

Sellafield Ltd. Annual Review of Environmental Performance 2022/23

Introduction

Following publication of the 50th edition of our Discharges and Environmental Monitoring Report last year, we have revised the format of this report.

This new format publication outlines the variety of ways in which Sellafield Ltd. monitor our impacts on the environment, providing more balanced information across a range of impact types.

Carbon Footprint 2022/23

The Sellafield corporate carbon footprint for FY 2022/23 is in the region of 230k tonnes of CO_2e . This includes approximately 172k tonnes of CO_2e associated with electricity, steam, fuel consumption and process emissions (Scope 1 and 2 emissions). The remaining emissions are associated with a small proportion of our Scope 3 emissions.

In common with other businesses, our reporting of Scope 3 emissions is under development to increase the quality of data reported within the annual corporate carbon footprint to support our understanding of progress against our long-term carbon reduction targets. Previously business travel and commuting have been reported annually; for this financial year well to tank (WTT), transmission and distribution (T&D) and homeworking are also included. Whilst we are still developing the quality of data in the remaining Scope 3 categories, we have previously estimated the totality of our Scope 3 emissions to be approximately 600,000 tonnes of CO₂e.

It is anticipated that external verification of the corporate carbon footprint for FY 2022/23 will be completed in the summer of 2023/24.

Non-Radiological Impacts of Discharges & Monitoring of Non-radiological Pollutants in the Environment 2022 (Calendar Year)

The Installations environmental permit includes a requirement for a non-radiological monitoring programme. Compared to the radiological environmental monitoring programme, its scope is limited and comprises local air sampling on the Sellafield site, water sampling from the Rivers Calder and Ehen and seawater sampling from local beaches. A more comprehensive summary of non-radioactive releases to air, controlled waters, land and offsite transfers of waste is given in the Pollution Inventory supplied to the EA each year and is available from their website.

Measurements of nitrogen dioxide concentrations in air (using passive diffusion tubes) are made at five locations on the Sellafield site. Air sampling results show very low concentrations well within the UK Air Quality Standard [1].

Water samples are obtained from the Rivers Calder and Ehen at locations both upstream and downstream of the site. The downstream samples are taken above the confluence of the two rivers, and at times which minimise contamination with seawater. Seawater samples are obtained from the shoreline areas and confirm that the liquid discharges from Sellafield are not causing the Environmental Quality Standards (EQS) and Environmental Assessment Levels (EAL) [2] to be exceeded and therefore are of negligible impact.

Sellafield Ltd is committed to minimising the use of ozone depleting substances and fluorinated greenhouse gases and transitioning to more environmentally friendly alternatives where appropriate. Routine releases are estimated from the amounts of refrigerants used to top-up systems on site.

Monitoring of Sellafield's Landfill Sites 2022 (Calendar Year)

The Waste Management Licences for the North Landfill Site and Calder Floodplain Landfill Extensions require that environmental monitoring be carried out in the vicinity of the two sites. The monitoring comprises water sampling from the River Calder and New Mill Beck upstream and downstream of the landfills and gas monitoring over their surfaces. The results confirm that the impact of Sellafield's landfill sites remains negligible.

Radiological Dose Impacts 2022 (Calendar Year)

This report provides a summary of the comprehensive data that are available for inspection by members of the public on the Public Registers maintained by the Environment Agency.

There were no instances in 2022 of non-compliance with the numerical limits of permits regulating discharges and disposals of radioactive wastes at Sellafield. Radioactive discharges (aerial and liquid) were well below the permitted limits and were generally lower than those in 2021.

The estimated radiological doses to members of the public in 2022 are summarised in the table below. Doses to adult members of the marine critical group were estimated as 72 μ Sv, which is slightly higher than the dose estimated for 2021 (60 μ Sv) but in line with that in 2020 (70 μ Sv). The most significant radionuclides contributing to this dose are plutonium-alpha and americium-241, with the environmental concentrations of these radionuclides being mostly due to historic discharges and therefore changes in dose year on year reflect natural environmental variations.

Critical group doses from operations at Sellafield (µSv)		
Pathway	2021	2022
Marine critical group (adults)		
seafood consumption	24	28
aerial pathways	1.5	1.6
external radiation from beach occupancy (marine)	35	42
Total dose to marine critical group (adults)	60	72
Terrestrial critical group (adults)		
inhalation	0.52	0.6
immersion	0.03	0.005
external radiation from beach occupancy (terrestrial)	2.9	2.9
terrestrial foodstuff consumption	4.7	4.6
marine foodstuff consumption	0.58	0.55
direct radiation	2.9	3.0
Total dose to terrestrial critical group (adults)	12	12

The estimated dose in 2022 due to the consumption of terrestrial foodstuffs was about 5 μ Sv. Inclusion of dose contributions to this group from inhalation, immersion, external radiation from beach occupancy and marine. The total dose to the terrestrial critical group (adults) was estimated as 12 μ Sv which is unchanged from the dose reported for 2021.

The range of doses estimated herein are comparable to those from regulators' programme and consistent conclusions are made that doses are well below the legal limit of 1000 μ Sv [3].

The distributions of caesium-137 and americium-241 activities for particles and larger objects recovered by the beach monitoring programme in 2022 were within the ranges previously observed and considered in the health risk assessment associated with public beach occupancy.

Independent environmental monitoring programmes and dose assessments are carried out and reported by government agencies and other groups [4–7].

Sellafield Ltd has contributed to a number of initiatives that developed criteria for the protection of the natural environment and carried out assessments of exposure against the guidelines given in national and international publications. On the basis of work to date there is no reason to believe that radioactive discharges from Sellafield Ltd are harming the natural environment and the dose assessments presented herein focus on the protection of human health.

The following visual is included as it is illustrative of the comparable dose impacts of Sellafield discharges versus various other sources of radiation exposure by the general public in the UK.

The measurements in this report relate to environmental radioactivity that is mainly attributable to discharges from the Sellafield site. However, natural radioactivity makes an appreciable contribution to the reported values in some instances and it is important to recognise that natural radioactivity is the dominant source of radiation exposure to the population as a whole, including individuals living close to nuclear establishments.

In addition, the widespread radioactive fallout from the testing of nuclear weapons and from the Chernobyl accident make small contributions to overall doses. The subject has been reviewed comprehensively by UKHSA [8,9] and others [10]. Where corrections to account for background radiation are made they have been noted.

In summary:

The impacts of radioactivity in the environment local to the Sellafield site remain low, as per recent years, with only a small portion of this already low impact attributable to present operations on the site.

In contrast to earlier points in the site's history, the primary value of this extensive programme of environmental monitoring (in particular with respect to radioactivity in the environment) has moved on from measuring the impacts of the site's ongoing activities to:

- providing reassurance to both the public and other stakeholders,
- demonstrating compliance with both international obligations and our EPR (Environmental Permitting Regulations) permits - which directly place requirements on our environmental monitoring programme,
- providing reassurance monitoring to SL ourselves, by allowing the detection of any abnormal or fugitive releases to the environment.

Monitoring for Radioactivity in the Environment 2022 (Calendar Year)

Statutory Environmental Monitoring Programme

The Statutory Environmental Monitoring Programme (SEMP) provides public and stakeholder assurance that the environmental impacts of the Sellafield site are minimized according to the principles of Best Available Techniques (BAT).

In terms of radiological protection the SEMP has the following remit:

- to take account of the most important pathways of radiation exposure to the public;
- conduct appropriate sampling and analysis relevant to those pathways; and
- to combine monitoring and habits data to yield estimates of radiation doses to the public.

The results of the Sellafield Ltd environmental monitoring programme for 2022 are presented within this report alongside supplementary data published by the FSA (from 2021) [11].

The main pathways identified by Sellafield Ltd, the EA and FSA as relevant to calculating radiological doses from discharges from the Sellafield site are:

- Internal exposure from the high rate consumption of seafood (particularly crustaceans and shellfish) and of local agricultural produce;
- External gamma radiation from exposed intertidal sediments, particularly the silts and muds of estuaries and harbours; and,
- Inhalation of, and exposure to, airborne radioactivity.

Marine Monitoring

Concentrations of radionuclides in seafoods (fish, molluscs and crustaceans) were very low and comparable to previous years data. The slight increases in actinide concentrations in seafood are due to historically discharged material that associates with fine silts and sediments.

Concentrations of radioactivity in seaweed, seawater and in sediments were broadly similar to those of recent years.

Gamma dose rate surveys are carried out in the areas most often frequented by members of the public and the site perimeter and the surrounding district. Particular attention is paid to areas where silt or mud accumulates, such as in harbours or estuaries, where dose rates tend to be higher because of the presence of finely-divided sediments. In general gamma dose rates are declining towards background levels and are consistent with the radioactive decay of key gamma emitting radioisotopes (cobalt-60, ruthenium-106 and caesium-137).

Water samples are collected from rivers (Calder and Ehen), lakes and domestic supplies. The results are all very low and rarely above the limits of detection, except for strontium-90 which is generally present in rainwater and surface water at levels typical of those throughout the UK.

Higher strontium-90 concentrations are measured in the River Calder at Sellafield due to seepage of groundwater from site to the river. This radioisotope is thought to be present in due to the historic leak to ground due to historic leaks to ground and measurements have determined that elevated concentrations in the river occur immediately upstream of the statutory sampling point. There is no evidence of any elevated levels of strontium-90 in any other environmental media (seawater or seafoods) and the contribution of strontium-90 to external doses is minimal. Hence, the overall public dose consequences of these elevated levels would be insignificant. Nevertheless, a watching brief will be kept on the situation to ensure that these conclusions remain valid.

Beach Monitoring

The beach monitoring programme for 2022 conducted a total of 117 ha of beach monitoring against the programme target of 105 ha. A total of 49 particles and 7 larger objects were

detected, recovered, and analysed. Of these, 46 were alpha rich particles (where radioactivity was dominated by Am-241); 2 were beta rich particles (where radioactivity was dominated by Cs-137) and 1 other particle was found to be dominated by Co-60. All the 7 beta rich larger objects were recovered from Sellafield beach). Find rates and radioactive contents in 2022 did not required any form of intervention through the EA notification and intervention protocol [12].

Terrestrial Monitoring

High volume air samplers (HVAS), located close to the site perimeter and in nearby centres of population, are used to measure particulate radionuclides. Levels on site were generally similar to previous years although slightly higher concentrations of caesium-137 and plutonium-alpha were recorded at the Met Station location.

These data were used as part of an investigation into the contamination of ventilation system inlet filters where total activity above the normal range was detected, identified to correspond to a period of elevated arisings at the HVAS. Following investigation all filters have been classified as VLLW and the worst case dose calculated to be <1% of the site total through gaseous pathways. Off-site data were generally below the limit of detection, with most positive values reflecting sea to land transfer from marine discharges.

Total deposition collectors are located in the vicinity of each of the five high volume air samplers close to the site perimeter. Higher activity concentrations for beta-emitters (Strontium-90 and Caesium-137) were measured at North Gate, reflecting its close proximity to the open ponds and were also considered as part of the inlet filters investigation.

Sampling for atmospheric krypton-85 is conducted at the Sellafield Meteorological station on the edge of Sellafield site. Concentrations averaged 2.2 Bq m⁻³ with global background accounting for approximately 1.6 Bq m⁻³ and the discharges from the site accounting for approximately 0.6 Bq m⁻³. This is equivalent to an immersion dose due to krypton-85 discharges from Sellafield of 0.005 μ Sv per year for the adult age group. These results are so low, in fact, that the monitoring and reporting Kr-85 will cease from this point onwards.

The milk results for 2022 are broadly similar to, or lower than, those observed for previous years, with many analyses at the limit of detection. Concentrations in soil are similar to previous years whilst there was some evidence of enhanced grass concentrations and these data were used for the contaminated inlet filter investigation. Potatoes are collected from farms close to the site and rabbits are collected on site. Measured concentrations were very low and typical of data from recent years.

Direct radiation

Dose rates at the site perimeter, corrected for natural radiation, averaged 0.02 μ Gy per hour, which is slightly elevated over natural background. Dose rates in the surrounding district were consistent with natural terrestrial background radiation and did not show a significant contribution from the Sellafield site. An assessment of the maximum theoretical direct shine offsite dose to members of the public illustrated that doses could be approximately 3 μ Sv per year to people living and working adjacent to the site boundary.

