

515 Stockwood Road, Brislington

Interpretive Report on Ground Investigation

Project No: 732959

Client: 515 Stockwood LLP

DOCUMENT ISSUE RECORD

Project No.:	732959				
Project Name:	515 Stockwood Road, Brislington				
Document Title	Interpretive Report on Ground Investigation				
Client:	515 Stockwood LLP				
Planning Consultants:	Aspect 360 Ltd.				
Status:	Final				
Author		J Evans MSci MSc FGS			
Author		A Watts BSc (Hons)			
Technical Reviewer		S Pond BSc CChem MRSC			
Approved by		A M Lumber BEng (Hons)			
Report Issue Date		7 September 2017			
REVISION RECORD					
Revision Date	Description of revisions	Prepared by			

STRUCTURAL SOILS LIMITED

The Old School Stillhouse Lane Bedminster BRISTOL BS3 4EB

Tel: 0117 947 1000 Email: <u>ask@soils.co.uk</u>

CONTENTS

1	INTRODUCTION	1
2	SITE DESCRIPTION	3
	2.1 Location and Topography	
	2.2 Geology	
	2.3 Hydrogeology and Hydrology	
	2.4 History of Site and Surrounding Area	
	2.5 Environmental Data	
	2.6 Initial Conceptual Model	
3	FIELDWORK	15
	3.1 General	
	3.2 Exploratory Holes	
	3.3 Backfill and Instrumentation	
	3.4 Monitoring and Post Fieldwork Environmental Sampling	
4	LABORATORY TESTING	18
	4.1 Geoenvironmental Laboratory Testing	
5	GROUND CONDITIONS	19
	5.1 General	
	5.2 Made Ground	
	5.3 Possible Made Ground	
	5.4 Radstock Member	
	5.5 Groundwater	
	5.6 Indications of Contamination	
6	GEOENVIRONMENTAL SITE ASSESSMENT	22
	6.1 Purpose of the Investigation	
	6.2 General	
	6.3 Linkages for assessment	
	6.4 Contamination Conclusion on Investigation	
	6.5 Remediation and Risk Reduction Recommendations to Date	
	6.6 Off-site Disposal of Surplus Soil	
7		32
ጸ	REFERENCES	36

ΑP	PΕ	NDIX A - PLANS AND DRAWINGSI
((i)	Site Location Plan
((ii)	Exploratory Hole Location Plan
((iii)	Proposed Development Layout Plan
ΑP	PΕ	NDIX B - EXPLORATORY HOLE RECORDSII
((i)	Key to Exploratory Hole Logs
	(ii)	Window Sample Logs
ΑP	PΕ	NDIX C - IN-SITU TESTINGIII
((i)	Standard Penetration Test (SPT) Summary Sheet
	(ii)	SPT Hammer Calibration Records
((iii)	SPT N value versus Depth Plot
((iv)	SPT N ₍₆₀₎ value versus Depth Plot
ΑP	PE	NDIX D - GEOENVIRONMENTAL TESTINGIV
((i)	Laboratory Test Results
((ii)	Initial Waste Characterisation (Haswaste)
((iii)	Clean Cover Calculation Sheet
	(iv)	Laboratory UKAS Accreditation Certificate
AP	PE	NDIX E - BACKGROUND TO GEOENVIRONMENTAL
4	AS	SESSMENTV
	(i)	RSK Group Generic Assessment Criteria (GAC)
((ii)	UKWIR Guidelines
((iii)	Risk Assessment Methodology
AP	PE	NDIX F - MONITORING RECORDSVI
((i)	Gas/Groundwater Monitoring Results
ΑP	PΕ	NDIX G - DESK STUDY INFORMATIONVII
((i)	Landmark Environmental Data Sheets
((ii)	Historical Mapping

1 INTRODUCTION

This investigation was carried out by Structural Soils Ltd (SSL) on the instructions of Aspect 360 Ltd (planning consultants) on behalf of 515 Stockwood LLP (the Client) at the site of 515 Stockwood Road, in Brislington, Bristol. The purpose of the work was to obtain geoenvironmental information in order to facilitate the discharge of precommencement planning condition 2 for permission 17/02563/COU relating to the proposed conversion of a three storey block for residential use and further extension of the block with the addition of two storeys. This information is also intended for use to support a future planning application for redevelopment of the car park to the rear for houses and flats.

The purpose of the work was to undertake a Preliminary Risk Assessment that included research in to the past uses of the site and the surrounding area and production of a contamination conceptual model identifying potentially complete pollutant linkages, to investigate ground conditions and to provide information for contamination assessment purposes.

The intrusive works included window sampling, geoenvironmental laboratory testing and the preparation of this report, which contains a description of the site and the works carried out, the exploratory hole logs and laboratory testing results.

It presents an appraisal of geoenvironmental aspects such as soil contamination and gives recommendations on risk reduction. It should not be assumed that these would meet the requirements of the local authority, whose advice should be sought regarding planning permission.

The ground investigation has been carried out in accordance with the general requirements of BS 5930:2015, BS 10175:2011+A1:2013, BS EN 1997-2 (2007), BS EN ISO 22475-1 (2006) and other relevant standards as identified below.

SSL have undertaken two other investigations on this site (see References), the first of which is detailed in our Report 732782 – 515 Stockwood Road, Bristol dated June 2017. This was a small hand excavated trial pit investigation around the existing office to investigate the existing foundations and soils at shallow depth. The second investigation is detailed in our Report 732959 – 515 Stockwood Road, Bristol dated August 2017 and comprising a Coal Mining Risk Assessment.

SSL also investigated a site to the north-west of the subject site Report 00722 - Stockwood Road, dated August 2000.

All information, comments and opinions given in this report are based on the ground conditions encountered during the site work, and on the results of laboratory and field tests performed during the investigation. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal, atmospheric and/or other effects and may at times differ to those measured during the investigation.

All information, comments and opinions given in the desk study in this report are based on the information obtained. The information search cannot be exhaustive and there

may be records that have not come to light. There may also be circumstances at the site that are not documented.

This report was prepared by Structural Soils Limited for the sole and exclusive use of 515 Stockwood LLP in response to particular instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded. No liability will be accepted after a period of 6 years from the date of the report.

2 SITE DESCRIPTION

2.1 Location and Topography

The site is located at the south-eastern margin of Brislington Business Park; approximately 30 m west of Brislington Park and Ride (see Site Location Map in Appendix A). The British National Grid Reference of the site is ST 625 700.

The site consists of a roughly L shaped plot, orientated with its long axis trending NE-SW, measuring approximately 120 m by 60 m in size (see Exploratory Hole Location Plan in Appendix A). The plot is occupied to the east by a five storey office block with a three storey and a single storey annex; to the north by an electricity substation, kiosk building and garages and to the west by a large, gently undulating, active, secured car park set at an elevation of approximately 53 m above Ordnance Datum (AOD).

The site is secured by a set of electric gates off Stockwood Road to the north-east of the site, through which access to the site is gained, whilst a steel palisade fence is present along the south-east and south-west margins of the site. The north west margin of the site falls within the car park and is marked by a north-east to south-west orientated kerb with street lights. The site is surrounded by a vehicle showroom and office block located along the north-west margin of the site, Stockwood Road and the Brislington Park and Ride to the east, a vehicle garage and residential properties to the south, and warehouse buildings to the west.

A small, well maintained vegetated area of grass, surrounded by a 1.5 m high hedge with a 5 m high deciduous tree are present at the front of the office block adjacent to Stockwood Road. A row of deciduous trees and evergreen bushes that reach a height of approximately 10 to 15 m are present running along the outer south east margin of the site.

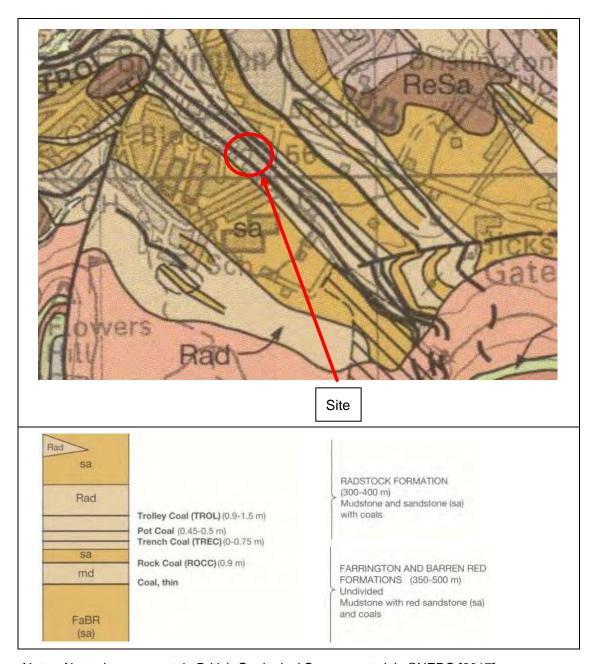
Numerous buried services have been located from service plans and during the walkover across the site including electricity cables, foul and storm drainage pipes, water pipes and telecommunications cables. Over 80 manhole covers are present around the office block and car park, some of which have been buried beneath asphalt. Unmarked cables were also identified which could be traced over a short distance heading towards the western margin of the site where a building was once present. A BT mast is present is present at the western corner of the site.

The site and the near surroundings slopes downwards very gently to the south-west.

2.2 Geology

Information on the geology of the site was obtained from the following sources published by the British Geological Survey (BGS):

- BGS map (sheet 264, scale 1:50,000, published 2004).
- The BGS digital geology map, which utilises the most up to date names for geological units (1).


• The BGS Lexicon of Named Rock Units, which provides typical descriptions for most geological units ().

The most recent published map shows the site to be underlain by the Radstock Formation, which consists of grey mudstones and sandstones containing numerous thin, muddy coal seams. Online data indicates that the Radstock Formation has been reclassified as a member of the Grovesend Formation, and thus the name Radstock Member is used in this report.

The Pot and Trolley coal seams are indicated to outcrop across the site along a NW – SE orientation whilst the Trench coal seam outcrops close proximity to the NE. The Radstock Member is underlain by the Farrington and Barren Red Formations, which outcrop to the NE beyond and uphill of the Trench coal seam. These formations consist of mudstone with subordinate red sandstone beds and numerous thin coal seams. No artificial ground or superficial deposits are recorded on or around the site.

The BGS online maps portal provides access to scans of almost all maps produced by the BGS since 1932. An extract of the most recent available scanned map for the site is included below:

Note: Above images contain British Geological Survey materials ©NERC [2017].

2.3 Hydrogeology and Hydrology

The Environment Agency (EA) website (http://apps.environment-agency.gov.uk/wiyby/default.aspx) has classified the geological units underlying the site as follows:

• Radstock Member as a Secondary 'A' Aquifer (variably permeable).

'Secondary' aquifers include a wide range of rock layers or superficial deposits with an equally wide range of water permeability and storage. Secondary 'A' Aquifers are permeable layers capable of supporting water supplies at a local rather than strategic

scale, and in some cases forming an important source of base flow to rivers. These are generally aquifers formerly classified as minor aquifers.

Information on the leaching potential of the soils directly under the site is given on the Environment Agency (EA) groundwater vulnerability map (Groundwater Vulnerability of Southern Cotswolds, sheet 37, scale 1:100,000).

The soils directly beneath the eastern portion of the site have been classed as having a high (H3) leaching potential. These are coarse textured or moderately shallow soils that readily transmit non-adsorbed pollutants and liquid discharges, but which have some ability to attenuate adsorbed pollutants because of their clay or organic matter contents. The soils beneath the western portion of the site have been classified as having a high (urban) leaching potential (HU), as soil information for restored mineral workings and urban areas is based on fewer observations than elsewhere. Consequently, a worst-case vulnerability (HU) classification is assumed for these areas and for current mineral workings until proved otherwise. The site is not located with a Source Protection Zone (SPZ).

Groundwater beneath the site is expected to be present within the Radstock Member. Based on the geological mapping this is expected to be a semi-confined aquifer and it is not expected to be recharged by precipitation which infiltrates at the site. Groundwater flow within this unit is expected to be by a combination of intergranular and fissure flow. Flow is anticipated to be towards the south west and the nearest surface water feature in this direction is a small tributary of Brislington Brook approximately 375 m from the site.

2.4 History of Site and Surrounding Area

2.4.1 Historic Mapping

A search of Ordnance Survey maps was undertaken to establish the land-use history of the site and surroundings. Extracts of the maps that are discussed below can be found in Appendix G of this report. Unless otherwise stated, all quoted distances are measured from the site boundary that is marked on the maps.

	TABLE 1: SUMMARY OF HISTORICAL MAP DATA						
Dates	Scale	Significant features, changes a	and developments:				
		On site	In surroundings [distance(m)]				
1884	1:10,560 & 1:2,500	Eastern portion of site occupied by farmland. Western and central portion of site occupied by an orchard. Southern portion of site occupied by the butts end of a Rifle Range. Small pond in centre of the site.	Site surrounded by farmland. N-S orientated path running along eastern site margin. Possible coal mining pit 100 m N. Burial Ground present 60 m to NW. Well 70 m NW				
1904 - 1920	10,560 & 1:2,500	Rifle Range no longer recorded.	Quarry present 345 m to E. Residential development of Brislington to NW. Well no longer shown.				
1932 - 1938	10,560	No significant changes.	Industrial buildings constructed 45 m to N. Engineering Works present 260 m to the NW. Residential development of Brislington to NW.				
1946 - 1955	1:10,560 & 1:1,250	Orchard and farmland cleared. Warehouse constructed across portion of W site margin. S portion of site occupied by depot yard.	Potato Crisp Factory present 45 m to N. Burial ground present 60 m to NW now disused. Motor Engineering Works and Joinery Works present 140 – 180 m to NW. Metal Factory present 175 m to N. Brake Lining Works present 220 and 260 m to NW. Depots constructed adjacent to SE and SW site margins. Residential development of Brislington to SW. Coal mining pit 100 m N no longer shown				
1950 - 1976	1:10,560 & 1:1,250	Builders yard constructed at SW corner of site. Pond on site no longer recorded. Car park laid at centre of site with access road constructed from E margin. Presumed industrial building constructed near E site	Brislington Trading Estate established: garages, warehouses, paint works, printing works and depots present from northern site margin to 1 km N. Offices constructed 110 m to W. Residential development of				

	TABLE 1: SUMMARY OF HISTORICAL MAP DATA						
Dates	Scale	Significant features, changes and developments:					
		On site	In surroundings [distance(m)]				
		margin.	Brislington to S and SW.				
1984 - 1989	1:10,000 & 1:1,250	Craft Training Centre constructed adjacent to builders yard at SW corner of site. Warehouse at NW site margin expanded.	Expansion of Brislington Trading Estate to N.				
		Electricity sub-station present at N site margin.					
		Presumed industrial building constructed near E site margin replaced by current office building and car park.					
		Garages constructed adjacent to sub-station at N site margin.					
1992 - 1994	1:10,000 & 1: 1,250	No significant changes.	Demolition of factories, garages and warehouses 45 m to N.				
			Brislington Park and Ride present 30 m to E.				
1999	1:10,000 & Aerial Photograph	Possible warehouse building at SE site margin.	Construction of vehicle showroom 45 m to N.				
2003 - 2006	1:10,000	Demolition of Craft Training Centre and builders' yard at SW corner of site.	Construction of warehouse 20 to W.				
		Demolition of warehouse at NW site margin.					
2017	1:10,000	No significant changes.	No significant changes.				

Note: N = north, S = south, E = east, W = west.

2.4.2 Summary of Site History

The historic maps show that by the end of the 19^{th} Century the site was largely greenfield comprising part of an orchard and open field, including a rifle range. A small ~ (10 m by 5 m) pond was present in the centre of the site.

From 1946 to 1984, the site was developed with an industrial building constructed near the eastern site margin, a warehouse built across the north-western margin and a builders' yard present at to the south-west. The remaining land was open ground.

The site was redeveloped between 1984 and 1989 with a craft training centre built adjacent to the builders' yard and the industrial building near the eastern site margin, replaced by an office building with electricity sub-station nearby to the north.

From 1989 to 2003, the site remained relatively unchanged. The 1999 aerial photograph shows a warehouse-like building present at the south-eastern site margin but this is not displayed on the historic maps. The most recent maps show the

warehouse encroaching across the north-western site margin and the builders' yard and craft training centre to have been demolished. These areas are currently used for car parking.

2.4.3 Site History from Other Sources

Our 2000 report described a disused diesel pump (but no tank) being just north of the training centre implying a tank, probably above ground for diesel, was present at some time. An enquiry made to the local authority Contaminated Land Officer did not identify any records of a fuel tank being present but diesel tanks may not be recorded in these archives.

The former tank was therefore probably located somewhere near the north-west edge of the subject site. No indications of a pump or tank were present during the recent site work.

2.5 Environmental Data

Environmental features such as landfills, groundwater abstraction points, etc, are detailed on data sheets that can be found in Appendix G of this report. 'Notable' features in these data sets are listed below.

TABLE 2: SUMMARY OF SIGNIFICANT ENVIRONMENTAL DATA					
Data Types Showing	No. of <u>Notable</u> Listings (or Yes/No) and Distance (m) from Site				Details of <u>Notable</u> Listings
Notable Issues	On site	0-250	250- 500	>500	
GENERAL					
Local Authority Pollution Prevention and Controls (and enforcements)	-	1	4	3	Transport Brakes Ltd. – 205 m to NE. Brislington Park (Forecourt) Ltd. – 393 m to NW.
Integrated Pollution Prevention & Control (inc Local Authority)	-	1	4	-	Metoxal UK Ltd. Metals and plastics – 131 m to SW. European Friction Industries Ltd. – Asbestos – 450 m to N.
Prosecutions Relating to Authorised Processes	1	-	1	-	Wilverley Industrial Estate - illegal waste dumping – 254 m to NW.
WATER RELATED					
Discharge Consents	-	-	2	27	Wessex Water Services Ltd Storm sewage overflow – 256 m to NW and 262 m to NW.

TABLE 2: SUMMARY OF SIGNIFICANT ENVIRONMENTAL DATA					
Data Types Showing	No. of <u>Notable</u> Listings (or Yes/No) and Distance (m) from Site				Details of <u>Notable</u> Listings
Notable Issues	On site	0-250	250- 500	>500	
Nearest Surface Waters	-	Yes	-	-	Drainage channel - 245 m to NE (Up- gradient of site).
Controlled Waters (Pollution Incidents & Prosecutions)	-	-	-	2	Closest: 29/04/1999 – Unknown pollutant – minor incident, 702 m to NW.
Water Abstractions (Licensed)	-	-	-	7	Nearest – Imperial Athletics Club – 1,307 m to W. Surface water for spray irrigation. No groundwater abstractions within 2000 m.
WASTE					Ctoolswood Lane
Landfill Sites (recorded by BGS & Local Authority)	-	-	1	1	Stockwood Lane, Brislington – 440 m to SE. West Town Road, Knowle – 868 m to W.
Management and Transfer Sites	-	3	3	-	Wolland Frederick – End of life vehicles - 89 m to SW. All Car Spares Ltd. – Vehicle depollution facility - 138 m to NW. Bewley Alan – End of life vehicles - 198 m to NW.
Treatment and Disposal Sites	-	-	-	1	D. G. Hales - Vehicle scrapyard - 751 m to N.
Potentially infilled land (non-water)			1		Pit/quarry 358 m SE
Potentially infilled land (water)			1	3	Unknown filled ground (water) 380 m E
GEOLOGICAL Area materially.				Area patentially	
Mining & Natural Cavities	Yes	-	-	-	Area potentially affected by coal mining.
BGS boreholes (on or very near the site)	3	4	-	-	See SSL Coal Mining Risk Assessment Report

TABLE 2: SUMMARY OF SIGNIFICANT ENVIRONMENTAL DATA					
Data Types Showing	No. of <u>Notable</u> Listings (or Yes/No) and Distance (m) from Site				Details of <u>Notable</u> Listings
Notable Issues	On site	0-250	250- 500	>500	
Radon Protection Measures	Yes	-	-	-	The property is in a radon affected area, as 1 - 3 % of properties are above the action level. No radon protection measures are required for new homes.
INDUSTRIAL LAND USE					
Fuel Station Entries	'	1	1	2	Westgate Service Station – 133 m to NE. Brislington Park Service Station – 354 m to N.
Contemporary Trade Directory Entries	1	30	96	116	Arrow Services – Cleaning equipment – on site. Van World – Vehicle dealers – 14 m to SE. Brislington MOT Centre – 47 m to W. Throsper Engineering Co Ltd Tool manufacture – 67 m to NW.

Note: N = north, S = south, E = east, W = west.

2.6 Initial Conceptual Model

The information presented in Sections 2.1 to 2.5 has been used to compile an initial conceptual model. The identified potential sources of contamination, associated contaminants and receptors have been considered with plausible pathways that may link them. The resulting potential pollutant linkages are considered in Section 2.6.5. The risk classification has been estimated in accordance with information in Appendix E.

2.6.1 Summary of Potential Contamination Sources

Potential source and their associated contaminants of concern are summarised in Table 3 below.

TABLE 3: SUMMARY OF POTENTIAL SOURCES AND CONTAMINANTS				
On Site (Historical)	Contaminants of Concern			
Builders Yard	Heavy metals, asbestos, hydrocarbons			
Craft Training Centre with diesel pump	Heavy metals, asbestos, hydrocarbons			
General Made Ground (including fill in former pond)	included in the state of the st			
Warehouse	Heavy metals, asbestos, hydrocarbons			
Potential Underground Coal Workings	Mine gases (methane & carbon dioxide)			
On Site (Current)	Contaminants of Concern			
Car Park	Fuel hydrocarbons (small scale from leaks)			
Office Building	Potential for asbestos in building structure			
Electrical Sub-station	PCBs			
Off Site	Contaminants of Concern			
Factories, Depots, Engineering Works and Warehouses (N and NW of site)	Heavy metals, asbestos, hydrocarbons, lubricating oils			

2.6.2 Summary of Potential Receptors

Considering the setting of the site and the proposed redevelopment, sensitive receptors are considered to include:

- future site occupants
- adjacent site occupants and users
- potable water supply pipes
- groundwater beneath the site and wider aquifer body

Please note that construction workers have not been identified in the conceptual model as receptors because risks are considered to be managed through health and safety procedures including CDM regulations.

2.6.3 Pathways

Pathways that could results in a potentially complete contaminant linkage include:

- direct contact (soil and dust ingestion, dust inhalation, dermal contact and ingestion of home-grown vegetables)
- Inhalation of vapour

- permeation of plastic water supply pipes
- leaching of contaminants
- entry of methane or carbon dioxide into buildings

2.6.4 Data Gaps and Uncertainty

Although attempts have been made to identify potential sources of contamination, there may be sources or incidents, such as pollution events, that have not been recorded in the historical and environmental records consulted as part of this investigation.

2.6.5 Potentially Complete Contaminant Linkages

The potentially complete contaminant linkages identified for the proposed end use are:

- 1a. Direct contact by future site residents with soil that may be impacted by heavy metals and hydrocarbons.
- 1b Direct contact by future site residents with soil that may be impacted by asbestos.
- 2. Inhalation by future site residents of hydrocarbon vapours.
- 3. Direct contact of potable water supply pipes with contaminated soils leading to ingress of contaminants or degradation of the pipe.
- 4. Leaching of contaminants to groundwater in the Secondary 'A' aquifer.
- 5. Migration and accumulation of carbon dioxide or methane in properties potentially resulting in asphyxiation, fire or explosion.

2.6.6 Risk Estimation for Potentially Complete Contaminant Linkages

The potentially complete contaminant linkages are detailed above with the estimated risk associated with each being detailed in Table 4 below. The risk classification has been undertaken in accordance with CIRIA C552, with a summary of the relevant section being included in Appendix E.

TABLE 4: RISK ESTIMATION FOR POTENTIALLY COMPLETE CONTAMINANT LINKAGES					
Contaminant Linkage	Likelihood	Severity	Risk and justification		
1a	Low-likelihood	Medium	Moderate/Low - Proposed development of flats with adjacent soft landscaping and housing with private garden areas in which exposure is possible.		
1b	Low-likelihood	Medium	Moderate/Low - Proposed development of flats with adjacent soft landscaping and housing with private garden areas in which exposure is possible.		
2	Low-likelihood	Medium	Moderate/Low – Significant hydrocarbon contamination not anticipated, except around former diesel tank near NW boundary of site however if present may pose a risk to future residents.		
3	Low-likelihood	Medium	Moderate/Low – It is possible that hydrocarbons may be present in soils on the site which may come into contact with water supply pipes.		
4	Low-likelihood	Mild	Low - Leaching of contaminants to groundwater within the Radstock Formation below the site is possible, but groundwater is of limited resource value, and no significant potential sources have been identified on site.		
5	Low-likelihood	Severe	Moderate – Migration of mine gas originating from potential underground coal workings into buildings via foundations.		

The review of the available information and the production of the initial conceptual model and risk assessment has identified risks associated with potentially complete pollutant linkages that vary from Low to Moderate.

Linkages with risk estimations of moderate or above would typically require further investigation. To further investigate these linkages we have undertaken a ground investigation to collect information on the completeness of these linkages.

3 FIELDWORK

3.1 General

The ground investigation was carried out by SSL between 2 and 3 August 2017. The investigation was supervised by an engineer from SSL. The scope of works and positions were selected and set out by SSL and adjusted where necessary to take account of buried or overhead services, or other restrictions. The exploratory hole and in-situ test locations are shown on the Exploratory Hole Location Plan presented in Appendix A.

3.2 Exploratory Holes

The exploratory holes are listed in the following table.

TABLE 5: SCOPE OF INTRUSIVE WORKS						
Quantity	Exploratory Hole Type	Maximum depth (m)	Hole / Test Numbers			
11	Window Sample Boreholes	5.45	WS01 - 05 WS07 - 12			

The exploratory hole logs are presented in Appendix B. These provide information including the equipment and methods used, samples taken, tests carried out, water observations and descriptions of the strata encountered. Explanation of the terms and abbreviations used on the logs is given in the Key to Exploratory Hole Records in Appendix B, together with other explanatory information.

The holes were logged by an engineer in general accordance with the recommendations of BS 5930:2015 (which incorporates the requirements of BS EN ISO 14688-1, 14688-2 and 14689-1). Detailed descriptions, together with relevant comments, are given on the logs.

Standard penetration tests (SPT) in the boreholes were carried out in accordance with BS EN ISO 22476-3+A1 (2011) and are presented on the logs in Appendix B as uncorrected 'N' values. The SPT hammer energy ratio certificate, a test result summary sheet and 'N' value vs. depth plot are presented in Appendix C.

Prior to the commencement of any exploratory hole or intrusive test all positions were checked for buried services by a specialist utility surveyor using a cable avoidance tool (CAT), signal generator ('genny'), and ground penetrating radar (GPR). The survey was carried out by RSK SafeGround. The excavation of planned hole WS06 was not undertaken due to the indicated presence of a BT fibre optic cable on service plans which was not detected during the buried services survey.

The surveying of exploratory hole positions relative to the British National Grid and ground levels relative to Ordnance Datum has not been requested or undertaken as part of this investigation.

The positions were chosen to give general coverage of the site in relation to the former and proposed uses of the site, with the actual layout of landscaping/garden not being known at this time. Some positions also targeted specific features as follows:

 WS12 was sited to target the former fuel tank near the north-west boundary of the site.

The substation in the north-east corner of the site was not targeted because it is understood that the area around the substation is likely to remain hard covered and not redeveloped and thus unlikely to affect the future residents of the proposed conversion of the office building. Potential for significant contamination from this source is low, but if present should be picked up by the requirements for reporting unexpected contamination during the build.

3.3 Backfill and Instrumentation

On completion 40 mm diameter gas/groundwater monitoring wells were installed in WS01, WS07, WS10 and WS12 the design having been decided by SSL. The installation details are shown on the exploratory hole logs. The remaining boreholes were backfilled with bentonite and arisings.

3.4 Monitoring and Post Fieldwork Environmental Sampling

Groundwater levels were recorded in the monitoring wells on 8, 10, 16 and 23 August 2017 by SSL engineers. The results together with the temporal (weather) conditions are tabulated in Appendix F.

Ground gas monitoring was carried out over the same period. An infrared gas meter was used to measure concentrations of carbon dioxide (CO2), methane (CH4) and oxygen (O2) in percentage by volume. Initial and steady state concentrations were recorded. An integral flow meter was used to measure borehole flow rates (initial and steady state) in litres per hour (I/hr). In addition the atmospheric pressure before and during monitoring.

It should be noted that groundwater levels, gas concentrations and gas flows usually vary due to seasonal, atmospheric and/or other effects and may at times differ to those measured during the investigation.

Groundwater samples were retrieved using a United States Environment Protection Agency (USEPA) approved Low-Flow Purging and Sampling Methodology.

