwidth increases, the receiver experiences a higher AWGN power, 
leading to an overall reduc4on in SNR. The impact of this SNR degrada4on varies across 
different MCS levels. For lower MCS levels (QPSK at MCS 1 and 4), the degrada4on is rela4vely 
minor because the gNBs signal remains the dominant factor influencing noise levels, allowing 
the receiver to maintain a more stable SNR. In contrast, for higher MCS levels (16-QAM and 64-
QAM at MCS 7, 10, and 13), the drop in SNR is more significant, closely aligning with the 
theore4cal 3 dB predic4on. This is because, at higher MCS levels, AWGN becomes the dominant 
noise factor, making the signal more suscep4ble to degrada4on as bandwidth increases.  

This trend highlights the increased sensi4vity of higher-order modula4ons to noise power, 
reinforcing the importance of power control, error correc4on, and adap4ve equalisa4on 
techniques in mi4ga4ng SNR losses in wideband 5G transmissions. 

Overall, these results highlight the cri4cal interplay between bandwidth, modula4on scheme, 
and power control in 5G NR networks. The observed SNR degrada4on at higher bandwidths 
suggests that receivers must be equipped with advanced equalisa4on and interference 
mi4ga4on techniques to compensate for the power-spreading effect. Addi4onally, the adap4ve 
power control observed in the gNB transmission suggests that 5G systems intelligently regulate 
power levels to op4mise performance across different bandwidth configura4ons. These findings 
reinforce the importance of dynamic modula4on and power adapta4on strategies to ensure 
consistent network reliability and spectral efficiency in varying bandwidth scenarios. 

4.3.2 Band n77 TDD synchronisa4on simula4on 



 

We also looked at the scenarios where the different TDD synchronisa4on and asynchronisa4on 
of downlink (and uplink) from (and to) the secondary gNB can affect the performance of a 
primary MNO interac4ng with a UE. The scenario is illustrated in Figure 26. 

First, the impact of the uplink transmission from the secondary gNB on the downlink 
performance of the primary MNO is analysed. This scenario, depicted in Figure 11, involves the 
primary BS communica4ng with UE1, while UE2 interacts with the secondary BS. Various DL:UL 
ra4os are considered, and the resul4ng impact is illustrated in Figure 27, with threshold gNB 
received power values listed in Table 5. As observed in Figure 27, the uplink interference is 
minimal due to the frequency separa4on between DL and UL, where the downlink operates at a 
higher frequency. 

A specific MCS, code rate and modula4on scheme is considered, and the observed trends 
remain consistent across different configura4ons of these parameters. 

Figure 26: Illustra4on of Primary BS Downlink (DL1) and Secondary BS Uplink/Downlink (DL2/UL2) 
signal synchronisa4on, showing scenarios with perfect synchronisa4on, 50% asynchronisa4on, and 
100% synchronisa4on.



 

Table 5: Threshold gNB power in maintaining 85% TBSR from MNO for different downlink-uplink ra4os. 

4.3.3 Band 3 cross Bandwidth simula4on 
Next, the impact of the downlink transmission from the secondary gNB on the downlink 
performance of the primary MNO is analysed.  The centre frequency of opera4on is set at Band 
3 1.8 GHz. We take the following two scenarios considering the subcarrier spacing (SCS) to be 
the same in both cases to understand the impact of the downlink: 

Figure 27: Impact of different UL/DL ra4os on the TBSR performance as a func4on of gNB transmit 
power.

DL: UL MCS Code Rate Modulation Max gNB Power 
(dBm)

3:7 13 526/1024 QPSK -105.744

4:6 13 526/1024 QPSK -105.78

5:5 13 526/1024 QPSK -105.572

6:4 13 526/1024 QPSK -105.842

7:3 13 526/1024 QPSK -105.728

8:2 13 526/1024 QPSK -105.585

9:1 13 526/1024 QPSK -105.77



• Same bandwidth (BW)  

• Different BW 

Table 6 presents a comparison of interference with different MNO and gNB bandwidth 
configura4ons. The evaluated scenarios include MNO bandwidths of 60 MHz alongside gNB 
bandwidths of 10 MHz, 20MHz, 30MHz, 40 MHz, 50 MHz, and 60 MHz. The increase in MNO 
bandwidth leads to a rise in AWGN power, which exceeds -105 dBm, making signal decoding 
infeasible in the simula4on. To ensure that the gNB remains the dominant interference source, 
the MNO received power is fixed at -70 dBm, and the gNB received power is fixed at -81 dBm. 

It can be observed that in each of the scenarios, the interference from gNBs decreases (i.e., 
MCS increases) as the gNB bandwidth increases. This is evident from the fact that MCS levels 
define the modula4on order and coding rate, determining how much SNR is required for 
reliable decoding. Higher MCS values demand significantly higher SNR, meaning even small 
increases in interference from neighbouring transminers disrupt the signal decoding process, 
leading to higher packet error rates. With increasing gNB bandwidth, the SNR for the MNO 
decreases, hence higher MCS can keep up with tolerable TBSR. 

The results show that the more bandwidths overlap the less interference appears. The impact of 
interference is not only determined by total power but also by how that power is distributed 
across the spectrum. With same-bandwidth interference, the total interfering power is 
concentrated only within the same occupied frequency range as the MNO’s signal, making it 
more manageable for equalisa4on and filtering techniques to compensate for. In contrast, when 
the interfering base sta4on has a larger bandwidth, its power is spread across a wider frequency 
range, reducing the power spectral density (PSD) per Hz. The lower PSD per Hz reduces the total 
interference power within the overlapping range. 



An interes4ng observa4on arises when the MNO and gNB operate the same bandwidth while 
opera4ng at fixed power levels of -70 dBm for the MNO and -81 dBm for the gNB. The results 
indicate MCS is higher for a 40 MHz bandwidth than for a 60 MHz bandwidth. Specifically, when 
both the MNO and gNB operate at 40 MHz, a greater number of MCS levels are achievable 
compared to opera4ons at 60 MHz. 

This trend suggests that as the opera4on bandwidth increases, interference also increases, 
leading to higher SNR requirements to achieve the same MCS levels. Consequently, the ability to 
sustain high MCS levels is reduced at larger bandwidths, emphasising the trade-off between 
bandwidth expansion and interference management in co-channel opera4on. 

4.3.4 Throughput coverage 
A simula4on of throughput coverage in Bath city centre was conducted, as illustrated in Figure 
28. The figure provides a compara4ve visualisa4on of throughput (in Mbps) during a simulated 
handoff scenario, where a user transi4ons between the coverage areas of two base sta4ons. 
The images labelled (a) and (b) correspond to different inter-site distances, offering insights into 
the op4mal minimum separa4on required between the base sta4ons to ensure a seamless 
handoff. 

This analysis is crucial for op4mising network planning and deployment in urban environments, 
where maintaining consistent connec4vity is essen4al for user experience. A poorly op4mised 
handoff region can lead to high packet loss, increased latency, and degraded Quality of Service 
(QoS), par4cularly for applica4ons such as video streaming, online gaming, and real-4me 
communica4ons. By determining the ideal base sta4on separa4on, network operators can 
minimise handoff failures, reduce call drops, and improve overall throughput, ul4mately 
enhancing the efficiency and reliability of mobile communica4on networks.  

By simula4ng the TBSR for each transmission, the throughput coverage map can be generated. 
The throughput coverage maps provide an insighxul visualisa4on of the impact of interference 
and signal propaga4on on 5G NR network performance. The simula4on results indicate that 
high throughput regions, represented by red and yellow areas, are primarily concentrated near 
the primary base sta4on, where the received signal strength is high, and the impact of 
interference is minimal. These regions benefit from higher-order modula4on schemes, such as 
64-QAM or 256-QAM, which enable increased data rates. As the distance from the base sta4on 
increases or interference levels rise, throughput degrades progressively, as seen in the transi4on 
from green to blue regions. The analysis highlights that interference from a secondary base 
sta4on significantly influences throughput distribu4on. In scenarios where the interfering 
transminer operates at a high-power level, a notable reduc4on in throughput is observed across 
the coverage area. The presence of dark blue and purple zones indicates areas with severe 
degrada4on in signal quality, likely due to high interference levels, substan4al path loss, or the 



use of lower-order modula4on schemes such as QPSK with a low coding rate. This suggests that 
interference mi4ga4on strategies, such as power control and adap4ve resource alloca4on, are 
crucial in maintaining network performance. 

