

Monthly water situation report: England

1 Summary - April 2025

April was another dry month for much of England, with just 51% of long term average (LTA) rainfall being received for the country as a whole. Soil moisture deficits (SMD) continued to increase as would be expected at this time of year, but ongoing dry weather meant soils were drier than expected across most of England at the end of April. Monthly mean river flows decreased at the majority of sites we report on, and two-thirds of sites were classed as below normal or lower for the time of year. Groundwater levels declined at almost all of the sites we report on, although the majority were classed as normal or higher for the time of year. Reservoir stocks decreased at most sites in April, and England as a whole, ended the month with reservoir at storage 84% full.

1.1 Rainfall

During April, England received 28.3mm of rainfall which represents 51% of the 1961 to 1990 LTA for the time of year (50% of the 1961 to 1990 LTA). The majority of hydrological areas received below average rainfall for the time of year, including fourteen which received less than 20% of the LTA in April. Just 10% (14) of hydrological areas received above LTA rainfall during April, all of which were in south-west England. The wettest hydrological area as a percentage of LTA was Fal and St Austell in south-west England, which received 211% of the LTA (137.4mm). Seaham Area, was the driest hydrological area as a percentage of LTA having received just 9% (4.4mm) of the LTA. Three hydrological areas had the driest February to April period since records began in 1871, including the Tyne and Ribble. (Figure 2.1 and 2.2)

Rainfall totals in April were classed as below normal or lower in just over three-quarters of hydrological areas. This included all the hydrological areas in north-west and north-east England, where all fourteen of the hydrological areas classed as exceptionally low were located. Twenty-one (15%) hydrological areas were classed as normal for the time of year. In south-west England, rainfall during Easter week meant that all the hydrological areas classed as above normal or higher were in the region, including Fal and St Austell which was the only area to be classed as exceptionally high for the time of year. (Figure 2.2)

The 3-month cumulative totals were classed as notably low or exceptionally low across most of England, with only the south-west seeing normal or higher totals due to recent rain. The 6-month cumulative rainfall totals were classed as normal across much of England, although the north-west and north-east were generally classed as below normal and lower, as were parts of east England. The 12-month cumulative totals were mixed, as most of England was classed as normal for the period, with patches of above normal and higher areas in south-east, south-west, central and southern parts of north-west England. In the north-east and parts of east and south-east England, 12-month cumulative rainfall totals were below normal or notably low, as were three hydrological areas on the Welsh border. (Figure 2.2)

At a regional scale, rainfall was classed as normal in south-west England and below normal in east and south-east England. In central and north-west England, rainfall was classed as notably low and in north-east England exceptionally low rainfall was received. For both north-west and north-east England, it was the fourth consecutive month of below average rainfall, making it the driest start to a calendar year since 1929 for both regions. For England as a whole, it was the third consecutive month of below average rainfall, and the driest February to April period since 1956. (Figure 2.3)

1.2 Soil moisture deficit

By the end of April, SMD had increased across most of England, except Devon, Cornwall and along the Welsh border where conditions were wettest. Soils were driest across southern England in parts of Wessex and the south-east. (Figure 3.1)

Soils were drier than would be expected across almost all of England, except in Devon and Cornwall where above normal or higher rainfall during April left SMD around average for the time of year. In the central parts of south-east England, soils were much drier than would be expected at the end of April. (Figure 3.2)

1.3 River flows

Monthly mean river flows decreased at almost all of our indicator sites in April, with just four sites seeing an increase in river flows, all of which were in south-west England. The majority of sites were classed as normal or lower for the time of year. Fifteen sites (28% of the total) were classed as exceptionally low for the time of year, and 8 sites (15%) were notably low, with all sites in north-west and north-east England in these classifications. Twelve sites (22%) were classed as below normal for the time of year, most of which were in the south and east of England, and sixteen sites were classed as normal for April. The River Itchen and River Ver, both in south-east England, were classed as above normal and exceptionally high respectively as high groundwater levels continue to support river flows. (Figure 4.1)

Six sites recorded their lowest April monthly mean flow on record (record start given in brackets), including five sites in north-east England:

- River Don at Doncaster (1959)
- River Swale at Crakehill Topcliffe (1980)
- South Tyne at Haydon Bridge (1974)
- River Wharfe at Tadcaster (1991)
- River Wear at Witton Park (1972)
- River Mersey at Ashton Weir (1976) in north-west England

During April, all regional index sites saw a decrease in monthly mean river flows compared to March. River flows at Offord (Bedford Ouse) in east England and Thorverton (River Exe) in south-west England were both classed as normal for the time of year. In south-east England, the Great Stour at Horton and River Thames at Kingston (naturalised flows) were both classed as below normal for the time of year. Three regional index sites were classed as exceptionally

low for the time of year, the River Dove in central England, the South Tyne in north-east England, and the River Lune in north-west England. (Figure 4.2)

1.4 Groundwater levels

At the end of April, all except one of our indicator sites saw a decrease in groundwater levels as aquifers began their usual seasonal decline. Just over half of all sites were classed as normal for the time of year. Wetwang (Hull and East Riding Chalk) in north-east England and Woodyates (Upper Dorset Stour Chalk) in south-west England were both classed as below normal for the time of year. Five sites (19% of the total) were classed as above normal for the time of year, and Coxmoor (Idle Torne Sandstone) in central England was classed as notably high. Three sites were classed as exceptionally high for the time of year, including Weir Farm (Bridgnorth Sandstone) in central England which recorded the highest end of April groundwater level since records began in 1983. (Figure 5.1)

Groundwater levels at major aquifer index sites all decreased to the end of April. All index sites in chalk aquifers were classed as normal or higher for the time of year, including Redlands Hall (Cam and Ely Ouse Chalk) in east England which was above normal for the time of year, and Stonor Park (Chilterns Chalk) in south-east England which was exceptionally high for the time of year. Weir Farm (Bridgnorth Sandstone) in central England was exceptionally high for the time of year, while Skirwith (Carlisle Basin Sandstone) in north-west England was classed as normal for the time of year. Jackaments Bottom (Burford Jurassic Limestone) was classed as exceptionally low for the time of year. (Figure 5.2)

1.5 Reservoir storage

At the end of April, reservoirs stocks decreased at two-thirds of the reservoirs and reservoir groups that we report on. The largest changes were seen in the Yorkshire supply group, the Pennines group, and at Haweswater and Thirlmere which all decreased by 12%. Almost half of reservoirs were classed as normal for the time of year, including the majority of reservoirs in south-east and east England. Six reservoirs (19%) were classed as below normal, including Blagdon, Clatworthy and Wimbleball in south-west England. Seven reservoirs were classed as notably low for the time of year, including all sites in north-east England, and three in central England. In the south-west, Roadford was above normal while Stithians was notably high for the time of year following a wet month in the area. (Figure 6.1)

Haweswater and Thirlmere was classed as exceptionally low for the time of year as previously reported planned maintenance and low inflows have impacted the water resource zone. Similarly, the Dee system in Wales which supplies north-west England has been impacted by drawdown for safety works and low inflows, leaving it notably low for the time of year.

All regional stocks are at or below 95%, with the north-west having the lowest storage at 73%, and the south-east having the highest with 95%. Most regions are below average for the time of year except south-east and south-west England. By the end of April, total storage across England was 84% as overall stocks decreased by 5% since March. (Figure 6.2)

1.6 Forward look

May started with a week of very little rainfall across England and conditions are forecast to remain dry and sunny for most across the country throughout mid-May as high pressure continues to dominate. There is the potential of some heavy and thundery showers in places particularly in south-west England. Towards the end of May fairly typical weather for the time of year is most likely with fine and dry weather likely to dominate although this may be interspersed with occasional spells of rain and showers, with a risk of heavy rain and thunderstorms in places. Overall, temperatures in May will most likely be near or slightly above average.