The Low-Flow Purging and Sampling method relies on moving groundwater through the well screen at approximately the same rate as it flows through the geological formation. This results in a significant reduction in the volume of water extracted before sampling and significantly reduces the amount of disturbance of the water in the monitoring well during purging and sampling.

Groundwater levels in the monitoring well and water quality indicator parameters (pH, temperature, electrical conductivity, redox potential and dissolved oxygen) are monitored during low-flow purging, with parameter stabilisation indicating that purging is complete and sampling can begin. As the flow rate used for purging is (in most cases)

the same as or only slightly higher than the flow rate used for sampling, purging and sampling are conducted as one continuous operation in the field.

4 LABORATORY TESTING

Samples for potential geoenvironmental testing were sent to a sister company Envirolab Limited, a MCERTS and UKAS accredited testing laboratory. Laboratory tests were scheduled by Structural Soils Ltd. Tests carried out in accordance with MCERTS/UKAS standards where noted on the results sheets.

4.1 Geoenvironmental Laboratory Testing

The geoenvironmental testing carried out is summarised in the following table. The results are included as Appendix D of this report, and include details of the test method.

TA	TABLE 6: SUMMARY OF GEOENVIRONMENTAL LABORATORY TESTING					
Numbers of tests	Description	Notes				
		SOIL				
9	SSL HHA Screening suite.	Comprises arsenic, cadmium, chromium (total), lead, mercury, selenium, copper, nickel, zinc, speciated polycyclic aromatic hydrocarbons (PAH), total petroleum hydrocarbons (TPH banded 1 with ID), soluble organic matter, soluble sulphate and pH.				
23	Asbestos presence screen.	Identification was undertaken if/where asbestos fibres were detected.				
2	Spec TPH CWG	Volatile Petroleum Hydrocarbons and extractable petroleum hydrocarbons with criteria working group banding, plus BTEX and MTBE.				
	WAST	E ACCEPTANCE CRITERIA (WAC)				
3	WAC-E suite.	Total waste suite. Single batch test (BS EN 12457-2, L/S 10:1).				

5 GROUND CONDITIONS

5.1 General

The exploratory holes were logged by an engineer and the ground conditions encountered are detailed on the logs contained in Appendix B. The exploratory holes encountered the following general descending sequence of strata:

TABLE 7: SUMMARY OF GROUND CONDITIONS				
Strata	Exploratory holes encountered in		Thickness (m)	
Made Ground	WS01 - 05, WS07 - 12	0.00	0.40 - 1.90	
Possible Made Ground	WS04, WS09, WS10, WS11	0.55 - 1.25	0.75 – 1.30	
Radstock Formation	WS01 – 05, WS07 - 12	0.40 - 2.00	> 0.68	

The ground conditions are summarised in more detail below.

5.2 Made Ground

Made ground is present at all exploratory locations and was identified to vary in thickness from approximately 0.40 m to 1.90 m.

Made ground at all exploratory holes, excluding WS07, consisted of a 0.05 to 0.10 m thick layer of asphalt. The asphalt was underlain by a 0.25 to 0.45 m thick sub-base layer composed of orangish brown and light grey clayey, sandy gravels. In WS03 and WS09, a 0.10 m and 0.20 m thick layer of reinforced concrete was present respectively. Beneath the sub-base layer, sporadic areas of reworked dark brown and greyish brown slightly sandy, slightly gravelly clays were present from 0.45 m to 1.60 m. This layer was not identified to be present in WS08 which was terminated due to the presence of a foundation at 0.35 m. Furthermore, in WS10 a layer of asphalt was present between 0.45 and 0.65 m.

WS07 was positioned in the grassed soft landscaping at the front of the office building. Made ground at this position consisted of layers of soft becoming firm, light and blackish brown, slightly sandy, slightly gravelly clays to a depth of 1.90 m. This material might represent backfilling of shallow surface coal workings along the crop.

Anthropogenic components of the made ground included asphalt, concrete, brick, limestone, ceramic fragments, metal rebar and a metal rod along with reworked coal fragments.

5.3 Possible Made Ground

Possible made ground is present in exploratory holes WS04, WS09, WS10, and WS11. This material comprised soft to firm, light grey mottled light brown, slightly sandy, slightly gravelly clay. The gravel consisted of weathered coal and mudstone along with occasional organic matter. The exploratory holes containing the possible made ground are positioned in a roughly linear fashion orientated north-west to south-east across the centre of the site parallel and in close proximity to the approximate position of the Trolley coal seam. This material might also represent backfilling of shallow surface workings along the crop.

5.4 Radstock Member

The made ground and possible made ground was underlain by the Radstock Member which could be subdivided into two layers.

The upper layer was present in all exploratory holes, with the exception of WS08. This layer is approximately 0.50 m - 1.50 m thick and consisted of weathered firm to stiff, light grey mottled reddish brown clay and slightly sandy, slightly gravelly clay. The gravel consists of mudstone and coal fragments.

The lower layer was present commencing at between 1.35 m - 2.70 m depth and consisted of stiff to very stiff, fissured dark grey mottled reddish brown and reddish brown slightly sandy, slightly gravelly clay. The gravel consists of mudstone and coal fragments.

5.5 Groundwater

The fieldworks for this investigation was undertaken during a period of heavy rainfall and surface water was running off the car park surface into WS03, WS08, WS10 and WS12 during drilling.

Water levels in the monitoring wells installed on site were measured (see Section 3). Standing ground water levels varied across the monitoring period as summarised below:

WS01: 1.57 m – 2.22 m;

WS07: remained dry for duration of monitoring.

WS10: 1.73 m – 2.14 m

WS12: 0.40 m − 0.92 m

The monitoring results are contained in Appendix F.

5.6 Indications of Contamination

Olfactory or visual indications of contamination were noted as summarised below:

TABLE 8: OLFACTORY OR VISUAL INDICATIONS OF CONTAMINATION				
Location of contamination:	Hole(s) noted in:	Depth (m) (range):	Comments (e.g. staining, odours (inc strength), sheens, free product, etc):	
Radstock Member	WS03	1.30-1.90	Clay with black rootlet like veins with strong hydrocarbon odour,	
Radstock Member	WS12	0.90-1.40	Strong hydrocarbon odour	

These locations are in the general vicinity of the former diesel pump noted in the SSL investigation undertaken in 2000.

Olfactory or visual indications of contamination were not identified in any of the other exploratory holes except for the presence of anthropogenic materials within the made ground as discussed in Section 5.2.

6 GEOENVIRONMENTAL SITE ASSESSMENT

6.1 Purpose of the Investigation

The purpose of the work was to obtain geoenvironmental information in order to facilitate the discharge of precommencement planning condition 2 for permission 17/02563/COU relating to the proposed conversion of a three storey block for residential use and further extension of the block with the addition of two storeys. This information is also intended for use to support a future planning application for redevelopment of the west of the study site for houses and flats.

The geoenvironmental site assessment below will be sub-divided in order to examine the potentially relevant pollutant linkages for the office block and for the rear car park. Exploratory holes WS05, WS07, WS08 and WS10 were nominally positioned to investigate potential pollution linkages around the existing office block. The remaining seven exploratory holes were positioned to investigate potential pollution linkages around the rear car park.

6.2 General

In line with CLR11 (EA, 2014), there are two stages of quantitative risk assessment, generic and detailed. The Generic Quantitative Risk Assessment (GQRA) comprises the comparison of soil, groundwater, soil gas and ground gas results with generic assessment criteria (GAC) that are appropriate to the linkage being assessed. This comparison can be undertaken directly against the laboratory results or following statistical analysis depending upon the sampling procedure that was adopted.

6.3 Linkages for assessment

The linkages that required assessment after the findings of the site investigation had been considered are detailed below together with the method of assessment.

	TABLE 9: LINKAGES FOR GENERIC QUANTITATIVE RISK ASSESSMENT				
	Potentially relevant pollutant linkage	Assessment method			
1a.	Direct contact by future site residents and maintenance workers with soil that may be impacted by heavy metals and hydrocarbons.	Human health GACs in Appendix E for proposed residential use with and without home-grown produce.			
1b.	Direct contact by future site with soil that may be impacted by asbestos.	No guidelines available.			
2.	Inhalation by future site residents and adjacent site occupants of hydrocarbon vapours.	Human health GAC In Appendix E take account of the vapour pathway.			
3.	Direct contact of potable water supply pipes with contaminated soils leading to ingress of contaminants or degradation of the pipe.	Comparison of soil data to GAC in Appendix E for plastic water supply pipes using UKWIR (2010) guidance.			

	TABLE 9: LINKAGES FOR GENERIC QUANTITATIVE RISK ASSESSMENT			
	Potentially relevant pollutant linkage	Assessment method		
4.	Leaching of contaminants into the Secondary 'A' aguifer.	Comparison of groundwater data to Controlled Waters GAC in Appendix E.		
5.	Migration and accumulation of ground gas in properties potentially resulting in asphyxiation or explosion.	Gas Screening Values compared to the Revised Wilson and Card Classification (residential) presented within CIRIA Report 665 and/or the generic 'Traffic Lights' as presented within the NHBC guidance.		

6.3.1 Linkage 1a – Direct contact by future site residents with soil that may be impacted by heavy metals and hydrocarbons

6.3.1.1 General

To determine whether contaminants are present at levels that may be deemed to pose a significant hazard to human health, measured contamination levels in soil at the site are compared directly against derived guideline values ('Tier 2' soil screening). Where contaminants are present above the screening values it is probable that site-specific information will be required to further examine the potential risk of harm arising from such contamination.

The background to the assessment is contained in Appendix E and the findings are summarised in the following pages.

The proposed used of the site is residential, with the existing office building to be converted into flats whilst an application is being prepared to develop the rear car park for houses and flats. The residential without home grown produce generic assessment criteria (GAC) has been used to assess the results from positions around the existing block whilst the residential with plant uptake generic assessment criteria (GAC) have been used to assess the results from positions in the rear car park.

Due to the limited number of samples tested, the results have been assessed against the GAC without the use of statistics.

6.3.1.2 Results

Olfactory and visual indications of contamination are detailed in Section 5.

Except as follows the results did not exceed the guidelines.

TABLE 10: RESULTS ABOVE GUIDELINES				
Land Use - Office Block Converted to Flats				
Exploratory hole	Depth m	Contaminant	Result mg/kg	GAC Limit mg/kg
WS07	0.30	Lead	508	310

6.3.1.3 Conclusion

The investigation has identified elevated levels of lead in the made ground at the front of the existing office block, which may pose a risk to human health. Hydrocarbons have been identified to be present in soils beneath the rear car park but not concentrations that exceed the human health guidelines.

6.3.2 Linkage 1b – Direct contact by future site residents with soil that may be impacted by asbestos

6.3.2.1 Results

Except as follows no asbestos was found in the screening analysis of made ground.

TABLE 11: RESULTS ABOVE GUIDELINES			
Land Use – Car Park Developed for Dwellings with Gardens			
Exploratory hole	Depth m	Contaminant	
WS11	0.40	Amosite cement bound fragment	

This fragment of asbestos was identified by eye and was approximately the size of a 50 pence piece.

6.3.2.2 Conclusion

The investigation has identified a fragment of cement bound asbestos in made ground in the rear car park proposed for housing with gardens, however no asbestos fibres were detected in any made ground around the office block or beneath the car park, including the soil sample from which the fragment of ACM was taken.

6.3.3 Linkage 2 - Inhalation by future site residents and adjacent site occupants of hydrocarbon vapours

The vapour pathway is included in the GAC assessed above in 6.3.1. No exceedances were found for volatile contaminants in soils around the office block or beneath the car park. Hydrocarbons have been identified to be present in soils beneath the rear car park but at not concentrations that exceed the human health guidelines.

6.3.4 Linkage 3 - Direct contact of potable water supply pipes with contaminated soils leading to ingress of contaminants or degradation of the pipe

6.3.4.1 General

It should be noted that at the time of this investigation the future routes of water supply pipes had not been established, hence the investigation and sampling strategy may not be fully compliant with UKWIR recommendations. Consequently, a targeted investigation and specific sampling/analytical strategy may be required at a later date once the route of the supply pipes is known.

For possible pollutant linkages to proposed water supply pipes, the laboratory test results have been subject to initial assessment against the GAC presented in Appendix E (reproduced from the Table 3.1 of UKWIR).

Full testing has not been undertaken to determine the suitability of metallic pipe materials.

6.3.4.2 Results

Except as follows the results did not exceed the UKWIR guidelines.

TABLE 12: RESULTS ABOVE GUIDELINES					
Land Use - Office Block to be Converted to Flats					
Exploratory hole	Depth m	Contaminant	Result mg/kg	GAC Limit mg/kg	
WS07	0.30	Benzo(a)pyrene	0.69	0.50 for PE pipes	
WS07	0.50	Benzo(a)pyrene	1.00	0.50 for PE pipes	
WS08	0.20	TPH C21-C40	1070	500 for PE pipes.	
Land Use – Car Park to be Developed for Houses and Flats					
Exploratory hole	Depth m	Contaminant	Result mg/kg	GAC Limit mg/kg	
WS12	1.30	TPH C11-21	105	10 for PE pipes.	

Note: PE – Polyethylene (also known as Alkathene or MDPE pipe)

6.3.4.3 Conclusion

The investigation has identified made ground in two locations around the existing office block to contain elevated levels of benzo(a)pyrene. Furthermore, elevated levels of TPH (C21-C40) have been identified in WS08, which possibly relates to a high content of asphalt in the made ground. Raised levels of TPH (C11-21) have been identified beneath the car park proposed for dwellings with gardens at WS12. This contamination is possibly heavily weathered and degraded diesel.

6.3.5 Linkage 4 - Leaching of contaminants into the Secondary 'A' aquifer

6.3.5.1 General

The site lies over a Secondary A Aquifer. The groundwater results have been compared to the respective GACs, presented in Appendix E. In line with the Environment Agency's Remedial Targets Methodology, the GAC for controlled waters are termed 'Target Concentrations' (TC). In this case since the likely receptor is the Secondary A aquifer the UK Drinking Water Standards have been used to assess the results.

6.3.5.2 Results

The groundwater sample collected from WS12 has not exceeded the target concentrations. No significant risks to the wider aquifer have been identified.

6.3.6 Linkage 5 - Migration and accumulation of ground gas in properties potentially resulting in asphyxiation or explosion

6.3.6.1 General

In order to assess the significance of ground gases at the site, measured concentrations (by volume in air) and flow rates have been used to generate Gas Screening Values (GSVs). These have then been compared to the Revised Wilson and Card Classification for the existing office building as presented within CIRIA Report 665 and the generic 'Traffic Lights' for the proposed residential properties with gardens, as presented within the NHBC ground gases guide and CIRIA Report 665.

It is recommended that the gas risk should be assessed by the consideration of pathways to human receptors as follows:

 Gas entering the building through the substructure and building up to hazardous levels

6.3.6.2 Results

The following ground gas parameters have been recorded over four gas monitoring rounds conducted on 8, 10, 16 and 23 August 2017:

- A maximum 'initial' methane concentration of 0%;
- A maximum 'steady state' carbon dioxide concentration of 6.1% (WS07);
- A maximum 'initial' flow rate of 0 l/hr; and
- A maximum 'steady state' flow rate of 0 l/hr.

Groundwater levels are below the solid pipe sections of the wells, thus gas results should be representative of gas conditions in the ground. The monitoring was undertaken over a period of generally moderate or high (>1000 mb) pressure, but included periods of falling pressure.

The worst case Gas Screening Values (GSV) for both methane and carbon dioxide has been calculated for both land uses. In accordance with NHBC guidance (2007) for methane the GSV is calculated using the peak concentration and flow and for carbon dioxide the residual concentrations and flow rates are used.

6.3.6.3 Conclusion

Based upon the results obtained and as no flow has been recorded the GSV's for methane and carbon dioxide have been calculated to be 0 l/hr and 0 l/hr respectively. No methane was recorded however the carbon dioxide maximum concentration is greater than the 5% threshold where industry guidance suggests that gas protection measures should be considered.

In the west of the site where new houses and flats are proposed, it is considered that the gas regime for buildings on shallow foundations is CS1, for which no special precautions are necessary. For any structures that are to be founded on deep piled foundations which may intercept historic coal workings, further work will be required to assess the potential gas risks as there is a risk of creating a pathway for gas movement.

It is understood that the existing office block in the east of the site is likely to be supported on piled foundations due to the presence of deep made ground or broken ground potentially associated with historic coal workings. WS07 in this area proved 1.9 m of generally cohesive made ground, over weathered clays of the Radstock Member.

It is not certain that the source of the carbon dioxide present at this location is a result of the nature of the fill, which is noted to contain coal, or potentially a result of migration from historic coal rich fill or old workings. A gas migration pathway could exist through broken ground, potentially created or modified by the piles for the adjacent building. Coal fill is generally considered a low risk gas source as gas generation rates from such deposits will be very low. Open workings are a more significant risk as they can generate shorter term pulses of hazardous ground gas during periods of falling atmospheric pressure due to expansion of gas in the ground.

The works undertaken for SSL report 732782 included the inspection of foundations exposed internally within the building, and identified that the ground floor slab of the structure was reinforced concrete, overlying variable made ground comprising gravelly clay or slightly clayey gravel. If the piles supporting the building pass down through historic coal workings then there is potential for the gas regime to be different beneath the building than for the remaining locations across the site.

Further work is required to assess this risk to determine if remedial measures are required to be retrofitted to the existing building. It may be possible to agree precautionary remedial measures with the Local Authority in lieu of additional investigation and assessment, but these would have to be necessarily precautionary.

Suitable precautions for an assumed gas regime of Characteristic Situation 2 (CS2) of CIRIA C665) would be likely to include installing a gas resistant membrane across the ground floor and sealing around services and any other penetrations of the floor. Retrofitting may be difficult and the detailing depends on the structure of the building, and would be need to be agreed with the local authority.

The local authority may still require gas monitoring inside the building in order to show the precautions installed were suitable for the actual gas regime under the building.

6.4 Contamination Conclusion on Investigation

Soil contamination has been recorded at the site resulting in complete pollutant linkages. The linkages are summarised below:

- Direct contact by future site residents with soil containing elevated lead concentrations.
- Direct contact by future site residents with soil that may be impacted by asbestos.
- Direct contact of potable water supply pipes with benzo(a)pyrene and TPH contaminated soils.
- Elevated carbon dioxide by offices in the east of the site.

6.5 Remediation and Risk Reduction Recommendations to Date

The Local Environmental Health Officer (and the NHBC if involved) will usually require a 'Validation Report' to confirm that all risk reduction strategies recommended below, and any others subsequently required, have been undertaken.

6.5.1 Direct contact by future site residents with soil that may be impacted by lead or asbestos

Future residential land use in the west of the site

Risks from these contaminants are manifest via the direct contact pathways to future users. Accordingly there is no risk in areas where the site will be hardstanding, roadways or buildings. Risk of direct contact to end users of the site is only possible via areas of gardens and landscaping.

Consideration of the data suggests that the re-worked natural clays below the sub-base type material in the west of the site appears uncontaminated, containing occasional fragment of concrete, mudstone, brick and weathered coal. Accordingly these soils are considered suitable to remain as subsoil in the soft landscaping. If they are locally proven to contain fragments of unsuitable material, such as fragments of glass, metal or asbestos containing material, they would be unsuitable and should be removed.

The overlying shallow granular made ground is not considered appropriate to remain beneath future soft landscaping or garden areas.

In accordance with NHBC recommendations, a minimum of 100 mm of clean topsoil should be provided to act as a growing medium. All imported topsoil and subsoil to be used within the soft landscaping areas should ideally be of known provenance and must be proven to be uncontaminated.

Existing landscaping in the east of the site

The presence of elevated lead concentrations can be managed through the provision of a clean cover system. This could be achieved either by placing uncontaminated soil directly onto the made ground, hence raising ground levels, or by removal of contaminated soil and backfilling with uncontaminated topsoil and subsoil, or by a combination of these means. The cover system is designed to reduce the exposure to contaminants of residents and other site users to an acceptable level. The cover layer should also reduce any risks to plant growth.

The required depth of clean cover can be calculated using BRE report BR465 and this gives a result of 280 mm (spreadsheet presented in Appendix E) but it should be noted that the report states that a minimum of 300mm should always be used. The viability graph shows that simple cover system is suitable. The following assumptions have been made:

- a mixing depth of 600 mm,
- a maximum value of 508 mg/kg for the existing lead contamination and

clean cover concentrations that are a quarter of the guideline values (if actual clean cover concentrations are higher or lower, then the cover thickness will increase or decrease respectively. Any soils used as clean cover should be tested to ensure that

they are uncontaminated in terms of chemical contaminants and also physical contaminants such as asbestos and sharps (e.g. glass, metal, needles, screws, nails etc).

The total thickness of clean cover is subject to council approval and the type of soil should be adequate for plant cultivation. The soils should be tested after being brought to site to confirm that they are uncontaminated and the final thickness of the cover will require validating.

6.5.2 Direct contact by future site residents with soil that may be impacted by asbestos

A 2.5 cm sized amosite asbestos cement fragment was identified at 0.40 m in WS11 at the north west margin of the site. No other asbestos fragments were identified in any of the other exploratory holes across the site nor were asbestos fibres detected in any of the screened made ground samples from around the office block or beneath the car park. This would suggest that any further asbestos fragments present across the site would be present in sporadic areas and at low concentrations.

Asbestos impact currently appears low, however should more significant impact be identified in the soil during development further risk assessment should be undertaken and a safe system of work devised. Asbestos fibres are hazardous to health when released to air and inhaled. Whist work with asbestos in the soil currently appears likely to be of a non-licensed nature, risks associated with working with these soils should be managed in accordance with the principles of CDM Regulations 2015. It should be noted that work with higher risk forms of asbestos, such as loose insulation or large quantities of lower risk forms of asbestos, are licensable under the Control of Asbestos Regulations 2012.

For low risk forms of asbestos, where the quantities are low, and the work is sporadic and low intensity, it is likely to be appropriate to remove it by hand-picking during site works for appropriate disposal as hazardous waste.

6.5.3 Direct contact of potable water supply pipes with benzo(a)pyrene and TPH contaminated soils.

The investigation has identified made ground in two locations around the existing office block to contain elevated levels of benzo(a)pyrene and a third to contain elevated levels of benzo(a)pyrene and TPH (C21-C40). Furthermore, raised levels of TPH (C11-21) have been identified beneath the car park proposed for flats or houses.

Therefore the water supply company may require special pipe materials such as aluminium/polyethylene (Protecta-line or similar) to be used throughout both developments. It is recommended that the test results are presented to the local water supply company to determine the required pipe materials and any additional testing requirements.

Site Safety and Watching Brief

Given the existence of made ground on the site it would be prudent to maintain vigilance during site clearance and construction, in case any suspected contamination is encountered, in which case a suitably qualified person should undertake appropriate sampling, testing and risk assessment

6.6 Off-site Disposal of Surplus Soil

6.6.1 General

All excavated material and excess spoil must be classified for waste disposal purposes prior to disposal at landfill. Under the Landfill (England and Wales) Regulations 2002 (as amended), prior to disposal all wastes must be classified as:

- 'inert', or
- 'non-hazardous', or
- 'hazardous'.

The Environment Agency's *Guidance on the Assessment and Classification of Waste*, Environment Agency, WM3, First Edition May 2015 document outlines the methodology for classifying wastes. Currently all wastes may require pre-treatment prior to disposal at landfill.

6.6.2 Initial Waste Characterisation

Envirolab have produced an assessment tool, 'Haswaste', that characterises contaminated waste soil by following the guidance within WM3. The 'total solid testing' results from this investigation have been run through this assessment tool to aid potential future off-site disposal of materials. This assessment produces an 'initial' characterisation of the waste which determines if it is hazardous or not (if it is 'not' hazardous, then it may be either inert (insoluble and inorganic) or non-hazardous. However, due to complications with the terminology of 'inert waste' it is best not to refer to it as such until after Waste Acceptance Criteria testing).

The assessment is included in Appendix D. Any samples that are classed as hazardous will have yellow cells.

Except as follows the Initial Waste Classification shows that the samples tested are not classed as hazardous.

Any asbestos visible to the naked eye such as the fragment found in the made ground in WS11 at 0.4 is classified as hazardous waste and may be collected and disposed of appropriately, in line with a safe system of work, to reduce disposal costs.

WS08 at 0.2 m showed 1100 mg/kg TPH and is classed as hazardous waste. This is mainly heavy-end TPH C21-40 which is likely to be due to the asphalt present in this sample of granular made ground.

6.6.3 Waste Acceptance Criteria (WAC) Testing

Three waste acceptance criteria tests were conducted on made ground soil samples taken from WS07, WS04 and WS12.

The WAC testing identified the made ground soil sample (WS07) to exceed the total organic carbon (%) WAC inert limit of 3% with a result of 8%. This suggests the made ground from the front of the site in front (east) of the office block can be disposed of as non-hazardous waste if it requires off-site disposal.

The other two samples tested showed results within the WAC-inert limits suggesting these soils may generally be disposed of as inert waste,

Any soils with visible asbestos fragments will be classed as hazardous waste. Also any soils with TPH >1000 mg/kg such as WS08 at 0.2 m mentioned above.

It is important to note that whilst we believe our in-house assessment tool to be an accurate interpretation of the requirements of WM3, thereby producing initial classifications in accordance with it, landfill operators often have their own assessment tools and can often come to a different conclusion. As a result, some landfill operators could even refuse to take apparently suitable waste.

7 SUMMARY

- 7.1 The purpose of the work was to obtain geoenvironmental information in order to facilitate the discharge of precommencement planning condition 2 for permission 17/02563/COU relating to the proposed conversion of a three storey block for residential use and further extension of the block with the addition of two storeys. This information is also intended for use to support a future planning application for redevelopment of the car park to the rear.
- 7.2 The geological map shows the site to be underlain by the Radstock Member, which consists of grey mudstones and sandstones containing numerous thin, muddy coal seams. The Pot and Trolley coal seams are indicated to outcrop across the site along a NW SE orientation whilst the Trench coal seam is located in close proximity to the NE.
- 7.3 The Environment Agency (EA) website has classified the Radstock Member as a Secondary 'A' Aquifer (variably permeable).
- 7.4 The historic maps show that by the end of the 19th Century the site was largely greenfield comprising part of an orchard and open field, including a rifle range. A small ~ (10 m by 5 m) pond was present in the centre of the site. Since that time the site has undergone various industrial uses including warehousing, builder's yard, craft training centre and unspecified industrial buildings, before the current office building with electric sub-station nearby to the north.
- 7.5 SSL previously undertook a wider investigation in 2000 which included a part of the western end of the site at which time a disused diesel pump was present just north of the training centre. This implies a storage tank, probably above ground, has been present but it is not certain if this would have been within the study site boundary.
- 7.6 The ground investigation was carried out by SSL between 2 and 3 August 2017 and comprised 11 window sample holes. Hydrocarbon odours were noted in WS03 and WS12: these locations are in the general vicinity of the former diesel pump. Olfactory or visual indications of contamination were not identified in any of the other exploratory holes except for the presence of anthropogenic materials within the made ground.

7.7 The investigation has identified elevated levels of lead in the made ground at the front of the existing office block, which may pose a risk to human health in soft landscaped areas.

Therefore, based on BRE 465 a clean soil cover layer 300 mm thick should be provided in the soft landscaping in front of the office. Any soils sourced for the clean cover should be tested or certified to ensure that they are uncontaminated in terms of chemical contaminants and also physical contaminants such as asbestos and sharps (e.g. glass, metal, needles, screws, nails etc).

The total thickness of clean cover is subject to council approval and the type of soil should be adequate for plant cultivation. The proposed imported soils should be tested after they have been brought to site to confirm that they are uncontaminated and the final thickness of the cover will require validating.

7.8 In the west of the site where housing is to be built the re-worked natural clays below the sub-base type material appear uncontaminated, containing occasional fragments of concrete, mudstone, brick and weathered coal. Accordingly these soils are considered suitable to remain as subsoil in the soft landscaping. If they are locally proven to contain fragments of unsuitable material, such as fragments of glass, metal or asbestos containing material, they would be unsuitable and should be removed.

The overlying shallow granular made ground is not considered appropriate to remain beneath future soft landscaping or garden areas. In accordance with NHBC recommendations, a minimum of 100 mm of clean topsoil should be provided to act as a growing medium. All imported topsoil any subsoil to be used within the soft landscaping areas should ideally be of known provenance and must be proven to be uncontaminated.

7.9 A 2.5 cm sized amosite asbestos cement fragment was identified at 0.40 m in WS11 at the north-west margin of the site. No other asbestos fragments were identified in any of the other exploratory holes across the site nor were asbestos fibres detected in any of the screened made ground sampled from around the office block or beneath the car park. This would suggest that any further asbestos fragments present across the site would be present in sporadic areas and at low quantities.

