

FORMER FRIENDS SCHOOL FIELDS SAFFRON WALDEN

Transport Assessment

April 2025

RESIDENTIAL DEVELOPMENT FORMER FRIENDS SCHOOL FIELDS SAFFRON WALDEN

TRANSPORT ASSESSMENT

CONTROLLED DOCUMENT

Document No:	1033/0002/TA/8			
Status:	Final			
	Name Date			
Prepared by:	October 2023			
Checked by:		October 2023		
Approved by:		October 2023		

Revisio	Revision Record				
Rev.	Date	Ву	Summary of Changes Apr		
2	26.01.2024	NPE	Revised layout and accommodation schedule	CEC	
3	17.06.2024	CEC	Revised layout and accommodation schedule	WJF	
4	25.06.2024	NPE	Update Layout WJF		
5	03.07.2024	NPE	Parking Schedule Update	CEC	
6	10.07.2024	CEC	Minor Comments Update W.		
7	08.04.2025	AM	Revised Application Submission WJF		
8	30.04.25	NPE	Revised Layout Attached	WJF	

Disclaimer

This document has been prepared in accordance with the scope of Paul Basham Associates Ltd's appointment with its client and is subject to the terms of that appointment. It is addressed to and for the sole use and reliance of Paul Basham Associates clients. Paul Basham Associates accepts no liability for any use of this document other than by its client and only for the purposes, stated in the document, for which it was prepared and provided. No person other than the client may copy (in whole or in part), use or rely on the contents of this document, without the prior written permission of a Director of Paul Basham Associates. Any advice, opinions, or recommendations within this document should be read and relied upon only in the context of the document as a whole. The contents of this document are not to be construed as providing legal, business or tax advice or opinion.

© Paul Basham Associates Limited

Chase New Homes, 8 Parkway, Welwyn Garden City, Hertfordshire, AL86HG Paul Basham Associates Ltd Milton Hall Ely Road Milton Cambridge CB24 6WZ

RESIDENTIAL DEVELOPMENT FORMER FRIENDS SCHOOL FIELDS SAFFRON WALDEN

TRANSPORT ASSESSMENT

CONTENTS

1.	INTRODUCTION	3
	PLANNING CONTEXT	
3.	POLICY AND GUIDANCE REVIEW	7
4.	EXISTING SITE CONDITIONS AND ACCESSIBILITY	15
5.	PROPOSED DEVELOPMENT	25
6.	HIGHWAY IMPACT	28
7.	SUMMARY AND CONCLUSIONS	43

Figures

- Figure 1: Site Location
- Figure 2: Site Location
- Figure 3: Local Public Rights of Way Routes
- Figure 4: National Cycle Network
- Figure 5: Location of Audley End Railway Station
- Figure 6: PIC Study Area
- Figure 7: Location of Junction Modelling Assessments

Tables

- Table 1: ECC Car and Cycle Parking Standards
- Table 2: CIHT's Preferred Walking Distances (2015)
- Table 3: Local Facilities and Amenities Near to the Site Location
- Table 6: Proposed Development Trip Generation (subject to rounding)
- Table 7: Forecast Vehicle Distribution
- Table 8: Forecast Vehicle Movements at the Site Access/Mount Pleasant Road T-Junction
- Table 9: TEMPro Growth Factors
- Table 10: Modelling Results Junction 1: Site Access/Mount Pleasant Road T-Junction
- Table 11: Modelling Results Junction 2: Mount Pleasant Road/Borough Lane/Debden Road Signalised Junction
- Table 12: Modelling Results Junction 3 Peaslands Road/Hop fields Mini Roundabout
- Table 13: Modelling Results Junction 4: Thaxted Road/Peaslands Road Mini Roundabout
- Table 14: Modelling Results Junction 5: London Road/Debden Road Mini Roundabout
- Table 15: Modelling Results Junction 6: London Road Double Mini Roundabout

Appendices

Appendix A – Layout Masterplan

Appendix B – Access Arrangements & Visibility Assessment

Appendix C – Census 2021 Car Ownerships Data

Appendix D – Trip Generation Outputs

Appendix E – 2011 Census Distribution Data

Appendix F – Traffic Survey Data

Appendix G – Junction Modelling Outputs

1. INTRODUCTION

- 1.1 This Transport Assessment (TA) has been prepared by Paul Basham Associates on behalf of Chase New Homes to accompany a revised planning application for a residential development comprising of 75 dwellings with associated infrastructure and landscaping. As well as the provision of playing fields and a clubhouse (the 'proposed development') at the Former Friends School Fields, Saffron Walden, Essex (the 'site').
- 1.2 This TA is a revised report to support a change in development proposals, namely from 91 dwellings to 75 dwellings. A planning application (UTT/24/1898/PINS) for 91 dwellings with associated infrastructure and landscaping was submitted in July 2024 and refused in November 2024.
- 1.3 The site is located to the south of Mount Pleasant Road within Saffron Walden and is identified within Figure 1.

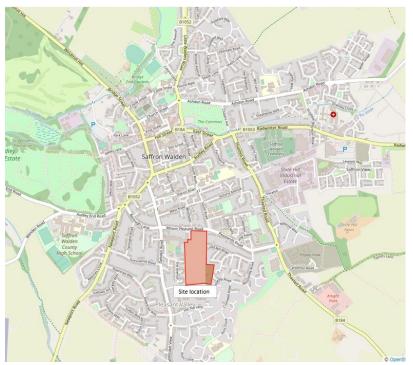


Figure 1: Site Location

- 1.4 Paul Basham Associates have prepared a Residential Travel Plan (TP) in conjunction with this application.
- 1.5 The scope of this TA has been discussed with Uttlesford District Council (UDC) and Essex County Council (ECC) highways officers through pre-application consultations.
- 1.6 As part of this TA a site visit was undertaken in September 2023, with highway boundary mapping and Personal Injury Collision (PIC) data obtained, along with traffic surveys undertaken in 2023.
- 1.7 Following this introduction, this TA includes the following:
 - Section 2 Planning Context: outlines the planning applications relevant to the proposed development and surrounding the site location.
 - Section 3 Policy and Guidance Review: outlines the national, regional and local planning policy and guidance documents related to transport and the proposed development.
 - Section 4 Existing Site Conditions and Accessibility: outlines the existing site conditions and accessibility of the site as well as a review of available PIC data.
 - Section 5 Proposed Development: sets out the development proposals including the access arrangements, swept path analysis (vehicle tracking), visibility splays and proposed car and cycle parking provision within the site.
 - Section 6 Highway Impact Assessment: outlines the forecast vehicle trip generation assessment for the existing land use and the proposed development, the vehicle distribution and assignment on the local highway network and the results of junction modelling undertaken; and
 - Section 7 Summary and Conclusions: provides an overall summary and conclusion to this TA.

2. PLANNING CONTEXT

- 2.1 A planning application (UTT/24/1898/PINS) was refused at the proposed development site in November 2024. This application was in relation to 91 dwellings with associated infrastructure and landscaping, provision of playing field and associated clubhouse. The Decision Notice states that planning permission was refused for the following reasons:
 - "The design, layout and appearance of the development would be harmful to the character and appearance of the area. It would therefore fail to preserve the character or appearance of the Saffron Walden Conservation Area. Consequently, it would conflict with policies GEN2 and ENV1 of the Uttlesford District Local Plan adopted 2005, Policy SW3 of the Saffron Walden Neighbourhood Plan 2021-2036 made in 2022 and parts 12 and 15 of the National Planning Policy Framework.
 - The proposal would lead to a loss of a significant area of playing field. The loss resulting from the proposed development would not be replaced by equivalent or better provision in terms of quantity and quality in a suitable location. It would therefore conflict with paragraph 103b of the National Planning Policy Framework and Policy LC1 of the Uttlesford District Local Plan adopted 2005.
 - The proposal would not provide an appropriate mix of housing as identified in the Local Housing Needs Assessment Report (June 2. There would therefore be conflict with Policy SW1 of the Saffron Walden Neighbourhood Plan 2021-2036 made in 2022.
 - It has not been satisfactorily demonstrated that the proposal would adequately secure 10% biodiversity net gain through conditions and the legal agreement. It would therefore be contrary to Policy GEN7 of the Uttlesford District Local Plan adopted 2005."

2.2 With regard to highway safety the Decision Notice and Statement of Reasons the Planning Inspector outlined the following:

"The Highway Authority (HA) has reviewed the initial and additional information submitted by the applicant and concluded that the impact of the development on the highway network would not be significant and would be adequately mitigated. There is no substantive evidence before me to lead me to an alternative view."

"I conclude that the proposal would not be harmful to highway safety."

- 2.3 The Decision Notice and Statement of Reasons states that residential development would be appropriate due to the site's accessible location. It is also noted that the highway authority had some concerns about the distribution of visitor parking. This concern has been addressed within the revised application, with the updated proposals detailed within the 'Proposed Development' section of this TA report.
- 2.4 It is also noted that a Highways Response Technical Note was also provided for submission in September 2024 which would have been taken into consideration by the Highway Authority. This TA has incorporated the contents of the Highways Response Technical Note to provide an updated assessment in line with the most recent expectations of the Highway Authority.
- 2.5 Previously, a hybrid planning application (UTT/19/1744/OP) was refused at the proposed development site in March 2021. This application related to the full details of the development of 30 dwellings utilising existing access, re-provision the of swimming pool with new changing rooms, artificial grass pitches, sports pavilion, multi-use games area (MUGA), local equipped area for play (LEAP), local area for play (LAP), associated parking and demolition of the gym building. The remaining portion of the application was considered in outline for the development of up to 70 dwellings with associated infrastructure, public open space, a forest school and a perimeter path.
- 2.6 A planning application for the neighbouring site was submitted under section 62A of the Town and Country Planning Act (1990) in 2022 for 96 dwellings (S62A/22/0000002). This application was subsequently approved in October 2022 subject to conditions.

POLICY AND GUIDANCE REVIEW

Overview

- 3.1 The proposed development will comply with the polices and guidance documents set out at a national, regional and local scale, which relate to the following:
 - National Planning Policy (NPPF, 2024);
 - Essex County Council (ECC) Local Transport Plan 2011-2025 (2011);
 - Essex County Council Parking Standards Design and Good Practice (2024)
 - Uttlesford District Council's (UDC) Local Plan (2005);
 - Uttlesford District Council Draft Local Plan 2021 2024 (Regulation 19)
 - Uttlesford Local Cycling and Walking Infrastructure Plan Project Report (2024)
 - Saffron Walden Neighbourhood Plan (SWNP) 2021-2036 (2022)
- 3.2 In addition to the policy documents outlined out above, this TA also references the Chartered Institution of Highways & Transportation (CIHT) 'Planning for Walking' (2015), the Department of Transport (DfT) 'Manual for Streets' (MfS, 2007), and the Building Regulations 'Fire Safety Document B' (2019).

National Planning Policy Framework (2024)

3.3 The NPPF was adopted in 2012 with the latest revision adopted in December 2024, which acts as the central guidance for development planning. The following NPPF extracts are relevant to transport and the proposed development.

'It will be important to ensure that development is sensitive to its surroundings, does not have an unacceptable impact on local roads and exploits any opportunities to make a location more sustainable (for example by improving the scope for access on foot, by cycling or by public transport).'

(NPPF Para, 89)

- 'Transport issues should be considered from the earliest stages of plan-making and development proposals, using a vision-led approach to identify transport solutions that deliver well-designed, sustainable and popular places. This should involve:
- a) making transport considerations an important part of early engagement with local communities;
- ensuring patterns of movement, streets, parking and other transport considerations are integral to the design of schemes, and contribute to making high quality places;
- understanding and addressing the potential impacts of development on transport networks;

- realising opportunities from existing or proposed transport infrastructure, and changing transport technology and usage – for example in relation to the scale, location or density of development that can be accommodated;
- e) identifying and pursuing opportunities to promote walking, cycling and public transport use; and
- f) identifying, assessing and taking into account the environmental impacts of traffic and transport infrastructure – including appropriate opportunities for avoiding and mitigating any adverse effects, and for net environmental gains.'

(NPPF Para. 109)

'Significant development should be focused on locations which are or can be made sustainable, through limiting the need to travel and offering a genuine choice of transport modes. This can help to reduce congestion and emissions and improve air quality and public health. However, opportunities to maximise sustainable transport solutions will vary between urban and rural areas, and this should be taken into account in both plan-making and decision-making.'

(NPPF Para. 110)

- 'In assessing sites that may be allocated for development in plans, or specific applications for development, it should be ensured that:
- a) sustainable transport modes are prioritised taking account of the vision for the site, the type of development and its location;
- safe and suitable access to the site can be achieved for all users;
- the design of streets, parking areas, other transport elements and the content of associated standards reflects current national guidance, including the National Design Guide and the National Model Design Code⁴⁸; and
- d) any significant impacts from the development on the transport network (in terms of capacity and congestion), or on highway safety, can be cost effectively mitigated to an acceptable degree through a vision-led approach.'

(NPPF Para. 115)

Development should only be prevented or refused on highways grounds if there would be an unacceptable impact on highway safety, or the residual cumulative impacts on the road network, following mitigation, would be severe, taking into account all reasonable future scenarios.

(NPPF Para. 116)

'Within this context, applications for development should:

 a) give priority first to pedestrian and cycle movements, both within the scheme and with neighbouring areas; and second – so far as possible – to facilitating access to high quality public

- transport, with layouts that maximise the catchment area for bus or other public transport services, and appropriate facilities that encourage public transport use;
- address the needs of people with disabilities and reduced mobility in relation to all modes of transport;
- c) create places that are safe, secure and attractive which minimise the scope for conflicts between pedestrians, cyclists and vehicles, avoid unnecessary street clutter, and respond to local character and design standards;
- d) allow for the efficient delivery of goods, and access by service and emergency vehicles; and
- be designed to enable charging of plug-in and other ultra-low emission vehicles in safe, accessible and convenient locations.'

(NPPF Para. 117)

'All developments that will generate significant amounts of movement should be required to provide a travel plan, and the application should be supported by a vision-led transport statement or transport assessment so that the likely impacts of the proposal can be assessed and monitored.'

(NPPF Para. 118)

Essex County Council Local Transport Plan 2011 – 2025 (2011)

- 3.4 ECC Local Transport Plan was adopted in 2011. It sets out a framework for the delivery of transport services provided by or on behalf of the council with support from transport operators and district and council authorities. The strategy aims to achieve sustainable long-term economic growth in Essex with the help of improved travel within the county. The plan states their vision for "A transport system that supports sustainable economic growth and helps deliver the best quality of life for the residents of Essex".
- 3.5 The ECC Local Transport Plan consists of two parts, with the Local Plan referred to as the 'Essex Transport Strategy' and the second part the 'Implementation Plan'. The Local Transport Strategy sets out the vision for transport and the outcomes that are aimed to be achieved between 2011 and 2025. The Implementation Plan sets out in greater detail how the strategy will be delivered and monitored.
- 3.6 The Essex Transport Strategy sets out five key objectives:
 - 1. Provide connectivity for Essex communities and international gateways to support sustainable economic growth and regeneration.
 - Reduce carbon dioxide emissions and improve air quality through lifestyle changes, innovation, and technology.

- 3. Improve safety on the transport network and enhance and promote a safe travelling environment.
- 4. Secure and maintain all transport assets to an appropriate standard and ensure that the network is available for use; and
- 5. Provide sustainable access and travel choice for Essex residents to help create sustainable communities.
- 3.7 The Plan continues to highlight several challenges it will face for each objective. The key issues for transport have been identified.
 - Challenge 1: Providing good inter-urban connectivity within Essex and with adjacent major urban areas;
 - Challenge 2: Reducing the carbon-intensity of travel in Essex;
 - Challenge 3: Reducing the number of people killed or seriously injured on Essex roads;
 - Challenge 4: Future proofing transport connections to keep networks operations and safe at all times of the year;
 - Challenge 5: Enabling Essex residents to access further education employment and vital services (including healthcare, hospitals and retail); and
 - Challenge 6: Encouraging and enabling healthier travel and leisure activities

Essex County Council Parking Standards Design and Good Practice (2024)

3.8 Essex County Council have set out the relevant parking standards that need to be adhered to for new developments within the county. The parking standards relevant to the site location are displayed in Table 1.

Use Class			Parking Standards		
		Car Parking (minimum)	Cycle Parking		
	1 Bedroom	1 Space per Dwelling	1 space per bedroom (If no garage or secure area is		
	2 Bedroom +	2 Spaces per Dwelling	provided within curtilage of dwelling)		
Residential Dwellings	Visitor/ Unallocated	0.25 Spaces per Dwelling	1 space per 40 dwellings. This is complementary to any additional parking that is provided by local authorities.		

Table 1: ECC Car and Cycle Parking Standards

Uttlesford District Council Local Plan (2005)

3.9 UDC Local Plan was adopted in January 2005. A new local plan is still under review, following the government's announcement in 2020 that instructed all authorities to update their local plan by December 2023. However, the 2005 Local Plan is still the currently adopted Local Plan. An overview of the most relevant policies included with the adopted UDC Local Plan are detailed below.

Policy GEN1 – Access

- 3.10 Policy Gen1 states a development will only be permitted if it meets all the following criteria:
 - a) 'Access to the main road network must be capable of carrying the traffic generated by the development safely'.
 - b) 'The traffic generated by the development must be capable of being accommodated on the surrounding transport network'.
 - c) 'The design of the site must not compromise road safety and must take account of the needs of cyclists, pedestrians, public transport users, horse riders and people whose mobility is impaired'.
 - d) 'It must be designed to meet the needs of people with disabilities if it is development to which the general public expect to have access'.
 - e) 'The development encourages movement by means other than driving a car'.

Policy GEN8 - Vehicle Parking Standards

3.11 Development will not be permitted unless the number, design and layout of vehicle parking places proposed is appropriate for the location, as set out in Supplementary Planning Guidance "Vehicle Parking Standards".

PolicyT1- Transport Improvements

- 3.12 This policy outlines specific areas within Uttlesford that will undergo development to make the local network stronger. The Uttlesford Transport Strategy (UTS) (2001) is referenced within this policy to highlight existing issues with the network. The issues expressed within the UTS document are in relation to selected areas within Uttlesford, including Saffron Walden. The issues that relate to the proposed development are as follows:
 - 1) There are a variety of existing community travel initiatives in the district. These should be examined to establish if opportunities exist to coordinate them better and to connect them with other public transport services.

2) There are opportunities to develop useful cycle routes in and around Saffron Walden and Great Dunmow. ECC has produced an overall plan, the "Uttlesford Cycle Network Plan". This is being implemented during the plan period.

Uttlesford Draft Local Plan 2021 – 2041 (Regulation 19)

3.13 The Uttlesford Local Plan 2021–2041 underwent its Regulation 19 consultation from 8 August to 14 October 2024. This stage involved inviting representations on the publication version of the plan, which outlines the district's spatial vision, strategic objectives, and proposed site allocations to guide sustainable development over the 20-year period. Following the consultation, all comments were processed and the plan, along with supporting documentation, was submitted to the Secretary of State on 18 December 2024 for independent examination. The examination is anticipated to take place during 2025.

Uttlesford Local Cycling and Walking Infrastructure Plan Project Report (2024)

- 3.14 The Uttlesford Local Cycling and Walking Infrastructure Plan (LCWIP), developed by Essex County Council, aims to enhance cycling and walking routes in Saffron Walden and Great Dunmow. The proposed networks, identified through transport modelling tools, focus on connecting key destinations such as schools, town centres, and transport links. The initiative seeks to create healthier, safer, and greener streets, promoting active travel to improve residents' physical health and well-being.
- 3.15 With relevance to the site proposal, the LCWIP presents several routes in close proximity to the site. Route 3 runs from Thaxted Road to the south of Saffron Waldon and across Mount Pleasant Road towards the west of the town to Spring Hill. Route 6 travels from Cromwell Road and along Debden Road to the west of the site and across Audley Road in the town centre. Route 7 runs from South Road, located just north of the site access, and continues through to the north of the town where this route connects with Route 11 which continues north to Chesterford Research Park.

Saffron Walden Neighbourhood Plan 2021-2036 (2022)

- 3.16 The Saffron Walden Neighbourhood Plan (SWNP) was adopted in 2022. The document highlights relevant steps needing to be taken to achieve long-term sustainability for Saffron Walden with the aim of achieving the stated development goals by 2036.
- 3.17 The following policies within the document are outlined below in relation to the proposed development:

Policy SW1- Housing Mix on New Developments

3.18 This policy states the need for all residential development proposals to include a mix of housing sizes, designed to fit within the existing landscape, and a mix of affordable homes to comply with the local housing need.

Policy SW2- Affordable Housing

3.19 This policy outlines the expectations of development on sites which provide for '10 dwellings or more', or the site has an area of '0.5 hectares or more will be required to provide 40% of the total number of dwellings as affordable dwellings on the application site', distributed evenly throughout. It discusses the need for 40% affordable housing to be the SWNP requirement, stating that 'exceptional circumstances may be agreed if a payment in lieu was an equivalent or enhanced provision of affordable housing'. This policy states that schemes which don't meet the objectives of SW2 should be refused.

Policy SW4- Parking on New Developments

3.20 SW4 describes the regulations that new developments must follow when issuing parking spaces. It states that all new developments must comply with the ECC Parking Standards Design and Good Practise (2009). Additionally, all developments are required to refer to the Essex Design Guide when designing the vehicle and cycle parking. This policy states that all dwellings must make provisions for electric vehicle (EV) charging.

Policy SW12- Promoting Walking and Cycling

3.21 This policy relates the footways and cycleways within the new development. SW12 states that 'new developments must retain, enhance or incorporate safe, attractive and direct walking and cycle routes on the site, and can be adopted by ECC Highway Authority'. SW12 states 'all new developments are required to be permeable to enable continued and efficient use of the walking and cycle routes'. Further guidance is addressed for the cycleways, suggesting the Uttlesford Cycling Action Plan should be considered.

Policy SW13- Travel Planning

3.22 This policy relates to larger developments which may cause a shift in the local network. Stating that 'sustainable travel initiatives need to be encouraged within the new development, with a travel plan'. This travel plan needs to have measurable objectives to meet the SWNP requirements.

Policy SW14- Improving Provision of Public Transport

3.23 SW14 states that 'developers need to take opportunities to promote the use of public transport within their development'. This can be done by highlighting the available routes and infrastructure services to residents.

Policy SW15- Vehicular Transport

3.24 Policy SW15 has been formed to address the issues in relation to additional traffic movements as a result of new developments. The concerns outlined address issues such as an increased number of HGVs being put on the local network as a result of new developments. The development will only be supported by the Saffron Walden Town Council if the proposed development can be shown not to have an impact on the current congestion capacity, relative the UDC's Local Plan Highway Impact Assessment (2013), taking the appropriate steps to restrict the movements where possible. SW15 states that an Air Quality Assessment is required, allowing for mitigation to be implemented to help achieve a suitable residential environment for the new development. SW15 reinstates the need for sufficient EV charging points within the proposed development.

4. EXISTING SITE CONDITIONS AND ACCESSIBILITY

Overview

- 4.1 The site is located to the south of Mount Pleasant Road in Saffron Walden, Essex, as identified within Figure 1.
- 4.2 The existing site consists of the school playing fields of the Friends' School which had been closed. The existing school building is located to the west of the site and the school building is not in use.
- 4.3 The red line boundary of the site is shown in Figure 2 along with the existing Site Access/Mount Pleasant Road T-junction (red circle). The site is accessed via an internal route for approximately 75m to the south of Mount Pleasant Road. Along the northern side of Mount Pleasant Road are various dwellings with access to driveways provided via dropped kerbs along the northbound footway.

Figure 2: Site Location

4.4 Photographs 1 and 2 identify the existing access to the site and the westbound view along Mount Pleasant Road.

Photograph 1: Existing Site Access

Photograph 2: The Site Access Looking Out to the West

Local Highway Network

- 4.5 Mount Pleasant Road borders the site along the northern boundary and runs in a west-east direction. Approximately 150m to the west of the site Mount Pleasant Road connects to the Mount Pleasant Road/Deben Road/Borough Lane signalised junction.
- 4.6 From the Mount Pleasant Road/Debden Road/Borough Lane signalised junction, as shown in Photograph 3, Debden Road runs in a north-south direction connecting to the London Road/Debden Road /High Street mini-roundabout approximately 330m to the north of the junction.

Photograph 3: Mount Pleasant Road/Debden Road/Borough Lane Signalised Junction

- 4.7 To the north of the London Road/Debden Road /High Street mini-roundabout, High Street becomes Windmill Hill which provides a connection to the north towards Littlebury and Little Chesterford. Approximately 220m to the south of the London Road/ Debden Road / High Street mini-roundabout, London Road connects to the London Road/Borough Lane mini-roundabout. The London Road/Borough Lane mini roundabout connects to the Mount Pleasant Road/Deben Road/Borough Lane signalised crossroads approximately 330m to the east of London Road.
- 4.8 Approximately 50m to the south of the London Road/Borough Lane mini-roundabout, London Road connects to the London Road/ Newport Road /Audley End Road mini-roundabout. Audley End Road connects to the west and provides a route towards Audley End.
- 4.9 Located at the northeast corner of the site, Mount Pleasant Road connects to the Mount Pleasant Road/South Road/Peaslands Road T-junction. Approximately 220m to the east of the Mount Pleasant Road/South Road/Peaslands Road T-Junction, Peaslands Road connects to the Peaslands Road/Hop Fields mini-roundabout.
- 4.10 Approximately 300m to the east of the Peaslands Road/hop Fields T-Junction, Peaslands Road connects the Peaslands Road/Thaxted Road mini-roundabout. Thaxted Road runs in a north-south direction and connects to Radwinter Road to the north. Thaxted Road provides a route towards Howlett End and Thaxted to the south.
- 4.11 The M11 runs in a north-south direction approximately 3km to the west of the site. The M11 Junction 9a is located approximately 8km to the north of the site and is accessed via Walden Road or Newmarket Road. The M11 is part of the Strategic Road Network (SRN) which is managed by National Highways.

Pedestrian Network

4.12 Mount Pleasant Road provides footways along the northern and southern carriageway. The footways are approximately 2.5m wide and provide a connection between the Mount Pleasant Road/ Debden Road signalised junction to the west and the Peaslands Road/Thaxted Road mini roundabout to the east. The footways along Mount Pleasant Road are equipped with dropped kerbs, tactile paving, and streetlights, while the footway along the southern carriageway connects into the site.

- 4.13 The footways along Mount Pleasant Road connect to the west onto Debden Road at the Mount Pleasant Road/ Debden Road signalised junction. The signalised junction is equipped with tactile paving, dropped kerbs and puffin crossings across each arm of the junction.
- 4.14 The footways provided along both sides of Debden Road carriageway connect to London Road, via the Debden Road/London Road mini roundabout. These footways along London Road run west-east northbound of the site and provide pedestrians with a route into the Town Centre.
- 4.15 ECC Public Rights of Way (PRoW) route map identifies that Footpath 17 is located approximately 180m south of the site, as shown in **Figure 3**. Footpath 17 runs in a north-south direction between The Avenue to the north and St John's Close to the south.

Figure 3: Local Public Rights of Way Routes

Cycle Network

4.16 There are good opportunities surrounding the site to promote cycling given the 30mph speed limits along Mount Pleasant Road, Debden Road and London Road along predominately residential areas.

4.17 Figure 4 identifies the National Cycle Network (NCN) route 11 is a public cycle route which runs along Wenden Road which joins Audley End Road at the Wenden Road/Audley End Road T-junction to the west of the site.


Figure 4: National Cycle Network

- 4.18 The Wenden Road/Audley End Road T-junction joins the site local highway at Audley End Road which merges with London Road, connecting to Borough Lane at the London Road/Borough Lane mini roundabout. Borough Lane is accessible to the west of the site at the Mount Pleasant Road/Debden Road/Borough Lane signalised junction which links to the site via Mount Pleasant Road.
- 4.19 Walden Road forms part of NCN Route 11, which connects to the neighbouring village of Wendens Ambo. NCN Route 11 travels in a north/south direction through the centre of Cambridge and further north to Peterborough.
- 4.20 Therefore, the local highway network provides a conducive environment for cyclists with good connections to NCN Route 11, which can provide wider access to Cambridge and Peterborough and encourage cycling as a key method of travel for future site users.

Bus Services

4.21 Approximately 20m east of the site access located along Mount Pleasant Road are a pair of bus stops named 'Friends School', shown in Photograph 4. Both bus stops are provided with streetlighting, a flagpole and timetable information as shown in **Photograph 5**.

Photograph 5: Friends School Bus Stop Bus Timetable

- 4.22 Central Connect operate the 318 bus service, and Stephensons operates bus services 313, 314, 316 and 414 which service the pair of bus stops on Mount Pleasant Road.
- 4.23 The 313 and 314 bus serve a similar route through Great Dunmow, Thaxted and Saffron Walden, with stops at Saffron Walden High Street and Saffron Walden Hospital. The 314 service runs every two hours commencing from 06:56 through to 19:51. The 313 service runs every two hours from 07:36 through to 20:51. Combined, the services provide an alternating hourly frequency, operating Monday to Saturday, with no Sunday service.
- 4.24 The 316 bus service operates from 06:30 to 22:25 on Monday Saturdays only and at an hourly frequency. The route begins at Stansted Airport, stopping at Thaxted, Debden and through to Saffron Waldon.
- 4.25 The 318 bus service operates as a school bus, running one service per school day in each direction. This service departs Stansted Airport at 07:30 and stops at Thaxted, Debden and Saffron Walden. The service then departs Saffron Walden at 15:27 and returns to Stansted Airport at 16:24.

- 4.26 The 414 bus service operates as a school bus service routing from Felsted at 07:20, stopping at Great Dunmow, Thaxted, Wimbish Primary School and Saffron Walden High School. A returning service from Saffron Walden commences at 15:30. This service only operates on school days.
- 4.27 Located approximately 200m northwest of the site on Debden Road are a pair of bus stops known as 'West Road'. The 'West Road' bus stops provide access to bus service 590 which runs between Saffron Walden and Audley End Railway Station. The 590 bus services stop at the 'West Road' north bound bus stop at 18:10 and 18:40 and at the 'West Road' south bound bus stop at 05:41, 06:11, 06:41, 07:11 and 17:32.

Rail Services

- 4.28 Audley End Railway Station is located approximately 4.5km southwest of the site, as shown in **Figure 5**. Audley End Railway station is accessible by cycle, via an approximately 11 minutes journey from the site, or by car via an approximate six-minute journey from the site.
- 4.29 Additionally, the West Road bus stop located circa 190m from the site provides access to Audley End Railway Station via the 590 bus service, with the journey taking approximately 10 minutes.

Figure 5: Location of Audley End Railway Station

4.30 Audley End Railway Station is operated by Greater Anglia and provides a direct route into London Liverpool Street, taking approximately 65 minutes. Additionally, northbound of Audley End Railway Station, Cambridge Railway Station can be accessed via an approximately 20-minute train journey, as well as Norwich via an approximate 1 hour and 50 minutes journey and Stansted Airport via an approximately 15-minute journey.

4.31 Audley End Railway Station has step-free access, a ticket office, a ticket machine, availability to a taxirank and cycle parking facilities, and a car park which provides 662 car parking spaces.

Local Facilities and Amenities

4.32 The CIHT document, 'Planning for Walking' (2015), identifies the 'desirable', 'acceptable' and 'preferred maximum' distance for Town Centre locations, The average walking speed of 1.4m/s as defined by CIHT's 'Planning for Walking' (2015), which equates to approximately walking 400m per five minutes' (circa 3mph/4.8kph), which are outlined in Table 2.

	Town Centre (m)	Elsewhere (m)
Desirable	200	400
Acceptable	400	800
Preferred Maximum	800	1200

Table 2: CIHT's Preferred Walking Distances (2015)

4.33 **Table 3** provides a summary of the local facilities and amenities surrounding the site and identifies the approximate distance and the walking and cycling times from the site. A walking distance of 400m per five minutes and a cycling speed of 400m per minute (circa 15mph/24kph) has been applied.

Facilities and Amenities	Approximate Distance from Site (m)	Approximate Walking time (minutes)	Approximate Cycling time (minutes)
Bus stop (Friends school)	50m	<1	<1
Primary school (St Thomas More Catholic Primary school)	300m	4	<1
Dental practise (The Walden Dental Clinic)	500m	6	1
Restaurant (The Railway Arms)	550m	7	1
Convenience store (Old Mill Road Mini Market)	550m	7	1
Place of Worship (Saffron Walden Baptist Church)	600m	8	2
Hairdressers (Nineteen 57 Hair Salon)	750m	9	2
Post Office (Saffron Walden Post Office)	750m	9	2
Fitness and Leisure Centre (Lord Butler)	750m	9	2
GP Surgery (The Gold Street Surgery)	850m	11	2
Pharmacy (Well Pharmacy)	1000m	13	3
Car park (Fairy Croft Road Car Park)	1000m	13	3
Tennis Club (The Grove)	1100m	14	3
Chemist (Boots)	1100m	14	3
Supermarket (Aldi)	1200m	15	3
Hotel (Premier Inn)	1400m	18	4
Hospital (Saffron Walden Community Hospital)	1900m	24	5

Table 3: Local Facilities and Amenities Near to the Site Location

4.34 The site is located within reasonable walking and cycling distances to a range of local facilities and amenities.

Accessibility Summary

- 4.35 The site is located in a very accessible and sustainable location, with continuous footways provided along the surrounding highway network with local pedestrian crossings provided.
- 4.36 Saffron Walden town provides a variety of local facilities and amenities, within a reasonable walking and cycling distance of the site. The regular bus services, within 50m of the site, provide direct connections to London Stansted Airport and surrounding villages.

Personal Injury Collision Data

4.37 To review safety surrounding the site, Personal Injury Collison (PIC) data has been obtained from the ECC collision database^{1.} This has been obtained to provide collision data for the most recently available five-years period between 1st March 2020 and 28th February 2025 to understand if there are existing highway safety concerns, patterns or trends which could be exacerbated by the proposed development. Figure 6, identifies the location and severity of the PIC data.

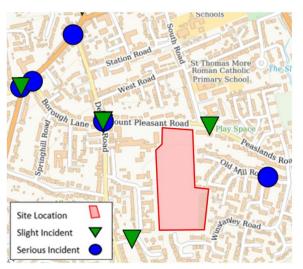


Figure 6: PIC Study Area

4.38 **Figure 6** identifies no recorded fatal collisions within the study area and the latest five years of available data. Six incidents have been recorded as 'slight' and five incidents have been recorded as 'serious'.

¹ https://essex.traffweb.app/traffweb/3/Collisions

- 4.39 One 'serious' collision (2022) was recorded at London Road / Debden Road mini-roundabout. One 'serious' collision (2023) was recorded at Audley End / Borough Lane mini-roundabout. One 'slight' collision (2024) and one 'serious' collision (2023) was recorded at Audley End / Newport Road B1052. Three 'slight' collisions (2020, 2023, 2024) and one 'serious' collision (2024) have been recorded at Mount Pleasant / Debden Road / Borough Lane crossroads. To the west of the site, one 'slight' collision (2020) was recorded along Peaslands Road and one 'serious' collision (2021) was recorded at Old Mill Lane. One 'slight' collision (2024) was recorded to the southeast of the site at St Johns Close.
- 4.40 Based on the low number and low severity of recorded incidents shown above across a five year period, this indicates there to be no severe safety concern for the local highway network as a result of the proposed development. Therefore, it is considered that the proposals would not exacerbate the safety of this location of the highway network.

5. PROPOSED DEVELOPMENT

Overview

- 5.1 This section of the TA outlines the proposed development in relation to the number of proposed dwellings and access arrangements. This section also includes a review of the proposed car and cycle parking in accordance with the ECC car and cycle parking standards.
- 5.2 The proposed development comprises a new residential development of 75 dwellings, consisting of 17 flats and 58 houses in addition to the provision of playing fields and a clubhouse. The proposed layout is provided in **Appendix A**. The proposed development also consists of two youth football pitches, as indicated within the site layout.

Access

- 5.3 The existing access from Mount Pleasant Road will be maintained as per the existing arrangement. The existing access includes a 6.4m wide carriageway and 6m radii. Within the internal layout road widths are provided at a minimum of 5m, with 6m aisle widths provided adjacent to parking spaces as required. Pedestrian access will be provided as per the existing arrangements, with the addition of a 2m wide footway along the western carriageway of the internal road through the proposed development.
- 5.4 The internal layout of the proposed development will be limited to a 20mph design speed. The internal highway network is designed to maintain low vehicle speeds through features such as bends and onstreet visitor parking, which assist in breaking up long sections of carriageway. Additionally, raised tables are implemented at junctions, and the distance between traffic calming measures is generally kept under 60 meters to further encourage reduced speeds.

Visibility

5.5 A visibility splay assessment has been undertaken to demonstrate that visibility can be achieved for the existing access arrangement at the Site Access/Mount Pleasant Road T-Junction. A visibility splay of 2.4m x 43m can be achieved in both primary and secondary direction along Mount Pleasant Road, in accordance with MfS design guidance for a 30mph speed limit. The visibility splay assessment is provided within **Appendix B**.

Emergency and Servicing Vehicle Access

- 5.6 Swept path analysis of a UDC specification refuse vehicle has been undertaken. The swept path analysis of the UDC refuse vehicle demonstrates that the vehicle can enter and exit the site onto Mount Pleasant Road in forward gear.
- 5.7 Swept path analysis for a fire tender has been undertaken. The swept path analysis of the fire tender vehicle demonstrates the vehicle can enter and exit the site at Mount Pleasant Road in forward gear. Within the internal layout, it has been confirmed that the swept path analysis demonstrates that a fire tender vehicle can reach within 45m of all buildings in accordance with the Building Regulations Approved Document B (2019).

Car Parking Provision

- 5.8 UDC adopt the car parking standards set out in ECC 'Parking Guidance, Design and Good Practice' (2024) document, which identifies the car and cycle parking standards for new residential developments. Based on the location of the site, it is considered that this falls within the 'Good' boundary identified in ECC Parking Guidance connectivity map for Saffron Walden.
- 5.9 According to the proposed development of 8 one-bedroom dwellings and 67 dwellings with two or more bedrooms, the ECC Parking Guidance requires a total of 161 parking spaces, including 19 designated for visitors.
- 5.10 The proposed development includes at least two car parking spaces per dwelling above 2 bedrooms, which are located adjacent to the dwelling, including allocated garages. The 8 one-bedroom dwellings of the proposed development will be provided with one allocated car parking space within communal parking areas. In total 182 parking spaces are provided on-site which meets the ECC requirements.
- 5.11 Within the unallocated provision are 25 car parking spaces, including 3 blue badge spaces, which are proposed to be associated with the clubhouse and sports field uses and considered sufficient to meet future demand and ensure no overspill parking occurs onto residential roads. It is noted the car parking standards for use class 'F2(c)' recreation use are 'to be considered on a case-by-case basis as stated in the ECC 'Parking Guidelines' (2024).

5.12 This level of parking is considered to be appropriate to meet all demand from the proposed development and to encourage sustainable travel to and from the development in line with the accessible nature of the site.

Visitor Parking

- 5.13 Census 2021 Car/Van Availability data (reference: TS045) has been reviewed for Lower Super Output (LSOA) layer 002G, where the site is located, to provide a representation of car ownership levels. The outputs are attached as **Appendix C** and demonstrate an average car ownership of 1 car per household within the LSOA. In review of the parking provision for residents, a total of 182 allocated spaces have been provided at a ratio of 2 spaces per household. It is noted that the residential parking provision is allocated to each dwelling.
- 5.14 A total of 33 unallocated parking spaces will be available for visitors across the proposed development, including 25 spaces designated for the clubhouse and sports field. To optimise efficiency and prevent excessive visitor parking, the proposal adopts a dual-use approach, integrating visitor and sports pitch parking.
- 5.15 When considering the residential visitor parking provision in isolation to the sports pitches, 8 visitor parking spaces have been provided at convenient locations across the proposed development. Whilst this is 11 visitor parking spaces below the requirement, when considering the excellent location in terms of sustainability of the site, as well as the opportunity to utilise the parking associated with the sports pitches, the proposed visitor parking provision is considered to be sufficient without leading to overspill parking onto the surrounding local highway network.

Cycle Parking

5.16 Cycle parking will be provided in a secure location within curtilage of each house within the proposed development, through the use of garages or sheds. Additionally, the proposed flats will provide secure cycle parking storage via a shared communal cycle store located within the car park provided for the flats. Additional cycle parking is accommodated within the clubhouse and sports pitch facility as required for visitors.

6. HIGHWAY IMPACT

Overview

- 6.1 The existing site was previously used as a school playing fields and is currently unoccupied. Therefore, it is considered that the site generates no vehicle movements. As a result, the vehicle movements forecast associated with the proposed development are considered to be new vehicle movements on the local highway network.
- 6.2 This chapter identifies the forecast vehicle trip generation associated with the proposed development, the methodology for assessing the proposed development and the results of the junction modelling.

Proposed Development Trip Generation

- 6.3 A TRICS assessment for the proposed development has been informed by the parameters agreed as part of the previous planning application (reference UTT-19-1744-OP). This includes the use of a single residential category, to account for houses and flats, as requested by the Highway Authority in their feedback to the previous application submission. These parameters have been applied to the proposed development as set out below.
- 6.4 It should be noted that the trip generation associated with the clubhouse and sports playing field has not been considered as part of the peak hour trip generation assessment as it is considered that these trips would fall outside of the traditional peak periods of operation on the network (0800-0900 and 1700-1800 during weekdays).
- 6.5 The TRICS assessment has been undertaken using the 'Houses Privately Owned' and 'Flats Privately Owned'. It is noted that 40% of the dwellings are proposed to be provided as affordable housing, however, to allow for a robust assessment of the highway network, all dwellings have been assessed as private dwellings for the purposes of this assessment. The TRICS parameters are outlined below.
 - TRICS (v 7.11.4);
 - Use Class 'Residential' and sub-category 'Houses Privately Owned';
 - Sites in England only (excluding Greater London);
 - Excluding surveys conducted during Covid-19 lockdown restrictions;
 - Weekday surveys only; and
 - 'Suburban Area' locations only.

6.6 The results of the TRICS assessment are outlined in **Table 4** with the full TRICS outputs provided in **Appendix D**.

	AM Pe	AM Peak Hour (08:00-09:00)			PM Peak Hour (17:00-18:00)		
	Arrivals	Departures	Two-Way	Arrivals	Departures	Two-Way	
Residential Trip Rates	0.121	0.422	0.543	0.373	0.178	0.551	
Trip Generation (75 dwellings)	9	32	41	28	13	41	

Table 4: Proposed Development Trip Generation (subject to rounding)

6.7 The TRICS assessment forecasts that the proposed development is to generate 41 vehicle movements during the AM peak hour (08:00-09:00) and 41 vehicle movements during the PM peak hour (17:00-18:00).

Vehicular Distribution

- 6.8 A vehicle distribution assessment has been undertaken to forecast the likely vehicle routes to/from the proposed development to assess the forecast impact on the surrounding highway network.
- 6.9 The 2011 census 'Travel to Work' data (ref: WU03EW) for a usual residence within the 'Uttlesford 002' MSOA (the site location), has been reviewed in order to assess the likely distribution to/from the site using route planning software (e.g. Google Maps) to determine the most likely route from each MSOA. The MSOA level was used for this assessment as the highest available scale in order to accurately reflect the site. Additionally, 2021 census data is not considered suitable for this assessment given the journey to work data was impacted by travel restrictions imposed by the Covid-19 pandemic lockdowns which were occurring at the time the 2021 census data was undertaken.
- 6.10 The results of the vehicle distribution assessment on the local highway network, including the site access, are shown below in **Table 5**, with full outputs included within **Appendix E**.

Proposed Site	Site Access / Mount Pleasant Road T-Junction		Mount Pleasant Road/Borough Lane/Debden Road Signalised Junction			Thaxted Road/Peaslands Road Mini-Roundabout	
Junction approach / arm	Mount Pleasant Road West	Mount Pleasant Road East	Debden Road North	Borough Lane West	Debden Road South	Thaxted Road North	Thaxted Road South
Direction of Travel (%)	81%	19%	48%	33%	0%	5%	13%
Total (%)	100%		tal (%) 100% 81%		19	9%	

Table 5: Forecast Vehicle Distribution

6.11 In reference to the forecast vehicle trip generation of the proposed development outlined in Table 4 and the vehicle trip distribution outlined in Table 5, Table 6 identifies the forecast total number of vehicle movements at the Site Access/Mount Pleasant Road T-Junction in the AM (08:00-09:00) and PM (17:00-18:00) peak hours.