 

 

A key implica4on of Figure 29 is their relevance to network densifica4on in 5G deployments. 
The results provide quan4ta4ve insights into how closely base sta4ons can be placed while 
ensuring minimal interference. By adjus4ng transmission power and op4mising resource 
alloca4on, spectral efficiency can be maximised while preserving an acceptable quality of 

Figure 28: Visualisa4on of a change in throughput during the handoff scenario as a user moves from 
the coverage area of one base sta4on (blue square) to another (orange triangle), when the distance 
between the two base sta4ons is (a) 350 m and (b) 280 m.

Figure 29: Visualisa4on of an area within which a second gNB cannot be deployed. 



service (QoS). The study demonstrates the necessity of balancing cell density with interference 
management to maintain high network throughput. Future work can extend this analysis by 
incorpora4ng real-world propaga4on condi4ons and dynamic user mobility models to further 
refine network planning strategies. 

4.4 Challenges, Limita4ons and Considera4ons 
Despite the promising findings of WP2, several challenges must be addressed to further 
enhance the accuracy, efficiency, and applicability of the simula4on and modelling framework. A 
key limita4on arises from the computa4onal complexity of high-fidelity ray tracing simula4ons, 
which require substan4al processing power. The detailed modelling of electromagne4c wave 
propaga4on, including mul4path effects, diffrac4on, scanering, and material interac4ons, 
significantly increases computa4onal demands. Consequently, the number of simulated 
scenarios is inherently constrained by available hardware resources, necessita4ng a careful 
selec4on of representa4ve environments to balance accuracy and feasibility. To overcome these 
computa4onal limita4ons, we propose the integra4on of Machine Learning (ML) techniques as 
a complementary approach to tradi4onal ray tracing. ML can be leveraged to op4mise 
simula4on efficiency, predict propaga4on characteris4cs, and enhance the fidelity of results 
without requiring exhaus4ve ray tracing calcula4ons. The specific methodologies and 
implementa4on strategies for this integra4on are detailed in the next sec4on, Innova4ons and 
Future Direc4ons. 

Another challenge stems from the limited material libraries available in MATLAB-based Ray 
Tracing. Currently, predefined databases for buildings, terrain, and surface materials are 
insufficient for capturing the full complexity of real-world environments. This limita4on reduces 
the accuracy of simulated results, par4cularly in diverse urban and rural landscapes where 
material proper4es significantly impact signal propaga4on. Moreover, the lack of detailed 
environmental representa4on restricts the ability to model intricate electromagne4c 
interac4ons. To address this issue, Machine Learning can be employed to generate high-
resolu4on environmental models, which can then be incorporated into the Ray Tracing 
framework. By u4lising ML-based algorithms to infer and reconstruct missing material data, a 
more precise and realis4c representa4on of physical environments can be achieved. This 
approach enables the crea4on of customised and highly detailed simula4on scenarios, thereby 
improving the accuracy of signal propaga4on analysis and op4mising network performance 
predic4ons. 

Addi4onally, data integra4on from WP1 presents a significant challenge, as harmonising real-
world measurement data with simulated models requires me4culous calibra4on and valida4on 
efforts. Field measurements collected in WP1 serve as a vital benchmark for assessing the 
accuracy of ray tracing and machine learning-based predic4ons. However, discrepancies 



between measured and simulated results oWen arise due to differences in environmental 
condi4ons, transient obstruc4ons, and varia4ons in hardware configura4ons. Addressing these 
inconsistencies requires itera4ve refinements, where simula4on parameters such as material 
proper4es, antenna configura4ons, and interference sources are con4nuously adjusted to 
improve alignment with real-world observa4ons. The process of fine-tuning these models 
demands a comprehensive approach, incorpora4ng machine learning-based calibra4on 
techniques and enhanced geospa4al data integra4on to bridge the gap between theory and 
prac4ce. 



5. Innova4ons and Future Direc4ons 
5.1 AI-Powered Path Loss Predic4on: A Smarter Alterna4ve to 
Tradi4onal Models 
The increasing complexity of urban, suburban, and rural environments necessitates a robust 
method for predic4ng wireless path loss. Given that ray tracing models take a long 4me to 
simulate, a robust and efficient solu4on is essen4al. In this work, we develop a machine 
learning pipeline that leverages simula4on data generated by ray tracing models as well as real-
world measurement data. The primary objec4ve is to predict the path loss at any receiver point 
when the map of an area and the transminer loca4on are provided. Ini4ally, the model is 
trained using simulated data from the Bath area and later validated on real measurement data. 
This pipeline is designed for scalability and can be extended to different geographies by 
adap4ng to various environmental characteris4cs. 

5.1.1 Data Prepara4on and Feature Extrac4on 
OpenStreetMap Data and Regional Division 

The base map data is sourced from OpenStreetMap (OSM). The Bath area is divided into several 
key regions—Bath City Centre, Bath South, Bath North, Bath Southeast, and Bath West—to 
capture a diverse range of building geometries and environmental condi4ons. The input for our 
machine learning pipeline comprises both simulated data (from the ray tracing model) and 
features extracted from the OSM map. 

Building Feature Extrac'on 

For each building, the following features are derived: 

• Height ( ): Provided either directly in the map or set to a default value. 

• Centroid Coordinates ( ): Calculated as the geometric centre of the building 
polygon. 

• Area ( ): The total area enclosed by the building footprint. 

• Perimeter ( ): The length of the building’s boundary. 

• Circularity ( ): A shape descriptor. 

These features are assembled into a feature vector for each building, which is normalised later. 
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TransmiDer and Receiver Data: The ray tracing simula4ons provide pairs of transminer and 
receiver coordinates along with the corresponding path loss measurements. The final data 
structure combines the Tx/Rx loca4ons into an 8-dimensional input for subsequent regression 
tasks. 

5.1.2 Model Architecture 
Our approach employs a dual-model system that integrates a transformer-based module for 
encoding building features with a residual path loss encoder for regression as shown in Figure 
30.  

 

Transformer Pooling Model: The Transformer Pooling Model aggregates building features using 
a transformer encoder. Its key steps are as follows: 

• Input Projec4on: The 6-dimensional building feature vector is linearly projected to a 
higher-dimensional hidden space. 

• Layer Normalisa4on: Applied immediately aWer the projec4on to stabilise the training 
process. 

• Transformer Encoder: Consists of mul4ple layers of self-anen4on and feed-forward 
networks. The anen4on mechanism is given by: 

 

 where  denote the query, key, and value matrices respec4vely, and  is the    

 dimensionality of the key. 

Figure 30: Introduced Machine Learning Based Dual Model System for predicting the Path Loss.
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• Mean Pooling: AWer the transformer layers, the features are aggregated using a simple 
mean opera4on. 

• Final Projec4on and Ac4va4on: The aggregated feature vector is passed through a fully 
connected layer and ac4vated by ReLU. 

Residual Path Loss Encoder: The second model in our pipeline is a Residual Path Loss Encoder. It 
accepts an 8-dimensional vector, which is a concatena4on of the transformer-derived building 
embedding and the Tx/Rx loca4on informa4on, and outputs a scalar predic4on for path loss. 
The residual blocks in this model follow the form: 

 

where  is a transforma4on performed by a fully connected layer (possibly with dropout) and 
the addi4on ensures that the original input   is retained through the block, enabling bener 
gradient flow during training. 

A series of such blocks are stacked with increasing and then decreasing dimensionality, 
culmina4ng in a final linear layer that outputs the predicted path loss value. This structure helps 
the network learn complex, nonlinear rela4onships while preserving informa4on from the 
original inputs. 

