

<u>The Bull Inn</u>

Flood Risk, Drainage Strategy & Maintenance Report

V3

Client: Caldecotte Group

Our Ref: The Bull Inn

Date: 06/01/20245

Assessment of Flood Risk to Proposed Development

The site has been assessed to understand whether a Flood Risk Assessment is required to accommodate the planning application.

As per the Environment Agency Flood Map for Planning, it stated that an FRA will only be required in the event of:

- bigger that 1 hectare (ha)
- In an area with critical drainage problems as notified by the Environment Agency.
- identified as being at increased flood risk in future by the local authority's strategic flood risk assessment
- at risk from other sources of flooding (such as surface water or reservoirs) and its development would increase the vulnerability of its use (such as constructing an office on an undeveloped site or converting a shop to a dwelling)

The site area does not exceed 1 hectare with the site sitting within Flood Zone 1.

It is noted that there is some pluvial flooding as identified on the EA floodzone maps. >>

This is due to poor surface water drainage within the existing pub garden and as part of the proposed development this issue will be mitigated by way of a filter drain installed within the existing garden.

This has been identified on our proposed drainage strategy drawing.

On this basis, we would not deem the site subject to an FRA requirement, any risk of surface water flooding will be negated via the proposals of new drainage network in place.

Further clarity can be found within appendix:

- The Bull Inn flood-map-planning-2024-11-05
- The Bull Inn-C-001-P03- Drainage Strategy

Assessment of Drainage Options

Surface Water

All surface water flows from the proposed development should drain in-line with the drainage hierarchy, as outlined in paragraph 80, (Reference ID: 7-080-20150323), of the National Planning Practice Guidance. We also recognise the need to priorities the use of multifunctional sustainable drainage systems for the management of surface water in accordance with national planning policy.

Generally, the aim should be to discharge surface run off as high up the following hierarchy of drainage options as reasonably practicable, below we have provided our possible surface water options based on information available to us at this stage, assumptions may be made however confirmation with associated evidence is to be provided at the full planning application stage.

This is outlined as follows, in order of priority:

1. Into the ground (infiltration)

In order to assess the permeability rates for the subsoil, a BRE365 soakaway test was undertaken. From this, calculations of the permeability rates were recorded which can confirm that the permeability rate of the subsoil is recorded as between $1.3 \times 10-5$ m/sec & $2.4 \times 10-5$ m/sec.

A soakaway solution has therefore been considered within the overall surface water drainage proposals against the lowest rate provided as per general BRE365 guidance.

Please see appendix: The Bull Inn - BRE365 Tests Results

Based on the above, the 3 following stages of the hierarchy have not been explored further.

However, whilst the ground conditions lend themselves to a soakaway solution, we believe an option for an overspill pipe, set above the top of the soakaway tank level is appropriate. This overspill pipe will discharge flows to the nearby public sewer in an extreme event greater than the 100-year event + climate change and would be beneficial to further reduce any risk of flooding.

DGC Consulting Ltd – DGC House – 19 High Street – Towcester – NN12 7TN 07946 263669 – accounts@dgc-engineering.co.uk DGC Consulting Ltd is a limited company registered in England and Wales

Assessment of Surface Water Design Parameters.

The main sewerage for the development will remain private with surface water connections to the existing on-site private sewer network. This therefore ensures that the main sewerage infrastructure shall be owned and maintained by the client or management company.

As concluded within the assessment of the drainage options, a soakaway/infiltration discharge method has been proposed for the discharge of surface water, as per the The SuDS Manual C753 CIRIA guidance document, a soakaway solution is considered a surface water interception feature and there for no further SUDs features have been proposed for the scheme.

Cellular soakaway/attenuation tank has been sized to cater for the site impermeable area of 720m2.

The overall sites system is to be designed in accordance with Sewers for Adoption 6th Edition and will include the design for attenuation of flows for up to the 1 in 30 year + 40% & the 1 in 100 year + 45% as per the AEP plus climate change storm events without flooding with an infiltration rate set at 1.3×10^{-5} m/hour, which is the lesser of the 3 rates taken via the BRE365 infiltration tests.

A review was undertaken for Urban Creep against the Bristol SUDs design guide, with the scheme consisting of block apartments, no urban creep has been considered within the capacity of the surface water drainage network.

The tank has also been designed and checked to ensure the half drain down time is within a 24-hour period, the tank invert level has been set to ensure the 10-year storm event water level is less than the invert level of the lowest incoming pipe as per the BRE365 requirements.

An overall plan for the surface water drainage network can be found within Appendix:

• The Bull Inn-C-001-P03- Drainage Strategy

Details of the micro drainage calculations and infiltration rates have been designed and set out as per appendices below.

- The Bull Inn Soakaway Design Calculations 14.11.2024
- The Bull Inn SW Hydraulic Calcs 14.11.2024

Proposed Maintenance (in accordance with best practice and CIRIA C753 - The SuDS Manual).

