# TERN AREA CLADHAN SUBSEA FACILITIES DECOMMISSIONING PROGRAMMES







# **DOCUMENT CONTROL**

# Approvals

|             | Name                                                                                                                | Date       |
|-------------|---------------------------------------------------------------------------------------------------------------------|------------|
| Prepared by | Louisa Dunn<br>Decommissioning Stakeholder & Compliance Lead<br>Gosia Baranowska and Lilla Onodi<br>Xodus Group     | March 2025 |
| Reviewed by | Louisa Dunn<br>Decommissioning Stakeholder & Compliance Lead<br>Chris Wick<br>NNS Decommissioning Programme Manager | March 2025 |
| Approved by | David Wilson<br>Decommissioning Director                                                                            | March 2025 |

## **Revision Control**

| Revision No | Reference                     | Changes/Comments            | Issue Date     |
|-------------|-------------------------------|-----------------------------|----------------|
| 1           | First Draft                   |                             | December 2022  |
| 2           | Pre-<br>Consultation<br>Draft | OPRED comments incorporated | September 2023 |
| 3           | Consultation<br>Draft         | OPRED comments incorporated | February 2025  |
| 4           | Consultation<br>Draft         | Issued for Consultation     | March 2025     |

# **Distribution List**

| Name            | Company                                                                  |
|-----------------|--------------------------------------------------------------------------|
| Robert Willison | Offshore Petroleum Regulator for Environment and Decommissioning (OPRED) |
|                 |                                                                          |
|                 |                                                                          |
|                 |                                                                          |



# TABLE OF CONTENTS

Installation Pipeline

| DO   | CUMENT CONTROL                                                    |              |              |
|------|-------------------------------------------------------------------|--------------|--------------|
| Арр  | rovals2                                                           |              |              |
| Rev  | ision Control2                                                    |              |              |
| Dist | ribution List2                                                    |              |              |
| FIG  | URES                                                              |              |              |
| TAE  | 3LES5                                                             |              |              |
| AB   | BREVIATIONS6                                                      |              |              |
| 1    | Executive Summary                                                 |              |              |
| 1.1  | Combined Decommissioning Programmes8                              | $\checkmark$ | $\checkmark$ |
| 1.2  | Requirement for Decommissioning Programmes8                       | $\checkmark$ | $\checkmark$ |
| 1.3  | Introduction9                                                     | $\checkmark$ | $\checkmark$ |
| 1.4  | Overview of Facilities Being Decommissioned10                     | $\checkmark$ | $\checkmark$ |
| 1.5  | Summary of Proposed Decommissioning Programmes12                  | $\checkmark$ | $\checkmark$ |
| 1.6  | Field Locations Including Field Layouts and Adjacent Facilities15 | $\checkmark$ | $\checkmark$ |
| 1.7  | Industrial Implications19                                         | $\checkmark$ | $\checkmark$ |
| 2    | Description of Items to be Decommissioned                         | ,            |              |
| 2.1  | Subsea Installations20                                            | $\checkmark$ |              |
| 2.2  | Pipelines including Stabilisation Features21                      |              | $\checkmark$ |
| 2.3  | Wells25                                                           |              |              |
| 2.4  | Drill Cuttings Piles25                                            | $\checkmark$ | $\checkmark$ |
| 2.5  | Inventory Estimates25                                             | v            | v            |
| 3    | Removal and Disposal Methods                                      | $\checkmark$ |              |
| 3.1  | Subsea Installations                                              | v            | $\checkmark$ |
| 3.2  | Pipelines                                                         |              | v<br>V       |
| 3.3  | Pipeline Stabilisation Features                                   |              | v            |
| 3.4  | Wells                                                             | $\checkmark$ | $\checkmark$ |
| 3.5  | Waste Streams                                                     |              |              |
| 4    | Environmental Appraisal Overview                                  | $\checkmark$ | $\checkmark$ |
| 4.1  | Environmental Sensitivities                                       | $\checkmark$ | $\checkmark$ |
| 4.2  | Potential Environmental Impacts and their Management              | $\checkmark$ | $\checkmark$ |
| 5    | Interested Party Consultations                                    |              |              |



|     |                                                          | Installation | Pipeline     |
|-----|----------------------------------------------------------|--------------|--------------|
| 6   | Programme Management40                                   | $\checkmark$ | $\checkmark$ |
| 6.1 | Project Management and Verification40                    | $\checkmark$ | $\checkmark$ |
| 6.2 | Post-decommissioning Debris Clearance and Verification40 | $\checkmark$ | $\checkmark$ |
| 6.3 | Schedule40                                               | $\checkmark$ | $\checkmark$ |
| 6.4 | Costs                                                    | $\checkmark$ | $\checkmark$ |
| 6.5 | Close Out41                                              | $\checkmark$ | $\checkmark$ |
| 6.6 | Post-Decommissioning Monitoring and Evaluations42        | $\checkmark$ | $\checkmark$ |
| 6.7 | Management of Residual Liability42                       | $\checkmark$ | $\checkmark$ |
| 7   | Supporting Documents                                     | $\checkmark$ | $\checkmark$ |
| 8   | Section 29 Holders' Letters of Support44                 | $\checkmark$ | $\checkmark$ |



# **FIGURES**

| Figure 1-1: Cladhan Field Location Within The UKCS | 15 |
|----------------------------------------------------|----|
| Figure 1-2: Cladhan Adjacent Facilities            | 16 |
| Figure 1-3: Cladhan Facilities Layout              | 17 |
| Figure 2-1: Subsea Installations Inventory         | 26 |
| Figure 2-2: Pipelines Inventory                    | 27 |
| Figure 6-1: Cladhan Decommissioning Schedule       | 41 |

# TABLES

| Table 1-1: | Installations Being Decommissioned                                         | . 10 |
|------------|----------------------------------------------------------------------------|------|
| Table 1-2: | Cladhan Installation Section 29 Notice Holders                             | . 10 |
| Table 1-3: | Cladhan Pipelines Being Decommissioned                                     | . 11 |
| Table 1-4: | Cladhan Pipeline Section 29 Notice Holders                                 | . 11 |
| Table 1-5: | Summary of Decommissioning Programme                                       | . 12 |
| Table 1-6: | Adjacent Facilities                                                        | . 18 |
| Table 2-1: | Subsea Installations                                                       | . 20 |
| Table 2-2: | Pipeline / Flowline / Umbilical Information                                | . 21 |
| Table 2-3: | Subsea Pipeline / Flowline / Umbilical Stabilisation Features              | . 23 |
| Table 2-4: | Well Information                                                           | . 25 |
| Table 2-5: | Cladhan Subsea Facilities and Stabilisation Materials Inventory Estimate   | . 26 |
| Table 2-6: | Cladhan Pipelines Inventory and Stabilisation Materials Inventory Estimate | . 27 |
| Table 3-1: | Subsea Installations                                                       | . 28 |
| Table 3-2: | Pipeline Decommissioning Options                                           | . 28 |
| Table 3-3: | Pipeline / Pipeline Group Decommissioning Options Considered               | . 29 |
| Table 3-4: | Outcome of Comparative Assessment                                          | . 30 |
| Table 3-5: | Pipeline Stabilisation Features Disposal Route                             | . 31 |
| Table 3-6: | Wells Decommissioning Options                                              | . 31 |
| Table 3-7: | Materials and Waste Streams                                                | . 31 |
| Table 3-8: | Inventory Disposition                                                      | . 32 |
| Table 4-1: | Environmental Sensitivities                                                | . 33 |
| Table 4-2: | Environmental Impacts and Management                                       | . 37 |
| Table 5-1: | Summary of Stakeholder Comments                                            | . 39 |
| Table 6-1: | Provisional Decommissioning Programme Costs                                | . 41 |
|            |                                                                            |      |



# ABBREVIATIONS

| Abbreviation    | Explanation                                                      |
|-----------------|------------------------------------------------------------------|
| AWMP            | Active Waste Management Plan                                     |
| СА              | Comparative Assessment                                           |
| CO <sub>2</sub> | Carbon Dioxide                                                   |
| CoP             | Cessation of Production                                          |
| EA              | Environmental Appraisal                                          |
| FUNIO           |                                                                  |
| EUNIS           | European Nature Information System                               |
| FFS             | Fishing Friendly Structure                                       |
| FPAL            | First Point Assessment Limited                                   |
| FPSO            | Floating Production Storage and Offloading (installation)        |
| GBS             | Gravity-Based Structure                                          |
| GMS             | Global Marine Systems Limited                                    |
| HSE             | Health and Safety Executive                                      |
| ICES            | International Council for Exploration of the Sea                 |
| JNCC            | Joint Nature Conservation Committee                              |
| LAT             | Lowest Astronomical Tide                                         |
| MDAC            | Methane-Derived Authigenic Carbonate                             |
| ML              | Marine Licence                                                   |
| MM              | Million                                                          |
| MODU            | Mobile Offshore Drilling Unit                                    |
| NCMPA           | Nature Conservation Marine Protected Areas                       |
| NFFO            | National Federation of Fishermen's Organisations                 |
| NIFPO           | Northern Irish Fish Producers' Organisation                      |
| NNS             | Northern North Sea                                               |
| NORM            | Naturally Occurring Radioactive Material                         |
| NSTA            | North Sea Transition Authority                                   |
| ODU             | Offshore Decommissioning Unit                                    |
| OEUK            | Offshore Energies UK                                             |
| OPEX            | Operational Expenditure                                          |
| OPRED           | Offshore Petroleum Regulator for Environment and Decommissioning |
| P&A             | Plug and Abandon                                                 |
| PL              | Pipeline (as in pipeline number)                                 |
| PLU             | Umbilical (as in umbilical number)                               |
| PMF             | Priority Marine Feature                                          |
| SAC             | Special Areas of Conservation                                    |
| SAM             | Subsea Accumulator Module                                        |
| SCM             | Subsea Control Module                                            |
| SEPA            | Scottish Environment Protection Agency                           |
| SFF             | Scottish Fishermen's Federation                                  |
| SPA             | Special Protection Areas                                         |
| SSIV            | Subsea Isolation Valve                                           |
| TAQA            | TAQA Bratani Limited                                             |
| Те              | Tonnes                                                           |
| TUTU            | Topside Umbilical Termination Units                              |
|                 |                                                                  |



| Abbreviation | Explanation                      |
|--------------|----------------------------------|
| UKCS         | United Kingdom Continental Shelf |



# **1** Executive Summary

#### 1.1 Combined Decommissioning Programmes

This document contains two Decommissioning Programmes for the Cladhan Field subsea pipelines and installations.