Loss Func'on: To train the model, we use the Smooth L1 Loss defined as: 

 

This loss func4on is less sensi4ve to outliers than the mean squared error and provides a 
balance between L1 and L2 loss behaviours. 

5.1.3 Fine-Tuning for Accuracy: Op4mising the Learning Process 
Data Loading and Batching 

The training data is organised by map folders where each folder contains an OSM file and the 
corresponding simula4on data in Excel format. A custom data loader is used to: 

y = ReLU(f (x)) + x

f (x)
x

L(x, y) =
0.5(x − y)2, if x − y < 1

x − y − 0.5, otherwise



• Parse the OSM file to extract building features. 

• Read and filter the simula4on data. 

• Concatenate and batch the data appropriately. 

The data are grouped by map ID to compute building embeddings on the fly for each unique 
region. 

Op'miser and Learning Rate Scheduling: The models are jointly trained using the AdamW 
op4miser. The learning rate is dynamically adjusted using an Exponen4al Learning Rate 
scheduler defined by:  

where   is the learning rate at itera4on  and  is a decay factor (typically close to 1, e.g., 
0.999999). Gradient clipping is employed to prevent exploding gradients, with the norm of the 
gradients clipped to a maximum value. 

5.1.4 Measuring Success: Evalua4ng the AI Model’s Performance 
For evalua4ng the model performance, one transminer loca4on in Bath City Centre is taken into 
considera4on. These sites provide a controlled yet diverse set of condi4ons within a densely 
built urban environment, allowing for a thorough assessment of the model’s predic4on 
capabili4es under real-world propaga4on scenarios. This evalua4on framework not only 
facilitates direct comparison with simulated data but also helps in iden4fying specific areas for 
further model enhancement and calibra4on. The trained machine learning predicted the 182 
receiver points path loss with an average of 8.745 dB accuracy. Furthermore, to illustrate this 
valida4on loss, a CDF plot of the path loss between the two models and the path loss field plot 
at the Bath City Centre are shown in Figure 31 and Figure 32, respec4vely. Table 7 shows 
specifically the superiority of ML over RT in terms of computa4onal 4me, i.e., ML is 1000x faster 
than RT. 

This is worth men4oning that the 1000x increase does not result from MATLAB inefficiency 
specifically (RT methods perform thousands of individual ray-path computa4ons that can take 
several minutes or even hours for extensive regions, depending on their complexity. This is 
par4cularly true for upper 6GHz, where the wavelength is shorter, requiring higher resolu4on in 
the Ray-Tracing algorithm), but rather from the inherent computa4onal complexity of the RT 
propaga4on method, which the ML model significantly simplifies once trained. In other words, 
the large speed increase comes from shiWing away from physics-based calcula4ons (tradi4onally 
slow and detailed) to predic4ve ML-based methods (fast and approximate). This advancement 
provides regulators like Ofcom and spectrum users with a powerful, rapid, yet s4ll reliable way 

ηt+1 = γ ηt

ηt t γ



to manage spectrum sharing and interference scenarios, significantly enhancing efficiency and 
reducing the cost and 4me associated with spectrum management. 

In addi4on to the substan4al speed improvements demonstrated by our machine learning (ML) 
model, there is significant poten4al for extending this approach toward real-4me spectrum 
management. Specifically, ML models could predict spectrum usage dynamically, adap4ng 
rapidly to changing network condi4ons and user demands. By accurately forecas4ng usage 
panerns and interference poten4al, ML would facilitate unprecedented levels of spectrum 
sharing, even among mul4ple MNOs and diverse spectrum users simultaneously. 

Again, implemen4ng ML-driven spectrum predic4on can significantly reduce reliance on 
physical spectrum sensing devices. By accurately predic4ng spectrum occupancy based on 
historical usage, environmental condi4ons, and other context-specific data, ML models 
minimise the need for extensive real-4me monitoring hardware, leading to lower infrastructure 
costs (through reducing hardware installa4on and opera4onal costs), reduced opera4onal 
complexity (through maintaining fewer devices), improved scalability and flexibility (through 
reducing the reliance on dense deployments of spectrum sensors), complementary sensing 
capability, enhanced responsiveness and reliability. 

 
Figure 31: CDF comparison between Ray Tracing model and Machine Learning 



Table 7: Comparison in the processing 4me between the MATLAB-based Ray Tracing model and 
Python-based Machine Learning model for predic4ng path loss between one Tx and one Rx. 

 

5.1.5 Key Observa4ons: Strengths and Weaknesses of AI-Based Predic4ons 
Training Dynamics 

During training, we observed that the integra4on of the transformer pooling model significantly 
improved the extrac4on of spa4al features from the OSM data. The use of residual blocks in the 
path loss encoder allowed bener informa4on reten4on and gradient flow. In early epochs, the 
loss decreases rapidly as the model learns the basic mapping from inputs to outputs; however, 
fine-tuning in later epochs is crucial to handle the complex interac4ons between building 
geometry and signal propaga4on. 

Programming 
Language

Hardware Processing 
Power 
(GHz)

Time for simula9ng 
one Tx and one Rx 

(sec)

Ray Tracing MATLAB R2024b 2.90 ~ 10

Machine Learning Python 3.11.7 2.749 ~ 0.01

Figure 32: Path loss field plot in the Bath City Center using: (a) Ray Tracing method and (b) Machine 
Learning method.



5.1.6 Refining the Model: Future Enhancements for Bener Accuracy 
Enhancements can be achieved by incorpora4ng addi4onal parameters from the OSM maps 
such as road networks, vegeta4on, and other urban features—to further bridge the gap 
between simula4on data and real-world measurements. Moreover, increasing the diversity of 
the training dataset to include a wider range of scenarios from urban, suburban, and rural areas 
can significantly enhance the model’s generalisability. Finally, integra4ng an ac4ve learning 
pipeline would enable the model to con4nuously update its parameters as new measurement 
data become available, thereby improving its accuracy over 4me. 

 

In addi4on to the poten4al enhancements men4oned earlier, further improvements can be 
made by expanding the model to cover the en4re UK map. When extending the geographical 
boundaries, it is cri4cal to ensure that the expansion preserves the dis4nct characteris4cs of 
urban, suburban, and rural areas (Figure 33). This involves the careful design of boundary 
expansion strategies that maintain the inherent diversity of the UK's landscape. By incorpora4ng 

Figure 33: A scalable approach for path loss predic4on in the UK by expanding the geographical 
boundary.



representa4ve data from densely built urban centres, moderately developed suburban regions, 
and sparsely populated rural areas, the model can be trained to capture the unique propaga4on 
condi4ons and structural varia4ons present across different environments. This approach not 
only enhances the model's generalisability but also improves predic4on accuracy when applied 
to varied real-world scenarios throughout the UK. 

The developed machine learning pipeline demonstrates the feasibility of predic4ng wireless 
path loss by combining simulated ray tracing data with real-world OSM features. By leveraging a 
transformer-based module for spa4al feature extrac4on and a residual network for regression, 
the pipeline effec4vely learns complex rela4onships that govern signal propaga4on in diverse 
environments. 

Future work will focus on scaling the model to cover larger geographic areas, such as the en4re 
UK, and developing specialised sub-models for dis4nct environments. The ensemble approach—
where urban, suburban, and rural predic4ons are combined—could provide a more robust and 
generalisable predic4on system. In addi4on, the adop4on of an ac4ve learning strategy 
promises con4nuous improvement as more data becomes available. 

5.1.7 Use Case: Base Sta4on Op4misa4on Methodology 
In radio network planning, op4mal transminer placement is cri4cal for ensuring reliable 
coverage across a target region. In urban environments, physical obstacles (e.g., buildings) can 
significantly affect signal propaga4on, making it challenging to achieve good coverage with 
minimal infrastructure. This sec4on presents a gradient-based op4misa4on approach that 
integrates: 

1. A Transformer-based model to summarise the built environment (buildings, geometry, 
and other features). 

2. A Path Loss predic4on model to forecast signal strength between a transminer and 
arbitrary receiver points. 

3. A cost func4on designed to balance coverage performance, coverage overlap, 
transminer proximity constraints, and the overall number of transminers. 