	AM Peak Hour	(08:00-09:00)	PM Peak Hour	(17:00-18:00)
	Mount Pleasant	Mount Pleasant	Mount Pleasant	Mount Pleasant
Site Access	Road West	Road East	Road West	Road East
Site Access	33	8	33	8

Table 6: Forecast Vehicle Movements at the Site Access/Mount Pleasant Road T-Junction

6.12 Table 8 identifies 33 vehicle movements are forecast to travel along Mount Pleasant Road to the west of the site access and eight vehicle movements along Mount Pleasant Road to the east of the site access during both the AM peak hour (08:00-09:00) and PM peak hour (17:00-18:00).

Junction Modelling Methodology

Scope of Assessment

- 6.13 As indicated in Table 4, the proposed development results in 41 additional vehicle movements in the AM (08:00-09:00) and PM (17:00-18:00) peak hours on the local highway network.
- 6.14 Based on the results of traffic surveys, details of which are provided below, the AM and PM peak hours of 08:00-09:00 and 17:00-18:00 are identified as the peak hours on the local highway network. Therefore, the hours of 08:00-09:00 and 17:00-18:00 have been assessed within the junction modelling to provide a robust worse-case assessment of the local highway network.
- 6.15 The methodology of this assessment has been reviewed against ECC Highway Authority comments on the previous planning application (UTT/1917/44/OP) which requested the modelling of the following junctions:

- 1. Site Access/Mount Pleasant Road T-Junction;
- 2. Mount Pleasant Road/Borough Lane/Debden Road signalised junction;
- 3. Peaslands Road/Hop Fields mini roundabout;
- Thaxted Road/Peaslands Road mini roundabout; 4.
- 5. London Road/Debden Road mini roundabout; and
- 6/7. London Road Double mini roundabouts.
- 6.16 **Figure 7** identifies the location of the junctions assessed as part of this TA.

Figure 7: Location of Junction Modelling Assessments

Source of Baseline Traffic Flows

- 6.17 Manual Classified Counts (MCCs) were undertaken in September 2023 to identify the existing baseline traffic flows in the AM (08:00-09:00) and PM (17:00-18:00) peak hours at the junctions shown within Figure 7.
- 6.18 It is noted that during the traffic survey period an incident occurred at the London Road/Borough Lane mini roundabout. The traffic data has been reviewed across the AM peak period (07:00-10:00). Following a review of the data it appears that the incident did not impact the flows of vehicles at the London Road/Borough Lane mini roundabout or any other assessed junctions. Therefore, the traffic

survey undertaken at the London Road/Borough mini roundabout is considered to be reflective of typical traffic flow conditions. The data is attached as **Appendix F**.

TEMPro

- 6.19 Trip End Model Presentation Program (TEMPro) is a software which provides an estimation of trip-end growth factors developed by the Department for Transport (DfT) for use in traffic growth projections. The results of the 2023 baseline traffic surveys have then been growthed applying the TEMPro factors with the following criteria:
 - TEMPro 7.2;
 - NTM AF15 Data Set from 2010 to 2040;
 - Uttlesford geographic region;
 - Urban area; and
 - Minor road
- 6.20 The TEMPro growth factors for the AM and PM peak hours are identified in **Table 7**. The proposed development is forecast to be fully operational in 2030 and therefore the TEMPro growth factors are identified for 2023-2030.

	AM	PM
2023 - 2030	1.0528	1.0564

Table 7: TEMPro Growth Factors

Committed Development

6.21 The previous planning application at the site (UTT-19-1744-OP) incorporated the traffic impact of several different committed developments as part of its junction modelling assessment, including the Lindon development (UTT/13/3467/OP), the Civic Amenity and Granite development (UTT/18/2366/FUL), and the Land East of Thaxted Road development (UTT/18/0824/OP). It is understood that the majority of these committed developments have since been completed and are therefore accounted for within the traffic counts or the TEMPro growth factors detailed above.

6.22 The neighbouring residential development, known as Former Friends' School residential development (S62A/22/0000002) was granted planning permission in October 2022 however was still under construction during the collection of the traffic surveys. Therefore, to provide a robust assessment in terms of junction modelling, the Former Friends' School residential development has been included as a committed development in addition to the TEMPro growth. This level of committed development is therefore consistent with the previous assessment submitted and referenced within the decision notice dated 1st November 2024.

<u>Junction Modelling Assessment Scenarios</u>

- 6.23 The following assessment Scenarios have been modelled to forecast the operation of the local highway network at the six junctions identified in **Figure 7**. The proposed development is forecast to be fully operational in 2030. Therefore, the following assessment scenarios have been assessed for the AM (08:00-09:00) and PM (17:00-18:00) peak hours.
 - 2023 Baseline;
 - 2030 Baseline;
 - 2030 Baseline + Committed Development; and
 - 2030 Baseline + Committed Development + Proposed Development.
- 6.24 The proposed development is forecast to generate the highest number of vehicle movements between 08:00-09:00 and 17:00-1800.
- 6.25 Geometric measurements for the following junctions included within the assessment were obtained from the 'outline planning application for the development of up to 150 dwellings (Use class C3) with all matters reserved except access' on land east of Thaxted Road, Saffron Walden (reference: UTT/18/0824/OP) which was approved in April 2019. These geometric measurements have therefore previously been agreed and are considered appropriate for the application of the junction capacity assessments undertaken.
 - Mount Pleasant Road/Borough Lane/Debden Road signalised junction (Junction 2); and
 - Thaxted Road/Peaslands Road mini roundabout (Junction 4).

- 6.26 Additionally, the geometric measurements for the following junctions included within the assessment were obtained from the 'hybrid application consisting of full details for development of 30 dwellings utilising existing access, re-provision of swimming pool with new changing rooms, artificial grass pitches, sports pavilion and ancillary uses on site, as well as outline application for up to 70 dwellings' at Former Friends School Mount Pleasant Road, Saffron Walden (reference: UTT/19/1744/OP). Whilst the planning application was refused in March 2021, ECC highway comments raised no objection to the proposals and therefore these geometric measurements have previously been agreed by the highway authority and are considered appropriate for the application of the junction capacity assessments undertaken.
 - London Road/Debden Road mini roundabout (Junction 5);
 - London Road Double Mini roundabout (Junction 6/7); and
- 6.27 The geometric measurements for Hopfields/Peaslands Road mini roundabout were taken from Google images given the junction on OS mapping is shown as the previous arrangement as a T-Junction. Given the Hopfields/Peaslands Road mini roundabout is forecast to operate well within capacity, it is considered the geometries applied for the purpose of junction capacity assessments represent a worse-case scenario.

2030 Junction Modelling Results

- 6.28 Junction capacity modelling has been undertaken for the seven junctions using either Junctions 9 for priority junctions and roundabouts and LinSig for signalised junctions. The results of the junction modelling assessment are discussed in this section with full modelling outputs provided in **Appendix G**.
- 6.29 Junction modelling has been undertaken using Junctions 9 software, which is industry standard. Each of the six junctions have been modelled for the AM (08:00-09:00) and PM (17:00-18:00) peak hours.
- 6.30 The performance of junctions that are modelled in Junctions 9 are provided in the form of a Ratio to Flow Capacity (RFC). An RFC of less than 0.85 identifies the junction is forecast to operate within design capacity. An RFC between 0.85 and 1.00 indicates that the junction is forecast to operate close to theoretical capacity and that queueing, and delay is more likely to occur from this point. An RFC above 1.00 is forecast to operate above theoretical capacity.
- 6.31 Junction modelling has been undertaken of the for Mount Pleasant Road/Borough Lane/Debden Road signalised junction using LinSig software, which is industry standard. LinSig results show that where a junction is forecast to operate below 90% Degree of Saturation (DoS) is considered to operate within

design capacity, whereas a junction that is forecast to operate between 90% and 100% DoS is considered to operate above design capacity but below theoretical capacity. A junction forecast to operate above 100% DoS is considered to operate above theoretical capacity.

Junction 1: Site Access onto Mount Pleasant Road

6.32 The results of junction modelling for Junction 1: Site Access/Mount Pleasant Avenue T-Junction are provided in **Table 8**. It should be noted that the results are only identified in 2030 Baseline with the committed development as the existing access into the site is not in use.

_		AM Peak Hour 08:00-09:00)			PM Peak Hour (17:00-18:00)		
		RFC	MMQ (PCU)	Delay (seconds)	RFC	MMQ (PCU)	Delay (seconds)
2030 Baseline +	Site Access to Mount Pleasant Road East/West	0.10	0.1	9.52	0.06	0.1	9.94
Committed Development Mount Pleasant Road West to Site Access/Mount Pleasant Road East	0.00	0.0	4.75	0.02	0.0	4.60	
2030 Baseline + Committed	Site Access to Mount Pleasant Road East/West	0.18	0.2	10.53	0.10	0.1	10.56
Proposed Development Development	Mount Pleasant Road West to Site Access/Mount Pleasant Road East	0.01	0.0	4.75	0.03	0.0	4.59

Table 8: Modelling Results – Junction 1: Site Access/Mount Pleasant Road T-Junction

6.33 The table above identifies the junction is forecast to operate well within the design capacity (less than 0.85 RFC) in 2030 with the committed development during the AM and PM peak hours. The table above identifies the junction is forecast to operate well within the design capacity (less than 0.85 RFC) in '2030 + committed development + Proposed Development' scenario during the AM and PM peak hours. The Site Access approach during the AM peak hour is forecast a maximum RFC of 0.18.

Junction 2: Mount Pleasant Road/Borough Lane/Debden Road Signalised Junction

6.34 The results of junction modelling for Junction 2: Mount Pleasant Road/Borough Lane/Debden Road signalised junction is provided in Table 9.

		AM Peak Hour 08:00-09:00)			PM Peak Hour (17:00-18:00)		
		DoS (%)	MMQ (PCU)	Delays (PCU/Hour)	DoS (%)	MMQ (PCU)	Delays (PCU/Hour)
	Debden Road North	77.6	16	7.2	81.1	16.4	7.6
2023 Baseline	Mount Pleasant Road East	76.9	9.4	4.5	79.8	8.3	4.3
2020 54000	Debden Road South	77.8	5.4	3.4	81.3	7.6	4.2
	Borough Lane West	75.7	12.9	6.1	82.0	18.7	8.3
	Debden Road North	89.9	17.5	8.0	86.0	18.1	8.8
2030 Baseline	Mount Pleasant Road East	80.9	10.3	5.1	84.3	9.4	5.1
2030 baseline	Debden Road South	78.4	5.9	3.5	86.0	8.7	5.0
	Borough Lane West	81.7	14.2	7.0	86.7	20.6	9.5
	Debden Road North	83.7	19.2	8.7	88.1	19.5	9.6
2030 Baseline +	Mount Pleasant Road East	84.6	11.0	5.7	89.9	10.6	6.3
Committed Development	Debden Road South	83.9	6.7	4.2	90.2	10.0	6.1
	Borough Lane West	83.6	14.8	7.4	89.7	22.5	10.6
	Debden Road North	87.7	21.3	10.0	91.1	21.0	10.7
2030 Baseline + Committed Development + Proposed Development	Mount Pleasant Road East	86.7	11.5	6.1	93.0	11.6	7.3
	Debden Road South	85.2	6.9	4.5	90.3	10.4	6.2
	Borough Lane West	85.5	15.4	7.8	93.2	24.7	12.3

Table 9: Modelling Results – Junction 2: Mount Pleasant Road/Borough Lane/Debden Road Signalised Junction

- 6.35 The table above identifies the junction is forecast to operate within design capacity (less than 90%), in 2023 and 2030 scenarios baselines AM and PM scenarios.
- 6.36 On review of the '2030 committed development' scenario, the maximum DoS forecast is 90.2% on the Debden Road South approach during the PM peak hour. However, the proposed development is forecast to have a negligible impact on the operation of the junction in 2030 compared the '2030 baseline + Committed Development' scenario, with a forecast increase circa 3% in DoS during the PM peak hour (1700-18:00). During all scenarios the junction operates within theoretical capacity (100%).

Junction 3: Peaslands Road/Hop fields Mini Roundabout

6.37 The results of junction modelling for Junction 3: Peaslands Road/Hop fields mini roundabout are provided in Table 10.

		AM Pea	ak Hour 08:00	0-09:00)	PM Pea	k Hour (17:00	0-18:00)
		RFC	MMQ (PCU)	Delays (seconds)	RFC	MMQ (PCU)	Delays (seconds)
	Peaslands Road West	0.36	0.6	6.05	0.26	0.3	5
2023 Baseline	Hop Fields North	0.08	0.1	4.99	0.01	0	4.31
	Peaslands Road East	0.39	0.6	6.25	0.18	0.2	4.53
	Peaslands Road West	0.38	0.6	6.25	0.27	0.4	5.11
2030 Baseline	Hop Fields North	0.09	0.1	5.09	0.01	0	4.35
	Peaslands Road East	0.41	0.7	6.48	0.19	0.2	4.59
2030 Baseline +	Peaslands Road West	0.39	0.7	6.33	0.27	0.4	5.11
Committed	Hop Fields North	0.09	0.1	5.12	0.01	0	4.35
Development	Peaslands Road East	0.41	0.7	6.5	0.2	0.3	4.63
2030 Baseline + Committed Development + Proposed Development	Peaslands Road West	0.40	0.7	6.22	0.28	0.4	5.13
	Hop Fields North	0.09	0.1	5.15	0.01	0	4.36
	Peaslands Road East	0.41	0.7	6.40	0.21	0.3	4.67

Table 10: Modelling Results – Junction 3 Peaslands Road/Hop fields Mini Roundabout

6.38 The table above identifies the junction is forecast to operate within the design capacity, below 0.85 RFC, in the AM and PM peak hours. The maximum forecast RFC is 0.41 on the Peaslands Road East approach during the AM peak hour in the '2030 Baseline + Committed Development + Proposed Development' scenario. Therefore, the proposed development is forecast to have a negligible impact on the operation of the junction.

Junction 4: Thaxted Road/Peaslands Road Mini Roundabout

6.39 The results of junction modelling for Junction 4: Thaxted Road/Peaslands Road mini roundabout are provided in Table 11.

		AM Pe	ak Hour 08:0	0-09:00)	PM Peak Hour (17:00-18:00)		
		RFC	MMQ (PCU)	Delays (seconds)	RFC	MMQ (PCU)	Delays (seconds)
	Thaxted Road North	0.48	1.00	9.44	0.77	3.20	21.67
2030 Baseline	Thaxted Road South	0.66	2.00	14.73	0.56	1.30	11.89
	Peaslands Road West	0.73	2.70	18.87	0.68	2.10	14.86
	Thaxted Road North	0.51	1.10	10.08	0.83	4.40	28.16
2030 Baseline	2030 Baseline Thaxted Road South	0.70	2.30	16.83	0.60	1.50	13.31
	Peaslands Road West	0.78	3.40	22.78	0.73	2.60	17.42
2030 Baseline +	Thaxted Road North	0.52	1.10	10.22	0.83	4.50	28.89
Committed	Thaxted Road South	0.70	2.40	16.96	0.61	1.60	13.60
Development	Peaslands Road West	0.79	3.70	24.03	0.73	2.60	17.70
2030 Baseline + Committed	Thaxted Road North	0.52	1.10	10.03	0.83	4.60	29.64
Development +	Thaxted Road South	0.70	2.30	16.73	0.62	1.60	13.89
Proposed Development	Peaslands Road West	0.80	3.80	24.44	0.74	2.70	17.98

Table 11: Modelling Results – Junction 4: Thaxted Road/Peaslands Road Mini Roundabout

6.40 The table above identifies the junction is forecast to operate within design capacity, below 0.85 RFC, in the AM and PM peak hours. The maximum RFC forecast is 0.83 on the Thaxted Road North approach during the PM peak hour in '2030 + Committed Development + Proposed Development' scenario. Therefore, the proposed development is forecast to have a negligible impact on the operation of the junction.

Junction 5: London Road/Debden Road Mini Roundabout

6.41 The results of junction modelling for Junction 5: London Road/Debden Road mini roundabout are provided in Table 12.

		AM Pea	ak Hour 08:00	0-09:00)	PM (Pe	ak Hour 17:00	0-18:00)
		RFC	MMQ (PCU)	Delays (seconds)	RFC	MMQ (PCU)	Delays (seconds)
	London Road North	0.74	2.90	16.93	0.97	14.60	65.64
2023 Baseline	Debden Road South	0.81	3.80	36.72	0.51	1.00	14.85
	London Road West	0.69	2.30	18.05	0.64	1.80	13.41
	London Road North	0.79	3.70	20.17	1.02	27.20	108.00
2030 Baseline	Debden Road South	0.88	5.7	53.80	0.55	1.20	16.29
	London Road West	0.74	2.80	21.64	0.68	2.10	15.41
2030 Baseline +	London Road North	0.79	3.80	20.76	1.05	33.90	128.86
Committed	Debden Road South	0.92	7.70	68.82	0.56	1.30	16.72
Development	London Road West	0.75	3.00	23.10	0.69	2.20	15.84
2030 Baseline +	London Road North	0.80	3.80	20.67	1.06	39.50	145.49
Committed Development + Proposed Development	Debden Road South	0.96	10.40	88.13	0.57	1.30	16.65
	London Road West	0.76	3.20	23.06	0.70	2.20	16.02

Table 12: Modelling Results - Junction 5: London Road/Debden Road Mini Roundabout

- 6.42 The table above identifies on the Debden Road (south) approach the maximum RFC forecast is 0.88 RFC in the '2030 Baseline' scenario, 0.92 '2030 baseline + Committed Development' scenario and 0.95 RFC in the '2030 baseline' scenario, with an increase of 0.03 RFC. The table above identifies the junction is forecast to operate below 1.00 RFC during the AM peak hour in all scenarios, with a minimal increase in RFC forecast. Therefore, the proposed development is forecast to have a negligible impact on the operation of the junction during the AM peak hour (08:00-09:00).
- 6.43 The table above identifies the junction is forecast to operate above 0.85 RFC in the PM peak hour in the '2023 baseline' scenario, with a maximum RFC of 0.97 on the London Road (north) approach. Whereas the junction is forecast to operate above 1.00 RFC in the PM peak hour in the '2030 baseline' scenario, with a RFC of 1.02 on the London Road (north) approach, which is an increase of 0.05 RFC from the '2023 baseline' scenario.
- 6.44 The table above identifies the junction is forecast to operate above 1.00 RFC in the PM peak hour in the '2030 baseline + Committed Development' scenario, with a maximum RFC of 1.05 on the London Road (north) approach, which is an increase of 0.03 from the '2030 baseline' scenario. Whereas the junction is forecast to operate above 1.00 RFC in the PM peak hour in the '2030 baseline + Committed

Development + Proposed Development' scenario, with a maximum RFC of 1.06 on the London Road (north) approach, which is an increase of 0.01 from the '2030 baseline + Committed Development' scenario.

6.45 The forecast increase in background traffic growth during the PM peak hour (17:00-18:00) is forecast to be greater than the forecast impact of the proposed development. In addition, the forecast impact of the proposed development is the same of the committed development (Former Friends' School residential development, S62A/22/0000002). Therefore, the proposed development is forecast to have a negligible impact on the operation of the junction during the PM peak hour (17:00-18:00).

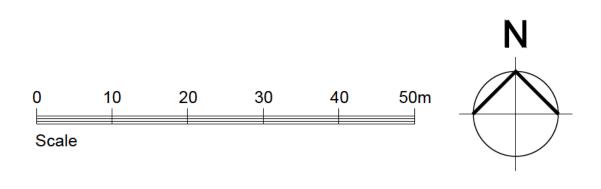
Junction 6: Thaxted Road/Peaslands Road Mini Roundabout

6.46 The results of junction modelling for Junction 6: Thaxted Road/Peaslands Road mini roundabout are provided in **Table 13**.

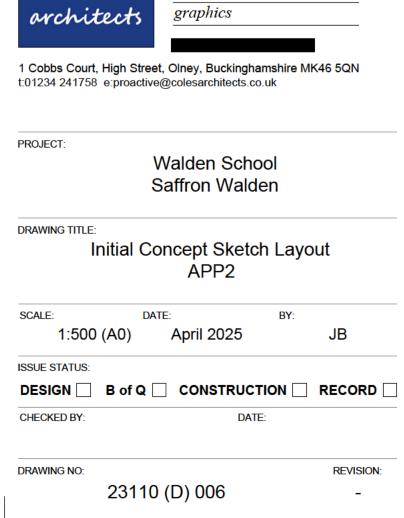
		AM Peak Hour 08:00-09:00)			PM (Peak Hour 17:00-18:00)		
Junctio	on 6	RFC	MMQ (PCU)	Delays (seconds)	RFC	MMQ (PCU)	Delays (seconds)
	London Road North	0.59	1.5	10.58	0.61	16.	11.25
	Borough Lane South	0.48	0.9	12.03	0.42	0.7	10.56
2023 Baseline	London Road West	0.65	1.9	11.45	0.70	2.3	12.82
2023 Baselli le	London Road North	0.85	5.4	28.21	0.83	4.8	24.62
	Newport Road South	0.95	9.7	9+2.64	0.77	3.1	31.47
	Audley End Road West	0.46	0.9	8.30	0.54	1.1	9.32
	London Road North	0.62	1.7	11.52	0.65	1.9	12.62
	Borough Lane South	0.51	1.1	13.31	0.46	0.8	11.61
2020 Basslina	London Road West	0.67	2.1	12.26	0.74	2.8	14.66
2030 Baseline	London Road North	0.90	7. 5	36.80	0.88	6.6	33.05
	Newport Road South	1.03	17.6	148.86	0.82	4.2	41.43
	Audley End Road West	0.49	1.0	8.77	0.57	1.3	10.27
	London Road North	0.62	1.7	11.59	0.66	1.9	12.96
	Borough Lane South	0.54	1.2	13.97	0.47	0.9	11.91
2030 Baseline +	London Road West	0.67	2.1	12.29	0.75	3.0	15.44
Committed	London Road North	0.91	8.5	41.07	0.89	7.1	35.13
Development	Newport Road South	1.04	19.3	160.33	0.84	4.7	45.72
	Audley End Road West	0.49	1.0	8.79	0.58	1.4	10.60
	London Road North	0.62	1.7	11.65	0.66	2.0	13.23
2030 Baseline + Committed Development + Proposed Development	Borough Lane South	0.56	1.3	14.64	0.48	0.9	12.08
	London Road West	0.67	2.1	12.35	0.76	3.1	16.07
	London Road North	0.92	9.5	45.20	0.90	7.4	36.40
	Newport Road South	1.05	20.3	167.73	0.86	5.1	49.21
	Audley End Road West	0.49	1.0	8.82	0.59	1.4	10.86

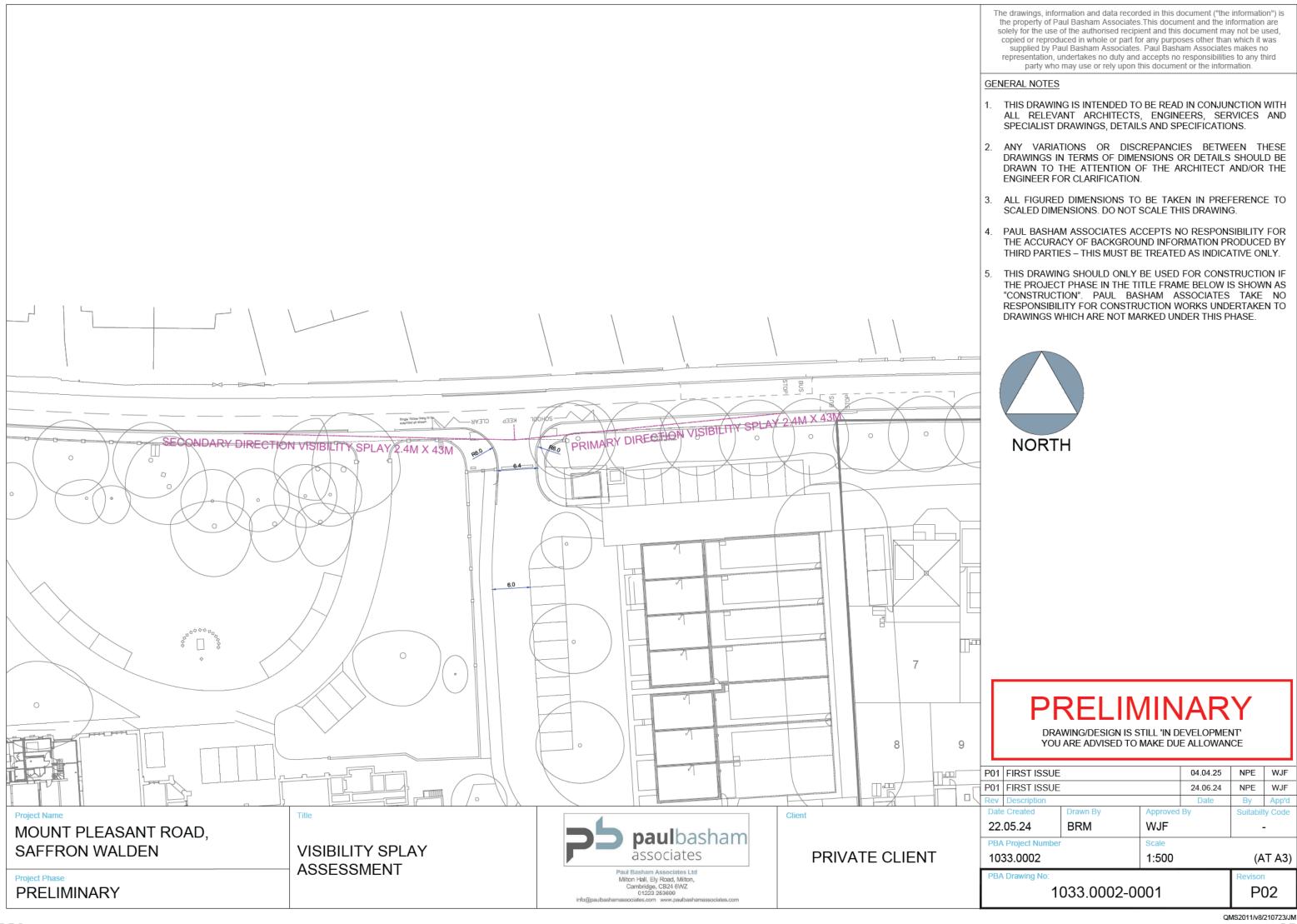
Table 13: Modelling Results – Junction 6: London Road Double Mini Roundabout

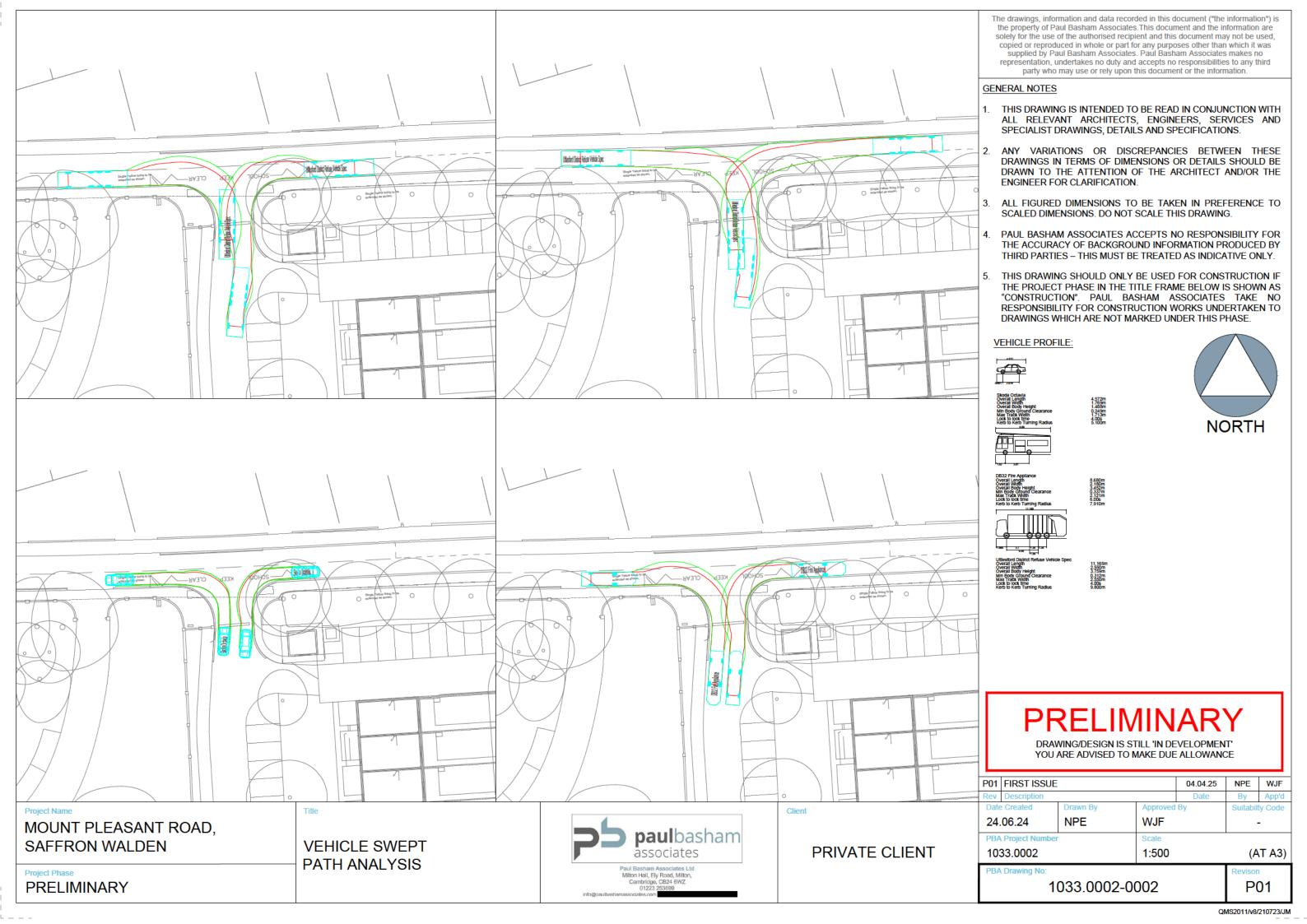
6.47 **Table 13** identifies the Thaxted Road/Peaslands Road Mini Roundabout is forecast to operate within the design capacity, below 0.85 RFC, in the AM and PM peak hours, with a maximum RFC of 0.76 forecast on the London Road West approach during the PM peak hour. Therefore, the proposed development is forecast to have a negligible impact on the operation of the junction during the PM peak hour (17:00-18:00).


- 6.48 **Table 13** identifies the Audley End Road/London Road/ Newport Road Mini Roundabout is currently operating close to theoretical capacity (1.00 RFC) in the AM peak hour (08:00-09:00) in the '2023 Baseline' scenario on the Newport Road South approach with a maximum RFC of 0.95. In the '2030 Baseline' scenario the Newport Road South approach is forecast operate above theoretical capacity (above 1.00 RFC) without the proposed development, with a maximum RFC of 1.03, which is an increase of 0.08 RFC during the AM peak hour (08:00-09:00).
- 6.49 In the '2030 Baseline + Committed Development' scenario the Newport Road South approach is forecast operate above theoretical capacity (above 1.00 RFC) without the proposed development, with a maximum RFC of 1.04, which is an increase of 0.01 RFC from the '2030 Baseline' scenario, in the AM Peak Hour (08:00-09:00).
- 6.50 In the '2030 Baseline + Committed Development + Proposed Development' scenario, the junction is forecast to operate with a maximum RFC of 1.05, which is an increase of 0.01 RFC. Therefore, the proposed development is forecast to have a negligible impact on the operation of the junction during the AM peak hour (08:00-09:00).
- 6.51 **Table 13** identifies that the Audley End Road/London Road/ Newport Road Mini Roundabout is forecast to operate close to design capacity (0.85 RFC) in '2023 Baseline' scenario, with a maximum RFC of 0.85 on the London Road (North) approach. However, the London Road (North) approach is forecast to operate above the design capacity (0.85 RFC) with a maximum RFC of 0.90 in '2030 Baseline + Committed Development' scenario, which is an increase of 0.05 RFC from the '2023 Baseline' scenario.
- 6.52 The maximum RFC at the Audley End Road/London Road/ Newport Road Mini Roundabout is forecast to increase only marginally (0.01 RFC) in the '2030 Baseline + Committed Development + Proposed Development' scenario with a maximum RFC of 0.92, still within operational capacity on the London Road (North) approach. Therefore, the proposed development is forecast to have a negligible impact on the operation of the junction during the PM peak hour (17:00-18:00).

7. SUMMARY AND CONCLUSIONS


- 7.1 This Transport Assessment has been prepared by Paul Basham Associates on behalf of Chase New Homes to accompany a planning application for a residential development comprising 75 dwellings with associated infrastructure and landscaping. As well as the provision of playing fields and associated clubhouse at Former Friends School Fields, Saffron Walden.
- 7.2 Accessibility from the site is considered to be of a good standard given the location of the site in relation to sustainable travel opportunities in terms of pedestrian and cycle links which provide connection to existing facilities and residential areas within Saffron Walden as well as bus and rail services which provide connection to the wider area. Therefore, the site is considered to present a good opportunity to promote sustainable transport to future residents.
- 7.3 The proposed development will be accessed off Mount Pleasant Road as per the existing arrangement.


 Swept path analysis (vehicle tracking) has been undertaken to ensure that the proposed development can be serviced by cars, refuse, emergency, and delivery vehicles.
- 7.4 The proposed development includes a total of 182 total car parking, with at least two car parking spaces provided for dwellings above 2-bedrooms, and one space allocated to the eight 1-bedroom dwellings. This level of parking is considered to be appropriate to meet all demand from the proposed development and to encourage sustainable travel to and from the development in line with the accessible nature of the site. A total of 33 unallocated visitor parking spaces are proposed and considered to be sufficient without leading to overspill parking onto the surrounding local highway network. Cycle parking will be provided in a secure location within curtilage of each house and flats will be provided secure cycle parking storage via a shared communal cycle store.
- 7.5 The proposed development is anticipated to generate 41 vehicle movements in the AM peak hour (08:00-09:00) and 41 vehicle movements in the PM peak hour (17:00-18:00). Therefore, the proposed development is forecast to generate a small number of vehicle movements in the AM and PM peak hours on the local highway network.


- 7.6 The junction capacity assessment has forecast that the proposed development will not have a significant impact on the local highway network. Of the seven junctions assessed, two are forecast to operate over capacity (above 1.00 RFC/100% DoS) in either the AM or PM peak hours in the '2030 Baseline + Committed Development' scenario, without the proposed development. These junctions are the London Road Double Mini Roundabouts and the London Road/Debden Road Mini Roundabout. In the '2030 + Committed Development + Proposed Development' scenario, the proposed development is forecast not to have a significant impact with the operation of the six junctions modelled.
- 7.7 The Transport Assessment has demonstrated that the proposed development will have a negligible impact on the operation of the local highway network and that safe and suitable access is achievable. We would therefore encourage the local highway and planning authorities to look favourably upon this application with regards to highways.

TS045 - Car or van availability

ONS Crown Copyright Reserved [from Nomis on 18 September 2024]

population All households units Households

area type 2021 super output areas - lower layer

area name E01022082 : Uttlesford 002G

Number of cars or vans	2021	No. of Cars	Ave. no. of cars per household
Total: All households	925	-	
No cars or vans in household	90	0	
1 car or van in household	381	381	0.903
2 cars or vans in household	350	350	0.903
3 or more cars or vans in house	104	104	
Total	-	835	

In order to protect against disclosure of personal information, records have been swapped between different geographic areas and counts perturbed by small amounts. Small counts at the lowest geographies will be most affected.

Page 1

Paul Basham Associates Hamble Lane Southampton Licence No: 247601

Calculation Reference: AUDIT-247601-250402-0447

TRIP RATE CALCULATION SELECTION PARAMETERS:

Land Use : 03 - RESIDENTIAL

Category : A - HOUSES PRIVATELY OWNED

Category : A - HOUTOTAL VEHICLES

Selected regions and areas:

02	SOU	TH EAST	
	HC	HAMPSHIRE	1 days
	HF	HERTFORDSHIRE	1 days
	KC	KENT	2 days
03	SOU	TH WEST	
	SD	SWINDON	1 days
04	EAS	ΓANGLIA	
	NF	NORFOLK	2 days
	PB	PETERBOROUGH	1 days
06	WES	T MI DLANDS	
	WK	WARWICKSHIRE	1 days
	WM	WEST MIDLANDS	1 days
07	YOR	KSHIRE & NORTH LINCOLNSHIRE	
	NY	NORTH YORKSHIRE	1 days
80	NOR	TH WEST	
	AC	CHESHIRE WEST & CHESTER	1 days
09	NOR	TH	
	DH	DURHAM	1 days
	IM	ISLE OF MAN	1 days

This section displays the number of survey days per TRICS® sub-region in the selected set

TRICS 7.11.4 310325 B22.164762592 Database right of TRICS Consortium Ltd, 2025. All rights reserved Wednesday 02/04/25

Page 2

Paul Basham Associates Hamble Lane Southampton Licence No: 247601

Primary Filtering selection:

This data displays the chosen trip rate parameter and its selected range. Only sites that fall within the parameter range are included in the trip rate calculation.

Parameter: No of Dwellings Actual Range: 10 to 363 (units:) Range Selected by User: 6 to 4334 (units:)

Parking Spaces Range: All Surveys Included

Parking Spaces per Dwelling Range: All Surveys Included

Bedrooms per Dwelling Range: All Surveys Included

Percentage of dwellings privately owned: All Surveys Included

Public Transport Provision:

Selection by: Include all surveys

Date Range: 01/01/16 to 18/09/24

This data displays the range of survey dates selected. Only surveys that were conducted within this date range are included in the trip rate calculation.

Selected survey days:

Monday 3 days
Tuesday 4 days
Wednesday 4 days
Thursday 3 days

This data displays the number of selected surveys by day of the week.

Selected survey types:

Manual count 14 days
Directional ATC Count 0 days

This data displays the number of manual classified surveys and the number of unclassified ATC surveys, the total adding up to the overall number of surveys in the selected set. Manual surveys are undertaken using staff, whilst ATC surveys are undertaking using machines.

Selected Locations:

Suburban Area (PPS6 Out of Centre) 14

This data displays the number of surveys per main location category within the selected set. The main location categories consist of Free Standing, Edge of Town, Suburban Area, Neighbourhood Centre, Edge of Town Centre, Town Centre and Not Known.

Selected Location Sub Categories:

Residential Zone 14

This data displays the number of surveys per location sub-category within the selected set. The location sub-categories consist of Commercial Zone, Industrial Zone, Development Zone, Residential Zone, Retail Zone, Built-Up Zone, Village, Out of Town, High Street and No Sub Category.

Inclusion of Servicing Vehicles Counts:

Servicing vehicles Included 6 days - Selected Servicing vehicles Excluded 13 days - Selected

Secondary Filtering selection:

Use Class:

C3 14 days

This data displays the number of surveys per Use Class classification within the selected set. The Use Classes Order (England) 2020 has been used for this purpose, which can be found within the Library module of TRICS®.

Population within 500m Range:

All Surveys Included

Paul Basham Associates Hamble Lane Southampton Licence No: 247601

Secondary Filtering selection (Cont.):

Population within 1 mile:

5,001 to 10,000	5 days
10,001 to 15,000	1 days
15,001 to 20,000	4 days
20,001 to 25,000	3 days
25,001 to 50,000	1 days

This data displays the number of selected surveys within stated 1-mile radii of population.

Population within 5 miles:

25,001 to 50,0	000	2 days	ŝ
50,001 to 75,0	000	4 days	ŝ
75,001 to 100	,000	2 days	ŝ
125,001 to 250	0,000	4 days	ŝ
250,001 to 500	0,000	2 days	ŝ

This data displays the number of selected surveys within stated 5-mile radii of population.

Car ownership within 5 miles:

0.6 to 1.0	5 days
1.1 to 1.5	8 days
1.6 to 2.0	1 days

This data displays the number of selected surveys within stated ranges of average cars owned per residential dwelling, within a radius of 5-miles of selected survey sites.

Travel Plan:

Yes	3 days
No	11 days

This data displays the number of surveys within the selected set that were undertaken at sites with Travel Plans in place, and the number of surveys that were undertaken at sites without Travel Plans.

PTAL Rating:

No PTAL Present 14 days

This data displays the number of selected surveys with PTAL Ratings.

Paul Basham Associates Hamble Lane Southampton Licence No: 247601

LIST OF SITES relevant to selection parameters

1 AC-03-A-04 TOWN HOUSES CHESHIRE WEST & CHESTER

LONDON ROAD NORTHWICH LEFTWICH

Suburban Area (PPS6 Out of Centre)

Residential Zone

Total No of Dwellings: 24

Survey date: THURSDAY 06/06/19 Survey Type: MANUAL

P. DH-03-A-01 SEMI DETACHED DURHAM

GREENFIELDS ROAD BISHOP AUCKLAND

Suburban Area (PPS6 Out of Centre)

Residential Zone

Total No of Dwellings: 50

Survey date: TUESDAY 28/03/17 Survey Type: MANUAL

3 HC-03-A-23 HOUSES & FLATS HAMPSHIRE

CANADA WAY LIPHOOK

Suburban Area (PPS6 Out of Centre)

Residential Zone

Total No of Dwellings: 62

Survey date: TUESDAY 19/11/19 Survey Type: MANUAL

4 HF-03-A-07 MI XED HOUSES & BUNGALOWS HERTFORDSHIRE

BAKER STREET POTTERS BAR

Suburban Area (PPS6 Out of Centre)

Residential Zone

Total No of Dwellings: 92

Survey date: MONDAY 25/03/24 Survey Type: MANUAL

IM-03-A-04 MIXED HOUSES ISLE OF MAN

NEW CASTLETOWN ROAD

DOUGLAS

Suburban Area (PPS6 Out of Centre)

Residential Zone

Total No of Dwellings: 73

Survey date: MONDAY 20/05/24 Survey Type: MANUAL

6 KC-03-A-03 MI XED HOUSES & FLATS KENT

HYTHE ROAD ASHFORD

WILLESBOROUGH

Suburban Area (PPS6 Out of Centre)

Residential Zone

Total No of Dwellings: 51

Survey date: THURSDAY 14/07/16 Survey Type: MANUAL

7 KC-03-A-06 MIXED HOUSES & FLATS KENT

MARGATE ROAD HERNE BAY

Suburban Area (PPS6 Out of Centre)

Residential Zone

Total No of Dwellings: 363

Survey date: WEDNESDAY 27/09/17 Survey Type: MANUAL

Licence No: 247601 Southampton Paul Basham Associates Hamble Lane

LIST OF SITES relevant to selection parameters (Cont.)

NORFOLK 8 NF-03-A-51 **SEMI-DETACHED**

CITY ROAD NORWICH

LAKENHAM Suburban Area (PPS6 Out of Centre)

Residential Zone

Total No of Dwellings: 34

Survey date: TUESDAY 13/09/22

Survey Type: MANUAL NORFOLK

NF-03-A-52 MI XED HOUSES

LYNNSPORT WAY KING'S LYNN

Suburban Area (PPS6 Out of Centre)

Residential Zone

Total No of Dwellings: 130

Survey date: TUESDAY 07/11/23 Survey Type: MANUAL

NY-03-A-13 NORTH YORKSHIRE 10 **TERRACED HOUSES**

CATTERICK ROAD CATTERICK GARRISON OLD HOSPITAL COMPOUND Suburban Area (PPS6 Out of Centre) Residential Zone

Total No of Dwellings: 10

Survey date: WEDNESDAY 10/05/17 Survey Type: MANUAL

PB-03-A-04 **DETACHED HOUSES** PETERBÖRÖUGH

EASTFIELD ROAD **PETERBOROUGH**

Suburban Area (PPS6 Out of Centre)

Residential Zone

Total No of Dwellings: 28

Survey Type: MANUAL Survey date: MONDAY 17/10/16

SD-03-A-01 SEMI DETACHED **SWINDON**

HEADLANDS GROVE

SWINDON

Suburban Area (PPS6 Out of Centre)

Residential Zone

27 Total No of Dwellings:

Survey date: THURSDAY 22/09/16 Survey Type: MANUAL

WK-03-A-03 **DETACHED HOUSES** WARWICKSHIRE 13

BRESE AVENUE WARWICK **GUYS CLIFFE** Suburban Area (PPS6 Out of Centre) Residential Zone

Total No of Dwellings: 23 Survey date: WEDNESDAY

25/09/19 Survey Type: MANUAL

WEST MIDLANDS WM-03-A-07 **DETACHED HOUSES**

EVESON ROAD STOURBRIDGE NORTON Suburban Area (PPS6 Out of Centre) Residential Zone

Total No of Dwellings: 14

Survey date: WEDNESDAY 18/09/24 Survey Type: MANUAL

This section provides a list of all survey sites and days in the selected set. For each individual survey site, it displays a unique site reference code and site address, the selected trip rate calculation parameter and its value, the day of the week and date of each survey, and whether the survey was a manual classified count or an ATC count.