Impacts on Local Groundwater

Sellafield Ltd undertakes groundwater monitoring to characterise and monitor groundwater quality and the environmental fate of in-ground contamination across the Sellafield site. The groundwater monitoring network, in various configurations, has been in place for over 40 years and a considerable baseline dataset is available. In addition, groundwater monitoring is undertaken in order to comply with site Environmental Permits. The management of groundwater is underpinned by a Best Available Technique assessment.

The groundwater monitoring network for 2022 included 250 sample points across the site and adjacent land, targeting both bedrock (sandstone – principal aquifer) and superficial deposits

and was designed to meet the monitoring objectives and provide targeted sampling in areas of interest. In terms of spatial distribution of groundwater contaminants the routine groundwater monitoring results in 2022 (calendar year) were broadly similar to those reported in recent years.

Following the notification of a leak to ground from Magnox Swarf Storage Silo (MSSS) in late 2019, it was recognised that the release of silo liquor would likely be identified by an increase in the concentration of specific radionuclides in groundwater samples around MSSS, particularly those radionuclides that have a low sorption to soil minerals, such as Tritium (H-3), Technetium (Tc-99), Chlorine (Cl-36) and Carbon (C-14). In December 2019 an enhanced groundwater monitoring programme was introduced. This included monitoring arrays of 15 monitoring wells in close proximity to MSSS, 8 slightly further away in the vicinity of the redundant settling tanks (RST) along the buried channel pathway and 4 to the south of the Separation Area.

This enhanced monitoring aimed to observe any changes in the physical and chemical properties of groundwater both spatially and temporally. The initial enhanced monitoring programme involved monthly sampling for broad analysis (*i.e.*, gross beta, gross alpha, tritium) and quarterly detailed analysis with speciation of specific radionuclides and inorganic parameters.

Following observed rising trends of tritium and identification of specific radionuclides attributed to the current leak in the late Spring / early Summer 2021, routine monitoring of the borehole array closest to MSSS was further enhanced to incorporate a monthly detailed analysis. Monitoring of the next distal array of wells out from MSSS was also enhanced from quarterly to monthly from Summer 2021. Work is ongoing to review and optimise the enhanced groundwater monitoring programme, based on analysis of the monitoring data collected since the start of the current leak to ground, and embed the programme within the routine sitewide groundwater monitoring programme.

The groundwater sampling programme provides crucial information on the impacts of site activities to groundwater, including identifying the contaminants of concern, the direction of contaminant migration, the dimensions and shape of the emerging/ historical plumes and which groundwater pathways drive the highest risk. Monitoring results may also be used to understand the prevailing geochemical processes and support any assessment required to evaluate environmental risk, including the potential for natural attenuation.

A summary of information on groundwater monitoring at the Sellafield site can be found in the Triennial Groundwater Reports, the first of which was published in 2021 and covers activities between 2017 and 2019. The second iteration, covering 2020-2022, will be published in October 2023.

Impacts of Solid Waste Dispositions 2022/23

Ensuring that the BAT waste route is used and diverting waste from the Low Level Waste Repository continues, the Waste OU have reduced the accumulation of waste being stored on site by transferring radioactive waste to either an interim store, an onsite landfill, sent offsite for treatment, incineration or if there are no other routes, for the waste to be consigned to the repository.

Remediation completed a clean-up operation on the external areas of the Sellafield Site. This led to equipment such as barriers, road signs and fencing being reused by Infrastructure and projects which has kept these items being used as part of the circular economy principles by these items not becoming waste.

The recycling rate for non-radioactive waste was 94% which was an increase of 3% from the previous year. This reduces our impact on the environment by utilising the Waste Management Hierarchy by diverting waste from landfill sites.

The collation of data on the carbon footprint for non-radioactive waste vehicles moves was initiated in 2022/23 and further developments in capturing this data will continue in 2023/24.

References

[1] HMSO (2010). The Air Quality Standards Regulations. Available online at https://www.legislation.gov.uk/uksi/2010/1001/contents/made

[2] Environment Agency (2022). Risk assessments for your environmental permit. Available online at https://www.gov.uk/guidance/risk-assessments-for-your-environmental-permit

[3] Cmnd 2919 (1995). Review of radioactive waste management policy: Final conclusions. HMSO, London.

[4] McKay W A and Stephens B A (1990). A survey of fish and shellfish radioactivity levels in Cumbrian near- shore waters, 1989. AEA-EE-0041, Harwell.

[5] McKay W A and Walker M I (1990). Plutonium and americium behaviour in Cumbrian nearshore waters. J. Environ. Radioactivity 12: 49-77.

[6] Walker M I and McKay W A (1991). Radionuclide distributions in seawater around the Sellafield pipeline. Est. Coast. Shelf Sci. 32: 385-393.

[7] Isle of Man Government Laboratory (2011). Radioactivity monitoring on the Isle of Man 2010.

[8] Watson S J, Jones A L, Oatway W B and Hughes J S (2005). Ionising radiation exposure of the UK population: 2005 Review. UK HSA Report HPA-RPD-001, HMSO, London.

[9] Hughes J S and Shaw K B (1996). Radiation doses from natural radiation. NRPB Report M748.

[10] Saunders P (1990). Radiation and you. Banson.

[11] Environment Agency, Food Standards Agency, Food Standards Scotland, Natural Resources Wales, Northern Ireland Environment Agency and Scottish Environment Protection Agency (2022). Radioactivity in food and the environment, 2021. RIFE-27. EA, FSA, FSS, NRW, NIEA and SEPA; Preston, London, Aberdeen, Cardiff, Belfast and Stirling.

[12] Environment Agency (2020). Sellafield radioactive objects notification and intervention plan, Penrith: Environment Agency. Available online at:

https://www.gov.uk/government/publications/sellafield-radioactive-objects-notification-and-intervention-plan/sellafield-radioactive-objects-notification-and-intervention-plan

Appendix A to the Annual Review of Environmental Performance

Figure 1. Marine environmental monitoring around Sellafield

Figure 2. Terrestrial environmental monitoring around Sellafield

Figure 3. Environmental monitoring at the Sellafield site

Discharge Data Tables

Dedlemalider		Annu	ıal discharge(TBq)		Permitted
Kadionuciides	2018	2019	2020	2021	2022	Limits
Tritium ^c	1,300	420	190	180	130	3,000/700 ^b
Carbon-14	2.9	2.8	1.2	1.3	0.85	13/5.1 ^b
Cobalt-60	0.02	0.02	0.02	0.01	0.01	2.5
Strontium-90	1.3	1.2	1.4	2.4	1.8	14
Zirconium-95	0.03	0.03	0.03	-	0.02	-
Niobium-95	0.03	0.02	-	-	0.01	-
Technetium-99	0.93	0.94	0.62	0.48	0.35	7.5/4.5 ^b
Ruthenium-106	0.54	0.46	0.27	0.17	0.16	3.1
Iodine-129	0.30	0.04	0.03	0.02	0.02	0.32
Caesium-134	0.04	0.02	0.03	-	-	-
Caesium-137	4.4	1.6	2.5	1.4	1.3	17
Plutonium-alpha	0.14	0.11	0.10	0.08	0.07	0.29
Plutonium-241	1.9	1.2	1.1	0.83	0.73	6
Americium-241	0.02	0.02	0.01	0.01	0.01	0.14
Total alpha ^{ac}	0.16	0.13	0.12	0.09	0.08	0.34
Total beta ^{ac}	-	6.8	7.1	7.4	6.5	63
Uranium (kg)	310	260	180	130	110	-

Table 1. Radioactive discharges to the Irish Sea, 2018 – 2022.

a 'Total alpha' and 'Total beta' are control measures relating to specified analytical determinations. They do not reproduce precisely the contributions from all individual isotopes.

b Upper tier of permitted limit in force until the completion of Magnox reprocessing. Lower teir limits for tritium, carbon-14 and technetium-99 applied from October 2022 onwards following agreement with the EA.

	2018	2019	2020	2021	2022	Permitted
Radionuclides		Ann	ual discharge(]	[Bq)	_ ~	Limits (all sources)
Tritium	90	56	38	39	15	370/170ª
Carbon-14	0.43	0.25	0.13	0.07	0.09	2.3/0.38ª
Krypton-85	65,000	7,800	4,300	4,300	2,500	70,000
Strontium-90	0.01	0.009	0.01	0.004	0.003	0.50
Ruthenium-106	0.49	0.56	0.55	0.55	0.61	2.8
Antimony-125	1.3	1.5	1.1	0.53	0.41	30
Iodine-129	10	3.2	2.1	1.8	1.8	42/13ª
Caesium-137	0.05	0.07	0.08	0.05	0.04	4.8
Plutonium-alpha	0.03	0.01	0.01	0.009	0.006	0.13
Americium-241+ Curium-242	0.02	0.01	0.01	0.009	0.009	0.08
Total alpha	0.10	0.08	0.10	0.07	0.07	0.66
Total beta	0.66	0.64	0.74	0.70	0.90	32

Table 3. Total airborne radioactive discharges, 2018 – 2022

a Upper tierof permitted limit in force until the completion of Magnox reprocessing. Lower teir limits for tritium, carbon-14 and iodine 129 applied from October 2022 onwards following agreement with the EA.

Table 4. Solid low level waste arisings from Sellafield, 2018 - 2022

Low level waste arisings (m ³)	2018	2019	2020	2021	2022
LLW produced on site which has been reused, recycled	9,000	9,400	5,100	12,000	8,200
or disposed of	· · · · · ·				
LLW metal waste recycled	3,100	2,900	1,700	140	800
Combustible LLW treated	2,200	2,100	2,500	2,100	2,400
LLW disposed of directly to landfill (as LLW, HV-					
VLLW or exempt waste but excluding waste that is out	580	850	210	400	320
of scope of regulation)					
LLW disposed of on site	2,300	3,100	600	9,300	4,000
Volume of LLW disposed of at LLWR	880ª	520ª	80	300	600

a Volume includes volume of compactable LLW.

Table 5. Non-radioactive aqueous waste discharges (kg), 2018 - 2022

Substance	Release points	2018	2019	2020	2021	2022	Annual Limit ^a
Chromium	SIXEP, SETP, EARP	40	5.6	14	4.1	13.7	1,200
N as NO ₂ and NO ₃	SETP, EARP	1,000,000	1,000,000	410,000	590,000	311000	4,080,000
N as NO ₂ and NO ₃	Thorp-C14 Removal Plant	4,600	420	110	260	55	26,900
Glycol	SETP, SIXEP, EARP, Lagoon	1,500	7,600	2,000	3,400	9,800	12,000

a Annual mass limits reported under the Installations environmental permit.

Table 6. Non-radioa	active gaseous	waste discharges	(kg), 2018 – 2022

Substance	Release points	2018	2019	2020	2021	2022	Annual Limit ^a
Oxides of nitrogen (as NO ₂)	Vitrification Test Rig	33	40	43	48	26	1,000
Oxides of nitrogen (as NO ₂)	NNL Central Laboratory	14	11	5.4	7.3	2.2	500
Particulate matter	Fellside CHP (as PM ₁₀)	360	230	190	160	324	-

a Annual mass limits reported under the Installations environmental permit.

Table 7. Non-radioactive gaseous waste discharges (tonne), 2018 - 2022

Substance	Release points ^a	2018	2019	2020	2021	2022
Oxides of nitrogen (as NO ₂)	Site Total	330	250	180	83	90
Carbon dioxide	Site Total	320,000	260,000	260,000	137,000	156,000
Carbon monoxide ^b	Site Total	42	0.03	17	6.94	14.26
Non-Methane Volatile organic compounds (NMVOCs)	Site Total	63	32	23	23	22
Methane	Site Total	17	0.01	14	10	7.99

a Site Total includes Fellside CHP plant.

b EA agreed reporting value as carbon monoxide discharges significantly below reporting threshold (BRT) values.