By itera4vely refining transminer coordinates using gradient descent, the method converges on 
an effec4ve layout under real-world constraints derived from OpenStreetMap (OSM) data. 

Data Prepara'on 



Data prepara4on ensures the op4misa4on rou4ne has all necessary inputs: (1) Region 
boundaries, (2) building footprints and anributes, (3) receiver grid, (4) (op4onal) street nodes 
for projec4on. 

OSM Data Extrac'on 

1. Boundaries: 

• The .osm file includes bounding box tags (min_lat, min_lon, max_lat, max_lon) or 
sufficient node data to deduce these. 

• These limits define the rectangular region in which transminers may be placed 
and across which coverage must be ensured. 

2. Building data: 

• Each building footprint in OSM is stored as a collec4on of nodes (la4tude–
longitude points). 

• By itera4ng over these nodes and forming polygons, we can calculate: centroid 
(mean loca4on of the building), perimeter (distance around the polygon), area 
(size of the building footprint), circularity (a shape descriptor rela4ng area and 
perimeter), height. 

• These features capture how buildings might obstruct or reflect signals. 

3. Street data (op4onal): 

• The .osm file also holds highway or road elements. 

• Extrac4ng and storing the nodes (lat–lon pairs) of these roads allows an op4onal 
step later where each transminer is snapped to the closest street node. 

Building Vector Encoding 

1. Ra4onale: Buildings significantly influence signal propaga4on. However, explicitly 
modelling each building for path loss can be cumbersome. 

2. Transformer Pooling model: 

• Takes in a list of building feature vectors (height, area, etc.) for the region. 

• Processes them via a small Transformer encoder, aggrega4ng the features into a 
single environment vector (bld_vec). 

• This vector effec4vely represents the overall urban environment’s complexity. 



Such an encoding step helps the subsequent path loss model adapt to different contexts (e.g., 
dense high-rise areas vs. suburban regions). 

Receiver Grid Genera'on 

1. Evenly spaced grid: 

• A grid of points is laid across the bounding box in la4tude-longitude space. For 
example, a 50 × 50 grid yields 2500 receiver points. 

• At each of these points, we will predict coverage strength. 

2. Purpose: 

• Ensures a comprehensive sampling of the region’s signal quality. 

• The op4misa4on rou4ne anempts to guarantee that each grid point meets a 
minimum path loss threshold (i.e., is “covered”). 

Path Loss Predic'on Model 

A neural network called PathLossEncoder predicts how strong (in dB) the signal is likely to be at 
any receiver loca4on, given: 

1. The building vector (bld_vec) – summarising the region. 

2. Transminer coordinates – la4tude and longitude of the transminer. 

3. Receiver coordinates – la4tude and longitude of the grid point. 

The model outputs a numerical value interpreted as the predicted path loss (PL). Internal details 
oWen include: 

• Fully Connected Layers: The network consists of linear transforma4ons with non-linear 
ac4va4ons (e.g., Leaky ReLU). 

• Batch Normalisa4on / Dropout: Enhances stability and helps the model generalise. 

Interpreta4on: In this par4cular code structure, a higher PL value corresponds to bener signal 
strength The model is trained (before op4misa4on) on a dataset of known transminer-receiver 
pairs and measured or simulated path loss. 

Cost Func'on 



The cost func4on encodes the network planner’s objec4ves. Specifically: 

1. Coverage (Uncovered Penalty) 

• Each grid point’s effec4ve coverage is computed by summing the coverage indicators 
from all transminers. 

• If a point’s coverage sum is below 1 (meaning no transminer provides sufficient 
signal), we add a penalty. 

2. Overlap Penalty 

• If the sum of indicators at a point exceeds 1, we interpret it as “redundant 
coverage”. 

• While some overlap can be beneficial, excessive overlap is penalised to avoid 
resource waste. 

3. Transminer Separa4on Penalty 

• A minimum distance min_tx_sep\text{min\_tx\_sep}min_tx_sep is enforced 
between transminers.  

• If any pair is too close, a penalty is added propor4onally to how much they violate 
the separa4on constraint. 

4. Transminer Count Penalty 

• The total cost increases linearly or quadra4cally (depending on the chosen factor) 
with the number of transminers. 

• This encourages solu4ons that use fewer transminers, assuming coverage goals can 
s4ll be met. 

Formally, these penalty terms are summed into a single scalar, which the op4miser anempts to 
minimise. Crucially, all these terms are differen4able (thanks to the careful design of the 
coverage indicator via a sigmoid func4on), allowing gradient-based op4misa4on. 

Op'misa'on Procedure 

Ini'alisa'on 

1. Random placement: We specify a target number of transminers, say . Each 
transminer’s la4tude and longitude are ini4alised randomly within the bounding box. 
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2. Trainable parameters: These coordinates (lat–lon) become PyTorch parameters, meaning 
they will be updated automa4cally via gradient descent. 

Gradient Descent 

1. Compute predic4ons: For each transminer-receiver pair (in the coverage grid), predict 
the path loss via PathLossEncoder. Convert these predic4ons into coverage indicators 
(using a threshold-based sigmoid). 

2. Calculate cost: Sum penal4es for coverage shorxalls, overlap, transminer proximity 
viola4ons, and total transminer count. 

3. Backpropaga4on: PyTorch calculates how sensi4ve each cost component is to the 
transminer coordinates. 

4. Parameter update: An op4miser (e.g., Adam) moves each transminer coordinate in the 
direc4on that reduces the overall cost. 

Addi'onal Constraints & Techniques 

1. Bounding box clamping: AWer each itera4on, transminer coordinates are “clamped” to 
remain within the bounding box, so they never driW outside. 

2. Street projec4on: If realis4c deployment requires placing transminers on actual streets, 
we can snap each updated transminer to the closest street node. The .osm file’s highway 
data helps iden4fy these possible loca4ons. 

Early stopping 

We track changes in the cost func4on. If cost improvement falls below a certain threshold for a 
predetermined number of itera4ons (“pa4ence”), the process halts early. This avoids 
unnecessary computa4on once it appears we have plateaued near a good solu4on. 

Finding the Op'mal Number of TransmiDers 

1. Candidate range: Rather than fixing the transminer count, the procedure can be run 
mul4ple 4mes for a range of values (e.g., 2 to 25). 

2. Compare final costs: For each fixed number of transminers, we note the minimised cost 
aWer the op4misa4on loop is completed. 

3. Select best: We choose the number of transminers that yields the lowest final cost. This 
typically reflects an ideal balance between coverage and infrastructure expense. 



Coverage Iden'fica'on 

AWer obtaining an op4mised solu4on, the final layout is assessed visually: 

1. Radial Boundary Computa4on: For each transminer, we sample mul4ple radial direc4ons 
(e.g., 36 angles). We step outward from the transminer, predic4ng path loss at small 
increments (e.g., 0.001° each). Once the path loss dips below the coverage threshold for 
too many consecu4ve steps, we mark that boundary point. 

2. Polygon forma4on: Connec4ng these boundary points yields a “coverage polygon” 
around each transminer. These polygons can be ploned to show how far coverage 
extends in each direc4on. 

Through this data-driven, gradient-based approach, radio planners can iden4fy transminer 
placements that achieve desired coverage while minimising overlapping, mee4ng separa4on 
constraints, and limi4ng the total number of transminers. The integra4on of real geographic 
data (OSM) and neural network-based path loss predic4ons provides a modern, flexible 
framework suited to a variety of urban environments. 

 

Applica'on of ML Path Loss Model in Bath and London for n77 Frequency Band 



The loca4ons of gNB are op4mised to determine what number of gNBs. The cost func4on is 
based on uncovered penalty, overlap penalty, minimum separa4on penalty, transminer count 
penalty.  