For the 3-month period from May to July there is a higher than normal chance of conditions being warmer than average with an increased risk of heatwaves and heat related impacts. Rainfall is most likely to be similar to average, although heavy rain and thunderstorms at times remain a possibility, in places.

1.7 Projections for river flows at key sites

By the end of September 2025, river flows across most of England have the greatest chance of being normal or lower for the time of year.

By the end of March 2026, river flows across most of England have a greater chance of being normal or lower for the time of year, while in south-east England river flows have a greater chance of being normal or higher for the time of year.

For scenario based projections of cumulative river flows at key sites by September 2025 see Figure 7.1.

For scenario based projections of cumulative river flows at key sites by March 2026 see Figure 7.2

For probabilistic ensemble projections of cumulative river flows at key sites by September 2025 see Figure 7.3.

For probabilistic ensemble projections of cumulative river flows at key sites by March 2026 see Figure 7.4

1.8 Projections for groundwater levels in key aquifers

By September 2025, groundwater levels have the greater chance of being above normal or higher in north-west England. Groundwater levels across the rest of England have the greatest chance of being normal or lower for the time of year.

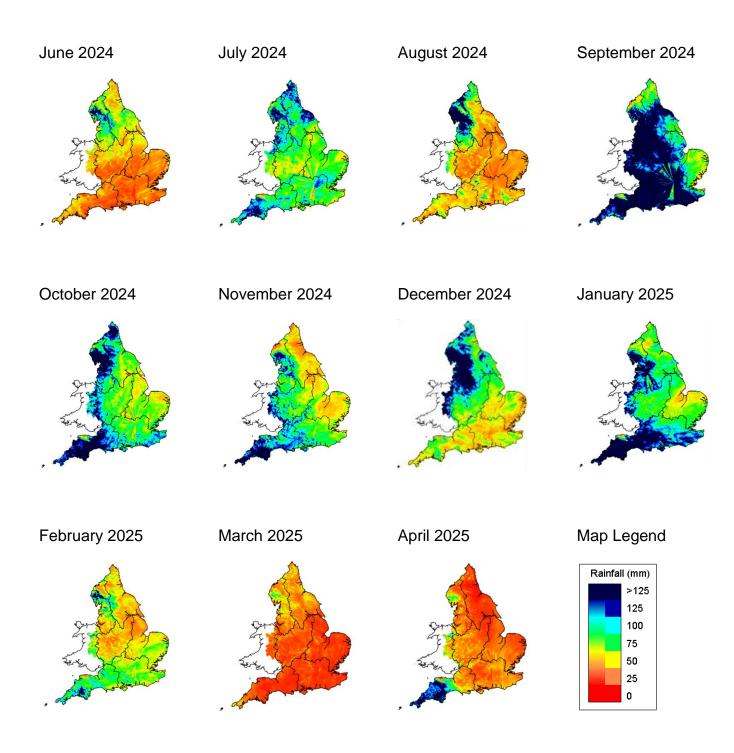
By March 2026, groundwater levels in central and north-east England have the greatest chance of being above normal or higher for the time of year. In all other regions, groundwater levels have the greatest chance of being normal or lower.

For scenario based projections of groundwater levels in key aquifers in September 2025 see Figure 7.5.

For scenario based projections of groundwater levels in key aquifers in March 2026 see Figure 7.6.

For probabilistic ensemble projections of groundwater levels in key aquifers in September 2025 see Figure 7.7.

For probabilistic ensemble projections of groundwater levels in key aquifers in March 2026 see Figure 7.8.


Author: National Water Resources Hydrology Team, nationalhydrology@environment-agency.gov.uk

All data are provisional and may be subject to revision. The views expressed in this document are not necessarily those of the Environment Agency. Its officers, servants or agents accept no liability for any loss or damage arising from the interpretation or use of the information, or reliance upon views contained in this report.

2 Rainfall

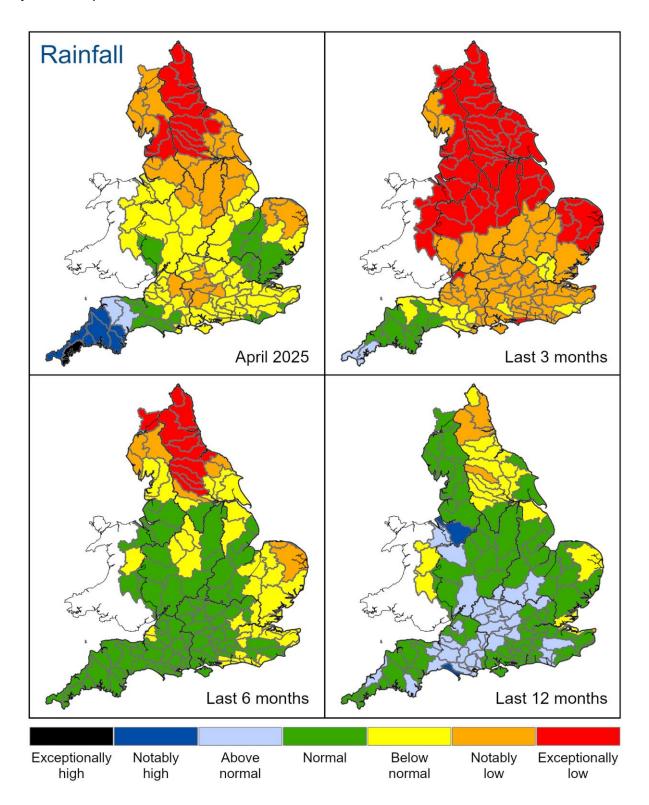
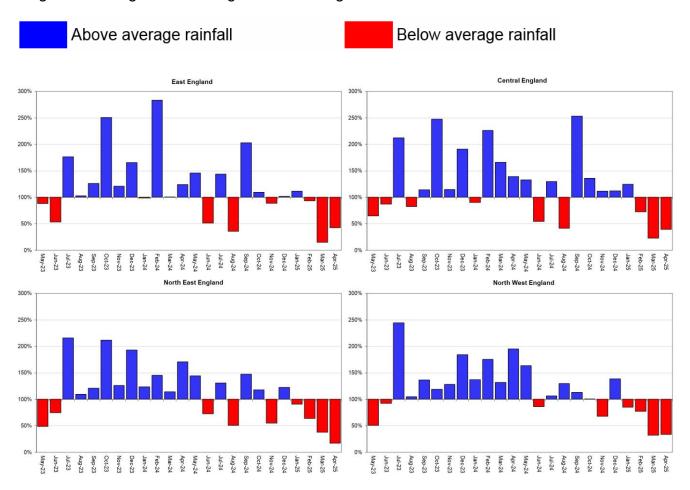
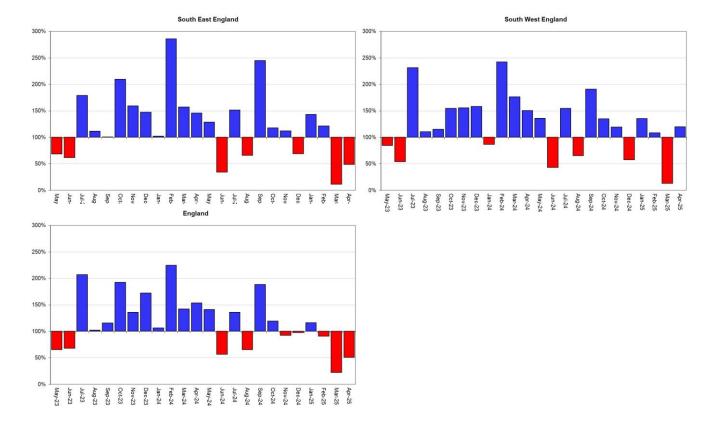

2.1 Rainfall map

Figure 2.1: Monthly rainfall across England and Wales for the past 11 months. UKPP radar data Note: Radar beam blockages in some regions may give anomalous totals in some areas.