There is a separate Decommissioning Programme for each set of associated notices served under Section 29 of the Petroleum act 1998. The Decommissioning Programmes are for:

- 1. The Cladhan Manifold, Cladhan Subsea Isolation Valve (SSIV) Structures, Xmas Trees and wellheads.
- The Cladhan Field pipelines, and umbilicals: PL3572, PL3572JWP1, PL3572JWP2, PL3573, PL3573JWP1, PL3573JWP2, PL3574, PL3574JWP1, PLU3575, PLU3575JWP1, PLU3575JWP2, PLU3576 and, PLU3577.

#### 1.2 Requirement for Decommissioning Programmes

#### 1.2.1 Installations:

In accordance with the Petroleum Act 1998, as amended, TAQA Bratani Limited (TAQA) as operator of the Cladhan subsea field, and on behalf of the Section 29 Notice Holders (Table 1-2) is applying to the Offshore Petroleum Regulator for Environment and Decommissioning (OPRED) to obtain approval for decommissioning the Cladhan subsea installations as detailed in Section 1.4 of this document. (See also Section 8 – Section 29 Holders' Letters of Support).

#### 1.2.2 Pipelines:

In accordance with the Petroleum Act 1998, as amended, TAQA, as operator of the Cladhan subsea pipelines, and on behalf of the Section 29 Notice Holders (see Table 1-4), is applying to the OPRED to obtain approval for decommissioning the Cladhan subsea pipelines as detailed in Section 2.2 of this document. (See also Section 8 – Section 29 Holders' Letters of Support).

In conjunction with public, stakeholder and regulatory consultation the Decommissioning Programmes are submitted in compliance with national and international regulations, and OPRED guidance [1].

The estimated schedule outlined for the decommissioning project spans a twelve-year period, commencing in 2023.



## 1.3 Introduction

The Cladhan Field straddles Blocks 210/29a and 210/30a in a water depth of approximately 153 m around 91.3 km northeast of the Shetland Isles. The Cladhan Field was discovered in 2008 and first production was achieved in 2015. Cladhan production was exported to Tern and thence to Sullom Voe via the Brent pipeline system. The Cladhan Field has come to the end of its productive life, and TAQA will therefore decommission these facilities. Decommissioning the Cladhan facilities is planned as part of the wider Tern Area overall decommissioning project. TAQA will continue to explore resource and cost saving synergies with the wider project and other operators.

The facilities comprise of:

- The production wells 210/29a-8 (P1) and 210/29a-7z (P2) and water injection well 210/29a-6z (W1) including wellheads and Xmas trees;
- The Cladhan manifold;
- Umbilicals and pipelines connecting the P1, P2 and W1 wells to the manifold. The pipelines and umbilicals are protected by concrete mattresses;
- A 10" production pipeline, 4" gas lift pipeline, 10" water injection pipeline and umbilical connecting the Cladhan manifold and the Tern platform. These lines are trenched and backfilled over most of their length with spot rock placement where required. These pipelines and umbilical run via Blocks 210/25a and 210/25c;
- The SSIV structure at the Tern platform end of the production and gas lift pipelines; and
- The SSIV control umbilical running from the Tern platform to the SSIV structure. The umbilical is fully covered by mattresses.

The Cladhan Field started production in 2015. The Cladhan Field cannot produce after Tern platform Cessation of Production (CoP), as the asset depended on the Tern platform as its control point and export route. The North Sea Transition Authority (NSTA) accepted a proposed Cessation of Production (CoP) date for Cladhan and its host platform Tern of no earlier than Q4 2023. The Tern platform and the associated subsea installations, including Cladhan, ceased production in Q1 2024.

The decommissioning programmes contained in this document cover the Cladhan subsea facilities, from the P1, P2 and W1 well locations to the Cladhan pipelines and umbilical risers at the Tern platform. At Tern, if derogation to leave the platform footings in place is granted, the facilities will be removed to a point on the pipelines and umbilicals in close proximity (within approximately 75 m) of the base of the Tern jacket/sub-structure, as this represents a reasonable balance between the level of risk associated with removing the facilities, the degree of disturbance of the seabed, the use of resources during decommissioning, and, following decommissioning, the loss of amenity for other sea users. If derogation to leave Tern platform footings in place is not granted, the surface laid portions and concrete mattresses of the pipelines at Tern will be removed, unless they are rock covered. Notwithstanding, final decommissioning solutions for the Cladhan pipelines and umbilical at Tern will be discussed and agreed with OPRED to align with decommissioning arrangements for the platform and associated infrastructure. The precise limit of "close proximity" will be agreed with OPRED on a case by case basis for each pipeline and umbilical.

Cladhan decommissioning activities may be integrated with the overall Tern Area and wider Northern North Sea (NNS) scope of multiple decommissioning projects to maximise synergies, optimise the use of resources and minimise disturbance of the environment.



Following public, stakeholder and regulatory consultation, the decommissioning programmes are submitted without derogation and in full compliance with OPRED [1] and Offshore Energies UK (OEUK) [2] guidelines. The decommissioning programmes explain the principles of the decommissioning activities and are supported by a Comparative Assessment (CA) [3] of decommissioning options and an Environmental Appraisal (EA) [4].

## 1.4 Overview of Facilities Being Decommissioned

#### 1.4.1 Installations

| Table 1-1: Installations E | Being Decommissioned |                             |                                             |
|----------------------------|----------------------|-----------------------------|---------------------------------------------|
| Field                      | Cladhan              | Production Type             | Oil                                         |
| Water Depth                | 161 m                | UKCS Block                  | 210/29a, 210/30a,<br>210/25a and<br>210/25c |
| Distance to Median         | 56 km                | Distance to UK<br>Coastline | 91.3 km                                     |
| Subsea Installations       |                      |                             |                                             |
| Number                     | Туре                 |                             | Total Weight (Te)                           |
| 1                          | Manifold             |                             | 111                                         |
| 1                          | SSIV Structure       |                             | 97.2                                        |
| 3                          | Wellhead / Xmas tree |                             | 213.9                                       |
| Subsea Wells               |                      |                             |                                             |
| Number                     | Туре                 |                             |                                             |
| 2                          | Oil Production       |                             |                                             |
| 1                          | Water Injection      |                             |                                             |

| Table 1-2: Cladhan Installation Section 29 Notice Holders |                     |                     |  |
|-----------------------------------------------------------|---------------------|---------------------|--|
| Company                                                   | Registration Number | Equity Interest (%) |  |
| TAQA Bratani Limited                                      | 05975475            | 100.00              |  |
| Waldorf CNS (I) Limited                                   | SC278868            | 0.0                 |  |
| ONE-DYAS UK Limited                                       | 03531783            | 0.0                 |  |
| MOL MAGYAR OLAJ-ES<br>GAZIPARI<br>RESZVENYTARSASAG        | HU10625790          | 0.0                 |  |
| Petrotal Corp.                                            | CA35359NC           | 0.0                 |  |
| ONE-Dyas B.V.                                             | NL33211110          | 0.0                 |  |
| TAQA International B.V.                                   | NL34260937          | 0.0                 |  |
| Waldorf Energy Partners Limited                           | 11957078            | 0.0                 |  |



#### 1.4.2 Pipelines

| Table 1-3: Cladhan Pipelines Being Decommissioned  |                                                                    |                     |  |  |
|----------------------------------------------------|--------------------------------------------------------------------|---------------------|--|--|
| Number of pipelines and umb                        | Number of pipelines and umbilicals (Details given in Table 2-3) 13 |                     |  |  |
| Table 1-4: Cladhan Pipel                           | ine Section 29 Notice Holders                                      |                     |  |  |
| Company                                            | Registration Number                                                | Equity Interest (%) |  |  |
| TAQA Bratani Limited                               | 05975475                                                           | 100.00              |  |  |
| Waldorf CNS (I) Limited                            | SC278868                                                           | 0.0                 |  |  |
| ONE-DYAS UK Limited                                | 03531783                                                           | 0.0                 |  |  |
| MOL MAGYAR OLAJ-ES<br>GAZIPARI<br>RESZVENYTARSASAG | HU10625790                                                         | 0.0                 |  |  |
| Petrotal Corp.                                     | CA35359NC                                                          | 0.0                 |  |  |
| ONE-Dyas B.V.                                      | NL33211110                                                         | 0.0                 |  |  |
| TAQA International B.V.                            | NL34260937                                                         | 0.0                 |  |  |
| Waldorf Energy Partners<br>Limited                 | 11957078                                                           | 0.0                 |  |  |



## 1.5 Summary of Proposed Decommissioning Programmes

The selected decommissioning options for the Cladhan infrastructure are shown in Table 1-5 below.

| Table 1-5: Summary of Decommissioning Programme                                                          |                                                          |  |  |  |
|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|--|
| Proposed Decommissioning Solution                                                                        | Reason for Selection                                     |  |  |  |
| Subsea Installations                                                                                     |                                                          |  |  |  |
| <i>Full Removal:</i><br>All materials, structures and equipment will be<br>removed at end of field life. | To remove all seabed structures and leave a clear seabed |  |  |  |
| All recovered materials will be transported to shore                                                     |                                                          |  |  |  |

All recovered materials will be transported to shore for re-use, recycling, or disposal.

#### Pipelines, Flowlines and Umbilicals

All pipelines and umbilicals will be flushed and cleaned to an appropriate standard. TAQA has assessed the likelihood of wax being present in the Cladhan production pipelines. The presence of wax is considered unlikely taking into account the fluid composition, operational history, process conditions and pipeline design. Environmental assessment considering the chemical composition and properties of the wax concluded that there is no significant risk to the marine environment in the unlikely event that wax is present. Further information on this assessment can be found in section 3.2.3 of the Tern Area Environmental Appraisal [4].

#### Flexible Flowlines and Umbilicals Surface Laid.

Surface laid portions of pipelines and umbilicals that are not in close proximity<sup>1</sup> to the Tern platform jacket footings will be removed together with protection features. The recovered items will be transported to shore for re-use, recycling, or disposal.