Table 8. Discharges of ozone depleting substances and fluorinated greenhouse gases (kg), 2018 - 2022

Substance ^a	2018	2019	2020	2021	2022
R22 HCFC	-	4	-	-	0.5
R134A HFC	70	1000	320	203	1284
R407C HFC	19	50	100	70	39.4
R404A HFC	5.3	3.6	-	7	2.1
R410A HFC	12	82	42	56	80

a HCFCs are ozone depleting substances and HFCs are fluorinated greenhouse gases.

Note: the range of substances discharged varies each year depending on which equipment is topped up with refrigerants. No annual mass limits apply.

Table 9. Non-radioactive solid waste arisings from Sellafield, 2018 – 2022

	Non-Radioactive WasteArisings(te)	2018	2019	2020	2021	2022
Non Honordone	Non-hazardous waste produced on site	38,000	92,000	43,000	22,000	24,000
Weste Arisings	Non-hazardous waste reused or recycled	9,300	2,800	30,000	21,000	24,000
waste Arisings	% of non-hazardous waste reused or recycled	24 %	3.1 %	69%	94%	>99%
Hazardona	Hazardous waste produced on site	1,200	1,100	2,900	1,700	1,400
Hazardous Weste Ariginga	Hazardous waste reused or recycled	500	99	170	290	135
waste Arisings	% of hazardous waste reused or recycled	42 %	9.2 %	5.8%	17%	9.8%

Whilst every effort is made to centrally record all Non-Rad waste arisings, some subcontractors may not provide this information, so the actual quantity produced may be higher than the centrally recorded figure. Note that no annual mass limits apply.

Environmental Monitoring Data

Species	Location	Mean radionuclide concentration (Bq kg ⁻¹ wet weight)										
		¹⁴ C ^a	⁹⁹ Te	¹³⁷ Cs	Pu(a)	²⁴¹ Am						
Cod	Seascale landed	33	< 0.31	2.5	< 0.003	< 0.003						
	Whitehavenlanded	31	< 0.26	2.9	< 0.004	0.006						
Plaice	Seascale landed	39	1.5	0.99	0.006	0.006						
	Whitehavenlanded	38	1.9	0.93	0.008	0.007						

Table 10. Radioactivity in fish (Bq kg⁻¹ wet weight), 2022

a ¹⁴C data include natural background

s								Mean radionuclide concentration (Bq kg ⁻¹ wet weight)										
Specie	Location	Total Alpha	Total Beta	¹⁴ C ^a	⁶⁰ Co	⁹⁰ Sr	⁹⁹ Tc	¹⁰⁶ Ru	¹²⁹ I	¹³⁷ Cs	U(a)	²³⁷ Np	Pu(a)	²³⁸ Pu	²³⁹⁺²⁴⁰ Pu	²⁴¹ Pu	²⁴¹ Am	Cm(a)
	SCAN-A	-	-	67	-	0.26	10	-	-	-	0.76	-	2.5	0.38	2.2	8.8	5.4	-
	SCAN -	12	51	-	0.48	-	-	< 0.64	-	1.1	-	-	-	-	-	-	5.0	-
	SCAN -	22	67	-	0.36	-	-	< 0.88	-	0.76	-	-	-	-	-	-	5.1	-
els	SCAN	17	59	67	0.42	0.26	10	< 0.76	-	0.93	0.76	-	2.5	0.38	2.2	8.8	5.2	-
nss	WH - Al	-	-	40	-	0.13	11	-	-	-	0.79	-	1.9	0.28	1.6	5.8	3.3	-
Ň	WH - Bl	9.5	43	-	0.07	-	-	< 0.57	-	0.51	-	-	-	-	-	-	1.7	-
	WH - Bl	8.8	57	-	< 0.08	-	-	< 0.76	-	0.92	-	-	-	-	-	-	3.8	-
	WH Ave.	9.2	50	40	< 0.08	0.13	11	< 0.67	-	0.72	0.79	-	1.9	0.28	1.6	5.8	2.9	-
	SCA Ave.	13	55	54	0.25	0.20	11	<0.71	-	0.82	0.78	_	2.2	0.33	1.9	7.3	4.1	-
	SCAN - Al	-	-	44	-	-	-	-	< 0.16	-	-	-	-	-	-	-	-	-
	SCAN-Q	48	110	-	0.43	2.0	39	< 0.88	-	6.6	2.7	0.02	12	1.7	9.9	39	22	< 0.11
	SCAN-Q	52	96	-	0.58	0.98	16	< 0.91	-	5.9	2.0	0.01	11	1.6	9.4	36	19	0.04
	SCAN-Q	18	90	-	0.37	1.3	10	< 0.75	-	2.8	1.3	0.007	5.2	0.70	4.5	17	9.5	$<\!\!0.08$
	SCAN-Q	14	60	-	0.31	0.58	22	< 0.76	-	1.5	1.3	0.005	3.5	0.46	3.0	10	6.8	0.03
les	SCAN	33	89	44	0.42	1.2	22	< 0.83	< 0.16	4.2	1.8	0.01	7.9	1.1	6.7	26	14	< 0.07
ink	SCAS - A	-	-	69	-	-	-	-	< 0.14	-	-	-	-	-	-	-	-	-
Μ	SCAS -Q	27	86	-	0.45	0.44	50	< 0.67	-	1.5	2.7	0.007	5.5	0.74	4.8	19	8.6	< 0.05
	SCAS-Q	40	100	-	0.58	0.89	66	< 0.85	-	3.8	3.0	0.01	9.6	1.5	8.0	33	14	< 0.05
	SCAS -Q	18	82	-	0.48	0.64	19	<1.1	-	1.8	1.7	0.005	4.3	0.59	3.7	15	9.0	< 0.06
	SCAS -Q	31	83	-	0.48	0.68	32	<1.0	-	1.6	2.2	0.006	5.1	0.79	4.3	17	8.4	0.03
	SCAS	29	88	69	0.50	0.66	42	< 0.91	< 0.14	2.2	2.4	0.007	6.1	0.91	5.2	21	10	< 0.05
	SCA Ave.	31	88	57	0.46	0.94	32	<0.87	<0.15	3.2	2.1	0.009	7.0	1.0	6.0	23	12	< 0.06

Table 11. Radioactivity in molluscs (Bq kg⁻¹ {wet weight}), 2022

Notes: SCA – Sellafield Coastal Area; N – North, S- South, A – Annual sample, B – Biannual sample, Q – Quarterly sample, Ave.- Average.

				M	ean conc	entration	(Bq kg ⁻¹ {	wet weigh	it})	
Species	Location	¹⁴ C ^a	⁶⁰ Co	⁹⁰ Sr	⁹⁹ Tc	¹²⁹ I	¹³⁷ Cs	U(a)	Pu(a)	²⁴¹ A m
	SCA (north) - Early	50	-	0.04	3.3	-	0.44	0.15	0.13	0.65
	SCA (north) - Late	84	-	0.10	5.6	-	0.41	0.29	0.27	0.99
	SCA (north) Average	67	-	0.07	4.5	-	0.43	0.22	0.20	0.82
	SCA (south) - Early	63	0.20	0.10	7.0	-	0.54	0.23	0.16	0.78
Edible	SCA (south) - Late	72	-	0.09	4.2	-	0.42	0.28	0.19	0.65
Crab	SCA(south)Average	68	0.20	0.10	5.6	-	0.48	0.26	0.18	0.72
	SCAAverage	67	0.20	0.08	5.0	-	0.45	0.24	0.19	0.77
	WL - Early	72	-	< 0.07	5.0	-	0.48	0.13	0.16	0.66
	WL-Late	70	-	0.10	3.6	-	0.48	0.29	0.20	0.85
	WL -Average	71	-	<0.09	4.3	-	0.48	0.21	0.18	0.76
	SCA (north) - Early	54	-	-	45	< 0.15	0.51	0.03	0.08	0.56
	SCA (north) - Late	44	-	-	15	< 0.18	0.60	0.07	0.16	0.72
	SCA (north) Average	49	-	-	30	< 0.17	0.56	0.05	0.12	0.64
	SCA (south) - Early	64	-	-	48	< 0.15	0.67	0.02	0.10	0.64
T. 1 4	SCA (south) - Late	27	-	-	14	< 0.20	0.18	0.03	0.01	< 0.11
Lobster	SCA(south)Average	46	-	-	31	< 0.18	0.43	0.03	0.06	< 0.38
	SCAAverage	47	-	-	31	<0.17	0.49	0.04	0.09	0.51
	WL – Early	65	-	-	51	< 0.17	0.63	0.02	0.07	0.58
	WL – Late	41	-	-	32	< 0.20	0.38	0.07	0.07	0.46
	WL-Average	53	-	-	42	<0.19	0.51	0.05	0.07	0.52
	SCA – Annual	47	-	0.06	-	< 0.18	-	-	-	-
	SCA – Early	-	-	-	20	-	1.0	-	0.58	1.9
	SCA – Late ^b	-	-	-	12	-	0.51	-	0.25	1.0
Nephrops	SCAAverage	47	-	0.06	16	<0.18	0.76	-	0.42	1.5
(Scampi)	WL – Annual	49	-	0.11	-	< 0.25	-	-	-	-
	WL – Early	-	-	-	22	-	1.4	-	0.93	2.9
	WL – Late ^b	-	-	-	17	-	0.46	-	0.33	1.4
	WL-Average	49	-	0.11	20	<0.25	0.93	-	0.63	2.2

Table 12. Radioactivity in crustaceans (Bq $\rm kg^{-1}$ wet weight), 2022

 $Notes\ ^{14}C\ data\ include\ natural\ background;\ SCA-Sellafield\ coastal\ area;\ WL-Whitehaven\ Landed$

Smaalaa	Location	Mean concentration (Bq kg ⁻¹ wet weight)											
species	Location	Total α	Total β	¹⁴ C ^a	⁶⁰ Co	⁹⁰ Sr	⁹⁹ Tc	¹⁰⁶ Ru	¹²⁹ I	137Cs	U(a)	Pu(a)	²⁴¹ Am
<i>E</i>	Nethertown	19	210	18	0.27	0.50	320	-	< 0.47	2.3	5.5	7.5	3.9
Fucus	Drigg Barnscar	25	210	35	0.22	0.56	410	-	< 0.57	1.8	6.4	10	4.0
vesiculosis	Walney Island	18	210	19	-	0.31	290	-	< 0.48	1.4	7.1	5.4	2.3
	St Bees	14	120	33	-	0.36	0.93	< 0.50	-	1.4	0.41	3.4	6.3
Porphyra	Braystones	11	150	32	-	< 0.17	1.8	< 0.60	-	0.89	0.40	3.1	4.4
umbilicali	Sellafield	13	130	41	-	0.17	2.3	< 0.53	-	0.89	0.38	2.4	4.3
S	Seascale Neb	16	140	39	0.05	0.13	1.4	< 0.46	-	0.93	0.42	2.9	5.0
	St. Bees - Selker (Av)	14	140	36	0.05	0.21	1.6	< 0.52	-	1.0	0.40	2.9	5.0

Table 13. Radioactivity in seaweed, 2022

a ¹⁴C data include natural background

Fucus vesiculosus is collected because it accumulates many radionuclides (particularly technetium-99) and is sensitive to fluctuations in their concentrations in seawater. *Porphyra umbilicalis* is also collected and monitored as an indicator species particularly due to its historical exposure pathway role for ruthenium-106.