Asbestos impact currently appears low, however should more significant impact be identified in the soil during development further risk assessment should be undertaken and a safe system of work devised. Asbestos fibres are hazardous to health when

released to air and inhaled. Whist work with asbestos in the soil currently appears likely to be of a non-licensed nature, risks associated with working with these soils should be managed in accordance with the principles of CDM Regulations 2015. It should be noted that work with higher risk forms of asbestos, such as loose insulation or large quantities of lower risk forms of asbestos, are licensable under the Control of Asbestos Regulations 2012.

For low risk forms of asbestos, where the quantities are low, and the work is sporadic and low intensity, it is likely to be appropriate to remove by hand-picking during site works for appropriate disposal as hazardous waste.

- 7.10 The water company may require special pipe materials such as aluminium/polyethylene (Protecta-line or similar) to be used through both developments. It is recommended that the test results are presented to the local water supply company to determine the required pipe materials and any additional testing requirements.
- 7.11 For the houses and flats proposed in the west of the site it is considered that the gas regime for buildings on shallow foundations is CS1, for which no special precautions are necessary. For any structures that are to be founded on deep piled foundations which may intercept historic coal workings, further work will be required to assess the potential gas risks where there is a risk of pathway creation for gas movement.
- 7.12 It is understood that the existing office block in the east of the site is likely to be supported on piled foundations due to the presence of deep made ground or broken ground potentially associated with historic coal workings. It is not certain that the source of the carbon dioxide present at this location is a result of the nature of the fill, which is noted to contain coal, or potentially a result of migration from historic coal rich fill or old workings via a pathway through broken ground, potentially created or modified by the piles for the adjacent building. The former is a generally low risk as gas generation rates from such deposits will be very low. Open workings are a more significant risk as they can generate shorter term pulses of hazardous ground gas during periods of falling atmospheric pressure due to expansion of gas in the ground.

Further work is required to assess the gas risk and determine if remedial measures are required to be retrofitted to the existing office building. Suitable precautions for an assumed gas regime of Characteristic Situation 2 (CS2) of CIRIA C665) would be likely to include installing a gas resistant membrane across the ground floor and sealing around services and any other penetrations of the floor. Retrofitting may be difficult and

the detailing depends on the structure of the building, and would be need to be agreed the local authority.

The local authority may still require gas monitoring inside the building in order to show the precautions installed were suitable for the actual gas regime under the building.

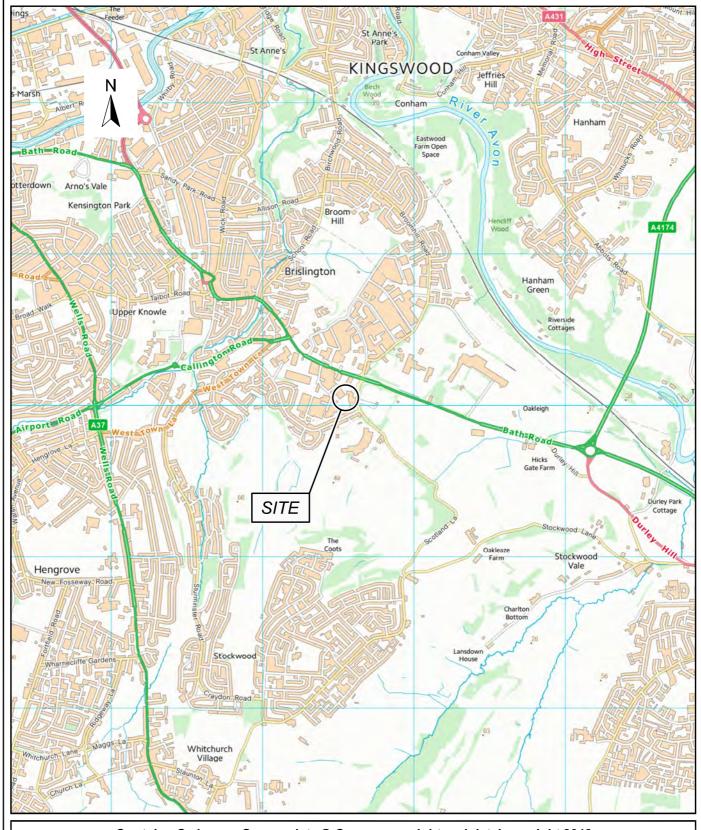
- 7.13 Given the existence of made ground on the site it would be prudent to maintain vigilance during site clearance and construction, in case any suspected contamination is encountered, in which case a suitably qualified person should undertake appropriate sampling, testing and risk assessment
- 7.14 Except as follows the Initial Waste Classification shows that the samples tested are not classed as hazardous. Any asbestos visible to the naked eye such as the fragment found in the made ground in WS11 at 0.4 m is classified as hazardous waste so should be collected and disposed of appropriately. WS08 at 0.2 m showed 1100 mg/kg TPH and is classed as hazardous waste. This is mainly heavy-end TPH C21-40 which is likely to be due to the asphalt present in this sample of granular made ground.

Three waste acceptance criteria tests were conducted on made ground soil samples taken from WS07, WS04 and WS12. The WAC testing identified the made ground soil sample (WS07) to exceed the total organic carbon (%) WAC inert limit of 3% with a result of 8%. This suggests the made ground from the front of the site in front (east) of the office block can be disposed of as non-hazardous waste if it requires off-site disposal.

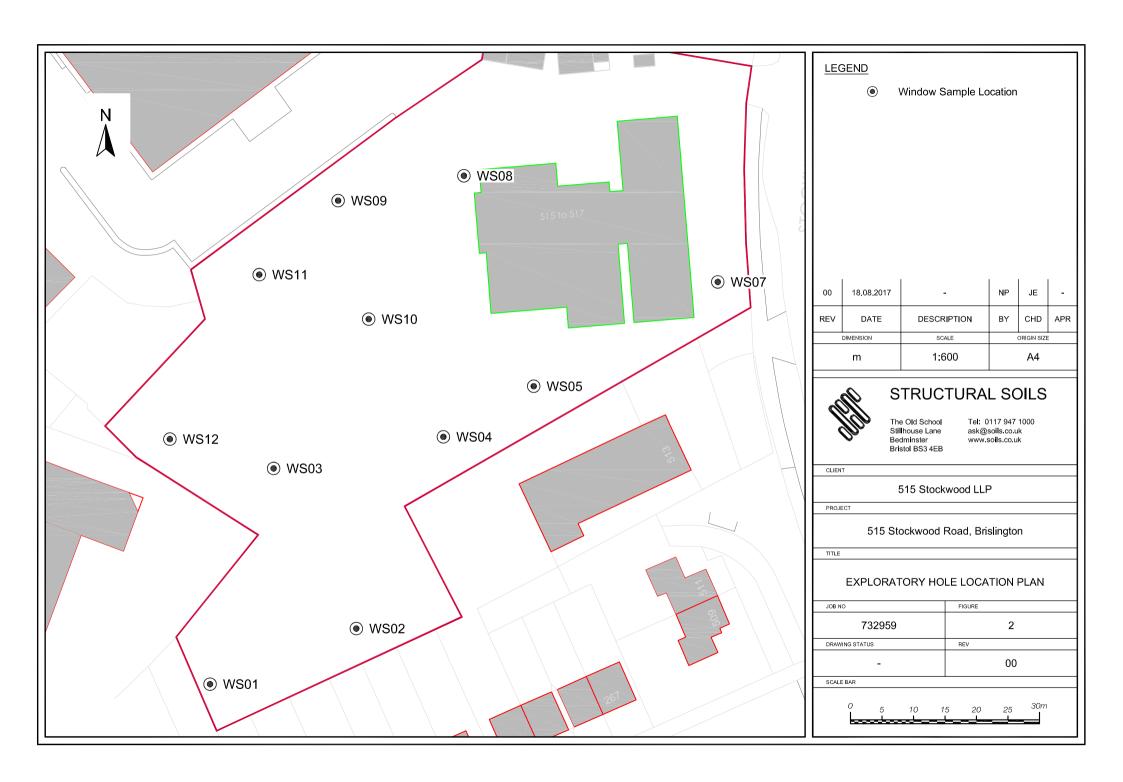
The other two samples tested showed results within the WAC-inert limits suggesting these soils may generally be disposed of as inert waste, but noting that any soils with visible asbestos fragments will be classed as hazardous waste, also any soils with TPH >1000 mg/kg such as WS08 at 0.2 m mentioned above.

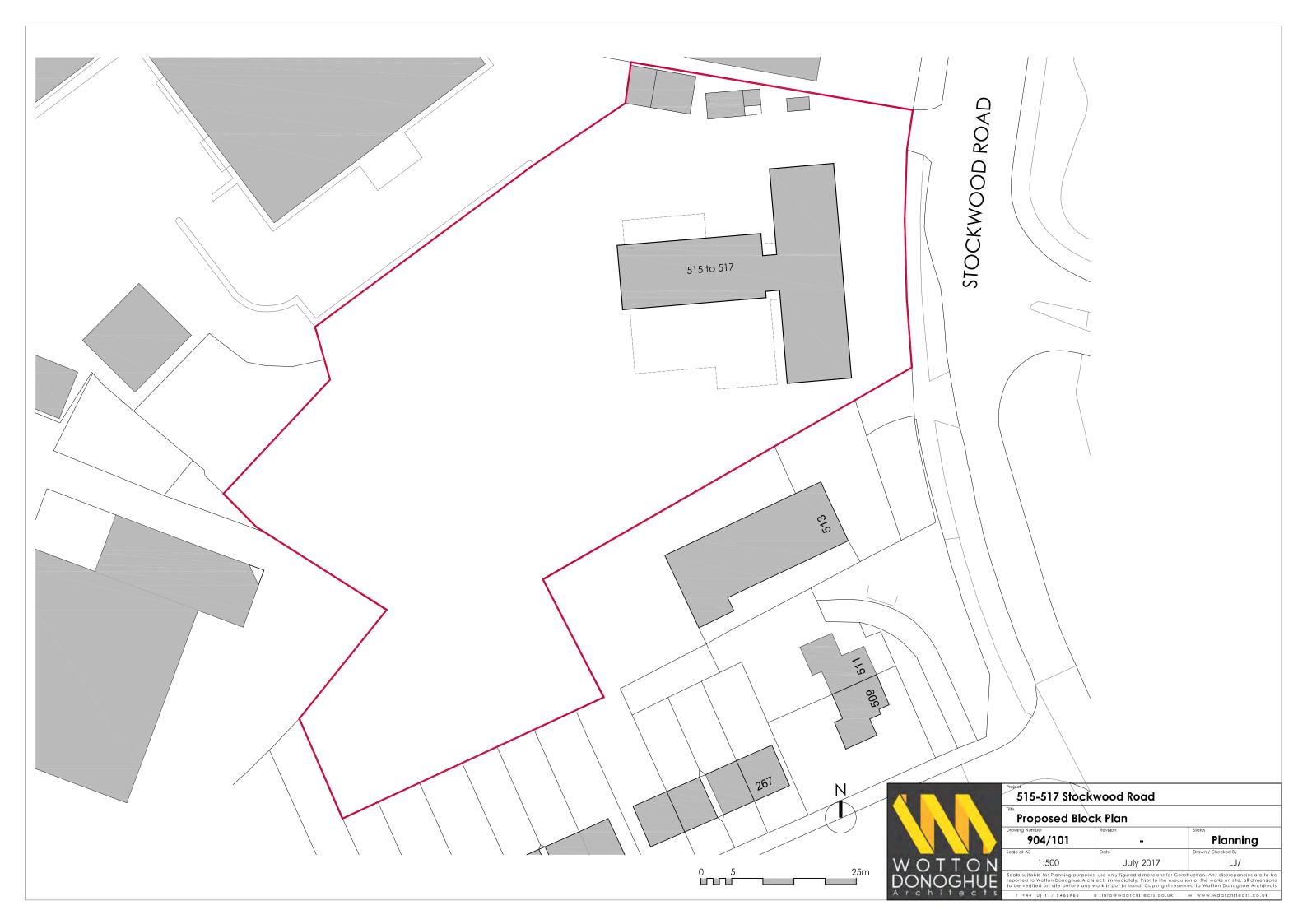
8 REFERENCES

- **8.1** BS 5930:2015 Code of practice for ground investigations
- **8.2** BS 10175:2011 *Investigation of potentially contaminated sites: Code of practice*, including amendment A1 2013
- 8.3 BS EN 1997-2:2007 Eurocode 7 Geotechnical design Part 2: Ground Investigation and testing
- 8.4 BS EN ISO 22475-1:2006 Geotechnical Investigation and Testing Sampling and Groundwater Measurements Technical Principles
- 8.5 Structural Soils Ltd, June 2017. Letter Report 732782 515 Stockwood Road, Bristol.
- 8.6 Structural Soils Ltd, August 2017. Report 732959 515 Stockwood Road, Bristol dated August 2017 and comprising a Coal Mining Risk Assessment.
- 8.7 Structural Soils Ltd, August 2000. Report 00722 Stockwood Road, Bristol.
- 8.8 British Geological Survey sheet 264 scale 1:50,000, published 2004
- 8.9 British Geological Survey online digital geological map, www.bgs.ac.uk/data
- 8.10 British Geological Survey Lexicon of Named Rock Units, www.bgs.ac.uk/lexicon
- **8.11** Environment Agency website, www.environment–agency.gov.uk
- **8.12** Environment Agency Groundwater Vulnerability Map sheet 37 scale 1:100,000
- **8.13** CIRIA Report C552 (2001), Contaminated Land Risk Management; A Guide to Good Practice
- 8.14 BS EN ISO 14688-1:2002 Geotechnical investigation and testing Identification and classification of soil: Part 1: Identification and description, including Amendment A1 2013



- 8.15 BS EN ISO 14688-2:2004 Geotechnical investigation and testing Identification and classification of soil: Part 2: Principles for a classification, including Amendment A1 2013
- **8.16** BS EN ISO 14689-1:2004 Geotechnical investigation and testing Identification and classification of rock: Part 1: Identification and description
- 8.17 BS EN ISO 22476-3:2005 (updated February 2007) Geotechnical Investigation and Testing Field Testing Part 3: Standard Penetration Test, including Amendment A1 (2011)
- 8.18 BS EN 12457-2:2002 Characterisation of waste. Leaching. Compliance test for leaching of granular waste materials and sludges. One stage batch test at a liquid to solid ratio of 10l/kg for materials with particle size below 4mm (without or with size reduction).
- **8.19** R & D Publication CLR 11 (September 2004). *Model Procedures for the Management of Contaminated Land. Contaminated Land.* Environment Agency
- **8.20** UK Water Industry Research (2010) UKWIR Report 10/WM/03/21. *Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites* (London: UKWIR).
- **8.21** CIRIA Report C665 Assessing risks posed by hazardous ground gases to buildings, London, 2007
- **8.22** *NHBC Standards (2017)*
- 8.23 BRE Report 465 (2004) Cover Systems for Land Regeneration
- 8.24 Construction Design and Management (CDM) Regulations 2015
- **8.25** The Control of Asbestos Regulations 2012
- **8.26** Landfill (England & Wales) Regulations 2002
- **8.27** Guidance on the Assessment and Classification of Waste, Environment Agency, WM3, First Edition May 2015


APPENDIX A - PLANS AND DRAWINGS


- (i) Site Location Plan
- (ii) Exploratory Hole Location Plan
- (iii) Proposed Development Layout Plan

Contains Ordnance Survey data © Crown copyright and database right 2013

1							CLIENT									
	P		TRUCTURA						515 Stockwood LLP							
				117 947 soils.co.ບ			PROJECT	PROJECT								
	0	Sec Bed		oils.co.u				Stockwood Road, Brislington								
							TITLE									
00	0 (01.08.2017	=	NP	JE	-										
RE	:\/	DATE	DESCRIPTION	BY	CHD.	APR.			SITE LOCATION MAP							
'``	``	57.1.2	BEGGIAI HOIT	5.	01.15.	/	JOB NO	GRID REF	SCALE BAR	ORIGIN SIZE	FIGURE					
	DIME	ENSION	SCALE	DR	AWING STA	TUS										
	m 1:25,000 -					·	732959	ST 625 700	0 250 500 750 1,000m	A4	1					

APPENDIX B - EXPLORATORY HOLE RECORDS

- (i) Key to Exploratory Hole Logs
- (ii) Window Sample Logs

Contract Reference: 732959

KEY TO EXPLORATORY HOLE LOGS - SUMMARY OF ABBREVIATIONS

SAMPLING

Sample type codes

B = Bulk disturbed sample.
D = Small disturbed sample.

DSPT = Small disturbed sample originating from SPT test.

ES = Soil sample for environmental testing.

IN-SITU TESTING

SPT_(c) = Standard Penetration Test using a solid 60 degree cone.

SPT = Standard Penetration Test using split spoon sampler. (SPT_(NR) indicates 'No Sample

Recovery').

* denotes extrapolated N value. NP denotes 'No Penetration'.

HP = Hand Penetrometer Test. Value given as shear strength c₀, in kPa.

ADDITIONAL NOTES

1. All soil and rock descriptions and legends in general accordance with BS EN ISO 14688-1, 14688-2, 14689-1, and BS5930:2015.

2. Material types divided by a broken line (- - -) indicates an unclear boundary.

3. The data on any sheet within the report showing the AGS icon is available in the AGS format.

Contract Reference: 732959

KEY TO EXPLORATORY HOLE LOGS - SUMMARY OF GRAPHIC SYMBOLS

WATER COLUMN SYMBOLS

First water strike, second water strike etc.

Standing water level following first strike, standing water level following second strike etc.

Seepage.

Standing water level recorded at documented date.

MATERIAL GRAPHIC LEGENDS

CLAY

Clayey sandy GRAVEL

MADE GROUND

Mudstone

Sandy gravelly CLAY

INSTRUMENTATION SYMBOLS

Backfill

Bentonite seal

Concrete

Gravel filter

ı	Г		٦
l	П	- 1	
L	Ш		\perp

Flush cover

Plain pipe

Slotted pipe

STRUCTURAL SOILS

Contract:				Client:		Window	San	ıple:	
515 Stockwood Roa	ad, B	rislingto	n	515	Stockwood LLP			W	VS1
Contract Ref:	Start:	02.08.17	Groun	d Level:	Co-ordinates:	Sheet:			
732959	End:	02.08.17					1	of	1

Progress	s		Sam	ples / ٦	Tests	7	∞ .:	Depth Mater
Window R	Run	Depth	No	Туре	Results	Water	Backfill & Instru-	Description of Strata (Thick Graph ness) Leger
		0.00-0.10	1	D			THE	MADE GROUND: Asphalt. 0.10
	Ī	0.10-0.30	2	В				MADE GROUND: Orangish brown clayey sandy
	ŀ	0.20	1	ES				GRAVEL with low cobble content. Sand is fine to 0.25
	ŀ						,98	coarse. Gravel is angular to subangular fine to coarse
	ŀ							ballast. Cobbles of angular limestone.
	ŀ	0.50-0.90	3	В				MADE GROUND: Light grey clayey very sandy GRAVEL. Sand is fine to coarse. Gravel is angular to
	ŀ	0.60	2	ES				subangular fine to coarse limestone.
	ŀ	0.60	-	HP	c,,=90/95/95			Stiff light grey mottled reddish brown slightly sandy
	ŀ							slightly gravelly CLAY with low copple content Sand is
	ŀ							fine to coarse. Gravel is angular to subangular fine to (0.90)
	-	_					۰,۰⊔۰	coarse mudstone and sandstone. Cobbles of
							l.°H.°	」subangular sandstone. ↓ (RADSTOCK MEMBER)
			١.				l::H:	
^		1.20-1.65	1	SPT(c)	N=22		l::H:	1.35
		1.30 1.35-2.00	3	ES D			::H:	Very stiff reddish brown sandy slightly gravelly CLAY.
		1.33-2.00	*	"			₽	Sand is fine to coarse. Gravel is angular to subangular
1.20 - 2.0							₽: ₩:	mudstone.
(101mm di 100% red		1.60		HP	c _u =220/225/225			(RADSTOCK MEMBER)
10070160	ĭ	1.70	4	ES				
							lÿ:⊞;	(1.10)
₩	Ī							
		2.00-2.40	2	SPT	N=83*			
	Ī	•					₩Ħ:	
	Ī	•						;
	ŀ	•					₽	<u> </u>
	ŀ						****	2.45 — •
	l							Window sample hole refused at 2.45m depth.
	ŀ							†
	ŀ	•						<u> </u>
	ŀ							
	ŀ							
	-	_						-
	ŀ	•						-
	-							-
	-							-
	L							
		_						
	ſ							
	Ī							
	Ī							
	ļ							
	[L					
Dı	rilling	Progress a	nd W	ater O	bservations			0 15
		Boreho	e C	Casing	Borehole Wa	ater	\exists	General Remarks
_		e Depth	[Depth (m)		pth n)	-	
Date	Tim	()		()	()	,		Area cleared by GPR, CAT and Genny.
Date	Tim							Break out asphalt with inspection pit dug to 1.20m depth. Hole dry and stable.
Date	Tim						11 J.	ioic ai y ai lu stabic.
Date	Tim							
Date	Tim						4.	Gas/groundwater monitoring pipe installation to 2.40m depth (1.00m plain, .40m slotted and flush cover).
Date	Tim						4. 5.	Gas/groundwater monitoring pipe installation to 2.40m depth (1.00m plain, .40m slotted and flush cover). Hole backfilled with gravel, bentonite pellets and arisings.
Date	Tim						4. 5.	Gas/groundwater monitoring pipe installation to 2.40m depth (1.00m plain, .40m slotted and flush cover).
Date	Tim						4. 5.	Gas/groundwater monitoring pipe installation to 2.40m depth (1.00m plain, 1.40m slotted and flush cover). Hole backfilled with gravel, bentonite pellets and arisings. SPT hammer DT16208-2017 (<i>E</i> _r = 65.13%) used.
		pection pi	t +	Plar	nt		4. 5.	Gas/groundwater monitoring pipe installation to 2.40m depth (1.00m plain, .40m slotted and flush cover). Hole backfilled with gravel, bentonite pellets and arisings. SPT hammer DT16208-2017 (E_r = 65.13%) used.

	Drilling Pro	ogress and	Water Ob	servations	3			Con	orol	Domorko			
Date	Time	Borehole Depth (m)	Casing Depth	Borehole Diameter	Water Depth			Gene	erai	Remarks			
		(m)	(mm)	(m)	 1. Area cleared by GPR, CAT and Genny. 2. Break out asphalt with inspection pit dug to 1.20m depth. 3. Hole dry and stable. 4. Gas/groundwater monitoring pipe installation to 2.40m depth (1.00m plair 1.40m slotted and flush cover). 5. Hole backfilled with gravel, bentonite pellets and arisings. 6. SPT hammer DT16208-2017 (E_r = 65.13%) used. 					n,			
						А	ll dimen	sions in metres		Scale:	1:25		
Metho Used:		tion pit + d windov			ndo Terri	ier	Drilled By:	Josh Parratt	Logge By:	JCEvans	Checke By:		AGS

STRUCTURAL SOILS

WINDOW SAMPLE LOG

Contract:			Client:		Window	San	nple:	
515 Stockwood Roa	ad, Brisling	ton	515	Stockwood LLP			V	VS2
Contract Ref:	Start: 02.08.	7 Grou	nd Level:	Co-ordinates:	Sheet:			
732959	End: 02.08.	7				1	of	1

7.5	2303		Ena:	02.08.17								ot I
Progress		Samp	oles / T	ests	Water	Backfill		Description of Str	roto		Depth	Material Graphic
Window Run	Depth	No	Туре	Results	×	Bac		Description of Str	ala		ness)	Legend
- -	0.10-0.30	1	B ES				MADE GR GRAVEL.	DUND: Asphalt. OUND: Orangish brown Sand is fine to coarse. fine to medium limeston	Gravel is angulaı	andy r to	0.10	
-	0.50-0.80 0.60 0.60	2 2 3	B ES HP B	c _u =90/80/80			GRAVEL Coarse. Graballast. Col MADE GRaslightly graangular to	OUND: Light yellowish with high cobble conte avel is angular to subar obles of angular limeston OUND: Firm to stiff dark yelly CLAY. Sand is fine subangular fine to coand weathered coal.	nt. Sand is fine ngular fine to coale. brown slightly satto coarse. Grav	andy el is	- 0.45 - (0.40) - 0.85	
- -	1.00 1.20-1.65 1.20-1.50 - 1.30 1.40	3 1 4 4	ES SPT D HP ES	N=15 c _u =80/95/75			Firm to stif slightly gra angular to and mudsto	f grey mottled orangish velly CLAY. Sand is fine subangular fine to mecone. Occasional rootlets. CK MEMBER)	to coarse. Gravilium weathered	el is	(0.65)	
1.20 - 2.00 (101mm dia) - 100% rec	1.50-2.00	5	D	_u =>225/>225/>22	5		slightly gra angular fine	grey mottled reddish by velly CLAY. Sand is fine to coarse mudstone. CK MEMBER)	prown slightly sa to coarse. Grav	andy el is	- - -	
	2.00-2.45 2.00 2.00-3.00	2 5 6	SPT ES D	N=42			from 2	00m friable.			- - -	
2.00 - 3.00 (89mm dia) 100% rec	3.00-3.45 3.00	3 6	SPT ES	N=51							(1.95) - - - - - - - - - - - - - - - - - - -	
-	-						Window sa	mple hole refused at 3.4	ьт depth.		-	

		pection		Plar			All dimensions in metres Scale: 1:25 Drilled Logged Check
						2. E 3. H 4. H	ireak out asphalt with inspection pit dug to 1.20m depth. lole dry and stable. lole backfilled with bentonite pellets and arisings. PT hammer DT16208-2017 (E_r = 65.13%) used.
Date	Tin	ne Do	ehole epth m)	Casing Depth (m)	Borehole War	eter pth n)	General Remarks urea cleared by GPR, CAT and Genny.
	Drilling	g Progres	ss and \	Nater O	bservations		Oananal Barratia
-		-					- - -
-		- - -					
		-					Window sample hole refused at 3.45m depth.
- - -		- 3.00 - -	6		N O		
		- - - 3.00-3.4	5 3	SPT	N=51		
2.00 - 3 (89mm - 100%	dia)	- - -					(1.95)
 		2.00-2.4 - 2.00 - 2.00-3.0	5	ES	N=42		from 2.00m friable.
(101mm - 100%		1.80		HP c	u=>225/>225/>22	5	slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular fine to coarse mudstone. (RADSTOCK MEMBER)
1.20 - 2		1.20-1.5 - 1.30 _ 1.40 _ 1.50-2.0	4	HP ES	c _u =80/95/75		and mudstone. Occasional rootlets. (RADSTOCK MEMBER) 1.50 Very stiff grey mottled reddish brown slightly sandy
		1.00 1.20-1.6		SPT	N=15		Firm to stiff grey mottled orangish brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular to subangular fine to medium weathered coal
_		- 0.90-1.2	0 3	В			slightly gravelly CLAY. Sand is fine to coarse. Gravel is 0.85 angular to subangular fine to coarse concrete, brick, mudstone and weathered coal.
		0.60		HP	c _u =90/80/80	│	MADE GROUND: Firm to stiff dark brown slightly sandy

WINDOW SAMPLE LOG

Contract:					Client:			Wind	Window Sample:					
515 Sto	ckwood Ro	ad, B	rislingto	n		515	Stockwood LLP		WS					
Contract Ref:		Start:	02.08.17	Ground	d Level	:	Co-ordinates:	Shee	t:					
73	2959	End:	02.08.17			-			1	of	1			
Progress	Progress Sar		Гests	_	=				Dept	h M	ateria	a		

Window Rui	
1.20 - 2.00 (101mm dia) 100% rec	
(101mm dia)	

2	[Orilling Pro	gress and	Water O	oservations	;	General Remarks							
2	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gene	erai	Remarks			
ווא בוע, ו והמט טווועה - טווסנטו			(m)	(m)	(mm)	(m)	2. Breal depth 3. Hole 4. Hole	k out asp I. stable bu backfille	by GPR, CAT and halt and reinford that filling with surd with bentonite DT16208-2017	ced cor face wa pellets	ncrete with inspentater. and arisings.	ction pit duç	g to 1.20	Эт
5							A	II dimens	sions in metres		Scale:	1:25		
סוו מכנמיר	Method Used:		tion pit + d windov			ndo Terri	ier	Drilled By:	Josh Parratt	Logge By:	d JCEvans	Checke By:		AGS

Josh Parratt By:

STRUCTURAL SOILS

WINDOW SAMPLE LOG

Contract:			Client:		Window	Sam	iple:	
515 Stockwood Roa	ad, Brislin	gton	515	Stockwood LLP			V	VS4
Contract Ref:	Start: 03.08	17 Grou	nd Level:	Co-ordinates:	Sheet:			
732959	End: 03.08	17				1	of	1