(Source: Met Office. Crown copyright, 2025). All rights reserved. Environment Agency, 100024198, 2025.

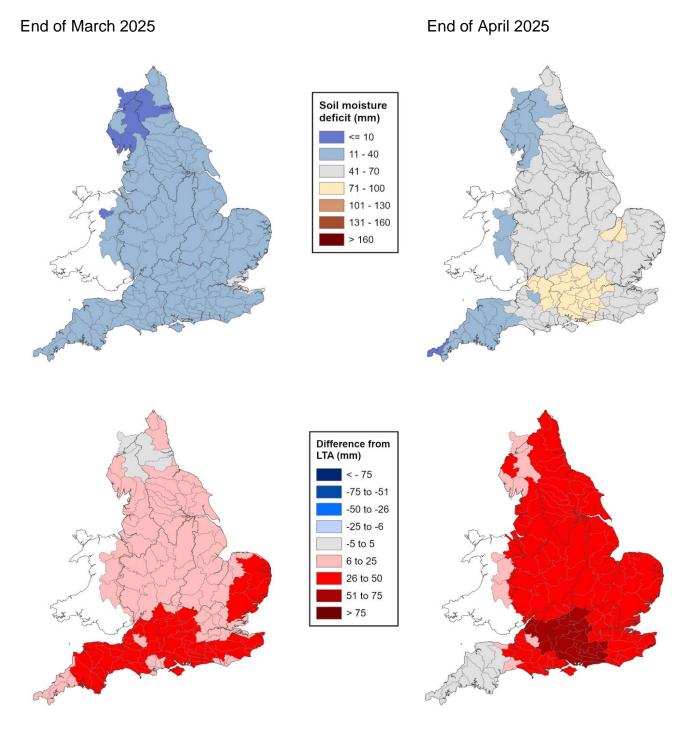

Figure 2.2: Total rainfall for hydrological areas across England for the current month (up to 30 April 2025), the last 3 months, the last 6 months, and the last 12 months, classed relative to an analysis of respective historic totals.



Rainfall data for Oct 2023 onwards, extracted from Environment Agency 1km gridded rainfall dataset derived from Environment Agency intensity rain gauges. (Source: Environment Agency. Crown Copyright, 100024198, 2025). Rainfall data prior to Oct 2023, extracted from Met Office HadUK 1km gridded rainfall dataset derived from registered rain gauges (Source: Met Office. Crown copyright, 2025).

2.2 Rainfall charts

Figure 2.3: Monthly rainfall totals for the past 24 months as a percentage of the 1961 to 1990 long term average for each region and for England.

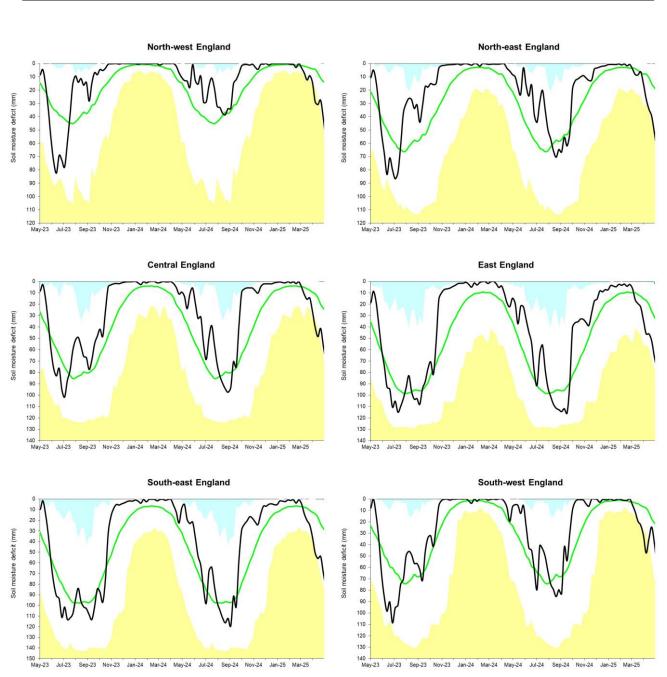


Rainfall data for Oct 2023 onwards, extracted from Environment Agency 1km gridded rainfall dataset derived from Environment Agency intensity rain gauges. (Source: Environment Agency. Crown Copyright, 100024198, 2025). Rainfall data prior to Oct 2023, extracted from Met Office HadUK 1km gridded rainfall dataset derived from registered rain gauges (Source: Met Office. Crown copyright, 2025).

3 Soil moisture deficit

3.1 Soil moisture deficit map

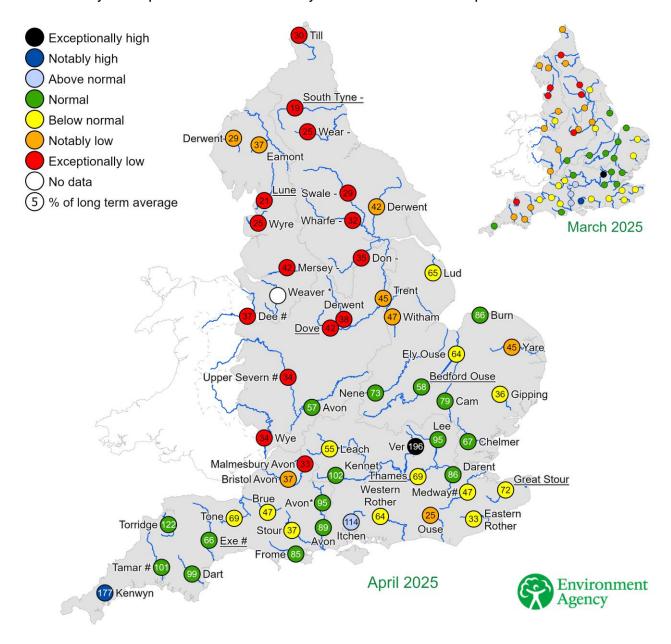
Figure 3.1: Soil moisture deficits for weeks ending, 02 April 2025 (left panel) and 30 April 2025 (right panel). Top row shows actual soil moisture deficits (mm) and bottom row shows the difference (mm) of the actual from the 1961 to 1990 long term average soil moisture deficits. Calculated from MORECS data for real land use.



(Source: Met Office. Crown copyright, 2025). Crown copyright. All rights reserved. Environment Agency, 100024198, 2025.