Limited sections of surface laid pipelines and umbilicals in close proximity<sup>1</sup> to the Tern platform jacket/sub-structure footings may be left in place, subject to derogation to leave the footings in place, and agreement with OPRED. This is the lowest risk, least seabed disturbance option

<sup>&</sup>lt;sup>1</sup> "Close proximity" is considered within approximately 75 m of the platform footings. Logical break points between portions left *in situ* and portions removed will be selected, e.g., pipeline crossings, etc. This option represents a reasonable balance between the level of risk associated with removing the facilities, the degree of disturbance of the seabed, the use of resources during decommissioning, and, following decommissioning, the loss of amenity for other sea users. If derogation to leave the jacket/sub-structure footings in place is not granted, all surface laid pipelines and umbilicals will be recovered and taken to shore for appropriate re-use, recycling, or disposal. The precise limit of "close proximity will be agreed with OPRED on a case by case basis for each pipeline and umbilical.



| Table 1-5: Summary of Decommissioning Programme                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Proposed Decommissioning Solution                                                                                                                                                                                                                                                                                                                                                                           | Reason for Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| Flexible Flowlines and Umbilicals Trenched and Buried.                                                                                                                                                                                                                                                                                                                                                      | The flowlines and umbilicals are considered<br>to be sufficiently trenched and buried with no<br>areas of spans, exposure, or shallow burial,                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Leave in situ (minimal intervention):<br>Remove line ends and remediate snag risk.                                                                                                                                                                                                                                                                                                                          | posing no risk to marine users. If following<br>pre- decommissioning surveys, exposures of<br>less than 20 m long are identified, the full                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Rock placement to remediate snag risk from cut ends.                                                                                                                                                                                                                                                                                                                                                        | length of the exposure would be covered with rock, otherwise it would be removed.<br>Minimal seabed disturbance, lower energy                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Recovered ends return to shore for reuse, recycling or appropriate treatment and disposal.                                                                                                                                                                                                                                                                                                                  | use, reduced risk to personnel engaged in the activity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| <b>Rigid Pipelines Trenched and Buried.</b><br><i>Remove Areas of Spans / Exposure / Shallow Burial:</i><br>Recovery of surface laid sections out with existing trench (including transitions), removal to shore for recycling or appropriate treatment and disposal.<br>Rock placement to remediate snag risk from cut ends; and to remove of areas of spans, exposure, and shallow burial depth (<0.6 m). | There are limited areas of spans / exposure<br>or shallow burial hence removal of these<br>areas is justified. Following pre-<br>decommissioning surveys, where exposures<br>of less than 20 m long are identified, the full<br>length of the exposure would be covered with<br>rock, otherwise it would be removed.<br>Minimal seabed disturbance, lower energy<br>use, reduced risk to personnel engaged in the<br>activity.<br>Degradation will occur over a long period<br>within seabed sediment, with no anticipated<br>hazard to other users of the sea. |  |  |  |  |
| Flexible Risers and Umbilical Risers, Rigid<br>Risers, Spools and Jumpers, Protection and<br>Stabilisation.                                                                                                                                                                                                                                                                                                 | To leave a safe, clear seabed and in compliance with regulatory requirements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| <i>Full Removal:</i><br>Risers will be dealt with within the Tern Platform<br>Upper Jacket and Footings DPs. Lower portion of<br>risers will be decommissioned <i>in situ</i> if derogation<br>is granted to leave the Tern footings in place. If<br>derogation is not granted for the footings, then<br>these risers' portions will be removed.                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Spools and jumpers and the associated protection features will be returned to shore for reuse, recycling, or appropriate disposal.                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |

0.

- 1 -



| Table 1-5: Summary of Decommissioning Programme                                                                                                                                                                                                                                                                                      |                                                                                                        |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Proposed Decommissioning Solution                                                                                                                                                                                                                                                                                                    | Reason for Selection                                                                                   |  |  |  |  |  |
| Wells                                                                                                                                                                                                                                                                                                                                |                                                                                                        |  |  |  |  |  |
| Cladhan wells will be Plugged and Abandoned<br>(Pad) using a Mobile Offshore Drilling Unit (MODU)<br>or well servicing vessel in alignment with the TAQA<br>'Well Barrier Standard TUK-11-B-009', and with<br>reference to OEUK Well Decommissioning<br>Guidelines [2] and other governing standards at the<br>time of abandonment.  | Meets TAQA standards and NSTA and the<br>Health and Safety Executive (HSE)<br>regulatory requirements. |  |  |  |  |  |
| If compliance with standards cannot be achieved,<br>TAQA will adopt a risk-based approach in<br>consultation with the relevant authorities.                                                                                                                                                                                          |                                                                                                        |  |  |  |  |  |
| Xmas trees, wellheads and the top section of the<br>well conductors to a depth of at least 3 m will be<br>removed to shore for appropriate reuse, recycling,<br>or disposal. Following removal of the wells, the<br>seabed will be surveyed for debris and<br>depressions, etc., and any necessary remediation<br>will be performed. |                                                                                                        |  |  |  |  |  |
| Deill Outlin an                                                                                                                                                                                                                                                                                                                      |                                                                                                        |  |  |  |  |  |

#### **Drill Cuttings**

There are no drill cuttings in the scope of this decommissioning programme.

Interdependencies

The upper sections of the rigid risers and J tubes will be cut at 132 m below LAT and will be removed with the Tern upper jacket as described in the Tern Upper Jacket Decommissioning Programme [5]. Please refer to Section 2.2.1 for more details.

Three pipelines (PL3572, PL3573 and PL3574) and two umbilicals (PLU3575 and PLU3577) terminate on the Tern platform. Decommissioning of the Cladhan rigid risers and J tubes attached to the Tern jacket, and the pipelines and umbilicals on the seabed near the Tern platform will be managed in conjunction with Tern Area decommissioning. This will minimise risk, impacts on the environment and use of resources.



## 1.6 Field Locations Including Field Layouts and Adjacent Facilities

The location of the Cladhan Field within the UK Continental Shelf (UKCS) and the adjacent facilities are shown in Figure 1-1 and Figure 1-2. The facilities adjacent to Cladhan are listed in Table 1-6. Cladhan lies in a water depth of approximately 153 m around 91.3 km northeast of the Shetland Islands. Figure 1-3 shows the Cladhan facilities layout in more detail. There are three wells at Cladhan within a radius of 45 m around the Cladhan Manifold. Production was exported to the Tern platform, in Block 210/25 which stands in 167 m of water approximately 104 km northeast of the Shetland Islands.