Bath 

The op4mised coverage map for Bath city centre is shown in Figure 34(a), featuring 20 gNBs, 
which is concluded from cost func4on evalua4on shown in Figure 34b). This demonstrates 
comprehensive coverage, ensuring that all areas receive signal strength of at least -105 dBm (no 
dark blue area). The geodesic distance between 2 gNBs, shown in Figure 34(c), is spread across 
400 to 900 meters. 

London 

The op4mised coverage map for London Blackfriars is shown in Figure 35(a), featuring 11 gNBs, 
which is concluded from the cost func4on evalua4on shown in Figure 35(b). This demonstrates 
comprehensive coverage, ensuring that all areas receive signal strength of at least -105 dBm (no 
dark blue area). The geodesic distance between 2 gNBs, shown in Figure 35(c), appears mostly 
around 600 meters. 

 

Applica'on of ML Path Loss Model in Bath and London for Band 3 

Figure 35: (a) Received coverage signal map for London Blackfriars at n77 frequency band, (b) cost 
func4on vs number of transminers, (c) count of geodesic distances between each of 2 gNBs.



The loca4on of gNBs is op4mised to determine the number of gNBs using ML. The cost func4on 
is based on the Overlap with the MNO Penalty, Uncovered Penalty, Overlap with the gNB 
Penalty, Minimum Separa4on Penalty, and Transminer Count Penalty. 

Bath 

The op4mised coverage map Figure 36(a) for Bath city centre, featuring six gNBs. Figure 36(b) 
indicates that when more gNBs are included in the coverage area, the cost func4on varies for 
ML, sugges4ng there are mul4ple op4ons for “maximum signal coverage” for minimal 
interference. We chose 10 transminers in total, of which 6 are new gNBs. The distance between 
2 gNBs appears to be mostly 500 meters (Figure 36c). 

London 

The op4mised coverage map Figure 37(a) for London Blackfriars, featuring four gNBs, Figure 37b 
indicates that when more gNBs are included in the coverage area, the cost func4on increases 
for ML, sugges4ng only 8 (4 new ones) B3 transminers are allowed for minimal interference. 
The average distance between 2 gNBs is 550 meters (Figure 37c). 

 

Figure 36: (a) Received coverage signal map for the Bath City Centre at Band 3, (b) cost func4on vs 
number of transminers, (c) count of geodesic distances between each of 2 gNBs.



 

5.2 Enhancing Simula4ons with LiDAR: Improving Environmental 
Accuracy 
The advancement of wireless communica4on systems, par4cularly in the domain of spectrum 
sharing and urban propaga4on modelling, necessitates precise environmental characterisa4on. 
A cri4cal innova4on in this regard is the integra4on of deep learning methodologies with open-
source geospa4al databases, as illustrated in Figure 38. This approach significantly enhances the 
fidelity of radio wave propaga4on simula4ons by improving the accuracy of environmental 
representa4ons. 

The efficacy of ray-tracing models is inherently dependent on the granularity and precision of 
the simulated environment. OpenStreetMap (OSM), a widely u4lized open-access geographic 
dataset, provides extensive spa4al informa4on, encompassing building footprints, vegeta4on 
coverage, fences, and u4lity infrastructure. Among these, the structural anributes of buildings 
exert the most profound influence on urban propaga4on modelling. However, the quality of 
building-related data retrieved from OSM—par4cularly building heights—exhibits substan4al 
limita4ons. These inaccuracies stem from the constraints of community-driven data annota4on 
and the inherent challenges of human percep4on in satellite image-based geospa4al mapping. 

Figure 37: (a) Received coverage signal map for London Blackfriars at Band 3, (b) cost func4on vs 
number of transminers, (c) count of geodesic distances between each of 2 gNBs.



 

Figure 38: U4lising machine learning to extract geological informa4on, classify materials, and determine 
material proper4es from LiDAR, satellite, and OSM data to construct a comprehensive 3D city model for 
ray-tracing applica4ons. 

Beyond geometric accuracy, the electromagne4c proper4es of urban en44es play a pivotal role 
in ray-tracing simula4ons. Structural surfaces exhibit diverse material composi4ons, including 
concrete, brick, stone, and metal, each influencing electromagne4c wave interac4ons through 
dis4nct permiqvity and conduc4vity proper4es. Unfortunately, such material-specific data is 
rarely available in OSM, further limi4ng the precision of conven4onal propaga4on models. 

Deep learning offers a transforma4ve poten4al for extrac4ng cri4cal environmental anributes 
from mul4ple heterogeneous data sources. The proposed ensemble deep learning framework, 
illustrated in Figure 36, integrates both structured and unstructured datasets to refine urban 
environment representa4on with superior accuracy. Key advancements include: 

1. Building and Vegeta9on Heights: Aerial Light Detec4on and Ranging (LiDAR) data 
provides highly precise ver4cal measurements, offering a robust solu4on for the 
accurate es4ma4on of en4ty heights. LiDAR’s established efficacy in ver4cal imaging 
makes it indispensable for refining three-dimensional urban models. 

2. En9ty Footprints and Boundary Delinea9on: LiDAR point clouds, when processed using 
deep learning-based classifica4on techniques, facilitate the extrac4on of fine-grained 
boundaries for various urban en44es. Addi4onally, high-resolu4on satellite imagery can 
be incorporated into the ensemble model, leveraging its superior horizontal resolu4on 
to enhance planimetric accuracy. 

3. Material Characterisa9on for Electromagne9c Modeling: The intensity of LiDAR returns 
is intrinsically linked to surface material proper4es, offering a promising avenue for 



material classifica4on. By analysing reflectance varia4ons, deep learning algorithms can 
infer the composi4on of building facades, road surfaces, and other urban elements. This 
enables the es4ma4on of key electromagne4c proper4es such as permiqvity and 
conduc4vity, thereby significantly improving the realism of propaga4on simula4ons. 

In summary, the proposed deep learning-driven approach for environmental modelling bridges 
cri4cal gaps in conven4onal geospa4al datasets. By integra4ng LiDAR, satellite imagery, and 
data-driven material classifica4on, this methodology enables a highly precise and 
electromagne4cally relevant representa4on of urban environments, thus advancing the 
reliability of next-genera4on wireless communica4on simula4ons. 

To address these limita4ons, as Proof of Concept, we developed a methodology leveraging Lidar 
(Light Detec4on and Ranging) data to derive more precise building footprint and height 
informa4on, which can be seamlessly integrated into ray tracing models for enhanced 
environmental simula4on fidelity. The improved environmental model we derived provides a 
close resemblance to the experimental data.  

5.2.1 Data Source 
The Lidar data u4lised in this study is sourced from the Environment Agency Na4onal Lidar 
Programme [40], which provides high-resolu4on eleva4on data at a 1-meter spa4al resolu4on 
across England. Aerial Lidar data, a form of point cloud data, offers highly accurate topographic 
eleva4on measurements of the Earth's surface. The dataset follows the ASPRS LAS 1.4 
classifica4on standard, categorising elements such as ground, low, medium, and high 
vegeta4on, as well as buildings. This classifica4on enables the precise extrac4on of building 
distribu4on, footprints, and heights within the study area. 

Figure 39 illustrates the process of acquiring LiDAR data for the area surrounding Bath City 
Centre via the Na4onal LiDAR Programme website. To obtain the required dataset, the user first 
delineates the area of interest by defining a polygon. Subsequently, the desired data category 
can be specified and downloaded. 



 

Figure 39: Downloading Lidar data from the Defra web interface. The 4les which are visible in the map 
can be selected by the polygon tool and downloaded. 

Once the data is downloaded, we can visualise the classified Lidar data using Geographic 
Informa4on System (GIS) soWware such as QGIS or Python language. A visualisa4on of classified 
LiDAR data of Bath City Centre is shown in Figure 40(a). 