MANUALLY DESELECTED SITES

Site Ref	Reason for Deselection
SF-03-A-09	covid

Paul Basham Associates Hamble Lane Southampton Licence No: 247601

TRIP RATE for Land Use 03 - RESIDENTIAL/A - HOUSES PRIVATELY OWNED

TOTAL VEHICLES

Calculation factor: 1 DWELLS

BOLD print indicates peak (busiest) period

	ARRIVALS			[DEPARTURES	6	TOTALS		
	No.	Ave.	Trip	No.	Ave.	Trip	No.	Ave.	Trip
Time Range	Days	DWELLS	Rate	Days	DWELLS	Rate	Days	DWELLS	Rate
00:00 - 01:00									
01:00 - 02:00									
02:00 - 03:00									
03:00 - 04:00									
04:00 - 05:00									
05:00 - 06:00									
06:00 - 07:00									
07:00 - 08:00	14	70	0.067	14	70	0.293	14	70	0.360
08:00 - 09:00	14	70	0.121	14	70	0.422	14	70	0.543
09:00 - 10:00	14	70	0.173	14	70	0.178	14	70	0.351
10:00 - 11:00	14	70	0.138	14	70	0.182	14	70	0.320
11:00 - 12:00	14	70	0.145	14	70	0.150	14	70	0.295
12:00 - 13:00	14	70	0.168	14	70	0.158	14	70	0.326
13:00 - 14:00	14	70	0.187	14	70	0.169	14	70	0.356
14:00 - 15:00	14	70	0.165	14	70	0.198	14	70	0.363
15:00 - 16:00	14	70	0.264	14	70	0.208	14	70	0.472
16:00 - 17:00	14	70	0.334	14	70	0.172	14	70	0.506
17:00 - 18:00	14	70	0.373	14	70	0.178	14	70	0.551
18:00 - 19:00	14	70	0.275	14	70	0.167	14	70	0.442
19:00 - 20:00									
20:00 - 21:00									
21:00 - 22:00									
22:00 - 23:00									
23:00 - 24:00									
Total Rates:	Total Rates: 2.410					2.475			4.885

This section displays the trip rate results based on the selected set of surveys and the selected count type (shown just above the table). It is split by three main columns, representing arrivals trips, departures trips, and total trips (arrivals plus departures). Within each of these main columns are three sub-columns. These display the number of survey days where count data is included (per time period), the average value of the selected trip rate calculation parameter (per time period), and the trip rate result (per time period). Total trip rates (the sum of the column) are also displayed at the foot of the table.

To obtain a trip rate, the average (mean) trip rate parameter value (TRP) is first calculated for all selected survey days that have count data available for the stated time period. The average (mean) number of arrivals, departures or totals (whichever applies) is also calculated (COUNT) for all selected survey days that have count data available for the stated time period. Then, the average count is divided by the average trip rate parameter value, and multiplied by the stated calculation factor (shown just above the table and abbreviated here as FACT). So, the method is: COUNT/TRP*FACT. Trip rates are then rounded to 3 decimal places.

The survey data, graphs and all associated supporting information, contained within the TRICS Database are published by TRICS Consortium Limited ("the Company") and the Company claims copyright and database rights in this published work. The Company authorises those who possess a current TRICS licence to access the TRICS Database and copy the data contained within the TRICS Database for the licence holders' use only. Any resulting copy must retain all copyrights and other proprietary notices, and any disclaimer contained thereon.

The Company accepts no responsibility for loss which may arise from reliance on data contained in the TRICS Database. [No warranty of any kind, express or implied, is made as to the data contained in the TRICS Database.]

Parameter summary

Trip rate parameter range selected: 10 - 363 (units:) Survey date date range: 01/01/16 - 18/09/24

Number of weekdays (Monday-Friday): 14
Number of Saturdays: 0
Number of Sundays: 0
Surveys automatically removed from selection: 4
Surveys manually removed from selection: 1

This section displays a quick summary of some of the data filtering selections made by the TRICS® user. The trip rate calculation parameter range of all selected surveys is displayed first, followed by the range of minimum and maximum survey dates selected by the user. Then, the total number of selected weekdays and weekend days in the selected set of surveys are show. Finally, the number of survey days that have been manually removed from the selected set outside of the standard filtering procedure are displayed.

WU03EW - Location of usual residence and place of work by method of travel to work (MSOA level) ONS Crown Copyright Reserved [from Nomis on 9 October 2023]

All usual residents aged 16 and over in employment the week before the census Persons 2011 All categories: Method of travet to work (2001 specification)

population units date method of travel to work

Part						J3		J4			J2			JS			J6			17	
Charles Char		usual residence	Site acce		Pensland F	load/Hon F	ields	Road/Pc	asland												
Part		actal recitation				,				Lancybea		ong manuse a	mini	Roundab	out	mir	ni roundabe	out	nosa, n	oundabout	
Common C		E02004592 :																			
Second S	place of work	Uttlesford 002	Road	Road	West	North	East	North	South	North	West	South	North	West	South	North	West	South	North	West	South
Second	E02004591 : Uttlesford 001 E02004593 : Littlesford 003		389	130			130	130		195			195								
STATE 1985	E02004594: Uttlesford 004	185		185			185		185											33.3	
Company Comp	E02004596: Uttlesford 006	180	135																		
Second																					
Description 15	E02004599: Uttlesford 009	22	11	11			11		11		11						11				11
Berinder 5	Basildon	16	8																		
### Services 2 2 2 2 2 2 2 2 2				55			33		55	1			1								
Broader				,			,		,	٠,			Ι,								
Controlled	Broadland	0		-			٦		-												
Control processing	Cambridge										11						11				11
Cacheling		1	1	1			1		1		1						1			1	
Decompose Section Se																					
Each Horizonian 190 197	Dacorum	3	3								3		l				-			-	
Persisted	East Hertfordshire	197	197																		
Treat-Inched										32	11		32				11				11
Month	Forest Health	26	26							26			26								
Fund processor 1	Harlow	99	99																		
Single from an investmants	Huntingdonshire	27	27							27	4		27				4				4
Light 12 12 13 14 15 15 15 15 15 15 15				2			2		2	2			2								
Med Cafford Selection 1	Luton	12	12						_		12						12			12	
Mem Nording	Mid Suffo k	4	4	,			1		,	4			4								
Performance										1	45		1				45			22.5	22.5
Rooffeed																					
Submerson-Great 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Rochford	5		5			3		5												
## SEMENATION F. C. 1	Southend-on-Sea	9		9			9		9												
Surface Country Trincing				31			31	31		31	3		31				3			3	
Trendring 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9											4						4			3	1
Thursdox	Tendring	9		9			9		9				l .								
Value Valu	Thurrock	2	2							2			2								
Each Michigane 15 15 15 15 15 15 15 1										2	2		2				2			2	
Section Color Co											17		١.,				17			12.75	4.25
North Nort	London	408	408							326.4	81.6		326.4				81.6			40.8	40.8
South Peak 20 20 20 20 20 20 20 2	North West	5																			
South Week																					
Wales																					
Vortable and The Humber 4	Wales	0																			
EDIZOUGASS Cast Hertforshire DO3	Yorkshire and The Humber	4	4																		
ERIZONO-889 Each Hertfordshire 0.03											6										
EDCOUMERS Cast Hierbrotwhine 1005	E02004880 : East Hertfordshire 003	13	13																		
EEDDOMARRS Each Hertforshire DO7	E02004882 : East Hertfordshire 005	41	41								41										
EDDOLO485 East NetTrostaire 019 6 6 6																					
EDIZOLO4887 East Hetrotroshire 010		9									9										
EDZOUASSS East Hertrorshire 012	E02004887 : East Hertfordshire 010	2	2							-	2										
EDD004891 East Hertrorshire D14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	E02004889 : East Hertfordshire 012	2	2							1	1										
EDZ004893: East Hertforshire 016	E02004891 : East Hertfordshire 014	1	1																		
EBD004894 : East Hertforshire 017 7 7 7										1	1										
ED2003775 : South Cambridgeshire 001										4											
ED2003777 : South Cambridgeshire 0.03 3 3 4 4 4 4 4 4 4	E02003775 : South Cambridgeshire 00	1 1	1							1			1								
ED2003779 South Carbridgeshire 005 7 7 7 7 7 7 7 7 7	E02003777 : South Cambridgeshire 00	3 3	3																		
ED2003780 : South Carnibridgeshire 006																					
ED2003783 : South Carnioridgeshire 009	E02003780 : South Cambridgeshire 00	6 9	9							9			9								
ED2003785 : South Cambridgeshire 011	E02003783 : South Cambridgeshire 00	9 4	4							4			4								
ED2003786 : South Cambridgeshire 012	E02003785 : South Cambridgeshire 01	1 26	26																		
ED2003788 : South Cambridgeshire 014	E02003786 : South Cambridgeshire 01:	2 21	21																		
ED2003791 : South Cambridgeshire 016 39 20 20 20 20 20 20 20 20 20 20 20 20 20	E02003788 : South Cambridgeshire 01	4 14	14																		
ED2003792 : South Cambridgeshire 018	E02003790 : South Cambridgeshire 01	6 39	20	20			20	20		20			20								
E02003793 : South Cambridgeshire 019 11 11 11 11 11 11 11 11 11 11 11 11 1										159			159								6
E02006874 : South Cambridgeshire 021 6 6 3 3 3 3 3 3 3 3 Totals 3 3 Totals 3,414 2,777 637 0 0 637 180 457 1,650 1,127 0 1,650 0 0 0 1,127 0 0 491 636	E02003793 : South Cambridgeshire 01	9 11	11							43			47								
	E02006874 : South Cambridgeshire 02	1 6	6							3			3								

Junctions 9

PICADY 9 - Priority Intersection Module

Version: 9.0.2.5947 © Copyright TRL Limited, 2017

For sales and distribution information, program advice and maintenance, contact TRL:

+44 (0)1344 770558 software@trl.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Junction 1 Site access- Mount Pleasant Road T-junction.j9

Path: P:\Eastern\1031-1040\1033 Chase New Homes\1033.0002 Mount Pleasant Road, Saffron Walden\03

Technical\TPL\Modelling\Junction 1 Site access- Mount Pleasant Road T-junction

Report generation date: 04/04/2025 12:48:20

»2023, AM

»2023, PM

»2030, AM

»2030, PM

»2030 + COM, AM

»2030 + COM, PM

»2030 + COM + DEV, AM

»2030 + COM + DEV, PM

Summary of junction performance

		AM				РМ		
	Queue (PCU)	Delay (s)	RFC	LOS	Queue (PCU)	Delay (s)	RFC	LOS
				20	23			
Stream B-AC	0.0	0.00	0.00	Α	0.0	0.00	0.00	Α
Stream C-AB	0.0	0.00	0.00	Α	0.0	0.00	0.00	Α
		2030						
Stream B-AC	0.0	0.00	0.00	Α	0.0	0.00	0.00	Α
Stream C-AB	0.0	0.00	0.00	Α	0.0	0.00	0.00	Α
			2	2030 +	COM			
Stream B-AC	0.1	9.52	0.10	Α	0.1	9.94	0.06	Α
Stream C-AB	0.0	4.75	0.00	Α	0.0	4.60	0.02	Α
			2030) + C(OM + DEV			
Stream B-AC	0.2	10.53	0.18	В	0.1	10.56	0.10	В
Stream C-AB	0.0	4.75	0.01	A	0.0	4.59	0.03	Α

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	(untitled)
Location	
Site number	
Date	20/10/2023
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	AD\model.pc
Description	

Units

	Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
ĺ	m	kph	PCU	PCU	perHour	S	-Min	perMin

Analysis Options

Calculate Queue Percentiles	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
		0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)	
D1	2023	AM	ONE HOUR	07:45	09:15	15	
D2	2023 PM		ONE HOUR	16:45	18:15	15	
D3	2030	AM	ONE HOUR	07:45	09:15	15	
D4	2030	PM	ONE HOUR	16:45	18:15	15	
D5	2030 + COM	AM	ONE HOUR	07:45	09:15	15	
D6	2030 + COM	PM	ONE HOUR	16:45	18:15	15	
D7	2030 + COM + DEV	AM	ONE HOUR	07:45	09:15	15	
D8	2030 + COM + DEV	PM	ONE HOUR	16:45	18:15	15	

Analysis Set Details

ID	Network flow scaling factor (%)
A 1	100.000

2

2023, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Major arm width	Arm C - Major arm geometry	For two-way major roads, please interpret results with caution if the total major carriageway width is less than 6m.

Junction Network

Junctions

ı	Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
ı	1	Site Access	T-Junction	Two-way	0.00	Α

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Arms

Arms

l	Arm	Name	Description	Arm type
	Α	Mount Pleasant Road East		Major
I	В	Site Access		Minor
I	С	Mount Pleasant Road West		Major

Major Arm Geometry

Arm	Width of carriageway (m)	Has kerbed central reserve	Has right turn bay	Visibility for right turn (m)	Blocks?	Blocking queue (PCU)
С	5.40			180.3	✓	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm		Minor arm type	Lane width (m)	Visibility to left (m)	Visibility to right (m)
ſ	В	One lane	3.00	17	48

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
1	B-A	506	0.095	0.239	0.150	0.342
1	B-C	654	0.103	0.260	-	-
1	С-В	678	0.270	0.270	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.

Streams may be combined, in which case capacity will be adjusted.

Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)		
HV Percentages	2.00		

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		✓	229	100.000
В		✓	0	100.000
С		✓	264	100.000

Origin-Destination Data

Demand (PCU/hr)

	То					
		Α	В	С		
F	Α	0	0	229		
From	В	0	0	0		
	С	264	0	0		

Vehicle Mix

Heavy Vehicle Percentages

	То					
		Α	В	С		
	Α	0	0	0		
From	В	0	0	0		
	С	2	0	0		

Results

Results Summary for whole modelled period

			•	
Stream	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.00	0.00	0.0	А
C-AB	0.00	0.00	0.0	A
C-A				
A-B				
A-C				

Main Results for each time segment

07:45 - 08:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	508	0.000	0	0.0	0.000	A
C-AB	0	632	0.000	0	0.0	0.000	A
C-A	199			199			
A-B	0			0			
A-C	172			172			

08:00 - 08:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	495	0.000	0	0.0	0.000	A
C-AB	0	623	0.000	0	0.0	0.000	A
C-A	237			237			
A-B	0			0			
A-C	206			206			

08:15 - 08:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	478	0.000	0	0.0	0.000	А
C-AB	0	610	0.000	0	0.0	0.000	А
C-A	291			291			
A-B	0			0			
A-C	252			252			

08:30 - 08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	478	0.000	0	0.0	0.000	Α
C-AB	0	610	0.000	0	0.0	0.000	A
C-A	291			291			
A-B	0			0			
A-C	252			252			

08:45 - 09:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	495	0.000	0	0.0	0.000	А
C-AB	0	623	0.000	0	0.0	0.000	A
C-A	237			237			
A-B	0			0			
A-C	206			206			

09:00 - 09:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	508	0.000	0	0.0	0.000	А
C-AB	0	632	0.000	0	0.0	0.000	А
C-A	199			199			
A-B	0			0			
A-C	172			172			

5

2023, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Major arm width	Arm C - Major arm geometry	For two-way major roads, please interpret results with caution if the total major carriageway width is less than 6m.

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	Site Access	T-Junction	Two-way	0.00	Α

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2023	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)		
HV Percentages	2.00		

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		✓	290	100.000
В		✓	0	100.000
С		✓	366	100.000

Origin-Destination Data

Demand (PCU/hr)

	То			
		Α	В	С
F	Α	0	0	290
From	В	0	0	0
	С	366	0	0

Vehicle Mix

Heavy Vehicle Percentages

	То			
		Α	В	С
	Α	0	0	2
From	В	0	0	0
	С	4	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.00	0.00	0.0	А
C-AB	0.00	0.00	0.0	А
C-A				
A-B				
A-C				

Main Results for each time segment

16:45 - 17:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	488	0.000	0	0.0	0.000	А
C-AB	0	619	0.000	0	0.0	0.000	A
C-A	276			276			
A-B	0			0			
A-C	218			218			

17:00 - 17:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	472	0.000	0	0.0	0.000	A
C-AB	0	608	0.000	0	0.0	0.000	А
C-A	329			329			
A-B	0			0			
A-C	261			261			

17:15 - 17:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	449	0.000	0	0.0	0.000	А
C-AB	0	592	0.000	0	0.0	0.000	А
C-A	403			403			
A-B	0			0			
A-C	319			319			

17:30 - 17:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	449	0.000	0	0.0	0.000	А
C-AB	0	592	0.000	0	0.0	0.000	А
C-A	403			403			
A-B	0			0			
A-C	319			319			

7

17:45 - 18:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	472	0.000	0	0.0	0.000	А
C-AB	0	608	0.000	0	0.0	0.000	A
C-A	329			329			
A-B	0			0			
A-C	261			261			

18:00 - 18:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	488	0.000	0	0.0	0.000	Α
C-AB	0	619	0.000	0	0.0	0.000	A
C-A	276			276			
A-B	0			0			
A-C	218			218			

8

2030, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Major arm width	Arm C - Major arm geometry	For two-way major roads, please interpret results with caution if the total major carriageway width is less than 6m.

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	Site Access	T-Junction	Two-way	0.00	Α

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D3	2030	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		✓	241	100.000
В		✓	0	100.000
С		✓	278	100.000

Origin-Destination Data

Demand (PCU/hr)

	То			
		Α	В	O
F	Α	0	0	241
From	В	0	0	0
	С	278	0	0

Vehicle Mix

Heavy Vehicle Percentages

	То			
		Α	В	С
	Α	0	0	0
From	В	0	0	0
	С	2	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.00	0.00	0.0	А
C-AB	0.00	0.00	0.0	А
C-A				
A-B				
A-C				

Main Results for each time segment

07:45 - 08:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	504	0.000	0	0.0	0.000	А
C-AB	0	629	0.000	0	0.0	0.000	A
C-A	209			209			
A-B	0			0			
A-C	181			181			

08:00 - 08:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	491	0.000	0	0.0	0.000	A
C-AB	0	620	0.000	0	0.0	0.000	А
C-A	250			250			
A-B	0			0			
A-C	217			217			

08:15 - 08:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	473	0.000	0	0.0	0.000	А
C-AB	0	607	0.000	0	0.0	0.000	А
C-A	306			306			
A-B	0			0			
A-C	265			265			

08:30 - 08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	473	0.000	0	0.0	0.000	А
C-AB	0	607	0.000	0	0.0	0.000	Α
C-A	306			306			
A-B	0			0			
A-C	265			265			

10

08:45 - 09:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	491	0.000	0	0.0	0.000	А
C-AB	0	620	0.000	0	0.0	0.000	Α
C-A	250			250			
A-B	0			0			
A-C	217			217			

09:00 - 09:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	504	0.000	0	0.0	0.000	А
C-AB	0	629	0.000	0	0.0	0.000	А
C-A	209			209			
A-B	0			0			
A-C	181			181			

11

2030, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Major arm width	Arm C - Major arm geometry	For two-way major roads, please interpret results with caution if the total major carriageway width is less than 6m.

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	Site Access	T-Junction	Two-way	0.00	Α

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D4	2030	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		✓	306	100.000
В		✓	0	100.000
С		✓	387	100.000

Origin-Destination Data

Demand (PCU/hr)

	То			
		Α	В	С
F	Α	0	0	306
From	В	0	0	0
	С	387	0	0

Vehicle Mix

Heavy Vehicle Percentages

	То			
		Α	В	С
	Α	0	0	2
From	В	0	0	0
	C	4	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.00	0.00	0.0	A
C-AB	0.00	0.00	0.0	A
C-A				
A-B				
A-C				

Main Results for each time segment

16:45 - 17:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	483	0.000	0	0.0	0.000	А
C-AB	0	616	0.000	0	0.0	0.000	A
C-A	291			291			
A-B	0			0			
A-C	230			230			

17:00 - 17:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	466	0.000	0	0.0	0.000	A
C-AB	0	604	0.000	0	0.0	0.000	A
C-A	348			348			
A-B	0			0			
A-C	275			275			

17:15 - 17:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	441	0.000	0	0.0	0.000	Α
C-AB	0	588	0.000	0	0.0	0.000	A
C-A	426			426			
A-B	0			0			
A-C	337			337			

17:30 - 17:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	441	0.000	0	0.0	0.000	А
C-AB	0	588	0.000	0	0.0	0.000	А
C-A	426			426			
A-B	0			0			
A-C	337			337			

13

17:45 - 18:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	466	0.000	0	0.0	0.000	А
C-AB	0	604	0.000	0	0.0	0.000	Α
C-A	348			348			
A-B	0			0			
A-C	275			275			

18:00 - 18:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	0	483	0.000	0	0.0	0.000	Α
C-AB	0	616	0.000	0	0.0	0.000	A
C-A	291			291			
A-B	0			0			
A-C	230			230			

14

2030 + COM, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Major arm width		For two-way major roads, please interpret results with caution if the total major carriageway width is less than 6m.

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	Site Access	T-Junction	Two-way	0.66	Α

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D5	2030 + COM	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)	
Α		✓	250	100.000	
В		✓	38	100.000	
С		✓	280	100.000	

Origin-Destination Data

Demand (PCU/hr)

	То					
		Α	В	С		
F	Α	0	9	241		
From	В	31	0	7		
	С	278	2	0		

Vehicle Mix

Heavy Vehicle Percentages

	То				
		Α	В	С	
F	Α	0	0	0	
From	В	0	0	0	
	O	2	0	0	

Results

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.10	9.52	0.1	А
C-AB	0.00	4.75	0.0	А
C-A				
A-B				
A-C				

Main Results for each time segment

07:45 - 08:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	29	455	0.063	28	0.1	8.441	А
C-AB	2	764	0.003	2	0.0	4.750	А
C-A	209			209			
A-B	7			7			
A-C	181			181			

08:00 - 08:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	34	440	0.078	34	0.1	8.865	A
C-AB	3	782	0.003	3	0.0	4.646	А
C-A	249			249			
A-B	8			8			
A-C	217			217			

08:15 - 08:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	42	420	0.100	42	0.1	9.512	А
C-AB	4	807	0.004	4	0.0	4.508	A
C-A	305			305			
A-B	10			10			
A-C	265			265			

08:30 - 08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	42	420	0.100	42	0.1	9.516	А
C-AB	4	807	0.004	4	0.0	4.512	Α
C-A	305			305			
A-B	10			10			
A-C	265			265			

16

08:45 - 09:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	34	440	0.078	34	0.1	8.873	А
C-AB	3	782	0.003	3	0.0	4.653	Α
C-A	249			249			
A-B	8			8			
A-C	217			217			

09:00 - 09:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	29	455	0.063	29	0.1	8.454	Α
C-AB	2	764	0.003	2	0.0	4.752	А
C-A	209			209			
A-B	7			7			
A-C	181			181			

2030 + COM, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Major arm width	Arm C - Major arm geometry	For two-way major roads, please interpret results with caution if the total major carriageway width is less than 6m.

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	Site Access	T-Junction	Two-way	0.34	Α

Junction Network Options

Driving side	Lighting		
Left	Normal/unknown		

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D6	2030 + COM	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)		
HV Percentages	2.00		

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		✓	335	100.000
В		✓	20	100.000
С		✓	394	100.000

Origin-Destination Data

Demand (PCU/hr)

	То				
		Α	В	С	
F	Α	0	29	306	
From	В	16	0	4	
	С	387	7	0	

Vehicle Mix

Heavy Vehicle Percentages

	То			
		Α	В	С
	Α	0	0	2
From	В	0	0	0
	C	4	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.06	9.94	0.1	Α
C-AB	0.02	4.60	0.0	А
C-A				
A-B				
A-C				

Main Results for each time segment

16:45 - 17:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	15	431	0.035	15	0.0	8.651	А
C-AB	8	803	0.010	8	0.0	4.594	А
C-A	288			288			
A-B	22			22			
A-C	230			230			

17:00 - 17:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	18	411	0.044	18	0.0	9.148	A
C-AB	11	830	0.013	11	0.0	4.464	А
C-A	343			343			
A-B	26			26			
A-C	275			275			

17:15 - 17:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	22	384	0.057	22	0.1	9.937	А
C-AB	15	868	0.017	15	0.0	4.297	A
C-A	419			419			
A-B	32			32			
A-C	337			337			

17:30 - 17:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	22	384	0.057	22	0.1	9.939	А
C-AB	15	868	0.017	15	0.0	4.302	Α
C-A	419			419			
A-B	32			32			
A-C	337			337			

19

17:45 - 18:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	18	411	0.044	18	0.0	9.153	А
C-AB	11	830	0.013	11	0.0	4.478	А
C-A	343			343			
A-B	26			26			
A-C	275			275			

18:00 - 18:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	15	431	0.035	15	0.0	8.659	Α
C-AB	8	803	0.010	8	0.0	4.600	А
C-A	288			288			
A-B	22			22			
A-C	230			230			

2030 + COM + DEV, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Major arm width	Arm C - Major arm geometry	For two-way major roads, please interpret results with caution if the total major carriageway width is less than 6m.
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs.

Junction Network

Junctions

	Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
ĺ	1	Site Access	T-Junction	Two-way	1.26	Α

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D7	2030 + COM + DEV	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		✓	257	100.000
В		✓	70	100.000
С		✓	282	100.000

Origin-Destination Data

Demand (PCU/hr)

	То				
From		Α	В	O	
	Α	0	16	241	
	В	57	0	13	
	С	278	4	0	

Vehicle Mix

Heavy Vehicle Percentages

	То			
From		Α	В	O
	Α	0	0	0
	В	0	0	0
	С	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.18	10.53	0.2	В
C-AB	0.01	4.75	0.0	А
C-A				
A-B				
A-C				

Main Results for each time segment

07:45 - 08:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	53	454	0.116	52	0.1	8.952	А
C-AB	4	763	0.005	4	0.0	4.745	А
C-A	208			208			
A-B	12			12			
A-C	181			181			

08:00 - 08:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	63	439	0.143	63	0.2	9.565	А
C-AB	5	780	0.007	5	0.0	4.643	А
C-A	248			248			
A-B	14			14			
A-C	217			217			

08:15 - 08:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	77	419	0.184	77	0.2	10.517	В
C-AB	7	806	0.009	7	0.0	4.507	Α
C-A	303			303			
A-B	18			18			
A-C	265			265			

08:30 - 08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	77	419	0.184	77	0.2	10.531	В
C-AB	7	806	0.009	7	0.0	4.508	А
C-A	303			303			
A-B	18			18			
A-C	265			265			

08:45 - 09:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	63	439	0.143	63	0.2	9.581	А
C-AB	5	780	0.007	5	0.0	4.643	А
C-A	248			248			
A-B	14			14			
A-C	217			217			

09:00 - 09:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	53	454	0.116	53	0.1	8.983	Α
C-AB	4	763	0.005	4	0.0	4.747	А
C-A	208			208			
A-B	12			12			
A-C	181			181			

2030 + COM + DEV, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Major arm width	Arm C - Major arm geometry	For two-way major roads, please interpret results with caution if the total major carriageway width is less than 6m.
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs.

Junction Network

Junctions

Junction	Name	Junction Type	Major road direction	Junction Delay (s)	Junction LOS
1	Site Access	T-Junction	Two-way	0.57	Α

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D8	2030 + COM + DEV	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
Α		✓	358	100.000
В		✓	33	100.000
С		✓	399	100.000

Origin-Destination Data

Demand (PCU/hr)

		То									
		Α	В	С							
F	Α	0	52	306							
From	В	27	0	6							
	С	387	12	0							

Vehicle Mix

Heavy Vehicle Percentages

	То									
		Α	В	ပ						
F	Α	0	0	0						
From	В	0	0	0						
	С	0	0	0						

Results

Results Summary for whole modelled period

Stream	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.10	10.56	0.1	В
C-AB	0.03	4.59	0.0	A
C-A				
A-B				
A-C				

Main Results for each time segment

16:45 - 17:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	25	425	0.058	25	0.1	8.976	А
C-AB	14	799	0.018	14	0.0	4.586	A
C-A	286			286			
A-B	39			39			
A-C	230			230			

17:00 - 17:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	30	405	0.073	30	0.1	9.583	А
C-AB	19	825	0.023	19	0.0	4.463	А
C-A	340			340			
A-B	47			47			
A-C	275			275			

17:15 - 17:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	36	377	0.096	36	0.1	10.554	В
C-AB	26	863	0.030	26	0.0	4.302	A
C-A	413			413			
A-B	57			57			
A-C	337			337			

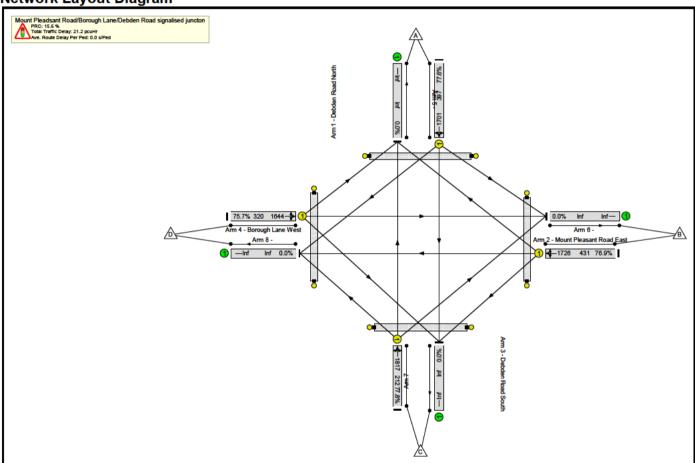
17:30 - 17:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	36	377	0.096	36	0.1	10.561	В
C-AB	26	863	0.030	26	0.0	4.303	А
C-A	413			413			
A-B	57			57			
A-C	337			337			

17:45 - 18:00

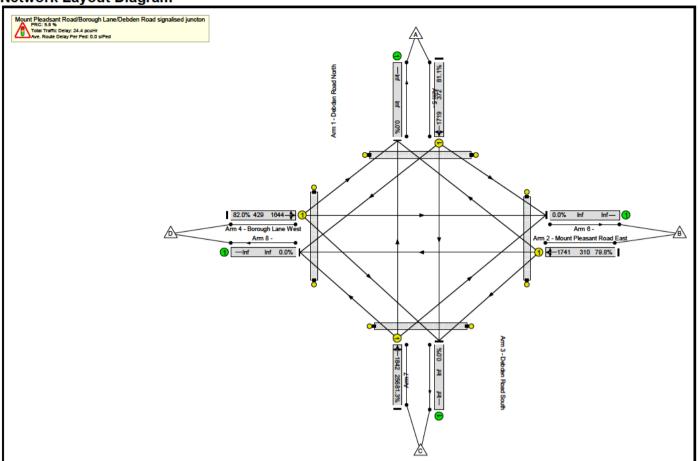
Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	30	405	0.073	30	0.1	9.590	А
C-AB	19	825	0.023	19	0.0	4.465	А
C-A	340			340			
A-B	47			47			
A-C	275			275			

18:00 - 18:15

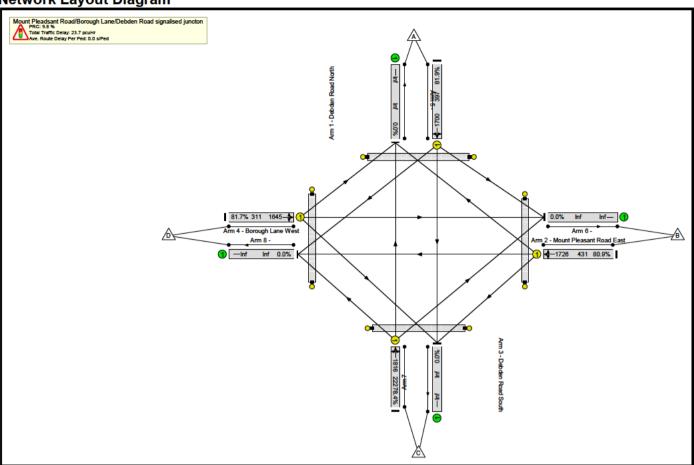

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
B-AC	25	425	0.058	25	0.1	8.990	Α
C-AB	14	799	0.018	14	0.0	4.587	А
C-A	286			286			
A-B	39			39			
A-C	230			230			

Basic Results Summary Basic Results Summary

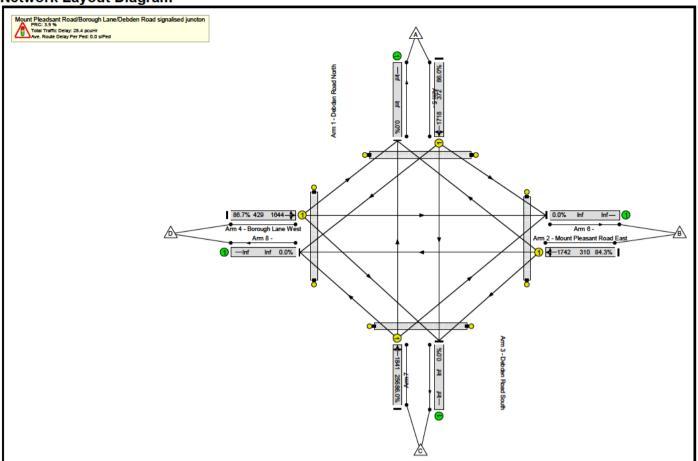
User and Project Details


Project:	
Title:	
Location:	
Additional detail:	
File name:	Mount Pleasant Road-Debden Road-Borough Lane - 2025.lsg3x
Author:	
Company:	
Address:	

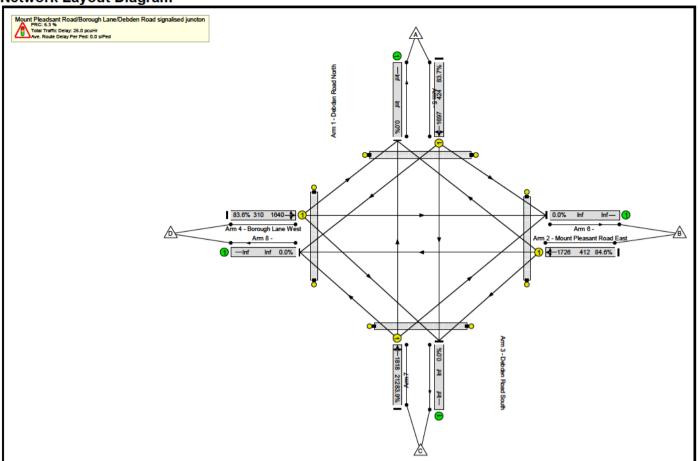
Scenario 1: '2023 AM' (FG1: '2023 AM', Plan 1: 'Network Control Plan 1')


Item	Lane Description	Lane Type	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Mean Max Queue (pcu)
Network	-	-	-		-	-	-	-	-	-	77.8%	0	0	0	21.2	-	-
Mount Pleadsant Road/Borough Lane/Debden Road signalised juncton	-	-	-		-	-	-	-	-	-	77.8%	0	0	0	21.2	-	-
1/1	Debden Road North Left Ahead Right	U	A		1	41	-	308	1701	397	77.6%	-	-	-	7.2	84.1	16.0
2/1	Mount Pleasant Road East Right Left Ahead	U	В		2	43	-	332	1726	431	76.9%	-	-	-	4.5	48.9	9.4
3/1	Debden Road South Ahead Right Left	U	С		2	19	-	165	1817	212	77.8%	-	-	-	3.4	74.4	5.6
4/1	Borough Lane West Left Ahead Right	U	D		1	34	-	242	1644	320	75.7%	-	-	-	6.1	90.8	12.9
Ped Link: P1	Debden Road North	-	Е		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P2	Mopunt Pleasant Road East	-	F		1	5	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P3	Debden Road South	_	G		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P4	Borough Lane West	-	Н		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
	С	1			illed Lanes (All Lanes (%		5.6 5.6			d Lanes (pcul All Lanes(pcul		1.22 (1.22	Cycle Time (s): 18	0	-		

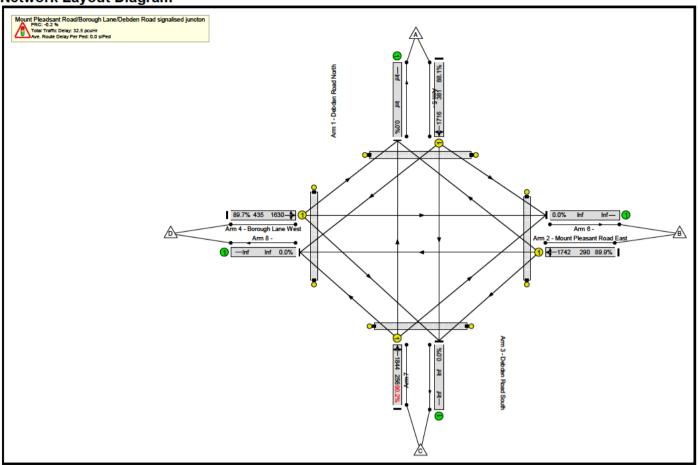
Basic Results Summary Scenario 2: '2023 PM' (FG2: '2023 PM', Plan 1: 'Network Control Plan 1')


Item	Lane Description	Lane Type	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Mean Max Queue (pcu)
Network	-	-	-		-	-	-	-	-	-	82.0%	0	0	0	24.4	-	-
Mount Pleadsant Road/Borough Lane/Debden Road signalised juncton	-	-	-		-	-	-	-	-	-	82.0%	0	0	0	24.4	-	-
1/1	Debden Road North Left Ahead Right	U	A		1	38	-	302	1719	372	81.1%	-	-	-	7.6	91.2	16.4
2/1	Mount Pleasant Road East Right Left Ahead	U	В		2	30	-	247	1741	310	79.8%	-	-	-	4.3	62.9	8.3
3/1	Debden Road South Ahead Right Left	U	С		2	23	-	208	1842	256	81.3%	-	-	-	4.2	72.8	7.6
4/1	Borough Lane West Left Ahead Right	U	D		1	46	-	352	1644	429	82.0%	-	-	-	8.3	84.6	18.7
Ped Link: P1	Debden Road North	-	Е		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P2	Mopunt Pleasant Road East	-	F		1	5	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P3	Debden Road South	_	G		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P4	Borough Lane West	-	Н		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
	С	1			illed Lanes (All Lanes (%		9.8 9.8	Total Dela Tota	ay for Signalle I Delay Over	d Lanes (pcul All Lanes(pcul	Hr): 2 Hr): 2	4.44 (4.44	Cycle Time (s): 18	0	-		

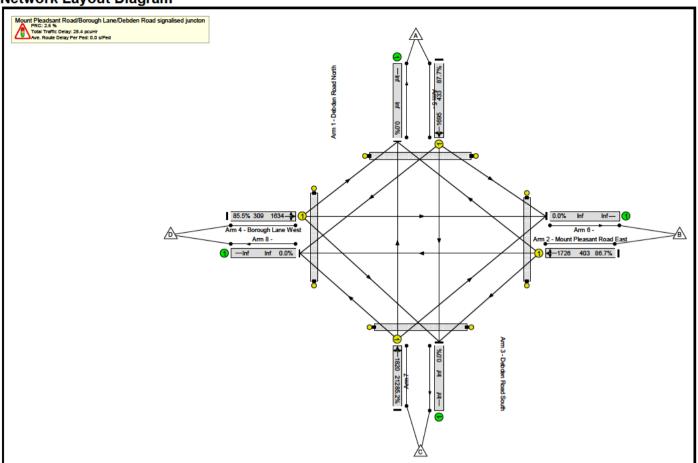
Scenario 3: '2030 AM' (FG3: '2030 AM', Plan 1: 'Network Control Plan 1')


Item	Lane Description	Lane Type	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Mean Max Queue (pcu)
Network	-	-	-		-	-	-	-	-	-	81.9%	0	0	0	23.7	-	-
Mount Pleadsant Road/Borough Lane/Debden Road signalised juncton	-	-	-		-	-	-	-	-	-	81.9%	0	0	0	23.7	-	-
1/1	Debden Road North Left Ahead Right	U	A		1	41	-	325	1700	397	81.9%	-	-	-	8.0	89.1	17.5
2/1	Mount Pleasant Road East Right Left Ahead	U	В		2	43	-	349	1726	431	80.9%	-	-	-	5.1	52.5	10.3
3/1	Debden Road South Ahead Right Left	U	С		2	20	-	174	1816	222	78.4%	-	-	-	3.5	73.4	5.9
4/1	Borough Lane West Left Ahead Right	U	D		1	33	-	254	1645	311	81.7%	-	-	-	7.0	99.6	14.2
Ped Link: P1	Debden Road North	_	Е		1	7	_	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P2	Mopunt Pleasant Road East	-	F		1	5	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P3	Debden Road South	_	G		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P4	Borough Lane West	-	Н		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
	С	1			illed Lanes (All Lanes (%		9.8 9.8			d Lanes (pcul All Lanes(pcul		3.71 (3.71	Cycle Time (s): 18	0	-		

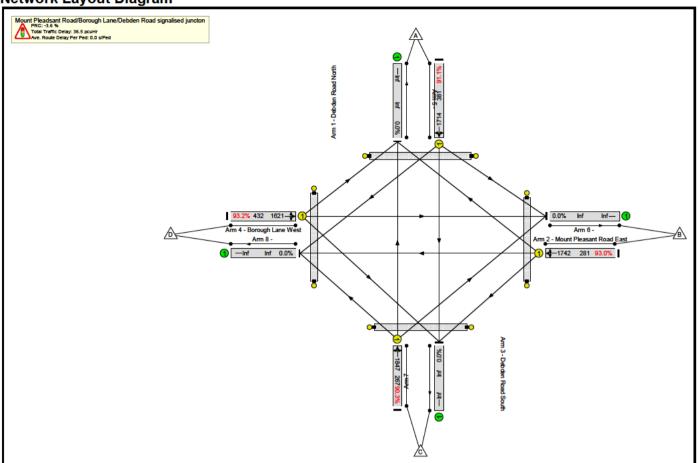
Basic Results Summary Scenario 4: '2030 PM' (FG4: '2030 PM', Plan 1: 'Network Control Plan 1')


Item	Lane Description	Lane Type	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Mean Max Queue (pcu)
Network	-	-	-		-	-	-	-	-	-	86.7%	0	0	0	28.4	-	-
Mount Pleadsant Road/Borough Lane/Debden Road signalised juncton	-	-	-		-	-	-	-	-	-	86.7%	0	0	0	28.4	-	-
1/1	Debden Road North Left Ahead Right	U	A		1	38	-	320	1718	372	86.0%	-	-	-	8.8	99.0	18.1
2/1	Mount Pleasant Road East Right Left Ahead	U	В		2	30	-	261	1742	310	84.3%	-	-	-	5.1	69.8	9.4
3/1	Debden Road South Ahead Right Left	U	С		2	23	-	220	1841	256	86.0%	-	-	-	5.0	82.3	8.7
4/1	Borough Lane West Left Ahead Right	U	D		1	46	-	372	1644	429	86.7%	-	-	-	9.5	92.0	20.6
Ped Link: P1	Debden Road North	_	Е		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P2	Mopunt Pleasant Road East	-	F		1	5	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P3	Debden Road South	-	G		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P4	Borough Lane West	-	Н		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
	C1 PRC for Signalled Lanes (%): 3.9 Total Delay for Signalled Lanes (pcuHr): 28.40 Cycle Time (s): 180 PRC Over All Lanes (%): 3.9 Total Delay Over All Lanes(pcuHr): 28.40													0			

Scenario 5: '2030 + Com AM' (FG5: '2030 + Com AM', Plan 1: 'Network Control Plan 1')


Item	Lane Description	Lane Type	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Mean Max Queue (pcu)
Network	-	-	-		-	-	-	-	-	-	84.6%	0	0	0	26.0	-	-
Mount Pleadsant Road/Borough Lane/Debden Road signalised juncton	-	-	-		-	-	-	-	-	-	84.6%	0	0	0	26.0	-	-
1/1	Debden Road North Left Ahead Right	U	A		1	44	-	355	1697	424	83.7%	-	-	-	8.7	88.3	19.2
2/1	Mount Pleasant Road East Right Left Ahead	U	В		2	41	-	349	1726	412	84.6%	-	-	-	5.7	59.0	11.0
3/1	Debden Road South Ahead Right Left	U	С		2	19	-	178	1818	212	83.9%	-	-	-	4.2	85.4	6.7
4/1	Borough Lane West Left Ahead Right	U	D		1	33	-	259	1640	310	83.6%	-	-	-	7.4	102.8	14.8
Ped Link: P1	Debden Road North	_	Е		1	7	_	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P2	Mopunt Pleasant Road East	-	F		1	5	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P3	Debden Road South	_	G		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P4	Borough Lane West	-	Н		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
	С	1			illed Lanes (All Lanes (%		6.3 6.3			d Lanes (pcul All Lanes(pcul		6.05 (6.05	Cycle Time (s): 18	0	-		

Scenario 6: '2030 +Com PM' (FG6: '2030 + Com PM', Plan 1: 'Network Control Plan 1')