									· ·
Progress		Sam	oles / T	Tests	e	I		Depth	Material
Window Run	Depth	No	Туре	Results	Water	Backfill	Description of Strata	(Thick ness)	Graphic Legend
-	0.12-0.50	1 1	B ES				MADE GROUND: Asphalt. MADE GROUND: Orangish brown slightly clayey very sandy GRAVEL. Sand is fine to coarse. Gravel is angular to subangular fine to coarse limestone, concrete, asphalt and brick.	_ 0.12	
-	0.50-1.20	2	В				MADE GROUND: Firm light grey mottled light and dark brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular to subangular fine to coarse brick, concrete, coal and mudstone. Occasional organic	0.50	
- -	0.80	2	ES		 		matter and rootlets.	(0.75) - -	
1.20 - 2.00	1.20-1.65 1.25-2.00	1 3	SPT D	N=0			Very soft becoming soft light grey mottled light brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular fine to medium mudstone and coal. Occasional organic matter.	- 1.25 - - -	
(101mm dia) - 100% rec	1.60	3	ES				(POSSIBLE MADE GROUND)	- (0.75) - -	
- 2.00 - 2.30 (89mm dia) 100% rec	2.00-2.45 2.00-2.30 2.20	2 4 4	SPT D	N=45			Stiff becoming very stiff reddish brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular fine to medium mudstone and weathered	2.00	
-	2.30-2.68	3	SPT	N=67*			coal. (RADSTOCK MEMBER)	-(0.68)	
- - -	- -						increasingly friable with depth. Window sample hole refused at 2.68m depth.	2.68	<u> </u>
	- - -							- -	
-	- - -							- - -	
- - -	- - -							- -	
	-							- -	
-	-							-	

		Orilling Pro	gress and					Go	aoral	Remarks		
- - -	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth		<u> </u>	lerai	Nemaiks		
ווס דנתי - ובמת כוווכס - בנוכנים			(m)	(m)	(mm)	(m)	2. Breal 3. Hole 4. Hole	cleared by GPR, CAT k out asphalt with insp stable with groundwa backfilled with benton hammer DT16208-20	ection pit er seepir te pellets	t dug to 1.20m de ng into pit at 1.10 s and arisings.	pth. n depth.	
8							A	II dimensions in metre	S	Scale:	1:25	
וכ	ethod sed:	Inspec Tracked	tion pit + d windov	Plar Use		ndo Terri	ier	Drilled By: Josh Parra	Logge By:	JCEvans	Checke By:	AGS

GINT LIBRARY V8 06.GLB LibVersion: v8 06 018 Phytersion: v8 06 - Core+Logs+Contam Scheduling - 002 | Log WINDOW SAMPLE LOG - A4P | 732959 515 STOCKWOOD ROAD BRISLINGTON.GPJ - v8 06. Structural Soils Lid, Head Office - Bristol: The Oid School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.soils.co.uk, Email: ask@soils.co.uk. | 01/09/17 - 09:15 | JE4 |

STRUCTURAL SOILS

WINDOW SAMPLE LOG

Contract:				Client:			Windo	v San	nple:	
515 Stockwood Roa	ad, Bri	islingto	n		515	Stockwood LLP			W	/ S5
Contract Ref:	Start: (03.08.17	Groun	d Level:		Co-ordinates:	Sheet:			
732959	End: 0	03.08.17						1	of	1

	Progress		Sam	oles / T	ests	er	Ē		Depth	
0.12-0.50	Window Run	Depth	No	Туре	Results	Wat	Bac	Description of Strata		
0.20	-							1	0.12	
MADE_GROUND: Soft becoming firm light grey mottled light brown griphy sanely glightly gavelly class gligh	- - -	0.20	1	ES				GRAVEL with high cobble content. Sand is fine to medium. Gravel is angular to subangular fine to coarse limestone, asphalt, concrete and mudstone. Cobbles of subangular ballast and brick.		
	- - - -	0.80		ES	c _u =50/50/45			MADE GROUND: Soft becoming firm light grey mottled light brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular to subangular fine to medium coal, mudstone and brick. Rare 5mm diameter	- - - -(1 10)	
		1.20-1.60	3	D	N=4				- - -	
	(101mm dia)	1.60-2.40		D	c _u =50/45/55			organic matter. Rare rootlets.	1.60	
		1.90		HP SPT	N=20				(0.80)	
	(89mm dia)	_	5					slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular to subangular fine to medium mudstone.	2.40	
		-			N=60*				(1.00)	
	-							Window sample hole refused at 3.40m depth.	3.40	-0
Drilling Progress and Water Observations General Remarks	-	-							-	
(m) (m) (m) (m) 1. Area cleared by GPR, CAT and Genny. 2. Break out asphalt with inspection pit dug to 1.20m depth. 3. Hole dry and stable. 4. Hole backfilled with bentonite pellets and arisings. 5. SPT hammer DT16208-2017 (<i>E_r</i> = 65.13%) used. Method Inspection pit + Plant Drilled Logged Checked		Boreho	e C	asing	Borehole Wa			General Remarks		
All dimensions in metres Scale: 1:25 Method Inspection pit + Plant Drilled Logged Checked Checked	2300						2. B 3. H 4. H	reak out asphalt with inspection pit dug to 1.20m depth. lole dry and stable. lole backfilled with bentonite pellets and arisings.		
Method Inspection pit + Plant Drilled Logged Checked Checked								All dimensions in metros		
	Method Ins	spection ni	t +	Plan	ıt L		Ш		ed	

		Orilling Pro	gress and	Water Ob	servations	5			Con	aral	Domorko		
	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gene	erai	Remarks		
בומי וומפק כווומק			(m)	(m)	(mm)	(m)	2. Breal 3. Hole 4. Hole	k out asp dry and backfille		tion pit pellets	dug to 1.20m de and arisings.	epth.	
							A	II dimen	sions in metres		Scale:	1:25	
וי	Method Used:		tion pit + d windov			ndo Terri	ier	Drilled By:	Josh Parratt	Logge By:	d JCEvans	Checked By:	AGS

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PŋVersion: v8_06 - Core+Logs+Contam Scheduling - 002 | Log WINDOW SAMPLE LOG - A4P | 732959_515_STOCKWOOD_ROAD_BRISLINGTON.GPJ - v8_06. Scheduling - v8_06. Sched

STRUCTURAL SOILS

Contract:		Client:			Window	Sam	ple:	
515 Stockwood Roa	ad, Brislingto	n	515	Stockwood LLP			V	VS7
Contract Ref:	Start: 03.08.17	Ground Level:		Co-ordinates:	Sheet:			
732959	End: 03.08.17		ı			1	of	2

		2000		Liiu.	03.00.17					-
	Progress		Samp	oles / T	Tests	er	ill & tion			Material
	Window Run	Depth	No	Туре	Results	Water	Backfill & Instrumentation	Description of Strata	(Thick ness)	Graphic Legend
	-	0.00-0.20 0.10 0.20-0.40	1 1 2	B ES B				MADE GROUND: Grass over soft dark brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular to subangular fine to medium concrete. Abundant rootlets.	0.20	
	- -	0.30	3 3	ES B ES				MADE GROUND: Soft blackish brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular fine to medium concrete, ceramic fragments	0.40	
		0.60-1.20	4	B ES				and weathered coal. Occasional rootlets. MADE GROUND: Soft dark brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular to subangular fine to coarse brick, concrete and weathered coal.	-	
		- - 1.20-1.65 - 1.20-1.90	1 5	SPT D	N=21			MADE GROUND: Firm becoming stiff blackish brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular fine to coarse concrete, weathered coal, brick and ceramic fragments.	- -(1.30)	
_	1.20 - 2.00 (101mm dia) 100% rec	1.40 - - -	5	ES					- - -	
		1.90-2.70 2.00-2.45 2.00	6 2	D SPT HP	N=10 c _u =55/50/50			Firm becoming stiff light grey mottled light brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular fine to medium mudstone. (RADSTOCK MEMBER)	1.90	
	2.00 - 3.00 (89mm dia) 90% rec	2.50 2.60 2.70-4.80	6	ES HP D	c _u =140/130/145			Stiff becoming very stiff dark grey mottled reddish brown	2.70	
	- Y	2.90 3.00-3.45	3		c _u =>225/215/>225 N=23	5		slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular to subangular fine to medium mudstone. (RADSTOCK MEMBER)	- - -	
	3.00 - 4.00 (79mm dia)	- - - -							- - -	
		3.70	7	ES				from 3.70m friable.	- (2.10) - -	
	4.00 - 5.00 (69mm dia) 100% rec	4.00-4.45 - - -	4	SPT	N=48				- - -	

		Orilling Pro	gress and	Water Ob	servations	3			Con	aral	Domorko	
	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gene	erai	Remarks	
			(m)	(m)	(mm)	(m)	2. Inspe 3. Hole 4. Gas/g 4.00n 5. Hole	ction pit dry and groundw n slotted backfille		epth. pipe ins). entonite	stallation to 4.70	m depth (0.70m plain, ings.
							A	II dimen	sions in metres		Scale:	1:25
- 1	Method Jsed:		tion pit + d windov			ndo Terri	ier	Drilled By:	Josh Parratt	Logge By:	JCEvans	Checked By: AGS

STRUCTURAL SOILS

and								V	VINDOW	SAM		EL	OG
Contract:							Client:				Windo	v Samp	le:
515 Sto	ckwood	Roa	ad, B	rislingto	n			515	Stockwood LLF				WS7
Contract Ref:			Start:	03.08.17	Gr	ounc	d Level	:	Co-ordinates:		Sheet:		
73	2959		End:	03.08.17				-				2	of 2
Progress		Sam	ples / T	Tests		Ē	≡ & u- tion					Depth	Material
Window Run	Depth	No	Туре	Results		Water	Backfill & Instru-mentation		Description of S	trata		(Thick ness)	Graphic Legend
4.00 - 5.00 (69mm dia) 100% rec	4.80-5.00	8	D SPT	N=67*				Extremely MUDSTON	weak dark grey IE. CK MEMBER)	partially weat	hered	4.80	<u></u>
- - 	-											5.38	
								William Sa	mple hole refused at 5.3	oom depin.			
-	-											- -	

[Orilling Pro	gress and						Cana	aral	Remarks		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gene	zı aı	Nemaiks		
		(m)	(m)	(mm)	(m)							
						А	II dimen	sions in metres		Scale:	1:25	
Method	Inspec	tion pit +	Plan	t			Drilled		Logge	d	Checke	
Used:	Tracke	d windov	v Used	d: Da	ndo Terri	ier	Ву:	Josh Parratt	Ву:	JCEvans	Ву:	AGS

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PηVersion: v8_06 - Core+Logs+Contam Scheduling - 002 | Log WINDOW SAMPLE LOG - A4P | 732959_515_STOCKWOOD_ROAD_ROAD_BRISLINGTON.GPJ - v8_06. Structural Solis Litd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.solis.co.uk, Email: ask@solis.co.uk, | 01/09/17 - 09:16 | JE4 |

WINDOW SAMPLE LOG

Contract:		Client:		Window Sample:				
515 Stockwood Roa	ad, Brislingto	on 5	515 Stockwood LLP			W	/S 8	}
Contract Ref:	Start: 02.08.17	Ground Level:	Co-ordinates:	Sheet:				
732959	End: 02.08.17				1	of	1	

	2333		Liid.	02.00.17					01 1
Progress		Samp	oles / T	Tests	<u>ب</u>	≡		Depth	Material
Window Run	Depth	No	Туре	Results	Water	Backfill	Description of Strata	(Thick ness)	Graphic
							MADE GROUND: Asphalt.	- 0.12	
-	0.12-0.35 0.20	1 1	B ES				MADE GROUND: Light brown slightly clayey sandy GRAVEL with a low cobble content. Sand is fine to coarse. Gravel is angular fine to coarse limestone, asphalt, brick and concrete. Cobbles of angular limestone and concrete.	- 0.35	
	-						limestone and concrete. Window sample hole refused at 0.35m depth due to presence of foundation.	-	
-	- -							-	
-	-							-	
	-							_	
-	- -							- -	
-	-							-	
	- -							- -	
-	- -							- -	
-	-							-	
	-							- -	
-	-							-	
-	-							-	
	-							- -	
-	<u>-</u>							_ -	
-	-							- -	
	-							_ - -	
-	- -							- -	

	[Orilling Pro	gress and	Water O	bservations	s) on c	rol [Domorko		
	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth		G	эепе	erai r	Remarks		
וספטוט ביווטפין ווכמה אווטפין.			(m)	(m)	(mm)	(m)	2. Breal 3. Foun	cleared by GPR, Ck out asphalt with industrial dation encountered backfilled with aris	inspect d at 0.3	ion pit o	dug to 0.35m de	pth.	
000							Α	II dimensions in me	etres		Scale:	1:25	
סמתכתיר	Method Used:		tion pit + d windov			ndo Terr	ier	Drilled By: Josh Pa		Logged By:	JCEvans	Checke By:	AGS

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PŋVersion: v8_06 - Core+Logs+Contam Scheduling - 002 | Log WINDOW SAMPLE LOG - A4P | 732959_515_STOCKWOOD_ROAD_BRISLINGTON.GPJ - v8_06. Scheduling - 002 | Log WINDOW SAMPLE LOG - A4P | 732959_515_STOCKWOOD ROAD_BRISLINGTON.GPJ - v8_06. Scheduling - v8_06. Sched

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PrjVersion: v8_06 - Core+Logs+Contam Scheduling - 002 | Log WINDOW SAMPLE LOG - A4P | 732959_515_STOCKWOOD_ROAD_RNAD_BRISLINGTON.GPJ- v8_06. Structural Solis Litd, Head Office - Bristol: The Old School, Stillhouse Lane, Bedminster, Bristol, BS3 4EB. Tel: 0117-947-1000, Fax: 0117-947-1004, Web: www.solis.co.uk, Email: ask@solis.co.uk, | 01/09/17 - 09:16 | JE4 |

Contract:							Client:				Windo	w Samp	le:
	ckwood	Roa	ad, B	rislingto	n			515	Stockwood	LLP		·	WS9
Contract Ref:			Start:	03.08.17	Gro	unc	d Level	:	Co-ordinates:		Sheet:		
73	2959		End:	03.08.17				-				1	of 1
Progress		Sam	ples / ٦	Tests		i i	■					Depth	Materia
Window Run	Depth	No	Туре	Results		Water	Backfill		Description	of Strata		(Thick ness)	Graphic
-	-								OUND: Asphalt. OUND: Reinforced	concrete		0.05	
_	- 0.25-0.60	1	В					_ ∖ 6mm		sent with 80mm spa	acing at _/	0.25	
-	0.40	1	ES					\0.20m MADE GR	OUND: Firm gre	yish brown slightly	sandy	(0.35)	
-	-							angular to	subangular fin	is fine to coarse. G e to coarse lim	Gravel is nestone, ,	0.60	
-	0.60-1.20 0.70	2	B HP	c,=40/40/30	,				rick, mudstone and	d weathered coal. I light brown slightle	y candy	-	
-	0.80	2	ES	Su . 57 . 57 5 5				slightly gra	velly CLAY. Sand	is fine to coarse. G	Gravel is	_	
_	_							(POSSIBLE	subangular fine we E MADE GROUND	athered coal.))		_	
- 	_											(1.20)	
- 🛉	1.20-1.65 1.20-1.80	1 3	SPT D	N=4								-	- <u> </u>
1.20 - 1.80	1.30		HP	c _u =75/65/80)							_	
(101mm dia) - 100% rec	1.50	3	ES									-	
	_											1.80	<u> </u>
-	1.80-2.25	2	SPT	N=62				slightly gra	velly CLAY. Sand	ckish brown slightly is fine to coarse. G	ravel is	-	
-	-							angular to mudstone.	subangular fine	e to medium co	al and	(0.45)	<u> </u>
-	-							,	CK MEMBER)			2.25	
-	_							Window sa	mple hole refused	at 2.25m depth.			
-	-											-	
-	_											-	
-	-											-	
-	_											_	
-	-											-	
-	_											-	
-	-											-	
-	_												
-	-											-	
-	<u> </u>											<u> </u>	
_	-											-	

[Orilling Pro	gress and	Water Ol	servations	3			Con	orol	Domorko		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gene	erai	Remarks		
		(m)	(m)	(mm)	(m)	2. Break depth 3. Hole 4. Hole	cout aspl dry and s backfilled		ced cor pellets	ncrete with inspe and arisings.	ction pit dug to 1.	20m
						А	II dimens	ions in metres		Scale:	1:25	
 Method Jsed:		tion pit + d windov			ndo Terri	ier	Drilled By:	Josh Parratt	Logge By:	d JCEvans	Checke By:	AGS

STRUCTURAL SOILS

Contract:			Client:		Window	/ San	nple:	
515 Stockwood Roa	ad, Brislin	jton	51			WS	S10	
Contract Ref:	Start: 02.08	17 Grou	nd Level:	Co-ordinates:	Sheet:			
732959	End: 02.08 .	17				1	of	1

	13	2333		Ena:	02.00.17								ı	OT I
Progre	ess		Sar	mples /	Tests	Water	Backfill & Instru-	tation	Descripti	ion of Stu	rata		Depth (Thick	Mate Grap
Window	Run	Depth	n N	о Туре	Results	8	Bac	l l l	Безопри	011 01 01	idia		ness)	Lege
							П	-	IADE GROUND: Asphalt.				0.10	XXX
		0.10-0.30) 1	В	1		Щ		IADE GROUND: Light br		dy GRAVEL w	ith low	0.10	XXX
		0.20	1						obble content. Sand is fin				-	\bowtie
		- 0.20	') (A	⊇ to	subangular fine to coars				0.35	\bowtie
		- 0.35-0.4							obbles of angular to suba				0.45	\bowtie
		0.40	2	ES					IADE GROUND: Reddisl					
									ith low cobble content. S				0.60	
		0.60-1.00) 3	В					angular to subangula oncrete. Cobbles of ang				-	<u>├</u> -
		_							oncrete.	ulai lo s	subangulai bili	, anu		<u> </u>
		0.80	3	ES				_	IADE GROUND: Asphalt.					<u></u>
									oft to firm light grey mot		brown elightly	candy		
-		1.00		HP	c _u =45/40/40			$\frac{3}{100}$	lightly gravelly CLAY. Sa					
		_			1			l∷l a	ngular to subangular fin	ie to me	edium mudston	e and		<u>[</u> -
		1.20-1.6	5 1	SPT	N=4		k::E	l∷l w	eathered coal.				(1.30)	[— <u> </u>
T		1.20-1.90			1		₽÷E	:: (F	POSSIBLE MADE GROU	ND)			<u> </u>	<u> </u> .
		+			1		₽÷E	 :: 					}	<u>-</u>
1.20 - 2.	00	1.50		HP	c _u =80/75/65		₽ÿŧ	! ::}					}	<u> </u>
1.20 - 2. 101mm (101mm)		1.60					li:E						}	[-
100% r		1.00	4	ES	1		k::F	:: 					L	<u> </u>
. 1		Ļ			1		k:•F	:::					ļ	<u></u>
		L			1		₽₽₽						1.90	
		1.90-3.3		D	1		l::E	l∷} s	tiff reddish brown mottle				L	<u> </u>
_	_	2.00-2.4	5 2	SPT	N=23		l::E	∴} g	ravelly CLAY. Sand is fin	e to coar	rse. Gravel is a	ingular	L	<u> </u>
								fr	subangular fine to nagments present from 3.0			ı coai		<u></u>
					1		k::E	::	RADSTOCK MEMBER)	Join Gebr			Ī	اب``
					1		₽÷	:: \'						ĘŤ
2.00 - 3	.00	-					• •						-	<u> </u>
(89mm d	dia)	2.50	5	ES										[— <u> </u>
100% r	ec				1								(1.45)	<u> </u>
		-				\a.							-	- <u>-</u> -
		-			1	 							-	<u> </u>
		-			1								}	
- 		2 00 2 4	_ ^	CDT	N-00								L	F
• •		3.00-3.4	5 3	SPT	N=22								}	<u> </u>
2.00	60	-			1				Impropries also Artists 19	الماما			-	
3.00 - 3. (79mm d		-			1			•	increasingly friable wit	n aepth.			3.35	<u></u>
100% r		- 3.35-3.60) 6	D	1			V	ery stiff to friable brownis	sh black	slightly sandy s	slightly	- 5.55	<u></u>
. 1		-		-	1				ravelly CLAY. Sand is fin				ļ	<u> </u>
. <u> </u>					1			to	subangular fine to coars			-	(0.05)	<u> </u> _
	_	3.60-3.98	3 4	SPT	N=67*			(F	RADSTÖCK MEMBER)				(0.63)	<u> -~-</u> -
														[— <u> </u>
					1									<u> </u> -
					1								3.98	
-					1			V	Vindow sample hole refus	ed at 3.9	8m depth.		_	
		<u> </u>			1								-	
		<u> </u>			1								-	
		†			1								ŀ	
		†			1								ŀ	
					1		1							
	Drilling	n Drogres	c and \	Nator O	bservations		П							
	ן אווווים <u>(</u>	, ,	s and v	Casing		/ater	\parallel		Gene	eral R	emarks			
Date	Tin	ne De	epth	Depth	Diameter D	epth								
	<u> </u>		m)	(m)	(mm)	(m)	$\frac{1}{1}$. Area	cleared by GPR, CAT ar	nd Genny	 /.			
							2	. Brea	k out asphalt with inspect	ion pit di	ug to 1.20m dep	oth.		
							3	. Hole	stable with groundwater	at 2.80m	depth.			
							4		groundwater monitoring p		illation to 2.40m	n depth ((1.00m)	plain,
							_	1.40l	m slotted and flush cover; backfilled with gravel, be). ntonite n	ellets and arisi	าตร		
									hammer DT16208-2017			ıyə.		
								J		,_, 50.	, 2004.			
					'									
									All dimensions in metres	S	cale:	1:25		
Method	Ins	pection	pit +	Plar				A	1	Logged	cale:	1:25 Checke By:	ec	

	Drilling Pro	gress and	Water Ob	oservations	3			Con	orol	Domorko	
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gen	erai	Remarks	
		(m)	(m)	(mm)	(m)	2. Break 3. Hole 4. Gas/g 1.40n 5. Hole	out asp stable w proundw slotted packfille	by GPR, CAT a chalt with inspect of the groundwater ater monitoring and flush covered with gravel, be DT16208-2017	tion pit at 2.80 pipe ins). entonite	dug to 1.20m dom depth. stallation to 2.40 pellets and aris	m depth (1.00m plain,
						А	ll dimen	sions in metres		Scale:	1:25
Method Used:		tion pit + d windov			ndo Terri	ier	Drilled By:	Josh Parratt	Logge By:	JCEvans	Checked By: AGS

Contract:					Client:			Windo	w Samp	le:
515 Sto	ckwood Roa	ad, B	rislingto	n		515	Stockwood LLP		,	WS11
Contract Ref:		Start:	03.08.17	Ground	Leve	l:	Co-ordinates:	Sheet:		
73	2959	End:	03.08.17			-			1_	of 1
Progress	Sam	ples / ٦	Tests	Ē	■				Depth	Material

Progress		Cump	oles / T	COLO	<u> </u>	₩			Material
Window Run	Depth	No	Туре	Results	Wate	Back	Description of Strata	(Thick ness)	Graphic Legend
					Water	Backfill	MADE GROUND: Orangish brown clayey sandy GRAVEL. Sand is fine to coarse. Gravel is angular to subangular fine to coarse asphalt, brick and concrete. MADE GROUND: Firm brownish black slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular fine to medium brick, coal and mudstone. Soft becoming firm light grey mottled light brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular fine to medium mudstone and coal. Rare organic matter. (POSSIBLE MADE GROUND) Stiff becoming very stiff reddish brown mottled grey slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular to subangular fine to coarse mudstone. (RADSTOCK MEMBER) from 2.52m to 2.55m black coal recovered as angular to subangular fine to coarse gravel. Window sample hole refused at 2.95m depth.	(Thick	Graphic

מו		Orilling Pro	gress and	Water Ol	oservations	3		Con	oral	Domorko		
	Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth		Gen	erai	Remarks		
IIS Ltd, Head Office - Bristol:			(m)	(m)	(mm)	(m)	2. Break 3. Hole 4. Hole	cleared by GPR, CAT a k out asphalt with inspec dry and stable. backfilled with bentonite hammer DT16208-2017	ction pit pellets	dug to 1.20m de and arisings.	pth.	
00 =							Α	Il dimensions in metres		Scale:	1:25	
שותוחום ווכ	Method Used:	in a production pit			ndo Terr	ier	Drilled By: Josh Parratt	Logge By:	JCEvans	Checked By:	AGS	

GINT_LIBRARY_V8_06.GLB LibVersion: v8_06_018 PŋVersion: v8_06 - Core+Logs+Contam Scheduling - 002 | Log WINDOW SAMPLE LOG - A4P | 732959_515_STOCKWOOD_ROAD_BRISLINGTON.GPJ - v8_06. Scheduling - 002 | Log WINDOW SAMPLE LOG - A4P | 732959_515_STOCKWOOD ROAD_BRISLINGTON.GPJ - v8_06. Scheduling - v8_06. Sched

STRUCTURAL SOILS

Contract:			Client:		Window	San	nple:	
515 Stockwood Roa	ad, Brisling	ton	515			WS	S12	
Contract Ref:	Contract Ref: Start: 02.08.17 Gro			nd Level: Co-ordinates:				
732959	End: 02.08.	7				1	of	1

	2000		LIIU.	02.00.17				•	<u> </u>
Progress	Vindow Run Depth No Type Results		Tests	Ē	& -} ±			Material	
Window Run	Depth	No	Туре	Results	Water	Backfill & Instru-		(Thick ness)	Graphic Legend
-	0.00	1	В				MADE GROUND: Asphalt.	- 0.12	
-	0.20	1 2	ES B				MADE GROUND: Greyish brown clayey very sandy GRAVEL with low cobble content. Sand is fine to coarse. Gravel is angular to subangular fine to coarse asphalt, limestone and concrete. Cobbles of angular	- 0.25 - -	
-	0.40	2	HP ES	c _u =80/80/95			concrete. MADE GROUND: Firm to stiff light grey mottled light brown slightly sandy slightly gravelly CLAY. Sand is fine	(0.65)	
-	-						to coarse. Gravel is angular to subangular fine to medium mudstone, brick and weathered coal.	0.90	
-	- - 1.20-1.65 - 1.20-1.40	1 3	SPT D	N=14			Firm becoming stiff light grey mottled light brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular to subangular fine to medium mudstone and weathered coal. Strong hydrocarbon odour. (RADSTOCK MEMBER)	(0.50)	
1.20 - 2.00 (101mm dia) 100% rec	- 1.20 _ 1.30 _ 1.40-2.50 -	3 4	HP ES D	c _u =70/75/65			Stiff becoming very stiff dark grey mottled reddish brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is angular to subangular fine to coarse mudstone. (RADSTOCK MEMBER)	1.40 - -	
	1.80 1.80	4	ES HP c	u=>225/>225/>22	5		(NADSTOCK WILMBLK)	-	
- 2.00 - 2.50 (89mm dia)	2.00-2.45 - -	2	SPT	N=28				- -(1.48) -	
100% rec	2.50-2.88	3	SPT	N=67*			increasingly friable with depth.	- - -	
-	-							2.88	<u> </u>
-	- - -						Window sample hole refused at 2.88m depth.	-	
-	- -							- - -	
_	-							- -	
-	- -							- -	
-	- - -							-	
_	-							- -	

	Drilling Pro	gress and	Water Ob	servations	6			Can	aral	Domorko		
Date	Time	Borehole Depth	Casing Depth	Borehole Diameter	Water Depth			Gen	erai	Remarks		
		(m)	(m)	(mm)	(m)	2. Break 3. Hole 4. Gas/g 1.40n 5. Hole	out asp stable w proundw slotted packfille	by GPR, CAT a chalt with inspectiff groundwater ater monitoring and flush covered with gravel, be DT16208-2017	tion pit at 2.35 pipe ins). entonite	dug to 1.20m dom depth. stallation to 2.40 pellets and aris	m depth (1.0	0m plain,
						А	II dimen	sions in metres		Scale:	1:25	
Method Used:		tion pit + d windov			ndo Terri	ier	Drilled By:	Josh Parratt	Logge By:	JCEvans	Checked By:	AGS

APPENDIX C - IN-SITU TESTING

- (i) Standard Penetration Test (SPT) Summary Sheet
- (ii) SPT Hammer Calibration Records
- (iii) SPT N value versus Depth Plot
- (iv) SPT $N_{(60)}$ value versus Depth Plot

STANDARD PENETRATION TEST SUMMARY TABLE

Exploratory	Depth	Hole	Casing	Water	Seatin	g Drive	Те	st Drive		Hammer	Calibration	Energy		
Position ID	(m)	Dia (mm)	Depth	Depth (m)	Blows	Pen (mm)	Blows	R (mm)	Result	ID	Date	Ratio (%)	N ₆₀	Comments
WS1	1.20	101		DRY	3,3	150	3,6,6,7		N=22	DT16208-2017	05/12/2016	65.13	24	SPT(c)
	2.00	101		DRY	6,9	150	10,14,20,25+	250	N=83*	DT16208-2017	05/12/2016	65.13	90	
WS2	1.20	101		DRY	3,3	150	3,4,4,4		N=15	DT16208-2017	05/12/2016	65.13	16	
	2.00	101		DRY	7,7	150	9,11,10,12		N=42	DT16208-2017	05/12/2016	65.13	46	
	3.00	101		DRY	4,7	150	11,14,11,15		N=51	DT16208-2017	05/12/2016	65.13	55	
WS3	2.00	101		DRY	7,9	150	14,18,19	225	N=68*	DT16208-2017	05/12/2016	65.13	74	
WS4	1.20	101		DRY	0,0	150	0,0,0,0		N=0	DT16208-2017	05/12/2016	65.13	0	
	2.00	89		DRY	7,7	150	9,12,12,12		N=45	DT16208-2017	05/12/2016	65.13	49	
	2.30	89		DRY	9,9	150	14,22,14	225	N=67*	DT16208-2017	05/12/2016	65.13	73	
WS5	1.20	101		DRY	0,0	150	1,1,1,1		N=4	DT16208-2017	05/12/2016	65.13	4	
	2.00	89		DRY	1,1	150	3,5,5,7		N=20	DT16208-2017	05/12/2016	65.13	22	
	3.00	89		DRY	3,9	150	12,17,17,4+	250	N=60*	DT16208-2017	05/12/2016	65.13	65	
WS7	1.20	101		DRY	3,4	150	5,5,6,5		N=21	DT16208-2017	05/12/2016	65.13	23	

- 1. Tests carried out in general accordance with BS EN ISO 22476-3:2005, including amendment A1 (2011).
 2. Reported blows are for 75mm penetration unless indicated "+".
- 3. Where full test drive was not achieved, actual penetration (R) and extrapolated N value (N*) reported.
- 4. Tests carried out using a split spoon sampler unless noted as SPT(c) (denotes use of solid cone method) in the comments column.
- 5. Entries in the water depth column reflects the measured water depth at time of test.