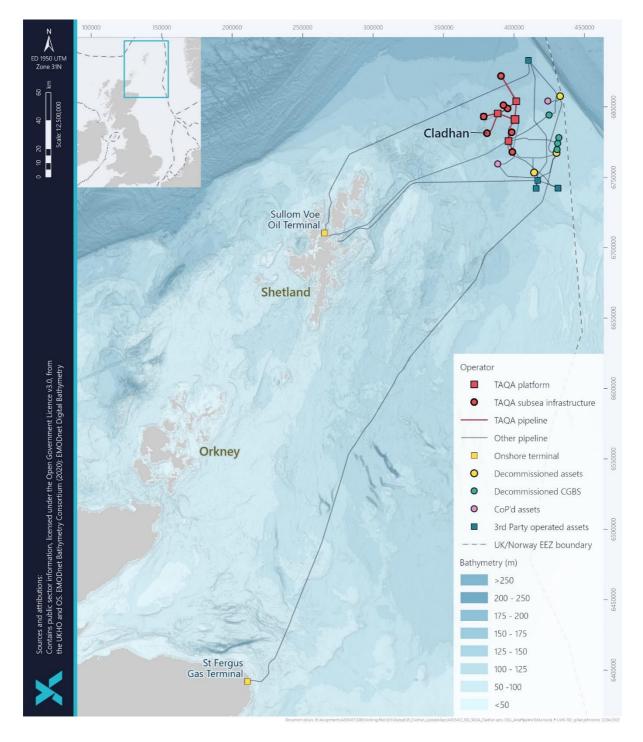



Figure 1-1: Cladhan Field Location Within The UKCS



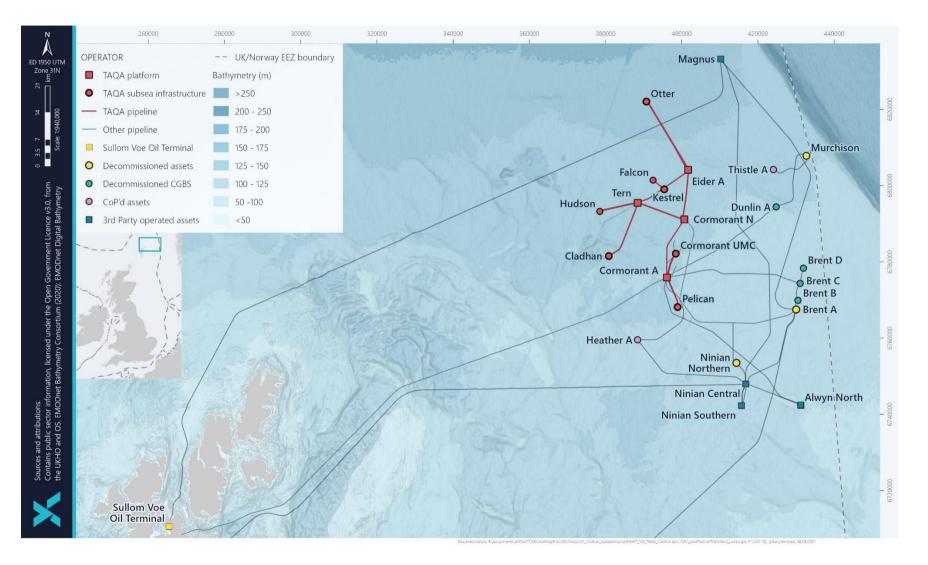



Figure 1-2: Cladhan Adjacent Facilities



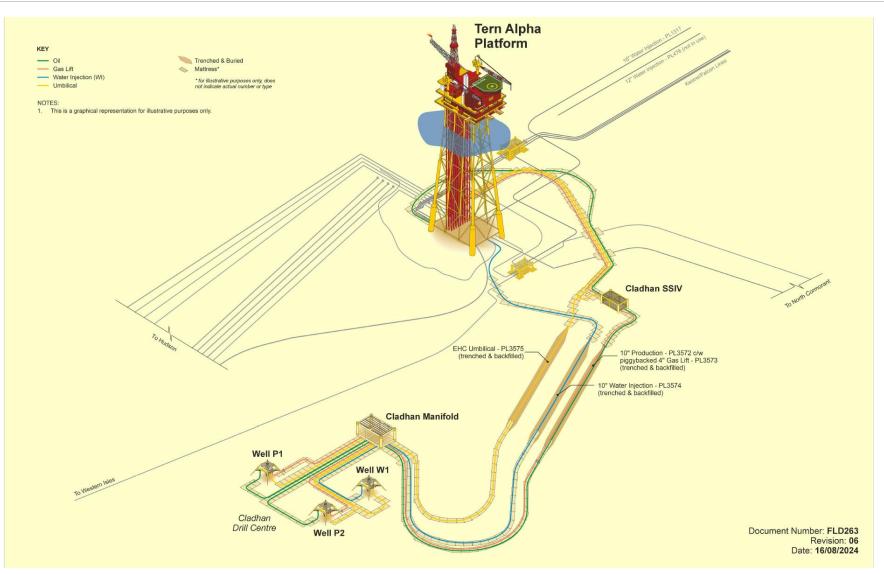



Figure 1-3: Cladhan Facilities Layout



| Operator          | Name               | Туре     | Distance/                                                        | Information                               | Status          |
|-------------------|--------------------|----------|------------------------------------------------------------------|-------------------------------------------|-----------------|
|                   |                    |          | Direction from<br>Cladhan                                        |                                           |                 |
| TAQA              | Tern               | Platform | 15.6 km North                                                    | Oil and Gas                               | Non-Operational |
| TAQA              | Hudson             | Field    | Northeast<br>12 km North                                         | Development<br>Oil and Gas<br>Development | Non-Operational |
| TAQA              | Kestrel            | Field    | 22.7 km North<br>Northeast                                       | Oil and Gas<br>Development                | Non-Operational |
| TAQA              | Falcon             | Field    | 23.3 km North<br>Northeast                                       | Oil and Gas<br>Development                | Non-Operational |
| TAQA              | Cormorant<br>Alpha | Platform | 16.1 km East                                                     | Oil and Gas<br>Development                | Non-Operational |
| TAQA              | North<br>Cormorant | Platform | 22 km Northeast                                                  | Oil and Gas<br>Development                | Non-Operational |
| TAQA              | Eider              | Platform | 30.8 km<br>Northeast                                             | Oil and Gas<br>Development                | Non-Operational |
| TAQA              | Otter              | Field    | 41.6 km North<br>Northeast                                       | Oil and Gas<br>Development                | Non-Operational |
| TAQA              | Pelican            | Field    | 22.4 km<br>Southeast                                             | Oil and Gas<br>Development                | Non-Operational |
| TAQA              | PL4                | Pipeline | From Cormorant<br>Alpha to Sullom<br>Voe (12.2 km<br>Southeast)  | Oil Pipeline                              | Non-Operational |
| TAQA              | Central UMC        | Field    | 17.5 km East                                                     | Oil and Gas<br>Development                | Non-Operational |
| Dana<br>Petroleum | PL3186             | Pipeline | Crosses beneath<br>Cladhan Water<br>Injection Pipeline<br>PL3574 | Gas Export /<br>Import<br>Pipeline        | Non-Operational |

#### Impacts of Decommissioning Proposals

TAQA has been, and will continue to be, in contact with operators and owners of adjacent facilities. There are no known interactions between the adjacent facilities and the proposed Cladhan decommissioning programmes, other than the Tern platform and other subsea fields associated with Tern: Hudson, Falcon, and Kestrel. Decommissioning of Cladhan and Tern are inextricably linked as Tern provided the only export route for Cladhan production via North Cormorant and Cormorant Alpha to the Sullom Voe Terminal.

The Cladhan pipelines and umbilical all cross over other existing infrastructure within the Tern 500m zone, including the control jumper between Kestrel SSIV and Cladhan SSIV, control umbilical to Kestrel, gas pipelines from North Cormorant, oil pipeline to North Cormorant and the gas export pipeline from Western Isles. There is currently no impact foreseen to any of the other infrastructure from the removal of Cladhan infrastructure. The removal of these crossings will be managed as part of the execution of Tern Area decommissioning, the mattresses will be removed and returned to shore, and the surface laid lines will be removed.



## 1.7 Industrial Implications

TAQA is developing the decommissioning contract and procurement strategy for these works, on behalf of the Section 29 Notice Holders. TAQA envisages that this strategy may include using incumbent contractors for recurring items / services covered by Master Services Agreements held by TAQA.

Notwithstanding, TAQA has, and will continue to:

- Publish Cladhan decommissioning project information, including the project schedule, on the TAQA decommissioning <u>website;</u>
- Publish project information and contact details on the NSTA Pathfinder website;
- Engage with the NSTA and the decommissioning supply chain on any relevant issues relating to the Cladhan decommissioning programme and schedule; and
- Where appropriate use the FPAL / SEQual database as the sources for establishing tender lists for supply chain items.



# 2 Description of Items to be Decommissioned

### 2.1 Subsea Installations

Key information regarding the Cladhan subsea facilities is presented in Table 2-1. Refer to Figure 1-3 for an illustration of the subsea facilities listed.

| Table 2-1: S      | Table 2-1: Subsea Installations |                     |                            |                                  |                                                                              |                                                                                                                                     |  |
|-------------------|---------------------------------|---------------------|----------------------------|----------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| ltem              | Number                          | Size (m)<br>[LxWxH] | Weight<br>(Te)             |                                  | Location                                                                     | Comments / Status                                                                                                                   |  |
|                   |                                 |                     |                            | WGS84<br>Decimal                 | 61.1478 N<br>00.7853 E                                                       | Weight includes P1<br>wellhead, over-trawlable                                                                                      |  |
|                   |                                 | 7.6 x 7.6 x<br>5.6  | 71.3                       | WGS84<br>Decimal<br>Minute       | 61° 08'52.076"<br>00° 47'07.281"                                             | <ul> <li>Xmas tree, Subsea</li> <li>Control Module (SCM)</li> <li>and Subsea</li> <li>Accumulator Module</li> <li>(SAM).</li> </ul> |  |
| Wellheads /       | 0                               | 7.07.0              |                            | WGS84<br>Decimal                 | 61.1476 N<br>00.7859 E                                                       | Weight includes P2                                                                                                                  |  |
| Xmas Trees 3      | 7.6 x 7.6 x<br>5.6              | 71.3                | WGS84<br>Decimal<br>Minute | 61° 08'51.194"<br>00° 47'09.237" | <ul> <li>wellhead, over-trawlable<br/>Xmas tree, SCM and<br/>SAM.</li> </ul> |                                                                                                                                     |  |
|                   |                                 | 7.6 x 7.6 x<br>5.6  | 71.3                       | WGS84<br>Decimal                 | 61.1476 N<br>00.7861 E                                                       | Weight includes W1                                                                                                                  |  |
|                   |                                 |                     |                            | WGS84<br>Decimal<br>Minute       | 61° 08'51.638"<br>00° 47'10.074"                                             | wellhead, over-trawlable<br>Xmas tree SCM and<br>SAM.                                                                               |  |
|                   |                                 |                     |                            | WGS84<br>Decimal                 | 61.1479 N<br>00.7859 E                                                       | The Manifold Structure<br>including piping spools<br>and valves.                                                                    |  |
| Manifold          | <b>fold</b> 1 10 x 6.5 5        | 10 x 6.5 x<br>4     | ) x 6.5 x 111.0            | WGS84<br>Decimal<br>Minute       | 61° 08'52.592"<br>00° 47'09.300"                                             | The Manifold Structure is<br>secured to the seabed<br>by four steel piles which<br>will be cut at -3 m.                             |  |
|                   |                                 |                     |                            | WGS84<br>Decimal                 | 61.2741 N<br>00.9193 E                                                       | The SSIV structure is located within the Tern                                                                                       |  |
| SSIV<br>Structure | 1                               | 13 x 6 x 4          | 97.2                       | WGS84<br>Decimal<br>Minute       | 61° 16'26.934"<br>00° 55'09.547"                                             | platform 500 m zone.<br>The SSIV structure is a<br>gravity based structure .                                                        |  |

T,Q,

# 2.2 Pipelines including Stabilisation Features

| Table 2-2: Pip                    | eline / Flowline   | / Umbilical | Informati      | on                                   |                     |                                                                        |                        |                    |                 |
|-----------------------------------|--------------------|-------------|----------------|--------------------------------------|---------------------|------------------------------------------------------------------------|------------------------|--------------------|-----------------|
| Description                       | Pipeline<br>Number | Diameter    | Length<br>(km) | Description of<br>Component<br>Parts | Product<br>Conveyed | From – To                                                              | Burial Status          | Pipeline<br>Status | Current Content |
| Production<br>Pipeline            | PL3572             | 10"         | 16.859         | Steel                                | Hydrocarbons        | Manifold Tie-In<br>Flange – Tern<br>Platform Production<br>ESDV        | Trenched and<br>Buried | Out of Use         | Seawater        |
| P1<br>Production<br>Jumper        | PL3572JWP1         | 6"          | 0.064          | Flexible                             | Hydrocarbons        | Production Well P1 –<br>Manifold Tie-In<br>Flange                      | Surface Laid           | Out of Use         | Dyed MEG        |
| P2<br>Production<br>Jumper        | PL3572JWP2         | 6"          | 0.077          | Flexible                             | Hydrocarbons        | Production Well P2 –<br>Manifold Tie-In<br>Flange                      | Surface Laid           | Out of Use         | Dyed MEG        |
| Gas Lift<br>Pipeline <sup>1</sup> | PL3573             | 4"          | 16.866         | Steel                                | Lift Gas            | Tern Platform Gas Lift<br>ESDV – Manifold Tie-<br>In Flange            | Trenched and<br>Buried | Out of Use         | Seawater        |
| P1 Gas Lift<br>Jumper             | PL3573JWP1         | 4"          | 0.038          | Flexible                             | Lift Gas            | Manifold Tie-In<br>Flange – Production<br>well P1                      | Surface Laid           | Out of Use         | Seawater        |
| P2 Gas Lift<br>Jumper             | PL3573JWP2         | 4"          | 0.052          | Flexible                             | Lift Gas            | Manifold Tie-In<br>Flange – Production<br>well P2                      | Surface Laid           | Out of Use         | Seawater        |
| Water<br>Injection<br>Pipeline    | PL3574             | 10"         | 16.648         | Steel                                | Water               | Tern Platform Water<br>Injection Piping –<br>Manifold Tie-In<br>Flange | Trenched and<br>Buried | Out of Use         | Seawater        |