Table 14. Radioactivity in coastal samples of seawater from the Irish Sea, 2022

Levelin		Mean concentration (Bq I ⁻¹)												
Location		Total α	Total β	³ H	14C	⁹⁰ Sr	⁹⁹ Tc	¹²⁹ I	137Cs	U(a)	²³⁷ Np	Pu(a)	²⁴¹ Pu	²⁴¹ Am
St Boos	filtrate	<2.8	8.8	<5.3	0.61	0.02	< 0.03	< 0.03	< 0.03	0.09	< 0.0004	0.002	< 0.05	0.0007
St Bees	solids	0.13	0.17	-	-	0.006	-	-	0.01	0.002	0.00002	0.02	0.08	0.04
Sallafiald	filtrate	<2.9	8.5	5.4	0.49	0.05	< 0.03	< 0.02	< 0.03	0.08	< 0.0004	0.003	< 0.04	0.001
Senaneiu	solids	0.13	0.13	-	-	0.003	-	-	0.01	0.002	0.00003	0.02	0.09	0.04
Seascale	filtrate	<3.0	11	4.1	< 0.69	0.03	< 0.02	< 0.02	0.03	0.09	< 0.0003	0.003	< 0.05	0.001
Neb	solids	0.19	0.19	-	-	0.005	-	-	< 0.02	0.003	0.00005	0.04	0.15	0.07
Drigg	filtrate	<3.0	9.8	<3.9	0.46	0.03	< 0.03	< 0.03	0.04	0.09	< 0.0004	0.003	< 0.04	0.001
Barnscar	solids	0.09	0.14	-	-	< 0.003	-	-	< 0.008	0.001	0.00001	0.01	0.05	0.03

Table 15. Radioactivity in sediment from the West Cumbrian Coast, 2022

T	_	Mean radionuclide concentration (Bq kg ⁻¹ dry weight)									
Location St Bees		Total α	Total β	⁶⁰ Co	⁹⁰ Sr	⁹⁹ Tc	137Cs	U-a	Pu-α	²⁴¹ Pu	²⁴¹ Am
	St Bees	590	370	0.27	-	-	41	-	94	-	95
	Braystones	590	370	0.17	-	-	26	-	95	-	100
Sand	Sellafield	490	400	0.14	-	-	35	-	92	-	97
	Seascale Neb	880	470	0.15	-	-	21	-	92	-	94
	Drigg Barnscar	460	440	0.16	-	-	16	-	69	-	76
	Ravenglass Ford	1,100	820	<1.9	12	16	63	49	200	610	300
	Ravenglass Garth	450	330	<1.6	< 0.84	3.5	12	28	92	270	150
	Ravenglass Opp Raven Villa	1,100	380	<1.6	9.5	14	63	51	140	510	280
	Eskmeals, R Esk south bank	1,200	690	< 0.92	9.1	12	59	44	180	510	250
	downstream of viaduct										
	Eskmeals Newbiggin Marsh	1,300	1,000	<1.3	75	25	130	49	350	990	570
Silt	R Esk Muncaster Rd Bridge;	2,600	1,100	<1.4	50	35	250	57	460	1,400	880
	Downstream										
	Whitehaven Outer Harbour	580	510	< 0.83	0.80	8.4	190	27	98	240	130
	(south)										
	Silt from R Calder	490	710	<1.2	4.0	3.0	57	37	95	230	90
	Silt from R Ehen	1,500	1,200	<1.7	14	11	140	69	230	610	350
	Waberthwaite	1,600	1,100	<1.3	20	19	160	59	340	1,000	570

Area of survey	Description	Nature of ground	N ^b	Mean dose rate (µGy h ⁻¹) ^a
Whitehaven Harbour (north)	outer harbour	mud/silt	4	0.14
St Bees (groynes)	groynes	pebbles/rocks	1	0.14
St Bees	Seamill Lane car park	car park	1	0.14
Coulderton	grassed areas/beach bungalows	grass banks	1	0.16
Nethertown	beach	pebbles/shingle	1	0.16
Braystones	beach	pebbles/shingle	1	0.15
Sellafield Beach	beach		1	0.14
Sellafield Dunes	dunes		1	0.13
Sellafield	pipeline 3	sand	12	0.09
Sellafield	pipeline 4	sand	12	0.10
Factory Sewer	outfoll	rocks / boulders /	4	0.14
Factory Sewer	outian	sand / shingle		
Seascale Beach	south of pipeline	rocks/sand	4	0.12
Drigg Beach	beach	sand	1	0.14
Ravenglass	Raven Villa	saltmarsh	1	0.12
Ravenglass	small boat area	firm silt /pebbles	1	0.14
Ravenglass	Salmon Garth (saltmarsh)	sand / firm silt	1	0.15
Eskmeals Viaduct	saltmarsh	saltmarsh	1	0.14
Newbiggin	saltmarsh	saltmarsh	4	0.16
Muncaster Road Bridge	riverbank	grass	1	0.17
Hall Waberthwaite	saltmarsh	saltmarsh turf	1	0.14

Table 16. Mean gamma dose rates measured in air in intertidal and other coastal areas of Cumbria, 2022

a Figures include contributions from natural background, typically 0.05 μ Gy h⁻¹ over sandy areas and 0.07 μ Gy h⁻¹ over silt.

b Number of observations

Table 17. Mean gamma dose rates measured in air at Sellafield site perimeter, 2022

Area of survey	Number of locations	Mean dose rate (µGy h ⁻¹) ^a
North	4	0.01
East	5	0.02
South	3	0.008
West	4	0.04
River Ehen	2	0.01
River Calder	12	0.002
Critical Group	1	0.04
Mean annual average	-	0.02

a Figures exclude contribution from natural background (approximately 0.06 μ Sv h^{-1}).

Table 18. Mean gamma dose rates measured in air in the vicinity of Sellafield, 2022

Location	Mean dose rate (µGy h ⁻¹) ^a
Calderbridge	0.06
Seascale	0.05
Ravenglass	0.04
Braystones	0.05
Whitehaven	0.04
Gosforth	0.05
Brow Top	0.05

a Figures include contribution from natural background (approximately $0.06 \mu Gy h^{-1}$).

Dadionualida		Mea	n concentration (mBq	m ⁻³)	
Kaulollucliue	Calder Gate	Met. Station	North Gate	West Ring Road	South Side
Total Alpha	0.03	0.04	0.04	0.04	0.03
Total Beta	0.28	0.34	0.34	0.29	0.27
⁹⁰ Sr	0.003	0.008	0.01	0.002	0.002
¹⁰⁶ Ru	< 0.04	< 0.04	< 0.04	< 0.04	< 0.03
¹²⁵ Sb	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
¹³⁷ Cs	0.01	0.06	0.04	< 0.006	< 0.008
Pu(a)	0.0006	0.001	0.0007	0.0003	0.0003
²⁴¹ Pu	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
²⁴¹ Am	0.0005	0.0006	0.0006	0.0003	0.0004
²³⁵ U	0.00002	0.00001	0.00002	0.00001	0.00001
²³⁸ U	0.0003	0.0003	0.0006	0.0003	0.0003

Table 19. Radioactivity in air in the vicinity of Sellafield - Site Perimeter Locations, 2022

Table 20. Radioactivity in air in the vicinity of Sellafield - Residential Locations, 2022

Dadionualida		Mean concentration (mBq m ⁻³)									
Kaulonuchue	Brow Top	Braystones	Calderbridge	Gosforth	Ravenglass	Seascale	Whitehaven				
⁹⁰ Sr	0.0002	0.0003	0.0006	0.0002	0.0004	0.0005	0.0002				
¹³⁷ Cs	< 0.005	< 0.005	< 0.004	< 0.005	< 0.005	< 0.005	< 0.003				
Pu(a)	0.00008	0.0002	< 0.0002	< 0.0002	0.0002	0.001	0.0001				
²⁴¹ Pu	< 0.02	< 0.04	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03				
²⁴¹ Am	0.0001	0.0002	0.00008	0.00007	0.0001	0.002	0.00009				
²³⁵ U	0.000007	0.00001	0.000006	0.00001	0.00001	0.00002	0.000008				
²³⁸ U	0.00009	0.0002	0.0001	0.0002	0.0002	0.0004	0.0001				

Table 21. Radioactivity in milk from farms near Sellafield, 2022

Landon	Mean concentration (Bq l ⁻¹)									
Location	Total α	Total β	³ H	¹⁴ C ^a	¹⁴ C ^b	⁹⁰ Sr	¹²⁹ I	¹³¹ I	¹³⁷ Cs	
Farm A	< 0.19	41	2.3	14	< 0.55	0.02	< 0.01	< 0.04	0.06	
Farm B ^c	< 0.14	43	<2.2	15	< 0.58	0.02	< 0.01	< 0.04	< 0.04	
FarmC	< 0.18	40	<2.4	18	< 0.73	0.03	< 0.01	< 0.04	0.07	

a Including natural background.

```
b Excluding natural background.
```

c Milk from Farm B has been used in the radiological assessment.

Table 22. Radioactivity in potatoes and rabbits from farms near Sellafield, 2022

S1 -	Mean concentration (Bq kg ⁻¹)								
Sample	³ H	¹⁴ C ^a	¹⁴ C ^b	¹³⁷ Cs					
Potatoes - Early	7.7	14	<0.60	0.15					
Potatoes - Late	6.5	14	< 0.50	0.15					
Potatoes - Average	7.1	14	<0.55	0.15					
Rabbit	-	-	-	3.6					

a Including natural background.

b Excluding natural background.

Location		Mean radionuclide concentration (Bq m ⁻³)									
Location	Total α	Total β	³ H	⁹⁰ Sr	¹³⁷ Cs	Pu-α	²⁴¹ Am				
Calder Gate	20	<160	<4,700	4.2	13	0.44	0.31				
Met Station	26	300	4,100	30	95	1.1	1.5				
NorthGate	32	1,900 ^a	6,300	1,200°	1,000 ^b	0.22	0.94				
South Side	22	150	4,200	2.7	<6.0	0.23	1.1				
West Ring Road	26	190	<4.300	14	16	0.68	1.6				

Table 23. Radioactivity in total deposition, 2022

a Total Beta is measured Monthly, the elevated Total Beta corresponds with high beta results from the inlet filter event during August – October.

 $b^{137}Cs$ is measured quarterly, elevated ^{137}Cs is likely to correspond with elevated results from the inlet filter event.

c ⁹⁰Sr is measured annually, elevated ⁹⁰Sr is likely to correspond to the inlet filter event

Table 24. Radioactivity in grass, 2022

Location		Mean concentration (Bq kg ⁻¹ {wet weight})												
Location	Total α	Total β	³ H	¹⁴ C ^a	¹⁴ C ^b	⁹⁰ Sr	⁹⁹ Tc	¹⁰⁶ Ru	125Sb	134Cs	137Cs	U- a	Pu- α	²⁴¹ Am
Calder Gate	4.0	96	6.3	28	1.2	2.2	-	-	0.52	-	4.4	0.23	0.17	0.21
Met Station	7.1	110	8.1	23	< 0.90	8.4	-	-	-	-	8.7	0.14	0.27	0.14
North Gate	4.5	150	12	28	1.1	23	-	-	-	-	42	0.20	0.40	0.26
South Side	5.2	120	4.3	22	< 0.83	0.72	-	-	-	-	0.97	0.29	0.06	0.09
West Ring Rd	2.2	95	<5.9	21	< 0.83	1.2	-	-	-	-	2.4	0.22	0.19	0.20

a ¹⁴C data includes background.

b Excluding natural background calculated assuming 218 Bq natural ¹⁴C per kg carbon.

Table 25. Radioactivity in soil, 2022

Location		Mean concentration (Bq kg ⁻¹ {wet weight})												
	Total α	Total β	³ H	¹⁴ C ^a	¹⁴ C ^b	⁹⁰ Sr	¹⁰⁶ Ru	125Sb	134Cs	137Cs	U- a	Pu- α	²⁴¹ Am	
Calder Gate	840	630	<3.5	5.5	1.5	3.0	-	-	-	60	58	29	17	
Met Station	720	590	4.5	5.8	0.71	13	-	-	-	200	65	86	45	
NorthGate	810	690	4.3	5.0	1.4	21	-	-	-	190	63	130	31	
South Side	720	910	2.8	11	< 0.50	1.8	-	-	-	47	73	13	6.3	
West Ring Road	680	680	2.0	5.2	< 0.20	4.6	-	-	-	68	84	44	32	

a ¹⁴C data includes background.

b Excluding natural background calculated assuming 218 Bq natural ¹⁴C per kg carbon.