 N_{60} = (Measured hammer energy ratio / 60) x N value

		Com	piled By	Date	Contract F	lef:		
			JONATHANEVANS	31.08.17		732959		
Contract:					Page:			1
	515	Stoc	wood Road, Brislington		1	of	3	

STANDARD PENETRATION TEST SUMMARY TABLE

Exploratory	Depth	Hole	Casing	Water	Seatin	g Drive	Te	est Drive		Hammer	Calibration	Energy		
Position ID	(m)	Dia (mm)	Depth	Depth (m)	Blows	Pen (mm)	Blows	R (mm)	Result	ID	Date	Ratio (%)	N ₆₀	Comments
WS7	2.00	89		DRY	2,1	150	1,2,3,4		N=10	DT16208-2017	05/12/2016	65.13	11	
	3.00	79		DRY	3,5	150	5,6,6,6		N=23	DT16208-2017	05/12/2016	65.13	25	
	4.00	69		DRY	5,6	150	7,11,14,16		N=48	DT16208-2017	05/12/2016	65.13	52	
	5.00	69		DRY	7,12	150	13,19,18	225	N=67*	DT16208-2017	05/12/2016	65.13	73	
WS9	1.20	101		DRY	1,1	150	1,1,1,1		N=4	DT16208-2017	05/12/2016	65.13	4	
	1.80	101		DRY	3,7	150	12,16,17,17		N=62	DT16208-2017	05/12/2016	65.13	67	
WS10	1.20	101		DRY	1,1	150	1,1,1,1		N=4	DT16208-2017	05/12/2016	65.13	4	
	2.00	89		DRY	3,7	150	6,6,5,6		N=23	DT16208-2017	05/12/2016	65.13	25	
	3.00	89		DRY	3,4	150	4,5,6,7		N=22	DT16208-2017	05/12/2016	65.13	24	
	3.60	79		DRY	7,7	150	15,18,17	225	N=67*	DT16208-2017	05/12/2016	65.13	73	
WS11	1.20	101		DRY	2,2	150	2,1,2,2		N=7	DT16208-2017	05/12/2016	65.13	8	
	2.00	89		DRY	4,6	150	6,6,6,7		N=25	DT16208-2017	05/12/2016	65.13	27	
	2.55	89		DRY	3,9	150	14,15,15,6+	250	N=60*	DT16208-2017	05/12/2016	65.13	65	
WS12	1.20	101		DRY	2,2	150	2,3,4,5		N=14	DT16208-2017	05/12/2016	65.13	15	

- 1. Tests carried out in general accordance with BS EN ISO 22476-3:2005, including amendment A1 (2011).
 2. Reported blows are for 75mm penetration unless indicated "+".
- 3. Where full test drive was not achieved, actual penetration (R) and extrapolated N value (N*) reported.
- 4. Tests carried out using a split spoon sampler unless noted as SPT(c) (denotes use of solid cone method) in the comments column.
- 5. Entries in the water depth column reflects the measured water depth at time of test.

 N_{60} = (Measured hammer energy ratio / 60) x N value

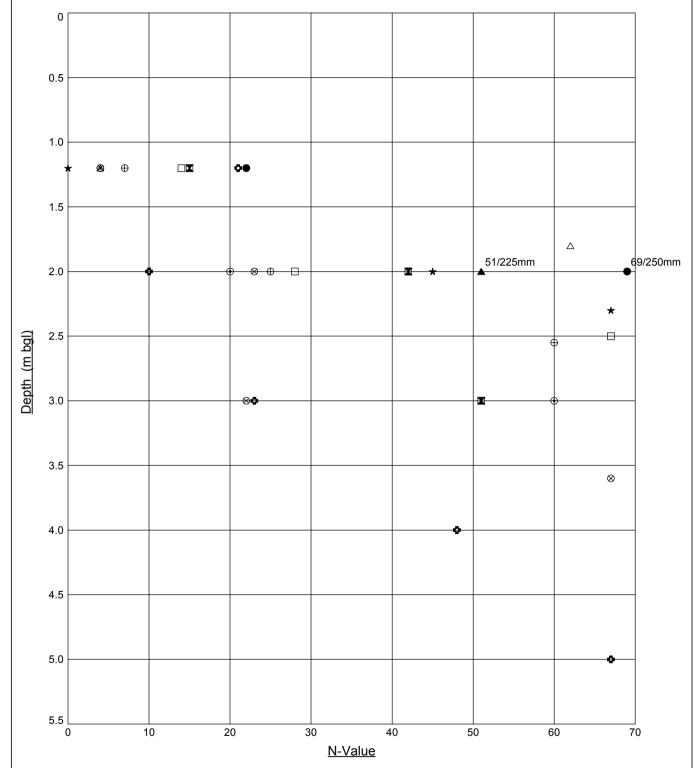
	Com	piled By	Date	Contract Ref			
		JONATHANEVANS	31.08.17		732959		
Contract:				Page:			
519	5 Stoc	wood Road, Brislington		2	of	3 <u>I</u>	

STANDARD PENETRATION TEST SUMMARY TABLE

Exploratory	Depth H	Hole	Casing	water		g Drive	Те	st Drive		Hammer	Calibration	Energy		
Position ID	(m)	Dia (mm)	Depth	Depth (m)	Blows	Pen (mm)	Blows	R (mm)	Result	ID	Date	Ratio (%)	N ₆₀	Comments
WS12	2.00	89		DRY	4,6	150	7,7,7,7		N=28	DT16208-2017	05/12/2016	65.13	30	
	2.50	89		DRY	3,8	150	12,14,24	225	N=67*	DT16208-2017	05/12/2016	65.13	73	

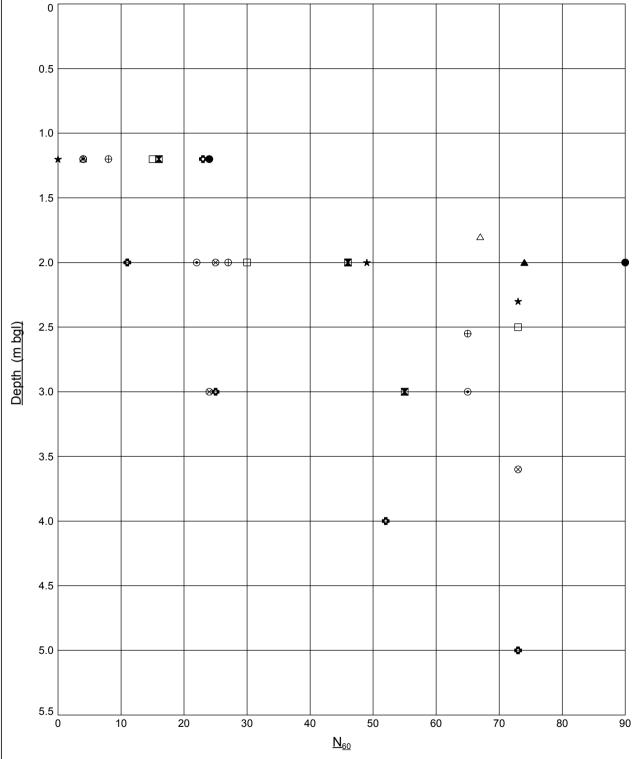
Notes:

- 1. Tests carried out in general accordance with BS EN ISO 22476-3:2005, including amendment A1 (2011).
 2. Reported blows are for 75mm penetration unless indicated "+".


- Where full test drive was not achieved, actual penetration (R) and extrapolated N value (N*) reported.
 Tests carried out using a split spoon sampler unless noted as SPT(c) (denotes use of solid cone method) in the comments column.
- 5. Entries in the water depth column reflects the measured water depth at time of test.

 N_{60} = (Measured hammer energy ratio / 60) x N value

	Compiled By	Date	Contract Ref	:		
	JONATHANEVANS	31.08.17		732959		
Contract:			Page:			ĺ
515 \$	tockwood Road, Brislington		3	of	3	


SPT Calibration Report www.equipegroup.com F **Hammer Energy Measurement Report** Type of Hammer **TERRIER** STRUCTURAL SOILS Client 1 Anvil EQU1651 Test No 2 Part of Instrumented rod 3 Drive Rod 4 Strain Gauge Test Depth (m) 8.50 10 de Accelerometer Ground 05 December 2016 Date of Test 05 December 2017 Valid until F Force d_r Diameter of rod Hammer ID DT/1620S ød, Mass of the hammer m = 63.5kg h = 0.76m Falling height mxgxh = 473 E theor = /// Characteristics of the instrumented rod d, = 0.052 m Length of the instrumented rod 0.558 m $A = 11.61 \text{ cm}^2$ Area Modulus $E_a = 206843 \text{ MPa}$ Fig. B.1 and B.2 BS EN ISO 22476-3: 2005 + A1: 2011 Particle Velocity Force Time r (µs) Time ¢ (us) **Energy Ratio per Blow** Acceleration 100,000 95,000 90,000 85.000 · Blow 2 * flipw 3 · Dlow 4 75.000 • Dlow 5 70.000 · Bliswis * Blow 7 65,000 . Blow B 60,000 Blow 9 15.000 * 8 ow 10 Time z (ys) Observations: 0.308 kN-m E meas = 65 13% Energy Ratio = 0.473 kN-m E theor = KS Equipe SPT Analyzer O Checked by **Date** 09/12/2016 Prepared by:

 $\mathsf{Key:} \bullet = \mathsf{WS1}, \otimes = \mathsf{WS10}, \oplus = \mathsf{WS11}, \square = \mathsf{WS12}, \blacksquare = \mathsf{WS2}, \blacktriangle = \mathsf{WS3}, \bigstar = \mathsf{WS4}, \circledcirc = \mathsf{WS5}, \clubsuit = \mathsf{WS7}, \triangle = \mathsf{WS9}$

515 Stockwood LLP		732959 AG	S
Client	Contract	Ref:	
515 Stockwood Road, Brislington	31.08.17		
Contract	Date	Compiled By	

 $\mathsf{Key:} \bullet = \mathsf{WS1}, \otimes = \mathsf{WS10}, \oplus = \mathsf{WS11}, \square = \mathsf{WS12}, \blacksquare = \mathsf{WS2}, \blacktriangle = \mathsf{WS3}, \bigstar = \mathsf{WS4}, \odot = \mathsf{WS5}, \clubsuit = \mathsf{WS7}, \triangle = \mathsf{WS9}$

Contract

STRUCTURAL SOILS
The Old School
Stillhouse Lane
Bedminster
Bristol BS3 4EB

515 Stockwood Road, Brislington

Contract Ref:

Date

31.08.17

515 Stockwood LLP

732959

Compiled By

AG

APPENDIX D - GEOENVIRONMENTAL TESTING

- (i) Laboratory Test Results
- (ii) Initial Waste Characterisation (Haswaste)
- (iii) Clean Cover Calculation Sheet
- (iv) Laboratory UKAS Accreditation Certificate

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 17/05426

Issue Number: 1 S1 **Date:** 30 August, 2017

Client: Structural Soils Limited (Bristol)

The Old School Stillhouse Lane Bedminster Bristol

UK

BS3 4EB

Project Manager: enviro@soils.co.uk/Jonathan Evans/Simon Pond

Project Name: 515 Stockwood Road

Project Ref: 732959
Order No: N/A

Date Samples Received: 09/08/17 **Date Instructions Received:** 09/08/17 **Date Analysis Completed:** 30/08/17

Prepared by:

Melanie Marshall Laboratory Coordinator Approved by:

Georgia King

Admins & Client Services Supervisor

Envirolab Job Number: 17/05426 Client Project Name: 515 Stockwood Road

Client Project Ref: 732959

						jeet Hell 70				
Lab Sample ID	17/05426/19	17/05426/20	17/05426/21	17/05426/22	17/05426/24	17/05426/25	17/05426/26	17/05426/27		
Client Sample No	1	2	3	4	1	2	3	4		
Client Sample ID	WS05	WS05	WS05	WS05	WS07	WS07	WS07	WS07		
Depth to Top	0.20	0.80	1.30	1.80	0.10	0.30	0.50	0.90		
Depth To Bottom										
Date Sampled	03-Aug-17	03-Aug-17	03-Aug-17	03-Aug-17	03-Aug-17	03-Aug-17	03-Aug-17	03-Aug-17		-
Sample Type	Soil - ES	Soil - ES	Soil - ES		Method ref					
Sample Matrix Code	4A	5	5	5	6	6A	6A	4A	Units	Meth
% Stones >10mm _A	-	-	-	<0.1	-	2.8	18.8	-	% w/w	A-T-044
pH _D ^{M#}	-	-	-	5.99	-	8.16	8.04	-	pН	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	-	-	-	0.03	-	0.02	<0.01	-	g/l	A-T-026s
Organic matter _D ^{M#}	-	-	-	2.0	-	13.8	9.0	-	% w/w	A-T-032 OM
Arsenic _D ^{M#}	-	-	-	<1	-	16	10	-	mg/kg	A-T-024s
Cadmium _D ^{M#}	-	-	-	0.9	-	5.5	2.2	-	mg/kg	A-T-024s
Copper _D ^{M#}	-	-	-	<1	-	80	37	-	mg/kg	A-T-024s
Chromium _D ^{M#}	-	-	-	11	-	23	15	-	mg/kg	A-T-024s
Lead _D ^{M#}	-	-	-	6	-	508	112	-	mg/kg	A-T-024s
Mercury _D	-	-	-	0.23	-	1.09	0.20	-	mg/kg	A-T-024s
Nickel _D ^{M#}	-	-	-	16	-	31	17	-	mg/kg	A-T-024s
Selenium _D ^{M#}	-	-	-	<1	-	2	<1	-	mg/kg	A-T-024s
Zinc _D ^{M#}	-	-	-	12	-	675	179	-	mg/kg	A-T-024s

Envirolab Job Number: 17/05426 Client Project Name: 515 Stockwood Road

Client Project Ref: 732959

Lab Sample ID	17/05426/19	17/05426/20	17/05426/21	17/05426/22	17/05426/24	17/05426/25	17/05426/26	17/05426/27		
Client Sample No	1	2	3	4	1	2	3	4		
Client Sample ID	WS05	WS05	WS05	WS05	WS07	WS07	WS07	WS07		
Depth to Top	0.20	0.80	1.30	1.80	0.10	0.30	0.50	0.90		
Depth To Bottom										
Date Sampled	03-Aug-17		-							
Sample Type	Soil - ES		od ref							
Sample Matrix Code	4A	5	5	5	6	6A	6A	4A	Units	Method
Asbestos in Soil (inc. matrix)										
Asbestos in soil _A #	NAD	NAD	NAD	-	NAD	NAD	NAD	NAD		A-T-045
Asbestos ACM - Suitable for Water Absorption Test?	N/A	N/A	N/A	-	N/A	N/A	N/A	N/A		

Envirolab Job Number: 17/05426 Client Project Name: 515 Stockwood Road

Client Project Ref: 732959

						eci nei. 73				
Lab Sample ID	17/05426/19	17/05426/20	17/05426/21	17/05426/22	17/05426/24	17/05426/25	17/05426/26	17/05426/27		
Client Sample No	1	2	3	4	1	2	3	4		
Client Sample ID	WS05	WS05	WS05	WS05	WS07	WS07	WS07	WS07		
Depth to Top	0.20	0.80	1.30	1.80	0.10	0.30	0.50	0.90		
Depth To Bottom										
Date Sampled	03-Aug-17		+							
Sample Type	Soil - ES		od re							
Sample Matrix Code	4A	5	5	5	6	6A	6A	4A	Units	Method ref
PAH 16										
Acenaphthene _A ^{M#}	-	-	-	<0.01	-	0.01	0.09	-	mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	-	-	-	<0.01	-	<0.01	<0.01	-	mg/kg	A-T-019s
Anthracene _A ^{M#}	-	-	-	<0.02	-	0.05	0.25	-	mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	-	-	-	<0.04	-	0.66	1.16	-	mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	-	-	-	<0.04	-	0.69	1.00	-	mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	-	-	-	<0.05	-	0.80	1.11	-	mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	-	-	-	<0.05	-	0.50	0.53	-	mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	-	-	-	<0.07	-	0.33	0.46	-	mg/kg	A-T-019s
Chrysene _A ^{M#}	-	-	-	<0.06	-	0.69	1.16	-	mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	-	-	-	<0.04	-	0.12	0.14	-	mg/kg	A-T-019s
Fluoranthene _A ^{M#}	-	-	-	<0.08	-	0.85	2.64	-	mg/kg	A-T-019s
Fluorene _A ^{M#}	•	•	-	<0.01	•	<0.01	0.07	-	mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	•	•	-	<0.03	•	0.56	0.65	-	mg/kg	A-T-019s
Naphthalene _A ^{M#}	•	•	-	<0.03	•	<0.03	<0.03	-	mg/kg	A-T-019s
Phenanthrene _A ^{M#}	•	•	-	<0.03	•	0.30	0.94	-	mg/kg	A-T-019s
Pyrene _A ^{M#}	•	•	-	<0.07	•	0.79	2.20	-	mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	•	•	-	<0.08	•	6.37	12.4	-	mg/kg	A-T-019s
TPH Banded 1 with ID										
>C6-C8 _A	-	-	-	<10	-	<10	<10	-	mg/kg	A-T-007s
>C8-C10 _A	-	-	-	<10	-	<10	<10	-	mg/kg	A-T-007s
>C10-C12 _A	-	-	-	<10	-	<10	<10	-	mg/kg	A-T-007s
>C12-C16 _A	-	-	-	<10	-	<10	<10	-	mg/kg	A-T-007s
>C16-C21 _A	-	-	-	<10	-	<10	<10	-	mg/kg	A-T-007s
>C21-C40 _A	-	-	-	<10	-	13	<10	-	mg/kg	A-T-007s
TPH ID (for FID characterisations) _A	-	-	-	N/A	-	N/A	N/A	-		A-T-007s
Total TPH Banded 1 with ID _A	-	-	-	<10	-	13	<10	-	mg/kg	A-T-007s

Lab Sample ID	17/05426/31	17/05426/35	17/05426/36	17/05426/37				
Client Sample No	1	1	2	3				
Client Sample ID	WS08	WS10	WS10	WS10				
Depth to Top	0.20	0.20	0.40	0.80				
Depth To Bottom								
Date Sampled	02-Aug-17	02-Aug-17	02-Aug-17	02-Aug-17				-
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES				Method ref
Sample Matrix Code	4A	4A	4A	5			Units	Meth
% Stones >10mm _A	18.0	-	-	<0.1			% w/w	A-T-044
pH _D ^{M#}	9.63	-	-	7.47			pН	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	0.03	-	-	0.03			g/I	A-T-026s
Organic matter _D ^{M#}	1.7	-	-	2.0			% w/w	A-T-032 OM
Arsenic _D ^{M#}	11	-	-	<1			mg/kg	A-T-024s
Cadmium _D ^{M#}	0.9	-	-	4.5			mg/kg	A-T-024s
Copper _D ^{M#}	3	-	-	5			mg/kg	A-T-024s
Chromium _D ^{M#}	6	-	-	16			mg/kg	A-T-024s
Lead _D ^{M#}	20	-	-	56			mg/kg	A-T-024s
Mercury _D	1.15	-	-	<0.17			mg/kg	A-T-024s
Nickel _D ^{M#}	4	-	-	13			mg/kg	A-T-024s
Selenium _D ^{M#}	<1	-	-	2			mg/kg	A-T-024s
Zinc _D ^{M#}	30	-	-	40			mg/kg	A-T-024s

Lab Sample ID	17/05426/31	17/05426/35	17/05426/36	17/05426/37				
Client Sample No	1	1	2	3				
Client Sample ID	WS08	WS10	WS10	WS10				
Depth to Top	0.20	0.20	0.40	0.80				
Depth To Bottom								
Date Sampled	02-Aug-17	02-Aug-17	02-Aug-17	02-Aug-17				-
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES				Method ref
Sample Matrix Code	4A	4A	4A	5			Units	Meth
Asbestos in Soil (inc. matrix)								
Asbestos in soil _A #	NAD	NAD	NAD	-				A-T-045
Asbestos ACM - Suitable for Water Absorption Test?	N/A	N/A	N/A	-				

					Onone i ro	ject Ret: 73			
Lab Sample ID	17/05426/31	17/05426/35	17/05426/36	17/05426/37					
Client Sample No	1	1	2	3					
Client Sample ID	WS08	WS10	WS10	WS10					
Depth to Top	0.20	0.20	0.40	0.80					
Depth To Bottom									
Date Sampled	02-Aug-17	02-Aug-17	02-Aug-17	02-Aug-17					ļ
Sample Type	Soil - ES	Soil - ES	Soil - ES	Soil - ES					od re
Sample Matrix Code	4A	4A	4A	5				Units	Method ref
PAH 16									
Acenaphthene _A ^{M#}	<0.01	-	-	<0.01				mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	0.04	-	-	<0.01				mg/kg	A-T-019s
Anthracene _A ^{M#}	<0.02	-	-	<0.02				mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	0.08	-	-	<0.04				mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	0.24	-	-	<0.04				mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	0.25	-	-	<0.05				mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	0.40	-	-	<0.05				mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	0.09	-	-	<0.07				mg/kg	A-T-019s
Chrysene _A ^{M#}	0.24	-	-	<0.06				mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	0.09	-	-	<0.04				mg/kg	A-T-019s
Fluoranthene _A ^{M#}	0.27	-	-	<0.08				mg/kg	A-T-019s
Fluorene _A ^{M#}	<0.01	-	-	<0.01				mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	0.32	-	-	<0.03				mg/kg	A-T-019s
Naphthalene _A ^{M#}	<0.03	-	-	<0.03				mg/kg	A-T-019s
Phenanthrene _A ^{M#}	0.04	-	-	<0.03				mg/kg	A-T-019s
Pyrene _A ^{M#}	0.35	-	-	<0.07				mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	2.43	-	-	<0.08				mg/kg	A-T-019s
TPH Banded 1 with ID									
>C6-C8 _A	<10	-	-	<10				mg/kg	A-T-007s
>C8-C10 _A	<10	-	-	<10				mg/kg	A-T-007s
>C10-C12 _A	<10	-	-	<10				mg/kg	A-T-007s
>C12-C16 _A	<10	-	-	<10				mg/kg	A-T-007s
>C16-C21 _A	30	-	-	<10				mg/kg	A-T-007s
>C21-C40 _A	1070	-	-	<10				mg/kg	A-T-007s
TPH ID (for FID characterisations) _A	Unknown profile	-	-	N/A		_			A-T-007s
Total TPH Banded 1 with ID _A	1100	-	-	<10				mg/kg	A-T-007s

REPORT NOTES

General:

This report shall not be reproduced, except in full, without written approval from Envirolab.