Item	Lane Description	Lane Type	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Mean Max Queue (pcu)
Network	-	-	-		-	-	-	-	-	-	90.2%	0	0	0	32.5	-	-
Mount Pleadsant Road/Borough Lane/Debden Road signalised juncton	-	-	-		-	-	-	-	-	-	90.2%	0	0	0	32.5	-	-
1/1	Debden Road North Left Ahead Right	U	A		1	39	-	336	1716	381	88.1%	-	-	-	9.6	102.4	19.5
2/1	Mount Pleasant Road East Right Left Ahead	U	В		2	28	-	261	1742	290	89.9%	-	-	-	6.3	86.5	10.6
3/1	Debden Road South Ahead Right Left	U	С		2	23	-	231	1844	256	90.2%	-	-	-	6.1	94.6	10.0
4/1	Borough Lane West Left Ahead Right	U	D		1	47	-	390	1630	435	89.7%	-	-	-	10.6	98.1	22.5
Ped Link: P1	Debden Road North	-	Е		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P2	Mopunt Pleasant Road East	-	F		1	5	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P3	Debden Road South	_	G		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P4	Borough Lane West	-	Н		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
	С	1			illed Lanes (All Lanes (%		0.2 0.2	Total Dela Tota	ay for Signalle I Delay Over	d Lanes (pcul All Lanes(pcul	Hr): 3 Hr): 3	2.54 (2.54	Cycle Time (s): 18	0	-		

Scenario 7: '2030 + Com + Dev AM' (FG7: '2030 + Com + Dev AM', Plan 1: 'Network Control Plan 1')

Item	Lane Description	Lane Type	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Mean Max Queue (pcu)
Network	-	-	-		-	-	-	-	-	-	87.7%	0	0	0	28.4	-	-
Mount Pleadsant Road/Borough Lane/Debden Road signalised juncton	-	-	-		-	-	-	-	-	-	87.7%	0	0	0	28.4	-	-
1/1	Debden Road North Left Ahead Right	U	A		1	45	-	380	1695	433	87.7%	-	-	-	10.0	94.5	21.3
2/1	Mount Pleasant Road East Right Left Ahead	U	В		2	40	-	349	1726	403	86.7%	-	-	-	6.1	63.4	11.5
3/1	Debden Road South Ahead Right Left	U	С		2	19	-	181	1820	212	85.2%	-	-	-	4.5	88.6	6.9
4/1	Borough Lane West Left Ahead Right	U	D		1	33	-	264	1634	309	85.5%	-	-	-	7.8	106.7	15.4
Ped Link: P1	Debden Road North	_	Е		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P2	Mopunt Pleasant Road East	-	F		1	5	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P3	Debden Road South	-	G		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P4	Borough Lane West	-	Н		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
	С	1			illed Lanes (All Lanes (%		2.6 2.6			d Lanes (pcul All Lanes(pcul		8.40 (8.40	Cycle Time (s): 18	0	-		

Scenario 8: '2030 + Com + Dev PM' (FG8: '2030 + Com + Dev PM', Plan 1: 'Network Control Plan 1')

Item	Lane Description	Lane Type	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (%)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Mean Max Queue (pcu)
Network	-	-	-		-	-	-	-	-	-	93.2%	0	0	0	36.5	-	-
Mount Pleadsant Road/Borough Lane/Debden Road signalised juncton	-	-	-		-	-	-	-	-	-	93.2%	0	0	0	36.5	-	-
1/1	Debden Road North Left Ahead Right	U	А		1	39	-	347	1714	381	91.1%	-	-	-	10.7	111.0	21.0
2/1	Mount Pleasant Road East Right Left Ahead	U	В		2	27	-	261	1742	281	93.0%	-	-	-	7.3	100.3	11.6
3/1	Debden Road South Ahead Right Left	U	С		2	24	-	241	1847	267	90.3%	-	-	-	6.2	93.1	10.4
4/1	Borough Lane West Left Ahead Right	U	D		1	47	-	403	1621	432	93.2%	-	-	-	12.3	110.0	24.7
Ped Link: P1	Debden Road North	-	Е		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P2	Mopunt Pleasant Road East	-	F		1	5	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P3	Debden Road South	_	G		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
Ped Link: P4	Borough Lane West	_	Н		1	7	-	0	-	0	0.0%	-	-	-	-	-	-
	C1 PRC for Signalled Lanes (%): -3.6 Total Delay for Signalled Lanes (pcuHr): 36.51 Cycle Time (s): 180 PRC Over All Lanes (%): -3.6 Total Delay Over All Lanes(pcuHr): 36.51																

Junctions 9

ARCADY 9 - Roundabout Module

Version: 9.0.2.5947 © Copyright TRL Limited, 2017

For sales and distribution information, program advice and maintenance, contact TRL:

+44 (0)1344 770558 software@trl.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Junction 3 Peaslands Road- Hop Fields Mini-Roundabout - 2025.j9

Path: P:\Eastern\1031-1040\1033 Chase New Homes\1033.0002 Mount Pleasant Road, Saffron Walden\03

Technical\TPL\Modelling\Junction 3 Peaslands Road- Hop Fields Mini-Roundabout

Report generation date: 04/04/2025 13:04:20

»2023, AM

»2023, PM

»2030, AM

»2030, PM

»2030 + COM, AM

»2030 + COM, PM

»2030 + COM + PROPOSED DEV, AM

»2030 + COM + PROPOSED DEV, PM

Summary of junction performance

		AM				PM		
	Queue (PCU)	Delay (s)	RFC	LOS	Queue (PCU)	Delay (s)	RFC	LOS
				20	23			
Arm 1	0.6	6.05	0.36	Α	0.3	5.00	0.26	Α
Arm 2	0.1	4.99	0.08	Α	0.0	4.31	0.01	Α
Arm 3	0.6	6.25	0.39	Α	0.2	4.53	0.18	Α
				20	30			
Arm 1	0.6	6.25	0.38	Α	0.4	5.11	0.27	Α
Arm 2	0.1	5.09	0.09	Α	0.0	4.35	0.01	Α
Arm 3	0.7	6.48	0.41	Α	0.2	4.59	0.19	Α
			2	030 +	COM			
Arm 1	0.7	6.33	0.39	Α	0.4	5.11	0.27	Α
Arm 2	0.1	5.12	0.09	Α	0.0	4.35	0.01	Α
Arm 3	0.7	6.50	0.41	Α	0.3	4.63	0.20	Α
		2030	+ CO	M + P	ROPOSED D	EV		
Arm 1	0.7	6.22	0.40	Α	0.4	5.13	0.28	Α
Arm 2	0.1	5.15	0.09	Α	0.0	4.36	0.01	Α
Arm 3	0.7	6.40	0.41	Α	0.3	4.67	0.21	Α

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	(untitled)
Location	
Site number	
Date	19/10/2023
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	AD\model.pc
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	S	-Min	perMin

Analysis Options

Mini-roundabout model	Calculate Queue Percentiles	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
JUNCTIONS 9			0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023	AM	ONE HOUR	07:45	09:15	15
D2	2023	PM	ONE HOUR	16:45	18:15	15
D3	2030	AM	ONE HOUR	07:45	09:15	15
D4	2030	PM	ONE HOUR	16:45	18:15	15
D5	2030 + COM	AM	ONE HOUR	07:45	09:15	15
D6	2030 + COM	PM	ONE HOUR	16:45	18:15	15
D7	2030 + COM + PROPOSED DEV	AM	ONE HOUR	07:45	09:15	15
D8	2030 + COM + PROPOSED DEV	PM	ONE HOUR	16:45	18:15	15

Analysis Set Details

ID	Network flow scaling factor (%)
A1	100.000

2

2023, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Mini-roundabout		Mini-roundabout appears to have unbalanced flows and may behave like a priority junction; treat results with caution. See User Guide for details.[Arms 1 and 3 have 92% of the total flow for the roundabout for one or more time segments]

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	6.06	Α

Junction Network Options

Driving side	Lighting	Road surface	In London
Left	Normal/unknown	Normal/unknown	

Arms

Arms

Arm	Name	Description
1	Peaslands Road West	
2	Hop Fields North	
3	Peaslands Road East	

Mini Roundabout Geometry

Arm	Approach road half-width (m)	Minimum approach road half-width (m)	Entry width (m)	Effective flare length (m)	Distance to next arm (m)	Entry corner kerb line distance (m)	Gradient over 50m (%)	Kerbed central island
1	3.00	3.00	3.00	0.0	5.00	2.00	0.0	
2	3.00	3.00	3.00	0.0	5.00	2.00	0.0	
3	3.00	3.00	3.00	0.0	5.00	2.00	0.0	

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Arm	Final slope	Final intercept (PCU/hr)
1	0.590	985
2	0.590	985
3	0.590	985

The slope and intercept shown above include any corrections and adjustments.

Traffic Demand

Demand Set Details

ĺ	ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
I	D1	2023	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)		
HV Percentages	2.00		

Demand overview (Traffic)

Arm	m Linked arm Use O-D data		Use O-D data Average Demand (PCU/hr)	
1		✓	320	100.000
2		✓	57	100.000
3		✓	339	100.000

Origin-Destination Data

Demand (PCU/hr)

	То					
		1	2	3		
	1	0	11	309		
From	2	30	0	27		
	3	316	23	0		

Vehicle Mix

Heavy Vehicle Percentages

	То				
		1	2	3	
	1	0	0	4	
From	2	0	0	0	
	3	3	0	0	

Results

Results Summary for whole modelled period

Arm	Max RFC Max delay (s) Max Queu		Max Queue (PCU)	Max LOS
1	0.36	6.05	0.6	А
2	0.08	4.99	0.1	А
3	0.39	6.25	0.6	Α

Main Results for each time segment

07:45 - 08:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	241	17	975	0.247	240	0.3	5.076	А
2	43	231	848	0.051	43	0.1	4.467	А
3	255	22	972	0.263	254	0.4	5.144	А

08:00 - 08:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	288	21	973	0.296	287	0.4	5.453	А
2	51	277	821	0.062	51	0.1	4.675	A
3	305	27	969	0.315	304	0.5	5.564	А

08:15 - 08:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	352	25	970	0.363	352	0.6	6.041	А
2	63	340	784	0.080	63	0.1	4.987	А
3	373	33	965	0.387	373	0.6	6.233	А

08:30 - 08:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	352	25	970	0.363	352	0.6	6.053	А
2	63	340	784	0.080	63	0.1	4.990	A
3	373	33	965	0.387	373	0.6	6.248	А

08:45 - 09:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	288	21	973	0.296	288	0.4	5.469	А
2	51	278	821	0.062	51	0.1	4.679	А
3	305	27	969	0.315	305	0.5	5.582	А

09:00 - 09:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	241	17	975	0.247	241	0.3	5.100	А
2	43	233	847	0.051	43	0.1	4.475	А
3	255	23	972	0.263	256	0.4	5.171	А

5

2023, PM

Data Errors and Warnings

Severity	everity Area Item		Description		
Warning	Mini-roundabout		Mini-roundabout appears to have unbalanced flows and may behave like a priority junction; treat results with caution. See User Guide for details.[Arms 1 and 3 have 97% of the total flow for the roundabout for one or more time segments]		

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	4.79	А

Junction Network Options

Driving side	Lighting	Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2023	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)	
1		✓	229	100.000	
2	✓		10	100.000	
3		✓	163	100.000	

Origin-Destination Data

Demand (PCU/hr)

		То				
From		1 2 3				
	1	0	16	213		
From	2	5	0	5		
	3	153	10	0		

Vehicle Mix

	То			
		1	2	3
F	1	0	0	1
From	2	0	0	0
	3	1	0	0

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
1	0.26	5.00	0.3	А
2	0.01	4.31	0.0	А
3	0.18	4.53	0.2	А

Main Results for each time segment

16:45 - 17:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	172	7	980	0.176	172	0.2	4.487	Α
2	8	160	891	0.008	7	0.0	4.075	А
3	123	4	983	0.125	122	0.1	4.220	А

17:00 - 17:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	206	9	980	0.210	206	0.3	4.693	Α
2	9	191	872	0.010	9	0.0	4.171	А
3	147	4	982	0.149	146	0.2	4.347	Α

17:15 - 17:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	252	11	978	0.258	252	0.3	4.998	А
2	11	234	847	0.013	11	0.0	4.307	А
3	179	5	982	0.183	179	0.2	4.527	А

17:30 - 17:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	252	11	978	0.258	252	0.3	5.002	А
2	11	235	846	0.013	11	0.0	4.308	А
3	179	6	982	0.183	179	0.2	4.529	А

17:45 - 18:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	206	9	980	0.210	206	0.3	4.701	Α
2	9	192	872	0.010	9	0.0	4.172	Α
3	147	5	982	0.149	147	0.2	4.349	А

18:00 - 18:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	172	8	980	0.176	173	0.2	4.500	Α
2	8	161	890	0.008	8	0.0	4.078	А
3	123	4	983	0.125	123	0.1	4.226	А

2030, AM

Data Errors and Warnings

Severity	Severity Area Item		Description
Warning	Mini-roundabout		Mini-roundabout appears to have unbalanced flows and may behave like a priority junction; treat results with caution. See User Guide for details.[Arms 1 and 3 have 92% of the total flow for the roundabout for one or more time segments]

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	6.27	Α

Junction Network Options

Driving side	Lighting	Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

	ID Scenario name Time Period name		Traffic profile type Start time (HH:mm)		Finish time (HH:mm)	Time segment length (min)	
ſ	D3	2030	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Arm Linked arm Use O-D data		Average Demand (PCU/hr)	Scaling Factor (%)	
1		✓	337	100.000	
2		✓	60	100.000	
3		✓	357	100.000	

Origin-Destination Data

Demand (PCU/hr)

	То							
		1	2	3				
	1	0	12	325				
From	2	32	0	28				
	3	333	24	0				

Vehicle Mix

	То					
		1	2	3		
F	1	0	0	4		
From	2	0	0	0		
	3	3	0	0		

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS	
1	0.38	6.25	0.6	А	
2	0.09	5.09	0.1	А	
3	0.41	6.48	0.7	Α	

Main Results for each time segment

07:45 - 08:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	254	18	974	0.260	252	0.4	5.167	Α
2	45	243	841	0.054	45	0.1	4.519	А
3	269	24	971	0.277	267	0.4	5.248	А

08:00 - 08:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	303	22	972	0.312	303	0.5	5.579	Α
2	54	292	813	0.066	54	0.1	4.744	А
3	321	29	968	0.332	320	0.5	5.712	А

08:15 - 08:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	371	26	969	0.383	370	0.6	6.236	А
2	66	357	774	0.085	66	0.1	5.083	А
3	393	35	964	0.408	392	0.7	6.461	Α

08:30 - 08:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	371	26	969	0.383	371	0.6	6.248	А
2	66	358	774	0.085	66	0.1	5.086	А
3	393	35	964	0.408	393	0.7	6.479	А

08:45 - 09:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	303	22	972	0.312	304	0.5	5.597	А
2	54	293	812	0.066	54	0.1	4.749	А
3	321	29	968	0.332	322	0.5	5.735	А

09:00 - 09:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	254	18	974	0.260	254	0.4	5.194	A
2	45	245	840	0.054	45	0.1	4.529	A
3	269	24	971	0.277	269	0.4	5.281	А

2030, PM

Data Errors and Warnings

Severity	erity Area Item		Description
Warning	Mini-roundabout		Mini-roundabout appears to have unbalanced flows and may behave like a priority junction; treat results with caution. See User Guide for details.[Arms 1 and 3 have 97% of the total flow for the roundabout for one or more time segments]

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	4.88	А

Junction Network Options

	Driving side	Lighting	Road surface	In London
ſ	Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

	ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
Ī	D4	2030	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Arm Linked arm Use O-D data		Average Demand (PCU/hr)	Scaling Factor (%)	
1		✓	242	100.000	
2	2 ✓		10	100.000	
3		✓	173	100.000	

Origin-Destination Data

Demand (PCU/hr)

	То						
From		1	2	3			
	1	0	17	225			
	2	5	0	5			
	3	162	11	0			

Vehicle Mix

	То				
		1	2	3	
F	1	0	0	1	
From	2	0	0	0	
	3	1	0	0	

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
1	0.27	5.11	0.4	А
2	0.01	4.35	0.0	А
3	0.19	4.59	0.2	А

Main Results for each time segment

16:45 - 17:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	182	8	980	0.186	181	0.2	4.544	А
2	8	169	885	0.009	7	0.0	4.100	А
3	130	4	983	0.133	130	0.2	4.257	А

17:00 - 17:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	218	10	979	0.222	217	0.3	4.769	А
2	9	202	866	0.010	9	0.0	4.202	А
3	156	4	982	0.158	155	0.2	4.395	Α

17:15 - 17:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	266	12	978	0.273	266	0.4	5.103	А
2	11	247	839	0.013	11	0.0	4.348	А
3	190	5	982	0.194	190	0.2	4.590	А

17:30 - 17:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	266	12	978	0.273	266	0.4	5.107	А
2	11	248	839	0.013	11	0.0	4.349	А
3	190	6	982	0.194	190	0.2	4.592	А

17:45 - 18:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	218	10	979	0.222	218	0.3	4.775	Α
2	9	203	865	0.010	9	0.0	4.203	А
3	156	5	982	0.158	156	0.2	4.399	А

18:00 - 18:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	182	8	980	0.186	182	0.2	4.556	Α
2	8	170	885	0.009	8	0.0	4.105	А
3	130	4	983	0.133	130	0.2	4.265	А

11

2030 + COM, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Mini-roundabout		Mini-roundabout appears to have unbalanced flows and may behave like a priority junction; treat results with caution. See User Guide for details.[Arms 1 and 3 have 92% of the total flow for the roundabout for one or more time segments]

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	6.32	Α

Junction Network Options

Driving side	Lighting	Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D5	2030 + COM	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	rm Linked arm Use O-D data		Average Demand (PCU/hr)	Scaling Factor (%)	
1		✓	344	100.000	
2		✓	60	100.000	
3		✓	359	100.000	

Origin-Destination Data

Demand (PCU/hr)

	То						
		1	2	3			
	1	0	12	332			
From	2	32	0	28			
	3	335	24	0			

Vehicle Mix

	То				
From		1	2	3	
	1	0	0	4	
	2	0	0	0	
	3	3	0	0	

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
1	0.39	6.33	0.7	А
2	0.09	5.12	0.1	А
3	0.41	6.50	0.7	А

Main Results for each time segment

07:45 - 08:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	259	18	974	0.266	257	0.4	5.206	А
2	45	249	838	0.054	45	0.1	4.537	А
3	270	24	971	0.278	269	0.4	5.259	А

08:00 - 08:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	309	22	972	0.318	309	0.5	5.632	Α
2	54	298	809	0.067	54	0.1	4.767	А
3	323	29	968	0.333	322	0.5	5.728	А

08:15 - 08:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	379	26	969	0.391	378	0.7	6.315	А
2	66	365	770	0.086	66	0.1	5.116	А
3	395	35	964	0.410	394	0.7	6.486	А

08:30 - 08:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	379	26	969	0.391	379	0.7	6.330	А
2	66	366	769	0.086	66	0.1	5.119	А
3	395	35	964	0.410	395	0.7	6.505	А

08:45 - 09:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	309	22	972	0.318	310	0.5	5.651	Α
2	54	299	808	0.067	54	0.1	4.772	Α
3	323	29	968	0.333	323	0.5	5.749	А

09:00 - 09:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	259	18	974	0.266	259	0.4	5.233	A
2	45	250	837	0.054	45	0.1	4.545	А
3	270	24	971	0.278	271	0.4	5.290	А

2030 + COM, PM

Data Errors and Warnings

Severity	everity Area Item		Area Item		Description
Warning	Mini-roundabout		Mini-roundabout appears to have unbalanced flows and may behave like a priority junction; treat results with caution. See User Guide for details.[Arms 1 and 3 have 97% of the total flow for the roundabout for one or more time segments]		

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	4.89	А

Junction Network Options

Driving side	Lighting	Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D6	2030 + COM	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
1		✓	242	100.000
2		✓	10	100.000
3		✓	179	100.000

Origin-Destination Data

Demand (PCU/hr)

			-			
	То					
		1 2 3				
From	1	0	17	225		
	2	5	0	5		
	3	168	11	0		

Vehicle Mix

	То			
From		1	2	3
	1	0	0	1
	2	0	0	0
	3	1	0	0

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
1	0.27	5.11	0.4	А
2	0.01	4.35	0.0	А
3	0.20	4.63	0.3	А

Main Results for each time segment

16:45 - 17:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	182	8	980	0.186	181	0.2	4.544	А
2	8	169	885	0.009	7	0.0	4.100	А
3	135	4	983	0.137	134	0.2	4.280	А

17:00 - 17:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	218	10	979	0.222	217	0.3	4.769	Α
2	9	202	866	0.010	9	0.0	4.202	А
3	161	4	982	0.164	161	0.2	4.424	А

17:15 - 17:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	266	12	978	0.273	266	0.4	5.103	А
2	11	247	839	0.013	11	0.0	4.348	А
3	197	5	982	0.201	197	0.3	4.629	А

17:30 - 17:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	266	12	978	0.273	266	0.4	5.107	А
2	11	248	839	0.013	11	0.0	4.349	А
3	197	6	982	0.201	197	0.3	4.631	А

17:45 - 18:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	218	10	979	0.222	218	0.3	4.777	Α
2	9	203	865	0.010	9	0.0	4.203	Α
3	161	5	982	0.164	161	0.2	4.426	А

18:00 - 18:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	182	8	980	0.186	182	0.2	4.556	А
2	8	170	885	0.009	8	0.0	4.105	Α
3	135	4	983	0.137	135	0.2	4.288	Α

2030 + COM + PROPOSED DEV, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Mini-roundabout		Mini-roundabout appears to have unbalanced flows and may behave like a priority junction; treat results with caution. See User Guide for details.[Arms 1 and 3 have 92% of the total flow for the roundabout for one or more time segments]

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	6.22	Α

Junction Network Options

Driving side	Lighting	Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D7	2030 + COM + PROPOSED DEV	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)	
1		✓	350	100.000	
2		✓	60	100.000	
3		✓	360	100.000	

Origin-Destination Data

Demand (PCU/hr)

	•		•				
		То					
		1	2	3			
	1	0	12	338			
From	2	32	0	28			
	3	336	24	0			

Vehicle Mix

	То					
		1	2	3		
F	1	0	0	1		
From	2	0	0	0		
	3	1	0	0		

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
1	0.40	6.22	0.7	A
2	0.09	5.15	0.1	А
3	0.41	6.40	0.7	А

Main Results for each time segment

07:45 - 08:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	263	18	974	0.270	262	0.4	5.093	А
2	45	253	836	0.054	45	0.1	4.552	А
3	271	24	971	0.279	269	0.4	5.170	А

08:00 - 08:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	315	22	972	0.324	314	0.5	5.521	Α
2	54	303	806	0.067	54	0.1	4.787	А
3	324	29	968	0.334	323	0.5	5.632	А

08:15 - 08:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	385	26	969	0.398	385	0.7	6.209	А
2	66	371	766	0.086	66	0.1	5.145	А
3	396	35	964	0.411	396	0.7	6.381	А

08:30 - 08:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	385	26	969	0.398	385	0.7	6.224	А
2	66	372	765	0.086	66	0.1	5.148	А
3	396	35	964	0.411	396	0.7	6.399	А

08:45 - 09:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	315	22	972	0.324	315	0.5	5.541	А
2	54	305	805	0.067	54	0.1	4.792	А
3	324	29	968	0.334	324	0.5	5.655	А

09:00 - 09:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	263	18	974	0.270	264	0.4	5.120	А
2	45	255	834	0.054	45	0.1	4.561	А
3	271	24	971	0.279	271	0.4	5.202	Α

2030 + COM + PROPOSED DEV, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Mini-roundabout		Mini-roundabout appears to have unbalanced flows and may behave like a priority junction; treat results with caution. See User Guide for details.[Arms 1 and 3 have 97% of the total flow for the roundabout for one or more time segments]

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	4.92	Α

Junction Network Options

[Oriving side	Lighting	Road surface	In London
	Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D8	2030 + COM + PROPOSED DEV	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)	
1		✓	245	100.000	
2	✓		10	100.000	
3		✓	185	100.000	

Origin-Destination Data

Demand (PCU/hr)

	• •						
	То						
		1	2	3			
	1	0	17	228			
From	2	5	0	5			
	3	174	11	0			

Vehicle Mix

	То				
		1	2	3	
F	1	0	0	1	
From	2	0	0	0	
	3	1	0	0	

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS	
1	0.28	5.13	0.4	А	
2	0.01	4.36	0.0	А	
3	0.21	4.67	0.3	А	

Main Results for each time segment

16:45 - 17:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	184	8	980	0.188	184	0.2	4.557	А
2	8	171	884	0.009	7	0.0	4.106	А
3	139	4	983	0.142	139	0.2	4.305	А

17:00 - 17:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	220	10	979	0.225	220	0.3	4.786	А
2	9	205	864	0.010	9	0.0	4.209	А
3	166	4	982	0.169	166	0.2	4.453	А

17:15 - 17:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	270	12	978	0.276	269	0.4	5.127	А
2	11	251	837	0.013	11	0.0	4.358	А
3	204	5	982	0.208	203	0.3	4.668	А

17:30 - 17:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	270	12	978	0.276	270	0.4	5.131	А
2	11	251	837	0.013	11	0.0	4.359	А
3	204	6	982	0.208	204	0.3	4.670	А

17:45 - 18:00

Arn	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	220	10	979	0.225	221	0.3	4.794	А
2	9	205	864	0.010	9	0.0	4.213	Α
3	166	5	982	0.169	167	0.2	4.455	А

18:00 - 18:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	184	8	980	0.188	185	0.2	4.571	Α
2	8	172	883	0.009	8	0.0	4.109	А
3	139	4	983	0.142	139	0.2	4.310	А

Junctions 9

ARCADY 9 - Roundabout Module

Version: 9.0.2.5947 © Copyright TRL Limited, 2017

For sales and distribution information, program advice and maintenance, contact TRL: +44 (0)1344 770558 software@trl.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Junction 4 Peaslands Road -Thaxted Road Mini-Rbt - 2025.j9

Path: P:\Eastern\1031-1040\1033 Chase New Homes\1033.0002 Mount Pleasant Road, Saffron Walden\03

Technical\TPL\Modelling\Junction 4 Peaslands Road- Thaxted Road Mini-Roundabout

Report generation date: 04/04/2025 11:10:56

»2023, AM

»2023, PM

»2030, AM

»2030, PM

»2030 + COM, AM

»2030 + COM, PM

»2030 + COM + PROPOSED DEV, AM

»2030 + COM + PROPOSED DEV, PM

Summary of junction performance

		AM				PM			
	Queue (PCU)	Delay (s)	RFC	LOS	Queue (PCU)	Delay (s)	RFC	LOS	
				20	23				
Arm 1	1.0	9.44	0.48	Α	3.2	21.67	0.77	С	
Arm 2	2.0	14.73	0.66	В	1.3	11.89	0.56	В	
Arm 3	2.7	18.87	0.73	С	2.1	14.86	0.68	В	
				20	30				
Arm 1	1.1	10.08	0.51	В	4.4	28.16	0.83	D	
Arm 2	2.3	16.83	0.70	С	1.5	13.31	0.60	В	
Arm 3	3.4	22.78	0.78	С	2.6	17.42	0.73	С	
			2	030 +	COM				
Arm 1	1.1	10.22	0.52	В	4.5	28.89	0.83	D	
Arm 2	2.4	16.96	0.70	С	1.6	13.60	0.61	В	
Arm 3	3.7	24.03	0.79	С	2.6	17.70	0.73	С	
		2030	+ co	M + P	ROPOSED D	EV			
Arm 1	1.1	10.03	0.52	В	4.6	29.64	0.83	D	
Arm 2	2.3	16.73	0.70	С	1.6	13.89	0.62	В	
Arm 3	3.8	24.44	0.80	С	2.7	17.98	0.74	С	

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	(untitled)
Location	
Site number	
Date	16/10/2023
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	AD\model.pc
Description	

Units

	Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
ſ	m	kph	PCU	PCU	perHour	s	-Min	perMin

Analysis Options

Mini-roundabout model	Calculate Queue Percentiles	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
JUNCTIONS 9			0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023	AM	ONE HOUR	07:45	09:15	15
D2	2023	PM	ONE HOUR	16:45	18:15	15
D3	2030	AM	ONE HOUR	07:45	09:15	15
D4	2030	PM	ONE HOUR	16:45	18:15	15
D5	2030 + COM	AM	ONE HOUR	07:45	09:15	15
D6	2030 + COM	PM	ONE HOUR	16:45	18:15	15
D7	2030 + COM + PROPOSED DEV	AM	ONE HOUR	07:45	09:15	15
D8	2030 + COM + PROPOSED DEV	PM	ONE HOUR	16:45	18:15	15

Analysis Set Details

ID	Network flow scaling factor (%)
A1	100.000

2

2023, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	14.93	В

Junction Network Options

Driving side	Lighting	Road surface	In London
Left	Normal/unknown	Normal/unknown	

Arms

Arms

Arm	Name	Description
1	Thaxsted Road North Thaxsted Road North Thaxsted Road North	
2	Thaxsted Road South	
3	Peasland Road West	

Mini Roundabout Geometry

Arm	Approach road half-width (m)	Minimum approach road half-width (m)	Entry width (m)	Effective flare length (m)	Distance to next arm (m)	Entry corner kerb line distance (m)	Gradient over 50m (%)	Kerbed central island
1	2.50	2.50	3.50	1.0	10.00	2.00	0.0	
2	3.00	3.00	4.50	2.0	8.50	6.00	0.0	
3	3.00	3.00	3.00	0.0	13.50	2.00	0.0	

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Arm	Final slope	Final intercept (PCU/hr)
1	0.580	886
2	0.607	877
3	0.590	871

The slope and intercept shown above include any corrections and adjustments.

Traffic Demand

Demand Set Details

I	ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
ſ	D1	2023	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
1		✓	333	100.000
2		✓	445	100.000
3		✓	488	100.000

Origin-Destination Data

Demand (PCU/hr)

	То			
		1	2	3
F	1	0	133	200
From	2	214	0	231
	3	290	198	0

Vehicle Mix

Heavy Vehicle Percentages

	То			
		1	2	3
	1	0	3	3
From	2	5	0	3
	3	1	6	0

Results

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
1	0.48	9.44	1.0	А
2	0.66	14.73	2.0	В
3	0.73	18.87	2.7	С

Main Results for each time segment

07:45 - 08:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	251	148	800	0.313	249	0.5	6.705	А
2	335	149	786	0.426	332	0.8	8.183	А
3	367	160	777	0.473	364	0.9	8.892	А

08:00 - 08:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	299	177	783	0.382	299	0.6	7.648	А
2	400	179	768	0.521	399	1.1	10.089	В
3	439	192	758	0.579	437	1.4	11.464	В

08:15 - 08:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	367	216	760	0.482	365	0.9	9.359	А
2	490	219	744	0.659	487	1.9	14.369	В
3	537	234	733	0.733	532	2.6	17.990	С

08:30 - 08:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	367	218	759	0.483	367	1.0	9.441	А
2	490	220	743	0.659	490	2.0	14.728	В
3	537	236	732	0.734	537	2.7	18.867	С

08:45 - 09:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	299	180	781	0.383	301	0.6	7.735	А
2	400	181	767	0.521	403	1.2	10.366	В
3	439	194	757	0.580	444	1.5	12.020	В

09:00 - 09:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	251	150	799	0.314	251	0.5	6.783	А
2	335	151	785	0.427	337	0.8	8.366	А
3	367	162	776	0.474	369	0.9	9.168	А

5

2023, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	16.65	С

Junction Network Options

Driving side	Lighting	Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2023	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)	
1		✓	505	100.000	
2		✓	356	100.000	
3		✓	473	100.000	

Origin-Destination Data

Demand (PCU/hr)

	То				
		1	2	3	
F	1	0	238	267	
From	2	166	0	190	
	3	215	258	0	

Vehicle Mix

	То				
		1	2	3	
	1	0	1	0	
From	2	2	0	1	
	3	0	1	0	

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
1	0.77	21.67	3.2	С
2	0.56	11.89	1.3	В
3	0.68	14.86	2.1	В

Main Results for each time segment

16:45 - 17:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	380	192	774	0.491	376	1.0	9.015	А
2	268	199	756	0.354	266	0.5	7.416	А
3	356	124	798	0.446	353	0.8	8.072	А

17:00 - 17:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	454	231	752	0.604	452	1.5	11.984	В
2	320	239	732	0.437	319	0.8	8.827	А
3	425	149	784	0.543	424	1.2	10.017	В

17:15 - 17:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	556	282	722	0.770	550	3.1	20.263	С
2	392	291	701	0.559	390	1.3	11.687	В
3	521	182	764	0.682	517	2.1	14.453	В

17:30 - 17:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	556	284	721	0.771	555	3.2	21.670	С
2	392	294	699	0.561	392	1.3	11.893	В
3	521	183	764	0.682	521	2.1	14.865	В

17:45 - 18:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	454	234	750	0.605	461	1.6	12.762	В
2	320	243	729	0.439	322	0.8	9.008	А
3	425	150	783	0.543	429	1.2	10.321	В

18:00 - 18:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	380	195	772	0.492	383	1.0	9.336	Α
2	268	202	754	0.355	269	0.6	7.544	А
3	356	125	797	0.447	358	0.8	8.262	А

2030, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	17.35	С

Junction Network Options

Driving side	Lighting	Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D3	2030	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
1		✓	350	100.000
2		✓	468	100.000
3		✓	513	100.000

Origin-Destination Data

Demand (PCU/hr)

	То				
		1	2	3	
F	1	0	140	210	
From	2	225	0	243	
	3	305	208	0	

Vehicle Mix

	То				
		1	2	3	
	1	0	3	3	
From	2	5	0	3	
	3	1	6	0	

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
1	0.51	10.08	1.1	В
2	0.70	16.83	2.3	С
3	0.78	22.78	3.4	С

Main Results for each time segment

07:45 - 08:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	263	155	796	0.331	261	0.5	6.914	А
2	352	157	782	0.451	349	0.8	8.582	А
3	386	168	772	0.500	382	1.0	9.407	А

08:00 - 08:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	315	186	778	0.405	314	0.7	7.983	Α
2	421	188	763	0.552	419	1.2	10.837	В
3	461	201	752	0.613	459	1.6	12.525	В

08:15 - 08:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	385	226	754	0.511	384	1.1	9.970	Α
2	515	230	737	0.699	511	2.3	16.253	С
3	565	246	726	0.778	558	3.3	21.193	С

08:30 - 08:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	385	229	753	0.512	385	1.1	10.084	В
2	515	231	737	0.699	515	2.3	16.828	С
3	565	248	725	0.779	564	3.4	22.776	С

08:45 - 09:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	315	190	775	0.406	316	0.7	8.095	А
2	421	190	762	0.552	425	1.3	11.235	В
3	461	204	751	0.614	468	1.7	13.412	В

09:00 - 09:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	263	158	794	0.332	264	0.5	7.007	А
2	352	159	781	0.451	354	0.9	8.807	А
3	386	170	771	0.501	389	1.1	9.764	А

2030, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	20.38	С

Junction Network Options

Driving side Lighting		Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	ID Scenario name Time Period name		Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D4	2030	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Arm Linked arm Use O-D date		Average Demand (PCU/hr)	Scaling Factor (%)	
1		✓	533	100.000	
2		✓	377	100.000	
3		✓	500	100.000	

Origin-Destination Data

Demand (PCU/hr)

	То					
		1	2	3		
F	1	0	251	282		
From	2	176	0	201		
	3	227	273	0		

Vehicle Mix

-	То				
		1	2	3	
_	1	0	1	0	
From	2	2	0	1	
	3	0	1	0	

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
1	0.83	28.16	4.4	D
2	0.60	13.31	1.5	В
3	0.73	17.42	2.6	С

Main Results for each time segment

16:45 - 17:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	401	204	767	0.523	397	1.1	9.654	A
2	284	210	750	0.379	281	0.6	7.763	A
3	376	131	794	0.474	373	0.9	8.528	А

17:00 - 17:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	479	244	744	0.644	476	1.7	13.392	В
2	339	252	724	0.468	338	0.9	9.433	А
3	449	158	778	0.578	448	1.3	10.887	В

17:15 - 17:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	587	298	713	0.823	578	4.1	25.173	D
2	415	306	692	0.600	413	1.5	12.988	В
3	551	193	758	0.727	546	2.5	16.713	С

17:30 - 17:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	587	300	711	0.825	586	4.4	28.159	D
2	415	310	689	0.603	415	1.5	13.314	В
3	551	194	757	0.727	550	2.6	17.423	С

17:45 - 18:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	479	248	742	0.646	489	1.9	14.816	В
2	339	259	720	0.471	341	0.9	9.703	А
3	449	159	777	0.578	454	1.4	11.357	В

18:00 - 18:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	401	207	766	0.524	404	1.1	10.093	В
2	284	214	747	0.380	285	0.6	7.924	A
3	376	133	793	0.475	378	0.9	8.773	А

2030 + COM, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	17.94	С

Junction Network Options

Driving side	Lighting	Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name Time Period name		Traffic profile type Start time (HH:mm)		Finish time (HH:mm)	Time segment length (min)
D5	2030 + COM	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
1		✓	351	100.000
2		✓	469	100.000
3		✓	521	100.000

Origin-Destination Data

Demand (PCU/hr)

	То					
		1	2	3		
	1	0	140	211		
From	2	225	0	244		
	3	307	214	0		

Vehicle Mix

	То				
		1	2	3	
	1	0	3	3	
From	2	5	0	3	
	3	1	6	0	

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
1	0.52	10.22	1.1	В
2	0.70	16.96	2.4	С
3	0.79	24.03	3.7	С

Main Results for each time segment

07:45 - 08:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	264	159	793	0.333	262	0.5	6.958	А
2	353	158	781	0.452	350	0.8	8.603	А
3	392	168	772	0.508	388	1.0	9.549	А

08:00 - 08:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	316	191	775	0.407	315	0.7	8.051	А
2	422	189	762	0.553	420	1.3	10.881	В
3	468	201	752	0.622	466	1.6	12.830	В

08:15 - 08:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	386	233	751	0.515	385	1.1	10.097	В
2	516	231	737	0.701	512	2.3	16.369	С
3	574	246	726	0.790	566	3.5	22.177	С

08:30 - 08:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	386	235	749	0.516	386	1.1	10.219	В
2	516	232	736	0.702	516	2.4	16.960	С
3	574	248	725	0.791	573	3.7	24.028	С

08:45 - 09:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	316	195	772	0.409	317	0.7	8.173	Α
2	422	191	761	0.554	426	1.3	11.286	В
3	468	204	751	0.624	476	1.8	13.838	В

09:00 - 09:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	264	162	791	0.334	265	0.5	7.056	А
2	353	159	780	0.453	355	0.9	8.833	А
3	392	170	771	0.509	395	1.1	9.932	А

2030 + COM, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	20.82	С

Junction Network Options

Driving side	Lighting	Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type Start time (HH:mm) I		Finish time (HH:mm)	Time segment length (min)
D6	2030 + COM	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)	
1		✓	535	100.000	
2		✓	381	100.000	
3		✓	503	100.000	

Origin-Destination Data

Demand (PCU/hr)

		1	Го		
	1		2	3	
From	1	0	251	284	
	2	176	0	205	
	3	228	275	0	

Vehicle Mix

	То				
		1	2	3	
	1	0	1	0	
From	2	2	0	1	
	3	0	1	0	

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
1	0.83	28.89	4.5	D
2	0.61	13.60	1.6	В
3	0.73	17.70	2.6	С

Main Results for each time segment

16:45 - 17:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	403	205	767	0.525	398	1.1	9.712	А
2	287	212	749	0.383	284	0.6	7.827	A
3	379	131	794	0.477	375	0.9	8.573	А

17:00 - 17:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	481	246	743	0.648	478	1.8	13.525	В
2	343	254	723	0.474	341	0.9	9.543	А
3	452	158	778	0.581	450	1.4	10.974	В

17:15 - 17:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	589	300	711	0.828	579	4.2	25.685	D
2	419	308	690	0.608	417	1.5	13.241	В
3	554	193	758	0.731	549	2.6	16.951	С

17:30 - 17:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	589	303	710	0.830	588	4.5	28.885	D
2	419	312	688	0.610	419	1.6	13.597	В
3	554	194	757	0.732	553	2.6	17.700	С

17:45 - 18:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	481	250	741	0.649	491	1.9	15.037	С
2	343	261	719	0.477	345	0.9	9.833	А
3	452	159	777	0.582	457	1.4	11.462	В

18:00 - 18:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	403	208	765	0.527	406	1.1	10.164	В
2	287	216	746	0.384	288	0.6	7.994	A
3	379	133	793	0.478	381	0.9	8.824	А

2030 + COM + PROPOSED DEV, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	18.00	С

Junction Network Options

Driving side	Lighting	Road surface	In London
Left Normal/unknown		Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D7	2030 + COM + PROPOSED DEV	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
1		✓	351	100.000
2		✓	471	100.000
3		✓	527	100.000

Origin-Destination Data

Demand (PCU/hr)

	То				
		1	2	3	
F	1	0	140	211	
From	2	225	0	246	
	3	309	218	0	

Vehicle Mix

	То			
		1	2	3
	1	0	1	0
From	2	2	0	1
	3	0	1	0

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
1	0.52	10.03	1.1	В
2	0.70	16.73	2.3	С
3	0.80	24.44	3.8	С

Main Results for each time segment

07:45 - 08:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	264	162	791	0.334	262	0.5	6.807	А
2	355	158	781	0.454	351	0.8	8.431	A
3	397	168	772	0.514	393	1.0	9.420	А

08:00 - 08:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	316	195	772	0.408	315	0.7	7.884	Α
2	423	189	762	0.556	422	1.2	10.681	В
3	474	201	752	0.630	471	1.6	12.743	В

08:15 - 08:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	386	237	748	0.517	385	1.0	9.911	А
2	519	231	737	0.704	514	2.3	16.138	С
3	580	246	726	0.799	573	3.6	22.433	С

08:30 - 08:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	386	240	747	0.518	386	1.1	10.031	В
2	519	232	736	0.705	518	2.3	16.726	С
3	580	248	725	0.800	579	3.8	24.444	С

08:45 - 09:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	316	199	770	0.410	317	0.7	8.004	Α
2	423	191	761	0.556	428	1.3	11.076	В
3	474	204	751	0.631	482	1.8	13.799	В

09:00 - 09:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	264	165	790	0.335	265	0.5	6.900	А
2	355	159	780	0.454	356	0.9	8.654	А
3	397	170	771	0.515	400	1.1	9.806	А

2030 + COM + PROPOSED DEV, PM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	21.27	С

Junction Network Options

Driving side Lighting		Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D8	2030 + COM + PROPOSED DEV	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)			
HV Percentages	2.00			

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)	
1		✓	537	100.000	
2		✓	385	100.000	
3		✓	506	100.000	

Origin-Destination Data

Demand (PCU/hr)

	То				
		1	2	3	
	1	0	251	286	
From	2	176	0	209	
	3	229	277	0	

Vehicle Mix

	То					
		1	2	3		
	1	0	1	0		
From	2	2	0	1		
	3	0	1	0		

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
1	0.83	29.64	4.6	D
2	0.62	13.89	1.6	В
3	0.74	17.98	2.7	С

Main Results for each time segment

16:45 - 17:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	404	207	766	0.528	400	1.1	9.774	А
2	290	213	748	0.388	287	0.6	7.890	А
3	381	131	794	0.480	377	0.9	8.616	А

17:00 - 17:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	483	248	742	0.651	480	1.8	13.665	В
2	346	256	722	0.479	345	0.9	9.660	А
3	455	158	778	0.584	453	1.4	11.061	В

17:15 - 17:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	591	302	710	0.832	581	4.3	26.219	D
2	424	310	689	0.615	421	1.6	13.505	В
3	557	193	758	0.735	552	2.6	17.195	С

17:30 - 17:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	591	305	709	0.834	590	4.6	29.645	D
2	424	314	686	0.618	424	1.6	13.889	В
3	557	194	757	0.736	557	2.7	17.985	С

17:45 - 18:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	483	252	740	0.653	493	2.0	15.261	С
2	346	263	718	0.482	349	1.0	9.970	А
3	455	159	777	0.585	460	1.5	11.574	В

18:00 - 18:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	404	210	764	0.529	408	1.2	10.239	В
2	290	217	745	0.389	291	0.7	8.063	А
3	381	133	793	0.480	383	0.9	8.876	А

Junctions 9

ARCADY 9 - Roundabout Module

Version: 9.0.2.5947 © Copyright TRL Limited, 2017

For sales and distribution information, program advice and maintenance, contact TRL:

+44 (0)1344 770558 software@trl.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Junction 5 London Road-Debden Road- High Street mini-rbt - 2025.j9

Path: P:\Eastern\1031-1040\1033 Chase New Homes\1033.0002 Mount Pleasant Road, Saffron Walden\03

Technical\TPL\Modelling\Junction 5 London Road- Debden Road- High Street Mini-Roundabout

Report generation date: 04/04/2025 13:06:53

»2023, AM

»2023, PM

»2030, AM

»2030, PM

»2030 + COM, AM

»2030 + COM, PM

»2030 + COM + PROPOSED DEV, AM

»2030 + COM + PROPOSED DEV, PM

Summary of junction performance

		AM				PM		
	Queue (PCU)	Delay (s)	RFC	LOS	Queue (PCU)	Delay (s)	RFC	LOS
				20	23			
Arm 1	2.9	16.93	0.74	С	14.6	65.64	0.97	F
Arm 2	3.8	36.72	0.81	Е	1.0	14.85	0.51	В
Arm 3	2.3	18.05	0.69	С	1.8	13.41	0.64	В
				20	30			
Arm 1	3.7	20.17	0.79	С	27.2	108.00	1.02	F
Arm 2	5.7	53.80	0.88	F	1.2	16.29	0.55	С
Arm 3	2.8	21.64	0.74	С	2.1	15.41	0.68	С
			2	030 +	COM			
Arm 1	3.8	20.76	0.79	С	33.9	128.86	1.05	F
Arm 2	7.7	68.88	0.92	F	1.3	16.72	0.56	С
Arm 3	3.0	23.10	0.75	С	2.2	15.84	0.69	С
		2030	+ CO	M + P	ROPOSED D	EV		
Arm 1	3.8	20.67	0.80	С	39.5	145.49	1.06	F
Arm 2	10.4	88.13	0.96	F	1.3	16.65	0.57	С
Arm 3	3.0	23.34	0.76	С	2.2	16.02	0.70	С

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	(untitled)
Location	
Site number	
Date	13/10/2023
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	AD\model.pc
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	S	-Min	perMin

Analysis Options

Mini-roundabout model	Calculate Queue Percentiles	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
JUNCTIONS 9			0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023	AM	ONE HOUR	07:45	09:15	15
D2	2023	PM	ONE HOUR	16:45	18:15	15
D3	2030	AM	ONE HOUR	07:45	09:15	15
D4	2030	PM	ONE HOUR	16:45	18:15	15
D5	2030 + COM	AM	ONE HOUR	07:45	09:15	15
D6	2030 + COM	PM	ONE HOUR	16:45	18:15	15
D7	2030 + COM + PROPOSED DEV	AM	ONE HOUR	07:45	09:15	15
D8	2030 + COM + PROPOSED DEV	PM	ONE HOUR	16:45	18:15	15

Analysis Set Details

ID	Network flow scaling factor (%)
A1	100.000

2

2023, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	22.46	С

Junction Network Options

Driving side	Lighting	Road surface	In London
Left	Normal/unknown	Normal/unknown	

Arms

Arms

Arm	Name	Description
1	London Road North	
2	Debden Road South	
3	London Road West	

Mini Roundabout Geometry

Arm	Approach road half-width (m)	Minimum approach road half-width (m)	Entry width (m)	Effective flare length (m)	Distance to next arm (m)	Entry corner kerb line distance (m)	Gradient over 50m (%)	Kerbed central island
1	3.00	3.00	3.00	0.0	14.00	12.00	0.0	
2	3.00	3.00	3.50	2.5	9.00	5.50	0.0	
3	3.00	3.00	3.00	0.0	17.00	17.00	0.0	

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Arm	Final slope	Final intercept (PCU/hr)
1	0.596	904
2	0.602	771
3	0.658	897

The slope and intercept shown above include any corrections and adjustments.