<sup>1</sup> PL3573 is piggybacked to PL3572

TERN AREA CLADHAN SUBSEA FACILITIES DECOMMISSIONING PROGRAMME



| Table 2-2: Pip                  | eline / Flowline   | / Umbilical | Informati      | on                                   |                                        |                                                                                         |                                             |                    |                                                                                    |
|---------------------------------|--------------------|-------------|----------------|--------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------|--------------------|------------------------------------------------------------------------------------|
| Description                     | Pipeline<br>Number | Diameter    | Length<br>(km) | Description of<br>Component<br>Parts | Product<br>Conveyed                    | From – To                                                                               | Burial Status                               | Pipeline<br>Status | Current Content                                                                    |
| W1 Water<br>Injection<br>Jumper | PL3574JWP1         | 7"          | 0.048          | Flexible                             | Water                                  | Manifold Tie-In<br>Flange – Water<br>Injection Well W1                                  | Surface Laid                                | Out of Use         | Seawater                                                                           |
| Control<br>Umbilical            | PLU3575            | 144 mm      | 16.844         | Umbilical                            | Chemicals &<br>Power                   | Tern Platform<br>Cladhan Topside<br>Umbilical Termination<br>Units (TUTU) –<br>Manifold | Trenched and<br>Buried                      | Out of Use         | Seawater                                                                           |
| P1 Control<br>Jumper            | PLU3575JWP1        | N/A         | 0.067          | Umbilical                            | Chemicals &<br>Power                   | Manifold – Production<br>Well P1                                                        | Surface Laid                                | Out of Use         | Methanol,<br>Wax Inhibitor,<br>Scale Inhibitor,<br>Demulsifier,<br>Hydraulic fluid |
| P2 Control<br>Jumper            | PLU3575JWP2        | N/A         | 0.082          | Umbilical                            | Chemicals &<br>Power                   | Manifold – Production<br>Well P2                                                        | Surface Laid                                | Out of Use         | Methanol,<br>Wax Inhibitor,<br>Scale Inhibitor,<br>Demulsifier,<br>Hydraulic fluid |
| W1 Control<br>Jumper            | PLU3576            | N/A         | 0.079          | Flexible                             | Chemicals &<br>Power                   | Manifold – Water<br>Injection Well W1                                                   | Surface Laid                                | Out of Use         | Hydraulic Fluid                                                                    |
| SSIV Control<br>Umbilical       | PLU3577            | 118.1 mm    | 0.534          | Flexible                             | Electrical,<br>Hydraulic &<br>Chemical | Tern – Cladhan SSIV                                                                     | Surface Laid,<br>Covered with<br>Mattresses | Out of Use         | Hydraulic Fluid,<br>Methanol                                                       |



| Table 2-3: Subsea        | Pipeline / Flowline / Umbi | lical Stabilisation Features |                                                                                       |                          |
|--------------------------|----------------------------|------------------------------|---------------------------------------------------------------------------------------|--------------------------|
| Stabilisation<br>Feature | Total Number               | Weight (Te)                  | Locations                                                                             | Exposed/Buried/Condition |
| Grout Bags               | 840                        | 21                           | From P1 well to Cladhan Manifold                                                      | Exposed                  |
| Concrete<br>Mattresses   | 21                         | 98.7 (4.7 Te each)           | From P1 well to Cladhan Manifold                                                      | Exposed                  |
| Grout Bags               | 840                        | 21                           | From P2 well to Cladhan Manifold                                                      | Exposed                  |
| Concrete<br>Mattresses   | 18                         | 84.6 (4.7 Te each)           | From P2 well to Cladhan Manifold                                                      | Exposed                  |
| Grout Bags               | 480                        | 12                           | On PL3572/PL3573 from Cladhan Manifold to<br>full trench depth                        | Exposed                  |
| Concrete<br>Mattresses   | 55                         | 258.5                        | On PL3572/PL3573 from Cladhan Manifold to<br>full trench depth                        | Exposed                  |
| Rock                     |                            | 12,000                       | On PL3572/PL3573 between Cladhan and<br>Tern Platform                                 | Exposed                  |
| Grout Bags               | 560                        | 14                           | On PL3572/PL3573 from Cladhan SSIV to full<br>trench depth                            | Exposed                  |
| Concrete<br>Mattresses   | 41                         | 192.7 (4.7 Te each)          | On PL3572/PL3573 from Cladhan SSIV to full trench depth                               | Exposed                  |
| Concrete<br>Mattresses   | 6                          | 37.8 (6.3 Te each)           | On PL3572/PL3573/PLU3577 from Cladhan<br>SSIV to full trench depth                    | Exposed                  |
| Grout Bags               | 680                        | 17                           | On PL3572/PL3573/PLU3577/PLU3575 from<br>Cladhan SSIV to riser touch down points      | Exposed                  |
| Concrete<br>Mattresses   | 87                         | 408.9 (4.7 Te each)          | On PL3572/PL3573/PLU3577/PLU3575 from<br>umbilical crossing to riser touch down point | Exposed                  |
| Concrete<br>Mattresses   | 38                         | 178.6 (4.7 Te each)          | On PL3572/PL3573/PLU3577/PLU3575 from<br>umbilical crossing to riser touch down point | Exposed                  |



| Stabilisation<br>Feature | Total Number | Weight (Te)         | Locations                                                            | Exposed/Buried/Condition |
|--------------------------|--------------|---------------------|----------------------------------------------------------------------|--------------------------|
| Grout Bags               | 200          | 5                   | On PL3572/PL3573/PLU3577/PLU3575<br>adjacent to Cladhan SSIV         | Exposed                  |
| Concrete<br>Mattresses   | 63           | 296.1 (4.7 Te each) | On PL3574                                                            | Exposed                  |
| Grout Bags               | 680          | 17                  | On PL3574                                                            | Exposed                  |
| Rock                     |              | 5,000               | On PL3574                                                            |                          |
| Grout Bags               | 720          | 18                  | On PL3574                                                            | Exposed                  |
| Concrete<br>Mattresses   | 54           | 253.8 (4.7 Te each) | On PL3574                                                            | Exposed                  |
| Grout Bags               | 600          | 15                  | From W1 well to Cladhan Manifold                                     | Exposed                  |
| Concrete<br>Mattresses   | 36           | 169.2 (4.7 Te each) | On PLU3575 from umbilical crossing to<br>umbilical full trench depth | Exposed                  |
| Rock                     |              | 5,000               | On PLU3575 between Cladhan and Tern<br>Platform                      |                          |
| Grout Bags               | 520          | 13                  | On PLU3575 from Cladhan Manifold to<br>umbilical full trench depth   | Exposed                  |
| Concrete<br>Mattresses   | 59           | 277.3 (4.7 Te each) | On PLU3575 from Cladhan Manifold to<br>umbilical full trench depth   | Exposed                  |

The total quantities of pipeline stabilisation features are:

• Mattresses: Total number = 478. Total weight = 2,256 Te

• Grout Bags: Total number = 6,120. Total weight = 153 Te

• Rock Cover: Total weight = 22,000 Te



#### 2.2.1 Pipeline and Umbilical risers

There are three Cladhan pipelines and two umbilicals that terminate at the Tern platform:

- PL3572 10" Production Pipeline
- PL3573 4" Gas Lift Pipeline
- PL3574 10" Water Injection Pipeline
- PLU3575 Umbilical
- PLU3577 SSIV Umbilical

The pipelines run up the side of the Tern jacket as "risers" in a riser J-tube and terminate on the platform topsides. Similarly, the Cladhan umbilicals run up the jacket in a J-tube and terminate on the platform topsides.

The Cladhan pipeline and umbilical risers will be cut at a depth of approximately 132 m below LAT. The sections between the Tern Topsides and this depth will be removed with the Tern Upper Jacket. The remaining sections of the Cladhan risers attached to the Tern footings will be decommissioned as part of the Footings Decommissioning Programme.

#### 2.3 Wells

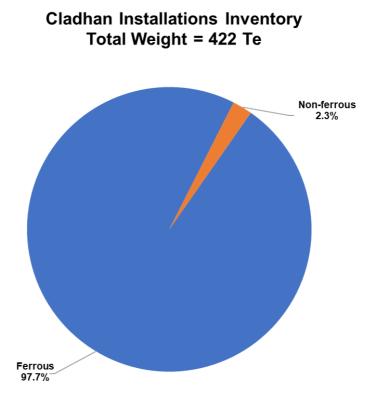
Table 2-4 lists the well information pertinent to the three wells covered by this decommissioning programme. The wells will be Phase 3 plugged and abandoned in accordance with OEUK Well Decommissioning Guidelines [2]. Operations will be supported by appropriate regulatory applications and submissions.

| Table 2-4: Well Information |                |         |                  |
|-----------------------------|----------------|---------|------------------|
| Subsea Wells                | Designation    | Status  | Category of Well |
| 210/29a-8                   | Oil Producer   | Shut-In | SS 3-3-3         |
| 210/29a-7z                  | Oil Producer   | Shut-In | SS 3-3-3         |
| 210/29a-6z                  | Water Injector | Shut-In | SS 3-3-3         |

Note: Exploration well 210/30a-4y was removed during a multi operator vessel campaign Q4 2022/Q1 2023.

### 2.4 Drill Cuttings Piles

There are no drill cuttings piles associated with the Cladhan Field.


#### 2.5 Inventory Estimates

Estimates of the material inventories for the Cladhan installations and pipelines are presented in Table 2-5 and Table 2-6 respectively. These inventories are shown graphically in Figure 2-1 and Figure 2-2.

The anticipated quantities of marine growth associated with the Cladhan facilities are very small as most of the facilities are on the seabed in a water depth of over 100 m. Marine growth may be encountered on the Cladhan risers. However, these will be treated as part of the Tern sub-structure decommissioning.



| Table 2-5: Cladhan Subsea Installations and Stabilisation Materials Inventory Estimate |             |            |  |  |
|----------------------------------------------------------------------------------------|-------------|------------|--|--|
| Material                                                                               | Weight (Te) | % of Total |  |  |
| Ferrous (all grades)                                                                   | 412.7       | 98.0       |  |  |
| Non-ferrous                                                                            | 9.5         | 2.0        |  |  |
| Plastics                                                                               | 0.0         | 0.0        |  |  |
| Concrete (mattresses, grout bags)                                                      | 0.0         | 0.0        |  |  |
| Other non-hazardous (rock)                                                             | 0.0         | 0.0        |  |  |
| Hazardous – Naturally Occurring Radioactive<br>Material (NORM)                         | trace       | n/a        |  |  |
| Hazardous – Residual fluids                                                            | trace       | n/a        |  |  |
| Total                                                                                  | 422.2       | 100.0      |  |  |



#### Figure 2-1: Subsea Installations Inventory



| Table 2-6: Cladhan Pipelines and Stabilisation | n Materials Inventory Estim | ate        |
|------------------------------------------------|-----------------------------|------------|
| Material                                       | Weight (Te)                 | % of Total |
| Ferrous (all grades)                           | 4,695.2                     | 15.5       |
| Non-ferrous                                    | 14.5                        | <0.1       |
| Plastics                                       | 1,108.7                     | 3.7        |
| Concrete (mattresses, grout bags)              | 2,409.2                     | 8.0        |
| Other non-hazardous (rock)                     | 22,000.0                    | 72.7       |
| Hazardous – NORM                               | 6.4                         | <0.1       |
| Hazardous – Residual fluids                    | 18.5                        | 0.1        |
| Total                                          | 30,252.5                    | 100.0      |

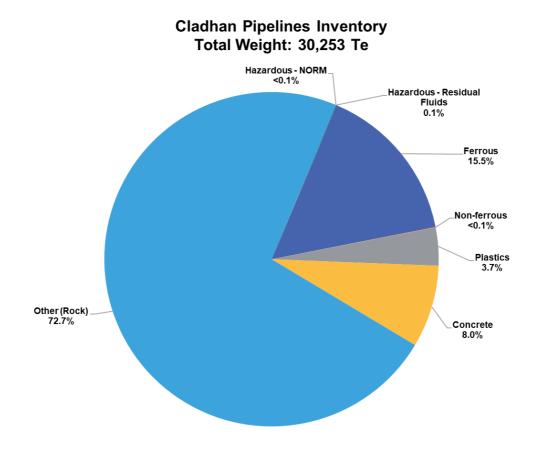



Figure 2-2: Pipelines Inventory



# 3 Removal and Disposal Methods

TAQA will implement an Active Waste Management Plan to identify and quantify available disposal options for waste materials resulting from the decommissioning activities. The plan will detail the disposal route for recovered structures and equipment, and their constituent materials and contents.