Location				Mea	n concent	ration (Bo	₁ l⁻¹)		
		Total α	Total β	³ H	⁹⁰ Sr	⁹⁹ Tc	¹³⁷ Cs	Pu(a)	Am+Cm
River water:	R. Calder at Sellafield	< 0.01	0.27	<4.5	0.10	< 0.03	< 0.005	< 0.001	-
	R. Calder at Calderbridge	< 0.01	< 0.10	<4.0	0.003	< 0.03	< 0.005	< 0.001	-
	R. Ehen, 5m upstream of	< 0.02	0.21	4.5	0.004	0.03	< 0.006	< 0.001	-
Factory	Sewer outfall								
	R. Ehen, 100m north of pipeline	< 0.01	0.11	<4.6	0.003	< 0.03	< 0.005	< 0.001	-
Lake water:	Ennerdale Water	< 0.01	< 0.12	<4.9	0.002	-	< 0.005	< 0.002	-
Tap water:	Calderbridge	< 0.02	< 0.09	<3.6	0.001	-	< 0.005	-	-
	Sellafield	< 0.01	< 0.08	<3.7	0.001	-	< 0.005	-	-
	Ravenglass	< 0.01	< 0.08	<4.6	0.001	-	< 0.005	-	-
	Seascale	0.01	< 0.08	<3.6	0.001	-	< 0.005	-	-
	Whitehaven	< 0.02	< 0.08	<4.7	0.001	-	< 0.006	-	-
Spring water	: Sellafield Beach (South) ^a	-	-	73	1.0	2.1	0.64	0.04	0.15
	Sellafield Beach (Maximum) ^a	-	-	520	1.0	5.6	0.64	0.04	0.15
	Sellafield Beach (Average) ^a	-	-	160	1.0	2.0	0.64	0.04	0.15

Table 26. Radioactivity in local waters, 2022

a Results corrected for seawater content.

Table 27. Non-radioactive monitoring of nitrogen dioxide in air in the vicinity of Sellafield, 2022

Location	Mean concentration (µg m ⁻³)
Calder Gate	6.7
Met. Station	5.9
North Gate	6.2
West Ring Road	7.4
South Side	5.9
Air Quality Limit Value (annual mean)	40

Table 28. Non-radioactive monitoring of nitrate in river waters, 2022

Location	рН	Mean concentration (mg l ⁻¹)
River Calder - downstream of site	7.8	0.65
River Calder - upstream of site	7.6	0.62
River Ehen - upstream of Seaburn outfall	7.9	1.0
River Ehen - upstream of pipebridge	7.8	1.0
National Environmental Quality Standard	6.0 - 9.0	N/A

Table 29. Non-radioactive monitoring of coastal waters, 2022

Logation	Mean concentration (mg l ⁻¹)					
	nitrite	nitrate				
St Bees	< 0.007	0.25				
Sellafield	< 0.007	0.15				
Seascale Neb	< 0.007	0.13				
Drigg Barnscar	< 0.007	0.09				

Table 30. Non-radioactive monitoring of surface water around Calder Landfill Extension Segregated Area, 2022

Location	BOD (mg l ⁻¹)	COD (mg l ⁻¹)	TOC (mg l ⁻¹)	Dissolved O2 (ppm)	NH4 ⁺ (mg l ⁻¹)	SO4 ²⁻ (mg l ⁻¹)	Conductivity (µS cm ⁻¹)
River Calderupstream	<1.0	4.4	2.0	11	< 0.01	3.9	92
New Mill Beck upstream	<1.0	27	7.7	10	0.26	10	220
New Mill Beck overflow drain ^a	<1.2	49	17	9.8	0.36	12	220
River Calder downstream	<1.0	<5.1	1.9	11	0.02	4.6	110

a Sample only available under flood conditions.

BOD – Biological Oxygen Demand; COD – Chemical Oxygen Demand; TOC – Total Organic Carbon.

Table 31. Non-radioactive monitoring of gases on Sellafield's landfill sites, 2022

Cas suits unabs monitoring	Mean concentration (% volume)						
Gas spike probe monitoring	CH4	CO ₂	O ₂				
Calder Landfill Complex Boreholes	0.09	1.4	19				
Calder Landfill Complex Probes	0.04	1.0	20				

Beach Monitoring Data

Programme	Planned monitoring (ha)	Actual monitoring(ha)
Sellafield	52	55
Northern Beaches	32	35
Southern Beaches	16	22
Allonby	5	5
Total	105	117

 Table 32. Beach monitoring conducted during 2022

Table 33. Particle and larger object beach finds recovered during 2022

D	No.	of particles fo	und	No. of	Total		
Programme	Alpha rich	Beta rich	Other	Alpha rich	Beta rich	Other	finds
Sellafield	30	2	1	0	7	0	40
Northern Beaches	11	0	0	0	0	0	11
Southern Beaches	5	0	0	0	0	0	5
Allonby	0	0	0	0	0	0	0
Total	46	2	1	0	7	0	56

Particles are less than 2 mm in size; Larger objects are greater than 2 mm in size; "Alpha rich", higher americium-241 activity than caesium-137 activity; "Beta rich", where caesium-137 was the major radionuclide; "other" denotes the principal radionuclide is neither americium-241 activity or caesium-137, for example cobalt-60

Beach	Year	Area (ha)	Alpha rich particle	Beta rich particle	Beta rich larger object	Other finds
	2018	81	88	6	17	0
	2019	81	74	5	6	0
Sellafield	2020	58	48	4	2	0
	2021	57	24	1	4	0
	2022	55	30	2	7	1
	2018	44	22	1	0	0
NT 41	2019	42	31	0	0	0
Northern	2020	30	19	0	0	0
Beaches	2021	36	68	0	0	0
	2022	35	11	0	0	0
	2018	25	10	0	0	0
C 41	2019	25	2	0	0	0
Decelution	2020	19	1	0	0	0
Beaches	2021	24	1	0	0	0
	2022	22	5	0	0	0
	2018	10	1	0	0	0
	2019	10	1	0	0	0
Allonby	2020	6	0	0	0	0
-	2021	5	0	0	0	0
	2022	5	0	0	0	0

Table 34. Total area monitored and finds by category, beach and calendar year (2018 - 2022)

Figure 4. Radioactivity of finds classified as alpha-rich particles (upper) and beta rich particles (lower) between 2014 - 2021 (shown in blue) compared to data from 2022 shown in red)

Log₁₀ ¹³⁷Cs Activity (Bq)

RIFE data used in the Radiological Dose Assessment

S	Mean c	oncentra	tion (Bq k	g ⁻¹ {wet we	eight}) ^a										
species	³ H ^b	¹⁴ C ^b	¹⁴ C ^c	⁶⁰ Co	⁹⁰ Sr	⁹⁹ Tc	¹⁰⁶ Ru	¹²⁵ Sb	¹²⁹ I	¹³⁴ Cs	¹³⁷ Cs	²³⁸ Pu	²³⁹⁺²⁴⁰ Pu	²⁴¹ Pu	²⁴¹ Am
Bovine muscle	<2.7	46	9.0	< 0.05	< 0.05	< 0.05	< 0.41	< 0.10	< 0.02	< 0.05	0.41	0.00004	0.0001	< 0.34	0.0002
Bovine liver	<3.6	29	3.0	< 0.05	< 0.04	< 0.05	< 0.37	< 0.10	< 0.03	< 0.05	0.23	0.0003	0.002	< 0.19	0.003
Bovine kidney	<3.7	33	7.0	< 0.04	< 0.10	< 0.04	< 0.43	< 0.14	< 0.03	< 0.05	0.34	< 0.0003	0.0002	<1.5	0.001
Ovine muscle	<5.5	41	-	< 0.05	< 0.04	< 0.04	< 0.41	< 0.10	< 0.03	< 0.04	1.0	< 0.00006	0.0002	< 0.38	0.0003
Ovinekidney/ liver	<13	48	22	< 0.05	0.06	< 0.04	< 0.34	<0.09	< 0.02	< 0.04	0.31	0.0003	0.003	<0.42	0.003
Deer	<3.4	26	-	< 0.04	< 0.05	< 0.08	< 0.29	< 0.08	< 0.03	< 0.04	0.41	< 0.0001	0.00007	< 0.35	0.0002
Duck	<4.9	41	-	< 0.04	< 0.04	-	< 0.34	< 0.10	< 0.02	< 0.06	0.10	< 0.00007	0.0001	< 0.42	0.0002
Pheasant	<6.4	46	14	< 0.06	< 0.04	< 0.05	< 0.46	< 0.17	< 0.04	< 0.08	0.15	0.00004	0.00006	< 0.68	0.0002
Wild wood pigeon	<6.8	46	14	< 0.07	< 0.04	-	<0.55	<0.13	< 0.03	<0.06	0.44	0.00003	0.0001	<0.34	0.00005
Rabbit	<3.5	24	-	< 0.04	0.04	< 0.08	< 0.30	< 0.09	< 0.03	< 0.02	0.07	< 0.00007	< 0.0001	< 0.25	0.00004
Eggs - Chicken	<5.7	37	5.0	< 0.04	< 0.03	-	< 0.37	< 0.10	< 0.04	< 0.03	< 0.04	< 0.0001	< 0.0001	< 0.59	0.00007

Table 35. Radioactivity in animal produce from farms near Sellafield, 2021 (data From RIFE27)

a Values shown in pale blue boxes are from measurements performed by the FSA.

b Including natural background.

c Excluding natural background (values taken from RIFE). Measured concentrations that are smaller than background value are indicated by a hyphen.

Emocion	Mean con	ncentration	(Bq kg ⁻¹ {w	et weight}) ^a	l										
Species	³ H ^b	¹⁴ C ^b	¹⁴ C ^c	⁶⁰ Co	⁹⁰ Sr	⁹⁹ Tc	¹⁰⁶ Ru	¹²⁵ Sb	¹²⁹ I	¹³⁴ Cs	¹³⁷ Cs	²³⁸ Pu	²³⁹⁺²⁴⁰ Pu	²⁴¹ Pu	²⁴¹ Am
Potato	-	-	-	< 0.07	< 0.04	-		< 0.12	< 0.03	< 0.06		0.0001	0.001	-	0.002
Cabbage	<2.0	5.8	-	< 0.06	0.04	-	< 0.43	< 0.12	< 0.03	< 0.03	< 0.05	< 0.00008	0.00008	-	0.0001
Broccoli	<2.6	17	10.0	< 0.07	< 0.06	-	< 0.55	< 0.09	< 0.02	< 0.07	< 0.06	< 0.0001	< 0.0002	-	0.0001
Cauliflower ^d	<2.1	9.2	2.2	< 0.10	-	-	< 0.68	< 0.16	< 0.04	< 0.07	< 0.07	-	-	-	-
Carrots	<2.0	11	4.3	< 0.07	0.02	-	< 0.54	< 0.14	< 0.03	< 0.08	0.08	-	-	-	-
Beetroot	<2.1	3.0	-	< 0.03	0.06	< 0.05	< 0.25	< 0.07	< 0.02	< 0.04	0.11	-	-	-	-
Onion	-	14	7.0	< 0.06	0.20	-	< 0.29	< 0.10	< 0.04	< 0.05	0.07	-	-	-	-
Runner beans ^d	<2.0	17	-	< 0.06	0.33	-	< 0.52	< 0.11	< 0.06	< 0.06	< 0.06	< 0.0001	0.0003	-	0.0007
Mushroom	<2.1	8.5	4.5	< 0.03	0.02	-	< 0.26	< 0.07	< 0.03	< 0.03	4.3	0.005	0.04	0.20	0.06
Apple	<2.5	16	8.1	< 0.02	0.10	< 0.05	< 0.21	< 0.05	< 0.03	< 0.04	0.35	< 0.00009	0.0002	-	0.0003
Blackcurrants ^d	<4.0	17	9.0	< 0.20	0.08	-	<1.2	< 0.30	< 0.02	-	0.11	0.0002	0.0005	-	0.002
Strawberries ^d	<2.0	15	7.0	<0.06	0.14	-	<0.64	< 0.16	< 0.05	< 0.07	< 0.06	<0.0001	< 0.0003	-	<0.000 2
Blackberries	<2.0	17	9.0	< 0.02	0.09	-	< 0.21	< 0.06	< 0.03	< 0.02	< 0.04	< 0.0001	0.0002	-	0.0003
Elderberries ^d	<2.0	26	18.0	< 0.11	0.04	-	< 0.52	< 0.18	< 0.08	< 0.08	0.14	0.001	0.004	-	0.008
Honey ^d	-	78	11.0	< 0.02	< 0.04	-	< 0.31	< 0.08	< 0.02	< 0.03	< 0.06	< 0.0002	< 0.0002	-	0.0001
Swede ^d	-	5.4	-	< 0.06	0.05	-	< 0.47	< 0.13	< 0.02	< 0.06	< 0.06	-	-	-	-

Table 36. Radioactivity in fruit and vegetable produce collected near Sellafield, 2022 (Data From RIFE27)

a Values shown in pale blue boxes are from measurements performed by the FSA.

b Including natural background.

c Excluding natural background (values taken from RIFE). Measured concentrations that are smaller than background value are indicated by a hyphen.

d Year sampled - cauliflower (2013); runner beans (2013); blackcurrants (2012); strawberries (2013); elderberries (2013); honey (2014); swede (2017)

Radiological Dose Assessment Data Tables

The radiological dose assessment presented herein takes account of research studies carried out both nationally and internationally. In addition, the guidance of UKHSA, the National Dose Assessment Working Group (NDAWG) and the most recent dose coefficients in the International Commission for Radiological Protection (ICRP) Publication 119 are adopted where available and appropriate. In general, default values recommended by the ICRP for each radionuclide are assumed for the purpose of dose calculations unless specific studies indicate that an alternative is appropriate.