All samples contained within this report, and any received with the same delivery, will be disposed of one month after the date of this report.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure and there is insufficient sample to repeat the analysis. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

Soil chemical analysis:

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25℃ / 11550µS/cm @ 20℃ fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 17/05426

Issue Number: 1 S2 **Date:** 30 August, 2017

Client: Structural Soils Limited (Bristol)

The Old School Stillhouse Lane Bedminster Bristol

UK

BS3 4EB

Project Manager: enviro@soils.co.uk/Jonathan Evans/Simon Pond

Project Name: 515 Stockwood Road

Project Ref: 732959 Order No: N/A

Date Samples Received: 09/08/17 **Date Instructions Received:** 09/08/17 **Date Analysis Completed:** 30/08/17

Prepared by: Approved by:

Melanie Marshall Laboratory Coordinator

Admins & Client Services Supervisor

					Onone i ro					
Lab Sample ID	17/05426/1	17/05426/2	17/05426/5	17/05426/6	17/05426/7	17/05426/11	17/05426/15	17/05426/16		
Client Sample No	1	2	1	2	3	1	1	2		
Client Sample ID	WS01	WS01	WS02	WS02	WS02	WS03	WS04	WS04		
Depth to Top	0.20	0.60	0.20	0.60	1.00	0.20	0.20	0.80		
Depth To Bottom										
Date Sampled	02-Aug-17	02-Aug-17	02-Aug-17	02-Aug-17	02-Aug-17	02-Aug-17	03-Aug-17	03-Aug-17		5
Sample Type	Solid	Soil - ES	Solid	Soil - ES	Soil - ES	Soil - ES	Solid	Soil - ES		Method ref
Sample Matrix Code	7	5	7	5	5A	4A	7	5A	Units	Meth
% Stones >10mm _A	-	<0.1	-	-	<0.1	-	-	7.3	% w/w	A-T-044
pH _D ^{M#}	-	7.93	-	-	7.88	-	-	7.51	рН	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	-	<0.01	-	-	0.02	-	-	0.04	g/l	A-T-026s
Organic matter _D ^{M#}	-	0.8	-	-	0.3	-	-	2.2	% w/w	A-T-032 OM
Arsenic _D ^{M#}	-	<1	-	-	<1	-	-	<1	mg/kg	A-T-024s
Cadmium _D ^{M#}	-	2.6	-	-	7.6	-	-	3.3	mg/kg	A-T-024s
Copper _D ^{M#}	-	<1	-	-	<1	-	-	8	mg/kg	A-T-024s
Chromium _D ^{M#}	-	20	-	-	23	-	-	15	mg/kg	A-T-024s
Lead _D ^{M#}	-	9	-	-	19	-	-	25	mg/kg	A-T-024s
Mercury _D	-	<0.17	-	-	<0.17	-	-	<0.17	mg/kg	A-T-024s
Nickel _D ^{M#}	-	20	-	-	19	-	-	12	mg/kg	A-T-024s
Selenium _D ^{M#}	-	1	-	-	3	-	-	2	mg/kg	A-T-024s
Zinc _D ^{M#}	-	33	-	-	23	-	-	40	mg/kg	A-T-024s

E										
Lab Sample ID	17/05426/1	17/05426/2	17/05426/5	17/05426/6	17/05426/7	17/05426/11	17/05426/15	17/05426/16		
Client Sample No	1	2	1	2	3	1	1	2		
Client Sample ID	WS01	WS01	WS02	WS02	WS02	WS03	WS04	WS04		
Depth to Top	0.20	0.60	0.20	0.60	1.00	0.20	0.20	0.80		
Depth To Bottom										
Date Sampled	02-Aug-17	02-Aug-17	02-Aug-17	02-Aug-17	02-Aug-17	02-Aug-17	03-Aug-17	03-Aug-17		4
Sample Type	Solid	Soil - ES	Solid	Soil - ES	Soil - ES	Soil - ES	Solid	Soil - ES		Method ref
Sample Matrix Code	7	5	7	5	5A	4A	7	5A	Units	Meth
Asbestos in Soil (inc. matrix)										
Asbestos in soil _A #	NAD	NAD	NAD	NAD	-	NAD	NAD	NAD		A-T-045
Asbestos ACM - Suitable for Water Absorption Test?	N/A	N/A	N/A	N/A	-	N/A	N/A	N/A		

<u></u>						ect net. 73				
Lab Sample ID	17/05426/1	17/05426/2	17/05426/5	17/05426/6	17/05426/7	17/05426/11	17/05426/15	17/05426/16		
Client Sample No	1	2	1	2	3	1	1	2		
Client Sample ID	WS01	WS01	WS02	WS02	WS02	WS03	WS04	WS04		
Depth to Top	0.20	0.60	0.20	0.60	1.00	0.20	0.20	0.80		
Depth To Bottom										
Date Sampled	02-Aug-17	02-Aug-17	02-Aug-17	02-Aug-17	02-Aug-17	02-Aug-17	03-Aug-17	03-Aug-17		+
Sample Type	Solid	Soil - ES	Solid	Soil - ES	Soil - ES	Soil - ES	Solid	Soil - ES		od re
Sample Matrix Code	7	5	7	5	5A	4A	7	5A	Units	Method ref
PAH 16										
Acenaphthene _A ^{M#}	-	<0.01	-	-	<0.01	-	-	0.02	mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	-	<0.01	-	-	<0.01	-	-	<0.01	mg/kg	A-T-019s
Anthracene _A ^{M#}	-	<0.02	-	-	<0.02	-	-	<0.02	mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	-	<0.04	-	-	<0.04	-	-	0.07	mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	-	<0.04	-	-	<0.04	-	-	0.09	mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	-	<0.05	-	-	<0.05	-	-	0.10	mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	-	<0.05	-	-	<0.05	-	-	0.06	mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	-	<0.07	-	-	<0.07	-	-	<0.07	mg/kg	A-T-019s
Chrysene _A ^{M#}	-	<0.06	-	-	<0.06	-	-	0.09	mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	-	<0.04	-	-	<0.04	-	-	<0.04	mg/kg	A-T-019s
Fluoranthene _A ^{M#}	•	<0.08	-	-	<0.08	•	-	0.17	mg/kg	A-T-019s
Fluorene _A ^{M#}	•	<0.01	-	-	<0.01	•	-	0.02	mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	•	<0.03	-	-	<0.03	•	•	0.07	mg/kg	A-T-019s
Naphthalene _A ^{M#}	•	<0.03	-	-	<0.03	•	•	<0.03	mg/kg	A-T-019s
Phenanthrene _A ^{M#}	•	<0.03	-	-	<0.03	•	•	0.09	mg/kg	A-T-019s
Pyrene _A ^{M#}	-	<0.07	-	-	<0.07	-	-	0.10	mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	-	<0.08	-	-	<0.08	-	-	0.88	mg/kg	A-T-019s
TPH Banded 1 with ID										
>C6-C8 _A	-	<10	-	-	<10	-	-	<10	mg/kg	A-T-007s
>C8-C10 _A	-	<10	-	-	<10	-	-	<10	mg/kg	A-T-007s
>C10-C12 _A	-	<10	-	-	<10	-	-	<10	mg/kg	A-T-007s
>C12-C16 _A	-	<10	-	-	<10	-	-	<10	mg/kg	A-T-007s
>C16-C21 _A	-	<10	-	-	<10	-	-	<10	mg/kg	A-T-007s
>C21-C40 _A	-	<10	-	-	<10	-	-	<10	mg/kg	A-T-007s
TPH ID (for FID characterisations) _A	-	N/A	-	-	N/A	-	-	N/A		A-T-007s
Total TPH Banded 1 with ID _A	•	<10	-	-	<10	•	•	<10	mg/kg	A-T-007s

						100111011110				
Lab Sample ID	17/05426/32	17/05426/33	17/05426/40	17/05426/41	17/05426/45	17/05426/46	17/05426/47	17/05426/48		
Client Sample No	1	2	1	2	1	2	3	4		
Client Sample ID	WS09	WS09	WS11	WS11	WS12	WS12	WS12	WS12		
Depth to Top	0.40	0.80	0.20	0.40	0.20	0.60	1.30	1.80		
Depth To Bottom										
Date Sampled	03-Aug-17	03-Aug-17	03-Aug-17	03-Aug-17	02-Aug-17	02-Aug-17	02-Aug-17	02-Aug-17		J e
Sample Type	Soil - ES	Soil - ES	Soil - ES		Method ref					
Sample Matrix Code	6A	5	4A	6A	4A	5	5	5A	Units	Meth
% Stones >10mm _A	-	<0.1	-	-	-	-	<0.1	<0.1	% w/w	A-T-044
pH _D ^{M#}	-	6.76	-	-	-	-	7.34	-	рН	A-T-031s
Sulphate (water sol 2:1) _D ^{M#}	-	0.25	-	-	-	-	0.09	-	g/l	A-T-026s
Organic matter _D ^{M#}	-	1.2	-	-	-	-	0.6	-	% w/w	A-T-032 OM
Arsenic _D ^{M#}	-	2	-	-	-	-	1	-	mg/kg	A-T-024s
Cadmium _D ^{M#}	-	3.5	-	-	-	-	2.7	-	mg/kg	A-T-024s
Copper _D ^{M#}	-	17	-	-	-	-	<1	-	mg/kg	A-T-024s
Chromium _D ^{M#}	-	19	-	-	-	-	21	-	mg/kg	A-T-024s
Lead _D ^{M#}	-	14	-	-	-	-	8	-	mg/kg	A-T-024s
Mercury _D	-	<0.17	-	-	-	-	<0.17	-	mg/kg	A-T-024s
Nickel _D ^{M#}	-	9	-	-	-	-	17	-	mg/kg	A-T-024s
Selenium _D ^{M#}	-	3	-	-	-	-	3	-	mg/kg	A-T-024s
Zinc _D ^{M#}	-	20	-	-	-	-	21	-	mg/kg	A-T-024s

Lab Sample ID	17/05426/32	17/05426/33	17/05426/40	17/05426/41	17/05426/45	17/05426/46	17/05426/47	17/05426/48		
Client Sample No	1	2	1	2	1	2	3	4		
Client Sample ID	WS09	WS09	WS11	WS11	WS12	WS12	WS12	WS12		
Depth to Top	0.40	0.80	0.20	0.40	0.20	0.60	1.30	1.80		
Depth To Bottom										
Date Sampled	03-Aug-17	03-Aug-17	03-Aug-17	03-Aug-17	02-Aug-17	02-Aug-17	02-Aug-17	02-Aug-17		-
Sample Type	Soil - ES		Method ref							
Sample Matrix Code	6A	5	4A	6A	4A	5	5	5A	Units	Meth
Asbestos in Soil (inc. matrix)										
Asbestos in soil _A #	NAD	-	NAD	NAD	NAD	NAD	NAD	-		A-T-045
Asbestos ACM - Suitable for Water Absorption Test?	N/A	-	N/A	N/A	N/A	N/A	N/A	-		

						eci nei. 73				
Lab Sample ID	17/05426/32	17/05426/33	17/05426/40	17/05426/41	17/05426/45	17/05426/46	17/05426/47	17/05426/48		
Client Sample No	1	2	1	2	1	2	3	4		
Client Sample ID	WS09	WS09	WS11	WS11	WS12	WS12	WS12	WS12		
Depth to Top	0.40	0.80	0.20	0.40	0.20	0.60	1.30	1.80		
Depth To Bottom										
Date Sampled	03-Aug-17	03-Aug-17	03-Aug-17	03-Aug-17	02-Aug-17	02-Aug-17	02-Aug-17	02-Aug-17		+
Sample Type	Soil - ES	Soil - ES		Method ref						
Sample Matrix Code	6A	5	4A	6A	4A	5	5	5A	Units	Meth
PAH 16										
Acenaphthene _A ^{M#}	-	<0.01	-	-	-	-	0.03	-	mg/kg	A-T-019s
Acenaphthylene _A ^{M#}	-	<0.01	-	-	-	-	<0.01	-	mg/kg	A-T-019s
Anthracene _A ^{M#}	-	<0.02	-	-	-	-	<0.02	-	mg/kg	A-T-019s
Benzo(a)anthracene _A ^{M#}	-	<0.04	-	-	-	-	<0.04	-	mg/kg	A-T-019s
Benzo(a)pyrene _A ^{M#}	-	<0.04	-	-	-	-	<0.04	-	mg/kg	A-T-019s
Benzo(b)fluoranthene _A ^{M#}	-	<0.05	-	-	-	-	<0.05	-	mg/kg	A-T-019s
Benzo(ghi)perylene _A ^{M#}	-	<0.05	-	-	-	-	<0.05	-	mg/kg	A-T-019s
Benzo(k)fluoranthene _A ^{M#}	-	<0.07	-	-	-	-	<0.07	-	mg/kg	A-T-019s
Chrysene _A ^{M#}	-	<0.06	-	-	-	-	<0.06	-	mg/kg	A-T-019s
Dibenzo(ah)anthracene _A ^{M#}	-	<0.04	-	-	-	-	<0.04	-	mg/kg	A-T-019s
Fluoranthene _A ^{M#}	-	<0.08	-	-	-	-	<0.08	-	mg/kg	A-T-019s
Fluorene _A ^{M#}	-	<0.01	-	-	-	-	0.13	-	mg/kg	A-T-019s
Indeno(123-cd)pyrene _A ^{M#}	-	<0.03	-	-	-	-	<0.03	-	mg/kg	A-T-019s
Naphthalene _A ^{M#}		<0.03	-	-	-	•	<0.03	-	mg/kg	A-T-019s
Phenanthrene _A ^{M#}	•	<0.03	-	-	-	·	0.20	-	mg/kg	A-T-019s
Pyrene _A ^{M#}	•	<0.07	-	-	-	•	<0.07	-	mg/kg	A-T-019s
PAH (total 16) _A ^{M#}	•	<0.08	-	-	-	•	0.34	-	mg/kg	A-T-019s
TPH Banded 1 with ID										
>C6-C8 _A	-	<10	-	-	-	-	<10	-	mg/kg	A-T-007s
>C8-C10 _A	-	<10	-	-	-	-	<10	-	mg/kg	A-T-007s
>C10-C12 _A	-	<10	-	-	-	-	<10	-	mg/kg	A-T-007s
>C12-C16 _A	-	<10	-	-	-	-	50	-	mg/kg	A-T-007s
>C16-C21 _A	-	<10	-	-	-	-	55	-	mg/kg	A-T-007s
>C21-C40 _A	-	<10	-	-	-	-	20	-	mg/kg	A-T-007s
TPH ID (for FID characterisations) _A	-	N/A	-	-	-	-	Possible heavily weathered and degraded diesel	-		A-T-007s
Total TPH Banded 1 with ID _A	-	<10	-	-	-	-	125	-	mg/kg	A-T-007s

					Onent i roj	ect Ret: 73				
Lab Sample ID	17/05426/32	17/05426/33	17/05426/40	17/05426/41	17/05426/45	17/05426/46	17/05426/47	17/05426/48		
Client Sample No	1	2	1	2	1	2	3	4		
Client Sample ID	WS09	WS09	WS11	WS11	WS12	WS12	WS12	WS12		
Depth to Top	0.40	0.80	0.20	0.40	0.20	0.60	1.30	1.80		
Depth To Bottom										
Date Sampled	03-Aug-17	03-Aug-17	03-Aug-17	03-Aug-17	02-Aug-17	02-Aug-17	02-Aug-17	02-Aug-17		
Sample Type	Soil - ES		od re							
Sample Matrix Code	6A	5	4A	6A	4A	5	5	5A	Units	Method ref
TPH CWG										
Ali >C5-C6 _A #	-	-	-	-	-	-	<0.01	<0.01	mg/kg	A-T-022s
Ali >C6-C8 _A #	-	-	-	-	-	-	<0.01	<0.01	mg/kg	A-T-022s
Ali >C8-C10 _A #	-	-	-	-	-	-	0.04	<0.01	mg/kg	A-T-022s
Ali >C10-C12 _A #	-	-	-	-	-	-	3.1	<0.1	mg/kg	A-T-023s
Ali >C12-C16 _A #	-	-	-	-	-	-	27.8	<0.1	mg/kg	A-T-023s
Ali >C16-C21 _A #	-	-	-	-	-	-	30.3	<0.1	mg/kg	A-T-023s
Ali >C21-C35 _A #	-	-	-	-	-	-	6.0	<0.1	mg/kg	A-T-023s
Total Aliphatics _A	-	-	-	-	-	-	67.2	<0.1	mg/kg	A-T-023s
Aro >C5-C7 _A #	-	-	-	-	-	-	<0.01	<0.01	mg/kg	A-T-022s
Aro >C7-C8 _A #	-	-	-	-	-	-	<0.01	<0.01	mg/kg	A-T-022s
Aro >C8-C9 _A #	-	-	-	-	-	-	<0.01	<0.01	mg/kg	A-T-022s
Aro >C9-C10 _A #	-	•	-	-	•	•	0.04	<0.01	mg/kg	A-T-022s
Aro >C10-C12 _A #	-	•	-	-	•	•	1.6	<0.1	mg/kg	A-T-023s
Aro >C12-C16 _A #	-	•	-	-	•	•	14.1	<0.1	mg/kg	A-T-023s
Aro >C16-C21 _A #	-	•	-	-	•	•	15.1	<0.1	mg/kg	A-T-023s
Aro >C21-C35 _A #	-	-	-	-	•	•	2.6	<0.1	mg/kg	A-T-023s
Total Aromatics _A	-	•	-	-	•	•	33.4	<0.1	mg/kg	A-T-023s
TPH (Ali & Aro) _A	-	-	-	-	-	-	101	<0.1	mg/kg	A-T-023s
BTEX - Benzene _A #	-	-	-	-	-	-	<0.01	<0.01	mg/kg	A-T-022s
BTEX - Toluene _A #	-	-	-	-	-	-	<0.01	<0.01	mg/kg	A-T-022s
BTEX - Ethyl Benzene _A #	-	-	-	-	-	-	<0.01	<0.01	mg/kg	A-T-022s
BTEX - m & p Xylene _A #	-	-	-	-	-	-	<0.01	<0.01	mg/kg	A-T-022s
BTEX - o Xylene _A #	-	-	-	-	-	-	<0.01	<0.01	mg/kg	A-T-022s
MTBE _A #	-	•	-	-	•	•	<0.01	<0.01	mg/kg	A-T-022s

Lab Sample ID	17/05426/49					
Client Sample No	2					
Client Sample ID	WS11 - Tile					
Depth to Top	0.40					
Depth To Bottom						
Date Sampled	03-Aug-17					
Sample Type	Solid - Fragment / Tile					Method ref
Sample Matrix Code	8				Units	Meth
Bulk Fibre ID (inc. matrix)						
Bulk Fibre Identification _A #	Amosite					A-T-045
Bulk Fibre Identification Matrix (visual) _A	Cement					A-T-045
Bulk Fibre Identification - Suitable for Water Absorption Test? _D	No					Gravimetry

REPORT NOTES

General:

This report shall not be reproduced, except in full, without written approval from Envirolab.

All samples contained within this report, and any received with the same delivery, will be disposed of one month after the date of this report.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure and there is insufficient sample to repeat the analysis. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

Soil chemical analysis:

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25℃ / 11550µS/cm @ 20℃ fall outside the calibration range and as such are unaccredited.

Asbestos

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

Final Test Report

Envirolab Job Number: 17/05426

Issue Number: Date: 30-Aug-17

Client: Structural Soils Limited (Bristol)

> The Old School Stillhouse Lane Bedminster **Bristol**

UK, BS3 4EB

enviro@soils.co.uk/Jonathan Evans/Simon Pond Project Manager:

515 Stockwood Road Project Name:

732959 Project Ref: Order No: N/A

9-Aug-17 Date Samples Received: Date Instructions Received: 9-Aug-17 Date Analysis Completed: 30-Aug-17

Notes - Soil analysis

All results are reported as dry weight (<40 ℃).

For samples with Matrix Codes 1 - 6 natural stones > 10mm are removed or excluded from the sample prior to analysis and reported results corrected to a whole sample basis.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis.

Notes - General

This report shall not be reproduced, except in full, without written approval from Envirolab

Subscript "A" indicates analysis performed on the sample as received. "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve, unless asbestos is found to be present in which case all analysis is performed on the sample as received.

All analysis is performed on the dried and crushed sample for samples with Matrix Code 7 and this supercedes any "A" subscripts.

All analysis is performed on the sample as received for soil samples from outside the European Union and this supercedes any "D" subscripts

Superscript "M" indicates method accredited to MCERTS.

For complex, multi-compound analysis, quality control results do not always fall within chart limits for every compound and we have criteria for reporting in these situations.

If results are in italic font they are associated with such quality control failures and may be unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid

Predominant Matrix Codes: 1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample

Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are

Secondary Matrix Codes: A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

IS indicates Insufficient sample for analysis, NDP indicates No Determination Possible and NAD indicates No Asbestos Detected.

Superscript # indicates method accredited to ISO 17025.

Analytical results reflect the quality of the sample at the time of analysis only. Opinions and interpretations expressed are outside the scope of our accreditation.

Please contact us if you need any further information.

Prepared by:

Laboratory Coordinator

Approved by:

Georgia King Admins & Client Services Supervisc

Landfill WAC analysis must not be used for hazardous waste classification purposes. This analysis is only applicable for landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

	ample Detai	_	1					
Lab Sample ID	Method	ISO17025	MCERTS	17/05426/1	6	Landfill V	Vaste Acceptance Crite	ria Limits
Client Sample Number				2				
Client Sample ID				WS04				
Depth to Top				8.0			Stable Non-reactive	Hazardous Waste
Depth to Bottom						Inert Waste Landfill	Hazardous Waste in	Landfill
Date Sampled				03/08/2017	'		Non-Hazardous Landfill	Lanami
Sample Type				Soil - ES				
Sample Matrix Code				5A				
Solid Waste Analysis								
pH (pH Units) _D	A-T-031	Υ	Υ	7.51		-	>6	-
ANC to pH 4 (mol/kg) _D	A-T-ANC	N	N	0.28		-	to be evaluated	to be evaluated
ANC to pH 6 (mol/kg) _D	A-T-ANC	N	N	0.03		-	to be evaluated	to be evaluated
Loss on Ignition (%) _D	A-T-030	Υ	N	6.3		-	-	10
Total Organic Carbon (%)D	A-T-032	Υ	Υ	1.31		3	5	6
PAH Sum of 17 (mg/kg) A	A-T-019	N	N	0.88		100	-	-
Mineral Oil (mg/kg) _A	A-T-007	N	N	<10		500	_	-
Sum of 7 PCBs (mg/kg) _D	A-T-004	N	N	<0.007		1	_	_
Sum of BTEX (mg/kg) _A	A-T-022	N	N	<0.01		6	_	_
	71 022			10:1	10:1		s for compliance leaching	n test using
Eluate Analysis				mg/l	mg/kg		N 12457-3 at L/S 10 I/kg (n	
Arsenic	A-T-025	Υ	N	0.003	0.030	0.5	2	25
Barium	A-T-025	Υ	N	0.175	1.750	20	100	300
Cadmium	A-T-025	Υ	N	<0.001	<0.01	0.04	1	5
Chromium	A-T-025	Υ	N	< 0.001	<0.01	0.5	10	70
Copper	A-T-025	Υ	N	0.001	0.010	2	50	100
Mercury	A-T-025	Υ	Ν	< 0.0005	<0.005	0.01	0.2	2
Molybdenum	A-T-025	Υ	N	0.011	0.110	0.5	10	30
Nickel	A-T-025	Υ	N	0.002	0.020	0.4	10	40
	A T 005	Υ	N	0.001	0.010	0.5	10	50
Lead	A-T-025	Y	1.4			0.5	10	50
Lead Antimony	A-1-025 A-T-025	Y	N	0.001	0.010	0.06	0.7	5
Antimony	_							
Antimony Selenium	A-T-025	Υ	N	0.001	0.010	0.06	0.7	5
Antimony Selenium Zinc	A-T-025 A-T-025	Y	N N	0.001 <0.001	0.010 <0.01	0.06 0.1	0.7 0.5	5 7
Antimony Selenium Zinc Chloride	A-T-025 A-T-025 A-T-025	Υ Υ Υ	N N N	0.001 <0.001 0.008	0.010 <0.01 0.080	0.06 0.1 4	0.7 0.5 50	5 7 200
Antimony Selenium Zinc Chloride Fluoride	A-T-025 A-T-025 A-T-026	Υ Υ Υ	N N N	0.001 <0.001 0.008	0.010 <0.01 0.080 14	0.06 0.1 4 800	0.7 0.5 50 15000	5 7 200 25000
Antimony Selenium Zinc Chloride Fluoride Sulphate as SO ₄	A-T-025 A-T-025 A-T-025 A-T-026 A-T-026	Y Y Y Y	N N N N	0.001 <0.001 0.008 1 0.3	0.010 <0.01 0.080 14 3.0	0.06 0.1 4 800	0.7 0.5 50 15000	5 7 200 25000 500
Antimony Selenium Zinc Chloride Fluoride Sulphate as SO ₄ Total Dissolved Solids	A-T-025 A-T-025 A-T-025 A-T-026 A-T-026 A-T-026	Y Y Y Y Y	N N N N	0.001 <0.001 0.008 1 0.3 22	0.010 <0.01 0.080 14 3.0 216	0.06 0.1 4 800 10 1000	0.7 0.5 50 15000 150 20000	5 7 200 25000 500 5000
Antimony Selenium Zinc Chloride Fluoride Sulphate as SO ₄ Total Dissolved Solids Phenol Index	A-T-025 A-T-025 A-T-025 A-T-026 A-T-026 A-T-026 A-T-035	Y Y Y Y Y N	N N N N N	0.001 <0.001 0.008 1 0.3 22 188	0.010 <0.01 0.080 14 3.0 216 1880	0.06 0.1 4 800 10 1000 4000	0.7 0.5 50 15000 150 20000	5 7 200 25000 500 5000
Antimony Selenium Zinc Chloride Fluoride Sulphate as SO ₄ Total Dissolved Solids Phenol Index Dissolved Organic Carbon	A-T-025 A-T-025 A-T-025 A-T-026 A-T-026 A-T-026 A-T-035 A-T-050	Y Y Y Y Y N	N N N N N N	0.001 <0.001 0.008 1 0.3 22 188 <0.01	0.010 <0.01 0.080 14 3.0 216 1880 <0.1	0.06 0.1 4 800 10 1000 4000	0.7 0.5 50 15000 150 20000 60000	5 7 200 25000 500 5000 100000
Antimony Selenium Zinc Chloride Fluoride Sulphate as SO ₄ Total Dissolved Solids Phenol Index Dissolved Organic Carbon Leach Test Information	A-T-025 A-T-025 A-T-025 A-T-026 A-T-026 A-T-026 A-T-035 A-T-050	Y Y Y Y Y N	N N N N N N	0.001 <0.001 0.008 1 0.3 22 188 <0.01	0.010 <0.01 0.080 14 3.0 216 1880 <0.1	0.06 0.1 4 800 10 1000 4000	0.7 0.5 50 15000 150 20000 60000	5 7 200 25000 500 5000 100000
Antimony Selenium Zinc Chloride Fluoride Sulphate as SO ₄ Total Dissolved Solids Phenol Index Dissolved Organic Carbon Leach Test Information pH (pH Units)	A-T-025 A-T-025 A-T-025 A-T-026 A-T-026 A-T-026 A-T-035 A-T-030 A-T-032	Y Y Y Y Y N N	N N N N N N N	0.001 <0.001 0.008 1 0.3 22 188 <0.01 <0.2	0.010 <0.01 0.080 14 3.0 216 1880 <0.1	0.06 0.1 4 800 10 1000 4000	0.7 0.5 50 15000 150 20000 60000	5 7 200 25000 500 5000 100000
	A-T-025 A-T-025 A-T-025 A-T-026 A-T-026 A-T-026 A-T-035 A-T-050 A-T-032	Y Y Y Y Y N N	N N N N N N N	0.001 <0.001 0.008 1 0.3 22 188 <0.01 <0.2	0.010 <0.01 0.080 14 3.0 216 1880 <0.1	0.06 0.1 4 800 10 1000 4000	0.7 0.5 50 15000 150 20000 60000	5 7 200 25000 500 5000 100000

Landfill WAC analysis must not be used for hazardous waste classification purposes. This analysis is only applicable for landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

	imple Detail	IS								
Lab Sample ID	Method	ISO17025	MCERTS	17/05426/2	25	Landfill W	/aste Acceptance Crite	ria Limits		
Client Sample Number				2						
Client Sample ID				WS07						
Depth to Top				0.3			Stable Non-reactive			
Depth to Bottom						Inert Waste Landfill	Hazardous Waste in	Hazardous Waste Landfill		
Date Sampled				03/08/2017	,		Non-Hazardous Landfill	Langilli		
Sample Type				Soil - ES						
Sample Matrix Code				6A						
Solid Waste Analysis										
pH (pH Units) _D	A-T-031	Υ	Υ	8.16		-	>6	-		
ANC to pH 4 (mol/kg) _D	A-T-ANC	N	N	0.54		-	to be evaluated	to be evaluated		
ANC to pH 6 (mol/kg) _D	A-T-ANC	N	N	0.05		-	to be evaluated	to be evaluated		
Loss on Ignition (%) _D	A-T-030	γ	N	11.9		-	-	10		
Total Organic Carbon (%) _D	A-T-032	Υ	Υ	8		3	5	6		
PAH Sum of 17 (mg/kg) A	A-T-019	N	N	6.47		100	-	-		
Mineral Oil (mg/kg) _A	A-T-007	N	N	<10		500	-			
Sum of 7 PCBs (mg/kg) _D	A-T-007	N	N	<0.007		1	_	-		
Sum of BTEX (mg/kg) _A	A-T-004 A-T-022	N	N	<0.007			_			
Sull of BTEX (Ilig/kg)A	A-1-022	IN	IN		40.4	6 Limit values for compliance leaching test using				
Eluate Analysis				10:1 mg/l	10:1 mg/kg		s for compliance leaching N 12457-3 at L/S 10 l/kg (n			
Arsenic	A-T-025	Υ	N	0.004	0.040	0.5	2	25		
Barium	A-T-025	Ÿ	N	0.052	0.520	20	100	300		
Cadmium	A-T-025	Ÿ	N	<0.001	<0.01	0.04	1	5		
Chromium	A-T-025	Ÿ	N	<0.001	<0.01	0.5	10	70		
Copper	A-T-025	Y	N	0.005	0.050	2	50	100		
Mercury	A-T-025	Y	N	<0.0005	<0.005	0.01	0.2	2		
Molybdenum	A-T-025	Y	N	0.001	0.010	0.5	10	30		
Nickel	A-T-025	Υ	N	0.002	0.020	0.4	10	40		
Lead	A-T-025	Υ	N	0.015	0.150	0.5	10	50		
Antimony	A-T-025	Υ	N	0.002	0.020	0.06	0.7	5		
Selenium	A-T-025	Υ	N	< 0.001	<0.01	0.1	0.5	7		
Zinc	A-T-025	Υ	N	0.042	0.420	4	50	200		
Chloride	A-T-026	Υ	N	<1.00	<10	800	15000	25000		
Fluoride	A-T-026	Υ	Ν	0.8	8.0	10	150	500		
Sulphate as SO ₄	A-T-026	Υ	Ν	<1.00	<10	1000	20000	50000		
Total Dissolved Solids	A-T-035	N	N	72	720	4000	60000	100000		
Phenol Index	A-T-050	N	N	<0.01	<0.1	1	-	-		
Dissolved Organic Carbon	A-T-032	N	Ν	<0.2	<200	500	800	1000		
Leach Test Information					<u> </u>	•				
pH (pH Units)	A-T-031	N	Υ	7.0	1					
Conductivity (µS/cm)	A-T-037	N			Ī					
	Ī		Ī	0.219	Ī					
Mass Sample (kg)	-	N	N	79.8	1					