3.2 Soil moisture deficit charts

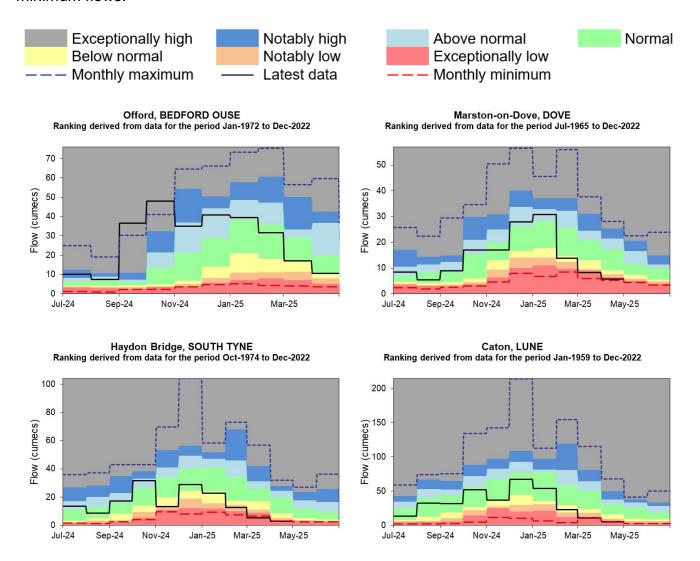
Figure 3.2: Latest soil moisture deficits for all geographic regions compared to maximum, minimum and 1961 to 1990 long term average. Weekly MORECS data for real land use.

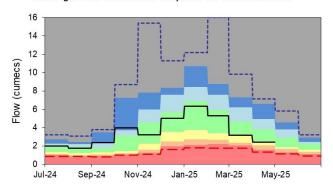

(Source: Met Office. Crown copyright, 2025).

4 River flows

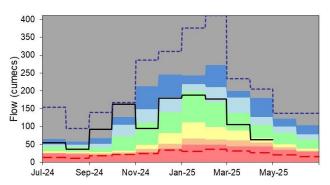
4.1 River flow map

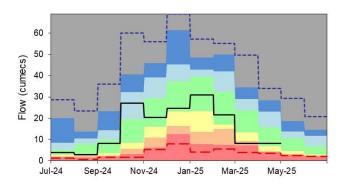
Figure 4.1: Monthly mean river flow for indicator sites for March 2025 and April 2025, expressed as a percentage of the respective long term average and classed relative to an analysis of historic March and April monthly means. Table available in the appendices with detailed information. Regional index sites are underlined and shown in the hydrographs in Figure 4.2.


Naturalised flows are provided for the River Thames and the River Lee. +/- Monthly mean flow is the highest/lowest on record for the current month (note that record length varies between sites). *Flows may be overestimated at these sites – data should be treated with caution. # Flows may be impacted at these sites by water releases from upstream reservoirs.


(Source: Environment Agency). Crown copyright. All rights reserved. Environment Agency, 100024198, 2025.

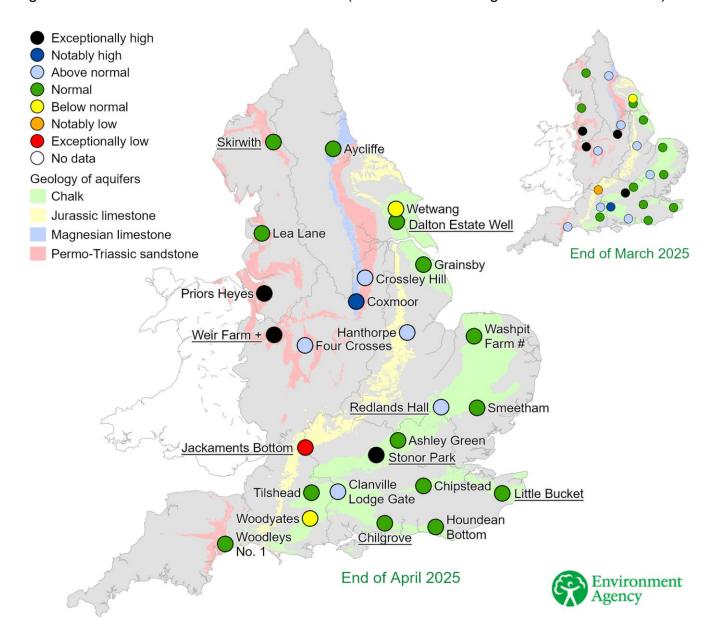
4.2 River flow charts


Figure 4.2: Monthly mean river flow for index sites over the past year for each geographic region, compared to an analysis of historic monthly mean flows, and long term maximum and minimum flows.


Horton, GREAT STOUR Ranking derived from data for the period Oct-1964 to Dec-2022

Kingston (naturalised), THAMES Ranking derived from data for the period Jan-1951 to Dec-2022

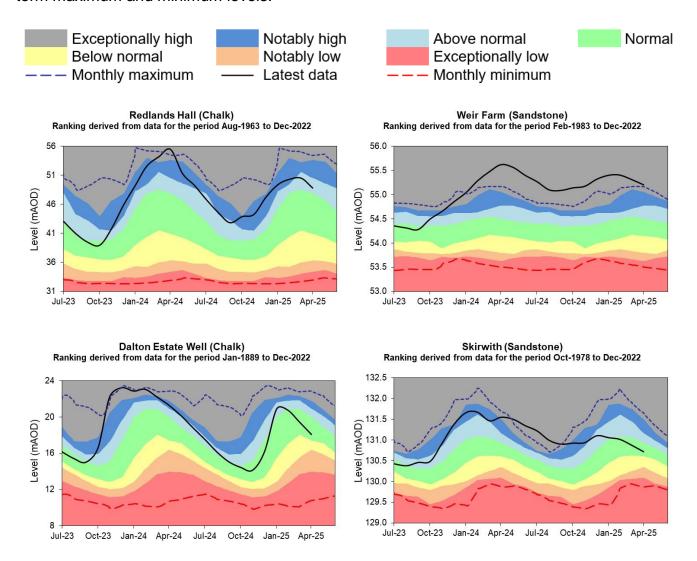
Thorverton, EXE Ranking derived from data for the period Apr-1956 to Dec-2022

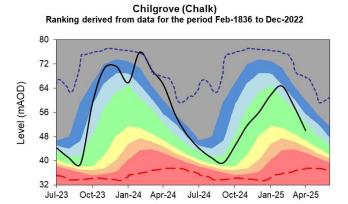

(Source: Environment Agency).

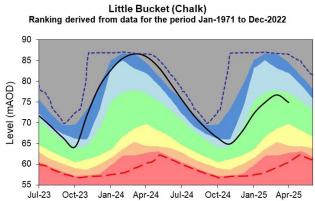
5 Groundwater levels

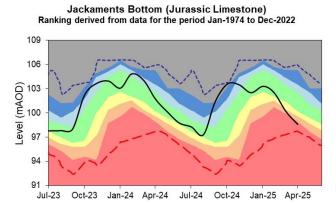
5.1 Groundwater levels map

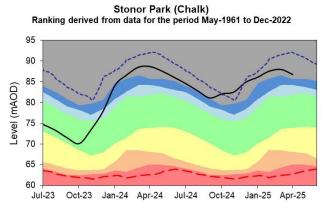
Figure 5.1: Groundwater levels for indicator sites at the end of March 2025 and April 2025, classed relative to an analysis of respective historic March and April levels. Major aquifer index sites are underlined and shown in groundwater level charts in Figure 5.2.