Recovered infrastructure will be returned to shore for dismantling and sorting before being transferred to suitably licenced waste facilities. It is the intent that, where possible, materials and equipment will be re-used or recycled. Materials management options will take account of the waste hierarchy, with reduction in volume of waste being the preferred option. OPRED will be advised once waste contractors have been selected.

#### 3.1 Subsea Installations

The options considered for the disposal of the subsea installations and the selected disposal route are listed in Table 3-1.

| Table 3-1: Subsea Installations          |     |                                                                                                       |                                                                   |
|------------------------------------------|-----|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Installation / Feature                   | No. | Option                                                                                                | Disposal Route                                                    |
| Wellhead / Xmas Tree                     | 3   | Full recovery                                                                                         | Return to shore for reuse, recycling, or disposal as appropriate. |
| Manifold and associated foundation piles | 1   | Manifold - Full recovery<br>The four foundation<br>piles will be recovered<br>to 3 m below the seabed | Return to shore for reuse, recycling, or disposal as appropriate. |
| SSIV Structure                           | 1   | Full recovery                                                                                         | Return to shore for reuse, recycling, or disposal as appropriate. |

## 3.2 Pipelines

| Table 3-2: Pipeline Decommissioning Options                      |                                                           |                                                                           |
|------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------|
| Key to Options                                                   |                                                           |                                                                           |
| 1 – Re-use                                                       | 2A – Cut and Lift<br>with De-burial                       | 2B – Reverse Installation (Reverse<br>Reel) without De-burial             |
| 2C – Reverse Installation<br>(S-lay or Reel) with De-burial      | 2D – Reverse Installation<br>(Buoyancy)                   | 2E – Cut, Float &<br>Transport                                            |
| 3A – Rock Placement over<br>entire line                          | 3B – Retrench and Bury entire line                        | 4A – Rock Placement over areas<br>of Spans / Exposure / Shallow<br>Burial |
| 4B – Trench & Bury areas of<br>Spans / Exposure / Shallow Burial | 4C – Remove areas of Spans /<br>Exposure / Shallow Burial | 4D – Accelerated Decomposition                                            |
| 5 – Remove Ends & Remediate<br>Snag Risk                         | 6 – Leave As-is                                           |                                                                           |



| Table 3-3: Pipeline or Pipeline Group Decommissioning Options Considered                |                                                                                 |                                    |                          |
|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------|--------------------------|
| Pipeline or Group                                                                       | Condition of Line / Group                                                       | Whole or Part of<br>Pipeline/Group | Options Considered       |
| Group 3:<br>PLU3575                                                                     | Flexible flowlines and umbilicals trenched and buried with areas of rock cover. | Whole Umbilical                    | 2B, 4A, 4B, 4C, 5        |
| Group 9:<br>PL3572, PL3573,<br>PL3574                                                   | Rigid pipelines, trenched and buried.                                           | Whole group                        | 2C, 4A, 4B, 4C, 5        |
| Group 10:<br>PLU3575 <sup>Note 1</sup>                                                  | Flexible Risers and Riser<br>Umbilicals, surface laid                           | Whole pipeline                     | Full removal Notes 2 & 3 |
| Group 12:<br>PL3572, PL3573,<br>PL3574, PLU3575 <sup>Note 1</sup> ,<br>PLU3576, PLU3577 | Spools and jumpers,<br>surface laid                                             | Whole group                        | Full removal Note 3      |

Notes:

- TAQA adopted a comparative assessment methodology that organised the infrastructure into groups with similar characteristics. Pipelines that comprise multiple different sections, for example a surface laid section, a buried section and a riser section will appear in several corresponding groups E.g., PLU3575 includes an umbilical, a riser and umbilical jumpers.
- 2. The Cladhan pipeline risers, and the umbilical riser sections, will be cut at a depth of approximately 132 m below LAT. The sections between the Tern Topsides and this depth will be removed with the Tern Upper Jacket. The remaining sections of the Cladhan risers attached to the Tern footings will be decommissioned as part of the Footings Decommissioning Programme.
- Sections of surface laid lines in close proximity (within approximately 75 m) to the Tern jacket/sub-structure footings may be left in place if derogation is granted to leave the footings in place. If derogation is not granted for the footings, then these surface laid portions will be removed.



#### 3.2.1 Comparative Assessment Method

TAQA conducted a CA of the decommissioning options for the Cladhan facilities [3]. TAQA's strategy for the CA process is aligned with the OEUK Guidelines for Comparative Assessment in Decommissioning Programmes [2] and OPRED Guidance Notes for the Decommissioning of Offshore Oil & Gas Installations and Pipelines [1].

All the infrastructure has been scoped into logical groupings. All feasible decommissioning options for each of the infrastructure groups have been identified, screened, assessed and ranked using five assessment criteria: Safety, Environment, Technical, Societal and Economic (to compare the relative merits of each credible decommissioning option for each group of infrastructure).

The assessment criteria are equally weighted to balance and represent the views of each of the stakeholders.

| Table 3-4: Outcome of Comparative Assessment Note 1 |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pipeline or<br>Group                                | Recommended<br>Option                                           | Justification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Group 3                                             | 5 - Remove Line<br>Ends and<br>Remediate Snag<br>Risk           | <ul> <li>The CA outcome is a significant preference for Option 5. Option 5 is preferred over other options against the Safety, Environment and Technical criterion. It is less preferred against the Societal criteria, however this does not offset the preference against the other criteria.</li> <li>If the Economic criteria is included, the preference for Option 5 remains and hence Option 5 is the recommended decommissioning option for Group 3.</li> </ul>                         |
| Group 9                                             | 4C – Remove<br>areas of Spans /<br>Exposure /<br>Shallow Burial | The CA outcome shows that the preference for Option 4C (remove problem areas) is small. Option 4C is preferred over the other options against the Technical criterion. Option 4C is marginally less preferred to other options against the Safety, Environmental and Societal criteria however, there remains a preference for Option 4C overall. Once the Economics criteria is included, the preference for Option 4C remains and hence Option 4C is the emerging recommendation for Group 9. |

Note:

 Following completion of the comparative assessment, further work was undertaken that identified additional remediation may be required on these lines. As such, TAQA propose the following approach to assess the worst case environmental impact for these pipelines: rock placement to remediate spans, exposures and shallow burial < 20 m long and removal of spans, exposures and shallow burial > 20 m long by cut and lift.



## 3.3 Pipeline Stabilisation Features

| Table 3-5: Pipeline Stabilisation Features Disposal Route |           |                                                                                                                                                             |                                                          |
|-----------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Stabilisation<br>Features Note 1                          | Number    | Option                                                                                                                                                      | Disposal Route                                           |
| Concrete<br>Mattresses                                    | 440       | Full recovery at end of field life.<br>(If practical difficulties are<br>encountered, TAQA will consult<br>with OPRED to agree an<br>alternative approach). | Returned to shore for recycling or disposal to landfill. |
| Grout Bags                                                | 6,120     | Full recovery at end of field life.<br>(If practical difficulties are<br>encountered, TAQA will consult<br>with OPRED to agree an<br>alternative approach)  | Returned to shore for recycling or disposal to landfill. |
| Rock Cover                                                | 22,000 Te | Ensure over-trawlability and decommission <i>in situ.</i>                                                                                                   | Decommission in situ.                                    |

Note:

1. Any stabilisation features associated with crossings will be removed.

### 3.4 Wells

#### Table 3-6: Wells Decommissioning Options

The Cladhan Wells, 210/29a-8, 210/29a-7z and 210/29a-6z, will be plugged and abandoned to Phase 3 in alignment with the TAQA 'Well Barrier Standard TUK-11-B-009', and with reference to OEUK Well Decommissioning Guidelines [2].

Operations will be supported by appropriate regulatory applications and submissions.

### 3.5 Waste Streams

| Table 3-7: Materials and Waste Streams |                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Materials                              | Removal and Disposal Method                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bulk Liquids                           | Pipelines and umbilicals will be flushed and cleaned to facilitate<br>abandonment scopes using existing topsides facilities.<br>Discharges offshore will be managed, and risk assessed under the<br>existing permitting regime. Any effluent shipped to shore will be<br>treated and disposed of according to relevant regulations and<br>guidance.                                                                         |
| Marine Growth                          | Marine growth is only anticipated on the PL3572, PL3573, PL3574, PLU3575 and PLU3577 risers at the Tern platform. These risers will form part of the Tern jacket decommissioning scope. Marine growth is not anticipated on any of the other Cladhan equipment. If marine growth is present, it will be disposed of in accordance with relevant regulations and guidance, either offshore under marine licence, or onshore. |



| Table 3-7: Materials and Wast | Table 3-7: Materials and Waste Streams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| NORM                          | NORM is assumed to be present within the flowlines. Monitoring<br>and sampling will be carried out to verify the presence of NORM.<br>If it is identified, it will be contained and treated in accordance with<br>relevant regulations and circumstances.                                                                                                                                                                                                                                                                                                                                      |  |  |
| Asbestos                      | No asbestos materials are anticipated. However, if asbestos containing materials are found they will be recovered to shore and disposed of appropriately.                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Wax                           | Wax is not anticipated.<br>In the unlikely event that wax is present, it will be disposed of in<br>accordance with relevant regulations and guidance, either offshore<br>under marine licence or permit, or onshore.                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| Other Hazardous Materials     | Any other hazardous materials will be disposed of in accordance with relevant regulations and guidance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Onshore Dismantling Sites     | The removal contractor will use appropriately licenced dismantling,<br>treatment, recycling and disposal sites (where applicable). TAQA<br>will ensure that the removal contractor and selected sites have<br>proven abilities to manage waste streams throughout the<br>deconstruction process. An Active Waste Management Plan<br>(AWMP) will follow the "reduce, reuse, recycle" paradigm. OPRED<br>will be informed once a suitable site(s) has been selected.<br>TAQA will conduct assurance activities of the site(s) to confirm that<br>they are compliant with applicable legislation. |  |  |

| Table 3-8: Inventory Disposition |                                 |                                  |                                             |
|----------------------------------|---------------------------------|----------------------------------|---------------------------------------------|
|                                  | Total Inventory<br>Tonnage (Te) | Planned Tonnage to<br>Shore (Te) | Planned Tonnage Left<br><i>In Situ</i> (Te) |
| Subsea Installations             | 422.2                           | 399.5                            | 22.7                                        |
| Pipelines / Umbilicals           | 30,252.5                        | 2,862.1                          | 27,390.4                                    |

Total inventory weights noted are approximate and include the P1, P2 and W1 Xmas trees and all stabilisation features, including rock cover materials. It is TAQA's intention to maximise re-use or recycling of recovered inventory.