Pipework / manhole			
Desidencesistences	Inspect pipe work and clear blockages	A second line of the second second second	
Regular maintenance	Inspect manholes and clear blockages	Annually of after severe storms	
Remedial Actions	Repair any defects in network	As required	
Catchpit			
Regular maintenance	Inspect structure and remove any debris/litter on structure.	Annually or after severe storms	
Remedial Actions	Replace malfunctioning parts or structures	As required	
Gullies			
Regular maintenance	Inspect structure and remove any debris/litter on structure.	Annually or after severe storms	
Remedial Actions	Replace malfunctioning parts or structures	As required	
	Monitor inspection chambers		
Soakaways			
	Inspect for sediment and debris in pre-treatment components		
	and floor of inspection tube or chamber and inside of concrete	Annually	
Regular maintenance	manhole rings		
	Cleaning of gutters and any filters on downpipes		
	Trimming any roots that may be causing blockages		
	Remove sediment and debris from pre-treatment components		
Occasional maintenance	and floor of inspection tube of chamber and inside of concrete		
	manhole rings		
	Reconstruct soakaway and/or replace or clean void fill, if	As required	
Demonstration of	performance deteriorates or failure occurs		
Remedial actions	Replacement of clogged geotextile (will require reconstruction]	
	of soakaway)		
Monitoring	Inspect silt traps and note rate of sediment accumulation	Monthly	
wontoring	Check soakaway to ensure emptying is occurring	Annually	

Filter Drains				
Regular maintenance	Remove litter and debris from filter drain surface, access chambers and pre-treatment devices			
	Inspect filter drain surface, inlet/outlet pipework and control systems for blockages, clogging, standing water and structural damage	Monthly		
	Inspect pre-treatment systems, inlets and perforated pipework for silt accumulation, and establish appropriate silt removal frequencies	6 monthly		
	Remove sediment from pre-treatment devices			
	Remove or control tree roots where they are encroaching the sides of the filter drain, using recommended methods			
Occasional maintenance	At locations with high pollution loads, remove surface geotextile and replace and wash or replace overlaying filter medium	As required / 5 yearly		
	Clear perforated pipework of blockages			

Assessment and Proposals for Foul Water Drainage

The site has been assessed for existing foul sewers to enable a proposed foul outfall solution from the new development site.

It has been found that due to the historical buildings on site, existing private sewers are available to be utilised, further clarification will be required by way of CCTV to confirm routings and depths.

In the case that the on-site sewers are not suitable for use, a direct connection to the existing surrounding public sewers will be proposed subject to agreement with Local water authority.

- Please see: The Bull Inn-C-001-P02- Drainage Strategy
- The Bull Inn WW Sewer records

Flood map for planning

Your reference <Unspecified>

Location (easting/northing) 362904/172660

Created 5 Nov 2024 7:55

Your selected location is in flood zone 1, an area with a low probability of flooding.

You will need to do a flood risk assessment if your site is any of the following:

- bigger that 1 hectare (ha)
- In an area with critical drainage problems as notified by the Environment Agency
- identified as being at increased flood risk in future by the local authority's strategic flood risk assessment
- at risk from other sources of flooding (such as surface water or reservoirs) and its development would increase the vulnerability of its use (such as constructing an office on an undeveloped site or converting a shop to a dwelling)

Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

Flood risk data is covered by the Open Government Licence **which** sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2024 OS AC0000807064. https://flood-map-for-planning.service.gov.uk/os-terms

© Environment Agency copyright and / or database rights 2024. All rights reserved. © Crown Copyright and database right 2024. Ordnance Survey licence number AC0000807064.

Information in this plan is provided for identification purposes only. No warranty as to accuracy is given or implied. The precise route of pipe work may not exactly match that shown. Wessex Water does not accept liability for inaccuracies. Sewers and lateral drains adopted by Wessex Water under the Water Industry (Schemes for Adoption of Private Sewers) Regulations 2011 are to be plotted over time and may not yet be shown. In carrying out any works, you accept liability for the cost of any repairs to Wessex Water apparatus damaged as a result of your works. You are advised to commence excavations using hand tools only. Mechanical digging equipment should not be used until pipe work has been precisely located. If you are considering any form of building works and pipe work is shown within the boundary of your property or a property to be purchased (or very close by) a surveyor should plot its exact position prior to commencing works or purchase. Building over or near Wessex Water's apparatus is not normally permitted.

Unit J8 Peek Business Park Woodside Bishops Stortford CM23 5RG

01920 822233 | www.hesi.co.uk | info@hesi.co.uk Geotechnical Assessments | Environmental Assessments | Desktop Studies | Contamination Analysis Appendix No. : 4 Sheet No. : 1

Date :

Job No. : 19180

Oct-24

Soakaway No.: SA1		Site Address:	The Bull Inn, 333 Crew's H	lole Road, Bristol. BS5 8B	Q	Fill No.:	One	
B.R.E 365 - Soil Infiltr	ation Rate		Start Time (Mins)	Depth of Water Drop (m)	Depth of Water (m)	Value to Note time at (m)	Time Equals (Mins)	
Depth of Test Hole		2.10 m	0	0.000	0.600	1.95	70 = t75	5
Dimensions of Test Hole	Width	0.60 m	1	0.030	0.570	1.65	9 = t25	5
	Length	1.60 m	2	0.050	0.550			
	Ū.		3	0.060	0.540			
Depth to Top of Water at Sta	art of Test	1.50 m	4	0.080	0.520			
Depth to discharge Drain		1.00 m	5	0.100	0.500			
			10	0.160	0.440			
75% 0.1	15		20	0.240	0.360			
25% 0.4	15		30	0.300	0.300			
V75%-25% 0.2	29		60	0.420	0.180			
ap50 3.3	38		90	0.500	0.100			
tp75-25	61							
Soil Infiltration Rate is	2.3E-0	5 m/s						

Unit J8 Peek Business Park Woodside Bishops Stortford CM23 5R

01920 822233 www.hesi.co.uk info@hesi.co.uk

 Appendix No. :
 4

 Sheet No. :
 2

 Job No. :
 19180

 Date :
 Oct-24

Soakaway No.: SA1		Site Address:	The Bull Inn, 333 Crew	's Hole Road, Bristol. BS5 8	BQ	Fill No.:	Two		
B.R.E 365 - Soil Infil	tration Rate		Start Time (Mins)	Depth of Water Drop (m)	Depth of Water (m)	Value to Note time at (m)	Tim	ie Equals (Mins)	j.
Depth of Test Hole		2.10 m	0	0.000	0.600	1.95	70	=	t75
Dimensions of Test Hole	Width	0.60 m	1	0.020	0.580	1.65	11	=	ť25
	Length	1.60 m	2	0.040	0.560				
Depth to Top of Water at	Start of Test	1.50 m	4	0.060	0.540				
Depth to discharge Drain		1.00 m	5 10	0.070	0.530				
75%	0.15		20	0.180	0.420				
25%	0.45		30	0.240	0.360				
V75%-25%	0.29		60	0.400	0.200				
ap50 3	3.38		90	0.550	0.050				
tp75-25	59								
Soil Infiltration Rate is	2.4E-	05 m/s							