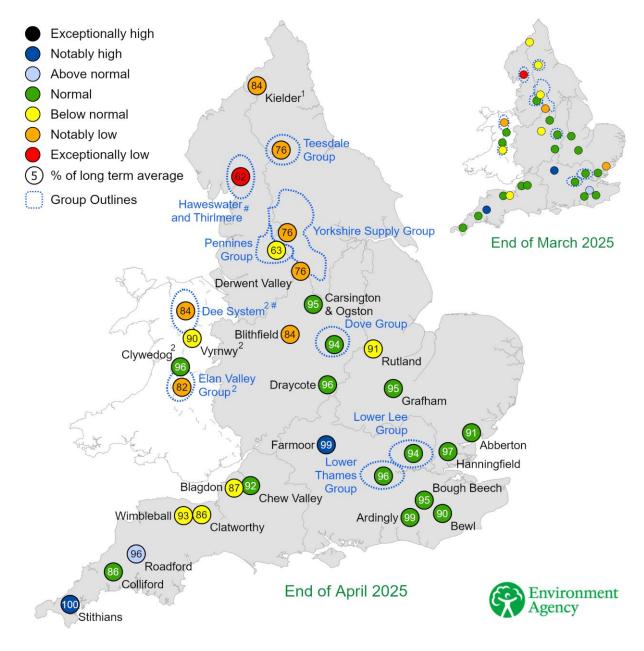

Levels at Priors Heyes remain high compared to historic levels because the aquifer is recovering from the effects of historic abstraction. +/- End of month groundwater level is the highest/lowest on record for the current month (note that record length varies between sites).




(Source: Environment Agency). Geological map reproduced with kind permission from UK Groundwater Forum, BGS copyright NERC. Crown copyright. All rights reserved. Environment Agency, 100024198, 2025.


5.2 Groundwater level charts

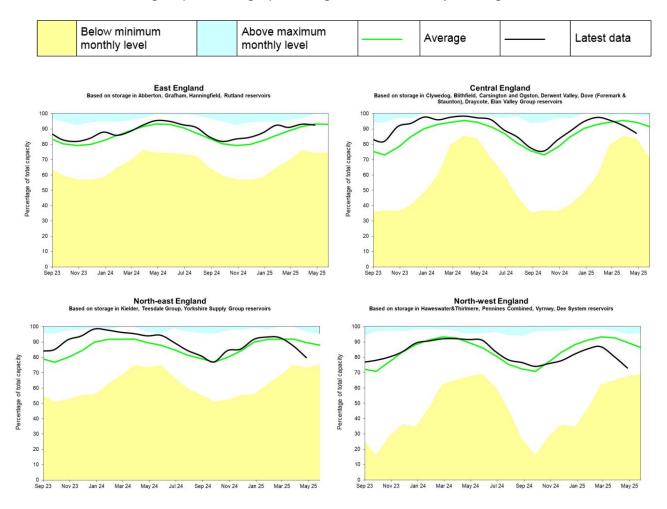

Figure 5.2: End of month groundwater levels at index groundwater level sites for major aquifers. Past 22 months compared to an analysis of historic end of month levels and long term maximum and minimum levels.

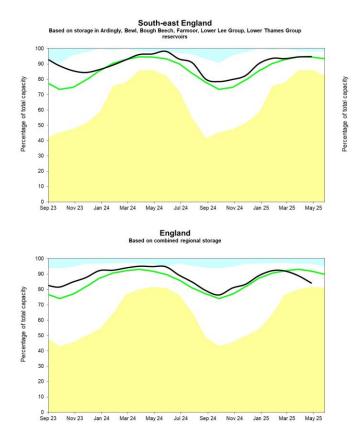


(Source: Environment Agency, 2025)

6 Reservoir storage

6.1 Reservoir storage map


Figure 6.1: Reservoir stocks at key individual and groups of reservoirs at the end of March 2025 and April 2025 as a percentage of total capacity and classed relative to an analysis of historic March and April values respectively. Note: Classes shown may not necessarily relate to control curves or triggers for drought actions. As well as for public water supply, some reservoirs are drawn down to provide flood storage, river compensation flows or for reservoir safety inspections. In some cases, current reservoir operating rules may differ from historic ones. The Dee system has been drawn down as part of reservoir safety works which are expected to continue until 2025. Both Haweswater & Thirlmere have been impacted previously by planned maintenance in the resource zone.



(Source: water companies). Crown copyright. All rights reserved. Environment Agency, 100024198, 2025

6.2 Reservoir storage charts

Figure 6.2: Regional reservoir stocks. End of month reservoir stocks compared to long term maximum, minimum and average stocks. Note: Historic records of individual reservoirs/reservoir groups making up the regional values vary in length.

South-west England
Based on storage in Blagdon, Chew Valley, Caltworthy, Colliford, Roadford, Stithians, Wimbleball reservoirs

Mar 24 May 24 Jul 24

Nov 24 Jan 25 Mar 25

Sep 24

80

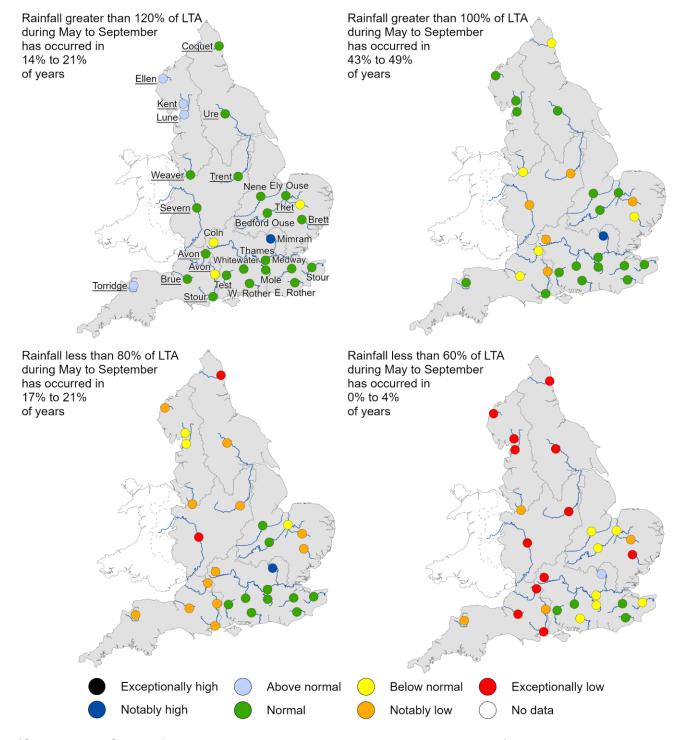
60

50

40

30

20


10 -0 Sep 23

(Source: Water Companies).

7 Forward look

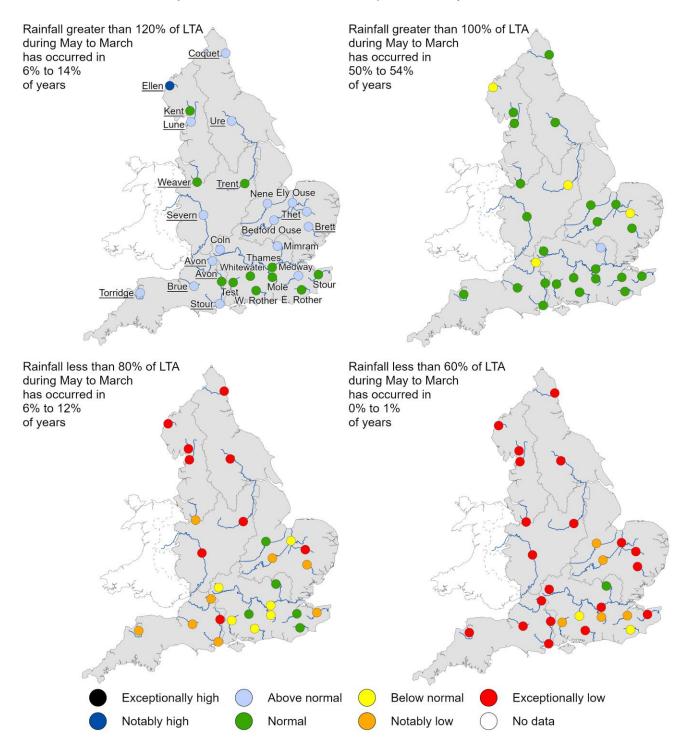

7.1 River flow

Figure 7.1: Projected river flows at key indicator sites up until the end of September 2025. Projections based on four scenarios: 120%, 100%, 80% and 60% of long term average rainfall between May 2025 and September 2025. Rainfall statistics based on occurrence in the historic record since 1871. Projections for underlined sites produced by CEH.