# 4 Environmental Appraisal Overview

## 4.1 Environmental Sensitivities

The environmental sensitivities in the Cladhan Field are summarised in Table 4-1 and are based (where relevant) on surveys undertaken at Cladhan and the Tern platform in 2012 and 2019 respectively. The impacts of decommissioning operations on these sensitivities are listed in Table 4-2.

Further details can be found in the supporting Tern Area Environmental Appraisal [4].

| Table 4-1: Enviror        | nmental Sensitivities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Environmental<br>Receptor | Main Feature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Conservation              | There are no Nature Conservation Marine Protected Areas (NCMPAs), Special Areas of Conservation (SACs) or Special Protection Areas (SPAs) within 40 km of the Cladhan subsea facility. The closest protected site is the Pobie Bank Reef SAC, approximately 72 km west of the Tern platform.                                                                                                                                                                                                                                                                                                                                                                         |
| Interests                 | Numerous pockmarks were identified across the wider Tern Area. However, no Methane-Derived Authigenic Carbonate (MDAC) were identified within these pockmarks indicating that these do not qualify as Annex I 'Submarine structures caused by leaking gases' habitat.                                                                                                                                                                                                                                                                                                                                                                                                |
| Seabed                    | The water depth within the Cladhan Field ranges from 148 – 170 m LAT.<br>The physical seabed characteristics recorded from survey work show sediments<br>across the Tern Area are mostly sandy, with fine-silty sand reported at the Cladhan<br>Field. Under the European Nature Information System (EUNIS) habitat<br>classification, the predicted broad-scale seabed types around the Cladhan Field is<br>A5.27 "deep circalittoral sand" which represents offshore (deep) circalittoral habitats<br>with fine sands or non-cohesive muddy sands. This habitat type falls within the<br>broad habitat Priority Marine Feature (PMF) "offshore sands and gravels". |
|                           | Hydrocarbon concentrations within the wider area surrounding the Cladhan Field<br>infrastructure are generally within expected background levels for the NNS but<br>increase with proximity to infrastructure.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                           | The Cladhan wells were drilled using Water-Based Mud (WBM) and therefore do not have any associated cuttings contamination.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Fish                      | The Cladhan Field peak spawning for cod occurs between February and March<br>haddock occurs between February and April, Norway pout between February and<br>March and saithe between January and February. Whiting also spawns in the area<br>at a lower intensity between February and June.                                                                                                                                                                                                                                                                                                                                                                        |
|                           | The Cladhan Field is a potential nursery ground for anglerfish, blue whiting,<br>European hake, haddock, herring, ling, mackerel, spurdog, whiting and Norway<br>pout. Blue whiting is the only species with a high nursery intensity in the Cladhan<br>Field while other species have a lower nursery intensity.                                                                                                                                                                                                                                                                                                                                                    |
| Fisheries                 | The Cladhan Field is located in International Council for the Exploration of the Sea (ICES) rectangle 51F0. This region is primarily targeted for demersal species; with a negligible contribution from pelagic and shell fisheries in 2022. Fishing effort is dominated by trawl fishing gears. Annual fishery landings by weight and value are considered low for demersal and low pelagic fisheries in comparison to other areas of the North Sea.                                                                                                                                                                                                                |



| Table 4-1: Environmental Sensitivities |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Environmental<br>Receptor              | Main Feature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| Marine Mammals                         | Harbour porpoise, Atlantic white-sided dolphin, minke whale and beaked whale are<br>the most abundant species recorded in the Cladhan Field. The harbour porpoise is<br>by far the most frequently recorded cetacean in the Cladhan Field, which is<br>reflective of these being the most abundant and widely distributed cetaceans in the<br>North Sea.                                                                                                                                                                                                                                       |  |  |
|                                        | Both grey and harbour seal densities are known to be low in the Cladhan Field, densities are predicted to be between 0 and 0.001% of the British Isles at-sea population per 25 km <sup>2</sup> for both species.                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| Birds                                  | In the NNS the most numerous species present are likely to be northern fulmar, black-legged kittiwake and common guillemot. The Cladhan Field is located within or in the vicinity of a wider area of aggregation (or hotspots) for northern fulmar, northern gannet, European storm petrel, Arctic skua, great skua, black-legged kittiwake, herring gull, Arctic tern, guillemot, razorbill and Atlantic puffin during their breeding season.                                                                                                                                                |  |  |
|                                        | Seabird sensitivity to oil pollution in the Cladhan Field is considered low throughout most of the year, except for January when sensitivity is expected to be extremely high and high May – June.                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| Onshore<br>Communities                 | Waste generated during decommissioning will be brought to shore and will be<br>managed in line with TAQA's Waste Management Strategy and the Waste<br>Hierarchy, as part of the project AWMP, using approved waste contractors and in<br>liaison with the relevant Regulators. Preventing waste is ultimately the best option,<br>achieved through reducing consumption and using resources more efficiently.<br>However, this is followed by re-use and recycling of goods. If all re-use opportunities<br>have been taken by TAQA, the next preferable option is for recycling of materials. |  |  |
|                                        | Should NORM be encountered, TAQA will ensure the onshore site(s) are suitably licenced to accept the waste arising from the decommissioning of the subsea infrastructure.                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                        | All waste will be managed in compliance with relevant waste legislation by a licenced and/or permitted waste management contractor. The selected contractor will be assessed for competence through due diligence and duty of care assurance activities.                                                                                                                                                                                                                                                                                                                                       |  |  |



| Table 4-1: Environmental Sensitivities |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Environmental<br>Receptor              | Main Feature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Other Users of<br>the Sea              | The proposed decommissioning operations will be located in a well-developed area for oil and gas extraction. The closest piece of surface infrastructure is the Tern platform, 15.6 km north northeast of the Cladhan Field. Shipping density in the Cladhan Field is very low or low, with a localised increase in vessel activity around Tern platform, due to the presence of operational and maintenance vessels.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
|                                        | There are no designated military practice and exercise areas and no designated or protected wrecks nearby. The are also no offshore renewable or wind farm activity. The Innovation for Targeted Oil and Gas (INTOG) search and exclusion areas are located within close vicinity of the proposed operations. INTOG area Ne-b is located approximately 15 km south-east of the Tern platform and 22 km south-east of the Cladhan manifold. INTOG area Ne-a is located 27 km north-west of the Tern platform and 32 km north-west of the Cladhan manifold. The only pipeline (other than TAQA pipelines) where a crossing is present is water injection pipeline PL3574, which crosses the Western Isles to Tern Gas line, PL3186, operated by Dana Petroleum. There are no planned or operating telecommunication cables in close vicinity (< 40 km) of the Tern Area. |  |
| Atmosphere                             | The cumulative emissions generated by the activities associated with the decommissioning of the Cladhan Field are small relative to life-time production. Estimated Carbon dioxide (CO <sub>2</sub> ) emissions to be generated by the selected decommissioning options are 24,350 Te, equating to approx. 0.12 % of total UK Continental Shelf (UKCS) emissions (2023). Most of these emissions are related to offshore operation of vessels (12,553 Te CO <sub>2</sub> ) and new manufacture to replace recyclable materials (8,419 Te CO <sub>2</sub> ).                                                                                                                                                                                                                                                                                                            |  |



## 4.2 Potential Environmental Impacts and their Management

The EA [4] process has considered the potential for significant environmental effects as a result of the decommissioning activities described within this Decommissioning Programme. The EA has not identified any significant residual environmental impacts, and it is anticipated that any physical, biological, or socio-economic impact during the decommissioning activities will be negligible and short term.

Table 4-2 details the potential environmental impacts and the management and mitigation measures that will be put in place to further reduce the potential for environmental effects.

# T,Q,

| Table 4-2: Environmental Impacts and Management                                           |                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Activity                                                                                  | Main impacts                                                                                                                                | Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Subsea<br>installation<br>removal<br>(including<br>stabilisation<br>materials)            | Seabed disturbance<br>impacts from<br>excavation and<br>removal of subsea<br>installations and<br>associated<br>stabilisation<br>materials. | <ul> <li>Impacts to the seabed from project activities have been assessed fully in the EA [4].</li> <li>The following mitigation measures are proposed to minimise impacts: <ul> <li>It is envisaged that all vessels undertaking the decommissioning and removal works would be dynamically positioned vessels. As a result, there will be no direct interaction between vessel positioning and the seabed.</li> <li>All activities which may lead to seabed disturbance will be planned, managed and implemented in such a way that disturbance is minimised.</li> <li>Activities will be risk assessed and permitted under a Marine Licence.</li> <li>A debris survey will be undertaken at the completion of the decommissioning activities. Any debris identified as resulting from oil and gas activities will be recovered from the seabed where possible.</li> <li>Any remedial rock armour will be placed to reduce unnecessary spreading of the rock footprint and ensure the minimum safe quantity of rock is used.</li> <li>Clear seabed verification will ensure there is no residual risk to other sea users. Non-intrusive verification techniques will be considered in the first instance and in agreement with OPRED and fishing bodies.</li> </ul> </li> </ul>                                                                                                                          |
| Decommissioning<br>surface laid<br>flowlines<br>(including<br>stabilisation<br>materials) | Seabed disturbance<br>impacts from<br>excavation and<br>removal of subsea<br>installations and<br>associated<br>stabilisation<br>materials. | <ul> <li>Impacts to the seabed from project activities have been assessed fully in the EA [4].</li> <li>The following mitigation measures are proposed to minimise impacts:</li> <li>Currently it is envisaged that all vessels undertaking the decommissioning and removal works would be dynamically positioned vessels. As a result, there will be no direct interaction between vessel positioning and the seabed.</li> <li>All activities which may lead to seabed disturbance will be planned, managed and implemented in such a way that disturbance is minimised.</li> <li>Activities will be risk assessed and permitted under a Marine Licence.</li> <li>Careful planning, selection of equipment, management and implementation of activities. Any debris identified as resulting from oil and gas activities will be recovered from the seabed where possible.</li> <li>Any remedial rock cover will be placed by a fall pipe vessel equipped with an underwater camera on the fall pipe. This will ensure accurate placement of the rock and reduce unnecessary spreading of the rock footprint and ensure that minimum safe quantity of rock is used.</li> <li>Clear seabed verification will ensure there is no residual risk to other sea users. Non-intrusive verification techniques will be considered in the first instance and in agreement with OPRED and fishing bodies.</li> </ul> |