Unit J8 Peek Business Park Woodside Bishops Stortford CM23 5R

01920 822233 www.hesi.co.uk info@hesi.co.uk

 Appendix No. :
 4

 Sheet No. :
 3

 Job No. :
 19180

 Date :
 Oct-24

Soakaway No.:	SA1		Site Address:	The Bull Inn, 333 Crew's	Hole Road, Bristol. BS5 8B	Q	Fill No.:	Three		
B.R.E 365 - Soi	il Infiltratio	on Rate		Start Time (Mins)	Depth of Water Drop (m)	Depth of Water (m)	Value to Note time at (m)	Tim	e Equals (Mins)	
Depth of Test Hole			2.10 m	0	0.000	0.700	1.93	145	=	t75
Dimensions of Test	tHole \	Vidth	0.60 m	1	0.030	0.670	1.58	13	=	ť25
	L	ength	1.60 m	2	0.050	0.650				
		-		3	0.060	0.640				
Depth to Top of Wa	ater at Start	of Test	1.40 m	4	0.070	0.630				
Depth to discharge	Drain		1.00 m	5	0.080	0.620				
				10	0.160	0.540				
75%	0.18			20	0.200	0.500				
25%	0.53			30	0.240	0.460				
V75%-25%	0.34			60	0.340	0.360				
a p50	3.38			90	0.420	0.280				
tp75-25	132			120	0.490	0.210				
				150	0.530	0.170				
Soil Infiltration Ra	te is	1.3E-	-05 m/s							

	1	Page 0				
	The Bull					
	SW Hydraulic Calcs					
	Soakaway	Mirrn				
Date 14/11/2024 09:22	Designed by JC	Drainano				
File BULL INN - DRAINAGE CALCS	Checked by	Diamage				
Innovyze	Network 2019.1					
STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Surface Network 1 Discuss STANDARD Manhole Sizes STANDARD FSR Rainfall Model - England and Wales Return Period (years) 1 PIMP (%) 100 M5-60 Minimum Backdrop Height (m) 0.200 Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 1.500 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200 Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00 Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits						
Time Area Time Area (mins) (ba) (mins) (ba)	A Time Area Time Area Time Area (mins) (ha) (mins) (ha) (mins) (ha)					
0-4 0.017 4-8 0.00	7 8-12 0.000 12-16 0.026 16-20 0.021					
Total Area	Contributing (ha) = 0.072					
Total F	Pipe Volume (m³) = 1.917					
<u>Network Design</u>	Table for Surface Network 1					
« - Indic	ates pipe capacity < flow					
PN Length Fall Slope I.Area	T.E. Base k HYD DIA Section Type	e Auto Design				
(22) (22) (22) (22) (22)		2221911				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5.00 0.0 0.600 o 100 Pipe/Conduit	t 🔒				
1.001 13.000 0.423 - 50.5 0.007						
2.000 20.213 0.253 79.9 0.007	5.00 0.0 0.600 o 100 Pipe/Conduit	t 🔒				
2.001 3.162 0.447 7.1 0.007	0.00 0.0 0.600 o 150 Pipe/Conduit	t 🔒				
1.0024.2360.7755.50.0191.00319.2840.000192836.00.000	0.00 0.0 0.600 o 150 Pipe/Conduit 0.00 0.0 0.600 o 225 Pipe/Conduit	t 🤮 t 🌐				
Netw	ork Results Table					
		_				
PN Rain T.C. US/IL E I.	Area Σ Base Foul Add Flow Vel Cap F	low				
	$a_{1} = 10m (1/3) (1/3$	-/ 3/				

114	Nalli	1.0.	05/11	d I.Area	2 Dabe	rour	Huu FIOW	Ver	cap	T TOM
	(mm/hr)	(mins)	(m)	(ha)	Flow (l/s)	(l/s)	(l/s)	(m/s)	(l/s)	(l/s)
1.000	50.00	5.43	13.400	0.007	0.0	0.0	0.0	0.86	6.8	0.9
1.001	49.65	5.55	13.073	0.014	0.0	0.0	0.0	1.82	32.1	1.9
2 000	50 00	5 39	13 400	0 007	0.0	0 0	0.0	0.86	6.8	0 9
2.000	50.00	5.40	13.097	0.014	0.0	0.0	0.0	3.81	67.4	1.9
1.002	49.58	5.57	12.650	0.047	0.0	0.0	0.0	4.34	76.7	6.3
1.003	26.39	18.92	11.800	0.047	0.0	0.0	0.0	0.02	1.0«	6.3