Traffic Demand

Demand Set Details

	ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
ſ	D1	2023	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm Use O-D data		inked arm Use O-D data Average Demand (PCU/hr)	
1		✓	584	100.000
2		✓	356	100.000
3		✓	421	100.000

Origin-Destination Data

Demand (PCU/hr)

	То					
		1	2	3		
From	1	0	154	430		
	2	309	0	47		
	3	362	59	0		

Vehicle Mix

Heavy Vehicle Percentages

	То					
From		1	2	3		
	1	0	5	5		
	2	0	0	4		
	3	6	5	0		

Results

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
1	0.74	16.93	2.9	С
2	0.81	36.72	3.8	E
3	0.69	18.05	2.3	С

Main Results for each time segment

07:45 - 08:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	440	44	877	0.501	436	1.0	8.479	А
2	268	321	578	0.463	265	0.8	11.416	В
3	317	230	745	0.425	314	0.8	8.770	А

08:00 - 08:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	525	53	872	0.602	523	1.5	10.763	В
2	320	385	540	0.593	318	1.4	16.148	С
3	378	276	715	0.529	377	1.2	11.215	В

08:15 - 08:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	643	64	865	0.743	638	2.8	16.247	С
2	392	470	489	0.802	384	3.5	32.190	D
3	464	333	677	0.684	459	2.2	17.167	С

08:30 - 08:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	643	65	865	0.743	643	2.9	16.933	С
2	392	473	487	0.806	391	3.8	36.722	Е
3	464	339	673	0.688	463	2.3	18.053	С

08:45 - 09:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	525	54	872	0.602	530	1.6	11.236	В
2	320	390	536	0.597	329	1.6	18.119	С
3	378	285	709	0.534	383	1.2	11.821	В

09:00 - 09:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	440	45	877	0.501	442	1.1	8.735	А
2	268	325	575	0.466	271	0.9	11.970	В
3	317	235	742	0.427	319	0.8	9.040	А

5

2023, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Mini-roundabout		Mini-roundabout appears to have unbalanced flows and may behave like a priority junction; treat results with caution. See User Guide for details.[Arms 1 and 3 have 83% of the total flow for the roundabout for one or more time segments]

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	41.38	Е

Junction Network Options

Driving side	Lighting	Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2023	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
1		✓	763	100.000
2		✓	234	100.000
3		✓	440	100.000

Origin-Destination Data

Demand (PCU/hr)

	То					
		1	2	3		
From	1	0	356	407		
	2	195	0	39		
	3	387	53	0		

Vehicle Mix

Heavy Vehicle Percentages

		Т	о	
From		1	2	3
	1	0	2	2
	2	3	0	0
	3	1	2	0

Results

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
1	0.97	65.64	14.6	F
2	0.51	14.85	1.0	В
3	0.64	13.41	1.8	В

Main Results for each time segment

16:45 - 17:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	574	40	880	0.653	567	1.8	11.482	В
2	176	302	589	0.299	174	0.4	8.859	А
3	331	145	801	0.414	328	0.7	7.661	А

17:00 - 17:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	686	47	875	0.784	680	3.4	18.200	С
2	210	363	553	0.380	210	0.6	10.717	В
3	396	175	782	0.506	394	1.0	9.367	А

17:15 - 17:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	840	58	869	0.967	808	11.4	45.306	Е
2	258	431	512	0.503	256	1.0	14.332	В
3	484	213	756	0.641	482	1.7	13.117	В

17:30 - 17:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	840	58	869	0.967	827	14.6	65.641	F
2	258	441	506	0.509	257	1.0	14.850	В
3	484	215	755	0.641	484	1.8	13.409	В

17:45 - 18:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	686	48	875	0.784	728	4.1	29.974	D
2	210	388	538	0.391	212	0.7	11.377	В
3	396	177	780	0.507	398	1.1	9.598	А

18:00 - 18:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	574	40	880	0.653	583	2.0	12.699	В
2	176	311	584	0.302	177	0.4	9.081	А
3	331	148	799	0.414	333	0.7	7.820	А

2030, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	29.42	D

Junction Network Options

Driving side	Lighting	Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D3	2030	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)	
1		✓	615	100.000	
2		✓	375	100.000	
3		✓	444	100.000	

Origin-Destination Data

Demand (PCU/hr)

		То					
		1	2	3			
F	1	0	162	453			
From	2	325	0	50			
	3	381	63	0			

Vehicle Mix

Heavy Vehicle Percentages

	То				
		1	2	3	
_	1	0	5	5	
From	2	0	0	4	
	3	6	5	0	

Results

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
1	0.79	20.17	3.7	С
2	0.88	53.80	5.7	F
3	0.74	21.64	2.8	С

Main Results for each time segment

07:45 - 08:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	463	47	876	0.529	458	1.2	8.966	А
2	282	338	568	0.497	278	1.0	12.336	В
3	334	241	738	0.453	331	0.9	9.288	А

08:00 - 08:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	553	56	870	0.636	550	1.8	11.734	В
2	337	405	527	0.639	334	1.7	18.457	С
3	399	290	706	0.565	397	1.3	12.263	В

08:15 - 08:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	677	69	863	0.785	670	3.5	18.964	С
2	413	494	474	0.871	400	4.9	42.688	Е
3	489	347	669	0.731	484	2.7	20.026	С

08:30 - 08:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	677	69	862	0.785	677	3.7	20.175	С
2	413	498	471	0.876	410	5.7	53.800	F
3	489	355	663	0.737	488	2.8	21.638	С

08:45 - 09:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	553	57	869	0.636	560	1.9	12.480	В
2	337	412	523	0.644	352	1.9	22.811	С
3	399	305	696	0.574	405	1.5	13.325	В

09:00 - 09:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS		
1	463	48	875	0.529	466	1.2	9.298	Α		
2	282	343	565	0.500	286	1.0	13.132	В		
3	334	248	734	0.456	337	0.9	9.655	А		

2030, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Mini-roundabout		Mini-roundabout appears to have unbalanced flows and may behave like a priority junction; treat results with caution. See User Guide for details.[Arms 1 and 3 have 83% of the total flow for the roundabout for one or more time segments]

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	64.72	F

Junction Network Options

Driving side Lighting		Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D4	2030	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
1		✓	806	100.000
2		✓	247	100.000
3		✓	465	100.000

Origin-Destination Data

Demand (PCU/hr)

	То					
		1	2	3		
	1	0	376	430		
From	2	206	0	41		
	3	409	56	0		

Vehicle Mix

Heavy Vehicle Percentages

	То			
From		1	2	3
	1	0	2	2
	2	3	0	0
	3	1	2	0

Results

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
1	1.02	108.00	27.2	F
2	0.55	16.29	1.2	С
3	0.68	15.41	2.1	С

Main Results for each time segment

16:45 - 17:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	607	42	879	0.691	598	2.2	12.726	В
2	186	319	579	0.321	184	0.5	9.292	А
3	350	153	796	0.440	347	0.8	8.061	Α

17:00 - 17:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	725	50	874	0.829	716	4.4	22.072	С
2	222	382	541	0.410	221	0.7	11.486	В
3	418	184	775	0.539	417	1.2	10.106	В

17:15 - 17:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	887	61	867	1.023	832	18.2	63.120	F
2	272	444	504	0.539	270	1.2	15.639	С
3	512	225	748	0.684	508	2.1	14.928	В

17:30 - 17:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	887	62	867	1.024	851	27.2	108.003	F
2	272	454	498	0.546	272	1.2	16.286	С
3	512	227	747	0.685	512	2.1	15.407	С

17:45 - 18:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	725	51	873	0.830	809	6.2	67.571	F
2	222	431	512	0.434	224	0.8	12.881	В
3	418	187	774	0.540	422	1.2	10.445	В

18:00 - 18:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	607	42	878	0.691	622	2.4	15.081	С
2	186	332	572	0.325	187	0.5	9.627	А
3	350	156	794	0.441	352	0.8	8.264	А

2030 + COM, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	34.46	D

Junction Network Options

Driving side	Lighting	Road surface	In London
Left	Left Normal/unknown		

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D5	2030 + COM	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)	
1		✓	620	100.000	
2		✓	393	100.000	
3		✓	444	100.000	

Origin-Destination Data

Demand (PCU/hr)

	То					
		1	2	3		
F	1	0	167	453		
From	2	343	0	50		
	3	381	63	0		

Vehicle Mix

Heavy Vehicle Percentages

	То				
		1	2	3	
	1	0	5	5	
From	2	0	0	4	
	3	6	5	0	

Results

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
1	0.79	20.76	3.8	С
2	0.92	68.88	7.7	F
3	0.75	23.10	3.0	С

Main Results for each time segment

07:45 - 08:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	467	47	876	0.533	462	1.2	9.043	А
2	296	338	568	0.521	292	1.1	12.897	В
3	334	255	729	0.458	331	0.9	9.494	А

08:00 - 08:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	557	56	870	0.641	555	1.8	11.895	В
2	353	405	527	0.670	350	1.9	19.993	С
3	399	305	696	0.574	397	1.4	12.678	В

08:15 - 08:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	683	69	863	0.791	675	3.6	19.441	С
2	433	493	474	0.912	415	6.3	50.559	F
3	489	362	658	0.743	483	2.8	21.098	С

08:30 - 08:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	683	69	862	0.792	682	3.8	20.763	С
2	433	498	471	0.918	427	7.7	68.882	F
3	489	373	651	0.751	488	3.0	23.104	С

08:45 - 09:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	557	57	869	0.641	565	1.9	12.697	В
2	353	413	523	0.676	375	2.2	27.420	D
3	399	327	681	0.586	405	1.5	14.075	В

09:00 - 09:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	467	48	875	0.533	470	1.2	9.388	А
2	296	343	565	0.524	300	1.1	13.894	В
3	334	262	724	0.462	337	0.9	9.900	А

2030 + COM, PM

Data Errors and Warnings

Severity	Severity Area Item		Description		
Warning	Mini-roundabout		Mini-roundabout appears to have unbalanced flows and may behave like a priority junction; treat results with caution. See User Guide for details.[Arms 1 and 3 have 83% of the total flow for the roundabout for one or more time segments]		

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS	
1	untitled	Mini-roundabout	1, 2, 3	76.23	F	

Junction Network Options

I	Driving side	Lighting	Road surface	In London
ı	Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ĺ	ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
ĺ	D6	2030 + COM	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
1		✓	823	100.000
2		✓	256	100.000
3		✓	465	100.000

Origin-Destination Data

Demand (PCU/hr)

· · · · · · · · · · · · · · · · · · ·							
	То						
		1	2	3			
	1	0	393	430			
From	2	215	0	41			
	3	409	56	0			

Vehicle Mix

Heavy Vehicle Percentages

	То				
		1	2	3	
From	1	0	2	2	
	2	3	0	0	
	3	1	2	0	

Results

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
1	1.05	128.86	33.9	F
2	0.56	16.72	1.3	С
3	0.69	15.84	2.2	С

Main Results for each time segment

16:45 - 17:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	620	42	879	0.705	610	2.3	13.266	В
2	193	319	579	0.333	191	0.5	9.450	A
3	350	160	791	0.442	347	0.8	8.138	Α

17:00 - 17:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	740	50	874	0.847	730	4.8	23.920	С
2	230	381	542	0.425	229	0.7	11.766	В
3	418	192	770	0.543	416	1.2	10.253	В

17:15 - 17:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	906	61	867	1.045	839	21.6	71.341	F
2	282	439	507	0.555	280	1.2	16.076	С
3	512	235	742	0.690	508	2.1	15.316	С

17:30 - 17:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	906	62	867	1.045	857	33.9	128.863	F
2	282	448	502	0.562	282	1.3	16.724	С
3	512	237	741	0.691	512	2.2	15.840	С

17:45 - 18:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	740	51	873	0.847	843	8.1	95.134	F
2	230	440	506	0.455	232	0.9	13.525	В
3	418	195	768	0.544	422	1.2	10.615	В

18:00 - 18:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	620	42	878	0.705	642	2.6	16.819	С
2	193	335	569	0.338	194	0.5	9.867	А
3	350	163	789	0.444	352	0.8	8.351	А

2030 + COM + PROPOSED DEV, AM

Data Errors and Warnings

No errors or warnings

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	40.15	Е

Junction Network Options

Driving side	Lighting	Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D7	2030 + COM + PROPOSED DEV	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)	
1		✓	624	100.000	
2		✓	409	100.000	
3		✓	444	100.000	

Origin-Destination Data

Demand (PCU/hr)

		То					
		1	2	3			
From	1	0	171	453			
	2	359	0	50			
	3	381	63	0			

Vehicle Mix

Heavy Vehicle Percentages

		Т	о	
		1	2	3
	1	0	2	2
From	2	3	0	0
	3	1	2	0

Results

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
1	0.80	20.67	3.8	С
2	0.96	88.13	10.4	F
3	0.76	23.34	3.0	С

Main Results for each time segment

07:45 - 08:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	470	47	876	0.537	465	1.2	8.852	Α
2	308	338	568	0.542	303	1.2	13.719	В
3	334	266	721	0.463	331	0.9	9.243	А

08:00 - 08:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	561	56	870	0.645	558	1.8	11.687	В
2	368	405	527	0.697	364	2.2	22.012	С
3	399	319	687	0.581	397	1.4	12.488	В

08:15 - 08:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	687	69	863	0.796	680	3.6	19.306	С
2	450	493	474	0.949	427	8.0	60.026	F
3	489	375	650	0.752	483	2.8	21.101	С

08:30 - 08:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	687	69	862	0.797	686	3.8	20.665	С
2	450	498	471	0.955	441	10.4	88.125	F
3	489	387	642	0.761	488	3.0	23.338	С

08:45 - 09:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	561	57	869	0.645	568	1.9	12.493	В
2	368	413	523	0.703	399	2.7	35.330	Е
3	399	350	666	0.599	405	1.6	14.235	В

09:00 - 09:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	470	48	875	0.537	473	1.2	9.190	А
2	308	343	565	0.545	313	1.3	15.005	С
3	334	275	716	0.467	337	0.9	9.682	А

2030 + COM + PROPOSED DEV, PM

Data Errors and Warnings

Severity	Area Item		Description
Warning	Mini-roundabout		Mini-roundabout appears to have unbalanced flows and may behave like a priority junction; treat results with caution. See User Guide for details.[Arms 1 and 3 have 83% of the total flow for the roundabout for one or more time segments]
Warning	Vehicle Mix		HV% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs.

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	untitled	Mini-roundabout	1, 2, 3	85.33	F

Junction Network Options

Driving side Lighting		Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D8	2030 + COM + PROPOSED DEV	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
1		✓	836	100.000
2		✓	263	100.000
3		✓	465	100.000

Origin-Destination Data

Demand (PCU/hr)

	То					
From		1	2	3		
	1	0	406	430		
	2	222	0	41		
	3	409	56	0		

Vehicle Mix

Heavy Vehicle Percentages

	То				
		1	2	3	
F	1	0	0	0	
From	2	0	0	0	
	3	0	0	0	

Results

Results Summary for whole modelled period

Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
1	1.06	145.49	39.5	F
2	0.57	16.65	1.3	С
3	0.70	16.02	2.2	С

Main Results for each time segment

16:45 - 17:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	629	42	879	0.716	620	2.4	13.457	В
2	198	319	579	0.342	196	0.5	9.339	А
3	350	165	788	0.444	347	0.8	8.111	А

17:00 - 17:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	752	50	874	0.860	740	5.2	25.067	D
2	236	381	542	0.436	235	0.8	11.700	В
3	418	199	766	0.546	416	1.2	10.258	В

17:15 - 17:30

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	920	61	867	1.062	844	24.3	77.464	F
2	290	434	510	0.568	288	1.3	16.031	С
3	512	243	737	0.695	508	2.2	15.463	С

17:30 - 17:45

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	920	62	867	1.062	860	39.5	145.485	F
2	290	442	505	0.573	289	1.3	16.649	С
3	512	244	736	0.696	512	2.2	16.016	С

17:45 - 18:00

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	752	51	873	0.861	852	14.4	119.611	F
2	236	438	508	0.466	238	0.9	13.435	В
3	418	201	764	0.547	422	1.2	10.632	В

18:00 - 18:15

Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
1	629	42	878	0.717	676	2.7	21.508	С
2	198	348	562	0.352	199	0.6	9.967	А
3	350	168	786	0.445	352	0.8	8.327	Α

Junctions 9

ARCADY 9 - Roundabout Module

Version: 9.0.2.5947 © Copyright TRL Limited, 2017

For sales and distribution information, program advice and maintenance, contact TRL: +44 (0)1344 770558 software@trl.co.uk

The users of this computer program for the solution of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Junction 6 and 7 Combined.j9

Path: P:\Eastern\1031-1040\1033 Chase New Homes\1033.0002 Mount Pleasant Road, Saffron Walden\03

Technical\TPL\Modelling\Junction 6 and 7 combined Report generation date: 04/04/2025 13:09:54

»2023, AM

»2023, PM

»2030, AM

»2030, PM

»2030 + COM, AM

»2030 + COM, PM

»2030 + COM + PROPOSED DEV, AM

»2030 + COM + PROPOSED DEV, PM

Summary of junction performance

		AM				PM		
	Queue (PCU)	Delay (s)	RFC	LOS	Queue (PCU)	Delay (s)	RFC	LOS
				20	23			
Junction 1 - Arm 1	1.5	10.58	0.59	В	1.6	11.25	0.61	В
Junction 1 - Arm 2	0.9	12.03	0.48	В	0.7	10.56	0.42	В
Junction 1 - Arm 3	1.9	11.45	0.65	В	2.3	12.82	0.70	В
Junction 2 - Arm 1	5.4	27.21	0.85	D	4.8	24.62	0.83	С
Junction 2 - Arm 2	9.7	91.64	0.95	F	3.1	31.47	0.77	D
Junction 2 - Arm 3	0.9	8.30	0.46	Α	1.1	9.32	0.54	Α
				20	30			
Junction 1 - Arm 1	1.7	11.52	0.62	В	1.9	12.62	0.65	В
Junction 1 - Arm 2	1.1	13.31	0.51	В	0.8	11.61	0.46	В
Junction 1 - Arm 3	2.1	12.26	0.67	В	2.8	14.66	0.74	В
Junction 2 - Arm 1	7.5	36.80	0.90	Е	6.6	33.05	0.88	D
Junction 2 - Arm 2	17.6	148.86	1.03	F	4.2	41.43	0.82	Е
Junction 2 - Arm 3	1.0	8.77	0.49	Α	1.3	10.27	0.57	В
			2	2030 +	COM			
Junction 1 - Arm 1	1.7	11.59	0.62	В	1.9	12.96	0.66	В
Junction 1 - Arm 2	1.2	13.97	0.54	В	0.9	11.91	0.47	В
Junction 1 - Arm 3	2.1	12.29	0.67	В	3.0	15.44	0.75	С
Junction 2 - Arm 1	8.5	41.07	0.91	Е	7.1	35.13	0.89	Е
Junction 2 - Arm 2	19.3	160.33	1.04	F	4.7	45.72	0.84	Е
Junction 2 - Arm 3	1.0	8.79	0.49	Α	1.4	10.60	0.58	В
		2030	+ CO	M + P	ROPOSED D	EV		
Junction 1 - Arm 1	1.7	11.65	0.62	В	2.0	13.23	0.66	В
Junction 1 - Arm 2	1.3	14.64	0.56	В	0.9	12.08	0.48	В
Junction 1 - Arm 3	2.1	12.34	0.67	В	3.1	16.07	0.76	С
Junction 2 - Arm 1	9.6	45.65	0.92	Е	7.4	36.40	0.90	Е
Junction 2 - Arm 2	20.4	168.49	1.05	F	5.1	49.21	0.86	Е
Junction 2 - Arm 3	1.0	8.82	0.49	Α	1.4	10.86	0.59	В

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.

Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	(untitled)
Location	
Site number	
Date	13/10/2023
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	AD\model.pc
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Analysis Options

Mini-roundabout model	Calculate Queue Percentiles	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
JUNCTIONS 9			0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023	AM	ONE HOUR	07:45	09:15	15
D2	2023	PM	ONE HOUR	16:45	18:15	15
D3	2030	AM	ONE HOUR	07:45	09:15	15
D4	2030	PM	ONE HOUR	16:45	18:15	15
D5	2030 + COM	AM	ONE HOUR	07:45	09:15	15
D6	2030 + COM	PM	ONE HOUR	16:45	18:15	15
D7	2030 + COM + PROPOSED DEV	AM	ONE HOUR	07:45	09:15	15
D8	2030 + COM + PROPOSED DEV	PM	ONE HOUR	16:45	18:15	15

Analysis Set Details

ID	Network flow scaling factor (%)
A 1	100.000

2023, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Linked Roundabout	Junction 1 - Arm 3	If the distance between linked junctions is small, results should be treated with caution. The linked junctions will be modelled as separate junctions, but the real behaviour may be that of a complex system with interactions that cannot be modelled.
Warning	Linked Roundabout	Junction 2 - Arm 1	If the distance between linked junctions is small, results should be treated with caution. The linked junctions will be modelled as separate junctions, but the real behaviour may be that of a complex system with interactions that cannot be modelled.

Junction Network

Junctions

Junction	ion Name		Arm order	Junction Delay (s)	Junction LOS
1	London Road / Borough Road Mini Roundabout	Mini-roundabout	1, 2, 3	11.25	В
2	London Road / Audley End Road / Newport Road Mini Roundabout	Mini-roundabout	1, 2, 3	39.30	E

Junction Network Options

Driving side	Lighting	Road surface	In London
Left	Normal/unknown	Normal/unknown	

Arms

Arms

Junction Arm Name		Description	
	1	London Road North	
1	2	Borough Lane South	
	3	London Road West	
	1	London Road	
2	2	Newport Road	
	3	Audley End Road	

Mini Roundabout Geometry

Junction	Arm	Approach road half-width (m)	Minimum approach road half-width (m)	Entry width (m)	Effective flare length (m)	Distance to next arm (m)	Entry corner kerb line distance (m)	Gradient over 50m (%)	Kerbed central island
	1	3.00	3.00	3.50	1.0	7.00	5.00	0.0	
1	2	3.00	3.00	4.50	2.0	7.50	5.50	0.0	
	3	3.00	3.00	3.00	0.0	13.00	13.00	0.0	
	1	3.00	3.00	4.00	2.0	12.50	11.50	0.0	
2	2	3.00	3.00	3.00	0.0	11.00	8.00	0.0	
	3	3.00	3.00	3.00	0.0	18.50	18.50	0.0	

Slope / Intercept / Capacity

Roundabout Slope and Intercept used in model

Junction Arm		Final slope	Final intercept (PCU/hr)	
	1	0.597	965	
1	2	0.607	888	
	3	0.599	955	
	1	0.609	930	
2	2	0.591	680	
	3	0.734	1060	

The slope and intercept shown above include any corrections and adjustments.

Traffic Demand

Demand Set Details

l	ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
	D1	2023	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)		
HV Percentages	2.00		

Linked Arm Data

Junction	Arm	Feeding Junction	Feeding Arm	Link Type	Flow source	Uniform flow (PCU/hr)	Flow multiplier (%)	Internal storage space (PCU)
1	3	2	1	Simple (vertical queueing)	Normal	0	100.00	
2	1	1	3	Simple (vertical queueing)	Normal	0	100.00	

Demand overview (Traffic)

Junction	Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
	1		✓	465	100.000
1	2		✓	254	100.000
	3	✓			
	1	✓			
2	2		✓	367	100.000
	3		✓	354	100.000

Origin-Destination Data

Demand (PCU/hr)

Junction 1

	То				
From		1	2	3	
	1	0	14	451	
	2	24	0	230	
	3	408	148	0	

Demand (PCU/hr)

Junction 2

	То					
From		1	2	3		
	1	0	292	393		
	2	277	0	90		
	3	283	71	0		

Vehicle Mix

Heavy Vehicle Percentages

Junction 1

	То					
From		1	2	3		
	1	0	0	5		
	2	0	0	3		
	3	6	3	0		

Heavy Vehicle Percentages

Junction 2

	То				
From		1	2	3	
	1	0	8	2	
	2	8	0	0	
	3	3	9	0	

Results

Results Summary for whole modelled period

Junction	Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
	1	0.59	10.58	1.5	В
1	2	0.48	12.03	0.9	В
	3	0.65	11.45	1.9	В
	1	0.85	27.21	5.4	D
2	2	0.95	91.64	9.7	F
	3	0.46	8.30	0.9	А

Main Results for each time segment

07:45 - 08:00

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	350	110	900	0.389	347	0.7	6.804	А
1	2	191	337	684	0.280	190	0.4	7.459	Α
	3	417	18	944	0.441	413	0.8	7.089	А
	1	509	53	898	0.567	503	1.3	9.421	А
2	2	276	289	509	0.543	271	1.2	15.751	С
	3	267	205	910	0.293	265	0.4	5.797	А

08:00 - 08:15

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	418	133	886	0.472	417	0.9	8.028	Α
1	2	228	404	643	0.355	228	0.6	8.893	Α
	3	500	22	942	0.530	498	1.2	8.505	Α
	1	611	64	891	0.685	607	2.2	13.089	В
2	2	330	348	474	0.696	326	2.2	25.062	D
	3	318	246	880	0.362	318	0.6	6.663	Α

08:15 - 08:30

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	512	159	870	0.588	510	1.5	10.408	В
1	2	280	494	588	0.476	278	0.9	11.877	В
	3	600	26	939	0.639	597	1.8	10.990	В
	1	746	78	882	0.846	735	4.9	23.939	С
2	2	404	422	430	0.939	383	7.4	63.178	F
	3	390	289	848	0.460	389	0.9	8.140	А

08:30 - 08:45

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	512	162	868	0.590	512	1.5	10.579	В
1	2	280	496	587	0.476	280	0.9	12.025	В
	3	610	26	939	0.649	609	1.9	11.450	В
	1	750	78	882	0.850	748	5.4	27.207	D
2	2	404	429	426	0.948	395	9.7	91.639	F
	3	390	298	841	0.463	390	0.9	8.296	А

08:45 - 09:00

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	418	140	881	0.474	420	1.0	8.220	А
1	2	228	407	641	0.356	230	0.6	9.022	А
	3	525	22	942	0.557	527	1.4	9.177	А
	1	615	64	891	0.691	627	2.4	14.837	В
2	2	330	360	467	0.706	357	2.8	40.808	Е
	3	318	270	862	0.369	319	0.6	6.918	А

09:00 - 09:15

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	350	114	897	0.390	351	0.7	6.927	А
1	2	191	341	682	0.281	192	0.4	7.561	А
	3	427	18	944	0.452	429	0.9	7.368	А
	1	514	54	897	0.573	518	1.4	10.033	В
2	2	276	297	504	0.548	282	1.3	17.628	С
	3	267	213	904	0.295	267	0.4	5.894	Α

7

2023, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Mini-roundabout	Junction 1	Mini-roundabout appears to have unbalanced flows and may behave like a priority junction; treat results with caution. See User Guide for details.[Arms 1 and 3 have 82% of the total flow for the roundabout for one or more time segments]
Warning	Linked Roundabout	Junction 1 - Arm 3	If the distance between linked junctions is small, results should be treated with caution. The linked junctions will be modelled as separate junctions, but the real behaviour may be that of a complex system with interactions that cannot be modelled.
Warning	Linked Roundabout	Junction 2 - Arm 1	If the distance between linked junctions is small, results should be treated with caution. The linked junctions will be modelled as separate junctions, but the real behaviour may be that of a complex system with interactions that cannot be modelled.

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	London Road / Borough Road Mini Roundabout	Mini-roundabout	1, 2, 3	11.86	В
2	London Road / Audley End Road / Newport Road Mini Roundabout	Mini-roundabout	1, 2, 3	21.85	С

Junction Network Options

Driving side	Lighting	Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2023	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Linked Arm Data

Junction	Arm	Feeding Junction	Feeding Arm	Link Type	Flow source	Uniform flow (PCU/hr)	Flow multiplier (%)	Internal storage space (PCU)
1	3	2	1	Simple (vertical queueing)	Normal	0	100.00	
2	1	1	3	Simple (vertical queueing)	Normal	0	100.00	

Demand overview (Traffic)

Junction	Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
	1		✓	466	100.000
1	2		✓	226	100.000
	3	✓			
	1	✓			
2	2		✓	337	100.000
	3		✓	406	100.000

Origin-Destination Data

Demand (PCU/hr)

Junction 1

	То					
		1		3		
F	1	0	19	447		
From	2	9	0	217		
	3	411	191	0		

Demand (PCU/hr)

Junction 2

	То						
	1		2	3			
F	1	1 0		301			
From	2	282	0	55			
	3	325	81	0			

Vehicle Mix

Heavy Vehicle Percentages

Junction 1

	То					
		1	2	3		
F	1	0	0	2		
From	2	0	0	0		
	3	1	0	0		

Heavy Vehicle Percentages

Junction 2

	То					
		1	2	3		
	1	0	2	2		
From	2	2	0	0		
	3	0	0	0		

Results

Results Summary for whole modelled period

Junction	Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
	1	0.61	11.25	1.6	В
1	2	0.42	10.56	0.7	В
	3	0.70	12.82	2.3	В
	1	0.83	24.62	4.8	С
2	2	0.77	31.47	3.1	D
	3	0.54	9.32	1.1	А

Main Results for each time segment

16:45 - 17:00

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	351	142	880	0.399	348	0.7	6.862	А
1	2	170	334	686	0.248	169	0.3	6.950	А
	3	453	7	951	0.476	449	0.9	7.169	А
	1	496	61	893	0.556	491	1.2	9.030	А
2	2	254	222	548	0.463	250	0.9	12.148	В
	3	306	209	907	0.337	304	0.5	5.953	А

17:00 - 17:15

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	419	172	863	0.486	418	0.9	8.227	А
1	2	203	401	645	0.315	203	0.5	8.132	А
	3	543	8	950	0.572	542	1.3	8.833	Α
	1	595	73	886	0.672	592	2.0	12.385	В
2	2	303	268	521	0.581	301	1.4	16.457	С
	3	365	252	875	0.417	364	0.7	7.029	А

17:15 - 17:30

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	513	209	840	0.610	511	1.6	11.041	В
1	2	249	490	591	0.421	248	0.7	10.458	В
	3	662	10	949	0.697	658	2.2	12.143	В
	1	728	89	876	0.831	718	4.4	22.036	С
2	2	371	325	488	0.761	365	2.9	28.492	D
	3	447	305	836	0.535	445	1.1	9.171	А

17:30 - 17:45

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	513	212	839	0.612	513	1.6	11.250	В
1	2	249	492	590	0.422	249	0.7	10.561	В
	3	668	10	949	0.703	667	2.3	12.816	В
	1	731	89	876	0.835	730	4.8	24.621	С
2	2	371	330	485	0.766	370	3.1	31.474	D
	3	447	310	833	0.537	447	1.1	9.322	А

17:45 - 18:00

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS			
	1	419	176	860	0.487	421	1.0	8.409	А			
1	2	203	404	643	0.316	204	0.5	8.222	А			
	3	552	8	950	0.581	556	1.4	9.271	А			
	1	600	73	885	0.678	610	2.2	13.800	В			
2	2	303	276	516	0.587	309	1.5	18.160	С			
	3	365	259	870	0.419	367	0.7	7.172	А			

10

18:00 - 18:15

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	351	146	878	0.400	352	0.7	6.996	А
1	2	170	338	683	0.249	171	0.3	7.031	А
	3	460	7	951	0.483	462	1.0	7.432	Α
	1	502	61	893	0.562	505	1.3	9.562	А
2	2	254	229	545	0.466	256	0.9	12.792	В
	3	306	214	903	0.339	307	0.5	6.046	Α

2030, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Linked Roundabout	Junction 1 - Arm 3	If the distance between linked junctions is small, results should be treated with caution. The linked junctions will be modelled as separate junctions, but the real behaviour may be that of a complex system with interactions that cannot be modelled.
Warning	Linked Roundabout	Junction 2 - Arm 1	If the distance between linked junctions is small, results should be treated with caution. The linked junctions will be modelled as separate junctions, but the real behaviour may be that of a complex system with interactions that cannot be modelled.

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	London Road / Borough Road Mini Roundabout	Mini-roundabout	1, 2, 3	12.20	В
2	London Road / Audley End Road / Newport Road Mini Roundabout	Mini-roundabout	1, 2, 3	59.11	F

Junction Network Options

Driving side Lighting		Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

	ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
I	D3	2030	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Linked Arm Data

Juno	ction	Arm	Feeding Junction	Feeding Arm	Link Type	Flow source	Uniform flow (PCU/hr)	Flow multiplier (%)	Internal storage space (PCU)
1	1	3	2	1	Simple (vertical queueing)	Normal	0	100.00	
2	2	1	1	3	Simple (vertical queueing)	Normal	0	100.00	

Demand overview (Traffic)

Junction	Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
	1		✓	489	100.000
1	2		✓	267	100.000
	3	✓			
	1	✓			
2	2		✓	387	100.000
	3		✓	373	100.000

Origin-Destination Data

Demand (PCU/hr)

Junction 1

	То				
From		1	2	3	
	1	0	15	474	
	2	25	0	242	
	3	430	155	0	

Demand (PCU/hr)

Junction 2

	То					
From		1	2	3		
	1	0	307	413		
	2	292	0	95		
	3	298	75	0		

Vehicle Mix

Heavy Vehicle Percentages

Junction 1

	То					
From		1	2	3		
	1	0	0	5		
	2	0	0	3		
	3	6	3	0		

Heavy Vehicle Percentages

Junction 2

	То					
		1	2	3		
	1	0	8	2		
From	2	8	0	0		
	3	3	9	0		

Results

Results Summary for whole modelled period

Junction	Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
	1	0.62	11.52	1.7	В
1	2	0.51	13.31	1.1	В
	3	0.67	12.26	2.1	В
	1	0.90	36.80	7.5	Е
2	2	1.03	148.86	17.6	F
	3	0.49	8.77	1.0	А

Main Results for each time segment

07:45 - 08:00

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	368	115	896	0.411	365	0.7	7.068	А
1	2	201	354	673	0.299	199	0.4	7.772	А
	3	438	19	944	0.464	435	0.9	7.388	А
	1	535	56	896	0.597	529	1.5	10.089	В
2	2	291	303	500	0.582	286	1.4	17.336	С
	3	281	216	902	0.311	279	0.5	5.999	А

08:00 - 08:15

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	440	139	882	0.498	438	1.0	8.478	Α
1	2	240	425	630	0.381	239	0.6	9.436	А
	3	526	22	942	0.558	524	1.3	9.028	А
	1	642	67	889	0.722	638	2.6	14.706	В
2	2	348	366	464	0.750	342	2.8	30.047	D
	3	335	258	871	0.385	335	0.6	6.985	А

08:15 - 08:30

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	538	164	867	0.621	536	1.7	11.301	В
1	2	294	519	573	0.513	292	1.1	13.087	В
	3	622	27	939	0.663	620	2.0	11.759	В
	1	784	82	880	0.892	768	6.6	30.032	D
2	2	426	441	419	1.016	391	11.5	87.520	F
	3	411	295	844	0.487	409	1.0	8.609	Α

08:30 - 08:45

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	538	167	865	0.622	538	1.7	11.524	В
1	2	294	522	572	0.514	294	1.1	13.308	В
	3	631	28	939	0.672	631	2.1	12.265	В
	1	788	83	880	0.896	784	7.5	36.795	E
2	2	426	450	414	1.030	402	17.6	148.865	F
	3	411	303	838	0.490	411	1.0	8.772	А

08:45 - 09:00

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS	
	1	440	152	874	0.503	442	1.1	8.778	А	
1	2	240	429	628	0.382	242	0.6	9.610	Α	
	3	572	23	942	0.607	573	1.7	10.337	В	
	1	648	68	889	0.729	666	3.0	18.070	С	
2	2	348	382	454	0.766	401	4.3	86.699	F	
	3	335	303	838	0.400	336	0.7	7.492	Α	

14

09:00 - 09:15

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	368	121	893	0.412	369	0.7	7.228	Α
1	2	201	358	671	0.300	202	0.4	7.896	А
	3	453	19	944	0.480	456	1.0	7.801	А
	1	541	57	895	0.604	546	1.6	10.938	В
2	2	291	313	494	0.589	302	1.6	20.800	С
	3	281	228	893	0.314	282	0.5	6.142	А

2030, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Mini-roundabout	Junction 1	Mini-roundabout appears to have unbalanced flows and may behave like a priority junction; treat results with caution. See User Guide for details.[Arms 1 and 3 have 82% of the total flow for the roundabout for one or more time segments]
Warning	Linked Roundabout	Junction 1 - Arm 3	If the distance between linked junctions is small, results should be treated with caution. The linked junctions will be modelled as separate junctions, but the real behaviour may be that of a complex system with interactions that cannot be modelled.
Warning	Linked Roundabout	Junction 2 - Arm 1	If the distance between linked junctions is small, results should be treated with caution. The linked junctions will be modelled as separate junctions, but the real behaviour may be that of a complex system with interactions that cannot be modelled.

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	London Road / Borough Road Mini Roundabout	Mini-roundabout	1, 2, 3	13.39	В
2	London Road / Audley End Road / Newport Road Mini Roundabout	Mini-roundabout	1, 2, 3	28.48	D

Junction Network Options

Driving side	Lighting	Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D4	2030	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Linked Arm Data

Junction	Arm	Feeding Junction	Feeding Arm	Link Type	Flow source	Uniform flow (PCU/hr)	Flow multiplier (%)	Internal storage space (PCU)
1	3	2	1	Simple (vertical queueing)	Normal	0	100.00	
2	1	1	3	Simple (vertical queueing)	Normal	0	100.00	

Demand overview (Traffic)

Junction	Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)	
	1		✓	492	100.000	
1	2		✓	239	100.000	
	3	✓				
	1	✓				
2	2		✓	355	100.000	
	3		✓	428	100.000	

Origin-Destination Data

Demand (PCU/hr)

Junction 1

		То						
		1	2	3				
F	1	0	20	472				
From	2	10	0	229				
	3	434	202	0				

Demand (PCU/hr)

Junction 2

		То							
		1	2	3					
F	1	0	384	318					
From	2	297	0	58					
	3	343	85	0					

Vehicle Mix

Heavy Vehicle Percentages

Junction 1

		Т	o	
		1	2	3
F	1	0	0	2
From	2	0	0	0
	3	1	0	0

Heavy Vehicle Percentages

Junction 2

		То						
		1	2	3				
	1	0	2	0				
From	2	2	0	0				
	3	0	0	0				

Results

Results Summary for whole modelled period

Junction	Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
	1	0.65	12.62	1.9	В
1	2	0.46	11.61	0.8	В
	3	0.74	14.66	2.8	В
	1	0.88	33.05	6.6	D
2	2	0.82	41.43	4.2	Е
	3	0.57	10.27	1.3	В

Main Results for each time segment

16:45 - 17:00

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	370	150	876	0.423	367	0.7	7.180	А
1	2	180	353	674	0.267	178	0.4	7.241	А
	3	477	7	951	0.502	473	1.0	7.526	А
	1	524	64	891	0.587	518	1.4	9.612	А
2	2	267	235	541	0.494	263	1.0	13.012	В
	3	322	220	899	0.359	320	0.6	6.199	А

17:00 - 17:15

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	442	181	857	0.516	441	1.1	8.790	Α
1	2	215	423	631	0.340	214	0.5	8.616	А
	3	572	9	950	0.603	571	1.5	9.505	Α
	1	628	76	883	0.711	624	2.4	13.838	В
2	2	319	283	513	0.623	317	1.6	18.435	С
	3	385	265	866	0.444	384	0.8	7.452	А

17:15 - 17:30

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	542	220	834	0.649	539	1.8	12.292	В
1	2	263	517	575	0.458	262	0.8	11.465	В
	3	696	11	949	0.733	691	2.6	13.834	В
	1	768	93	873	0.879	754	5.9	27.589	D
2	2	391	341	478	0.818	382	3.8	35.294	E
	3	471	320	826	0.571	469	1.3	10.042	В

17:30 - 17:45

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	542	223	832	0.651	542	1.9	12.615	В
1	2	263	520	573	0.459	263	0.8	11.615	В
	3	703	11	949	0.741	702	2.8	14.657	В
	1	772	94	873	0.884	769	6.6	33.053	D
2	2	391	348	474	0.825	389	4.2	41.429	E
	3	471	326	821	0.574	471	1.3	10.271	В

17:45 - 18:00

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS			
	1	442	187	853	0.518	445	1.1	9.053	А			
1	2	215	427	629	0.342	216	0.5	8.746	А			
	3	585	9	950	0.616	589	1.7	10.181	В			
	1	634	77	883	0.718	650	2.7	16.534	С			
2	2	319	294	506	0.631	329	1.8	21.649	С			
	3	385	275	858	0.448	387	0.8	7.663	А			

18

18:00 - 18:15

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	370	155	873	0.424	372	0.8	7.347	Α
1	2	180	357	672	0.268	181	0.4	7.337	А
	3	485	8	951	0.511	488	1.1	7.869	А
	1	530	64	891	0.595	534	1.5	10.348	В
2	2	267	242	537	0.498	270	1.0	13.912	В
	3	322	226	894	0.360	323	0.6	6.318	А

2030 + COM, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Linked Roundabout	Junction 1 - Arm 3	If the distance between linked junctions is small, results should be treated with caution. The linked junctions will be modelled as separate junctions, but the real behaviour may be that of a complex system with interactions that cannot be modelled.
Warning	Linked Roundabout	Junction 2 - Arm 1	If the distance between linked junctions is small, results should be treated with caution. The linked junctions will be modelled as separate junctions, but the real behaviour may be that of a complex system with interactions that cannot be modelled.