5.2.2 Methodology 
Building Footprint Extrac'on 

To delineate building footprints, we extracted Lidar data points classified as buildings and 
generated a raster layer, represen4ng a two-dimensional projec4on of the point cloud onto the 
Earth's surface. Since only the building-classified points were retained, the resultant raster 
contained discrete structures corresponding to building loca4ons. These structures were then 
vectorised through a polygonisa4on process to generate convex hulls around each detected 
building, effec4vely delinea4ng their footprints. The vectorised data enables conversion into 
mul4ple GIS file formats, including OSM and GPKG, facilita4ng its integra4on into ray tracing 
simula4ons. 



 

Building Height Extrac'on 

A cri4cal prerequisite for accurate building height es4ma4on is the establishment of a Digital 
Terrain Model (DTM), which represents the bare-earth eleva4on. To construct the DTM, we 
extracted ground-classified Lidar points and projected them onto a raster layer, effec4vely 
genera4ng a con4nuous surface model. Data gaps in the rasterised terrain were interpolated to 
ensure a seamless and accurate DTM representa4on. 

Following the DTM construc4on, we derived the Digital Surface Model (DSM), which 
encapsulates the eleva4on varia4ons due to both natural and anthropogenic features. This was 
achieved by incorpora4ng all non-noise Lidar classifica4ons into a rasterised eleva4on model. 
The absolute height of objects on the Earth's surface was then computed as the difference 
between the DSM and DTM, expressed mathema4cally as: 

 

Figure 40: a) The Lidar data of Bath-CC, classified between buildings, vegeta4on and ground. b) The 
height varia4on on the earth's surface. c) The buildings, with height colour-coded. d) A 3D view of 
Bath-CC generated using the processed Lidar data.

height = DSM − DTM



Figure 40(b) shows the varia4on of height across Bath City Centre using the LiDAR data. To 
determine building heights, the previously extracted building footprints were overlaid onto the 
DSM-derived height varia4on data. The mean zonal height sta4s4c of the height layer within 
each vectorised footprint was calculated, providing an es4mate of the average building height. 
This derived metric serves as a reliable representa4on of building height informa4on extracted 
from Lidar data. 

Figure 40(c) shows the extracted building footprints, coloured based on the average height of 
the building. The accurately extracted height shows the reducing trend of building heights when 
moving away from the city centre. Figure 40(d) is a three-dimensional visualisa4on of the 
extracted buildings, overlayed on the OpenStreetMap data. A comparison between the LiDAR-
processed OSM file and the OSM file obtained from the OpenStreetMap [38] is shown in Figure 
41. It can be observed that LiDAR provides much bener resolu4on of the building structures in a 
given area. 

 

SoRware and Processing Tools 

Lidar data processing and geospa4al analysis were conducted using QGIS, an open-source GIS 
soWware widely employed for terrain and environmental modelling. Figure 42(a) shows the 
QGIS interface. The vectorised building footprints were converted to the OSM format using 
JOSM (Java OpenStreetMap Editor). To ensure adherence to OSM standards, a custom Python 
script was developed for post-processing, standardising building annota4ons and height 
anributes to facilitate seamless integra4on with MATLAB-based ray tracing simula4ons. Figure 
42(b) shows the example data before processing, while Figure 42(c) shows the results aWer 
being processed from the Python code.  

Figure 41: Bath City Center. (a) OSM from OpenStreetMap [38], (b) OSM from QGIS aWer LiDAR 
analysis. (Inset: Google Earth Map)



 

The proposed Lidar-based methodology significantly enhances the accuracy of building 
footprint and height es4ma4on, addressing the inherent limita4ons of community-annotated 
OSM data. By leveraging high-resolu4on Lidar eleva4on datasets, the resul4ng geospa4al 
models offer improved precision for ray tracing simula4ons, as demonstrated earlier, ul4mately 
contribu4ng to more reliable urban propaga4on modelling and environmental analysis. 

Thus, we observe that Ray tracing combined with LiDAR provides detailed and accurate 
representa4on of the physical environment (buildings, vegeta4on), significantly improving 
propaga4on predic4ons compared to tradi4onal determinis4c models.  Determinis4c methods, 
such as empirical or sta4s4cal models (e.g., ITU-R models, Hata-Okumura), typically provide 
generalised predic4ons that may not adequately capture local varia4ons or complex urban/
suburban geometries. In contrast, RT with LiDAR captures precise geometries and material 
proper4es, resul4ng in more realis4c and reliable predic4ons. More precise predic4ons directly 
enable more accurate interference modelling, facilita4ng more effec4ve spectrum sharing and 
efficient spa4al reuse. 

 

Figure 42:  a) The QGIS interface to process the Lidar data to derive the building footprints and heights. 
b) The OSM data aWer post-processing using the python code. c)The un-processed OSM data produced 
using the Lidar data, with custom anributes.



Moving towards Ray Tracing, supported by high-resolu4on LiDAR data would enable Ofcom and 
other stakeholders to leverage significantly more precise propaga4on informa4on. This 
approach can greatly improve spectrum alloca4on efficiency, interference management, and 
overall u4liza4on of bands designated for shared or private access. 

Typically, when compared to determinis4c or empirical models, RT combined with LiDAR can 
yield differences of 5 to 15 dB or more in predicted propaga4on losses, depending on 
environment complexity and frequency. This improvement translates directly into more 
accurate and less conserva4ve interference coordina4on and frequency reuse criteria, 
poten4ally freeing significant addi4onal spectrum resources. 

At upper 6 GHz, propaga4on condi4ons become increasingly sensi4ve to environment-specific 
cluner and mul4path scenarios. RT and LiDAR significantly improve the predic4ve accuracy of 
link quality and interference levels in these environments. This is par4cularly important as at 
those higher frequencies there is greater path loss and increased sensi4vity to physical 
obstruc4ons, and thus, RT and LiDAR can allow 4ghter coordina4on and denser spa4al reuse. 
Hence, the increased accuracy of RT and LiDAR allows less conserva4ve interference 
management, enabling more effec4ve sharing scenarios and a higher density of deployments 
without unacceptable interference. For Ofcom, embracing this modelling approach would 
support: (1) More precise licensing condi4ons, (2) bener-informed policy decisions on 
coexistence criteria, including poten4ally reduced protec4on distances, and (3) enhanced 
flexibility and efficiency in shared band management. For SAL licensees, this would mean: (1) 
reduced deployment costs through op4mized infrastructure planning, (2) increased certainty 
and reliability of service performance, and (3) improved spectrum efficiency, poten4ally 
allowing greater bandwidth and higher-quality services. 

For the next phase of this research, we will develop the deep learning framework men4oned 
earlier, integra4ng Lidar data with satellite imagery, photogrammetry, and OpenStreetMap data 
to develop a more sophis4cated and precise urban model. Deep learning techniques, 
par4cularly CNNs, graph neural networks transformer-based architectures, even mul4-modal 
architectures exhibit excep4onal promise in automated feature extrac4on, classifica4on, and 3D 
reconstruc4on for combined geospa4al data. By capitalising on our exper4se in deep learning, 
we aim to develop data-driven urban models that significantly enhance the accuracy of 
electromagne4c wave propaga4on simula4ons and other computa4onal models reliant on 
precise geospa4al data. 



6. Conclusion 
The work presented in this report marks a significant advancement in the development of high-
fidelity simula4on frameworks for dynamic spectrum sharing. Within WP2 of the Spectrum 
Sandbox ITT Project, we have integrated ray tracing, machine learning, and real-world 
measurement data to enhance the accuracy of signal propaga4on modelling and interference 
predic4on. These contribu4ons are crucial for designing efficient spectrum-sharing strategies 
that align with real-world network condi4ons and regulatory frameworks.  

A major achievement of this work is the integra4on of machine learning (ML) techniques which 
represent a significant innova4on in propaga4on modeling and interference mi4ga4on. ML-
based models have been u4lised to improve the accuracy of path loss es4ma4on, material 
classifica4on, and dynamic interference predic4on. Unlike sta4c propaga4on models, ML-driven 
approaches allow for adap4ve learning, where the models refine their predic4ons based on 
con4nuous data acquisi4on. This capability is par4cularly beneficial for spectrum-sharing 
scenarios, where interference panerns fluctuate due to the presence of mul4ple network 
operators and dynamic spectrum access users. Not only that, but it also reduces the 4me of 
simula4on for predic4ng path loss humongous by the order of . This can help with providing 
very high-resolu4on data for an area in compara4vely much less 4me. The use of LiDAR data has 
further improved environmental modelling accuracy, filling gaps in tradi4onal datasets such as 
OpenStreetMap (OSM). 