©1982-2019 Innovyze

		Page 1
Date 14/11/2024 09:22 File BULL INN - DRAINAGE CALCS	The Bull SW Hydraulic Calcs Soakaway Designed by JC Checked by	Micro Drainage
Innovyze	Network 2019.1	
<u>Network Design</u> PN Length Fall Slope I.Area T (m) (m) (1:X) (ha) (m	Table for Surface Network 1 .E. Base k HYD DIA Section Type ins) Flow (1/s) (mm) SECT (mm)	Auto Design
3.000 19.062 0.155 122.7 0.025	5.00 0.0 0.600 o 150 Pipe/Conduit	
1.004 6.696 0.045 148.8 0.000	0.00 0.0 0.600 o 150 Pipe/Conduit	
Netr	work Results Table	
PN Rain T.C. US/IL Σ I. (mm/hr) (mins) (m) (h	Area Σ Base Foul Add Flow Vel Cap H a) Flow (l/s) (l/s) (l/s) (m/s) (l/s) ('low l/s)
3.000 50.00 5.35 12.030 0	0.025 0.0 0.0 0.0 0.91 16.0	3.3
1.004 26.28 19.05 11.400 0	0.072 0.0 0.0 0.0 0.82 14.5	6.3

		Page 2
	The Bull	
	SW Hydraulic Calcs	
	Soakaway	Mirrn
Date 14/11/2024 09:22	Designed by JC	Dcainago
File BULL INN - DRAINAGE CALCS	Checked by	Diamaye
Innovyze	Network 2019.1	

Manhole Schedules for Surface Network 1												
MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Bac (kdrop mm)
S1	14.000	0.600	Open Manhole	300	1.000	13.400	100					
S2	14.000	0.927	Open Manhole	450	1.001	13.073	150	1.000	13.123	100		
S4	14.000	0.600	Open Manhole	300	2.000	13.400	100					
S5	13.800	0.703	Open Manhole	450	2.001	13.097	150	2.000	13.147	100		
S3	13.650	1.000	Open Manhole	450	1.002	12.650	150	1.001	12.650	150		
								2.001	12.650	150		
S7	13.584	1.784	Open Manhole	600	1.003	11.800	225	1.002	11.875	150		
S9	13.080	1.050	Open Manhole	450	3.000	12.030	150					
S10	13.382	1.982	Open Manhole	600	1.004	11.400	150	1.003	11.800	225		475
								3.000	11.875	150		475
Existing MH	13.086	1.731	Open Manhole	1800		OUTFALL		1.004	11.355	150		

Layout (North)	Manhole Access	Intersection Northing (m)	Intersection Easting (m)	Manhole Northing (m)	Manhole Easting (m)	MH Name
•	Required	172698.034	362905.664	172698.034	362905.664	S1
1	Required	172676.361	362910.436	172676.361	362910.436	S2
•	Required	172695.290	362890.997	172695.290	362890.997	S4
1	Required	172675.584	362895.495	172675.584	362895.495	S5
-	Required	172673.324	362897.707	172673.324	362897.707	53
. ↓	Required	172669.224	362898.770	172669.224	362898.770	S7
•	Required	172630.879	362899.068	172630.879	362899.068	59
	Required	172649.940	362898.895	172649.940	362898.895	S10
i •	No Entry			172649.691	362892.203	Existing MH

©1982-2019 Innovyze

		Page 3
	The Bull	
	SW Hydraulic Calcs	
	Soakaway	Mirrn
Date 14/11/2024 09:22	Designed by JC	Dcainago
File BULL INN - DRAINAGE CALCS	Checked by	Diamage
Innovyze	Network 2019.1	

PIPELINE SCHEDULES for Surface Network 1

<u>Upstream Manhole</u>

PN	Hyd Sect	Diam (mm)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., (mm)	L*W
1.000 1.001	0	100 150	S1 S2	14.000 14.000	13.400 13.073	0.500 0.777	Open Manhole Open Manhole		300 450
2.000 2.001	0 0	100 150	S4 S5	14.000 13.800	13.400 13.097	0.500 0.553	Open Manhole Open Manhole		300 450
1.002 1.003	0 0	150 225	S3 S7	13.650 13.584	12.650 11.800	0.850 1.559	Open Manhole Open Manhole		450 600
3.000	0	150	S9	13.080	12.030	0.900	Open Manhole		450
1.004	0	150	S10	13.382	11.400	1.832	Open Manhole		600

Downstream Manhole

PN	Length (m)	Slope (1:X)	MH Name	C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., (mm)	L*W
1.000	22.192	80.1	S2	14.000	13.123	0.777	Open Manhole		450
1.001	13.086	30.9	S3	13.650	12.650	0.850	Open Manhole		450
2.000	20.213	79.9	S5	13.800	13.147	0.553	Open Manhole		450
2.001	3.162	7.1	S3	13.650	12.650	0.850	Open Manhole		450
1.002	4.236	5.5	S7	13.584	11.875	1.559	Open Manhole		600
1.003	19.284	192836.0	S10	13.382	11.800	1.357	Open Manhole		600
3.000	19.062	122.7	S10	13.382	11.875	1.357	Open Manhole		600
1.004	6.696	148.8	Existing MH	13.086	11.355	1.581	Open Manhole		1800