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	London Road / Borough Road Mini Roundabout	Mini-roundabout	1, 2, 3	12.38	В
2	London Road / Audley End Road / Newport Road Mini Roundabout	Mini-roundabout	1, 2, 3	64.10	F

Junction Network Options

Driving side Lighting		Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D5	2030 + COM	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)			
HV Percentages	2.00			

Linked Arm Data

	Junction	Arm	Feeding Junction	Feeding Arm	Link Type	Flow source	Uniform flow (PCU/hr)	Flow multiplier (%)	Internal storage space (PCU)
	1	3	2	1	Simple (vertical queueing)	Normal	0	100.00	
-	2	1	1	3	Simple (vertical queueing)	Normal	0	100.00	

Demand overview (Traffic)

Junction	Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
	1		✓	489	100.000
1	2		✓	279	100.000
	3	✓			
	1	✓			
2	2		✓	389	100.000
	3		✓	374	100.000

Origin-Destination Data

Demand (PCU/hr)

Junction 1

	То				
		1	2	3	
F	1	0	15	474	
From	2	25	0	254	
	3	430	159	0	

Demand (PCU/hr)

Junction 2

	То					
		1	2	3		
F	1	0	314	419		
From	2	294	0	95		
	3	299	75	0		

Vehicle Mix

Heavy Vehicle Percentages

Junction 1

	То				
From		1	2	3	
	1	0	0	5	
	2	0	0	3	
	3	6	3	0	

Heavy Vehicle Percentages

Junction 2

	То					
		1	2	3		
	1	0	8	2		
From	2	8	0	0		
	3	3	9	0		

Results

Results Summary for whole modelled period

Junction	Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
	1	0.62	11.59	1.7	В
1	2	0.54	13.97	1.2	В
	3	0.67	12.29	2.1	В
	1	0.91	41.07	8.5	Е
2	2	1.04	160.33	19.3	F
	3	0.49	8.79	1.0	А

Main Results for each time segment

07:45 - 08:00

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	368	118	895	0.411	365	0.7	7.090	А
1	2	210	354	673	0.312	208	0.5	7.920	А
	3	441	19	944	0.467	437	0.9	7.418	А
	1	544	56	896	0.607	537	1.6	10.325	В
2	2	293	307	498	0.588	287	1.4	17.625	С
	3	282	217	901	0.313	280	0.5	6.016	А

08:00 - 08:15

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	440	142	880	0.499	438	1.0	8.515	Α
1	2	251	425	630	0.398	250	0.7	9.701	А
	3	528	22	942	0.561	526	1.3	9.080	Α
	1	653	67	889	0.734	648	2.7	15.308	С
2	2	350	370	461	0.759	344	2.9	31.025	D
	3	336	260	870	0.387	335	0.6	7.009	А

08:15 - 08:30

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	538	168	865	0.622	536	1.7	11.368	В
1	2	307	519	573	0.536	305	1.2	13.708	В
	3	624	27	939	0.664	621	2.0	11.805	В
	1	797	82	880	0.906	779	7.3	32.475	D
2	2	428	445	417	1.028	391	12.3	92.051	F
	3	412	295	843	0.488	410	1.0	8.633	Α

08:30 - 08:45

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	538	170	863	0.624	538	1.7	11.594	В
1	2	307	522	572	0.537	307	1.2	13.969	В
	3	632	28	939	0.673	631	2.1	12.288	В
	1	801	83	880	0.911	796	8.5	41.065	E
2	2	428	455	411	1.043	400	19.3	160.333	F
	3	412	303	838	0.491	412	1.0	8.787	А

08:45 - 09:00

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	440	156	872	0.504	442	1.1	8.834	А
1	2	251	429	628	0.399	253	0.7	9.898	А
	3	578	23	942	0.614	580	1.7	10.511	В
	1	659	68	889	0.741	680	3.2	19.578	С
2	2	350	389	450	0.777	408	4.7	100.372	F
	3	336	308	834	0.403	337	0.7	7.568	А

09:00 - 09:15

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	368	124	891	0.413	369	0.7	7.252	А
1	2	210	358	671	0.313	211	0.5	8.056	А
	3	457	19	944	0.484	459	1.0	7.861	Α
	1	550	57	895	0.614	556	1.7	11.271	В
2	2	293	318	492	0.595	305	1.6	21.624	С
	3	282	231	891	0.316	282	0.5	6.170	Α

2030 + COM, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Mini-roundabout	Junction 1	Mini-roundabout appears to have unbalanced flows and may behave like a priority junction; treat results with caution. See User Guide for details.[Arms 1 and 3 have 82% of the total flow for the roundabout for one or more time segments]
Warning	Linked Roundabout	Junction 1 - Arm 3	If the distance between linked junctions is small, results should be treated with caution. The linked junctions will be modelled as separate junctions, but the real behaviour may be that of a complex system with interactions that cannot be modelled.
Warning	Linked Roundabout	Junction 2 - Arm 1	If the distance between linked junctions is small, results should be treated with caution. The linked junctions will be modelled as separate junctions, but the real behaviour may be that of a complex system with interactions that cannot be modelled.

Junction Network

Junctions

	Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
ı	1	London Road / Borough Road Mini Roundabout	Mini-roundabout	1, 2, 3	13.94	В
ı	2	London Road / Audley End Road / Newport Road Mini Roundabout	Mini-roundabout	1, 2, 3	30.61	D

Junction Network Options

Driving side	Lighting	Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D6	2030 + COM	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Linked Arm Data

Junction	etion Arm Feeding Feeding Link Type		Flow source	Uniform flow (PCU/hr)	Flow multiplier (%)	Internal storage space (PCU)		
1	3	2	1	Simple (vertical queueing)	Normal	0	100.00	
2	1	1	3	Simple (vertical queueing)	Normal	0	100.00	

Demand overview (Traffic)

Junction	Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
	1		✓	492	100.000
1	2		✓	246	100.000
	3	✓			
	1	✓			
2	2		✓	362	100.000
	3		✓	433	100.000

Origin-Destination Data

Demand (PCU/hr)

Junction 1

		То						
		1	2	3				
F	1	0	20	472				
From	2	10	0	236				
	3	434	214	0				

Demand (PCU/hr)

Junction 2

		То						
		1	2	3				
	1	0	388	321				
From	2	304	0	58				
	3	348	85	0				

Vehicle Mix

Heavy Vehicle Percentages

Junction 1

		Т	o	
		1	2	3
F	1	0	0	2
From	2	0	0	0
	3	1	0	0

Heavy Vehicle Percentages

Junction 2

		То						
		1	2	3				
	1	0	2	0				
From	2	2	0	0				
	3	0	0	0				

Results

Results Summary for whole modelled period

Junction	Arm	Max RFC Max delay (s)		Max Queue (PCU)	Max LOS
	1	0.66	12.96	1.9	В
1	2	0.47	11.91	0.9	В
	3	0.75	15.44	3.0	С
	1	0.89	35.13	7.1	Е
2	2	0.84	45.72	4.7	Е
	3	0.58	10.60	1.4	В

Main Results for each time segment

16:45 - 17:00

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	370	159	870	0.426	367	0.7	7.256	Α
1	2	185	352	674	0.275	184	0.4	7.316	А
	3	486	7	951	0.511	482	1.0	7.666	А
	1	529	64	891	0.593	523	1.4	9.739	А
2	2	273	237	540	0.505	269	1.0	13.308	В
	3	326	225	895	0.364	324	0.6	6.279	А

17:00 - 17:15

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	442	192	851	0.520	441	1.1	8.925	А
1	2	221	423	632	0.350	221	0.5	8.746	А
	3	583	9	950	0.614	581	1.6	9.768	Α
	1	635	76	883	0.718	631	2.4	14.155	В
2	2	325	285	511	0.637	323	1.7	19.153	С
	3	389	271	861	0.452	388	0.8	7.594	А

17:15 - 17:30

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	542	232	827	0.655	539	1.9	12.599	В
1	2	271	517	575	0.471	269	0.9	11.744	В
	3	708	11	949	0.746	703	2.8	14.456	В
	1	775	93	873	0.888	760	6.3	28.837	D
2	2	399	344	476	0.837	389	4.2	37.985	E
	3	477	326	821	0.581	475	1.4	10.335	В

17:30 - 17:45

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	542	236	824	0.657	542	1.9	12.961	В
1	2	271	520	573	0.473	271	0.9	11.909	В
	3	716	11	949	0.755	715	3.0	15.438	С
	1	779	94	873	0.893	776	7.1	35.125	E
2	2	399	351	472	0.844	396	4.7	45.724	E
	3	477	333	816	0.584	477	1.4	10.598	В

17:45 - 18:00

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS			
	1	442	199	846	0.523	445	1.1	9.216	А			
1	2	221	427	629	0.352	222	0.6	8.887	А			
	3	597	9	950	0.629	602	1.8	10.565	В			
	1	641	77	883	0.726	658	2.8	17.233	С			
2	2	325	298	504	0.646	336	2.0	23.135	С			
	3	389	283	853	0.456	391	0.9	7.835	А			

18:00 - 18:15

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	370	164	867	0.427	372	0.8	7.432	Α
1	2	185	357	672	0.276	186	0.4	7.421	А
	3	495	8	951	0.520	497	1.1	8.039	Α
	1	535	64	891	0.601	540	1.6	10.522	В
2	2	273	245	535	0.509	276	1.1	14.309	В
	3	326	232	890	0.366	327	0.6	6.407	Α

2030 + COM + PROPOSED DEV, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Linked Roundabout	Junction 1 - Arm 3	If the distance between linked junctions is small, results should be treated with caution. The linked junctions will be modelled as separate junctions, but the real behaviour may be that of a complex system with interactions that cannot be modelled.
Warning	Linked Roundabout	Junction 2 - Arm 1	If the distance between linked junctions is small, results should be treated with caution. The linked junctions will be modelled as separate junctions, but the real behaviour may be that of a complex system with interactions that cannot be modelled.

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	London Road / Borough Road Mini Roundabout	Mini-roundabout	1, 2, 3	12.58	В
2	London Road / Audley End Road / Newport Road Mini Roundabout	Mini-roundabout	1, 2, 3	68.30	F

Junction Network Options

Driving side Lighting		Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D7	2030 + COM + PROPOSED DEV	AM	ONE HOUR	07:45	09:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Linked Arm Data

June	ction	Arm	Feeding Junction	Feeding Arm	Link Type	Flow source	Uniform flow (PCU/hr)	Flow multiplier (%)	Internal storage space (PCU)
	1	3	2	1	Simple (vertical queueing)	Normal	0	100.00	
:	2	1	1	3	Simple (vertical queueing)	Normal	0	100.00	

Demand overview (Traffic)

Junction	Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
	1		✓	489	100.000
1	2		✓	290	100.000
	3	✓			
	1	✓			
2	2		✓	390	100.000
	3		✓	376	100.000

Origin-Destination Data

Demand (PCU/hr)

Junction 1

	То				
		1	2	3	
F	1	0	15	474	
From	2	25	0	265	
	3	430	162	0	

Demand (PCU/hr)

Junction 2

	То					
From		1	2	3		
	1	0	320	423		
	2	295	0	95		
	3	301	75	0		

Vehicle Mix

Heavy Vehicle Percentages

Junction 1

	То				
From		1	2	3	
	1	0	0	5	
	2	0	0	3	
	3	6	3	0	

Heavy Vehicle Percentages

Junction 2

	То				
From		1	2	3	
	1	0	8	2	
	2	8	0	0	
	3	3	9	0	

Results

Results Summary for whole modelled period

Junction	unction Arm Max RFC M		Max delay (s)	Max Queue (PCU)	Max LOS
	1	0.62	11.65	1.7	В
1	2	0.56	14.64	1.3	В
	3	0.67	12.34	2.1	В
	1	0.92	45.65	9.6	Е
2	2	1.05	168.49	20.4	F
	3	0.49	8.82	1.0	А

Main Results for each time segment

07:45 - 08:00

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	368	120	893	0.412	365	0.7	7.107	А
1	2	218	354	673	0.324	216	0.5	8.060	А
	3	443	19	944	0.469	439	0.9	7.446	А
	1	552	56	896	0.616	545	1.6	10.550	В
2	2	294	310	496	0.592	288	1.5	17.827	С
	3	283	218	900	0.314	281	0.5	6.035	А

08:00 - 08:15

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	440	145	879	0.500	438	1.0	8.546	Α
1	2	261	425	630	0.414	260	0.7	9.956	А
	3	531	22	942	0.563	529	1.3	9.133	Α
	1	662	67	889	0.745	657	2.9	15.901	С
2	2	351	374	459	0.765	344	3.0	31.747	D
	3	338	261	869	0.389	337	0.7	7.039	А

08:15 - 08:30

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	538	170	863	0.624	536	1.7	11.423	В
1	2	319	519	573	0.557	317	1.2	14.329	В
	3	626	27	939	0.666	623	2.0	11.871	В
	1	809	82	880	0.920	788	8.1	34.956	D
2	2	429	449	415	1.036	390	12.8	95.212	F
	3	414	295	844	0.491	413	1.0	8.673	А

08:30 - 08:45

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	538	173	862	0.625	538	1.7	11.653	В
1	2	319	522	572	0.559	319	1.3	14.638	В
	3	633	28	939	0.674	633	2.1	12.345	В
	1	813	83	880	0.925	807	9.6	45.652	E
2	2	429	460	408	1.052	399	20.4	168.492	F
	3	414	302	839	0.494	414	1.0	8.820	А

08:45 - 09:00

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	440	160	870	0.505	442	1.1	8.876	А
1	2	261	429	628	0.415	263	0.7	10.180	В
	3	583	23	942	0.619	584	1.8	10.648	В
	1	669	68	889	0.752	694	3.4	21.303	С
2	2	351	395	446	0.785	412	5.2	111.292	F
	3	338	311	832	0.406	339	0.7	7.630	А

09:00 - 09:15

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	368	127	890	0.414	370	0.8	7.278	Α
1	2	218	358	671	0.325	219	0.5	8.208	А
	3	460	19	944	0.487	463	1.0	7.920	А
	1	559	57	895	0.624	565	1.8	11.604	В
2	2	294	322	490	0.600	308	1.7	22.352	С
	3	283	233	890	0.318	284	0.5	6.202	А

2030 + COM + PROPOSED DEV, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Mini-roundabout	Junction 1	Mini-roundabout appears to have unbalanced flows and may behave like a priority junction; treat results with caution. See User Guide for details.[Arms 1 and 3 have 82% of the total flow for the roundabout for one or more time segments]
Warning	Linked Roundabout	Junction 1 - Arm 3	If the distance between linked junctions is small, results should be treated with caution. The linked junctions will be modelled as separate junctions, but the real behaviour may be that of a complex system with interactions that cannot be modelled.
Warning	Linked Roundabout	Junction 2 - Arm 1	If the distance between linked junctions is small, results should be treated with caution. The linked junctions will be modelled as separate junctions, but the real behaviour may be that of a complex system with interactions that cannot be modelled.

Junction Network

Junctions

Junction	Name	Junction Type	Arm order	Junction Delay (s)	Junction LOS
1	London Road / Borough Road Mini Roundabout	Mini-roundabout	1, 2, 3	14.36	В
2	London Road / Audley End Road / Newport Road Mini Roundabout	Mini-roundabout	1, 2, 3	32.13	D

Junction Network Options

Driving side	Lighting	Road surface	In London
Left	Normal/unknown	Normal/unknown	

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D8	2030 + COM + PROPOSED DEV	PM	ONE HOUR	16:45	18:15	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Linked Arm Data

Junction	Arm	Feeding Junction	Feeding Arm	Link Type	Flow source	Uniform flow (PCU/hr)	Flow multiplier (%)	Internal storage space (PCU)
1	3	2	1	Simple (vertical queueing)	Normal	0	100.00	
2	1	1	3	Simple (vertical queueing)	Normal	0	100.00	

Demand overview (Traffic)

Junction	Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (%)
1	1		✓	492	100.000
	2		✓	250	100.000
	3	✓			
	1	✓			
2	2		✓	367	100.000
	3		✓	437	100.000

Origin-Destination Data

Demand (PCU/hr)

Junction 1

		То						
		1	2	3				
F	1	0	20	472				
From	2	10	0	240				
	3	434	223	0				

Demand (PCU/hr)

Junction 2

		То						
		1	2	3				
F	1	0	390	323				
From	2	309	0	58				
	3	352	85	0				

Vehicle Mix

Heavy Vehicle Percentages

Junction 1

	То					
		1	2	3		
F	1	0	0	2		
From	2	0	0	0		
	3	1	0	0		

Heavy Vehicle Percentages

Junction 2

	То					
		1	2	3		
	1	0	2	0		
From	2	2	0	0		
	3	0	0	0		

Results

Results Summary for whole modelled period

Junction	Arm	Max RFC	Max delay (s)	Max Queue (PCU)	Max LOS
	1	0.66	13.23	2.0	В
1	2	0.48	12.08	0.9	В
	3	0.76	16.07	3.1	С
	1	0.90	36.40	7.4	Е
2	2	0.86	49.21	5.1	Е
	3	0.59	10.86	1.4	В

Main Results for each time segment

16:45 - 17:00

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	370	166	866	0.428	367	0.8	7.311	А
1	2	188	352	674	0.279	187	0.4	7.361	А
	3	492	7	951	0.518	488	1.1	7.765	A
	1	532	64	891	0.597	526	1.5	9.813	А
2	2	276	238	539	0.513	272	1.0	13.523	В
	3	329	229	892	0.369	327	0.6	6.342	А

17:00 - 17:15

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	442	200	846	0.523	441	1.1	9.029	Α
1	2	225	423	632	0.356	224	0.5	8.821	Α
	3	591	9	950	0.622	589	1.6	9.975	А
	1	638	76	883	0.722	634	2.5	14.340	В
2	2	330	287	510	0.647	327	1.8	19.688	С
	3	393	275	858	0.458	392	0.8	7.702	А

17:15 - 17:30

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	542	242	821	0.660	538	1.9	12.840	В
1	2	275	517	575	0.479	274	0.9	11.908	В
	3	717	11	949	0.756	712	2.9	14.956	В
	1	779	93	873	0.893	764	6.5	29.582	D
2	2	404	346	475	0.850	393	4.5	40.079	E
	3	481	331	817	0.589	479	1.4	10.566	В

17:30 - 17:45

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	542	246	818	0.662	542	2.0	13.232	В
1	2	275	519	573	0.480	275	0.9	12.084	В
	3	725	11	949	0.765	725	3.1	16.071	С
	1	784	94	873	0.898	780	7.4	36.398	E
2	2	404	353	471	0.858	401	5.1	49.207	E
	3	481	338	812	0.592	481	1.4	10.857	В

17:45 - 18:00

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS		
	1	442	208	841	0.526	445	1.2	9.345	А		
1	2	225	427	629	0.357	226	0.6	8.969	А		
	3	606	9	950	0.638	612	1.8	10.876	В		
	1	644	77	883	0.730	663	2.9	17.670	С		
2	2	330	300	502	0.657	342	2.1	24.347	С		
	3	393	288	849	0.463	395	0.9	7.973	А		

18:00 - 18:15

Junction	Arm	Total Demand (PCU/hr)	Circulating flow (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	LOS
	1	370	171	863	0.429	372	0.8	7.493	Α
1	2	188	357	672	0.280	189	0.4	7.465	А
	3	502	8	951	0.528	504	1.1	8.172	А
	1	538	64	891	0.604	543	1.6	10.626	В
2	2	276	246	534	0.517	280	1.1	14.611	В
	3	329	236	887	0.371	330	0.6	6.477	А

SITE: Mount Pleasant Road (52.016926, 0.243602)

Cl	ass	Axles	Groups	Description	Parameters	<u>Dominant Vehicle</u>	Aggregate
1	sv	2	1 OR 2	Short - Car, light Van	d(1)>=1.7m, d(1)<=3.2m & axles=2	*	W. F.
2	SVT	3, 4 OR 5	3	Short Towing - Trailer, Caravan, Boat, etc.	groups=3, d(1)>=2.1m, d(1)<=3.2m, d(2)>=2.1m & axles=3,4,5	8 DO	Light
3	TB2	2	2	Two axle truck or Bus	d(1)>3.2m & axles=2	E.	
4	TB3	3	2	Three axle truck or Bus	axles=3 & groups=2	A Company	Medium
5	T4	>3	2	Four axle truck	axles>3 & groups=2	Silver state	
6	ART3	3	3	Three axle articulated vehicle or Rigid vehicle and trailer	d(1)>3.2m, axles=3 & groups=3		
7	ART4	4	>2	Four axle articulated vehicle or Rigid vehicle and trailer	d(2)<2.1m or d(1)<2.1m or d(1)>3.2m axles = 4 & groups>2		
8	ART5	5	>2	Five axle articulated vehicle or Rigid vehicle and trailer	d(2)<2.1m or d(1)<2.1m or d(1)>3.2m axles = 5 & groups>2	China and	
9	ART6	>=6	>2	Six (or more) axle articulated vehicle or Rigid vehicle and trailer	axles=6 & groups>2 or axles>6 & groups=3		Heavy
10	BD	>6	4	8-Double or Heavy truck and trailer	groups=4 & axles>6	13000000	
11	DRT	>6	5	Double road train or Heavy truck and two trailers	groups=5,6 & axles>6	E	
12	TRT	>6	>6	Triple road train or Heavy truck and three (or more) trailers	groups>6 & axles>6]
14	M/C	2	1 OR 2	Motorcycle	d(1)>=1.18m, d(1)<=1.7m & axles=2	o===	Light
15	CYCLE	2	1 OR 2	Cycle	d(1)<1.18 & axles=2	5%	ugnt

	Eastbound	Westbound
Total	21830	20045
Mean Speed	26.9	26.9
85%	31.3	31.5

CHARGE SURVEYS: Site: 1 - London Road / Newport Road / Audiey End Road Roundabout

Location: Saffron Walden CB10 1EA

Date: Wednesday 20th September 2023 Time: 07 00-30:00, 16 00-19 00

Time: 07 00	-90:00	16 00	-19 00																								
								London	Road /	Newpo	et Ro	ad / A	udley	End	Road	Roun	dabout	(07 00-	(00 00	AM P	eaks						
					OVER	ENT 1								KOVEN	ENT 2								OVEN	ENT 1			\neg
	$\overline{}$			PRO	MILONE	ON NO				г			PRO	MILON	ON ROA	0		\neg	\Box			FRO	M LONG	ON RO	6		\neg
					BT IV	RN TO							211	MONT!	HEADT			- 1				n.	TURN	ACK TO			- 1
	_				MILES.	TROM	_	_	_	_			- AL	al al a	E FEM	_	_	_	_			L	20000	Refer	_	_	_
	CAK	sav	OUVI	001/2	8.8	MEY	POF	TOTAL	POU TOTAL	CAR	LOV	OWN	007/2	8.8	MEY	PCY	TOTAL	FOU TOTAL	CAR	LOV	COUNT	007/2	8.0	MEY	PEY	TOTAL	PCU TOTAL
0700-0715	49	5	1	1	1	0	0	56	58.80	33	5	0	0	0	0	2	40	29.40	0	0	0	0	û	0	0		0.00
0715-0730	89	15	2	0	2	1	0	109	111.60	72		0	0	0	1	5	-	81.40	0	0	0	0	0	0	0		0.00
0730-0745	83	9	1	1	1		0	95	97.50	64	5	1	Q.	0	0	5	75	71.50	0	0	0	0	ů.	٥	0		0.00
0745-0800	79	13	2	1	1	0	1	96	98.50	100	12	1	1	0	1	2	117	116.60	0	0	0	0	ů.	ů.	0		0.00
0800-0815	47	9	2	0	1	- 1	0	81	62.90	101	2	0	û	1	1	5	110	106.40	0	ū	0	0	ù	0	D		0.00
0015-0030	60	3	2	0	Ď.		0	99	67.50	103	4	D	1	4	0	5	117	118.30	D	0		0	ů.	0	0		0.00
0030-0045	62	12	9	0	1		0	94	89.50	90	4	D	0	1	3	0	183	102.20	0	0	0	0	Q.	0	0		0.00
0845-0900	50	-11	2	-1	2		1	- 00	72.00	64	-		0	0	1	1	67	65.60		0	0		0	0	0		0.00
0900-0915	49	· ·	2	1	0	0	0	80	62.30	50		1	0	0	0	3	62	60.10	0	0	0	0	û	0	0		0.00
0915-0930	56	9	2	٥	1		0		70.00	50	3	1	ů.	1	1	0	56	56.90	D	0	0	D	ů.	٥	0		0.00
0930-0945	55	11	2	0	D		0		69.00	20	2	0	0	0	D	1	23	22.20	0	0	0	0	O.	0	0		0.00
0945-1000	55	9	4	9	2		0	72	90.50	90	4	0	0	0	0		26	26.00	. 0	0	0	0	0	0	0		0.00
6700-1000	722	114	24	•	12	- 2	2	904	940,60	792	90	•	- 2	7	•	20	992	\$75.60	0	•	٠	•	•	•	•		0.00
	_	_	_	100	HV	00/1				=	_		-	BI V	60.631				=	_		100		00/2	_		_

								London	Road /	Noveme	vrt Br	ad / A	urfley	Fod	Road	Rou	vlahout	(16 00-	19.00	PM P	-						
- 1		_		-	OVEN	ENT 1			-						EINT 2	_		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					OVEN	ENT 3	_		
	$\overline{}$			PRO	M LONG	ON NO			\neg				FRO	MUON	ON RO	6		\neg	$\overline{}$			FRO	W LONG	ION ROA	6		\neg
					SPT TU	RN TO							818	MONT	NISAD T	0		- 1				u	TURN I	ACK TO			
	_				Mest	TROAD	_	_	_	_			ALI	al mark	NO ROW	_	_	_	-				21000	RC/IC	_	_	_
	CAR	MIN	COUNT	0000	8.8	MEY	POF	TOTAL	POU TOTAL	CAR	LOV	COUNT	007/2	86.80	MEY	PCY	TOTAL	FOU TOTAL	CAR	LOV	0001	00V2	8.8	MEY	PCY	TOTAL	FOU.
1000-1015	59	9	û	0	1	0	0	89	70.00	42	4	1	ů	0	1	2	50	49.30	0	0	0	0	ů	0	0	0	0.00
1015-1000	65	12	1	٥	0	0	0	78	78.50	48	2	0	ů.	0	D	0	50	50.00	0	0	0	0	ů.	٥	D.		0.00
1030-1645	84	7	1	0	0	0	0	92	92.50	49	3	0	Q.	0	0	1	53	52.20	0	0	0	0	0	0	0		0.00
1645-1700	69	12	1	0	0	0	0	21	81.50	46	3	0	0	0	0	0	49	49.00	0	0	0	0	0	0	0		0.00
1700-1715	92		Q.	1	1	0	0	102	104.30	57	3	D	ù	٥	Ď	0	90	60.00	D	0	0	D	ů.	٥	0		0.00
1715-1730	86		Q.	1	0	0	0	95	96.30	51	4	D	û	0	2	0	57	55.80	0	0	0	D	ů.	٥	D		0.00
1730-1745	80	4	Q.	0	1	0	0	25	86.00	66	5	D	Q.	0	D	2	73	71.40	D	0	0	D	0	0	0		0.00
1745-1800	67	2			2		1	74	77.00	112	2		0	0	0	0	114	114.00		0		0	0		0		0.00
1800-1815	63	3	0	۰	1		0	67	68.00	36	2	0	۵	۰	۵	0	38	29.00		0	0	0	0	٥	0		0.00
1815-1830	58	2	Q	۰	2	0	0	62	64.00	41		D	0	0	D	٥	42	42.00	0	0	0	0	0	0	0		0.00
1830-1845	52	4	1	۰	0		0	57	57.50	26	4	0	0	۰	0	۰	30		0	0	0	0	0	٥	0		
1845-1900	45	۰		-	-2	-		- 22	930.60	29	_	÷		-	÷	-	-20	640.70				÷	-	-	۰	-	0.00
1900-1900	819	77	5	2	10	•	_1	915	ANDRO	903	24	_	•	•			645	643.70					۰				0.00
	_			HO	EX	OW	5						Ю	Lay	юш	5						ю	Lay	(O) (A)	5		$\overline{}$
1000-1700	270	40	- 2	0	1	0	0	329	322.50	195	12	- 1	0	0	- 1	- 3	282	199.50	0	0	0	0	0	0	0		0.00
1015-1715	309	39	2	1	1	0	0	353	256,80	200	- 11	0	0	0	0	- 1	212	211.20	0	0	0	0	0	0	0		0.00
1630-1730	330	35	2	2	1		0	379	274.60	203	13	0	0	0	2	1	219	217.00	0	0	0	0	0	0	0		0.00
1945-1749	326	32	1	2	2	0	0	363	268.10	220	15	0	0	0	2	2	228	236.20	0	0	0	0	0	0	0		0.00
1700-1800	305	22	1	3	4	Ö	1	356	363.60	290	14	D	0	0	2	2	204	305.20	D	ū	Ö	D	0	0	D		0.00
1715-1815	296	17	1	2	4	0	1	321	227.20	265	13	0	0	0	2	2	282	279.20	D	0	0	0	0	0	0		0.00
1730-1830	269	11	1	1	6	0	1	200	295.00	255	10	D	0	0	0	2	267	265.40	0	0	0	D	0	0	0		0.00
1745-1845	240	11	2	1	5	0	1	260	266,50	215	9	D	ù	0	Ď	0	224	224.00	0	0	0	Ď	ů.	ů	0		0.00
1800-1900	218	15	1	0	5	0	0	239	244.50	132		0	0	0	0	0	140	140.00	D	0	0	0	ü	0	Đ		0.00

Location: Saffron Welden CB10 1EA

Date: Wednesday 20th September 2023 Time: 07 00-30:00, 16 00-19 00

London Road / Newport Road / Audiey End Road Roundabout (07 00-10 00) AM Peaks

					OVER	MENT 4								HOVEN	MENT 6							M	OVER	ENT 6			
				FRO	NO.	COT NO	AD.						PRO	M HOME	CRIT RO	MO.		\neg	$\overline{}$			FREE PE	News	ORT RO	40		
					SPTTL	EN TO				ш				NO.	URN TO			- 1				U.	TURNS	MOX TO			
	_			A	et er e	NO ROA	_			ш.					1200			$\overline{}$	ᆫ				MIN.	TROM			
	CAK	unv	oovi	0010	-	MEY	PEX	TOTAL	PCU TOTAL	CAR	LO	OOVI	onvo	10.0	MEY	PCY	TOTAL	POU TOTAL	CAR	LOV	OCIVI	0012	81.00	MEY	PCY	TOTAL	POU TOTAL
0700-0715	5	2	0	0	0	û	0	7	7.00	14	- 4	4	1	1	1	û	25	29.70	0	Û	0	0	ů.	0	0		0.00
0715-0730	9	1	0	0	0	0	0	10	10.00	34	12	2	0	0	0	0	48	49.00	0	0		D	0	0	0		0.00
0730-0745	11	0	0	0	0	1	0	12	11.40	54	20	5	1	1	0	ū	81	85.80	0	0	0	0	0	0	0		0.00
0745-0800	13	2	0	0	0	2	0	18	16.90	69		6	4		0	1	97	94.40	0	O.	0	0	0		0		0.00
0800-0815	26	1	ū	0	0	û	0	27	27.00	58	- 6	2	2	- 1	0	ù	69	72.60	0	ú		0	û	0	Ď.		0.00
0815-0830	27	0	0	0	0	0	2	29	27.40	41	1	1	4	ō.	1	0	-	53,10	0	0	0	D	0	0	0		0.00
0830-0845	19	1	0	0	0	0	0	20	20.00	66	13	2	2	4	0	0	94	89.90	0	û		D	0	0	0		0.00
0845-0900	13	2	0		0		- 1	17	15.60	49	2	1	2	0		0	50	60.40	0	0	0		0	0	. 0		0.00
0900-0915	17	0	1	0	0	û	0	18	18.50	67	9	4	0	2	0	ů	82	86.00	0	0	0	0	0	0	0		0.00
0915-0900	5	1	0	0	0	0	0		6.00	39	9		2	1	D.	û	57	62,60	0	û		D	0		0		0.00
0930-0945	9	1	0	0	0	0	0	10	10.00	50	7	2	2	2	0	2		72.00	0	0	0	D	0	0	0		0.00
0945-1000	5	0	0	0	0	0	0		5.00	38	5	2	4	0	. 0	0	-69	55,20	0	0		0	0	0	. 0		0.00
0700-1000	129	12	-	•		4	,	179	174.70	383	-	27	28	•	2	-	754	811.70			٠			•			0.00
								-		_																	
				ю	BLY	TOTAL	3						ю	UELY	TOTAL	3						100	4	IO AL	3		
0700-0800	20	- 0	0	0	0	- 2	0	47	45.20	171	40	17	- 0	2	1	1	261	257.90	0	0	0	0	0	0	0		0.00
0715-0015	59	5	0	0	0	2	0	67	65.20	215	40	15		2	0	1	295	302.60	0	0	0	D	0	0	0		0.00
0730-0830	77	4	0	0	0	2	2	99	82.60	222	24	14	11	2	1	1	295	306.90	0	O.	0	0	0	0	0		0.00
0745-0845	95	5	0	0	0	2	2	94	91.20	234	26	11	13	2	1	1	200	311.00	0	0	0	D	0	0	0		0.00
0800-0900	95	4	0	0	0	1	3	83	90.00	214	20	6	12	2	1	û	257	277.00	0	û	0	D	0	0	0		0.00
0015-0915	76	3	1		0	1	2	94	81.50	223	26		10	3	1	0	270	289.40	0	0		D	0		0		0.00
0830-0930	54	4	1	0	0	1	1	81	60.10	221	25	13		4	0	0	279	299.90	0	0	٥	0	0	0	0		0.00
0845-0945	-64	4		0	0	1	1	51	50.30	208	26	13	7	5	0	2	293	282.00	0	0	0	0	0	ė.	0		0.00
0900-1000	20	2	1	ů	0	0	Ö	29	29,50	197	20	14	ů.	5	0	2	250	276.80	0	Ü	Ö	D	Ü	Ö	Ď		0.00

				M	OVER	ENT 4								OVEN	ENT 6								OVER	ENT 6			
г				PROB	New	COST NO	AD						PROF	HOMP	ORT RE	MD.		\neg	г			FROM	News	ONT RO	10		
L					SPTTL MAY S	RN TO ED ROA								CHECON					L					MOK TO TROAD			
[CAR	see	COUNT	00002	-	MEY	PER	TOTAL	PCU TOTAL	CAR	LOV	covi	007/2	8.8	MCY	PCY	TOTAL	FOU TOTAL	CAR	LEV	001/1	OOV2	8.8	MEY	PCY	TOTAL	POL TOTA
615	5	0	0	0	0	û	0	5	5.00	48	15	0	1	0	1	ů	65	65.70	0	0		0	Û	0	0	0	0.00
630	5	0	0	0	0	Q.	0	5	5.00	61	10	0	0	2	0	ū	73	75.00	0	0	0	0	0	0	0		0.0
1645	5	2	0	0	0	Q.	0	7	7.00	59		0	2	1	0	0	71	74,60	0	0	0	0	0	0	0		0.0
1700	11	1	0	0	0	0	0	12	12.00	68	10	1	- 1	0	0	0	20	81.80	0	0	0	0	0	0	0	0	0.0
1715	4	1	0	0	0	Q.	0	7	7.00	66	-	0	0	0	0	0	72	72.00	0	ů.		D	0	0	0		0.0
1730		1	0	0	0	Q.	0		9.00	53	7	1	0	3	0	û	64	67.50	0	0	0	D	0	0	0		0.0
1745	16	0	0	0	0	Q.	0	10	16.00	74	3	0	0	0	0	0	77	77.00	0	0	0	D	0	0	0		0.0
1000	23	0	0	0	0	0	0	23	22.00	58	5		0			0	94	65.00	0	0		0	0	0	0		0.0
865		1	0		0	0	٥	•	9.00	70	5	0	0	1	0	0	76	77.00	0	0		0	0		0		0.0
1830	3	0	0	0	0	Q	٥	3	2.00	54	4	D	0	1		0	81	62.00 59.00		0	0	D	0	0	0		0.0
1545	4	0	0	0	0	0	٥	4		53	4	D	0	1	0	0	58		0	ū	۰	D	0	0	0		
1900	٠.	_	0	•	0	0	۰	-	6.00	41	-			•			- 20	50.00				_	0	•	0	•	0.0
1900	99	7					٠	194	106.00	714	80	2	4	10	1		811	\$26.60				0					0.0
г	_			HO	ЦY	TOTAL	5						100	L.W	000	3						100	L.Y	(C) (A)	5		
1700	26	â	0	ů.	0	û	0	29	29.00	230	-66	1	- 4	à	1	0	289	297.10	0	0	0	0	0	ů.	0	0	0.0
1715	27	4	0	0	0	Q.	0	21	31.00	254	25	1	2	3	0	0	296	303.40	0	0	0	D	0	0	0		0.0
1730	30	5	0	0	0	0	0	35	35.00	246	32	2	2	4	0	0	297	295.90	0	0	0	D	0	0	0		0.0
-1745	41	3	0	0	0	û	0	44	44.00	201	26	2	1	3	0	û	293	298.30	0	0		D	0	0	0		0.0
	53	2	Ü	Ö	0	0	0	55	55.00	251	21	1	Ü	4	0	0	277	281.50	0	0		Ď	Ü	Ö	0		0.0
					0	0	0	57	57.00	255	20	1	0	5	0	ū	291	286.50	0	0	0	D	0	0	0		0.0
1015	55	2	C.																								
-1815 -1830	50	1	0	ő	0	0	0	91	51.00	258	17	0	0	3	0	0	278	281.00	0	0		D	Q	0	0		
-1800 -1815 -1830 -1845 -1900		1	0	0	0	0	0	51 39 22	29.00 22.00	258 237	17	0	0	4	0	0	278 259	263.00 248.00	0	0	ů	0	0	0	0	0	0.0

Location: Saffron Walden CB10 1EA

Date: Wednesday 20th September 2023

Time: 07 00-10:00, 16 00-19:00 London Road / Newport Road / Audley End Road Roundabout (07 00-10 00) AM Peaks

MOVEMENT 7

MOVEMENT 9

MOVEMENT 9

	_				O VERN	EN				_				200	ENI I			_	_				OVER	ENT 3			
	Г					YEND								ALCUR		DAD			г				ALDUR TURN R				
						IROAD				II								- 1	ı				DLEY S				
	\vdash					_			PCU	_								POL	⊢								FO.
	CAR	LOW	OUVI	001/2	8.8	MCY	PER	TOTAL	TOTAL	CAR	Lav	OUV	OUA	16.50	MCY	PCY	TOTAL	TOTAL	CAK	LOV	000/1	OOM	8.00	MOY	PEY	TOTAL	101
00-0715	21	2	0	0	0	0	0	23	23.00	0	0	0	0	0	0	0		0.00	0	0	0	0	0	0	0		0.0
15-0730		5	0		0	0	1	35	34.20	2	1	1	0	0	0	0	5	5.50	0	0	0	0	0	0	0		0.0
30-0745	63	1	0	٥	1	0	0	65	66.00	7	3	D	0	0	0	ū	10	10.00	0	ů.	٥	0	0		0		0.0
45-0000	407	6		٥	1	0	- 1	56	\$6.70	2	2	0	0	0	0	0	5	00.2	0	0	0	0	0	0	0		0.0
00-0815	6.7	1	1	0	0	û	2	71	69.90	18	2	Ď	ū	â	D	û	23	26.00	0	û	0	0	û		D		0.0
15-0030	65	3	1	0	4	0	0	73	77.50	18	2	Ď	0	2	D	ū	22	24.00	1	0	0	0	0		D	- 1	1.0
30-0645	75	3	1		2	0	0	81	83.50	11	1	0	0	1	D	0	13	14.00	0	0	0	0	0	0	D		0.0
45-0900	50	2	0		0	0		52	\$2.00		- 1	0	0		0	0	7	7.00	0	0	0	0	0		0		0.0
00-0915	21	5	1		0	1	0	28	27.90	10	2	1	0	0	D	0	13	13.50	0	û	0	0	0	0	D		0.0
15-0930	21	2	0	0	0	1	1	35	22.60	7	0	D	0	0	D	0	7	7.00	0	0	0	0	0	0	D		0.0
30-0945	29	3	0		0	0	0	42	42.00	10	0	0	0		D	ū	10	10.00	0	0	0	0	0		D		0.0
45-1000	92	4	0		0	0	0	26	36.00	- 5	2	0	0	0	0	0	7	7.00	-0	0	0	0	0		0		0.0
00-1999	550	27	5	•		2	5	667	612.30	98	10	2		•			122	129.00	1		٠		•	•		1	1.0
-	_	_		1800	BLY	100172			_	_	_		100	TOLY.	1001/2	•		_	_	_		160	UNY	10077			_
00-0000	160	14			-	0	- 5	179	179.90	13	- 4	- 1	0	Δ.	0	0	20	20.50	0	0	۸		0		0		0.0
15-0015	200	-		-			- 1	227	226,80	31		- :	-	-	-	0	40	46.50		-		-	-	-	-		0.0
30-0830	242	**	- 6	- 1	-		- 3	285	270.10	46	- 5	ò		-		0	-	65.00	I ĭ		Ä		-	- 7			1.0
45-0045		10	- 7	- 6	7	0	- 6	281	267.60	50	- 7	0	0	- 6		0		69.00	1 ;	0	-	0	0	- 6			1.0
					- 6	0	2	277	262,90	53	-	0	0	4	0	0	65	71.00	1	0	0	0	0	0	0	- 1	1.0
00-0900	257																										
		10	- 2	-	-	-	-	944	250,90	AC.				- 4				59.50									
5-0915	221	13	3	•	6	1	0	244	250.90 207.00	45	6	1	0	3	0	0	55	58.50 41.50	L	0	0	0	0		0	1	
00-0900 15-0915 30-0930 45-0945		12	2	0	2	2	1	244 200 167			4	1	0	1	0	0	55 40 37		0	0	0	0		0	0	1	0.0

					OVEN	ENT 7								OVEN	ENT 8								OVER	ENT 9			
г				PROM	AUGUR	YES	800			$\overline{}$			PROM	ALDLE	FENC R	OAC						PPCM	MEUR	TROR	OAD		
- 1				277	MONT.	MEAD	10		- 1	ı				OKT T	AN TO				II .			U.	TARREST S	MOK TO			
-					900	IROAD		_	_	⊢				and the	ROAD		_	_	ь			ALI	LEYE	NO ROW	_	_	_
- 1	CAR	LOW	OUVI	00/2	8.8	MCY	PER	TOTAL	PCU TOTAL	CAR	LOV	CICVI	OGVD	88	MCY	PCY	TOTAL	FOU TOTAL	CAK	LOV	000/1	OOV	8.8	MOY	PCY	TOTAL	FOU TOTAL
15	27	4	Û		1	1	- 1	44	43.60	12	0	0	0	0	0	0	12	12.00	0	û	0	0	Û	0	0		0.00
10	58	7	0	0	0	0	2	67	65.60	10	4	0	0	٥	0	۵	14	14.00	0	ū	٥	0	0	0	0		0.00
4	99	5	1	0	0	0	1	95	94.70	18		0	0	0	0	0	24	24.00	0	0	0	0	0	0	0		0.00
엑上	66	3	0		0	0	2	71	69.40	26	1	0	0	0	0	0	27	27.00	0	0	0	0	0	0	0	0	0.00
чГ	97	5	0	٥	0	1	3	100	103.00	29	1	0	0	0	D	0	30	20.00	0	0	0	0	0	0	D		0.00
20	53	10	û	0	0	0	0	63	63.00	22	٥	D	0	0	D	0	22	22.00	0	û	٥	0	0	0	D		0.00
145	70	3	0	0	0	0	0	73	73.00	11	4	0	0	0	1	1	17	15.60	0	0	0	0	0	0	D		0.00
4	90	4	0		0		2	- 23	85.60	13	0	0	0		0	0	13	12.00	0	0	0	0	0		0		0.00
	93		0		0	0	4	95	91.80	15	٥	0	0	1		0	18	17.00	0	0	٥	0	0		D		0.00
130	30	1	0	0	0	0	4	25	31.90		0	D	0	0	D	0	•	18.00	0	0	0	0	0	0	D		0.00
1845	75	2	0		0	1	3	81	78.00	16	٥	0	0	1		0	17		0	0	٥	0	0		0		0.00
1900	20	-	-	÷	÷	ů	95	885	63.60	12	·	ů	ů	•	÷	-	913	13.00		0		ů		÷		+	0.00
20	792	37	_	-	_	_	- 23	883	100 2.00	107	-17			-2	_	_	212	211.00		•	-			_			0.00
г				HO	Lily	TOTAL	5						HO	LΨ	000	5						ю	RΥ	OW	5		
1700	249	19	1	0	1	1	- 6	277	273.10	66	11	0	0	0	0	0	77	77.00	0	ū	0	0	0	0	0		0.00
715	109	20	1	0	0	1		229	222.50	83	12	0	0	0	D	0	95	95.00	0	0	0	0	0	0	D		0.00
	304	23	1	0	0	1	6	335	220,10	95		D	0	0	D	0	193	202.00	0	0	0	0	O.	0	D		0.00
145	296	21	0	0	0	1	5	313	306.60	88	6	۵	0	0	1	1	96	94.60	0	ū	0	0	0	0	D		0.00
	100	22	0	0	0	4	5	331	224,60	75	5	0	0	0	1	1	82	80.60	0	0	0	0	0	0	0		0.00
	296	25	0	0	0	2	4	320	213,40	61	4	0	0	1	1	1	-	67.60	0	0	0	0	0	0	D		0.00
	263	198	0	0	0	2	10	292	282,30	47	4	0	0	1	1	1	54	58.60	0	0	0	0	0	0	0		0.00
845 S	269	15	0		0	4	13	200	267.20	52	0	0	0	2	D	0	54	\$6.00	0	0	0	0	0		D		0.00
									265.30									56.00									0.00