Dedlemarka	Cod				Plaice				Lobster	s			Crabs			
Kadionuciide	Adult	Child	Infant	Foetus	Adult	Child	Infant	Foetus	Adult	Child	Infant	Foetus	Adult	Child	Infant	Foetus
Carbon-14 ^a	0.11	0.03	0.01	0.15	0.29	0.08	0.04	0.41	0.20	0.06	0.03	0.28	0.24	0.07	0.03	0.33
Cobalt-60	-	-	-	-	-	-	-	-	-	-	-	-	0.007	0.004	0.003	0.004
Strontium-90	-	-	-	-	-	-	-	-	-	-	-	-	0.02	0.01	0.004	0.04
Technetium-99	0.003	0.001	0.001	0.002	0.03	0.01	0.01	0.02	0.30	0.12	0.11	0.22	0.03	0.01	0.01	0.02
Ruthenium-106	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Iodine-129	-	-	-	-	-	-	-	-	0.28	0.10	0.03	0.11	-	-	-	-
Caesium-137	0.54	0.08	0.02	0.24	0.34	0.05	0.02	0.15	0.10	0.01	0.004	0.04	0.06	0.009	0.003	0.02
Neptunium-237	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Plutonium-alpha	0.01	0.003	0.001	0.0005	0.05	0.01	0.004	0.002	0.34	0.07	0.03	0.01	0.46	0.10	0.04	0.02
Plutonium-241	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Americium-241	0.01	0.003	0.001	0.0002	0.04	0.008	0.003	0.0005	1.5	0.34	0.14	0.02	1.5	0.33	0.14	0.02
Curium-alpha	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total	0.68	0.12	0.04	0.39	0.75	0.16	0.07	0.58	2.8	0.70	0.34	0.68	2.3	0.53	0.23	0.46

Table 37. Summary of doses associated with seafood (µSv), 2022

D. K	Nephro	ps			Winkles	8			Mussel	s			Total			
Kaulonuchue	Adult	Child	Infant	Foetus	Adult	Child	Infant	Foetus	Adult	Child	Infant	Foetus	Adult	Child	Infant	Foetus
Carbon-14 ^a	0.09	0.02	0.01	0.12	0.13	0.04	0.02	0.18	0.10	0.03	0.01	0.14	1.2	0.33	0.15	1.6
Cobalt-60	-	-	-	-	0.009	0.006	0.004	0.005	0.004	0.003	0.002	0.002	0.02	0.01	0.009	0.01
Strontium-90	0.01	0.005	0.002	0.02	0.17	0.07	0.03	0.26	0.03	0.01	0.005	0.05	0.23	0.10	0.04	0.37
Technetium-99	0.07	0.03	0.03	0.05	0.12	0.05	0.05	0.09	0.04	0.01	0.01	0.03	0.59	0.23	0.22	0.43
Ruthenium-106	-	-	-	-	0.04	0.02	0.01	0.002	0.03	0.01	0.009	0.001	0.07	0.03	0.02	0.003
Iodine-129	0.13	0.05	0.01	0.05	0.10	0.03	0.01	0.04	-	-	-	-	0.51	0.18	0.05	0.20
Caesium-137	0.07	0.01	0.003	0.03	0.25	0.04	0.01	0.11	0.05	0.008	0.003	0.02	1.4	0.21	0.06	0.61
Neptunium-237	-	-	-	-	0.006	0.001	0.0006	0.0002	-	-	-	-	0.006	0.001	0.0006	0.0002
Plutonium-alpha	0.70	0.15	0.06	0.03	4.2	0.91	0.35	0.16	2.8	0.61	0.24	0.11	8.6	1.9	0.73	0.33
Plutonium-241	-	-	-	-	0.26	0.06	0.02	0.006	0.18	0.04	0.01	0.004	0.44	0.10	0.03	0.01
Americium-241	2.0	0.44	0.19	0.03	5.8	1.3	0.53	0.08	4.2	0.92	0.39	0.06	15	3.3	1.4	0.21
Curium-alpha	-	-	-	-	0.05	0.01	0.006	0.05	-	-	-	-	0.05	0.01	0.006	0.05
Total	3.1	0.71	0.30	0.33	11	2.5	1.0	0.98	7.4	1.6	0.68	0.41	28	6.3	2.7	3.8

Background corrected values for carbon-14 in fish, molluscs and crustaceans have been used in the assessment of radiation doses to critical groups. For these marine foodstuffs, the natural concentration of carbon-14 of 218 Bq carbon-14 per kg carbon has been taken from data published by the EA and FSA.

Dadianualida	Milk				Beef Mu	ıscle			Beef Of	fal			Sheep M	Iuscle		
Radionucitue	Adult	Child	Infant	Foetus												
Total tritium	0.01	0.02	0.04	0.01	0.002	0.002	< 0.001	0.003	< 0.001	< 0.001	< 0.001	< 0.001	0.002	0.001	< 0.001	0.003
Carbon-14 ^a	0.04	0.06	0.15	0.06	0.08	0.11	0.04	0.11	0.008	0.006	0.004	0.01	-	-	-	-
Cobalt-60	-	-	-	-	0.003	0.008	0.004	0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.001	0.002	0.001	< 0.001
Strontium-90	0.09	0.22	0.36	0.13	0.02	0.05	0.01	0.03	0.006	0.007	0.003	0.009	0.01	0.01	0.003	0.01
Technetium-99	-	-	-	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Ruthenium-106 ^b	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Antimony-125	-	-	-	-	0.002	0.003	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Iodine-129	0.10	0.21	0.29	0.04	0.03	0.06	0.01	0.01	0.009	0.009	0.003	0.004	0.03	0.02	0.005	0.01
Iodine-131	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Caesium-134	-	-	-	-	0.01	0.01	0.002	0.007	0.003	0.001	< 0.001	0.001	0.006	0.002	< 0.001	0.003
Caesium-137	0.09	0.08	0.11	0.04	0.08	0.06	0.01	0.04	0.01	0.004	0.002	0.004	0.10	0.04	0.01	0.05
Plutonium-alpha	-	-	-	-	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Plutonium-241	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Americium-241	-	-	-	-	< 0.001	< 0.001	< 0.001	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Total	0.33	0.59	0.95	0.28	0.23	0.31	0.08	0.21	0.04	0.03	0.02	0.04	0.15	0.08	0.03	0.08

Table 38. Summary of doses to terrestrial critical group from terrestrial foodstuffs and inhalation (μSv) , 2022

Dadianualida	Sheep of	ffal			Poultry				Eggs				Game			
Kaulonuchue	Adult	Child	Infant	Foetus	Adult	Child	Infant	Foetus	Adult	Child	Infant	Foetus	Adult	Child	Infant	Foetus
Total tritium	0.002	0.001	< 0.001	0.002	0.002	0.002	0.001	0.003	0.002	0.002	0.003	0.003	0.001	0.001	< 0.001	0.002
Carbon-14 ^a	0.04	0.03	0.02	0.05	-	-	-	-	0.02	0.03	0.04	0.03	0.02	0.01	0.006	0.02
Cobalt-60	< 0.001	< 0.001	< 0.001	< 0.001	0.001	0.002	0.002	< 0.001	0.001	0.003	0.005	< 0.001	< 0.001	0.002	0.001	< 0.001
Strontium-90	0.005	0.006	0.003	0.008	0.01	0.01	0.007	0.02	0.008	0.01	0.01	0.01	0.008	0.01	0.003	0.01
Technetium-99	< 0.001	< 0.001	< 0.001	< 0.001	-	-	-	-	-	-	-	-	< 0.001	< 0.001	< 0.001	< 0.001
Ruthenium-106 ^b	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Antimony-125	< 0.001	< 0.001	< 0.001	< 0.001	0.001	0.001	0.001	< 0.001	< 0.001	0.001	0.003	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Iodine-129	0.006	0.006	0.002	0.002	0.02	0.02	0.009	0.009	0.04	0.05	0.04	0.01	0.02	0.03	0.006	0.009
Iodine-131	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Caesium-134	0.002	< 0.001	< 0.001	< 0.001	0.01	0.005	0.002	0.005	0.005	0.003	0.002	0.002	0.005	0.003	< 0.001	0.002
Caesium-137	0.01	0.005	0.002	0.005	0.01	0.006	0.002	0.006	0.004	0.003	0.002	0.002	0.02	0.008	0.002	0.007
Plutonium-alpha	0.002	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Plutonium-241	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Americium-241	0.002	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Total	0.07	0.06	0.04	0.07	0.06	0.05	0.03	0.05	0.08	0.11	0.11	0.06	0.08	0.07	0.03	0.06

Dadianualida	Honey				Mushro	om			Potato				Root ve	g.		
Kaulonuchue	Adult	Child	Infant	Foetus												
Total tritium	-	-	-	-	< 0.001	< 0.001	< 0.001	< 0.001	0.04	0.03	0.03	0.05	< 0.001	< 0.001	0.001	0.001
Carbon-14 ^a	0.02	0.02	0.04	0.02	0.008	0.005	0.004	0.01	0.04	0.04	0.03	0.05	0.02	0.02	0.03	0.03
Cobalt-60	< 0.001	< 0.001	0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.03	0.07	0.07	0.02	0.002	0.004	0.007	0.001
Strontium-90	0.003	0.005	0.007	0.005	0.002	0.002	0.001	0.003	0.15	0.22	0.13	0.22	0.03	0.04	0.04	0.04
Technetium-99	-	-	-	-	-	-	-	-	-	-	-	-	< 0.001	< 0.001	0.001	< 0.001
Ruthenium-106 ^b	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Antimony-125	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	0.02	0.02	0.03	0.007	0.001	0.001	0.003	< 0.001
Iodine-129	0.006	0.008	0.009	0.002	0.01	0.009	0.004	0.004	0.40	0.48	0.23	0.16	0.03	0.03	0.03	0.01
Iodine-131	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Caesium-134	0.001	< 0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	0.14	0.07	0.03	0.06	0.01	0.005	0.005	0.005
Caesium-137	0.002	0.001	0.001	< 0.001	0.17	0.06	0.03	0.07	0.23	0.13	0.06	0.10	0.01	0.005	0.005	0.005
Plutonium-alpha	< 0.001	< 0.001	< 0.001	< 0.001	0.03	0.02	0.01	0.001	0.03	0.02	0.02	0.001	-	-	-	-
Plutonium-241	-	-	-	-	0.003	0.002	< 0.001	< 0.001	-	-	-	-	-	-	-	-
Americium-241	< 0.001	< 0.001	< 0.001	< 0.001	0.04	0.02	0.01	< 0.001	0.05	0.04	0.03	< 0.001	-	-	-	-
Total	0.04	0.04	0.06	0.03	0.27	0.12	0.07	0.10	1.1	1.1	0.66	0.67	0.11	0.11	0.12	0.10