						Page 4
		The Bull				
		SW Hydraulic (Calcs			
		Soakaway				Mirrn
Date 14/11/2024 09:22		Designed by JO	2			Drainano
File BULL INN - DRAINA	GE CALCS	Checked by				Diamage
Innovyze		Network 2019.1	1			
Ne	twork Classifi	<u>cations for Su</u>	rface Net	work 1		
DN UCMU Ding	Min Cover May Cor	or Bing Turne	MU MU	MU Bing	MU The	~
Name Dia	Depth Depth	l libe lype	Dia Width	Depth	ini iye	
(mm)	(m) (m)		(mm) (mm)	(m)		
1 000 51 100	0 500 0 7	177 Unclassified	300 0	0 500	Unclassi	fied
1.001 S2 150	0.777 0.8	350 Unclassified	450 0	0.777	Unclassi	fied
2.000 S4 100	0.500 0.5	553 Unclassified	300 0	0.500	Unclassi	fied
2.001 \$5 150	0.553 0.8	350 Unclassified	450 0	0.553	Unclassi	fied
1.002 S3 150	0.850 1.5	59 Unclassified	450 0	0.850	Unclassi	fied
3 000 89 150	1.35/ 1.3	857 Unclassified	450 0	0 900	Unclassi	fied
1.004 S10 150	1.581 1.8	32 Unclassified	600 0	1.832	Unclassi	fied
Free	Flowing Outfal	l Details for	Surface	Network	1	
	-11					
Outr Pipe N	all Outlall Number Name	C. Level I. Lev (m) (m)	ei Min T Leve	D,L 1 (mm) (т	w mm)	
		()	(m)	_ (, (-	,	
	1.004 Existing MH	13.086 11.3	55 0.00	0 1800	0	
	Simulation Crit	teria for Surf	ace Netwo	ork 1		
	<u>Dimara di Circa</u>	borra ror barr				
Volumet	ric Runoff Coeff	0.750 Additiona	al Flow - 8	of Tota	l Flow 0.	000
Areal	Reduction Factor	1.000 MADD	Factor * 1	.0m³/ha Si	torage 2.	000
Hot	HOT START (MINS) Start Level (mm)	0 Flow per Pa	INIE erson per I	et Coeffice	ecient U. r/day) O	000
Manhole Headlos	s Coeff (Global)	0.500	EISON DEL 1 F	ay (17pc.) Nun Time	(mins)	60
Foul Sewage p	er hectare (l/s)	0.000	Output 1	Interval	(mins)	1
Nuclear of Transfer Weeks		- f 0 f f 1 i =				· 0
Number of Input Hydro Number of Online Co	grapns 0 Number ntrols 1 Number o	f Storage Structu	ures 1 Numb	per of Th per of Re	me/Area D al Time C	ontrols 0
	Synthet	ic Rainfall De	etails_			
Rai	infall Model	FSR	Prof	ile Type	Summer	
Recurn Per	Region Engla	and and Wales	CV	(Summer) (Winter)	0.750	
	M5-60 (mm)	20.300 Sto	orm Duratio	n (mins)	30	
	Ratio R	0.350				

		Page 5
	The Bull	
	SW Hydraulic Calcs	
	Soakaway	Mirrn
Date 14/11/2024 09:22	Designed by JC	
File BULL INN - DRAINAGE CALCS	Checked by	Diamage
Innovyze	Network 2019.1	

Online Controls for Surface Network 1

Pump Manhole: S10, DS/PN: 1.004, Volume (m³): 1.6

Invert Level (m) 11.400

Depth (m)	Flow (l/s)						
0.100	0.0000	0.900	0.0000	1.700	0.0000	2.500	0.0000
0.200	0.0000	1.000	0.0000	1.800	0.0000	2.600	0.0000
0.300	0.0000	1.100	0.0000	1.900	0.0000	2.700	0.0000
0.400	0.0000	1.200	0.0000	2.000	0.0000	2.800	0.0000
0.500	0.0000	1.300	0.0000	2.100	0.0000	2.900	0.0000
0.600	0.0000	1.400	0.0000	2.200	0.0000	3.000	0.0000
0.700	0.0000	1.500	0.0000	2.300	0.0000		
0.800	0.0000	1.600	0.0000	2.400	0.0000		

		Page 6
	The Bull	
	SW Hydraulic Calcs	
	Soakaway	Mirro
Date 14/11/2024 09:22	Designed by JC	Dcainago
File BULL INN - DRAINAGE CALCS	Checked by	Diamage
Innovyze	Network 2019.1	
<u>Storage Struc</u>	tures for Surface Network 1	
<u>Cellular Stora</u>	ge Manhole: S10, DS/PN: 1.004	
Inve	ert Level (m) 11.400 Safety Factor 2.0	

Invert Level (m) 11.400 Safety Factor 2.0 Infiltration Coefficient Base (m/hr) 0.04680 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.04680

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	59.5	59.5	0.900	0.0	92.3
0.800	59.5	92.3			

Manhole Headloss for Surface Network 1

PN US/MH US/MH Name Headloss

1.000	S1	0.500
1.001	S 2	0.500
2.000	s4	0.500
2.001	s5	0.500
1.002	S3	0.500
1.003	s7	0.500
3.000	S9	0.500
1.004	S10	0.500