This study also examines cri4cal deployment considera4ons for spectrum sharing, par4cularly 
within the 1800 MHz (Band 3) and 3800–4200 MHz (n77) bands. In Band 3, we explore the 
feasibility of dynamic spectrum access, ensuring efficient coexistence with incumbent users 
while minimizing interference. Addi4onally, we address coverage gaps ("not-spots") by 
determining the minimum number of base sta4ons required to eliminate these gaps while 
maintaining reliable connec4vity. For the 3800–4200 MHz spectrum, we extend our analysis to 
op4mize base sta4on deployment for targeted local area coverage and robust connec4vity. The 
key dis4nc4on between our approaches for Band 3 and n77 lies in their respec4ve deployment 
strategies: 

• Band 3 (1800 MHz): Since incumbent Mobile Network Operators (MNOs) are already 
present, our focus is on elimina4ng mobile not-spots. Here, smaller local mobile 
operators can cost-effec4vely extend coverage using dynamic spectrum sharing, 
facilita4ng Local Access Licensing (LAL). 

• n77 (3800–4200 MHz): In contrast, this band primarily enables Shared Access Licensing 
(SAL). Base sta4ons can be deployed to provide local coverage without interfering with 
exis4ng incumbent operators, ensuring an op4mal balance between spectrum efficiency 
and network expansion. 
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These insights are crucial for network planning and infrastructure op4misa4on, allowing 
operators to balance coverage, capacity, and cost-effec4veness in future spectrum-sharing 
frameworks. 

Despite the promising results, several challenges remain. One of the primary limita4ons of ray 
tracing-based simula4on is its high computa4onal complexity. Simula4ng large-scale 
environments with full mul4path analysis requires significant processing power, limi4ng the 
number of scenarios that can be tested within prac4cal 4me constraints. Addi4onally, while ITU-
R standards provide generalised material proper4es, real-world varia4ons in dielectric 
constants, surface roughness, and construc4on materials introduce discrepancies between 
simulated and measured data. These uncertain4es affect the precision of anenua4on and 
reflec4on modelling, par4cularly in dense urban environments where mul4ple interac4ons 
influence signal propaga4on. 

Another challenge lies in interference modelling, par4cularly in dynamic spectrum-sharing 
environments where neighbouring cells operate at varying power levels. The tolerance to inter-
cell interference decreases with increasing Modula4on and Coding Scheme (MCS), meaning that 
high-throughput transmissions become more suscep4ble to degrada4on in the presence of 
strong adjacent-channel signals. The sta4c power assump4ons used in the current simula4on 
framework do not fully capture the adap4ve nature of real-world power control mechanisms, 
leading to varia4ons in observed vs. predicted performance. Future enhancements will 
incorporate real-4me power adapta4on models, improving the accuracy of interference 
mi4ga4on strategies. 

Looking ahead, several key areas of future research and development have been iden4fied to 
enhance the scope and effec4veness of the simula4on framework.  

1. Computa4onal op4misa4ons, such as GPU-accelerated ray tracing and hybrid ML-physics 
models, will be explored to reduce simula4on 4me without sacrificing accuracy.  

2. Implement ML-driven approaches for improved extrac4on of building and terrain 
features using LiDAR data. The objec4ve is to reduce discrepancies in path loss 
predic4ons between simulated results and empirical data. 

3. Increase the accuracy of antenna radia4on panern modelling and material property 
databases through addi4onal field measurements and lab valida4ons. 

4. Extend the geographic and environmental diversity of the tested scenarios, focusing on 
varied rural, suburban, and dense urban seqngs to further generalise findings. 

5. Conduct comprehensive field trials to validate real-4me spectrum access decision-
making algorithms developed during WP1, assessing their performance under varied 
opera4onal condi4ons. 



6. Con4nue refining ML models for path loss and interference predic4on, improving their 
adaptability and real-4me applicability, and integrate these into dynamic spectrum-
sharing decisions. 

7. Deeper integra4on of AI-driven real-4me spectrum alloca4on techniques will enable 
dynamic network adapta4on, allowing systems to intelligently reconfigure frequency 
alloca4ons based on evolving interference condi4ons.  

8. Increase stakeholder workshops and industry consulta4ons to ensure the technological, 
regulatory, and economic findings remain relevant and impacxul for policy and prac4cal 
deployments. 

The findings of WP2 provide a strong founda4on for future spectrum-sharing research, 
regulatory decision-making, and industrial deployments. By combining rigorous theore4cal 
modelling, data-driven valida4on, and prac4cal deployment insights, this work contributes to 
the advancement of next-genera4on wireless networks, ensuring efficient spectrum u4lisa4on, 
improved connec4vity, and robust interference management. As spectrum scarcity con4nues to 
challenge wireless communica4on, the innova4ons presented in this study pave the way for 
smarter, more adaptable, and more resilient wireless ecosystems. 



References 
[1] Zhang, L., Xiao, M., Wu, G., Alam, M., Liang, Y.C. and Li, S. "A survey of advanced techniques 
for spectrum sharing in 5G networks." IEEE Wireless Communica4ons 24.5 (2017): 44-51. 

[2] Parvini, M., Zarif, A.H., Nouruzi, A., Mokari, N., Javan, M.R., Abbasi, B., Ghasemi, A. and 
Yanikomeroglu, H. "Spectrum sharing schemes from 4G to 5G and beyond: Protocol flow, 
regula4on, ecosystem, economic." IEEE Open Journal of the Communica4ons Society 4 (2023): 
464-517. 

[3] Saha, R. K., and John M. C. "Dynamic spectrum sharing for 5G NR and 4G LTE coexistence-A 
comprehensive review." IEEE Open Journal of the Communica4ons Society 5 (2024): 795-835. 

[4] Ofcom, “Enabling wireless innova4on through local licensing,” 25 July 2019. 

[5] Ofcom, “Shared Access Licence: Guidance Document,” 20 September, 2022. 

[6] Ofcom, “Local Access Licence: Guidance Document,” July 2019. 

[7] Joint Bid for DSIT Spectrum Sandbox Tender, February 2024.  

[8] Hata, M. "Empirical formula for propaga4on loss in land mobile radio services." IEEE 
Transac'ons on Vehicular Technology 29.3 (2013): 317-325. 

[9] Okumura, Y. "Field strength and its variability in VHF and UHF land-mobile radio 
service." Review of the Electrical Communica'on Laboratory 16.9 (1968). 

[10] Schaubach, Kurt R., Nathaniel J. Davis, and Theodore S. Rappaport. "A ray tracing method 
for predic4ng path loss and delay spread in microcellular environments." [1992 Proceedings] 
Vehicular Technology Society 42nd VTS Conference-Fron'ers of Technology. IEEE, 1992. 

[11] Yun, Z., and Iskander, M. F. "Ray tracing for radio propaga4on modeling: Principles and 
applica4ons." IEEE Access 3 (2015): 1089-1100. 

[12] Interna4onal Telecommunica4ons Union Radiocommunica4on Sector. Effects of Building 
Materials and Structures on Radiowave Propaga'on Above About 100MHz. Recommenda4on 
P.2040. ITU-R, approved August 23, 2023. hnps://www.itu.int/rec/R-REC-P.2040/en. 

[13] Interna4onal Telecommunica4ons Union Radiocommunica4on Sector. Electrical 
Characteris4cs of the Surface of the Earth. Recommenda4on P.527. ITU-R, approved September 
27, 2021. hnps://www.itu.int/rec/R-REC-P.527/en. 

[14] hnps://uk.mathworks.com/help/comm/ug/ray-tracing-for-wireless-communica4ons.html. 