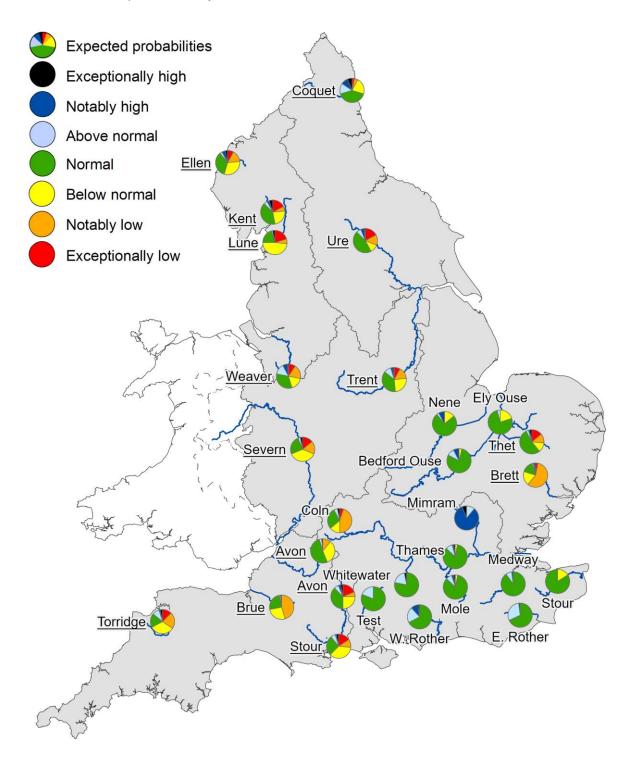

(Source: UK Centre for Ecology and Hydrology, Environment Agency).

Figure 7.2: Projected river flows at key indicator sites up until the end of March 2026. Projections based on four scenarios: 120%, 100%, 80% and 60% of long term average rainfall between May 2025 and March 2026. Rainfall statistics based on occurrence in the historic record since 1871. Projections for underlined sites produced by CEH.

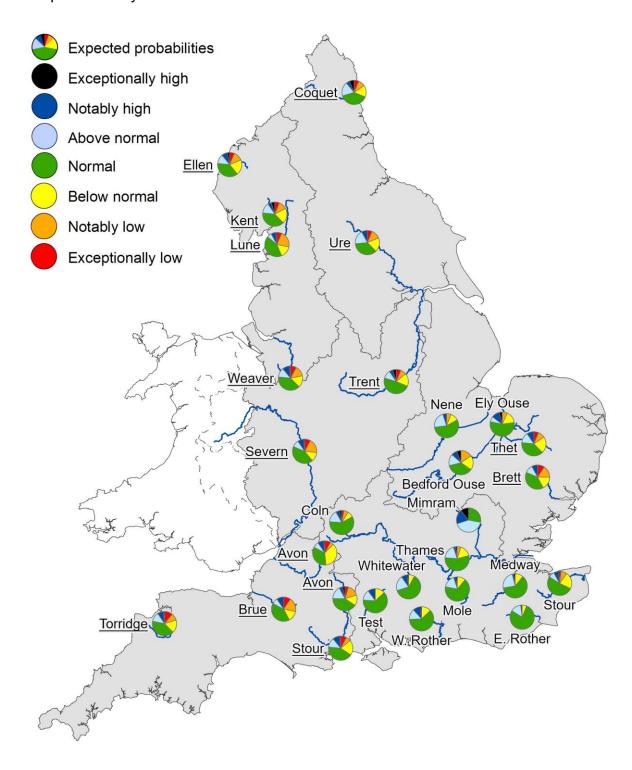

(Source: UK Centre for Ecology and Hydrology, Environment Agency)

Figure 7.3: Probabilistic ensemble projections of river flows at key indicator sites up until the end of September 2025. Pie charts indicate probability, based on climatology, of the surface water flow at each site being e.g. exceptionally low for the time of year. Projections for underlined sites produced by CEH.

(Source: UK Centre for Ecology and Hydrology, Environment Agency).

Figure 7.4: Probabilistic ensemble projections of river flows at key indicator sites up until the end of March 2026. Pie charts indicate probability, based on climatology, of the surface water flow at each site being e.g. exceptionally low for the time of year. Projections for underlined sites produced by CEH.

(Source: UK Centre for Ecology and Hydrology, Environment Agency).

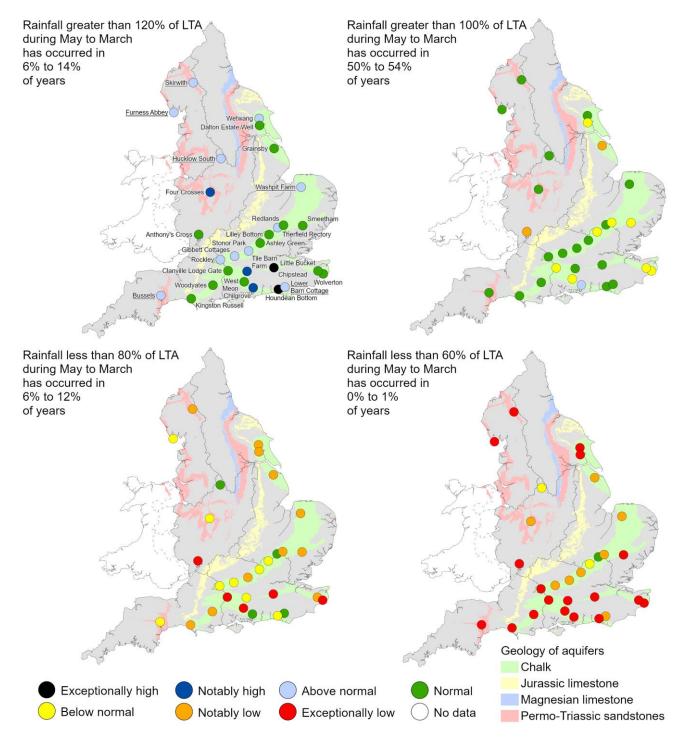

7.2 Groundwater

Figure 7.5: Projected groundwater levels at key indicator sites at the end of September 2025. Projections based on four scenarios: 120%, 100%, 80% and 60% of long term average between May 2025 and September 2025. Rainfall statistics based on occurrence in the historic record since 1871. Projections for underlined sites produced by BGS.