													Pa	ige 7
							The	Bull	L					
							SW H	Iydra	aulic	Calc	s			
							Soak	away	/				N	Mirrn
Date 14	4/11/	2024	09:22	2			Desi	gneo	i by	JC			H	
File B	ULL I	NN -	DRAI	NAGE (CALC	cs	Chec	cked	by					Jianiage
Innovy	ze						Netw	ork	2019	.1				
<u>1 y</u>	year 1 Ma	anhole Foul	<u>rn Pe</u> Area Ho E Headl Sewage	niod S al Redu Hot Loss Co e per h	Summ Ictic Star Star eff iecta	nary of on Facto ct (mins evel (mm (Global are (1/s	<u>Criti</u> <u>Surfac</u> r 1.000) 0) 0.500) 0.000	<u>cal</u>	<u>Resu</u> twork Criter dditic MAI w per	<u>lts b</u> <u>ia</u> nal F: D Fact Person	by Maximu low - % of tor * 10m ⁴ Inlet (n per Day	Total Fl /ha Stora (l/per/da	(Rank ow 0.00) ge 2.00) nt 0.80) y) 0.00)	1) for 0 0 0
Nu	mber d	of Inp cof (R	put Hyd Dnline ainfal: Margin Return	lrograp Contro l Model Region for F. Duration Climate	hs (lls 1 l En lood Pr on(s d(s) e Ch) Numb Number gland ar Risk Wa Analys: Iner ofile(s)) (mins) (years) ange (%)	er of C of Sto FSI ad Wale: arning is Time DTS St. DVD St. rtia St. 15, 3	offlin prage Rainf R M5- s (mm) step atus atus atus 0, 60	ne Con Struc 60 (mr Ratio 2.5 Sc), 120	trols tures etails n) 20. R 0. econd	0 Number 1 Number 300 Cv (S 350 Cv (W Increment 360, 480 1, 2, 0, 0	of Time/A of Real T ummer) 0. inter) 0. 300. (Extended () 01 01 and Winte , 960, 144 10, 30, 10 , 0, 40, 4	rea Dia ime Con 750 840 .0 1) 20 FF FF er 40 20 15	grams O trols O
PN	US/MH Name	st	corm	Return Period	n Cl 1 Ch	imate	First Surcha	(X) rge	Firs	t (Y) ood	First (Z) Overflow	Overflow Act.	Water Level (m)	Surcharged Depth (m)
1 000	G 1	15			,	-		-					10 405	0.075
1.000 1.001 2.000 2.001 1.002 1.003 3.000 1.004	51 52 54 55 53 57 59 510	15 15 15 15 15 15 15 360	Winter Winter Winter Winter Winter Winter Winter		1 1 1 1 1 1	+0% +0% +0% +0% +0% +0% +0% 10 +0%	10/15 s 00/15 W 2/60 W	ummer inter inter					13.425 13.097 13.425 13.117 12.682 11.924 12.078 11.550	-0.075 -0.126 -0.075 -0.130 -0.118 -0.101 -0.102 0.000
						Flooded				Pipe				
			-	US	/MH	Volume	Flow /	Ove	rflow	Flow	a b-t -	Level		
			I	PN Na	ame	(m³)	Cap.	(1	./s)	(1/s)	Status E	xceeded		
			1.	000	S1	0.000	0.14	ł		0.9	OK			
			1.	001	S2	0.000	0.06	5		1.7	OK			
			2.	000	S4	0.000	0.14	ł L		0.9	OK			
			2. 1.	002	53 53	0.000	0.10)		5.6	OK			
			1.	003	s7	0.000	0.59)		5.7	OK			
			3.	000	S9	0.000	0.22	2		3.3	OK			
			1.	004	510	υ.000	0.00)		0.0	OK			
						<i>~</i>	982 2	010	Innor	W70				

											Pa	ge 8
						The	e Bull					
						SW	Hydraul	ic Cal	CS			
						Soa	akaway				N	Aicco
Date 1	4/11/	202	4 09:22	2		Des	signed b	y JC				
File B	BULL I	NN ·	- DRAIN	NAGE CA	ALCS	Che	ecked by	7				lallage
Innovy	ze					Net	work 20	19.1				
2	year 1	Reti	ırn Pei	riod Su	ummary (of Crit	cical Re	sults 1	by Maximu	m Level	(Rank	1) for
						<u>suria</u>	<u>ce Netw</u>	<u>ork I</u>				
			Area	l Reduc Hot S	tion Fac	<u>Simula</u> tor 1.00	<u>ation Cri</u> 00 Addi 0	<u>teria</u> tional F MADD Fac	'low - % of tor * 10m³	Total Flo	ow 0.000 me 2.000	
	Ма	nho] Fou]	Ho le Headl L Sewage	t Start oss Coe per he	Level () ff (Glob) ctare (1)	mm) al) 0.50 /s) 0.00	0 00 Flow p 00	er Perso	Inlet C on per Day	oeffiecien (l/per/day	nt 0.800 y) 0.000	1
Nu	umber o Number	of Ir of	nput Hyd Online	rograph: Control:	s 0 Nu s 1 Numb	mber of er of S	Offline torage St	Controls ructures	0 Number 1 Number	of Time/A of Real T	rea Diag ime Cont	grams 0 crols 0
		1	Rainfall	Model Region	<u>Sy</u> England	<u>nthetic</u> F and Wal	<u>Rainfall</u> SR M5-60 es Rat	<u>l Details</u> (mm) 20 tio R 0	<u>s</u> .300 Cv (S .350 Cv (W	ummer) 0.7 inter) 0.8	750 340	
			Margin	for Flo	ood Risk Analy	Warning ysis Tim	(mm) Nestep 2.5	5 Second	Increment	300. (Extended	0 l)	
						DTS S	tatus			0	N	
					Tr	DVD S Pertia S	tatus			OF	'F' די	
					11	leitia 3	cacus			UI OI	Ľ	
				Duration	Profile	(S)	20 60 1	120 240	Summer	and Winte	r	
			Return	Period	(s) (year	(s) 15,	30, 00, 1	120, 240	1, 2, 1	LO, 30, 144	0	
				Climate	Change	(응)			0, 0,	0, 40, 4	5	
											Water	Surcharged
	US/MH			Return	Climate	First	; (X) F:	irst (Y)	First (Z)	Overflow	Level	Depth
PN	Name	S	torm	Period	Change	Surch	arge	Flood	Overflow	Act.	(m)	(m)
1 000	S1	15	Winter	2	+0%						13 429	-0 071
1.001	s2	15	Winter	2	+0%						13.101	-0.122
2.000	S4	15	Winter	2	+0%						13.429	-0.071
2.001	S5	15	Winter	2	+0%						13.120	-0.127
1.002	S3	15	Winter	2	+0%	a 0 / 4 5	_				12.686	-0.114
1.003	S7	15	Winter	2	+0%	10/15	Summer				11.947	-0.078
3.000	59 S10	360	Winter Winter	2	+08 +08	2/60	Winter Winter				12.085	-0.095
						_,						
					Tilesded			Dime				
				TTC /ML	Volume	Flow /	Overflow	Flow		Level		
			PN	Name	(m ³)	Cap.	(1/s)	(1/s)	Status	Exceeded		
					(/		(=, =,	(_/_/				
			1.00	0 S1	0.000	0.18		1.2	OK			
			1.00	1 S2	0.000	0.08		2.2	OK			
			2.00	5 54 1 55	0.000	0.05		2.2	OK			
			1.00	2 S3	0.000	0.13		7.3	OK			
			1.00	3 S7	0.000	0.76		7.3	OK			
			3.00	0 S9	0.000	0.28		4.3	OK			
			1.00	4 S10	0.000	0.00		0.0 \$	SURCHARGED			
						@1000	2010 -					
						@1982-	ZOTA TUI	novyze				