Dadianualida	Radionuclide Green veg.					ic Fruit			Wild Fr	·uit			Legume	s		
Kaulonuchue	Adult	Child	Infant	Foetus	Adult	Child	Infant	Foetus	Adult	Child	Infant	Foetus	Adult	Child	Infant	Foetus
Total tritium	0.001	< 0.001	< 0.001	0.002	0.009	0.008	0.01	0.01	< 0.001	< 0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001	0.003
Carbon-14 ^a	0.04	0.02	0.02	0.05	0.35	0.32	0.45	0.48	0.05	0.03	0.02	0.08	-	-	-	-
Cobalt-60	0.004	0.005	0.007	0.002	0.02	0.05	0.09	0.01	0.002	0.002	0.002	< 0.001	0.004	0.005	0.005	0.002
Strontium-90	0.02	0.02	0.02	0.03	0.25	0.35	0.35	0.37	0.01	0.01	0.006	0.02	0.20	0.17	0.09	0.30
Technetium-99	-	-	-	-	0.002	0.003	0.008	0.002	-	-	-	-	-	-	-	-
Ruthenium-106 ^b	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Antimony-125	0.002	0.002	0.003	< 0.001	0.01	0.02	0.04	0.006	< 0.001	< 0.001	< 0.001	< 0.001	0.002	0.002	0.002	0.001
Iodine-129	0.05	0.03	0.02	0.02	0.28	0.32	0.26	0.11	0.04	0.03	0.01	0.02	0.13	0.09	0.04	0.05
Iodine-131	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Caesium-134	0.02	0.005	0.003	0.007	0.08	0.04	0.03	0.04	0.007	0.002	< 0.001	0.003	0.02	0.007	0.003	0.01
Caesium-137	0.01	0.004	0.003	0.005	0.17	0.09	0.07	0.07	0.008	0.003	0.001	0.004	0.02	0.005	0.002	0.007
Plutonium-alpha	< 0.001	< 0.001	< 0.001	< 0.001	0.008	0.006	0.007	< 0.001	0.005	0.002	0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001
Plutonium-241	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Americium-241	< 0.001	< 0.001	< 0.001	< 0.001	0.01	0.009	0.01	< 0.001	0.006	0.003	0.002	< 0.001	0.003	0.001	< 0.001	< 0.001
Total	0.15	0.09	0.08	0.12	1.2	1.2	1.3	1.1	0.13	0.09	0.05	0.13	0.38	0.28	0.15	0.38

Dadiannalida	Drinkin	g water			Inhalati	on			Total do	se		
Kaulonucliue	Adult	Child	Infant	Foetus	Adult	Child	Infant	Foetus	Adult	Child	Infant	Foetus
Total tritium	0.10	0.08	0.12	0.14	-	-	-	-	0.18	0.15	0.22	0.25
Carbon-14 ^b	-	-	-	-	-	-	-	-	0.74	0.70	0.85	1.00
Cobalt-60	-	-	-	-	-	-	-	-	0.07	0.16	0.20	0.05
Strontium-90	0.03	0.04	0.04	0.05	0.001	0.001	< 0.001	< 0.001	0.84	1.2	1.1	1.2
Technetium-99	-	-	-	-	-	-	-	-	0.008	0.009	0.01	0.008
Ruthenium-106°	-	-	-	-	0.01	0.009	0.008	< 0.001	0.03	0.03	0.02	0.02
Antimony-125	-	-	-	-	< 0.001	< 0.001	< 0.001	< 0.001	0.05	0.06	0.09	0.03
Iodine-129	-	-	-	-	-	-	-	-	1.2	1.4	0.97	0.47
Iodine-131	-	-	-	-	-	-	-	-	< 0.001	< 0.001	< 0.001	< 0.001
Caesium-134	-	-	-	-	< 0.001	< 0.001	< 0.001	< 0.001	0.32	0.16	0.08	0.15
Caesium-137	0.04	0.02	0.02	0.02	< 0.001	< 0.001	< 0.001	< 0.001	0.99	0.53	0.33	0.44
Plutonium-alpha	0.13	0.08	0.09	0.005	0.18	0.10	0.05	0.003	0.33	0.19	0.12	0.02
Plutonium-241	-	-	-	-	0.18	0.09	0.04	0.002	0.18	0.09	0.04	0.003
Americium-241	< 0.001	< 0.001	< 0.001	< 0.001	0.15	0.08	0.05	< 0.001	0.29	0.17	0.11	0.02
Total	0.20	0.22	0.27	0.22	0.52	0.28	0.15	0.01	5.19	4 77	4.12	2.60

Table 38. Summary of doses to terrestrial critical group from terrestrial foodstuffs and inhalation $(\mu Sv)^a$, 2022 Cont.

a Calculated using background corrected activity concentrations (see Monitoring chapter). b Derived from standard modelling techniques.

Doses determined from RIFE data (Tables 35 and 36) are shaded

Doses assessed as being less than $0.001 \ \mu$ Sv have been presented as "<0.001". Foodstuff consumption rates used for 2022 are summarised later in this section. The two food groups assigned "high consumption rates" in 2022 were domestic fruit and potatoes. The doses from ruthenium-106 in all terrestrial foodstuffs were assessed using standard modelling techniques. These are based on knowledge of the transfer of these radionuclides through the food chain. This is considered to be more realistic than using the limits of detection from the radiochemical analysis.

Table 39. Modelled concentrations of Ru-106 in terrestrial foodstuffs (Bq kg⁻¹ or Bq l^{-1}) in 2022

Milk	Beef	Mutton	Liver	Green Veg.	Root Veg.	Fruit	Poultry	Eggs
2.37E-07	1.28E-04	1.86E-04	1.86E-04	8.12E-04	7.34E-06	7.09E-05	5.91E-08	5.06E-08

Table 40. Summary of doses to the terrestrial critical group from seafood consumption (μ Sv) in 2022

Radionuclide	Adult	Child	Infant	Foetus
Carbon-14 ^a	0.13	0.03	0.02	0.17
Technetium-99	0.01	0.004	0.004	0.007
Caesium-137	0.37	0.06	0.02	0.16
Plutonium-alpha	0.02	0.005	0.002	0.0009
Americium-241	0.02	0.004	0.002	0.0003
Total	0.55	0.11	0.04	0.35

a Calculated using background corrected activity concentrations

Table 41. Summary of doses to the terrestrial critical group (μ Sv), 2022

Pathway	Adult	Child	Infant	Foetus
Terrestrial food consumption	4.6	4.5	4.0	3.7
Marine food consumption	0.55	0.11	0.04	0.35
Inhalation	0.60	0.32	0.17	0.01
Immersion (krypton-85) ^a	0.005	0.004	0.004	0.005
External (beach)	2.9	1.4	0.09	2.9
Total	8.6	6.4	4.3	7.0

a Kr-85 doses were determined using modelling and dosimetry data published by the EU and the ICRP.

Table 42. Critical group doses from operations at Sellafield (μSv)

Pathway	2021	2022
Marine critical group (adults)		
seafood consumption	24	28
aerialpathways	1.5	1.6
external radiation from beach occupancy (marine)	35	42
Total dose to marine critical group (adults)	60	72
Terrestrial critical group (adults)		
inhalation	0.52	0.6
immersion	0.03	0.005
external radiation from beach occupancy (terrestrial)	2.9	2.9
terrestrial foodstuff consumption	4.7	4.6
marine foodstuff consumption	0.58	0.55
direct radiation	2.9	3.0
Total dose to terrestrial critical group (adults)	12	12

		Collective D	ose (manSv)
Radionuclide	Aerial Discharges		

Table 43. Collective doses from Sellafield's discharges, 2022

Radionuclide		Aerial Discharges		Marine Discharges						
	UK	Europe	World	UK	Europe	World				
Tritium	0.01	0.02	0.02	0.00006	0.0002	0.005				
Carbon-14	0.02	0.09	1.1	0.17	0.56	5.8				
Krypton-85	0.01	0.04	0.63	-	-	-				
Technetium-99	-	-	-	0.0009	0.003	0.003				
Iodine-129	0.08	0.38	0.54	0.0003	0.0009	0.004				
Caesium-137	0.001	0.005	0.005	0.02	0.06	0.10				
Plutonium-alpha	0.009	0.01	0.01	0.02	0.06	0.07				
Americium-241	0.001	0.002	0.002	0.01	0.04	0.04				
Other nuclides	0.0002	0.0004	0.0004	0.02	0.07	0.07				
Total	0.13	0.55	2.3	0.25	0.78	6.0				

Collective doses have been calculated, using a 500 year integration period, based on the most recent European Union (EU) methodology.

Representative Persons Dose Assessment

Pathway	Adult D	Oose (microSv	/)	Ch	ild Dose (mic	croSv)	Infa	ant Dose (mic	roSv)
	Total	Marin	Terrestri	Total	Marin	Terrestr	Total	Marin	Terrestr
		e	al		e	ial		e	ial
Crustacean Consumers	10.7	9.8	0.9	4.5	3.6	0.9	1.7	0.8	0.9
Occupants for Direct Radiation	6.7	3.4	3.3	4.9	1.6	3.3	3.4	0.1	3.3
Egg Consumers	2.3	0.2	2.1	2.1	0.1	1.9	2.1	0.0	2.1
Freshwater Fish Consumers	1.6	0.0	1.6	1.5	0.0	1.5	1.1	0.0	1.1
Sea Fish Consumers	11.5	11.1	0.4	5.2	4.8	0.4	1.0	0.5	0.4
Domestic Fruit Consumers	6.4	3.5	2.9	4.6	1.7	2.9	3.7	0.1	3.6
Wild Fruit and Nut Consumers	2.3	0.4	1.9	1.9	0.1	1.8	1.9	0.0	1.8
Occupants over Saltmarsh	30.5	30.5	0.0	15.2	15.2	0.0	0.9	0.9	0.0
Occupants over Sediment	41.1	40.7	0.4	20.6	20.2	0.4	1.7	1.3	0.4
Honey Consumers	1.6	0.0	1.6	1.5	0.0	1.5	1.1	0.0	1.1
Marine Plants and Algae	15.2	15.2	0.0	7.3	7.3	0.0	0.6	0.6	0.0
Cattle Meat Consumers	2.6	0.1	2.5	2.4	0.1	2.3	2.0	0.0	2.0
Game Meat Consumers	2.9	1.3	1.5	1.4	0.4	1.0	0.7	0.2	0.6
Poultry Meat Consumers	21.7	18.9	2.7	11.8	9.4	2.4	2.9	0.6	2.3
Sheep Meat Consumers	2.6	0.0	2.6	2.3	0.0	2.2	2.1	0.0	2.1
Wildfowl Consumers	1.7	0.9	0.8	1.0	0.5	0.6	0.4	0.0	0.4
Milk Consumers	1.2	0.1	1.2	1.4	0.0	1.4	2.0	0.0	2.0
Molluse Consumers	48.1	48.1	0.0	17.9	17.9	0.0	3.1	3.1	0.0
Mushroom Consumers	3.4	0.8	2.7	2.9	0.4	2.5	2.5	0.0	2.5
Occupants In Water	1.3	1.3	0.0	0.6	0.6	0.0	0.0	0.0	0.0
Occupants On Water	2.3	2.3	0.0	0.7	0.7	0.0	0.3	0.3	0.0
Local Inhabitants (0 - 0.25km)	4.7	0.2	4.5	4.4	0.1	4.3	4.1	0.0	4.1
Local Inhabitants (0.25 - 0.5km)	5.0	0.0	5.0	4.6	0.0	4.6	4.5	0.0	4.5
Local Inhabitants (0.5 - 1km)	5.3	1.5	3.8	4.5	0.7	3.8	3.8	0.0	3.7
Green Vegetable Consumers	10.0	6.3	3.7	6.6	3.1	3.5	3.8	0.2	3.6
Other Domestic Vegetable	10.2	6.8	3.4	6.7	3.4	3.3	3.6	0.2	3.4
Potato Consumers	2.3	0.0	2.3	2.3	0.0	2.3	2.1	0.0	2.1
Root Vegetable Consumers	10.2	6.3	3.9	6.9	3.1	3.7	4.2	0.2	4.0

Table 44. Summary of representative person dose calculations for various age groups. 2022. Highlighted entries denote top two dose contribution pathways per age and source category.

Dosimetric considerations for individual and collective doses

Data identifying critical groups and their habits by pathway have been provided by the FSA, EA and the Centre for Environment, Fisheries and Aquaculture Science (Cefas), or their predecessors, based on published survey work.