Location Selfron Welden CRSD SEA

Date Wednesday 20th Sectember 2028 Time 07 00-50 00, 16 00-59 00

| STATE | STAT

CAR LOW DOWN DOWN BUR MICY PCY

| Second | S

MOVEMENT 12 PROBLEMENT NEAD NO U TURN BACK TO

LONDON ROAD (NE)

CAR LOW CONT CONT BUT MOY POT

MOVEMENT 12

FROM LINCON ROAD (NE)

U TURN BRICK TO

LONDON ROAD (NE)

CAR LOV COVI COVO BUE MCY PCY

London Road (NE) / Borough Lane / London Road (SW) Roundabout (07 00-10 00) AM Peaks

MOVEMENT 11
PROBLEMENT AMEND TO
ETRAIGHT AMEND TO

LONDON FIGNO (EW)

| NOTIFICATION | NOTI

MOVEMENT 11
FRON LONDON ROAD INS
ETRAIGHT AREAD TO
LONDON ROAD (RW)

CAR LOV CONT CONT BUE MOT POT

The control of the co

Location Saffron Walden CR30 ISA

Date Wednesday 20th September 2022

Time 07 00-30 00, 16 00-29 00

MOVEMENT 14 PROB BOROUGH LAW RIGHT TURN TO PROBLEMENTO LANGE
LEFT TURN TO
LONGOUN FOUR (SW)

CAR LOV COVI CONO SUR MCY FOY U TURN BACK TO CAR LOW DOWN DOWN BLUE MCY PCY BOROUGH LANE CAR LOV COVI COVO BUE MCY PCY | Guerra | G 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 \$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 3 & 0 & 1 & 0 & 0 & 0 & 1 \\
\$\frac{1500}{200} \quad 5 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 5 & 1 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 6 & 1 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 3 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 3 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 3 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500} \quad 2 & 0 & 0 & 0 & 0 & 0 \\
\$\frac{1500}{200} \quad 2 | Transferred | | NOVELY TOTALS | NOVELY TOTAL

									E28.80									38.20									
																	Road (SW) Roundabout (16 00-1						Т		_		
- 1					OVEN	ENT 1	,		LUIIG		o par	gruo	nougi	Lan	67.00		MENT 14	9 00) F	i -	_		-	WEM	ENT 15	_	_	_
- 1	$\overline{}$				M BORD												FOURTLANE		-					UCH LANE	_		
					LEFTT	IN TO				ш						EGH	TURN TO		ш				LIFE B	ACK 10			
				40	WOOM F	OAD (B)	N)			11						LONDO	N RCAD (NE)						94000	KLANE			
	GAR	LOV	OOVI	0017	848	MCY	POY	TOTAL	PCU TOTAL	CAR	uav	OWI	0017	848	MCY	PCY	TOTAL	PCU TOTAL	CAR	uav	COVI	0012	8.8	MCT I		TOTAL	FC 101
100-1615	29	2	1	Ó		0	Ó	22	22.50	,		٥	0	0	0		,	7.00	0		0	Ó		Ó	0		0.0
15-1600	40	2		0		•	0	42	43.00	2			o	•	0		,	2.00			•	0		0			0.0
130-1545	41	4	1	o		٠	0	44	46,50	П 1			1	•	0		1	3,30			•	0		•	۰		0.0
545-1700	28	5	٠	0		٠	٥	-61	41.00	2			ø	٠	0		,	2.00	0			0		o	0		0.0
790-1715	48			ò			ò	54	54.00	2			ò		0		1	2.00	0			0				0	3.0
715-1730	41	7		ò		à	ò	- 68	48.00	2		â	à		ò		1	2.00	۰		a	ò					0.0
20-1745	49			Ġ.		ů.	1	50	49.20	2			ė.		o.		1	2.00									0.0
45-1800		-2	_			_	. 0	- 65	66.00	1		-		_		_	1	2.00		_	-		-	-			0.0
00-1815 15-1830		1	۰	٥	۰	٠	٥	33	33.00			•	0		٥			0.00			٠		•	•	•	0	0.0
20-1945	26	1				•		28	29.00	П.		•						1.00	II :		•		•	•	: 1		0.0
845-1900									18.00	II 🖫							1	0.00	II š				:		: 1		0.0
600-1900		77	÷	,	ı,	÷	Ť	400	481.70	i i	÷	ı.	ı,	÷	-	ı.		27,30	ı,	÷	ı.	-	÷	•	÷	_	0.0
-			_	_	_	_	_			_	_	_	_	_	_	_				_	_	_	_		_	_	_
				R	UNIV	1016	3									1000	YTOTALS					10	R.Y	TOTALS	=		
600-1700	148	15	2	0			0	163	164.00	12			1		0		и	14.30	0			0		0	0	0	0.0
615-1715	165	18	1	٥		0	٥	184	184.50			0	1		٥			23.20	٥		0	٥			٥		0.0
630-1730		22	1	0		•	0	109	189.50			¢	1		0		,	23,30	۰			0			۰	۰	3.0
645-1745		18	٠	0			1	193	192.30				0		0			9.00	0			0				۰	0.0
700-1800	300	15		0			1	218	217.20				0		0		,	9.00	0		0	0			0	0	0.0
15-1815	198	10	٠	٥		•	1	197	196.30			0	0		0			6.00			•	0			۰	۰	O.I
730-1830		4	۰	٥	1	٠	1	177	177.30	11 ?		•	0		0			6.00			٠			•		۰	0.0
745-1845			-	0	-1	•		167	100.50			•	0		0			4.00				0			-	۰	I

Location Saffron Walden CR00 SEA

Date Wednesday 20th September 2022

Time 07 00-10 00, 16 00-19 00

00-10 00) AM Peaks London Road (NE) / Borough Lane / London Road (SW) Roundabout (D PROMILENCE TO THE PROMILENCE TO THE PROPERTY T CAR LOV COVI COVO BUE MOY POY | No. BOROUGH LAME CAN LOW DOWN DOWN BUR MEY PCY | Company | Comp CALL DAV ONN ONN ONN SHE SEC FOR 1
15.50 0 0 0 0 0 0
177.50 0 0 0 0 0 0 0
18.50 0 0 0 0 0 0
18.50 0 0 0 0 0 0
18.50 0 0 0 0 0 0
18.50 0 0 0 0 0 0
18.50 0 0 0 0 0 0
18.50 0 0 0 0 0 0
18.50 0 0 0 0 0 0
18.50 0 0 0 0 0 0
18.50 0 0 0 0 0 0
18.50 0 0 0 0 0 0
18.50 0 0 0 0 0 0
18.50 0 0 0 0 0 0
18.50 0 0 0 0 0 0
18.50 0 0 0 0 0 0
18.50 0 0 0 0 0 0
18.50 0 0 0 0 0 0 0
18.50 0 0 0 0 0 0 0
18.50 0 0 0 0 0 0 0 | HOUSEY TOTALS | HOUSEY TOTAL HOURT FORMS

118.50
0 0 0 0 0 0 0
118.50
15.50
15.50
1 0 0 0 0 0 0 0
15.50
1 0 0 0 0 0 0 0
15.50
1 0 0 0 0 0 0 0
15.50
1 0 0 0 0 0 0 0
15.50
1 0 0 0 0 0 0 0
15.50
1 0 0 0 0 0 0 0
15.50
1 0 0 0 0 0 0 0
15.50
1 0 0 0 0 0 0 0
15.50
1 0 0 0 0 0 0 0
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
15.50
1

_							Lon	don Ro	ed (NE)	/ Boro	ugh	Lane	Lond	on R	oad (S	sw) s	loundal	bout (16	00-19	00) P	M Pe	aks					
- 1				- 14	OVEN	SENT 19							- 10	OWEM	ENT 12								OVEN	ENT 1			
- 1				FROM	LONGO	N FOAD	(20)						PROM	OWDO	I FOAD	(EW)		\neg	$\overline{}$			PROM	LONDO	NEDAD	(EW)		
- 1				275	MORT.	AHEAD?	TO			II .				ICHT T	IRN 10			- 1				· ·	TURNE	ACK TO			
- 1				LD	NDON F	NO AD (M	ŋ			ш_				04000	KLAME							LO	NOON R	040 (8)	10		
	CAR	uav	001	0012	818	MCY	POY	TOTAL	PCU TOTAL	CAR	uav	oavi	oava	848	MCY	PCY	TOTAL	FCU TOTAL	CAR	LOV	000/1	00/2	818	MCY	PCY	TOTAL	FOU TOTAL
1800-1815	57	12	0	1		2	1	73	72.30	25	7	٠		1	o		33	34.00		٥	ò		ė.	0		0	0.00
1015-1030	82	12		0	2	0	1	97	98.20	37	5			0	0	1	42	42,20		0	0			0			0.00
1030-1945	100			2	1			114	117.60	41	5	1		٠	o	1	41	47.70		٠	0			0		0	0.00
1645-1700	102	10	1	1			1	115	116.00	34	2	٠		٠	٥	1	22	37.20		٠	٥			0			0.00
1700-1715	108			0		1	2	114	111.80	54	4				ò	1	58	59,20			ò			0		0	0.00
1715-1730	72		1	ė.	2			25	88.50	35		ė.		٠	ò		44	44,00			ė.			ė.		0	0.00
1730-1745	104	5	a a	0		ů.		109	109.00	200	2	·		0	ò		41	41.00		0	ò			0		0	0.00
1745-1800				Ó	-1	-	1	102	101.60	63	4				2	1	50	49,00			0			Ó			0.00
1800-1815		10	a	0	1		2	119	117.60		2	•		٠	0	1	52	52,20		٠	٥		٠	۰		0	0.00
1815-1830		4	a	۰	1	٠	4	79	67.80	27		٠	۰	۰	٥	۰	27	27.00		٠	٥	۰	٠	۰		0	0.00
1830-1945	*		9		1		3	97	95.60					۰	1		44	41.40		۰	0		•			۰	0.00
	_	_		-		_	-	26	81.60	20				_	•	۰	32	32.00					_	_	-		0.00
1600-1900	7047	22	2	4	12	-	12	1179	1177.64	457	- 66	- 1		1	2		512	506.90			2			9		0	0.00
- 1	_			10	NO NY	TOTAL	5						100	US Y	rom/	5		\neg				ю	URLY	101/1	5		$\overline{}$
1000-1700	343	(3)	- 1	4	2	2	2	299	404.10	197	20	- 1		1	ø	2	162	161.33			Ò			0		0	0.00
1015-1715	200	26	1		2	1	4	460	463.60	100	17	1			0	4	100	185.30			0			0			0.00
1630-1730	362	223	2		4	1	2	628	422.90	104	21	1		•	0	2	100	197.10		•	0		•	0			0.00
1645-1745	284	29	2	1	2	•	2	623	425,30	162	18				o	2	192	180.40			o			0			0.00
1700-1800	278	24	1	0	4	2	2	410	410.90	171	19				2	2	194	191.20			0			0			0.00
1715-1015	275	29	1	0	5	1	4	415	416.70	100	18				2	2	100	185.20			0			0			0.00
1730-1830	204	24		•	2	1		400	296.00	158				٠	2	2	171	168.20		٠	o			•		0	0.00
1745-1945	348	26	a	0	4	1	11	288	282.60	162	7			۰		2	174	170.60		٠	٥		٠	0		0	0.00
1800-1900	222	-22	g	0	- 2		13	279	362.60	169					1	1	156	154.60			0			0			0.00

CHARGE SURVEYS
Ster. 3 - Debden Road (NI) / Debden Road (SI) / London Road Roundabout

Location: Seffron Welden CB10 1EA
Date: Wednesday 20th September 2023
Time: 07 00-30:00, 16 00-19 00

Time: 07 00	H30:00	16 00	H19 00																								
	_							ebden R	load (Ni	/ Det	oden	Road					undabo	ut (07 0)	1-10 00	MA	Peak						_
		_	_	- 10	OVEM	ENT 19					_	_	M	OVEN	ENT 20			$\overline{}$	$\overline{}$	_	_	M	OVEMS	ENT 21			$\overline{}$
						NECKO	(100)								NEGAD									MOND			
					EFT TU										MEAD 1			- 1						ACK 10			- 1
	_			-	CENT	E P	_	_	_	⊢				CHECK	HOME	_		$\overline{}$	-			263	OR IN	OAD (NE	_	_	_
	CAR	MW	007/1	0000	8.8	MEY	POF	TOTAL	PCU TOTAL	CAR	LOV	ODV	007/2	8.8	MEY	PCY	TOTAL	FOU TOTAL	CAR	LOV	0001	OUVS	BAR	MEY	PCY	TOTAL	FOUL TOTAL
0700-0715	11	5	û	0	1	0	0	17	18.00	55		1	û	1	0	1	66	66.70	0	ů.	0	0	û	0	0	0	0.00
0715-0730	15	5	2	0	1	1	D	24	25.40	118	17	1	ů.	1	1	3	141	139.50	0	0	1	0	0	0	0	1	1.50
0730-0745	21	2	1	٥	2	٥	0	26	28.50	99		2	2	2	0	4	117	119.40	1	0		0	ū	٥	۵	1	1.00
0745-0800	22	9	0	0	0	0	0	22	32.00	122	19	2	0	0	0	2	145	144.40	0	0	0	0	0	0	0	0	0.00
0800-0815	27	5	1	٥	1	٥	0	34	35.50	85		2	û	2	1	1	99	100.60	D	0		D	ū	٥	D	0	0.00
0015-0030	35	4	0	0	1	0	D	40	41.00	122	4	2	1	3	0	2	136	137.70	0	0	0	0	0	0	0	0	0.00
0830-0845	30	3	1	٥	1	٥	0	35	36.50 40.50	64	10	5	û	٥	3	0	102	102.70	1	0		D	ū	٥	D	1	0.00
0845-0900	30						0	29		69	_	_		_2_		_	26			0			_0_			0	
0900-0915	29	13	3	1	3		0	42	\$3.80 32.00	65	10	2	0		0	1	79	79.20	0	0			0	۰	0	0	0.00
	22	10	a	0	D		D	32	34.50	75			Q	1		٥	20	77.70		0	0		Q	۰	0	0	0.00
0930-0945	26	5	1		1		0	33	34.50	67		1	0			1	79	91.40		0			0		0	0	0.00
		-	-	٠	-	÷		22	412.20	- 00	- 10	-	-	-	٠	16	- 24	01.40		-	÷	-	-	٠	÷		2.50
6700-1600	292	74	11	_1	12	_	0	292	417.20	1027	121	27	- 7	14		16	1218		2	0		0	0	•	0	,	2.50
				HO	RLY	TOTAL	\$						ю	IRLY	TOTAL	4		$\overline{}$				ю	RLY	IOTAL	\$		\neg
0700-0000	70	21	- 2	0	4	- 1	0	99	109.90	294	52	0	2	4	- 1	10	469	470.00	1	0	- 1	0	0	0	0	2	2.50
0715-0815	86	21	4	0	4	1	0	116	121.60	424	52	7	2	5	2	10	582	509.90	1	0	1	0	ū	0	0	2	2.50
0730-0830	106	20	2	0	4	0	0	132	137.00	429	29		2	7	1	9	495	502.10	1	0	0	0	O.	0	0	1	1.00
0745-0845	115	21	2	ů	2		0	141	145.00	413	41	11	1	5	4	5	490	485.40	1	0	0	0	ù	0	0	1	1.00
0800-0900	122	19	2	0	4	0	0	148	153.50	360	31	12	2	7	5	4	421	430.40	1	0	0	0	û	0	D	1	1.00
0015-0915	123	27	5	1	6		D	162	171.80	340	22	12	2	5	4	4	400	409.00	1	0	0	0	0	0	0	1	1.00
0830-0930	110	33	5	1	5	0	0	154	162.80	293	38	13	1	3	4	2	354	360.80	1	0	0	D	O.	٥	0	1	1.00
0845-0945	106	35	5	1	5	0	0	152	160.80	276	37	9	1	3	1	3	220	335.60	D	0	0	0	0	0	0	0	0.00
0900-1000	101	34	5	- 1	5	0	0	146	154,80	273	22	9	2	2	0	2	322	337.80	0	0	0	0	0	0	0	0	0.00

- [- 10	OVEM	ENT 19							M	OVERN	ENT 20							MC	OVEMS	MT 21			
ı				PROBLE		NECKO	(10)						PROM	Desce	MOAD	pen						PROMI	0000	FICAD	paq		
- 1					SPT II.	MN TO							STR	ADM A	HEADT	10						U.	TURNS IN	MOK 10			
- L				00	CHA	10/0/0								CHECK	ROMO							260	COLD	MI DA	_		
[CAK	MIN	COTVT	0002	8.8	MCY	POT	TOTAL	PCU TOTAL	CAR	LOV	COUNT	O07V2	8.8	MEY	PCY	TOTAL	FOU TOTAL	CAR	LOV	COUNT	CHIV2	BLE	MEY	RCY	TOTAL	FOU TOTAL
1000-1015	53	4	û	0	2	0	1	60	61.20	73	10	0	û	1	1	2	97	85.80	0	0	0	0	û	0	0		0.00
1915-1930	57	9	Q.	0	0	0	0	66	66.00	75	9	0	Q.	0	1	0	95	94.40	0	0	0	0	Q.	0	0	0	0.00
1630-1645	49	3	1	0	1	1	0	55	55.90	96	6	Ď.	Q.	0	0	1	93	92.20	0	0	0	Ď.	Q.	0	0	0	0.00
1645-1700	59	7	1	0	0	0	0	66	66.50	76	10	1	0	0	0	0	27	87.50	0	0		0	0	0	0	0	0.00
1700-1715	74	7	1	0	1	0	0	83	84.50	64	5	0	2	1	0	0	92	95.60	D	0	0	0	ů.	0	0	0	0.00
1715-1730	80	5	ů.	٥	3	0	1	22	91.20	96	4	D	û	٥	0	1	91	90.20	D	0	0	D	ū	٥	D	0	0.00
1730-1745	81	3	Q.	0	1	0	0	85	86.00	94	11	D	O.	1	0	0	106	107.00	1	0	0	D	O.	0	0	1	1.00
1745-1800	96	4	0	0	2		0	92	94.00	103				2	0		111	114.00	0	0		0	0	0	0	0	0.00
1800-1815		2	2		1		0	70 62	72.00	65 71	2	0	۵	1	0	0	68 74	69.00	D	0		0	0	٥	0	0	0.00
1015-1030	60	-							67.20	/1	- 2							75.00 68.00									0.00
1830-1845	59		0		1		1	67	60.00	60			0				66		D				0				0.00
1900-1900		54	-	•	11	÷	÷	954	866,50	50	-	_	-	-	-	-	1001	61.00	-		-		-	-			1.00
1600-1900	178	-24	,	•	-12	_	_	124	204.50	229	74	-7	-2	_	-2	_	1221	-		- 2	_	0	9	_		_	1.00
r				HO	RLY	IATOI	\$						Ю	URLY	OTAL	5						ю	RIT	OTAL	\$		
1600-1700	947	23	0	0	- 0	- 1	4	247	249.60	310	35	4	0	4	0	- 0	352	349,90	0	0		0	0		0		0.00
1015-1715	239	26	3	0	2	-	0	279	272.90		30	1	2	-	1	- 1	357	359.70	0	0	0	0	0	0	0		0.00
1630-1730	261	22	2	0	5	1	1	293	298.10	332	25	1	2	1	Ď.	2	363	365.50	0	0	0	Ď.	O.	0	0	0	0.00
1645-1745	293	22	2	0	5	0	1	323	229.20		30	1	2	2	0	1	276	380.30	1	0	0	D	û	0	D	- 1	1.00
1700-1800	321	19	1	Ö	7	Ö	1	249	255,70		23	1	2	4	D	2	400	406.80	1	ü	0	Ď	ū	ō	D	- 1	1.00
1715-1815	312	14	2	0	7	0	1	336	343.20		20	1	1	4	0	2	276	390.20	1	0	0	D	ū	0	0	- 1	1.00
1730-1830		11	2	0	4	0	0	209	214.00	222	19	1	1	5	0	1	359	365.00	1	0	0	D	0	0	0	1	1.00
	270								295.20				•		Ď.		321	326.00		O.		Ď.	O.		0		0.00
1745-1845		12						258	261.20								299	273.00									0.00

Location: Seffron Welden CB10 1EA Date: Wednesday 20th September 2023

Time: 07 0	0-30:00	,1600	19 00															out (07 0									
1	_			10	OVEM	ENT 22		ebden F	towa (No	/ De	boen	Road		OVEN			undabo	out joy o	0-10 0	ij AM	Peak		V/EMI	OMT 24	_		
	-			PROM	CHRO	IN FICAL	200		$\overline{}$	-			PROP	10000	N SCA	(20			-			PRODA	Descr	N ROAD	130		
					APTT	MN TO	-							HIGHT THE	UMN TO	-			II .					ACK 10			
					0100	ERICAD							DE	REAL PROPERTY.	DEC (N									DAR SI			
	CAR	MW	covi	0007	8.0	MET	POT	TOTAL	PCU TOTAL	CAR	uav	ggys	onya	10.0	MCY	PCY	TOTAL	FOU TOTAL	CAR	LOV	001/1	ggyg	8.00	MCY	PCY	TOTAL	POU TOTAL
700-0715	7	- 1	0	ō	0	0	- 1	٠.	9.20	51		0	0	ā	0	0	50	59.00	0	0	ō	0	0	ō	0	0	0.00
715-0730	1 4	0	0	ō	0	1	-		6.60	50	4	2	0	-	0	1	91	62,20	0	0	ō	0	0	ō	0		0.00
730-0745		2	0	0	0	0	٥		9.00	54		0	0	0	0	1	45	64.20	0	0	0	0	0	0	0		0.00
745-0000	9	1	0	0	0	0	0	10	10.00	68	4	1	1	1	0	1	76	79,00	0	0	0	0	0	0	0	0	0.00
800-0815	10	0	0	0	0	û	- 6	10	10.00	69	- 6	0	û	0	0	û	75	75.00	0	0	0	0	0	- 6	0	0	0.00
815-0800	12	1	1	0	0	0	2	16	14.90	45	6	0	0	0	0	1	52	51.20	0	0	0	D	0	0	0	0	0.00
130-0645	9	2	1	0	0	0	0	12	12.50	74	7	0	0	1	0	0	92	82.00	0	0	0	D	0	0	0	0	0.00
845-0900	10	0	0	0	0	0		10	10.00	92	7		0			0	100	99.40	0	0		0	0	0	. 0	. 0	0.00
900-0915	5	2	0	0	0	0	0	- 7	7.00	50	1	D	0	0	0	1	55	54.20	0	0	0	D	0	0	0	0	0.00
15-0930		1	O.	0	1	ů.	٥	4	5.00	35	6	D	0	1	D	0	42	42.00	0	ū	٥	D	0	0	0	0	0.00
930-0945	2	0	0	0	0	0	0	2	2.00	33	3	2	0	0	0	0	28	29.00	0	0	0	D	0	0	0	0	0.00
945-1000	_	-2	0	0	-0	0	0	5	5.00	46	5	. 0	_	_	_	0	54	55,70	0	0			0	0	- 0		0.00
700-1000	92	12	2		-1	-1	4	102	100.20	675	65	5	- 2	- 5	2	5	759	763.90	0	0		0	0		0	0	0.00
	_	_	_	100	DI V	TOTAL			_	_	_	_	-	URLY	100171		_	_	_	_	_	100	E 7	COLA			_
700-0000	20	- 4	0	- 0			- 5	26	22.90	220	24	-	-	- 0		- 0	261	363.40	0	0		0	0	Δ.	0	Ď	0.00
715-0015	99	-	0	7	-	- ;	- 1	37	35.60	246	22	-		2	-	-	277	279.40	0	0	7	0	0	7	0		0.00
730-0830	50	- 7	-	ā	0	ò	2	45	43.90	220	24			- 1		2	268	269.40	0	0	ā		0	ā			0.00
745-0845	40	4	2	ō	0	0	2	48	47.40	250	23	1		2	0	2	285	287.20	0	0	ō	0	0	ō	0	0	0.00
800-0900	41	2	2	0	0	0	2	42	47.40	290	26	D	0	1	1	1	309	308.60	0	û	0	D	0	0	0	0	0.00
15-0915	96	5	2	0	0	0	2	45	44.40	264	21	0	0	1	1	2	299	287.80	0	0	0	D	0		0	0	0.00
130-0930		5	1	0	1	0	0	33	34.50	254	21	0	0	2	1	1	279	279.60	0	0	0	D	0	0	0	0	0.00
145-0945		3	0	0	1	0	0	23	24.00	213	17	2	0	1	1	1	235	235.60	0	0	0	D	0	0	0	0	0.00
2000-1000																											0.00

L					OVEM	ENT 2							M	OVEN	ENT 23							M	YVEM	ENT 24			
- 1				PRICE	KI K	N FIGA	(III)		\neg				PROB		N FORD	(20)		\neg				PROM	CORE	N ROAD	(PI)		
- 1					BETTE	MN TO								ICHT T	MN TO			- 1				U	LEGS II	ACK 10			
- L	_				0400	FIGAR	_	_	_	_			200	CHAIR	000 (10	_		_	_				BERNE	DAR BI	_		_
ı	CAK	LOW	COOVE	0012	8.0	MEX	PCX	TOTAL	PCU TOTAL	CAR	LOV	covi	CKTVC	8.8	MCY	PCY	TOTAL	FOU TOTAL	CAR	LOV	CONT	0072	8.00	MEY	PCY	TOTAL	101
0-1615	2	0	0	0	0	ů	0	2	2.00	34	- 6	1	0	0	0	û	41	41.50	0	0	0	0	0	0	0	0	0.
5-1600	4	2	1	0	0	Q.	0	- 7	7.50	30	2	1	0	1	0	1	35	25.70	0	0	0	0	0	0	0	0	0.
10-1645	4	0	0	0	0	0	0	4	4.00	40	5	1	0	0	1	0	47	46,90	0	0	0	0	0	0	0	0	0.
65-1700	9	1	0	0	0	0	0	10	10.00	38	4	0	0	1	1	0	44	66.40	0	- 1	0	0	0	0	0	- 1	1.
00-1715	14	1	0	0	0	ů.	0	15	15.00	33	10	1	0	1	D	0	45	46.50	0	0	0	D	0	0	0	0	0.
5-1730		1	0	0	0	1	1	11	9.60	45	3	D	0	1	D	0	49	50.00	0	0	0	D	0	0	0	0	0
10-1745	7	0	0	0	0	0	0	7	7.00	39	5	D	0	1	D	0	45	46.00	0	0	0	D	0	0	0	0	0
E-1800	7	0	0	0	0	0	0	. 7	7.00	45	5	0	0		0		52	52,20	0	0		0	0	0	0	0	0
0-1815	3	0	0	0	0	ů.	٥	3	2.00	48	3	D	0	1	D	1	53	53.20	0	0	۰	D	0	0	0	0	0
5-1830		1	0	0	0	0	0	7	7.00	39	٠	D	0	1	D	0	40	41.00	0	0	0	D	0	0	0	0	0
0-1545	1	0	0	0	0	ů.	٥	1	1.00	31	1	D	0	1	D	1	24	24.20	1	0	0	D	0	0	0	1	1
E-1900	4	-2		_				•	29.10	35		_		_		0	26	27.00			۰		0	٠.	0		٥
0-1900	69	- 8	-1		0	-1	-1	92	79.10	457	-64	-	0	10	2	4	521	221.60	_1			0	0		0	2	2
r	_			HO	USLY	ion)	5						HO	BILY	OU	5						100	R.T	OW			_
00-1700	19	3	1	ů	0	0	ů	23	23.50	142	17	3	0	2	2	1	167	168.50	0	- 1	ô	0	0	0	0	- 1	1
5-1715	21	4	1	0	0	0	0	36	36.50	541	21	3	0	3	2	1	171	173.50	0	1	0	D	0	0	0	1	1
00-1730	35	3	O.	0	0	1	1	40	28.60	150	22	2	0	3	2	0	195	187.60	0	1		D	0	ů.	0	1	1
65-1745	28	3	0	0	0	1	1	43	41.60	155	22	1	0	4	1	0	183	186.90	0	1	0	D	0	0	0	1	1
00-1800	20	2	Ö	0	0	1	1	40	38.60	162	23	1	Ü	4	D	1	191	294.70	0	0	0	Ď	Ü	Ö	0	0	0
5-1815	25	1	0	0	0	1	1	22	26.60	177	16	D	0	4	D	2	199	201.40	0	0	0	D	0	0	0	0	0
00-1830	23	1	0	0	0	0	0	34	24.00	171	13	D	0	4	D	2	190	292.40	0	0	0	D	0	0	0	0	0
6-1545	17	1	0	0	0	0	0	10	18.00	163		D	0	4	0	2	179	180.60	1	0		D	0	0	0	1	1
30-190 3									17.00									365.40									1 1

CHARGE SURVEYS Stox 3 - Debden Road (NS) / Debden Road (S) / London Road Roundabout

Location: Saffron Walden CB10 1EA

Date: Wednesday 20th September 2023

Time: 07 00-10:00, 16 00-19:00 Debden Road (NE) / Debden Road (S) / London Road Roundabout (07 00-10 00) AM Peaks

MONEMENT 25

					OVEM									NOVEM	ENT 2			_	_			M	OVEM	ENT 27			
				FRC	MILONE	ON NO	10						PRO	ON LON	CON MIC	ND.			_			PRIC	MILCOE	CON ROA	9		
				37 9	MONT !	MEND	0			Ш				ROOM T	JEN TO			- 1				U	TURN R	MCK TO			
				200	OR STATE	OAD IN				ш_				THE REAL PROPERTY.	10/10/11	_								MONO			
	CAR	sev	oavı	001/2		MCY	PER	TOTAL	PEU TOTAL	CAR	LOV	OOV	oava	10.00	MCY	PCY	TOTAL	FOU TOTAL	OAK	LOV	OUNT	oov	8.0	MOT	POY	TOTAL	PCU TOTAL
0700-0715	23	2	2	1	2	0	0	31	35.80	2	0	0	0	0	0	0	2	2.00	0	0	0	0	0	0	0	0	0.00
0715-0730	29	10	0	0	0	0	1	50	49.20	5	0	0	0		0	0	5	90.2	0	0	0	0	0		0	0	0.00
0730-0745		15	2	1	2	0		99	109,90	2	1	0	0	0	0	0	4	4.00	0	0	0	0	0	0	0	0	0.00
0745-0800	75	3	6	2	0	0	- 1	22	94.10	G	0	0	0	0	0	0	- 6	6.00	0	0	0	0	0	Ö	0	0	0.00
0800-0815	80	6	2	0	1	û	0	90	92.50	11	2	0	0	- 1	D	2	16	15.60	0	û	0	0	ú	0	D	0	0.00
0815-0830	58	3	0	3	2	1	ů.	67	72.30	16	1	0	0	1	D	ū	18	19.00	0	0	0	0	0		D	0	0.00
0830-0845		10	4	4	1	0	0	101	109.30	9	0	0	0	0	D	0	9	9.00	0	0	0	0	0	0	D	0	0.00
0845-0900	79	4	2	2	0	0		94	87.60	14		0	0	-	0	0	15	16.00	0	0		0	0		0	0	0.00
0900-0915	65	5	4		1	1	0	76	78.60	10	4	0	Û	0	D	0	14	14.00	0	û	0	0	0	0	D	0	0.00
0915-0930	52	ů.	2	2	1	1	1	67	70.20	14	2	1	0	0	D	0	17	17.50	0	0	0	0	0	0	D	0	0.00
0930-0945		6	2	2	2	0	3	94	87.70	2	1	0	O.	0	D	ū	4	4.00	0	1	0	0	0	0	D	- 1	1.00
0945-1000	56	7	- 2	3	0	0	0	62	72.90	9	0	- 0	0		- 0	0	- 2	3.00		0		0	0	0	- 0	-1	1.00
0700-1990	752	79	32	21	12	- 2		985	953.70	96	- 11	-1	0	- 2	0	- 2	112	114.90	-1	-		0	0		0	2	2.00
	_		_	400	E V	OTAL		_		_	_			URLY	6071			=	=	_		-	e v	TOTAL			
	⊢			-	-	UIA	_	_		_			-	APRIL 1	IUIA		_		⊢			-	UPL-1	IOIAL		_	_
0700-0000		30	12	5	4	0	2	292	282,90	16	1	0	0		0	0	17	17.00 20.40	0	0	0	0	0	0	0	0	0.00
0715-0015	272	34	12	4	2	0	2	327		25	3	0	0	1	0	2	31		0	0	۰	0	0		D	0	
0730-0830		27	12	7	5		- 1	244	362.70	36	4	0	0	2		2	- 64	66.60		0		0	0		0	0	0.00
0745-0845		22	13	10	-	-	-	346	368.10	42	3		0	- 2		2	49	49.40	0	0		0	0		0	0	0.00
							0	342		50	2	D	Q	2	D	2	58	59.60	0	û	0	D	a	0	D	0	
0015-0015	291	22	10		4	2	0	328	247.50	49	5	0	0	2	0	0	54	58.00		0	0	0	0	0	0	0	0.00
0830-0930	291 275	22 27	12	1	3	2	1	328	245.40	47	6	1	0	1	0	0	55	\$6.50	0	0	0	0	0	0	D	0	0.00
	291 275 261	22		1	3	2 2	1 4				6 7	1 1	0	1	0					0	0	0	0	0			

015-0915	291	22	10	9	4	2	0	328	247,52	49	5	0	0	2	D	0	54	58.00	0	0	0	0	0	0	D	0	0.0
130-0930	275	27	12		2	2	1	328	345.40	47	6	1	0	1	0	0	55	56.50	0	0	٥	0	0	۰	D	0	0.0
H5-0945	261	23	11	- 6	4	2	4	311	223,90	41	7	1	0	- 1	D	0	50	\$1.50	0	1	0	0	0		D	- 1	1.0
200-1000	241	26	-11	7	4	2	- 4	295	309.30	30	- 7	- 1	0	0	0	0	28	39.50	1	- 1	0	0	0	0	D	2	2.0
	_				OVEN	ENT 2		ebden f	toad (N) / Del	bden	Road			in Ros		undabo	ut (16 0	-19 00) PM	Peak		OVEMS	INT 97			
- 1	-					ON NO			$\overline{}$	-					ON NO			$\overline{}$	_				MILONE				_
						MEAD			- 1					ICHT T		_		- 1					TURNS				
						DADIN			- 1						STAD IN			- 1					ONDON				
- 1	-					_	_	TOTAL	PCU	-					_	_	TOTAL	POJ	$\overline{}$				_		$\overline{}$		PC
	CAR	100	OUVI	001/2	8.8	MCY	PCY	TOTAL	1016	CAR	LIZV	ggyt	OGVO	10.50	MCY	PCY	TOTAL	TOTAL	CAK	LOV	OUM	000	8.31	MOY	PCY	TOTAL	700
00-1615	62	11	0	1	0	2	0	76	76.10	ů.	1	0	0	1	0	1	11	1120	0	0	0	0	0	0	0	0	0.
15-1600	76	13	0		1	0		91	91.30	12	٠	0	0		0	0	12	12.00		0	٥	0	0	۰	0	0	0.
30-1645	93	7	0	3	- 2	0	0	185	110.90	11	- 1	0	0		0	0	12	12.00	8	0	9	0	0	9	0	0	0.
45-1700 00-1715	100	-11	÷	÷	-	-	2	117	115.00	9	-	0	-	-	-	0	12	12.00	0	0	-	0	0	-	0	0	0.0
	111		0						85.00		- 2				0			10.50	I å	u				0			0
15-1730 30-1745	70		0		3	0	0	82 97	97.00	16		1				0	10	17.00	l :	a					0	0	0.0
85-1800	91	-						10	89.40	14	- 1						15	1420	l :	0				2		ů	
00-1015	91	-	-	_	-	0	3	183	100.60	11	_	-	-	÷	-	0	12	12.00	i i	0	_	0	0	-	0	0	0
15-1830	61	- 5	0		-	0	3	60	66.60	9	ā	0	0	ė		0	3	3.00		0	ō	0	0	ō			0.
30-1843	95		0			0	9	97	96.40			0	0	-			- 7	620		0		0	0			0	0.0
45-1900	66	ā	0	ō	ò	0	- 5	72	70.60	9	- 1	0	0	ō		ò	10	10.00	ō	0	ō	0	ō	ō	0		0.0
00-1900	994	- 88	-	5	9	4	15	1116	FREE	120	•	-1	0	- 2	0	- 3	132	122.30	0	ō.	•		0	•		0	0.0
								_		=									=								
				HO	JELY	TOTAL	5						Ю	URLY	TOTAL	5	_					100	URLY	OTAL	2		=
00-1700	334	42	1	5	2	2	2	389	296.20	43	2	0	0	1	0	1	47	47.20	0	ù	0	0	ů.	0	0	0	0.
15-1715	383	35	1	4	3	1	4	431	435.90	44	3	0	0	0	D	0	47	47.00	0	0	0	0	0	0	D	0	0.
30-1730	377	31	1	4	5	1	3	422	429.70	41	3	1	0		D	0	45	45.50	0	0	٥	0	0	٥	D	0	0.
65-1745	379	26	- 1	1	3	1	3	414	415.80	46	3	1	0	0	D	0	50	50.50	0	0	0	0	0	0	D	0	0.
00-1800	357	21	0	0	4	2	2	286	367.30	48	3	1	0	0	0	1	53	52.70	0	0	0	0	0	0	D	0	0.
5-1015	337	26	۵	٥	4	1	3	371	372,00	50	1	1	۵	1	0	1	54	54.70 47.20	0	۵	٥	0	۵	٥	D	0	0.
30-1830	328	20	0		2			357		44	1	0	0			1	47		0	0		0	0	0	0	0	0.
45-1045	319	27	0		-2	-1		357	353,00	34		0		-1		2	37	36.40	0	0			U		D	0	0.0
100-1900	303	25	0	0	- 2	0	- 11	341	224.20	29	-1	0	ú	_1_	Đ.	_1	32	22.20	0	ú	0	Ú	C)	0	- 0	- 6	0.0

Expense of the first of the fir

COLUMN |

| The CDD | Make | Mark

Model (16:00-16:00) PM Packs

BOTTOMET IM

RECHEMENT IM

R THE STATE OF THE S | No. | No.