Landfill WAC analysis must not be used for hazardous waste classification purposes. This analysis is only applicable for landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Sar	nple Detail	s							
Lab Sample ID	Method	ISO17025	MCERTS	17/05426/4	7	Landfill W	aste Acceptance Crite	ria Limits	
Client Sample Number				3					
Client Sample ID				WS12					
Depth to Top				1.3			Stable Non-reactive		
Depth to Bottom						Inert Waste Landfill	Hazardous Waste in	Hazardous Waste	
Date Sampled				02/08/2017	,		Non-Hazardous Landfill	Landfill	
Sample Type				Soil - ES					
Sample Matrix Code				5					
Solid Waste Analysis									
pH (pH Units) _D	A-T-031	Υ	Υ	7.34		-	>6	-	
ANC to pH 4 (mol/kg) _D	A-T-ANC	N	N	0.05		-	to be evaluated	to be evaluated	
ANC to pH 6 (mol/kg) _D	A-T-ANC	N	N	0.01		-	to be evaluated	to be evaluated	
Loss on Ignition (%) _D	A-T-030	Y	N	5.7		-	-	10	
Total Organic Carbon (%) _D	A-T-032	Y	Υ	0.37		3	5	6	
PAH Sum of 17 (mg/kg) A	A-T-019	N	N	0.34		100	-	<u> </u>	
Mineral Oil (mg/kg) _A	A-T-019	N	N	73		500	-	<u> </u>	
Sum of 7 PCBs (mg/kg) _D	A-T-007 A-T-004	N	N	<0.007		1	_		
		_	-				-	-	
Sum of BTEX (mg/kg) _A	A-T-022	N	N	<0.01	40.4	6	-		
Eluate Analysis				10:1	10:1		s for compliance leaching	•	
Avancia	A T 005			mg/l	mg/kg		1 12457-3 at L/S 10 I/kg (m	. .,	
Arsenic	A-T-025	Υ	N	0.003	0.030	0.5 20	2	25	
Barium	A-T-025	Y	N	0.124	1.240	0.04	100	300 5	
Cadmium	A-T-025		N	<0.001	<0.01				
Chromium	A-T-025	Υ	N	0.004	0.040	0.5	10 50	70	
Copper	A-T-025	Υ	N N	0.002	0.020	0.01	0.2	100	
Mercury	A-T-025	Υ	_	<0.0005	<0.005				
Molybdenum Nickel	A-T-025	Y	N N	<0.001	<0.01	0.5 0.4	10 10	30 40	
	A-T-025	Y	N	0.003	0.030	0.4	10	50	
Lead	A-T-025	Y	_	0.009	0.090	0.06	0.7	50	
Antimony Selenium	A-T-025	Y	N N	<0.001	<0.01	0.06	0.7	7	
Zinc	A-T-025	Y	N	0.002 0.051	0.020	4	50	200	
Chloride	A-T-025	Y	N		0.510		15000		
Fluoride	A-T-026 A-T-026	Y	N	10	97	800 10	15000	25000 500	
Sulphate as SO ₄	A-T-026 A-T-026	Y	N	0.3	3.0	1000	20000	50000	
Total Dissolved Solids		N		38 32	383	4000			
Phenol Index	A-T-035	N N	N N		320	4000	60000	100000	
Dissolved Organic Carbon	A-T-050 A-T-032	N	N	<0.01 <0.2	<0.1 <200	500	800	1000	
Leach Test Information	A-1-032	IN	IN	<0.2	<200	500	000	1000	
pH (pH Units)	A T 004		- V	0.0	Ī				
F (F)	A-T-031	N N	Y	6.6 63					
Conductivity (µS/cm)	A-T-037	IN	N						
Mass Sample (kg) Dry Matter (%)	A-T-044	N	N	0.228 76.6					
Dry Matter (%)	A-1-044	IN	IN	70.0					
Stated acceptance limits ar	e for guida	nce	onl	y and Enviro	olab cannot	be held responsible for	any discrepancies with c	current legislation	

FINAL ANALYTICAL TEST REPORT

Envirolab Job Number: 17/05552

Issue Number: 1 **Date:** 29 August, 2017

Client: Structural Soils Limited (Bristol)

The Old School Stillhouse Lane Bedminster Bristol

UK

BS3 4EB

Project Manager: enviro@soils.co.uk/Simon Pond **Project Name:** Stockwood Road, Brislington

Project Ref: 732959 Order No: N/A

Date Samples Received: 14/08/17 **Date Instructions Received:** 15/08/17 **Date Analysis Completed:** 29/08/17

Prepared by: Approved by:

Meianie Marsnaii

Laboratory Coordinator

laın Haslock

Analytical Consultant

Envirolab Job Number: 17/05552 Client Project Name: Stockwood Road, Brislington

				Onome i ro	ject Ref: 73			
Lab Sample ID	17/05552/1							
Client Sample No								
Client Sample ID	WS12							
Depth to Top	2.37							
Depth To Bottom								
Date Sampled	10-Aug-17							4
Sample Type	Water - EW							Method ref
Sample Matrix Code	N/A						Units	Meth
pH (w) _A #	7.44						рН	A-T-031w
Hardness Total _A #	163						mg/l Ca CO3	A-T-049w
Sulphate (w) _A #	20						mg/l	A-T-026w
DOC (w) _A #	25.8						mg/l	A-T-032w
Arsenic (dissolved) _A #	2						μg/l	A-T-025w
Cadmium (dissolved) _A #	<0.2						μg/l	A-T-025w
Calcium (dissolved) _A #	49						mg/l	A-T-049w
Copper (dissolved) _A #	7						μg/l	A-T-025w
Chromium (dissolved) _A #	<1						μg/l	A-T-025w
Lead (dissolved) _A #	<1						μg/l	A-T-025w
Mercury (dissolved) _A #	<0.1						μg/l	A-T-025w
Nickel (dissolved) _A #	8						μg/l	A-T-025w
Selenium (dissolved) _A #	10						μg/l	A-T-025w
Zinc (dissolved) _A #	15	· · · · · · · · · · · · · · · · · · ·				 -	μg/l	A-T-025w

Envirolab Job Number: 17/05552 Client Project Name: Stockwood Road, Brislington

T			Onone i ro			
Lab Sample ID	17/05552/1					
Client Sample No						
Client Sample ID	WS12					
Depth to Top	2.37					
Depth To Bottom						
Date Sampled	10-Aug-17					-
Sample Type	Water - EW					Method ref
Sample Matrix Code	N/A				Units	Meth
PAH 16MS (w)						
Acenaphthene (w) _A #	<0.01				μg/l	A-T-019w
Acenaphthylene (w) _A #	<0.01				μg/l	A-T-019w
Anthracene (w) _A #	<0.01				μg/l	A-T-019w
Benzo(a)anthracene (w) _A #	<0.01				μg/l	A-T-019w
Benzo(a)pyrene (w) _A #	<0.01				μg/l	A-T-019w
Benzo(b)fluoranthene (w) _A #	<0.01				μg/l	A-T-019w
Benzo(ghi)perylene (w) _A #	<0.01				μg/l	A-T-019w
Benzo(k)fluoranthene (w) _A #	<0.01				μg/l	A-T-019w
Chrysene (w) _A #	<0.01				μg/l	A-T-019w
Dibenzo(ah)anthracene (w) _A #	<0.01				μg/l	A-T-019w
Fluoranthene (w) _A #	<0.01				μg/l	A-T-019w
Fluorene (w) _A #	<0.01				μg/l	A-T-019w
Indeno(123-cd)pyrene (w) _A #	<0.01				μg/l	A-T-019w
Naphthalene (w) _A #	<0.01				μg/l	A-T-019w
Phenanthrene (w) _A #	<0.01				μg/l	A-T-019w
Pyrene (w) _A #	<0.01				μg/l	A-T-019w
PAH (total 16) (w) _A #	<0.01				μg/l	A-T-019w

Envirolab Job Number: 17/05552 Client Project Name: Stockwood Road, Brislington

			Client Pro	jeot nen 70	2000		
Lab Sample ID	17/05552/1						
Client Sample No							
Client Sample ID	WS12						
Depth to Top	2.37						
Depth To Bottom							
Date Sampled	10-Aug-17						
Sample Type	Water - EW						od re
Sample Matrix Code	N/A					Units	Method ref
TPH CWG							
Ali >C5-C6 (w) _A #	<1					μg/l	A-T-022w
Ali >C6-C8 (w) _A #	<1					μg/l	A-T-022w
Ali >C8-C10 (w) _A #	<1					μg/l	A-T-022w
Ali >C10-C12 (w) _A #	<5					μg/l	A-T-023w
Ali >C12-C16 (w) _A #	<5					μg/l	A-T-023w
Ali >C16-C21 (w) _A #	<5					μg/l	A-T-023w
Ali >C21-C35 (w) _A #	<5					μg/l	A-T-023w
Total Aliphatics (w) _A	<5					μg/l	A-T-022+23w
Aro >C5-C7 (w) _A #	<1					μg/l	A-T-022w
Aro >C7-C8 (w) _A #	<1					μg/l	A-T-022w
Aro >C8-C9 (w) _A #	<1					μg/l	A-T-022w
Aro >C9-C10 (w) _A #	<1					μg/l	A-T-022w
Aro >C10-C12 (w) _A #	<5					μg/l	A-T-023w
Aro >C12-C16 (w) _A #	<5					μg/l	A-T-023w
Aro >C16-C21 (w) _A #	<5					μg/l	A-T-023w
Aro >C21-C35 (w) _A #	<5					μg/l	A-T-023w
Total Aromatics (w) _A	<5					μg/l	A-T-022+23w
TPH (Ali & Aro) (w) _A	<5					μg/l	A-T-022+23w
BTEX - Benzene (w) _A #	<1					μg/l	A-T-022w
BTEX - Toluene (w) _A #	<1					μg/l	A-T-022w
BTEX - Ethyl Benzene (w) _A #	<1					μg/l	A-T-022w
BTEX - m & p Xylene (w) _A #	<1					μg/l	A-T-022w
BTEX - o Xylene (w) _A #	<1					μg/l	A-T-022w
MTBE (w) _A #	<1					μg/l	A-T-022w

REPORT NOTES

General:

This report shall not be reproduced, except in full, without written approval from Envirolab.

All samples contained within this report, and any received with the same delivery, will be disposed of one month after the date of this report.

Analytical results reflect the quality of the sample at the time of analysis only.

Opinions and interpretations expressed are outside the scope of our accreditation.

If results are in italic font they are associated with an AQC failure and there is insufficient sample to repeat the analysis. These are not accredited and are unreliable.

A deviating samples report is appended and will indicate if samples or tests have been found to be deviating. Any test results affected may not be an accurate record of the concentration at the time of sampling and, as a result, may be invalid.

Soil chemical analysis:

All results are reported as dry weight (<40 °C).

For samples with Matrix Codes 1 - 6 natural stones, brick and concrete fragments >10mm and any extraneous material (visible glass, metal or twigs) are removed and excluded from the sample prior to analysis and reported results corrected to a whole sample basis. This is reported as '% stones >10mm'.

For samples with Matrix Code 7 the whole sample is dried and crushed prior to analysis and this supersedes any "A" subscripts All analysis is performed on the sample as received for soil samples which are positive for asbestos or the client has informed asbestos may be present and/or if they are from outside the European Union and this supersedes any "D" subscripts.

TPH analysis of water by method A-T-007:

Free and visible oils are excluded from the sample used for analysis so that the reported result represents the dissolved phase only.

Electrical Conductivity of water by Method A-T-037:

Results greater than 12900µS/cm @ 25℃ / 11550µS/cm @ 20℃ fall outside the calibration range and as such are unaccredited.

Asbestos:

Asbestos in soil analysis is performed on a dried aliquot of the submitted sample and cannot guarantee to identify asbestos if only present in small numbers as discrete fibres/fragments in the original sample.

Stones etc. are not removed from the sample prior to analysis.

Quantification of asbestos is a 3 stage process including visual identification, hand picking and weighing and fibre counting by sedimentation/phase contrast optical microscopy if required. If asbestos is identified as being present but is not in a form that is suitable for analysis by hand picking and weighing (normally if the asbestos is present as free fibres) quantification by sedimentation is performed. Where ACMs are found a percentage asbestos is assigned to each with reference to 'HSG264, Asbestos: The survey guide' and the calculated asbestos content is expressed as a percentage of the dried soil sample aliquot used.

Predominant Matrix Codes:

1 = SAND, 2 = LOAM, 3 = CLAY, 4 = LOAM/SAND, 5 = SAND/CLAY, 6 = CLAY/LOAM, 7 = OTHER, 8 = Asbestos bulk ID sample. Samples with Matrix Code 7 & 8 are not predominantly a SAND/LOAM/CLAY mix and are not covered by our BSEN 17025 or MCERTS accreditations, with the exception of bulk asbestos which are BSEN 17025 accredited.

Secondary Matrix Codes:

A = contains stones, B = contains construction rubble, C = contains visible hydrocarbons, D = contains glass/metal, E = contains roots/twigs.

Key:

IS indicates Insufficient Sample for analysis.

US indicates Unsuitable Sample for analysis.

NDP indicates No Determination Possible.

NAD indicates No Asbestos Detected.

N/A indicates Not Applicable.

Superscript # indicates method accredited to ISO 17025.

Superscript "M" indicates method accredited to MCERTS.

Subscript "A" indicates analysis performed on the sample as received.

Subscript "D" indicates analysis performed on the dried sample, crushed to pass a 2mm sieve

Please contact us if you need any further information.

0.20

0.60

1.00

0.20

WS04

0.20

WS04

0.80

7.51

3.3

40

0.02 0.09 0.10 0.07 0.09 0.04 0.17 0.02 0.03 0.09 0.10 WS05

0.20

Haswaste, developed by Dr. lain Haslock.

51	15	Stockwood	Road
79	20	959	

TP/WS/BH Depth (m)

E : III		0.20	0.00	0.20	0.00	1.00	0.20	0.20
Envirolab reference								
	i							1
% Moisture	%							
pH (soil)			7.93			7.88		
pH (leachate)								
Arsenic	mg/kg		1			1		
Cadmium	updated v5.4ei mg/kg		2.6 1			7.6 1		
Copper CrVI or Chromium	mg/kg mg/kg		20			23		
Lead	mg/kg		9			19		
Mercury	mg/kg		0.17			0.17		
Nickel	mg/kg		20			19		
Selenium	mg/kg		1			3		
Zinc	updated v5.4ei mg/kg		33			23		
Barium	mg/kg							
Beryllium	mg/kg							
Vanadium	mg/kg							
Cobalt	updated v5.4ei mg/kg							
Manganese	updated v5.4ei mg/kg							
Molybdenum	mg/kg							
Antimony Aluminium	mg/kg mg/kg							
Bismuth	mg/kg							
CrIII	mg/kg							
Iron	updated v5.4ei mg/kg							
Strontium	mg/kg							
Tellurium	mg/kg							
Thallium	mg/kg							
Titanium	mg/kg							
Tungsten Ammoniacal N	mg/kg							
ws Boron	mg/kg mg/kg							
			l	1	l	l	l	
PAH (Input Total PAH OR individua Acenaphthene			0.01	1	ı	0.01	ı	
	mg/kg							
Acenaphthylene	mg/kg		0.01 0.02			0.01 0.02		
Anthracene	mg/kg					0.02		
Benzo(a)anthracene	mg/kg		0.04 0.04			0.04		
Benzo(a)pyrene Benzo(b)fluoranthene	mg/kg		0.05			0.05		
	mg/kg		0.05			0.05		
Benzo(ghi)perylene Benzo(k)fluoranthene	mg/kg		0.07			0.07		
Chrysene	mg/kg mg/kg		0.06			0.06		
Dibenzo(ah)anthracene	mg/kg		0.04			0.04		
Fluoranthene	mg/kg		0.08			0.08		
Fluorene	mg/kg		0.01			0.01		
Indeno(123cd)pyrene	mg/kg		0.03			0.03		
Naphthalene	mg/kg		0.03			0.03		
Phenanthrene	mg/kg		0.03			0.03		
Pyrene	mg/kg		0.07			0.07		
Coronene	mg/kg							
Total PAHs (16 or 17)	mg/kg							
TPH		•						•
Petrol	mg/kg							
Diesel	mg/kg							
Lube Oil	mg/kg							
			1	1 1	1	1	1	
Crude Oil	mg/kg							
White Spirit / Kerosene	mg/kg							
Creosote	mg/kg							
Unknown TPH with ID	mg/kg		10.0			10.0		
Unknown TPHCWG	mg/kg							
Total Sulphide	mg/kg							
Complex Cyanide	mg/kg		İ	1	İ	İ	İ	
Free (or Total) Cyanide	mg/kg							
Thiocyanate	mg/kg							
Elemental/Free Sulphur	mg/kg							
Phenols Input Total Phenols HPLC	OR individual Phenol							
results.	•							
Phenol	mg/kg							
Cresols	mg/kg			I				
Xylenols	mg/kg			I				
Resourcinol	mg/kg			ļ				
Phenols Total by HPLC	mg/kg			<u> </u>				
BTEX Input Total BTEX OR individu			1		1	1	1	
Benzene	ma/ka	1	I	1	I	I	I	l

0.20

mg/kg mg/kg mg/kg mg/kg mg/kg

mg/kg

Benzene Toluene Ethylbenzene Xylenes Total BTEX

available)

PCBs (POPs)
PCBs Total (eg EC7/WHO12)

PBBs (POPs)
Hexabromobiphenyl (Total or PBB153; 2,2',4,4',5,5'- if only

0.60

515	Stocky	vood	Road

TP/WS/BH	
Depth (m)	
Envirolah reference	

WS01	WS01	WS02	WS02	WS02	WS03	WS04	WS04	WS05
0.20	0.60	0.20	0.60	1.00	0.20	0.20	0.80	0.20

POPs Dioxins and Furans Input Total Dioxins and Furans OR individual Dioxin and Furan results.									
2,3,7,8-TeCDD	mg/kg								
1,2,3,7,8-PeCDD	mg/kg								
1,2,3,4,7,8-HxCDD	mg/kg								
1,2,3,6,7,8-HxCDD	mg/kg								
1,2,3,7,8,9-HxCDD	mg/kg								
1,2,3,4,6,7,8-HpCDD	mg/kg								
OCDD	mg/kg								
2,3,7,8-TeCDF	mg/kg								
1,2,3,7,8-PeCDF	mg/kg								
2,3,4,7,8-PeCDF	mg/kg								
1,2,3,4,7,8-HxCDF	mg/kg								
1,2,3,6,7,8-HxCDF	mg/kg								
2,3,4,6,7,8-HxCDF	mg/kg								
1,2,3,7,8,9-HxCDF	mg/kg								
1,2,3,4,6,7,8-HpCDF	mg/kg								
1,2,3,4,7,8,9-HpCDF	mg/kg								
OCDF	mg/kg								
Total Dioxins and Furans	mg/kg								

ıs					
g					
g					
g					
g					
g					
g					
g					
g					
g					
g					
g					
g					
g					
g					
g					
g					
g					
g					

Some Pesticides (POPs unless of	herwise stated)						
Aldrin		mg/kg						
α Hexachlorocyclohexane (alpha-								
HCH) (leave empty if total HCH		mg/kg						
results used)								
β Hexachlorocyclohexane (beta-								
HCH) (leave empty if total HCH		mg/kg						
results used)								
α Cis-Chlordane (alpha) <i>OR Total</i>		mg/kg						
Chlordane		3 3						
δ Hexachlorocyclohexane (delta-								
HCH) (leave empty if total HCH results used)		mg/kg						
Dieldrin	updated v5.4ei	mg/kg						
Endrin	updated vo.4ei	mg/kg						
		mgmg						
χ Hexachlorocyclohexane (gamma-	updated v5.4ei	mg/kg						
HCH) (lindane) OR Total HCH								
Heptachlor		mg/kg						
Hexachlorobenzene		mg/kg						
o,p'-DDT (leave empty if total DDT		mg/kg						
results used)								
p,p'-DDT <i>OR</i> Total DDT	updated v5.4ei	mg/kg						
χ Trans-Chlordane (gamma)								
(leave empty if total Chlordane results used)		mg/kg						
Chlordecone (kepone)		mg/kg						
Pentachlorobenzene		mg/kg						
Mirex Toxaphene (camphechlor)		mg/kg mg/kg						
		ilig/kg						
Tin	i			1	1	1		
Tin (leave empty if Organotin and								
Tin excl Organotin results used)		mg/kg						
Organotin	l			l	l	l		
Dibutyltin; DiBT		mg/kg						
Blockykin, Blb1		mg/kg						
Tributyltin; TriBT		mg/kg						
Triphenyltin; TriPT		mg/kg						
Tetrabutyltin; TeBT		mg/kg						
Tin excluding Organotin								
Tin excl Organotin		mg/kg						

Haswaste, developed by Dr. lain Haslock

515 Stockwood Road 732959

TP/WS/BH Depth (m) Envirolab reference

Carcinogenic HP7 % Asbestos in Soil (fibres or micro pieces)

Asbestos in Soil	Thresholds
Asbestos detected in Soil (enter Y or N)	Υ
Asbestos % Composition in Soil (Matrix Loose Fibres or Microscopic Identifiable Pieces only)	see "Carc HP7 % Asbestos in Soil (Fibres)" below

Asbestos Identifiable Pieces visible with the naked eye detected in the Soil (enter Y or N)

WS01	WS01	WS02	WS02	WS02	WS03	WS04	WS04	WS05				
0.20	0.60	0.20	0.60	1.00	0.20	0.20	0.80	0.20				
N	N	N	N		N	N	N	N				
		A	sbestos in Soil above is	"Y", the soil is Hazarde	ous Waste HP5 and HF	7						
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000				
If Asbestos in Soil abo	If Asbestos in Soil above is "Y", but Asbestos % above is "<0.1%", the soil is Non Hazardous Waste. You can only use Asbestos % results where loose fibres or micro pieces are only present. You cannot use Asbestos % results where loose fibres or micro pieces are only present.											

If visual identifiable pieces of asbestos are present, you cannot use Asbestos % results and the whole soil sample is Hazardous Waste HP5 and HP7 Construction material containing Asbestos 17 06 05.

Therefore, if Asbestos in Soil above is "\", the Asbestos % above is "\", the Asbestos Identifiable Pieces visible with the naked eye is "\", the soil is Hazardous Waste.

Identifiable Pieces are Cement, Fragments, Board, Rope etc. ie anything ACM that is not Loose Fibres.

All visual asbestos pieces need to be removed leaving only fibres (or micro pieces) with an Asbestos % Composition in Soil result of <0.1% for the soil to become non-hazardous waste.

Hazardous Property	Thresholds	Cut Off Value									
Corrosive HP8	≥5%	<1%	0.00000	0.00397	0.00000	0.00000	0.00455	0.00000	0.00000	0.00301	0.00000
Irritant HP4	≥10%	<1%	0.00000	0.00025	0.00000	0.00000	0.00025	0.00000	0.00000	0.00104	0.00000
Irritant HP4	≥20%	<1%	0.00000	0.00417	0.00000	0.00000	0.00397	0.00000	0.00000	0.00335	0.00000
Specifc Target Organ Toxicity HP5	≥1%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Specifc Target Organ Toxicity HP5	≥20%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00001	0.00000
Specifc Target Organ Toxicity HP5	≥1%		0.00000	0.00404	0.00000	0.00000	0.00442	0.00000	0.00000	0.00288	0.00000
Specifc Target Organ Toxicity HP5	≥10%		0.00000	0.00100	0.00000	0.00000	0.00190	0.00000	0.00000	0.00250	0.00000
Aspiration Toxicity HP5	≥10%		0.00000	0.00100	0.00000	0.00000	0.00100	0.00000	0.00000	0.00100	0.00000
Acute Toxicity HP6	≥0.1%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥0.25%	<0.1%	0.00000	0.00015	0.00000	0.00000	0.00015	0.00000	0.00000	0.00015	0.00000
Acute Toxicity HP6	≥5% >25%	<0.1%	0.00000	0.00398	0.00000	0.00000	0.00484	0.00000	0.00000	0.00316	0.00000
Acute Toxicity HP6	≥25% ≥0.25%	<1%	0.00000	0.00533	0.00000	0.00000	0.00663	0.00000	0.00000	0.00619	0.00000
Acute Toxicity HP6	≥0.25% >2.5%	<0.1%	0.00000	0.00002 0.00384	0.00000	0.00000	0.00002 0.00442	0.00000	0.00000	0.00002 0.00288	0.00000
Acute Toxicity HP6	22.5%	<0.1%	0.00000	0.00384	0.00000	0.00000	0.00442	0.00000	0.00000	0.00288	0.00000
Acute Toxicity HP6 Acute Toxicity HP6	>55%	<0.1% <1%	0.00000	0.00000	0.00000	0.00000	0.0000	0.00000	0.00000	0.00033	0.00000
Acute Toxicity HP6 Acute Toxicity HP6	≥0.1%	<0.1%	0.00000	0.00026	0.00000	0.00000	0.00076	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6 Acute Toxicity HP6	≥0.1%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00519	0.00000	0.00000	0.00323	0.00000
Acute Toxicity HP6 Acute Toxicity HP6	≥3.5%	<0.1%	0.00000	0.00014	0.00000	0.00000	0.00042	0.00000	0.00000	0.00028	0.00000
Acute Toxicity HP6	≥22.5%	<1%	0.00000	0.00505	0.00000	0.00000	0.00585	0.00000	0.00000	0.00583	0.00000
Carcinogenic HP7	≥0.1%		0.00000	0.00404	0.00000	0.00000	0.00442	0.00000	0.00000	0.00288	0.00000
Carcinogenic HP7	≥0.1%		0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
Carcinogenic HP7	≥1%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00001	0.00000
Carcinogenic HP7 Unknown TPH with ID	≥1,000mg/kg		0.00	10.00	0.00	0.00	10.00	0.00	0.00	10.00	0.00
Carcinogenic HP7 b(a)p marker test (Unknown TPH with ID only)	≥0.01%		#DIV/0!	0.40000	#DIV/0!	#DIV/0!	0.40000	#DIV/0!	#DIV/0!	0.90000	#DIV/0!
pH Corrosive HP8 pH (soil or leachate)	H8 ≥11.5		0.00	7.93	0.00	0.00	7.88	0.00	0.00	7.51	0.00
pH Corrosive HP8 pH (soil or leachate)	H8 ≤2		0.00	7.93	0.00	0.00	7.88	0.00	0.00	7.51	0.00
Toxic for Reproduction HP10	≥0.3%		0.00000	0.00404	0.00000	0.00000	0.00384	0.00000	0.00000	0.00250	0.00000
Toxic for Reproduction HP10	≥3%		0.00000	0.00384	0.00000	0.00000	0.00442	0.00000	0.00000	0.00288	0.00000
Mutagenic HP11	≥0.1%		0.00000	0.00384	0.00000	0.00000	0.00442	0.00000	0.00000	0.00288	0.00000
Mutagenic HP11 Unknown TPH with ID Mutagenic HP11 b(a)p marker test	≥1,000mg/kg		0.00	10.00	0.00	0.00	10.00	0.00	0.00	10.00	0.00
(Unknown TPH with ID only)	≥0.01%		#DIV/0!	0.40000	#DIV/0!	#DIV/0!	0.40000	#DIV/0!	#DIV/0!	0.90000	#DIV/0!
Mutagenic HP11	≥1%		0.00000	0.00404	0.00000	0.00000	0.00384	0.00000	0.00000	0.00242	0.00000
Produces Toxic Gases HP12 Sulphide	≥1,400mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Produces Toxic Gases HP12 Cyanide	≥1,200mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Produces Toxic Gases HP12 Thiocyanate	≥2,600mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HP13 Sensitising	≥10%		0.00000	0.00404	0.00000	0.00000	0.00442	0.00000	0.00000	0.00288	0.00000
Ecotoxic HP14	≥1.0	<0.1% (except CompCN + Thiocyanate + Xylene + BTEX 1%).	0.00000	0.05490	0.00000	0.00000	0.05852	0.00000	0.00000	0.05863	0.00000
Ecotoxic HP14	≥25%	<0.1%	0.00000	0.01363	0.00000	0.00000	0.01453	0.00000	0.00000	0.01457	0.00000
Ecotoxic HP14	≥25%	<0.1% (except CompCN + Thiocyanate + Xylene + BTEX 1%).	0.00000	0.01463	0.00000	0.00000	0.01553	0.00000	0.00000	0.01556	0.00000

Haswaste, developed by Dr. lain Haslock.