											Pa	age 9
					Th	e Bul	1					
					SW	Hydr	aulic Ca	alc	S			
					So	akawa	У					Mirro
ate 1	4/11/	2024 09:2	22		De	signe	d by JC					Drainagr
ile B	ULL I	NN - DRAI	INAGE CA	ALCS	Ch	ecked	by					Diamage
nnovy	ze				Ne	twork	2019.1					
<u>10</u>	year	Return P	eriod S	ummary	of Cri	itical	. Result	s k	oy Maximu	ım Level	(Rank	<u>: 1) for</u>
					<u>Surfa</u>	ace Ne	<u>etwork 1</u>	-				
					simul	ation	Criteria					
		Are	al Reduc	tion Fac	tor 1.0	00 7	dditional	l Fl	Low - % of	Total Fl	ow 0.00	0
		F	HOT S Not Start	Level (mi	ns) mm)	0	MADD 1	ract	or * 10m° Tnlet C	/na stora oeffiecie	ge 2.00 nt 0.80	0
	Ma	anhole Head	lloss Coe	ff (Glob	al) 0.5	00 Flo	w per Per	rsor	n per Day	(l/per/da	y) 0.00	0
		Foul Sewag	ge per he	ctare (1	/s) 0.0	00						
Nu	mber o Number	of Input Hy	drograph Control	s 0 Nu	mber of	0ffli	ne Contro	ols	0 Number 1 Number	of Time/A	rea Dia	ngrams 0 ntrols 0
	Number	or onrine	CONCLUE		mthati	a Dain	fall Dota	:10	I Wandoel	or Rear r	Inc con	
		Rainfa	ll Model	5	ynuneti I	SR M5	<u>-60 (mm)</u>	20.	300 Cv (Si	ummer) 0.	750	
			Region	England	and Wal	les	Ratio R	0.	350 Cv (W	inter) 0.8	840	
		Margi	n for Fl	ood Risk	Warning	g (mm) mester	2.5 Seco	nd	Increment	300. (Extended	. O 3)	
				Analy	DTS S	Status	2.3 5000	na	Increment	(Excended) N	
					DVD S	Status				OF	F	
				II	nertia :	Status				OF	F	
				Profile	(s)	20 0	0 100 0		Summer	and Winte	er	
		Retur	Duration n Period	n(s) (min (s) (veau	ns) 15, rs)	30, 6	0, 120, 2	40,	360, 480,	, 960, 144 10. 30. 10	10 00	
		noour	Climate	Change	(응)				0, 0,	0, 40, 4	15	
	US/MH		Return	Climate	Firs	t (X)	First (Y)	First (Z)	Overflow	Water Level	Surcharge Depth
PN	Name	Storm	Period	Change	Surc	harge	Flood	L	Overflow	Act.	(m)	(m)
1.000	S1	15 Winter	r 10	+0%							13.436	-0.064
1.001	S2	15 Winter	r 10	+0%							13.109	-0.11
2.000	S4 S5	15 Winter 15 Winter	r 10 r 10	+0% +0%							13.436	-0.064
1.002	S3	15 Winter	r 10	+0%							12.699	-0.10
1.003	s7	15 Winter	r 10	+0%	10/15	Summe	r				12.040	0.01
3.000	S9	15 Winter	r 10	+0%	100/15	Winte	r				12.099	-0.08
1.004	S10	360 Winter	r 10	+0%	2/60	Winte	r				11.702	0.152
				Flooded			Pipe	•				
			US/MH	Volume	Flow /	Overf	low Flow	,		Level		
		Pl	Name	(m³)	Cap.	(1/	s) (l/s))	Status	Exceeded		
		1.0	00 S1	0.000	0.28	;	1.	8	OK			
		1.0	01 S2	0.000	0.13		3.	7	OK			
		2.0	00 S4	0.000	0.28		1.	8	OK			
		2.0	ບ⊥ 55 02 ເ⊃	0.000	0.09		3. 12	/ 8	OK			
		1.0	02 53 03 <u>5</u> 7	0.000	1 30)	12.0	0 6 .SI	URCHARGED			
		3.0	00 S9	0.000	0.42		6.4	4	OK			
		1.0	04 S10	0.000	0.00)	0.0	0 SI	URCHARGED			
					@1982-	-2019	Tnnouuz	0				
					SIJOZ	2012	THHOVYZ	-				