	Γ				•		-							-	Ξ							7	=	-	•		
	GAR	Like	90/1	00V8				0.5	NU.	CAR	140	00/1	0040			POF		P.S.	CAR	101	ogys	000		BOY	804	0.5	77
20 6111	7	-	-	9			-	-	100	1	- 3	-	9	4			•	11.00	1	-	9					-	1.00
10-6130		2							8.00	ш.		2						20.60	П .								2.00
20-6161					-				7.00		2			4			-	18.00	3								2.30
(0.000)	,	3							6.00	- 14								25.00									6.00
00-0811	**	-	•					-	26.80	- (7	-				-			20.00		2				-			6.00
10-0033	**			٠	2			33	24.00	28								30.00	1 2								3.00
30 6141	**	4		0				26	26.50	2	2							36.00									8.00
69-0000		4	-		-			- 22	21.10	-	-	-	- 0		-			85.00	ш_	-	- 0			_			1.30
00.0011	***		3		-			-	22.00	- 18			0	-				28.00		-	0						1.00
19 (200)				0				34	24.50	30								28.40							0		1.00
30.0161					•				7.00	**								28.80	3								2.00
dh:1000	-	_	_		_	_		- 95	11.00	- 11	_	_			_			18.80	_	_		_		_			1.00
30 1000	127	- 22		•	-	•	-	973	2	286	-		•	-	7		286	Sel.	-			•	-		7	- 12	ä
-	_	_		_	_	1006	_			_	_		_	_	1986.78	_		_	_	_		_	_	10000	_		_
_	_	_	_	-		TUE	_			_	_	_	MU		TOTAL	_			_	_	_	-		TOTAL	_		_
20 0100	22				-			28	28.00	90	13	2		2				76.60	2	- 1							8.30
10-0811	33			٠	•				65.80 66.80	81	13	2	٠	•		•	76	79.60		-	٠					16	163
10 6000				•	2					34			٠	•		: 1			a	2	٠					- 18	
	-62	_	- 2		-			24	74.00 96.00	- 85					_	-		126.00		- 2				-		20	22.0
10-0111			- 2				-		85.00	10	- 14				-	-	98	137.50		-				-	-		
30.000	67								62.00		- 20						-	130,60		- 2							22.3
50-000 E		9			-			72	78.00	100	- 21						-	12040		- 3							13.3
00 100		-	-	-		-	-	""	84.30	-	-		-	-	-	-	-	88.80		-	-	-	-	-	-		100
D ID	_	- 9	_	-	_	_	_	_	14.00		-2	_	-	_	_	-	_	10.40		_	-	_	_	_	-	_	- 0.00
	_							nt Ros	/Deb	en Ro	od (2)/Bor					band (N	Cross	reeds	(Téxi	0-19:5						
						BC 1									1					_	_			110		_	
- 1	_																										
	-			ma		-	•																				
	Г			~			-			II				-	_				ll			7					

				OVER	mer x	_							N THE									ST.				
$\overline{}$			Page		-							Pala		Total	•						-	Į	ž	•		
									Ш				-	-	•			11					-			
_			100	100		990			ш_					***								-				
GAR	100	90/1	oove	8.6	BCY	RO	0.50	No.	CAR	LOV	00/1	oava	8.6	BCY	POI	0.6	77	CAR	NO.	ogy	000	8.6	BOY	804	0.6	
-	-	_	•	-	-	•	- 24	23.00	23	-		•		•			38.35		•	•			•		-	2.0
- 11	2							17.00	2								88.00	1							- 1	3.0
- 67				-				26.80		2							68.40									1.0
24			٥					36.00	32	- 2		٥					36.30			٥						5.0
23	•			•			- 26	26.00	32	- 3							42.30	1								1.0
4	3			2				82.00									66.30									2.0
33							- 20	32.00					-				88.00									1.0
31	_1	_		_				34.00	62	_	_		_	_			17.00		_			_	_			1.0
24	- 1			-			30	28.00	2	2							10.50	1							- 1	10
							24	24.00	30	2							65.00									5.0
4								13.00	11								68.00									6.0
-	_	_		_	_	_	- 9	14.00	-	_	_			_		-	66.30	-	_			_	_		-	0.0
-	-					-	907	336.34	494	24			4		•	G4	894.70	7							- 10	17.0
_	_	_	100	U. Y	1014		_	_	_	_	_	HO	LIN	100/3	_	_		_	_	_	100	L.Y	TOTAL	,	_	_
		-	- 6	-			-	84.50	104	10				-		Ø1	176.10			- 6					- 10	11.0
1 1			-	-	-	-		93.50	994	- 10	- 2	-	-		-	40	173.60		-	-		-	-	-		11.6
111			ō			- 1	194	128.10	-	-	-	ō				- ex	173.60						- 1		-	11.0
126	- 1		- 6	-	- 6	- 1	-	140.00	980	- 1	- 5	i.	- 1	-i-	- í	40	179.40	II î	- 1	- 6	- 6	- 6	- 1			6.0
01							165	146.00	480	10					- 2	-	183.60									8.0
(37	-	-7	-		-	-	40	181.00	477	-		-		-	-	-	186.70		-	-		-	-			6.0
411	3			2			494	128.00	421	10						40	184.10	· a		٠				۰	42	12.0
100		- 1	ě.	-	-	- 1	-	100.00	100	10	-	ó		-	-	444	183.50		-	ě.			-1		**	11.6

Location: Saffron Walden CBSD 1EA

Date: Wednesday 20th September 2023

			M	OVEM	ENT 4							M	OVEM	ENT 41							14	WEN	ENT 4	2		
				ABRT	ES ROAD	ro					•			URN TO	no (min)					,		TURN E	ACK TO			
CAR	LOV	ogvi	0012	BUS	MCY	PCY	TOTAL	POJ TOTAL	CMR	LOV	ogvi	oova	81.8	MCY	PCY	TOTAL	PCU TOTAL	CAR	LOV	ogyt	oava	BUS	MCY	PCY	TOTAL	POL
44	4	ů	1	ū	0		49	50,30	0	1	0	0	0	0	ů	- 1	1.00	0	ů			0		0	0	0.0
45	6	0	0	2	0		60	55.00	0	1	0	0	0	0	0	- 1	1.00	0	0			0				0.0
54	14	1	1	0	0		70	71.80			0	0	0	0	0	0	0.00	1	0			0			1	1.0
61	- 7	1	1	1	0		71	73.80	1	1	0	0	0	0	0	2	2.00	0	0			0		0		0.0
96	4	1	٥	2	1	2	*	96,30	6	1	0	٥	0	٥	0	7	7.00	0	۵			۰		0		0.0
99	15	2	٥		1	•		97.90 72.90	1 1	2	0				9		7.00	0	9			•		0		0.0
64 54	2	1			1	:	72	59.00	١:	1							3.00		0	:	:	•		0	٠.	0.0
50	-	-	-	-	-	*	-	62.00	+	-	-	0	-	-	0	-	1.00	l č	-	÷	÷	-	÷	0	÷	0.0
44	7		ė		ĭ		- E	54.90	1 ;	2	ő	0		0	ă		3.00	l š	ŏ	ĕ	ĕ	ä	ĕ	0		0.0
28	5	o.	0	0	0		22	23,00	4	0	0	0	0	0	0	4	4.00	0	0					0		0.0
27	4	2	0	4	1		45	46.40	4	0	0	0	0	0	0	- 1	1.00		0					0		0.0
603	82	11	4	10	- 6	3	740	763.30	26	10	0	0	0		0	24	36.00	1			•	•	•		-	1.0

							Pear	elande F	Road (SE)/Pe	aslan	ds Ro	ad (Ni	W)/H	lop Fie	elds I	Roundb	wout (16	8 00-11	00) (РМ Ре	aks					
				M	OVEN	ENT 4							М	WEM	DNT 41							14	OVEM	ENT 4	_		
					AIDHT	ES ROAD	го								IRN TO	o paq							TURNS	MON TO	•		
	CAR	LOV	oovr	0010	9129	MCY	PCY	TOTAL	POU TOTAL	CHR	LGV	ogvi	oova	81.00	MCY	PCY	TOTAL	PCU TOTAL	CAR	LOV	00V1	0012	808	MCY	POY	TOTAL	POU TOTAL
1000-1015	47	9	ū	0	ü	0		56	56,00	4	1	0	0	0	0	0	- 5	5.00	0	ů			0		0	0	0.00
1915-1930	56	4	2	0	1	0	0	60	65.00	2		0	0	0	0	0		3.00	0	0	0		0				0.00
1530-1545	50	6	1	0	0	0	1	50	57.70	4		0	0	0	0	0	4	4.00	0	0					0		0.00
1545-1700		11	0	0	1	0	0	62	63.00			0	0	0	0	0		8.00	0	0	0		0	0	0		0.00
1700-1715		9	0	0	0	0		77	77,00	4	0	0	D	0	0	a	4	4.00	0	0					0		0.00
1715-1730	67	7	0	0	1	۰	0	76	76.00 68.20	6	0	0	0	0	0	0		6.00 11.00	0	Q			۰	۰	0	۰	0.00
1730-1745	62 54	- 1	0	0	1		1	60 57	57.00	11	0	0	0	0	0	0	"	9.00	l °	٥			•		0		1.00
1800-1815		- 2	0	0	0	•		81	61.00	-	0	0	0	0	0	0	-	6.00	l ÷	-	-	÷	÷	÷	0	-	0.00
1815-1830	A6	-					ä		51.50	1:	4					0		7.00	ll å						0		0.00
1830-1845	41	ō	ò	ō	ò	ē		41	41.00	2	ò	ō	0	0	ō	0		3.00	II ö	ō	- 6	- 6	- 6	- 6	0		0.00
1845-1900	35		0	0				27	36,00	2	0	0	0	0	0	0		3.00	0	0					0		0.00
1000-1900	605	88	- 4	0			2	706	711.40	67	2	0	0	0	0	0	69	00.00	0	1						- 1	1.00
	=								=	=									=								
				HO	URLY	TOTAL	3	_					100	MILY.	TOTAL	5						110	URLY	TOTAL	3		
1000-1700		30	2	0	2	0	1	229	24L70	19	1	0	0	0	0	0	20	20.00	0	0	0	0	0	0	0		0.00
1015-1715	224	30	2	0	2	0	1	290	262.70	19	0	0	0	0	0	0	19	19.00	0	0	0		0		0		0.00
1630-1730		22	1	0	2	0	1	272	273.70	22	0	0	0	0	0	Q	22	22.00	0	0	0	0	0	0	0		0.00
1545-1745		21	0	0	2	0	- 1	282	284.20	29	0	0	0	0	0	0	29	29.00	0	0					0	۰	0.00
1700-1800		22	0	0	2	0	1	277	278.20	20	0	0	0	0	0	0	30	30.00	0	1	0	0		0	0	1	1.00
1715-1815	242 221	16	۰		2	•	1	291	262.20	22	0	0	0	0	0	0	22	32.00 33.00	0			•	•	•	0	1 1	1.00
1745-1845					-	:	•	236	210.50	24						0	33	25.00	ll 🖁							1	1.00
1800-1900		5	-	0	2	ė	ů	199	191.50	10	1	0	0	0	0	0	3	29.00	0	0	·	÷	÷	÷	0	1	0.00

0	CHA	RGE	
V.	SUR	VĒŸS	
She:S-P	easlands	Road (S	() / Peasland

nds Road (NW) / Hop Fields Roundbaout

Location: Saffron Walden CB30 1EA

Date: Wednesday 20th September 2023

Peaslands Road (SE	 Peaslands Road (NW) / Hop Fields Roundbaout (07 	00-10 00) AM Peal
MOVEMENT 40	MOVEMENT 44	

				M	OVEN	ENT 4	3							OVEN	ENT 4							М	OVEM	ENT 4	-		
			_			URN TO	MI) CM	1						AURT	AHEAD ROAD	10	1				_		TURNS	DE ROI MCK TO ROAD			
	CAR	LOV	ogyr	oova	84.0	MCY	PCY	TOTAL	PCU TOTAL	CAR	LOV	ogyr	oova	BLIS	MCY	PCY	TOTAL	POU TOTAL	CAR	LOV	covi	00/2	BUS	MCY	PCY	TOTAL	TOTAL
0700-0715	3	1	0	0	0	0	0	4	4.00	19	S	- 1			1	0	26	25.90	0	0	0	0	0	0		0	0.00
0715-0730	2	0	0	0	0	0	0	2	2.00	20	7	2		0	0	0	30	31.50	0	0	0	0	0	0	0		0.00
0730-0745	4	0	0	0	0	0	0	4	4.00	29	5	0		1	0	1	46	46.20	0	0	0	0	0	0	0		0.00
0745-0800	4	0	0	0	0	0	0	4	4.00	56	14	1	1	0	0	1	79	74.00	0	0	0	0	0	0	0	0	0.00
0000-0015	2	0	0	0	0	0	0	2	2.00	54	6	2			0	2	65	64.90	1	0	0	0	0	0	0	- 1	1.00
0815-0830	2	1	0	0	Q.	0	Q		3.00	56	6	0	2	1	0	0	65	68.60	0	0	0	Q.	0	0	0	0	0.00
0830-0845	2	1	0	0	0	0	0		3.00	84	5	1		2	1	0	94	96.90	1	0	0	a	0	0	0	- 1	1.00
0845-0900	1	2	0	0	0	0	0	9	3.00	71	2	1		2	0	0	76	78.50	0	0	0	Q	0	0	0	0	0.00
0900-0915	1	1	0	0	0	0	0	2	2.00	46	11	2	1	2	0	0	62	66.30	0	0	0	0	0	0	0		0.00
0915-0930	1	0	0	0	Q.	0	Q	1	1.00	50	11	5		0	0	0	96	68.50	0	0	0	Q.	0	0	0	0	0.00
0930-0945	2	1	0	0	0	0	0		3.00	43	2	1		1	0	1	49	49.70	0	0	0	0	0	0	0		0.00
0945-1000	2	- 1	. 0	0	0	0	0	4	4.00	28	- 11		- 1	1	0	0	81	\$3.30		. 0	0	0	0	0			0.00
0700-1000	27		0	0	0	0	0	35	35.00	576	06	10		11	2	- 6	700	724.30	2	0	0	0	0	0	0	2	2.00
	_		_	100		101/2				_	_	_	1000		1007/			_	_	_	_	100		1007			_
	-			HO	UNLT	TOTAL	_	_	_	<u> </u>			но	UMLT	IUIA	_	_	_	—			Ю	UNICE	IOTA	_	_	
0700-0800	12	4	0	0	0	0	0	14	14.00	134	21	5	4	4	1	2	175	177.60	0	0	0	0	0	0			0.00

Principal Content Prin					M	OVEM	ENT 4	1						- 10	OVEM	ENT 4							M	OVEM	INT 45			
Description Control				•		art n	10	(WM)					,	278	AUGIST .	MISSO	10	1					U	TURNS	ACK TO			
HIGH SIDE 6 0 0 0 0 0 0 0 0 0		CAR	LOV	ogyr	oova			PCY	TOTAL	PCU TOTAL	CAR	LOV	ogvi					TOTAL	POU 101AL	CAR	LOV	covi				_	TOTAL	PO
200-540 3 0 0 0 0 0 0 1 1.00 1 1.00 1 1 0 0 0 0 0	600-1015	6	0	0	0	0	0	0			Sa	15	0	0	4	0	0	72		0	0	0	0	0	0		0	0.
866-1703	015-1000	6	0	0	0	Q	0	0			69	13		0		0	1	89		0	0	0	0	0	0	0		0
100-176 1		2	0	0	0	0	0	0				7	2	0	1	0	0	-		1	0	0	0	0	0	0	1	1.
175:175: 8 2 0 0 0 0 0 0 0 175: 13.00 175: 1		2	0	0	0	0	0	0					0	0	0	0				1	0	0	0	0	0	0	- 1	1.
1720-1762 177 0 0 0 0 0 0 0 0 0			0	0	0	a	0	1					0	0	1	0					0	0	0	0		0		0
176-1902 10 1 0 0 0 0 0 1 1		9	2	0	0	Q	Q.	0			107	11		0	1	0	0	119		0	0	0	Q.	0	0	0	0	0
200-1410 12 1 0 0 0 0 0 1 11 11 12 0 0 0 0 0 0			0	0	0	Q	0	0				7			1	0	1			2	0	0	0	0	0	0	2	2.
151-1512 1			1	0	0	0	0					10		0	1	1					0	Q	Q	0	0	0	0	0
100-1402 8 0 0 0 0 0 0 0 0 4 0.00 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1		12	1	0	0	Q	0	0				2			2	0	0			0	0	0	0	0	0	0		0
800-1905 2		9	2	0	0	Q	Q.	0	11			2		0	٠	0	1			1	0	0	Q.	0	0	0	1	1
			0	0	0	Q	0	0			60	2		0	0	0	0	62			0	0	Q.	0	1	0	1	0
		4						0	•		54	4		•		0	0	- 60		_	_	0				۰	_1	1
0001700 18 0 0 0 0 0 0 0 1 140 277 277 277 277 277 277 277 277 277 27	600-1900	92		0	0	0	0	- 1	99	98.20	000	90	2		- 11	-1		997	1006.50		0	0	0	0	-1		7	6.
0001703 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		_						_		_	_						_		_	_						_		
985-778 0 0 0 0 0 1 1 1 20 20 20 1 1 1 20 20 20 20 1 20 20 20 0 0 0		_			HO	URLY	TOTAL	_	_	$\overline{}$	_			но	JRLY	TOTA	_	_	_	_			HO	URLY	TOTAL	<u>-</u>	_	_
000-1702 00 2 0 0 0 0 0 1 20 20 0 0 0 0 0 1 20 20 0 0 0			0	0	0	0	0	0					2	0	5	0	1			2	0	0	0	0	0	0	2	2
865-176 34 2 0 0 0 0 1 97 36.20 266 34 0 0 3 0 1 864 366.20 3 0 1 864 366.20 3 0 0 0 0 0 0 9 700-1800 44 3 0 0 0 0 0 1 44 44.20 264 26 0 0 4 1 1 464 44.00 2 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1			0	0	0	Q	0	1					2	0	2	0	1			2	0	0	Q.	0	0	0	2	2
7700-19000 41 3 0 0 0 0 1 465 44.20 264 36 0 0 4 1 1 466 400.60 2 0 0 0 0 0 0 2 2 (715-1915) 48 4 0 0 0 0 0 0 62 52.00 265 21 0 0 5 1 1 466 400.60 2 0 0 0 0 0 0 2			2	0	0	Q	Q	1					3	0	2	0	0			2	0	0	Q.	0	0	0	2	2
1715-1815 48 4 0 0 0 0 0 0 82 52,00 265 21 0 0 5 1 1 460 405,00 2 0 0 0 0 0 0 0 2		24	2	0	0	0	0	1							2	0	1			2	0	0	0	0	0			1
		41	2	0	0	Q	0	1				26		0	4	1	1			2	0	0	a	0	0	0	2	2.
		40	4	0	0	Q	0	0	62		365	21		•	5	1	1			2	0	0	Q.	0	0	0	2	2

Site: 5 - Peaslands Road (SE) / Peaslands Road (NW) / Hop Fields Roundbacut Location: Saffron Walden CB10 1EA

Date: Wednesday 20th September 2023

Time: 07:00-10:00, 16:00-19:00 Peaslands Road (SE) / Peaslands Road (NW) / Hop Fields Roundbaout (07 00-10 00) AM Peaks
MOVEMENT 46
MOVEMENT 47
MOVEMENT 46

					APT TU	PELDI RN TO ROAD (ON HO	IFON TO				bracklet				u		PERLO			
	CAR	LOV	ogvi	ogv2	BLB	MCY	PCY	TOTAL	PCU TOTAL	CAR	LOV	ogvi	0012	913	MCY	PCY	TOTA	POU 101A][CAR	LGV	ogvi	ogya	8128	MCY	PCY	TOTAL	PCU TOTAL
0700-0715	0	0		0	0	0	0		0.00	2	0	0	ů	0			3	3.00	7		0	0	0	0	0	0	0	0.00
0715-0730	6	0		0	0	0	0		6.00	5	0	0	0	0				5.00	ш		0	0	0	0	0	0	0	0.00
0730-0745	2	1		0	0	0	0	3	3.00	111	1	0	0	0		0	12	12.0			0	0	0	0	0	0	0	0.00
0745-0000	5	0	0	0	0	0	0		5.00	10	1	0	0	0	0	1	12	11.2	41	0	0	0	0	0	0	0	0	0.00
0800-0815		1		0	0	0	0		9.00		0	0	0			0		8.00	ш		0	0	0	0	0	0	0	0.00
0015-0030	7	2		0	0	0	0		9.00		1	a	Q.		•	0		9.00	ш	٠	0	0	0	0	Q.	0	0	0.00
0030-0045	2	1		0	0	0	0	2	3.00		1	0	0			0		9.00	ш		0	0	0	0	a	0	0	0.00
0845-0900	6			0	0	0	0	•	6.00	2	- 2	0	0			0	4	4.00	41		0	0	0	0	0	0	0	0.00
0900-0915	1	2		0	0	0	0	2	3.00	2	0	a	a			0	2	2.00	ш		0	0	0	0	a	0	0	0.00
0915-0930	5	1	•	0	0	0	0	٠.	6.00 3.00	II :	0	9	0					4.00	ш	•	0	0	0	0	0	0	0	0.00
	- 2	1								11 .			a			•			ш	•								0.00
0945-1000	_	-	_		۰	-		_	3.00	1			-	÷	÷		_	4.00	4	٠.				-	-		-	
0700-1000	45	11	0	0	0	0	0	54	56.00	88	7	0	0	0	0	1	76	75.2	ш		0	0	0	0	0	0	0	0.00
- 1				HX	HEY	(O)//I	5		_				но	U.BY	ene:	3			٦٢				160	URLY	101/2	5		\neg
0700-0800	13	- 1		0	0	0	0	14	14.00	29	2	0	0	0		- 1	32	31.2	11		0	0	0	0	0	0		0.00
0715-0015	21	2		0	0	0	0	22	23.00	34	2	0	0		•	1	37	36.2	ш	•	0	0	0	0	0	0		0.00
0730-0830	22	4		0	0	0	0	26	26.00	37	2	0	0			1	41	40.2	ш	۰	0	0	0	0	a	0		0.00
0745-0845	22	4		0	0	0	0	26	26.00	34	2	0	Q.			1	20	37.2	ш		0	0	0	0	Q.	0	0	0.00
0000-0000	23	4	0	0	0	0	0	27	27.00	26	4	0	0		0	0	30	30.0	ш	0	0	0	0	0	0	0		0.00
0015-0915	16	5		0	0	0	0	21	21.00	20	4	0	0				24	24.0			0	0	0	0	0	0	0	0.00
0830-0930	14	4		0	0	0	0	10	18.00	16	2	0	0				19	19.0			0	0	0	0	Q.	0	0	0.00
0845-0945	14	4		0	0	0	0	10	18.00	11	2	0	0				14	14.0	ш		0	0	0	0	0	0	0	0.00

				M	WEM	ENT 4								OVEN	ENT 4							M	OVEM	ENT 4			
					APT TO	RIN TO							- 1	MONT T	P PELO URN TO ROAD									P PELD MOX TO			
	CRR	LOV	covi	cova	BLB	MCY	PCY	TOTAL	PCU TOTAL	CAR	LOV	ogvi	ogig	BUS	MCY	PCY	TOTAL	PCU TOTAL	CHR	LOV	covi	ogva	8128	MCY	PCY	TOTAL	PCLI
100-1615	1	3	0	0	0	0	0	4	4.00	4	0	0	0	0		0	4	4.00	0	0	0	0	0	0	0	0	0.00
15-1630		0		0	0	0	0		8.00	1	0	0	Q	0		0	- 1	1.00	0	0	0	0	0	Q.	0		0.00
330-1645	1	0		0	0	0	0	1	1.00	5	0	0	0	0		0		5.00	0	0	0	0	0	0	0	0	0.0
545-1700	2	0	0	0	0	0	0		3.00	4	0	0	0	0		0	4	4.00	0	0	0	0	0	0	0	0	0.00
00-1715	1	0		0	0	0	0	1	1.00	2	0	0	0			0	2	2.00		0	0	0	0	Q.	0	0	0.0
15-1730	4	۰	0	0	0	0	0	4	4.00	2	0	0	Q					3.00	۰	0	0	0	0	Q	0	0	0.0
30-1745	11	2	0	0	0	0	0	13	13.00	6	0	0	0			0		6.00	0	0	0	0	D	Q	0	0	0.0
45-1000	7			0	0	0	0	7	7.00	10	0	0	0			0	10	10.00	0	0	0	0	0	Q	0	0	0.0
00-1015		0		0	0	0	0		8.00	2	0	۵	۵			0	2	2.00	0	0	0	0	٥	a	0	0	0.0
H5-1830 80-1845	٠.				0		0		6.00 2.00	11 5	9	9	9					5.00		0				9	0		0.0
M5-1900							0	- I		II :	u		u					2.00						a			0.0
	4	٠	-			-	-	-	4.00	1	-		-	۰	-	٠	- 2		-	-		٠	-	-		-	
00-1900	54		0	0	0	0	0	81	61.00	48	0	0	0	0	0	0		48.00		0	0	0	0	0	0	0	0.0
- 1				800	HLY	LOTAL	8						но	UNIX	HOIC!	3		_		_		160	URLY	TOTAL	5		_
00-1700	13	- 0		0	0	0	0	18	16.00	54	0	0	0	0			14	14.00		0	0	0	0	0	0	0	0.0
15-1715	13	-	-	0	0	0	0	12	13.00	12	0	0	0	-	-	-	12	12.00		0	0	0	0	0	0	;	0.0
30-1730		6		0	0				9.00	1 54	0	0	0	- 6	- 6		14	14.00		0	0		0	0	0		0.0
15-1745	19	2	- 6	ō	ō		ō	21	21.00	15	ō	ō	ő	- 6	- 6		15	15.00	I ő	ō	ō	0	0	ő	0	;	0.0
0-1000	23	2	0	0	0	0	0	25	25.00	21	0	0	0	0	0	0	21	21.00	0	0	0	0	0	0	0		0.0
5-1015	30	2		0	0	0	0	92	32.00	21	0	0	0				21	21.00	0	0	0	0	0	0	0	0	0.
00-1830	32	2		0	0	0	0	34	34.00	22	0	0	0				29	23,00		0	0	0	0	Q	0	0	0.0
5.4545	22							- 25	23.00								21	21.00									0.

CHARGE SURVEYS
Size: G-Thanted Road (S) Peerlands Road / Thanted Road (N) Roundabout

Location: Saffron Walden CB10 1EA

Date: Wednesday 20th September 2023

Time: 07 00-30

Time: 07 00	10000	16 00	19 00																								
	_		_	-	OVEN	ENT 40		exted Ro	sed (S)	Peasi	ands	Road			Coad (undabe	out (07 (0-10	00) A	M Pes		WENE	INT 61	_		$\overline{}$
				PROM	THAT T	ED ROA	D(3)						PROM	THAXT	ED ROAD	0 (M) TO						PROM	THALETO TURNS B	D ROAD	(8)		
	CAR	LOV	ogyn	0012	BUS	MCY	PCY	TOTAL	POU TOTAL	CAR	LOV	ogys	oova	8138	MCY	PCY	TOTAL	PCU TOTAL	CAR	LOV	0001	0012	BUS	MCY	PCY	TOTAL	POU TOTAL
0700-0715	21	5	0	0	0	0		26	26,00	24	12	0	0	0	0	0	36	36.00	0	0							0.00
0715-0730	25	4	0	0	1	0		50	31.00	22		1	2	1	0	0	48	52.40	1	0	0		0			- 1	1.00
0730-0745	27	7	0	1	1	0		40	46,30	36		2	2	0	0	0	80	55.40	0	0			0				0.00
0745-0800	46	5	1	1	1	0		54	56,80	25	11	2	2	0	1	0	82	55.50	0	0			0				0.00
0800-0815	53	2	1	0	1	1		50	59,90	45	4	1	1	0	1	0	82	53.20	0	0			0		0		0.00
0815-0830	50	4	1	0	1	1	0	66	65,90	47	6	2	0	1	0	0	88	58.00	0	0			0		0		0.00
0830-0845	54	2	2	0	0	0		50	60,00	32	10	1	0	0	0	0	43	43.50	0	0			0		0		0.00
0845-0900	40	5	0	0	0	0		45	45.00	44	5	0	0	5	0	0	64	59.00	0	0			0		0		0.00
0900-0915	36	1	1	1	0	0		20	40,80	46	6	1	1	0	0	0	54	55.80	0	0			0		0		0.00
0915-0930	22	6	0	0	1	1	0	40	40.40	51	4	2	1	1	0	0		62.30	1	0			0		0	1	1.00
0930-0945	19	2	1	1	0	0		24	25,80	46	2	1	0	0	0	0	48	48.50	0	0			0		0		0.00
0945-1000	27	2	0	0	1			21	32.00	49	2	2	1	. 0		0	H	56.30	0	0					0		0.00
0700-1000	442	49	7	4	7	3		818	\$31.90	487	76	17	12		2	0	604	634,90	2	0	0	0		0	0	2	2.00
				но	URLY	1016	5		_				100	URLY	101//	5		\neg				HOU	JRLY	OIA	5		\neg
0700-0800	129	21	1	2	2	0		150	162.10	120	29	7	0	1	1	0	104	198.30	1	0		0	0	0	0	1	1.00

							Th	exted R	oad (S)	/ Peasi	ands	Road	/The	orted F	Road (N) R	oundab	out (16	00-19	00) PI	M Pea	ka					
				MC	VENE	ENT 40							м	OVEN	ENT 60							м	OVEN	ENT S			
	Г						-			Г			STR	MONT!	ED ROAD	ю			Г			u	TURN B	NO ROA			
	CAR	LOV	covn	0012	BUS	MCY	PCY	TOTAL	POU TOTAL	CAR	LGV	ogvi	oova	84.8	MCY	PCY	TOTAL	PCU TOTAL	CAR	LOV	ogyr	0012	BUS	MCY	PCY	TOTAL	POU TOTAL
1000-1015	29	6	1	0	0	0		46	46,50	~	1	1	0	0	0	0	47	47.50	0	0		0	0				0.00
1915-1930	46	2	1	0	0	0		49	49,50	25	2	0	0	2	0	0	20	41.00	0	Q			0				0.00
1530-1545	22	2	0	0	0	0	1	35	34.20	26	7	0	0	2	0	0	45	47.00	0	0		0	0				0.00
1545-1700		5	0	0	1	0		41	42.00	50	4	0	0	1	0	0	55	55.00	0	0		0	0		0		0.00
1700-1715	30	6	a	0	a	0		56	36.00	20	1	0	D	0	0	0	29	39.00	0	Q			0		0		0.00
1715-1730	40	2	Q	0	Q	۰	۰	81	52.00	27	1	2	1	1	0	0	42	45.30	0	Q	۰		۰	۰	0	۰	0.00
1730-1745	49	1	0	٥	1	•		81	51.00	20	1	0	0	0	0	0	20	43.00	0	0			•		0		0.00
	49	-2	0	0	0	•	0		42.00	41	-2	0	- 0		_	0	43	38.00	0	_	•	•	•	•	0		0.00
1800-1815	40	- 2	٥	0	1	:	0	41	45.50	22		0	0	0	0	0	-	45.00	0	0		:	:	•	0	:	0.00
1830-1845	39	-					- 1	42	42.00	35						ă	27	37.00	ll ä	ŏ	- 1	- 1		- 1	ŏ		0.00
1845-1900	24	- 7			7		- 6	-	24.00	99	- 5						-	34.00			-	-		- 6			0.00
1900-1900	400	27	3	0	4	•	-	811	515.70	464	29		1			0	500	511.00	0	0			•	•	•		0.00
		-					_							_	_				_	_							
				HOU	BLY	OTAL	5						100	URLY	TOTAL	5						100	URLY	TOTAL	5		
1600-1700	152	15	2	0	1	0	1	171	172.20	186	14	1	0	5	0	0	100	191.50	0	0	0	0	0		0		0.00
1015-1715	142	15	1	0	1	0	1	191	161.70	159	14	0	0	5	0	0	178	183.00	0	0		0	0		0		0.00
1630-1730	145	16	Q.	0	1	0	1	193	163.20	161	12	2	1	4	0	0	181	187.30	0	0			0		0		0.00
1545-1745	162	15	0	0	2			179	181.00	163	7	2	- 1	2	0	0	176	179.30	0	0					0		0.00
1700-1800	176	12	0	0	1	0	0	199	190.00	154	5	2	1	1	0	0	163	166.30	0	0	0	0	0		0		0.00
1715-1815	194		0	0	2			194	196.00	149	9	2	1	1	0	0	162	165.30	0	0					0		0.00
1730-1830	176	9	1	d	2			190	190.50	156	9	0	0			0	165	165.00 163.00	0	٥					0		0.00
1745-1845	106	11	- 1	0	1			179	153.50	153	10	0	0	0	0	0	160	154.00	0	0					0	١:	0.00
1000-1000	140	14	_		•		-	191	404.00	144	- 100	-		_			100	4.0000	-							_	0.00

100	CHAR	GE				
43	SURV	ĒŸ!	\$			
Ste: 6-1			/ Peatlands R	oad/Thad	ed Road (N	Ro

Location: Saffron Walden CB30 1EA

Date: Wednesday 20th September 2023

Time: 07:00-10:00, 16:00-19:00

Thaxted Road (S) / Peaslands Road / Thaxted Road (N) Roundsbout (07 00-10 00) AM Peaks

	_			M	OVEM	ENT 6								OVEN	ENT 6							M	OVER	ENT 64			
					art to	AMERICA ROAD II								100HT	ANDS F				Г			U	TUPN B	ANDR R			
	-			796	746.4	escour.	_	_	_	_			-	1741	Herea.	_	_	$\overline{}$	⊢			_		100	_	_	-
	CAR	LOV	ogyn	0012	81.28	MCY	PCY	TOTAL	FCU TOTAL	CAR	LOV	OGV1	oova	BLS	MCY	PCY	TOTAL	POU TOTAL	CAR	LOV	COVI	0002	913	MCY	PCY	TOTAL	POU TOTAL
0700-0715	17	S	2	0	0	0	1	25	25.20	15	3	1			0	0	19	19.50	0	0	0	0	0	0			0.00
0715-0730	29	7	1	0	Q	0	1	20	37.70	24	6	1			0	0	91	31.50	0	0	0	Q	0	0	0		0.00
0730-0745	46	2	0	0	0	0	1	49	48.20	22	5	1		0	0	1	30	29.70	0	0	0	0	0	0	0		0.00
0745-0800	04	10	0	1	0	0	2	105	104.70	25	9	1			0	0	35	35.50	0	0	Q	Q	0	Q		0	0.00
0000-0015	60	12	1	0	0	0	1	74	73.70	35	2	2			0	0	40	41.00	0	0	0	0	0	0			0.00
0015-0030	50	4	1	0	Q	Q.	1	64	63.70	40	5	0	2	2	0	0	49	\$3.60	0	0	Q	Q	0	0	0	0	0.00
0830-0845	57	7	0	0	a	0	0	64	64.00	39	7	2		2	1	0	62	55.40		0	0	a	0	0			0.00
0845-0900	82	5	0	0	0	1	0	000	88.40	45	1			- 1	0	0	47	48.00	0	0	Q	Q	0	Q		0	0.00
0900-0915	26		1	1	1	0	0	47	49,80	32	7			2	0	0	41	43.00	0	0	0	0	0	0			0.00
0915-0930	25	10	5	0	Q	Q.	Q	50	52.50	45	4	1			0	0	50	50.50	0	0	Q	Q	0	0	0	0	0.00
0930-0945	26	2	1	0	0	0	0	20	39.50	22	2	0		0	0	0	34	34.00		0	0	Q.	0	0	0		0.00
0945-1000	40	- 11			0	_	_	62	51.60	20	5		_	_1	0	0	27	29.30			0		0	0			0.00
0700-1000	500	82	12	2	- 1	2		697	699.00	276	67		3		- 1	-1	455	471.00	0	0	0		0	0			0.00
	_			_	_	_	_			_			_	_	_	_		_	_			_	_	_	_		_
				но	URLY	TOTAL	5_						но	URLY	TOTAL	<u> </u>		$\overline{}$	_			HO	UNLY	TOTAL	_		
0700-0800	175	22	2	1	0	0	5	217	215.80	67	23	4			0	1	115	116.20	0	0	0	0	0	0	0	0	0.00
0715-0815	218	40	2	1	0	0	5	200	264.30	107	22	5		0	0	1	136	137.70	0	0	0	0	0	0	0		0.00
0730-0830	247	27	2	1	Q	Q.	5	292	290.30	123	22	4	2	2	0	1	154	159.80	0	0	Q	Q	0	0	0	0	0.00
0745-0845	259	41	2	1	0	0	4	907	306.10	139	24	5	2	5	1	0	178	185,50	0	0	0	0	0	0			0.00
0800-0900	258	20	2	0	0	1	2	291	289.80	159	16	4	2	6	1	0	100	196.00	0	0	Q	Q	0	0	0	0	0.00
0015-0915	234	24	2	1	1	1	1	264	265.90	156	20	2	2		1	0	100	200.00	0	0	0	0	0	0	0		0.00
0830-0930	211	30	6	1	1	1	0	250	254.70	191	19	3		6	1	0	190	196.90	0	0	0	0	0	0	0	0	0.00
0845-0945	190	25	7	1	1	1	0	225	230.20	154	14	1		2	0	0	172	175.50	0	0	0	0	0	0		0	0.00
0900-1000	147	21	7	- 1	1	- 1	1	109	193.40	129	18	1	1	2	0	0	182	156.80	0	0	0	0	0	0		0	0.00

1				M	WEN	ENT 6							-	OVEN	ENT 6	_		\neg	$\overline{}$			M	OVEM	ENT 64	•		
					PT 1	AMERIA RN 10 ROAD II	_						-	99HT 1	ANDS F				Г			U	TURN B	ANCE TO	•		
	CAR	LGV	ogyn	oova	81.29	MCY	PCY	TOTAL	PCU TOTAL	CAR	LOV	0011	oova	BLIS	MCY	PCY	TOTAL	POU TOTAL	CAR	LOV	covi	00/2	BUS	MCY	PCY	TOTAL	POU
1600-1615	41	11	0	0	2	0	0	55	58.00	36	7			1	0	0	44	45.00	0	0	0	ů	0	0		0	0.00
1015-1030	44		0	0	0	0	0	62	52.00	46	2	0			0	0	- 44	48.00	0	0	0	0	0	0		0	0.00
1630-1645	24	7	0	0	Q	0	1	42	41.20	53	5	2			0	0	60	61.00	1	0	0	0	0	0		1	1.00
1645-1700	40		1	0	0	0	0	49	49.50	40	- 6			1	0	0	47	48.00	0	0	0	0	0	0		0	0.00
1700-1715	53	4	0	0	a	0	0	67	57.00	61	2	0		1	0	0	64	65.00	1	0	0	Q.	0	0		1	1.00
1715-1730	47	4	0	0	a	a	a	81	51.00	51	7	1		1	0	0	60	61.50	0	0	Q	Q	0	0	0	0	0.00
1730-1745	47	2	٥	٥	1	0	a	81	52.00	63	5				0	1		60.20	0	٥	0	a	٥	٥		0	0.00
1745-1000	50	5	0	0	Q	0	0	66	55.00	57	- 6		- 0		-1	0	64	69.40	<u> </u>	0	0	ů.	0	0	0	1	0.00
1000-1015	51		0	0	0	0	0	66 42	42.00	63 30	2			2	0	0	97	33.00	l:	0	0	a	٥	0	0	0	0.00
1030-1045	30	-						22	39.00	29	- 1					0	30	30.00	l :						:		1.00
1045-1900	-						-		43.00	34		- 1	- 1	- 1				31.00	1 :						- 1		0.00
1000-1900	816	-	1	0	•	-	+	591	595.20	607	49	-	-	•	-	Ť	617	623.10	—	ő	-	•	· ·	-	۰	-	4.00
																									_		
ı				HO	RLY	TOTAL	5						HO	URLY	TOTAL	5						HO	URBY	TOTAL	3		
1600-1700	159	34	1	0	2	0	1	198	200.70	175	20	2	0	2	0	0	199	202.00	1	0	0	0	0	0		1	1.00
1615-1715	171	27	1	0	0	0	1	200	199.70	200	15	2		2	0	0	219	222.00	2	0	0	0	0	0		2	2.00
1630-1730	174	22	1	0	Q	0	1	199	198.70	205	29	2		2	0	0	221	215.50	2	0	0	Q.	0	0		2	2.00
1645-1745	187	19	1	0	1	0	0	208	209.50	215	20	1		2	0	1	240	242.70	1	0	0	0	0	0		1	1.00
1700-1800	197	16	0	0	1	0	0	214	215.00	232	20	1	0	2	1	1	267	258.10	2	0	0	0	0	0		2	2.00
1715-1815	195	15	0	0	2	0	a	212	214.00	224	20	1		2	1	1	200	262.10	1	0	0	Q.	0	0		1	1.00
		12						203	205.00	213	16						222	211.60									1.00
1730-1830	-	-					-	191	192.00	179	42						_	195.40							-		2.00

Location: Saffron Walden CB10 1EA

Date: Wednesday 20th September 2023

Time: 07:00-10:00, 16:00-19:00 Thanted Road (S) Pessiands Road / Thanted Road (N) Roundsbout (07 00-10 00) AM Peaks
MOVEMENT OF MOVEMENT OF

				STR	MO HE	NEW POR	70			L				BOHT T	NO ROA UNIN TO DE ROA	-		\Box	L			U.	TURN B	NO HOAD MACK TO ROAD IN			
	CAR	LOV	ogvi	ogva	BLB	MCY	PCY	TOTAL	PCU TOTAL	CAR	LOV	OGVI	0012	919	MCY	PCY	TOTAL	POU TOTAL	CAR	LOV	OGVI	ogva	8428	MCY	PCY	TOTAL	PCU TOTAL
0700-0715	12	6	1	0	0	0	0	19	19.50	15	2	ů.	1	ů.	0	0	19	20,30	0	0	0	0	0	ů	ů	0	0.00
0715-0730	16	4		0	2	0	0	22	26.00	20	4	1	0	0		0	25	25,50		0	0	0	0	Q	0		0.00
0730-0745	19	1	2	0	0	0	0	22	23.00	19	5	1	0	0		0	25	25,50		0	0	0	0	0	0	0	0.00
0745-0800	24	2	2	0	0	0	0	29	30.00	34	9	0	1	0	1		45	45.70		0	0	0	0	Q	0	0	0.00
0800-0815	25	2		0	0	0	0	27	27.00	46	4	0	0	2			52	54.00		0	0	0	0	0	0	0	0.00
0815-0830	22	1		1	0	0	0	34	25.30	46	14	2	0			0	60	G4.50		0	0	0	0	Q	0	0	0.00
0830-0845	22	6	1	1	0	0	0	41	42.80	40		0	0				40	48.00	1	0	0	0	0	a	0	1	1.00
0045-0900	20	6		1	0	0	0	27	38.30	25	ů	0	0		0	0	33	33,00	0	0	0	0	0	0	0	0	0.00
0900-0915	28	4	2	0	0	0	0	34	35.00	24	7	0	0			1	92	31.20	0	0	0	0	0	0	0	0	0.00
0915-0930	24	5	1	1	0	0	1	42	43.00	26	4	1	0			0	21	31.50		0	0	0	0	Q	0	0	0.00
0930-0945	20	9	1	1	0	0	1	22	33.00	14	5	0	0			0	19	19.00		0	0	0	0	Q.	0	0	0.00
0945-1000	22	4	- 2	2	0	. 0	. 0	- 41	45.30	22	4	- 2	0		- 1		-61	41.90		0	0	0	0	0	0		0.00
0700-1000	295	61	13	7	3	0	2	971	366.00	542	75	9	2	2	2	1	433	440.10	1	0	0	0	0	0	0	- 1	1.00
- 1				HO	HLY	TOTAL	5						но	URLY	IOI/I	5						но	RLY	TOTAL	5		
0700-0800	71	14	5	0	2	0	0	90	98.50	88	21	2	2	0	- 1	0	114	117.00	0	0	0	0	0	0	0	0	0.00
0715-0015	84	10	4	0	2	0	0	101	106,00	119	22	2	1	2	1		147	150,70	0	0	0	0	0	0	0	0	0.00
0730-0830	90	7	4	1	0	0	0	102	105.30	145	22	4	1	2	1		195	189.70		0	0	0	0	Q	0		0.00
0745-0845	104	12	2	2	0	0	0	121	125,10	100	26	2	1	2	1		200	212.20	1	0	0	0	0	0	0	1	1.00
0800-0900	110	15	1	2	0	0	0	129	111.40	157	24	2	0	2			196	299.50	1	0	0	0	0	a	0	1	1.00
0015-0915	112	17	2	2	0	0	0	138	141.40	135	27	2	0			1	176	176.70	1	0	0	0	0	0	0	1	1.00
0830-0930	125	21	4	2	0	0	1	154	159.10	115	27	1	0			1	166	141.70	1	0	0	0	0	Q.	0	1	1.00
0845-0945	112	24	4	2	0	0	2	145	149.30	89	24	1	0			1	115	114,70		0	0	0	0	0	0	0	0.00
0900-1000	114	22	7	4	0	0	2	149	156.10	97	20	4	0		- 1	1	123	123.60	0	0	0	0	0	0	0	0	0.00

	PRO	MOVE ON PEA U TUR															oad (S) /																
	-							1				M	WENE	NT 65							MO	VENE	NT 56						M	OVEME	MT 67		
		PEANL		K 70	AD.				Г			STR	THALTE MONT A	HEAD TO				Г			ROS	HAXTE BHT TU							u.	TURN B	ID ROAD (I ACK TO IDAD (N)	•	
av cavr	oa	v2 81	29 5	ICY I	PCY	TOTAL	POJ TOTAL		CAR	LOV	covi	cova	BLB	MCY	PCY	TOTAL	PCU TOTAL	CAR	LOV	ogyr	0010	913	MOY POY	TOTAL	PCU TOTAL	CAR	LOV	covi	ogyg	8128	MCY P	TOTA	PCU
0 0	0			0	0		0.00	1600-16	5 27	10		0	0	1	0	40	47.40	29	5	0	0	0	0 0	44	44.00	0	0	0	0	0	0	0	0.00
0 0	0			0			0.00	1915-19	0 45	6	0	0	0	0	0	81	\$1.00	47	6	0	0	1	0 0	64	55.00		0	0	0	0	0		0.00
0 0	0	0	3	0	۰	1	1.00	1630-16		5		0	0	0	0	84	\$6.00	54	5	1	Q	0	0 0	60	60.50	0	0	0	0	0	0	0	0.00
0	0		2	0	0	a	0.00	1645-17	00 54	2	0	0	0	0	0	67	\$7.00	53	7	1	Q	1	0 0	62	63,50	0	0	0	0	0	0	0	0.00
0	0		2	٥	0	- 1	1.00	1700-17			1	0	0	0	0	60	69.50	89	5	0	0		0 1	96	94.20	0	0	0	0	0	0	0	0.00
0	0		2	0	۰	0	0.00	1715-17		2		0	0	0	0	64	64.00	53	9	1	Q.	•	0 1	94	63.70		0	0	0	0	Q .	0	0.00
0	0		3	0	۰		0.00	1730-17		5	0	0	0	0	0	84	\$6.00	49	7	0	0		1 0	57	56.40	0	0	0	0	0	0	0	0.00
0	0			0	۰	-1	1.00	1745-10		4		0	1	0	0	47	48.00	St	2	0	0		0 0	50	53.00		0	0		0	Q	0	0.00
0	0		3	٥	۰	۰	0.00	1800-18		4		0	0	0	0	20	39.00	49		0	۵	•	0 1	50	57.20	0	0	0	0	0	a	0	0.00
9 0	0		2	0	° 1	۰	0.00	1815-18		2		0	0	0	9	46	46.00	22	1	0	0	•		20	39.00 35.00		0	0	0	0	0		0.00
				o .	: 1	1	1.00									27	27.00	24	-	u	·	•		36	32,00						u .		0.00
		-	-	٠.		•	0.00	1845-19		_	•					-22	33.00	24	-	•		٠.	• •	- 25	25.00	٠.	-		-	٠	9	-	0.00
0	0		_	0		4	4.00	1600-10	536	54	1	0	1	1	0	593	593.90	670	80	3	0	2	1 3	646	646.50		0	0	0	0	0	0	0.00
	-	201.01	VAC.	M/III	_			1				1000	HVY	OWE	_		_	_			ноп	SECT	OTALS		$\overline{}$	_			190	HILY	01//15		_
	- 0	- 0		0		-	1.00	1600-17	107	04				,		212	211.40	493	22		0	Α.	A A	220	223.00						0		0.00
	0			0	71		2.00	1615-17		22	- 1	0	0		0	200	211.50	242	22	2	0	2		271	273.20	1	0		0	0	0		0.00
				0		-	2.00	1630-17		20	- 1	6			6	249	246,50	240	96	9	0	-		291	281.90	l á				6	0		0.00
	ŏ			0	3	-	1.00	1645-17		20	- 1	ő	0	0	6	246	246.50	244	20	2	0		1 2	279	277.80	l i	0	ő		ő	0		0.00
0	0)	0		- 2	2.00	1700-9	212	21	1	0	1	0	0	226	217.50	242	22	1	0		1 2	200	367.30	0	0	0	0	0	0		0.00
0	0)	0		1	1.00	1715-10		16		0	1	0	0	204	207,00	202	26	1	0		1 2	222	230,30	0	0	0	0	0	0		0.00
0	a		3	0		- 1	1.00	1730-10	171	16		0	1	0	0	100	189,00	197	10	a	0		1 1	207	305.60		0	0	0	0	0		0.00
0 0	0			0		2	2.00	1745-10	146	12		0	1	0		189	160.00	170	14	0	0		0 1	195	184.20		0	0	0	0	0		0.00
0 0	0		3	0	0	- 1	1.00	1800-19	136	9	0	0	0	0	0	145	145.00	143	12	0	0		0 1	157	156.30	0	0	0	0	0	0	0	0.00