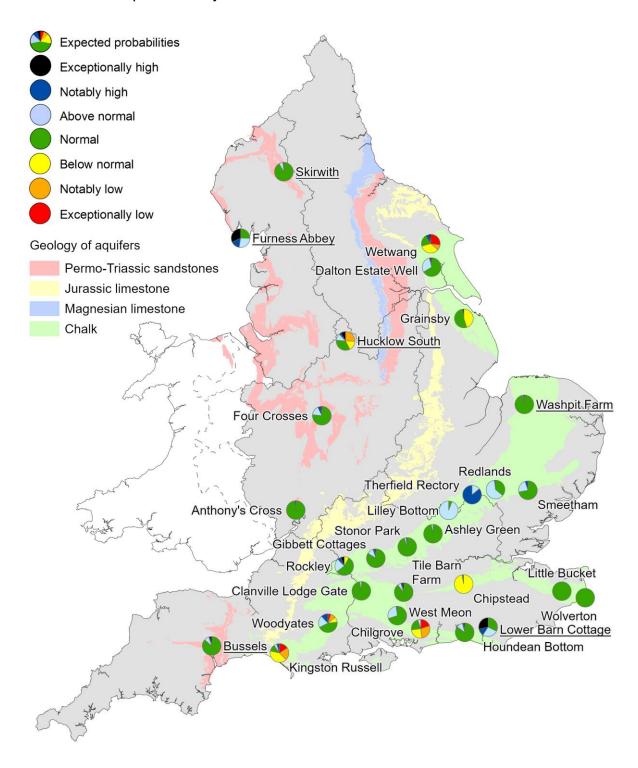

(Source: Environment Agency) Geological map reproduced with kind permission from UK Groundwater Forum BGS © NERC. Crown copyright all rights reserved. Environment Agency 100024198, 2025.

Figure 7.6: Projected groundwater levels at key indicator sites at the end of March 2026. Projections based on four scenarios: 120%, 100%, 80% and 60% of long term average rainfall between May 2025 and March 2026. Rainfall statistics based on occurrence in the historic record since 1871. Projections for underlined sites produced by BGS.

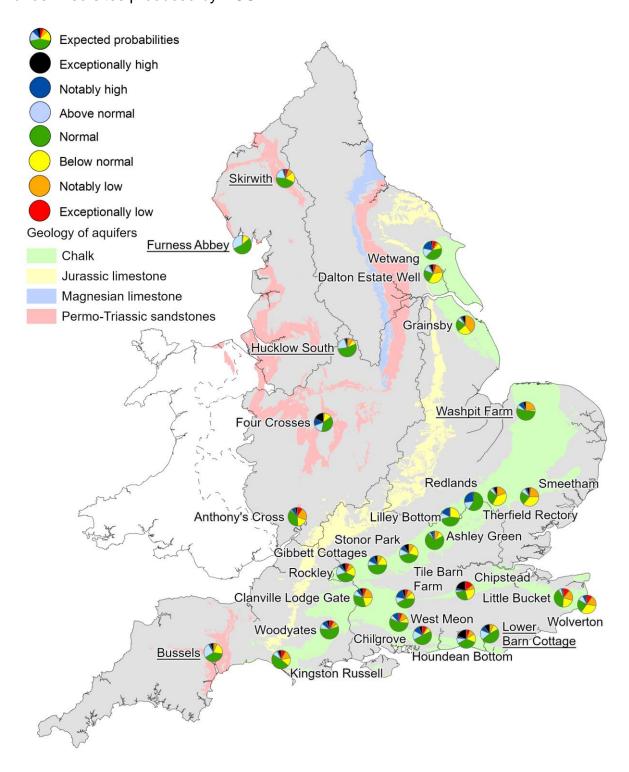

(Source: Environment Agency) Geological map reproduced with kind permission from UK Groundwater Forum BGS © NERC Crown copyright. All rights reserved. Environment Agency 100024198 2025.

Figure 7.7: Probabilistic ensemble projections of groundwater levels at key indicator sites at the end of September 2025. Pie charts indicate probability, based on climatology, of the groundwater level at each site being e.g. exceptionally low for the time of year. Projections for underlined sites produced by BGS.

(Source: Environment Agency) Geological map reproduced with kind permission from UK Groundwater Forum, BGS © NERC. Crown copyright. All rights reserved. Environment Agency, 100024198, 2025.

Figure 7.8: Probabilistic ensemble projections of groundwater levels at key indicator sites at the end of March 2026. Pie charts indicate probability, based on climatology, of the groundwater level at each site being e.g. exceptionally low for the time of year. Projections for underlined sites produced by BGS.

(Source: Environment Agency) Geological map reproduced with kind permission from UK Groundwater Forum, BGS © NERC. Crown copyright. All rights reserved. Environment Agency, 100024198, 2025.

8 Glossary

8.1 Terminology

Aquifer

A geological formation able to store and transmit water.

Areal average rainfall

The estimated average depth of rainfall over a defined area. Expressed in depth of water (mm).

Artesian

The condition where the groundwater level is above ground surface but is prevented from rising to this level by an overlying continuous low permeability layer, such as clay.

Artesian borehole

Borehole where the level of groundwater is above the top of the borehole and groundwater flows out of the borehole when unsealed.

Cumecs

Cubic metres per second (m³s⁻¹ or m³/s).

Effective rainfall

The rainfall available to percolate into the soil or produce river flow. Expressed in depth of water (mm).

Flood alert and flood warning

Three levels of warnings may be issued by the Environment Agency. Flood Alerts indicate flooding is possible. Flood Warnings indicate flooding is expected. Severe Flood Warnings indicate severe flooding.

Groundwater

The water found in an aquifer.

Long term average (LTA)

The arithmetic mean calculated from the historic record, usually based on the period 1961-1990. However, the period used may vary by parameter being reported on (see figure captions for details).

mAOD

Metres above ordnance datum (mean sea level at Newlyn Cornwall).

MORECS

Met Office Rainfall and Evaporation Calculation System. Met Office service providing real time calculation of evapotranspiration, soil moisture deficit and effective rainfall on a 40 x 40 km grid.

Naturalised flow

River flow with the impacts of artificial influences removed. Artificial influences may include abstractions, discharges, transfers, augmentation and impoundments.

NCIC

National Climate Information Centre. NCIC area monthly rainfall totals are derived using the Met Office 5 km gridded dataset, which uses rain gauge observations.

Recharge

The process of increasing the water stored in the saturated zone of an aquifer. Expressed in depth of water (mm).

Reservoir gross capacity

The total capacity of a reservoir.

Reservoir live capacity

The capacity of the reservoir that is normally usable for storage to meet established reservoir operating requirements. This excludes any capacity not available for use (e.g. storage held back for emergency services, operating agreements or physical restrictions). May also be referred to as 'net' or 'deployable' capacity.

Soil moisture deficit (SMD)

The difference between the amount of water actually in the soil and the amount of water the soil can hold. Expressed in depth of water (mm).

8.2 Categories

Exceptionally high: Value likely to fall within this band 5% of the time.

Notably high: Value likely to fall within this band 8% of the time.

Above normal: Value likely to fall within this band 15% of the time.

Normal: Value likely to fall within this band 44% of the time.

Below normal: Value likely to fall within this band 15% of the time.

Notably low: Value likely to fall within this band 8% of the time.

Exceptionally low: Value likely to fall within this band 5% of the time.

8.3 Geographic regions

Throughout this report regions of England are used to group Environment Agency areas together. Below the areas in each region are listed, and Figure 8.1 shows the geographical extent of these regions.

East includes: Cambridgeshire and Bedfordshire, Lincolnshire and Northamptonshire, and Essex, Norfolk and Suffolk areas.

South east includes: Solent and South Downs, Hertfordshire and North London, Thames, and Kent and South London areas.

South west includes: Devon and Cornwall, and Wessex areas.

Central includes: Shropshire, Herefordshire, Worcestershire and Gloucestershire, Staffordshire, Warwickshire and West Midlands, and Derbyshire, Nottinghamshire and Leicestershire areas.

North west includes: Cumbria and Lancashire, and Greater Manchester, Merseyside and Cheshire areas.