[15] Chipman, R., Lam, W. S. T., and Young, G. Polarized light and op'cal systems. CRC press, 
2018. 

https://www.itu.int/rec/R-REC-P.527/en
https://uk.mathworks.com/help/comm/ug/ray-tracing-for-wireless-communications.html


[16] McNamara, D. A., C. W. I. Pistorius, and J. A. G. Malherbe. Introduc'on to the Uniform 
Geometrical Theory of Diffrac'on. Boston: Artech House, 1990. 

[17] Interna4onal Telecommunica4ons Union Radiocommunica4on Sector. Propaga'on by 
diffrac'on. Recommenda4on P.526-15. ITU-R, approved October 21, 2019. hnps://www.itu.int/
rec/R-REC-P.526/en. 

[18] 3GPP TS 38.101-1 V18.6.0 (2024). NR; User Equipment (UE) radio transmission and 
recep'on. 

[19] 3GPP TS 38.101-1 V18.6.0 (2024-06) 5.2 Opera'ng bands. 

[20] 3GPP TS 38.104 Table 5.3.2-1: Transmission bandwidth configura'on NRB. 

[21] 3GPP TS 38.101-1 V18.6.0 (2024-06) Table 5.3.5-1 Channel bandwidths for each NR band. 

[22] 3GPP TS 38.211 V18.3.0 (2024-06) 6.3.1.2 Modula'on. 

[23] 3GPP TS 38.214 Table 5.1.3.1-2: MCS index table 2 for PDSCH. 

[24] 3GPP TS 38.104 Annex A (norma4ve): Reference measurement channels. 

[25] 3GPP TS 38.104 6.2 Base sta'on output power. 

[26] 3GPP TS 38.211 V18.3.0 4.3.2 Slots. 

[27] 3GPP TS 38.214 5.1 UE procedure for receiving the physical downlink shared channel. 

[28] Yang, C., Li, J., Guizani, M., Anpalagan, A. and Elkashlan, M. "Advanced spectrum sharing in 
5G cogni4ve heterogeneous networks." IEEE Wireless Communica4ons 23.2 (2016): 94-101. 

[29] Ahmad, A., Ahmad, S., Rehmani, M.H. and Hassan, N.U. "A survey on radio resource 
alloca4on in cogni4ve radio sensor networks." IEEE Communica4ons Surveys & Tutorials 17.2 
(2015): 888-917. 

[30] Liu, J., Kato, N., Ma, J. and Kadowaki, N. "Device-to-device communica4on in LTE-advanced 
networks: A survey." IEEE Communica4ons Surveys & Tutorials 17.4 (2014): 1923-1940. 

[31] Kim, D., Lee, H. and Hong, D. "A survey of in-band full-duplex transmission: From the 
perspec4ve of PHY and MAC layers." IEEE Communica4ons Surveys & Tutorials 17.4 (2015): 
2017-2046. 

[32] Ding, Z., Liu, Y., Choi, J., Sun, Q., Elkashlan, M., Chih-Lin, I. and Poor, H.V. "Applica4on of 
non-orthogonal mul4ple access in LTE and 5G networks." IEEE Communica4ons Magazine 55.2 
(2017): 185-191. 

[33] Francisco R. V. G., José M. B. da S. Jr., Charles C. C., Gabor F., Mats B. and Carlo F. (2024), 
"Machine Learning for Spectrum Sharing: A Survey", Founda4ons and Trends® in Networking: 
Vol. 14: No. 1-2, pp 1-159. 



[34] Cohen, K.. "Machine learning for spectrum access and sharing." Machine Learning for 
Future Wireless Communica'ons (2020): 1-25. 

[35] Sun, H., Rose Q. H., and Yi Q. "Secure Spectrum Sharing with Machine Learning: An 
Overview." (2024): 115-134. 

[36] Vo, V., et al. "Security and Privacy of 6G Federated Learning-enabled Dynamic Spectrum 
Sharing." arXiv preprint arXiv:2406.12330 (2024). 

[37] Zakaria, Yahia A., et al. "Propaga4on measurements and calcula4on of path loss exponent 
for outdoor cellular communica4on systems at 3.5 GHz." Radioelectronics and Communica4ons 
Systems 64 (2021): 247-254. 

[38] OpenStreetMap (hnps://www.openstreetmap.org/). 

[39] Chalke Valley – Whites (hnps://hwwhite.co.uk/the-chalke-valley/). 

[40] Na4onal LIDAR Programme (hnps://www.data.gov.uk/dataset/f0db0249-
f17b-4036-9e65-309148c97ce4/na4onal-lidar-programme)

https://www.openstreetmap.org/
https://hwwhite.co.uk/the-chalke-valley/
https://www.data.gov.uk/dataset/f0db0249-f17b-4036-9e65-309148c97ce4/national-lidar-programme
https://www.data.gov.uk/dataset/f0db0249-f17b-4036-9e65-309148c97ce4/national-lidar-programme
https://www.data.gov.uk/dataset/f0db0249-f17b-4036-9e65-309148c97ce4/national-lidar-programme

	1. Introduction
	1.1 Project Overview
	1.2 Work Package Structure
	WP1: Spectrum Data Collection and Measurement (Led by Telet Research)
	WP2: Simulation and Modelling of Dynamic Spectrum Sharing (Led by QMUL)
	WP3: Economic and Regulatory Impact Assessment (Led by Aetha Consulting)

	1.3 Focus of this report: WP2 – Simulation and Modelling
	1.4 Expected Outcomes of WP2

	2. Literature Review: Key Technologies and Strategies in Spectrum Sharing
	2.1 Ray Tracing: A High-Precision Approach to Signal Propagation
	2.2 Communication Channels: Mapping Performance Across Spectrum Scenarios
	2.3 The Evolution of Spectrum Sharing: Approaches and Challenges
	2.3.1 CR-Based Spectrum Sharing
	2.3.2 D2D-Based Spectrum Sharing
	2.3.3 IBFD-Based Spectrum Sensing
	2.3.4 NOMA-Based Spectrum Sharing

	2.4 Machine Learning for Smarter Spectrum Access and Interference Control

	3. Simulation and Modelling Framework
	3.1 Simulation Approach and Tools Used
	3.1.1 Choice of MATLAB as the Simulation Platform
	3.1.2. Ray Tracing for Realistic Environment Modeling
	3.1.3 Machine Learning for Interference Prediction and Path Loss Estimation

	3.2 Ray Tracing for Signal Propagation Analysis
	3.2.1 Frequency Bands and Deployment Scenarios
	3.2.2 Key Propagation Effects Considered

	3.3 Communication Channel Model

	4. Insights from WP2: Validating and Benchmarking Performance
	4.1 Benchmarking Accuracy: Comparing Simulations with Real-World Data
	4.1.1 Testing in Rural and Urban Environments: Case Studies from Chalke Valley & Liverpool

	4.2 Bridging the Gap: Understanding Discrepancies and Material Effects
	4.3 Interference Dynamics and Performance Evaluation For 5G Network in Band 3 and n77
	4.3.1 Band n77 gNodeB threshold simulation
	4.3.2 Band n77 TDD synchronisation simulation
	4.3.3 Band 3 cross Bandwidth simulation
	4.3.4 Throughput coverage

	4.4 Challenges, Limitations and Considerations

	5. Innovations and Future Directions
	5.1 AI-Powered Path Loss Prediction: A Smarter Alternative to Traditional Models
	5.1.1 Data Preparation and Feature Extraction
	5.1.2 Model Architecture
	5.1.3 Fine-Tuning for Accuracy: Optimising the Learning Process
	5.1.4 Measuring Success: Evaluating the AI Model’s Performance
	5.1.5 Key Observations: Strengths and Weaknesses of AI-Based Predictions
	5.1.6 Refining the Model: Future Enhancements for Better Accuracy
	5.1.7 Use Case: Base Station Optimisation Methodology

	5.2 Enhancing Simulations with LiDAR: Improving Environmental Accuracy
	5.2.1 Data Source
	5.2.2 Methodology


	6. Conclusion
	References