Worked example of committed effective dose calculation for an individual member of a critical group

Parameter	Value	Location in report
A Am-241 activity concentration in winkles	12 Bq kg ⁻¹	Table 11
B Consumption rate of winkles by adults	6 kg y ⁻¹	Table 46
C Committed effective dose per unit intake value		
for ingestion for Am-241 in Cumbrian winkle	8.0E-08 Sv Bq ⁻¹	Table 49
consumed by an adult	_	

T 11 45 CED : 11 1 1/ 1 0/1 C 1

CED received by an adult member of the seafood consuming critical group from Am-241 in winkles is: CED = A x B x C in units of Sv per year;

12 Bq kg⁻¹ x 6 kg y⁻¹ x 8.0E-08 Sv Bq⁻¹ = 5.8E-06 Sv y⁻¹, CED =

This approach is repeated for all radionuclides of interest in each seafood species of interest, through the incorporation of the appropriate consumption rates and committed effective dose per unit intake values.

Care is needed in using the correct dose per unit intake values for Cumbrian winkles as a specific set of data for transuranic radionuclides are available.

Table 46. Seafood con	nsumption rates fr	rom people associa	ted with marine disc	charges (2017 – 2021	average data)

	Consumption rates (kg y ⁻¹) (2017 – 2021 average)							
Seafood	Critical group (Sellafield fishing community) ^a	Consumers associated with Whitehaven fishery ^b	Typical seafood consumers (Whitehaven) ^b					
Fish:								
Cod	15.4	20	7.5					
Plaice	27.4	20	7.5					
Crustacea:								
Crabs	9.7	0	0					
Lobsters	15.1	0	0					
Nephrops	6.7	9.7	0					
Molluscs:								
Winkles	6.0	0	0					
Mussels	5.1	0	0					

a CEFAS, 2022. Radiological Habits Survey: Sellafield, 2021. *b RIFE-27*.

Table 47. Consumption rates of critical group consumers associated with aerial discharges

Easdatuff)	Consumption rate (kg y ⁻¹) ^{bc}						
Foodstull	Adult	Child	Infant				
milk	95	110	130				
beef	15	15	3				
beefliver	2.75	1.5	0.5				
mutton	8	4	0.8				
poultry	10	5.5	2				
game	6	4	0.8				
fish (cod + plaice)	15	3	0.75				
leafy vegetables	15	6	3.5				
potatoes	120	85	35				
root vegetables	10	6	5				
legumes	20	8	3				
domestic fruit	75	50	35				
wild fruit	7	3	1				
mushrooms	3	1.5	0.6				
honey	2.5	2	2				
eggs	8.5	6.5	5				

a Based on UKHSA and FSA recommendations.

b Consumption rates for foetal exposure taken to be same as those of adults.

c Domestic fruit and potatoes as high rate consumers

	Adult	Child	Infant
Occupancy (%)	100%	100%	100%
Time Indoors (%)	50%	90%	90%
Cloud Shielding Factor	0.2	0.2	0.2
Ground Shielding Factor	0.1	0.1	0.1
Breathing rate (m ³ a ⁻¹)	9,860	5,600	1,900
Drinking Water (1 a ⁻¹)	600	350	260

Table 48. Parameters for calculation of plume immersion and inhalation doses

Foetal dose is calculated from the adult dose multiplied by the ratio of the foetus to the adult dose conversion factors.

Dadianualida	fa	Dose per unit intake (Sv Bq ⁻¹)						
Kaulonuchue	11"	Foetus	1 year old	10 year old	Adult			
H-3 organic	1E+00	6.3E-11	1.2E-10	5.7E-11	4.2E-11			
C-14	1E+00	8.0E-10	1.6E-09	8.0E-10	5.8E-10			
Co-60	1E-01	1.9E-09	2.7E-08	1.1E-08	3.4E-09			
Sr-90	3E-01	4.6E-08	9.3E-08	6.6E-08	3.1E-08			
Zr-95	1E-02	7.6E-10	8.8E-09	3.0E-09	1.5E-09			
Nb-95	1E-02	3.7E-10	3.2E-09	1.1E-09	5.8E-10			
Тс-99	5E-01	4.6E-10	4.8E-09	1.3E-09	6.4E-10			
Ru-106	5E-02	3.8E-10	4.9E-08	1.5E-08	7.0E-09			
Ag-110m	5E-02	2.1E-09	1.4E-08	5.2E-09	2.8E-09			
Sb-125	1E-01	4.7E-10	6.1E-09	2.1E-09	1.1E-09			
I-129	1E+00	4.4E-08	2.2E-07	1.9E-07	1.1E-07			
I-131	1E+00	2.3E-08	1.8E-07	5.2E-08	2.2E-08			
Cs-134	1E+00	8.7E-09	1.6E-08	1.4E-08	1.9E-08			
Cs-137	1E+00	5.7E-09	1.2E-08	1.0E-08	1.3E-08			
U-234	2E-02	1.5E-08	1.3E-07	7.4E-08	4.9E-08			
U-235	2E-02	1.4E-08	1.3E-07	7.1E-08	4.7E-08			
U-238	2E-02	1.3E-08	1.5E-07	7.5E-08	4.8E-08			
Np-237	5E-04	3.6E-09	2.1E-07	1.1E-07	1.1E-07			
Pu-238	5E-04	9.0E-09	4.0E-07	2.4E-07	2.3E-07			
Pu-239	5E-04	9.5E-09	4.2E-07	2.7E-07	2.5E-07			
Pu-240	5E-04	9.5E-09	4.2E-07	2.7E-07	2.5E-07			
Pu-241	5E-04	1.1E-10	5.7E-09	5.1E-09	4.8E-09			
Am-241	5E-04	2.7E-09	3.7E-07	2.2E-07	2.0E-07			
Cm-242	5E-04	4.7E-10	7.6E-08	2.4E-08	1.2E-08			
Cm-243	5E-04	1.5E-07	3.3E-07	1.6E-07	1.5E-07			
Cm-244	5E-04	2.2E-09	2.9E-07	1.4E-07	1.2E-07			
Pu-238 (winkle only)	2E-04	3.6E-09	1.6E-07	9.6E-08	9.2E-08			
Pu-239 (winkle only)	2E-04	3.8E-09	1.7E-07	1.1E-07	1.0E-07			
Pu-240 (winkle only)	2E-04	3.8E-09	1.7E-07	1.1E-07	1.0E-07			
Pu-241 (winkle only)	2E-04	4.4E-11	2.3E-09	2.0E-09	1.9E-09			
Am-241 (winkle only)	2E-04	1.1E-09	1.5E-07	8.8E-08	8.0E-08			

Table 49. Committed effective doses per unit intake for ingestion

a The gastro-intestinal absorption factor does not apply to neonates or infants aged below about one year.

	Lung	e doses per		Desta Constantino de			
Radionuclide	absorption type	f1 ^a	Foetus	1 year old	10 year old	Adult	lung absorption type
H-3 organic	V	1E+00	6.3E-11	1.1E-10	5.5E-11	4.1E-11	Organically bound
C-14	М	1E-01	6.6E-11	6.6E-09	2.8E-09	2.0E-09	ICRP default
Co-60	М	1E-01	1.2E-09	3.4E-08	1.5E-08	1.0E-08	ICRP default
Sr-90	М	1E-01	1.0E-08	1.2E-07	5.4E-08	3.8E-08	ICRP default
Zr-95	М	2E-03	4.6E-10	2.1E-08	9.0E-09	6.3E-09	ICRP default
Nb-95	М	1E-02	1.6E-10	5.2E-09	2.2E-09	1.5E-09	ICRP default
Тс-99	М	1E-01	8.3E-11	1.3E-08	5.7E-09	4.0E-09	ICRP default
Ru-106	М	5E-02	4.1E-10	1.1E-07	4.1E-08	2.8E-08	ICRP default
Ag-110m	М	5E-02	1.5E-09	2.8E-08	1.2E-08	7.6E-09	ICRP default
Sb-125	М	1E-02	2.6E-10	1.6E-08	6.8E-09	4.8E-09	ICRP default
I-129	F	1E+00	1.5E-08	8.6E-08	6.7E-08	3.6E-08	ICRP default
I-131	F	1E+00	8.1E-09	7.2E-08	1.9E-08	7.4E-09	ICRP default
Cs-134	F	1E+00	3.0E-09	7.3E-09	5.3E-09	6.6E-09	ICRP default
Cs-137	F	1E+00	2.0E-09	5.4E-09	3.7E-09	4.6E-09	ICRP default
U-234	М	2E-02	4.9E-08	1.1E-05	4.8E-06	3.5E-06	ICRP default
U-235	М	2E-02	4.5E-08	1.0E-05	4.3E-06	3.1E-06	ICRP default
U-238	М	2E-02	4.4E-08	9.4E-06	4.0E-06	2.9E-06	ICRP default
Pu-238	М	5E-04	1.1E-06	7.4E-05	4.4E-05	4.6E-05	ICRP default
Pu-239	М	5E-04	1.2E-06	7.7E-05	4.8E-05	5.0E-05	ICRP default
Pu-240	М	5E-04	1.2E-06	7.7E-05	4.8E-05	5.0E-05	ICRP default
Pu-241	М	5E-04	1.4E-08	9.7E-07	8.3E-07	9.0E-07	ICRP default
Am-241	М	5E-04	3.2E-07	6.9E-05	4.0E-05	4.2E-05	ICRP default
Cm-242	М	5E-04	5.1E-08	1.8E-05	7.3E-06	5.2E-06	ICRP default
Cm-243	М	5E-04	3.1E-05	6.1E-05	3.1E-05	3.1E-05	ICRP default
Cm-244	М	5E-04	2 6E-07	5 7E-05	2 7E-05	2 7E-05	ICRP default

Table 50. Committed effective doses per unit intake for inhalation

a The gastro-intestinal absorption factor does not apply to neonates or infants aged below about one year.

b No default inhalation class recommended – most restrictive value cited by ICRP used.

Radionuclide	UK	EU	World
Н-3	6.7E-16	1.2E-15	1.5E-15
C-14	2.0E-13	1.0E-12	1.3E-11
Kr-85	4.3E-18	1.5E-17	2.6E-16
Sr-90	1.9E-12	8.8E-12	8.8E-12
Ru-106	3.1E-13	4.2E-13	4.2E-13
Sb-125	1.2E-13	1.7E-13	1.7E-13
I-129	4.5E-11	2.1E-10	2.9E-10
I-131	7.8E-13	4.8E-13	4.8E-13
Cs-137	1.8E-12	6.1E-12	6.1E-12
Pu-239 & Pu-240	1.7E-10	2.4E-10	2.4E-10
Pu-241	3.0E-12	4.4E-12	4.4E-12
Am-241	1.4E-10	2.0E-10	2.0E-10

Table 51. Collective dose commitment (man Sv per Bq discharged, integrated to 500 years): atmospheric discharges

EU is defined as the population of the EU12 member states, 360 million

			U
Radionuclide	UK	EU	World
Н-3	4.6E-19	1.9E-18	3.5E-17
C-14	2.0E-13	6.6E-13	6.8E-12
Co-60	6.7E-14	1.9E-13	2.4E-13
Sr-90	7.0E-16	1.8E-15	3.0E-15
Zr-95	7.3E-17	1.5E-16	1.6E-16
Nb-95	1.7E-17	3.5E-17	3.8E-17
Tc-99	2.5E-15	7.6E-15	9.5E-15
Ru-106	1.9E-14	5.1E-14	5.6E-14
I-129	1.9E-14	5.7E-14	2.2E-13
Cs-134	1.3E-14	3.0E-14	4.6E-14
Cs-137	1.6E-14	4.1E-14	7.1E-14
Ce-144	6.9E-17	1.8E-16	2.0E-16
Pu-239 & Pu-240	3.0E-13	8.4E-13	9.8E-13
Pu-241	2.5E-14	7.1E-14	7.9E-14
Am-241	1.3E-12	3.6E-12	3.9E-12
Cm-242	2.3E-15	6.1E-15	6.8E-15
Cm-243 & Cm-244	4.3E-14	1.1E-13	1.2E-13

Table 52. Collective dose commitment (man Sv pe	Bq discharged, integrated to 500	years): liquid discharges
---	----------------------------------	---------------------------

The collective dose factors include the contribution from the first decay product where appropriate. EU is defined as the population of the EU12 member states, 360 million