North east includes: Yorkshire, and Northumberland Durham and Tees areas.

Figure 8.1: Geographic regions

Crown copyright. All rights reserved. Environment Agency, 100024198, 2025.

9 Appendices

9.1 Rainfall table

Region	Apr 2025 rainfall % of long term average 1961 to 1990	Apr 2025 band	Feb 2025 to April 2025 cumulative band	Nov 2024 to April 2025 cumulative band	May 2024 to April 2025 cumulative band
East England	43	Below normal	Exceptionally low	Below normal	Normal
Central England	39	Notably low	Exceptionally low	Normal	Normal
North East England	17	Exceptionally low	Exceptionally low	Notably low	Below normal
North West England	34	Notably low	Exceptionally low	Below normal	Normal
South East England	49	Below normal	Notably low	Normal	Normal
South West England	120	Normal	Below normal	Normal	Normal
England	51	Below normal	Exceptionally low	Below normal	Normal

9.2 River flows table

Geographic area	Site name	River	Apr 2025 band	Mar 2025 band
East	Burnham	Burn	Normal	Normal
East	Claypole	Upper Witham	Notably low	Below normal
East	Colney	Yare	Notably low	Below normal
East	Denver	Ely Ouse	Below normal	Normal
East	Dernford	Cam	Normal	Normal
East	Louth Weir	Lud	Below normal	Normal
East	Offord	Bedford Ouse	Normal	Normal
East	Springfield	Chelmer	Normal	Normal
East	Stowmarket	Gipping	Below normal	Below normal
East	Upton Mill	Nene	Normal	Normal
Central	Bewdley	Severn	Exceptionally low	Notably low
Central	Derby St. Marys	Derwent	Exceptionally low	Notably low
Central	Evesham	Avon	Normal	Normal
Central	Marston-on-dove	Dove	Exceptionally low	Exceptionally low
Central	North Muskham	Trent	Notably low	Notably low
North East	Buttercrambe	Derwent	Notably low	Below normal

Geographic area	Site name	River	Apr 2025 band	Mar 2025 band
North East	Crakehill Topcliffe	Swale	Exceptionally low	Exceptionally low
North East	Heaton Mill	Till	Exceptionally low	Notably low
North East	Doncaster	Don	Exceptionally low	Notably low
North East	Haydon Bridge	South Tyne	Exceptionally low	Exceptionally low
North East	Tadcaster	Wharfe	Exceptionally low	Exceptionally low
North East	Witton Park	Wear	Exceptionally low	Notably low
North West	Ashton Weir	Mersey	Exceptionally low	Notably low
North West	Caton	Lune	Exceptionally low	Exceptionally low
North West	Ouse Bridge	Derwent	Notably low	Notably low
North West	Pooley Bridge	Eamont	Notably low	Notably low
North West	St Michaels	Wyre	Exceptionally low	Exceptionally low
North West	Ashbrook	Weaver	No data	Below normal
South East	Allbrook & Highbridge	Itchen	Above normal	Notably high
South East	Ardingley	Ouse	Notably low	Below normal

Geographic area	Site name	River	Apr 2025 band	Mar 2025 band
South East	Feildes Weir	Lee	Normal	Normal
South East	Hansteads	Ver	Exceptionally high	Exceptionally high
South East	Hawley	Darent	Normal	Normal
South East	Horton	Great Stour	Below normal	Below normal
South East	Kingston (naturalised)	Thames	Below normal	Normal
South East	Lechlade	Leach	Below normal	Normal
South East	Marlborough	Kennet	Normal	Above normal
South East	Princes Marsh	Rother	Below normal	Below normal
South East	Teston & Farleigh	Medway	Below normal	Below normal
South East	Udiam	Rother	Below normal	Below normal
South West	Amesbury	Upper Avon	Normal	Above normal
South West	Austins Bridge	Dart	Normal	Notably low
South West	Bathford	Avon	Notably low	Below normal
South West	Bishops Hull	Tone	Below normal	Below normal
South West	East Stoke	Frome	Normal	Normal
South West	Great Somerford	Avon	Exceptionally low	Below normal
South West	Gunnislake	Tamar	Normal	Notably low

Geographic area	Site name	River	Apr 2025 band	Mar 2025 band
South West	Hammoon	Middle Stour	Below normal	Below normal
South West	East Mills	Middle Avon	Normal	Above normal
South West	Lovington	Upper Brue	Below normal	Below normal
South West	Thorverton	Exe	Normal	Notably low
South West	Torrington	Torridge	Normal	Exceptionally low
South West	Truro	Kenwyn	Notably high	Normal
EA Wales	Manley Hall	Dee	Exceptionally low	Notably low
EA Wales	Redbrook	Wye	Exceptionally low	Notably low

9.3 Groundwater table

Geographic area	Site name	Aquifer	End of Apr 2025 band	End of Mar 2025 band
East	Grainsby	Grimsby Ancholme Louth Chalk	Normal	Normal
East	Redlands Hall (chalk)	Cam Chalk	Above normal	Above normal
East	Hanthorpe	Limestone (Cornbrash Formation)	Above normal	Above normal
East	Smeetham Hall Cott.	North Essex Chalk	Normal	Normal
East	Washpit Farm Rougham	North West Norfolk Chalk	Normal	Normal
Central	Four Crosses	Grimsby Ancholme Louth Limestone	Above normal	Above normal
Central	Weir Farm (sandstone)	Bridgnorth Sandstone Formation	Exceptionally high	Exceptionally high
Central	Coxmoor	Permo Triassic Sandstone	Notably high	Exceptionally high
Central	Crossley Hill	Permo Triassic Sandstone	Above normal	Above normal
North East	Dalton Estate Well	Hull & East Riding Chalk	Normal	Normal
North East	Aycliffe Nra2	Skerne Magnesian Limestone	Normal	Above normal
North East	Wetwang	Hull & East Riding Chalk	Below normal	Below normal

Geographic area	Site name	Aquifer	End of Apr 2025 band	End of Mar 2025 band
North West	Priors Heyes	West Cheshire Permo- Triassic Sandstone	Exceptionally high	Exceptionally high
North West	Skirwith (sandstone)	Eden Valley and Carlisle Basin Permo-Triassic Sandstone	Normal	Normal
North West	Lea Lane	Fylde Permo-Triassic Sandstone	Normal	Normal
South East	Chilgrove (chalk)	Chichester-Worthing- Portsdown Chalk	Normal	Above normal
South East	Clanville Gate Gwl	River Test Chalk	Above normal	Notably high
South East	Houndean Bottom Gwl	Brighton Chalk Block	Normal	Normal
South East	Little Bucket	East Kent Chalk - Stour	Normal	Normal
South East	Jackaments Bottom	Burford Oolitic Limestone (Inferior)	Exceptionally low	Notably low
South East	Ashley Green Stw Obh	Mid-Chilterns Chalk	Normal	Normal
South East	Stonor Park	South-West Chilterns Chalk	Exceptionally high	Exceptionally high
South East	Chipstead Gwl	Epsom North Downs Chalk	Normal	Normal
South West	Tilshead	Upper Hampshire Avon Chalk	Normal	Above normal
South West	Woodleys No1	Otterton Sandstone Formation	Normal	Above normal
South West	Woodyates	Dorset Stour Chalk	Below normal	Normal

9.4 Reservoir table

Geographic region	% Full	Average comparison
East	93	Below average
Central	87	Below average
North-east	80	Below average
North-west	73	Below average
South-east	95	Above average
South-west	91	Above average
England	84	Below average