# 

| Table 4-2: Environmental Impacts and Management                                  |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Activity                                                                         | Main impacts                                                                                                                                                                                                                                                        | Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| Decommissioning<br>buried flowlines<br>(including<br>stabilisation<br>materials) | Seabed disturbance<br>impacts from<br>excavation and<br>removal of subsea<br>installations and<br>associated<br>stabilisation<br>materials.<br>Snagging risk to<br>commercial fisheries<br>associated with<br>pipelines<br>decommissioned <i>in</i><br><i>situ.</i> | <ul> <li>The following mitigation measures are proposed to minimise impacts:</li> <li>All activities which may lead to seabed disturbance will be planned, managed and implemented in such a way that disturbance is minimised.</li> <li>Currently it is envisaged that all vessels undertaking the decommissioning and removal works would be dynamically positioned vessels. As a result, there will be no direct interaction between vessel positioning and the seabed.</li> <li>Activities will be risk assessed and permitted under a Marine Licence (ML).</li> <li>A debris survey will be undertaken at the completion of the decommissioning activities. Any debris identified as resulting from oil and gas activities will be recovered from the seabed where possible.</li> <li>Any exposures less than 20 m in length or cut pipeline ends will undergo rock placement to ensure they are over-trawlable to active fishing gears.</li> <li>Any remedial rock armour will be placed to reduce unnecessary spreading of the rock footprint and ensure the minimum safe quantity of rock is used.</li> <li>Clear seabed verification will ensure there is no residual risk to other sea users. Non-intrusive verification techniques will be considered in the first instance and in agreement with OPRED and fishing bodies.</li> <li>Admiralty charts and the FishSAFE system will be updated.</li> <li>TAQA will monitor the seabed to assess any seabed depressions or clay berms which may present a snag risk.</li> <li>Post-decommissioning monitoring will be undertaken at a frequency agreed with OPRED.</li> </ul> |  |  |  |  |  |



## **5** Interested Party Consultations

TAQA consulted a wide range of interested parties during the planning and preparation stages of the Northern North Sea fields subsea comparative assessment process. Workshops and individual consultations with stakeholders were held to describe the CA process, to invite feedback and to understand stakeholders' particular interests regarding the impacts of decommissioning. Following this a comparative assessment report [3] was published documenting the findings from the CA process.

The consultees included:

- Scottish Fishermen's Federation (SFF)
- OPRED's Offshore Decommissioning Unit (ODU; present as an observer)
- HSE
- Joint Nature Conservation Committee (JNCC)
- North Sea Transition Authority (NSTA)
- Scottish Environment Protection Agency (SEPA)
- Shell
- Fairfield

Furthermore, CA workshop invites were issued to Dana Petroleum, ExxonMobil, Neo Energy, ConocoPhillips, Norske Shell, Chrysaor, MOL Energy UK, ONE-Dyas, NFFO, NIFPO, Global Marine Systems and the Marine Directorate, but these organisations were unable to attend.

Given that Cladhan is one of the NNS subsea fields, the recommendations from this CA have been applied to Cladhan [3].

This Decommissioning Programme is still to be considered by the stakeholders. Following completion of the formal Decommissioning Programme consultation process, TAQA will complete Table 5-1 with comments received from stakeholders, and the company's responses

| Table 5-1: Summary of Stakeholde                               | er Comments |          |  |
|----------------------------------------------------------------|-------------|----------|--|
| UK                                                             |             |          |  |
| Stakeholder                                                    | Comment     | Response |  |
| Statutory Consultees                                           |             |          |  |
| The National Federation of<br>Fishermen's Organisations (NFFO) |             |          |  |
| SFF                                                            |             |          |  |
| Northern Irish Fish Producers'<br>Organisation (NIFPO)         |             |          |  |
| Global Marine Systems Limited (GMS)                            |             |          |  |
| NSTA                                                           |             |          |  |
| Other Stakeholders                                             |             |          |  |
| Public                                                         |             |          |  |



# 6 Programme Management

#### 6.1 Project Management and Verification

TAQA, on behalf of the Section 29 Notice Holders, has appointed a project management team to manage the planning and execution of this decommissioning programme. The team will ensure that decommissioning is conducted in accordance with TAQA health, environmental and safety management principles, and relevant legislation. TAQA's management principles will govern operational controls, hazard identification and risk management. The work will be coordinated with due regard to interfaces with other operators' oil and gas assets and with other users of the sea.

TAQA will control and manage the progress of all permits, licences, authorisations, notices, consents, and consultations required. Any significant changes to the decommissioning programmes will be discussed and agreed with OPRED.

### 6.2 Post-decommissioning Debris Clearance and Verification

A post-decommissioning site survey will be carried out within a 500m radius of the Cladhan subsea installations sites and along corridors defined as 50 m either side of each pipeline route. Any oilfield-related seabed debris that is found will be recovered and returned to shore for recycling or appropriate disposal.

Independent verification of the state of the seabed will be obtained by non-intrusive methods, e.g., sidescan SONAR, in the first instance, or trawling within the area around the Cladhan facilities as appropriate. Following verification, TAQA will issue a statement of clearance to all relevant governmental departments and non-governmental organisations.

The post-decommissioning survey results will be notified to the UK Fisheries Offshore Oil and Gas Legacy Trust Fund Ltd for inclusion in their FishSAFE system, and to the United Kingdom Hydrographic Office for notification and marking on Admiralty charts and notices to mariners.

### 6.3 Schedule

The main milestones in the Cladhan decommissioning process were, or are anticipated to be:

| ٠ | Cladhan cessation of production:                | Q1 2024          |
|---|-------------------------------------------------|------------------|
| • | Well P&A window:                                | 2025 - 2030      |
| • | Cladhan subsea installation & pipeline removal: | 2028 - 2032      |
| • | Post removal survey:                            | 2032 - 2033      |
| • | Riser Removal                                   | TBC <sup>1</sup> |
|   |                                                 |                  |

The envisaged Tern Area decommissioning programme is illustrated in Figure 6-1.

<sup>&</sup>lt;sup>1</sup> The Cladhan risers (and riser section of the umbilical) are attached to the Tern jacket and will be decommissioned during jacket decommissioning.



|                                            | 2022        | 2023        | 2024        | 2025        | 2026        | 2027        | 2028        | 2029        | 2030        | 2031        | 2032        | 2033        | 2034        |
|--------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|                                            | Q1 Q2 Q3 Q4 |
| CoP                                        |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Flushing/Make Safe                         |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Well P&A Planning                          |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Window for Well P&A*                       |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Removal Tendering                          |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Contract Award                             |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Onshore Engineering                        |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Subsea Removal Window                      |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Disposal Window                            |             |             |             |             |             |             |             |             |             |             |             |             | 1           |
| Post Removal Survey                        |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Close Out Report                           |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Onshore Most Likely                        |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Offshore Most Likely                       |             |             |             |             |             |             |             |             |             |             |             |             |             |
| Potential Activity Window                  |             |             |             |             |             |             |             |             |             |             |             |             |             |
| * The Well P&A offshore activity indicates | WDP3 activ  | ity         |             |             |             |             |             |             |             |             |             |             |             |

Figure 6-1: Cladhan Decommissioning Schedule

## 6.4 Costs

An overall cost estimate following Offshore Energies UK Guidelines on Decommissioning Cost Estimation (Issue 3, October 2013) will be provided to OPRED in confidence.

| Table 6-1: Provisional Decommissioning Programme Costs        |                                    |  |  |  |  |  |
|---------------------------------------------------------------|------------------------------------|--|--|--|--|--|
| Item                                                          | Estimated Cost (£m)                |  |  |  |  |  |
| WBS 1 – Operator Project Management                           |                                    |  |  |  |  |  |
| WBS 2 – Post CoP OPEX                                         |                                    |  |  |  |  |  |
| WBS 3 – Well Abandonment                                      |                                    |  |  |  |  |  |
| WBS 4 – Facilities & Pipelines Permanent Isolation & Cleaning |                                    |  |  |  |  |  |
| WBS 5 – Topsides Preparation                                  |                                    |  |  |  |  |  |
| WBS 6 – Topsides Removal                                      | Provided to OPRED in<br>confidence |  |  |  |  |  |
| WBS 7 – Substructure Removal                                  |                                    |  |  |  |  |  |
| WBS 8 – Onshore Recycling                                     | •                                  |  |  |  |  |  |
| WBS 9 – Subsea Infrastructure                                 |                                    |  |  |  |  |  |
| WBS 10 – Site Remediation                                     |                                    |  |  |  |  |  |
| WBS 11 – Monitoring                                           |                                    |  |  |  |  |  |

### 6.5 Close Out

A close out report will be submitted to OPRED and posted on the TAQA decommissioning website detailing any variations from the Decommissioning Programme within twelve months of the completion of the offshore decommissioning scopes and disposal, including debris removal, verification of seabed clearance (where applicable) and the first post-decommissioning environmental survey.



## 6.6 Post-Decommissioning Monitoring and Evaluations

TAQA will carry out a post-decommissioning environmental seabed survey, centred around the sites of the Cladhan facilities.

All Cladhan sites will be the subject of surveys when decommissioning activity has concluded. A survey of the condition of these areas and the adjacent seabed will also be undertaken at the end of the removal activities. The facilities that are proposed to be left in place, e.g., buried pipelines, will be subject to a monitoring programme to be agreed between TAQA and OPRED.

A copy of the survey results will be forwarded to OPRED. After the survey results have been sent to OPRED and reviewed, a post decommissioning survey regime will be agreed between TAQA and OPRED taking account of ongoing liability, the findings of previous surveys, and a risk-based approach to the frequency and scope of subsequent surveys.

#### 6.7 Management of Residual Liability

Any equipment that is left in place will remain the responsibility of the Cladhan S29 notice holders.

TAQA recognises that the parties to the programmes will continue to retain residual liability for any infrastructure left in place.

TAQA will engage with OPRED on all future legacy and liability matters and requirements relating to the infrastructure left in place.



# 7 Supporting Documents

- [1] Guidance Notes Decommissioning of Offshore Oil and Gas Installations and Pipelines November 2018, BEIS
- [2] Well Decommissioning Guidelines, OEUK, 2022
- [3] Comparative Assessment Northern North Sea Subsea Assets, Xodus Group, 77IFS-154925-L99-0006-05, Revision A04, July 2024
- [4] Tern Area Environmental Appraisal, Xodus Group, 77IFS-188133-H99-0001-06, Revision A04, July 2024
- [5] Tern Upper Jacket Decommissioning Programme, TB-TEADEC01-X-AD-0002-000, Revision A1, April 2023



# 8 Section 29 Holders' Letters of Support

Letters of Support will be obtained from the Section 29 Holders on final approval of the Decommissioning Programme, in advance of CoP and full field decommissioning, and will be provided within this section of the Programme.

#### CONTACT

TAQA Bratani Limited Brimmond House, Prime Four Business Park, Kingswells, Aberdeen, AB15 8PU United Kingdom

Tel: +44 (0)1224 275275