											Pa	ıge 10
						Th	e Bul	1				
						SW	Hydr	aulic Ca	lcs			
						So	akawa	У				Mirro
ate 1	4/11/	2024	09:22	2		De	signe	d by JC				
ile B	BULL I	NN -	DRAIN	IAGE CA	ALCS	Ch	ecked	by				plainage
nnovy	ze					Ne	twork	2019.1				
30	year	Reti	urn Pe:	riod S	ummary	of Cri	itical	Results	s by Maxim	um Level	(Rank	1) for
						<u>Surfa</u>	ace Ne	etwork 1				
			Area	l Reduc	tion Fac	<u>Simul</u>	ation	<u>Criteria</u>	Flow - 8 of	Total Fl	ow 0 00	0
			hi cu	Hot S	tart (mi	ns)	0	MADD F	actor * 10m ³	/ha Stora	ge 2.00	0
			Ho	t Start	Level (mm)	0		Inlet (coeffiecie	nt 0.80	0
	Ma	anhol Foul	e Headl Sewage	oss Coe per he	ff (Glob ctare (l	al) 0.5 /s) 0.0	500 Flc 000	w per Per	son per Day	(l/per/da	y) 0.00	0
57.	mbon	. .	out Und		- 0 No	mhan af	0.551	na Cantua	la O Number	of Time /A	nas Die	
NU	Number (c of (Online (rograph: Control:	s 0 Nu s 1 Numb	mber of S	torage	structure	es 1 Number	of Real T	ime Con	grams 0 trols 0
					S	<u>yntheti</u>	<u>c Rain</u> :	<u>fall Detai</u>	<u>ls</u>			
		F	ainfall	. Model	England	and Mo	FSR M5-	-60 (mm) 2	0.300 Cv (S	ummer) 0.7	750	
				REGTON	Engrand	anu Wâ.	162	RALIU K	0.330 CV (W	incer) U.	5-10	
			Margin	for Flo	ood Risk Analv	Warnin Vsis Ti	g (mm) mestep	2.5 Secon	d Increment	300. (Extended	0	
					11102	DTS	Status	210 20001		C)N	
						DVD	Status			OF	F	
					Ir	nertia :	Status			OE	'F'	
			т	Duratio	Profile n(s) (mir	(S))s) 15	30 6	0 120 24	Summer	and Winte	er 10	
			Return	Period	(s) (yea)	is) 13, is)	50, 0	0, 120, 24	1, 2,	, 900, 144 10, 30, 10	0	
			C	Climate	Change	(%)			0, 0	, 0, 40, 4	5	
	US/MH			Return	Climate	Firs	t (X)	First (Y	() First (Z)	Overflow	Water Level	Surcharged Depth
PN	Name	S	torm	Period	Change	Surc	harge	Flood	Overflow	Act.	(m)	(m)
1.000	S1	15	Winter	30	+40%						13.450	-0.050
1.001	S2	15	Winter	30	+40%						13.122	-0.101
2.000	S4 S5	15 15	Winter	30	+40% +40%						13.450	-0.050
1.002	53 53	15	Winter	30	+40%						12.717	-0.083
1.003	s7	15	Winter	30	+40%	10/15	Summe:	r			12.062	0.036
3.000	S9	15	Winter	30	+40%	100/15	Winte:	r			12.130	-0.051
1.004	S10	480	Winter	30	+40%	2/60	Winte:	r			12.000	0.450
					Flooded			Pino				
				US/MH	Volume	Flow	Overf	low Flow		Level		
			PN	Name	(m ³)	Cap.	(1/:	s) (1/s)	Status	Exceeded		
			1.00() S1	0.000	0.49)	3.2	OK			
			1.001	l s2	0.000	0.23	3	6.6	OK			
			2.000) \$4	0.000	0.49)	3.2	OK			
			2.001	L S5	0.000	0.16)	6.7	OK			
			1 002	. 53 3 97	0.000	2 21		22.1 22 A	SURCHARGED			
			3.000) S9	0.000	0.75		11.3	OK			
			1.004	4 S10	0.000	0.00)	0.0	SURCHARGED			

										Pa	age 11	
	The Bull											
SW Hydraulic Calcs								CS			· · · · ·	
						Soakaway					Mirrn	
Date 14/11/2024 09:22						Designed by JC					Drainago	
File BULL INN - DRAINAGE CALCS						Checked by					Diamage	
Innovyze N							Network 2019.1					
<u>100</u>	year	Return	Period	Summary	of Cr Surfa	itical ace Ne	<u>Results</u> twork 1	by Maxim	um Level	. (Ranl	<u>k 1) for</u>	
Simulation Criteria Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MaDD Factor * 10m³/ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000 Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0 Number of Online Controls 1 Number of Storage Structures 1 Number of 0.750 Region England and Wales Ratio R 0.350 Cv (Summer) 0.750 Region England and Wales Ratio R 0.350 Cv (Winter) 0.840 Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF Inertia Status OFF Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 1, 2, 10, 30, 100												
US/MH Return Climate F:						Wa irst (X) First (Y) First (Z) Overflow T					Surcharged Depth	
PN	Name	Storm	Period	Change	Surcl	harge	Flood	Overflow	Act.	(m)	(m)	
1.000	S1	15 Winte	er 100	+45%						13.460	-0.040	
1.001	S2	15 Winte	er 100	+45%						13.130	-0.093	
2.000	S4	15 Winte	er 100	+45%						13.460	-0.040	
2.001	S5 83	15 Winte	er 100	+45%						13.144	-0.103	
1.002	53 57	480 Winte	r 100	+45%	10/15	Summer				12.730	0.552	
3.000	S9	480 Winte	er 100	+45%	100/15	Winter				12.577	0.397	
1.004	S10	480 Winte	er 100	+45%	2/60	Winter				12.576	1.026	
				Flooded			Pipe					
			US/MH	Volume	Flow /	Overf.	low Flow		Level			
		F	'N Name	(m³)	Cap.	(1/s	;) (l/s)	Status	Exceeded			
		1.	000 S1	0.000	0.66		4.3	OK				
		1.	001 S2	0.000	0.30		8.9	OK				
		2.	000 S4 001 S5	0.000	U.66 0.21		4.3 8 Q	OK OK				
		1.	001 53 002 53	0.000	0.21		30.4	OK				
1.003 S7 (0.000	0.37		3.6 \$	SURCHARGED				
	3.000 \$9 0.000 0					.13 1.9 SURCHARGED						
	1.004 S10 0.000 0					.00 0.0 SURCHARGED						
©1982-2019 Innovyze												