515 Stockwood Road 732959

TP/WS/BH Depth (m)

Envirolab reference

Ecotoxic HP14 individual substance specific thresholds (Benzo(a)anthracene, Dibenz(ah)anthracene (or Total PAH if only used), Sn, TriPT)	≥0.0025%
Ecotoxic HP14 individual substance specific thresholds (Co, γ-HCH, DiBT, TriBT)	≥0.025%
Persistent Organic Pollutant (PCB, PBB or POP Pesticides)	>0.005%
Persistent Organic Pollutant (Total Dioxins+Furans)	>0.0000015%
Persistent Organic Pollutant (Individual Dioxins+Furans)	>0.0000015%

WS01 0.20	WS01 0.60	WS02 0.20	WS02 0.60	WS02 1.00	WS03 0.20	WS04 0.20	WS04 0.80	WS05 0.20
0.00000	0.000004	0.000000	0.000000	0.000004	0.000000	0.000000	0.000007	0.000000
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
0.0000000000	0.0000000000	0.000000000	0.0000000000	0.0000000000	0.0000000000	0.000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000

	515 Stockwood Road
ı	732959

TP/WS/BH

Dth ()			VV 303	W303	W 303	W307	W307	W307	0.00	VV 306	W 309
Depth (m)			0.80	1.30	1.80	0.10	0.30	0.50	0.90	0.20	0.40
Envirolab reference											
	=										
% Moisture	1	%									
pH (soil)	Ī				5.99		8.16	8.04		9.63	
pH (leachate)											
Arsenic	i	mg/kg			1		16	10		11	
Cadmium	updated v5.4ei	mg/kg			0.9		5.5	2.2		0.9	i l
Copper		mg/kg			1		80	37		3	1
CrVI or Chromium		mg/kg			11		23	15		6	i l
Lead		mg/kg			6		508	112		20	1
Mercury		mg/kg			0.23		1.09	0.20		1.15	ł
Nickel		mg/kg			16		31	17		4	ł
Selenium		mg/kg			1		2 675	1 179		1	ł
Zinc	updated v5.4ei	mg/kg			12		6/5	179		30	
Barium		mg/kg									1
Beryllium		mg/kg								1	ł
Vanadium Cobalt	updated v5.4ei	mg/kg mg/kg									
Manganese	updated v5.4ei	mg/kg								1	1
Molybdenum	apaula vo.va	mg/kg									i l
Antimony		mg/kg									
Aluminium	1	mg/kg									
Bismuth		mg/kg								1	1
CrIII		mg/kg									i l
Iron	updated v5.4ei	mg/kg									i l
Strontium	I	mg/kg								i l	i
Tellurium Thallium	I	mg/kg mg/kg								i l	i
Titanium	I	mg/kg								i l	i
Tungsten	I	mg/kg									
Ammoniacal N	1	mg/kg									
ws Boron	J	mg/kg									<u> </u>
PAH (Input Total PAH OR individua	al PAH results)									<u></u>	· <u> </u>
Acenaphthene	1	mg/kg			0.01		0.01	0.09		0.01	
Acenaphthylene		mg/kg			0.01		0.01	0.01		0.04	1
Anthracene		mg/kg			0.02		0.05	0.25		0.02	ł
Benzo(a)anthracene		mg/kg			0.04		0.66	1.16		0.08	ł
Benzo(a)pyrene		mg/kg			0.04		0.69	1.00		0.24	1
Benzo(b)fluoranthene		mg/kg			0.05		0.80	1.11		0.25	i l
Benzo(ghi)perylene		mg/kg			0.05		0.50	0.53		0.40	1
Benzo(k)fluoranthene		mg/kg			0.07		0.33	0.46		0.09	1
Chrysene		mg/kg			0.06		0.69	1.16		0.24	1
Dibenzo(ah)anthracene		mg/kg			0.04		0.12	0.14		0.09	i l
Fluoranthene		mg/kg			0.08		0.85	2.64		0.27	1
Fluorene		mg/kg			0.01		0.01	0.07		0.01	i l
Indeno(123cd)pyrene		mg/kg			0.03		0.56	0.65		0.32	1
Naphthalene		mg/kg			0.03		0.03	0.03		0.03	1
Phenanthrene		mg/kg			0.03		0.30	0.94		0.04	1
Pyrene		mg/kg			0.07		0.79	2.20		0.35	
Coronene Total PAHs (16 or 17)		mg/kg									
	J	mg/kg									
TPH	7			1	1			1	1		
Petrol		mg/kg								1	1
Diesel		mg/kg									i l
Lube Oil	1	mg/kg									
Crude Oil]	mg/kg		l	l			·			
White Spirit / Kerosene	1	mg/kg								Ī	
Creosote	1	mg/kg									
Unknown TPH with ID	1	mg/kg			10.0		13.0	10.0		1,100.0	
Unknown TPHCWG	i	mg/kg									
	†			<u> </u>	<u> </u>				I.		
Total Sulphide	1	mg/kg mg/kg	—								
Complex Cyanide Free (or Total) Cyanide	1	mg/kg mg/kg									
Thiocyanate	1	mg/kg									
Elemental/Free Sulphur	1	mg/kg									
Phenois Input Total Phenois HPLC	OR individual	Phenol									
results.											
Phenol	1	mg/kg									
Cresols	I	mg/kg									i
Xylenols	I	mg/kg								i l	i
Resourcinol]	mg/kg									
Phenols Total by HPLC]	mg/kg									
BTEX Input Total BTEX OR individ	ual BTEX result										
Benzene	I	mg/kg								i l	i
Toluene	I	mg/kg								i l	
Ethylbenzene	I	mg/kg								i l	
Xylenes	4	mg/kg									<u> </u>
Total BTEX	J	mg/kg		l	l						
PCBs (POPs)	_										
PCBs Total (eg EC7/WHO12)	1	mg/kg									
PBBs (POPs)	_	-	_								
Hexabromobiphenyl (Total or	1			l	l					ı ı	
PBB153; 2,2',4,4',5,5'- if only	I	mg/kg]		
available)	I	6								i l	i
/	•							•			

515 Stockwood Road 732959

TP/WS/BH Depth (m)

	WS05	WS05	WS05	WS07	WS07	WS07	WS07	WS08	WS09
	0.80	1.30	1.80	0.10	0.30	0.50	0.90	0.20	0.40
eference									

Deptii (iii)			0.00	1.50	1.00	0.10	0.50	0.50	0.50	0.20	0.40
Envirolab reference											
POPs Dioxins and Furans Input T OR individual Dioxin and Furan res											
2,3,7,8-TeCDD		mg/kg									
1,2,3,7,8-PeCDD		mg/kg									
1,2,3,4,7,8-HxCDD		mg/kg									
1,2,3,6,7,8-HxCDD		mg/kg									
1,2,3,7,8,9-HxCDD		mg/kg									
1,2,3,4,6,7,8-HpCDD		mg/kg									
OCDD		mg/kg									
2,3,7,8-TeCDF		mg/kg									
1,2,3,7,8-PeCDF		mg/kg									
2,3,4,7,8-PeCDF		mg/kg									
1,2,3,4,7,8-HxCDF		mg/kg									
1,2,3,6,7,8-HxCDF		mg/kg									
2,3,4,6,7,8-HxCDF		mg/kg									
1,2,3,7,8,9-HxCDF		mg/kg									
1,2,3,4,6,7,8-HpCDF		mg/kg									
1,2,3,4,7,8,9-HpCDF											
OCDF		mg/kg									
		mg/kg									
Total Dioxins and Furans	J	mg/kg									
Some Pesticides (POPs unless of	therwise stated										
Aldrin		mg/kg									
α Hexachlorocyclohexane (alpha-HCH) (leave empty if total HCH		mg/kg									
results used) β Hexachlorocyclohexane (beta- HCH) (leave empty if total HCH		mg/kg									
results used) α Cis-Chlordane (alpha) OR Total											
Chlordane δ Hexachlorocyclohexane (delta-		mg/kg									
HCH) (leave empty if total HCH results used)		mg/kg									
Dieldrin	updated v5.4ei	mg/kg									
Endrin		mg/kg									
χ Hexachlorocyclohexane (gamma- HCH) (lindane) <i>OR Total HCH</i>	updated v5.4ei	mg/kg									
Heptachlor		mg/kg									
Hexachlorobenzene	1	mg/kg									
o,p'-DDT (leave empty if total DDT	1						1				
results used)		mg/kg									
p,p'-DDT <i>OR</i> Total DDT	updated v5.4ei	ma/ka									
χ Trans-Chlordane (gamma)	updated vo.+el	mg/kg									
(leave empty if total Chlordane results used)		mg/kg									
	a 1										
Chlordecone (kepone)		mg/kg									
Pentachlorobenzene		mg/kg									
Mirex		mg/kg									
Toxaphene (camphechlor)		mg/kg									
Tin]										
Tin (leave empty if Organotin and Tin excl Organotin results used)		mg/kg									
Organotin	-										
Dibutyltin; DiBT		mg/kg									
Tributyltin; TriBT		mg/kg									
Triphenyltin; TriPT Tetrabutyltin; TeBT		mg/kg mg/kg									
Tip excluding Organotin	J	g/ng					L				

p,p'-DDT OR Total DDT	updated v5.4ei mg/kg					
χ Trans-Chlordane (gamma)						
(leave empty if total Chlordane	mg/kg					
results used)						
Chlordecone (kepone)	mg/kg					
Pentachlorobenzene	mg/kg					
Mirex	mg/kg					
Mirex Toxaphene (camphechlor)	mg/kg					
Tin						
Tin (leave empty if Organotin and						
Tin excl Organotin results used)	mg/kg					
Organotin			1			
Dibutyltin; DiBT	mg/kg					
Tributyltin; TriBT	mg/kg					
Triphenyltin; TriPT	mg/kg					
Tetrabutyltin; TeBT	mg/kg					
Tin excluding Organotin						
Tin excl Organotin	mg/kg					
		 II.		II.		

515 Stockwood Road 732959

TP/WS/BH Depth (m) Envirolab reference

Asbestos in Soil
Asbestos detected in Soil (enter or N) Thresholds

Asbestos % Composition in Soil (Matrix Loose Fibres or Microscopic Identifiable Pieces see "Carc HP7 % Asbestos in Soil (Fibres)" below only) Carcinogenic HP7 % Asbestos in Soil (fibres or micro pieces)

Asbestos Identifiable Pieces visible with the naked eye detected in the Soil (enter Y or N)	Y
---	---

WS05 0.80	WS05 1.30	WS05 1.80	WS07 0.10	WS07 0.30	WS07 0.50	WS07 0.90	WS08 0.20	WS09 0.40	
N	N		N	N	N	N	N	N	
	Asbestos in Soil above is "Y", the soil is Hazardous Waste HP5 and HP7								
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	
If Asbestos in Soil about	Asbestos in Soil above is "Y", but Asbestos % above is "<0.1%", the soil is Non Hazardous Waste. You can only use Asbestos % results where loose fibres or micro pieces are only present. You cannot use Asbestos % results when visual identifiable pieces are present.								

If visual identifiable pieces of asbestos are present, you cannot use Asbestos % results and the whole soil sample is Hazardous Waste HP5 and HP7 Construction material containing Asbestos 17 06 05.

Therefore, if Asbestos in Soil above is "Y", the Asbestos % above is "<0.1%", but the Asbestos Identifiable Pieces visible with the naked eye is "Y", the soil is Hazardous Waste.

Identifiable Pieces are Cement, Fragments, Board, Rope etc. ie anything ACM that is not Loose Fibres.

All visual asbestos pieces need to be removed leaving only fibres (or micro pieces) with an Asbestos % Composition in Soil result of <0.1% for the soil to become non-hazardous waste.

Hazardous Property	Thresholds	Cut Off Value									
Corrosive HP8	≥5%	<1%	0.00000	0.00000	0.00224	0.00000	0.00653	0.00420	0.00000	0.00260	0.00000
Irritant HP4	≥10%	<1%	0.00000	0.00000	0.00025	0.00000	0.01115	0.00550	0.00000	0.00179	0.00000
Irritant HP4	≥20%	<1%	0.00000	0.00000	0.00336	0.00000	0.01542	0.00796	0.00000	0.00119	0.00000
Specifc Target Organ Toxicity HP5	≥1%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Specifc Target Organ Toxicity HP5	≥20%		0.00000	0.00000	0.00000	0.00000	0.00003	0.00009	0.00000	0.00000	0.00000
Specifc Target Organ Toxicity HP5	≥1%		0.00000	0.00000	0.00323	0.00000	0.00626	0.00343	0.00000	0.00115	0.00000
Specifc Target Organ Toxicity HP5	≥10%		0.00000	0.00000	0.00100	0.00000	0.05080	0.01120	0.00000	0.11000	0.00000
Aspiration Toxicity HP5	≥10%		0.00000	0.00000	0.00100	0.00000	0.00130	0.00100	0.00000	0.11000	0.00000
Acute Toxicity HP6	≥0.1%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥0.25%	<0.1%	0.00000	0.00000	0.00016	0.00000	0.00222	0.00134	0.00000	0.00157	0.00000
Acute Toxicity HP6	≥5%	<0.1%	0.00000	0.00000	0.00225	0.00000	0.00470	0.00302	0.00000	0.00129	0.00000
Acute Toxicity HP6	≥0.25%	<1% <0.1%	0.00000	0.00000	0.00405 0.00002	0.00000	0.06677 0.00011	0.01940 0.00002	0.00000	0.00328 0.00012	0.00000
Acute Toxicity HP6 Acute Toxicity HP6	>2 5%	<0.1%	0.00000	0.00000	0.00002	0.00000	0.00442	0.00002	0.00000	0.00012	0.00000
Acute Toxicity HP6	>15%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥55%	<1%	0.00000	0.00000	0.00009	0.00000	0.00055	0.00022	0.00000	0.00009	0.00000
Acute Toxicity HP6	≥0.1%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥0.5%	<0.1%	0.00000	0.00000	0.00223	0.00000	0.00508	0.00312	0.00000	0.00136	0.00000
Acute Toxicity HP6	≥3.5%	<0.1%	0.00000	0.00000	0.00014	0.00000	0.00028	0.00014	0.00000	0.00014	0.00000
Acute Toxicity HP6	≥22.5%	<1%	0.00000	0.00000	0.00395	0.00000	0.06610	0.01882	0.00000	0.00315	0.00000
Carcinogenic HP7	≥0.1%		0.00000	0.00000	0.00323	0.00000	0.05080	0.01120	0.00000	0.00200	0.00000
Carcinogenic HP7	≥0.1%		0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
Carcinogenic HP7	≥1%		0.00000	0.00000	0.00000	0.00000	0.00006	0.00007	0.00000	0.00003	0.00000
Carcinogenic HP7 Unknown TPH with ID	≥1,000mg/kg		0.00	0.00	10.00	0.00	13.00	10.00	0.00	1100.00	0.00
Carcinogenic HP7 b(a)p marker test (Unknown TPH with ID only)	≥0.01%		#DIV/0!	#DIV/0!	0.40000	#DIV/0!	5.30769	10.00000	#DIV/0!	0.02182	#DIV/0!
pH Corrosive HP8 pH (soil or leachate)	H8 ≥11.5		0.00	0.00	5.99	0.00	8.16	8.04	0.00	9.63	0.00
pH Corrosive HP8 pH (soil or leachate)	H8 ≤2		0.00	0.00	5.99	0.00	8.16	8.04	0.00	9.63	0.00
Toxic for Reproduction HP10	≥0.3%		0.00000	0.00000	0.00323	0.00000	0.05080 0.00442	0.01120 0.00288	0.00000	0.00200	0.00000
Toxic for Reproduction HP10	23%		0.00000 0.00000	0.00000	0.00211 0.00211	0.00000	0.00442	0.00288	0.00000	0.11000 0.00115	0.00000
Mutagenic HP11 Mutagenic HP11 Unknown TPH with ID	≥1,000mg/kg		0.00	0.00	10.00	0.00	13.00	10.00	0.00	1100.00	0.00
Mutagenic HP11 b(a)p marker test (Unknown TPH with ID only)	≥0.01%		#DIV/0!	#DIV/0!	0.40000	#DIV/0!	5.30769	10.00000	#DIV/0!	0.02182	#DIV/0!
Mutagenic HP11	≥1%		0.00000	0.00000	0.00323	0.00000	0.00626	0.00343	0.00000	0.00081	0.00000
Produces Toxic Gases HP12 Sulphide	≥1,400mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Produces Toxic Gases HP12 Cyanide	≥1,200mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Produces Toxic Gases HP12 Thiocyanate	≥2,600mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HP13 Sensitising	≥10%		0.00000	0.00000	0.00323	0.00000	0.00626	0.00343	0.00000	0.00115	0.00000
Ecotoxic HP14	≥1.0	<0.1% (except CompCN + Thiocyanate + Xylene + BTEX 1%).	0.00000	0.00000	0.03240	0.00000	0.63452	0.18782	0.00000	0.08422	0.00000
Ecotoxic HP14	≥25%	<0.1%	0.00000	0.00000	0.00800	0.00000	0.15853	0.04695	0.00000	0.01006	0.00000
Ecotoxic HP14	≥25%	<0.1% (except CompCN + Thiocyanate + Xylene + BTEX 1%).	0.00000	0.00000	0.00900	0.00000	0.15980	0.04786	0.00000	0.12006	0.0000

Haswaste, developed by Dr. lain Haslock

515 Stockwood Road 732959

13233

TP/WS/BH Depth (m) Envirolab reference

Ecotoxic HP14 individual substance specific thresholds (Benzo(a)anthracene, Dibenz(ah)anthracene (or Total PAH if only used), Sn, TrIPT)	≥0.0025%
Ecotoxic HP14 individual substance specific thresholds (Co, y-HCH, DiBT, TriBT)	≥0.025%
Persistent Organic Pollutant (PCB, PBB or POP Pesticides)	>0.005%
Persistent Organic Pollutant (Total Dioxins+Furans)	>0.0000015%
Persistent Organic Pollutant (Individual Dioxins+Furans)	>0.0000015%

WS05	WS05	WS05	WS07	WS07	WS07	WS07	WS08	WS09
0.80	1.30	1.80	0.10	0.30	0.50	0.90	0.20	0.40
0.00000	0.000000	0.000004	0.000000	0.000066	0.000116	0.000000	0.000009	0.000000
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000

515 Stockwood Road 732959

% Moisture

TP/WS/BH
Depth (m)
Envirolab reference

pH (soil)	Ī
pH (leachate)	
Arsenic	
Cadmium	updated v5.4ei
Copper	
CrVI or Chromium	
Lead	
Mercury	
Nickel	
Selenium	
Zinc	updated v5.4ei
Barium	
Beryllium	
Vanadium	
Cobalt	updated v5.4ei
Manganese	updated v5.4ei
Molybdenum	
Antimony Aluminium	
Bismuth	
CrIII	
Iron	updated v5.4ei
Strontium	upuateu vo.+ei
Tellurium	
Thallium	
Titanium	
Tungsten	
Ammoniacal N	1
ws Boron	
PAH (Input Total PAH OR individua	Il PAH results)
Acenaphthene]
Acenaphthylene	
Anthracene	
Benzo(a)anthracene	
DC1120(a)a11111a0e11e	ĺ

elenium		mg/kg
inc	updated v5.4ei	mg/kg
arium	Ī	mg/kg
eryllium		mg/kg
'anadium		mg/kg
Cobalt	updated v5.4ei	mg/kg
Manganese	updated v5.4ei	mg/kg
folybdenum		mg/kg
intimony		mg/kg
Juminium		mg/kg
ismuth		mg/kg
rIII		mg/kg
on	updated v5.4ei	mg/kg
trontium		mg/kg
ellurium		mg/kg
hallium		mg/kg
itanium		mg/kg
ungsten		mg/kg
mmoniacal N		mg/kg
rs Boron		mg/kg
AH (Input Total PAH OR individua	l PAH results)	
cenaphthene	1	mg/kg
cenaphthylene		mg/kg

()	0 0	
Benzo(a)pyrene	mg/kg	
Benzo(b)fluoranthene	mg/kg	
Benzo(ghi)perylene	mg/kg	
Benzo(k)fluoranthene	mg/kg	
Chrysene	mg/kg	
Dibenzo(ah)anthracene	mg/kg	
Fluoranthene	mg/kg	
Fluorene	mg/kg	
Indeno(123cd)pyrene	mg/kg	
Naphthalene	mg/kg	
Phenanthrene	mg/kg	
Pyrene	mg/kg	
Coronene	mg/kg	
Total PAHs (16 or 17)	mg/kg	
ТРН		
Petrol	mg/kg	
Diesel	mg/kg	
Lube Oil	mg/kg	
Crude Oil	mg/kg	
White Spirit / Kerosene	mg/kg	
Creosote	mg/kg	
Unknown TPH with ID	mg/kg	
Unknown TPHCWG	mg/kg	
Total Sulphide	mg/kg	
Complex Cyanide	mg/kg	
Free (or Total) Cyanide	mg/kg	
Thiocyanate	mg/kg	
Elemental/Free Sulphur	mg/kg	
Phenois Input Total Phenois HPLC	OR individual Phenol	
results.	•	
Phenol	mg/kg	

Phenol	mg/kg
Cresols	mg/kg
Xylenols	mg/kg
Resourcinol	mg/kg
Phenois Total by HPLC	mg/kg
BTEX Input Total BTEX OR individ	ual BTEX results.
Benzene	mg/kg
Toluene	mg/kg
Ethylbenzene	mg/kg

PCBs (POPs)	
PCBs Total (eg EC7/WHO12)	
PBBs (POPs)	
Hexabromobiphenyl (Total or	
PBB153; 2,2',4,4',5,5'- if only	
available)	

WS09 0.80	WS10 0.20	WS10 0.40	WS10 0.80	WS11 0.20	WS11 0.40	WS12 0.20	WS12 0.60	WS12 1.30
6.76			7.47					7.34
2			1					1
3.5 17			4.5 5					2.7
19 14			16 56					21 8
0.17 9			0.17					0.17 17
3 20			2 40					3 21
0.01			0.01		I			0.03
0.01 0.01 0.02			0.01 0.01 0.02					0.03 0.01 0.02
0.04			0.04					0.04
0.04 0.05			0.04 0.05					0.04 0.05
0.05 0.07			0.05 0.07					0.05 0.07
0.06 0.04			0.06 0.04					0.06 0.04
0.08 0.01			0.08 0.01					0.08 0.13
0.03			0.03					0.03
0.03			0.03					0.03
0.07			0.07					0.07
ļ								
i								125.0
							1	
10.0			10.0					
								101.0
<u>"</u>					·		•	
Г					T .		I	
ıl			I				1	l

WS12

515 Stockwood Road 732959

TP/WS/BH	WS09	WS10	WS10	WS10	WS11	WS11	WS12	
Depth (m)	0.80	0.20	0.40	0.80	0.20	0.40	0.20	
Envirolab reference								
				•	•	•		_

Depth (m)		0.80	0.20	0.40	0.80	0.20	0.40	0.20	0.60	1.30
Envirolab reference										
POPs Dioxins and Furans Input To										
OR individual Dioxin and Furan res			1		1	1	1	1	1	1
2,3,7,8-TeCDD	mg/kg									
1,2,3,7,8-PeCDD	mg/kg									
1,2,3,4,7,8-HxCDD	mg/kg									
1,2,3,6,7,8-HxCDD	mg/kg									
1,2,3,7,8,9-HxCDD	mg/kg									
1,2,3,4,6,7,8-HpCDD	mg/kg									
OCDD	mg/kg									
2,3,7,8-TeCDF	mg/kg									
1,2,3,7,8-PeCDF	mg/kg									
2,3,4,7,8-PeCDF	mg/kg									
1,2,3,4,7,8-HxCDF	mg/kg									
1,2,3,6,7,8-HxCDF	mg/kg									
2,3,4,6,7,8-HxCDF	mg/kg									
1,2,3,7,8,9-HxCDF	mg/kg									
1,2,3,4,6,7,8-HpCDF	mg/kg									
1,2,3,4,7,8,9-HpCDF	mg/kg									
OCDF	mg/kg									
Total Dioxins and Furans	mg/kg									
Some Pesticides (POPs unless of	therwise stated)									
Aldrin	mg/kg									
α Hexachlorocyclohexane (alpha-	1									
HCH) (leave empty if total HCH	mg/kg									
results used)										
β Hexachlorocyclohexane (beta-										
HCH) (leave empty if total HCH	mg/kg									
results used)										
α Cis-Chlordane (alpha) <i>OR Total Chlordane</i>	mg/kg									
δ Hexachlorocyclohexane (delta- HCH) (leave empty if total HCH	mg/kg									
results used)	_									
Dieldrin	updated v5.4ei mg/kg									
Endrin	mg/kg									
χ Hexachlorocyclohexane (gamma- HCH) (lindane) <i>OR Total HCH</i>	updated v5.4ei mg/kg									
Heptachlor	mg/kg									
Hexachlorobenzene	mg/kg									
o,p'-DDT (leave empty if total DDT										
results used)	mg/kg									
p,p'-DDT OR Total DDT	updated v5.4ei mg/kg									
χ Trans-Chlordane (gamma)										
(leave empty if total Chlordane	mg/kg	1								
results used)										
Chlordecone (kepone)	mg/kg									
Pentachlorobenzene	mg/kg									
Mirex	mg/kg									
Toxaphene (camphechlor)	mg/kg									
	I mg/kg	L	1	1	l	l	I	l	l	l
Tin	1				1	1	1	1	1	1
Tin (leave empty if Organotin and Tin excl Organotin results used)	mg/kg									
Organotin	1				1	1	l	1	1	1
	_									
Dibutyltin; DiBT	mg/kg		-	-						
Tributyltin; TriBT	mg/kg									
IT I I I TIPT		1	1	1	I .	I .	1	I .	1	1

. IOAGOIIIOI ODOI IZOI IO	55							
o,p'-DDT (leave empty if total DDT	mg/kg							
results used)								
p,p'-DDT OR Total DDT	updated v5.4ei mg/kg							
χ Trans-Chlordane (gamma)								ı
(leave empty if total Chlordane	mg/kg							1
results used)								
Chlordecone (kepone)	mg/kg							
Pentachlorobenzene	mg/kg							
Mirex	mg/kg							
Toxaphene (camphechlor)	mg/kg							
<u>Tin</u>	-	 						
Tin (leave empty if Organotin and								
Tin excl Organotin results used)	mg/kg							ı
		1	1					
Organotin	1			1	1	I	1	
Dibutyltin; DiBT	mg/kg							
Tributyltin; TriBT	mg/kg							
Triphenyltin; TriPT	mg/kg							
Tetrabutyltin; TeBT	mg/kg							
Tin excluding Organotin		•	•			l .	,	
Tin excl Organotin	mg/kg							
	•	•	•	•	•			

515 Stockwood Road 732959

TP/WS/BH Depth (m) Envirolab reference

Asbestos in Soil
Asbestos detected in Soil (enter or N) Thresholds Asbestos % Composition in Soil (Matrix Loose Fibres or Microscopic Identifiable Pieces see "Carc HP7 % Asbestos in Soil (Fibres)" below only) Carcinogenic HP7 % Asbestos in Soil (fibres or micro pieces)

Asbestos Identifiable Pieces	
visible with the naked eye	Υ
detected in the Soil (enter Y or N)	
, , ,	

WS09	WS10	WS10	WS10	WS11	WS11	WS12	WS12	WS12
0.80	0.20	0.40	0.80	0.20	0.40	0.20	0.60	1.30
	N	N		N	N	N	N	N
		A	sbestos in Soil above is	"Y", the soil is Hazardo	ous Waste HP5 and HF	7		
0.0000	0.00000	0.0000	0.00000	0.00000	0.00000	0.00000	0.0000	0.00000
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
If Asbestos in Soil above	ve is "Y", but Asbestos	% above is "<0.1%", the	e soil is Non Hazardous			where loose fibres or n	nicro pieces are only pre	esent. You cannot use
			Asbestos % results	when visual identifiable	pieces are present.			

If visual identifiable pieces of asbestos are present, you cannot use Asbestos % results and the whole soil sample is Hazardous Waste HP5 and HP7 Construction material containing Asbestos 17 06 05.

Therefore, if Asbestos in Soil above is "Y", the Asbestos % above is "<0.1%", but the Asbestos Identifiable Pieces visible with the naked eye is "Y", the soil is Hazardous Waste.

Identifiable Pieces are Cement, Fragments, Board, Rope etc. ie anything ACM that is not Loose Fibres.

All visual asbestos pieces need to be removed leaving only fibres (or micro pieces) with an Asbestos % Composition in Soil result of <0.1% for the soil to become non-hazardous waste.

Hazardous Property	Thresholds	Cut Off Value									
Corrosive HP8	>5%	<1%	0.00391	0.00000	0.00000	0.00320	0.00000	0.00000	0.00000	0.00000	0.00416
Irritant HP4	≥10%	<1%	0.00219	0.00000	0.00000	0.00070	0.00000	0.00000	0.00000	0.00000	0.00025
Irritant HP4	≥20%	<1%	0.00375	0.00000	0.00000	0.00321	0.00000	0.00000	0.00000	0.00000	0.01608
Specifc Target Organ Toxicity HP5	≥1%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Specifc Target Organ Toxicity HP5	≥20%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00002
Specifc Target Organ Toxicity HP5	≥1%		0.00365	0.00000	0.00000	0.00307	0.00000	0.00000	0.00000	0.00000	0.00403
Specifc Target Organ Toxicity HP5	≥10%		0.00140	0.00000	0.00000	0.00560	0.00000	0.00000	0.00000	0.00000	0.01250
Aspiration Toxicity HP5	≥10%		0.00100	0.00000	0.00000	0.00100	0.00000	0.00000	0.00000	0.00000	0.02260
Acute Toxicity HP6	≥0.1%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥0.25%	<0.1%	0.00028	0.00000	0.00000	0.00015	0.00000	0.00000	0.00000	0.00000	0.00015
Acute Toxicity HP6	≥5%	<0.1%	0.00407	0.00000	0.00000	0.00335	0.00000	0.00000	0.00000	0.00000	0.00446
Acute Toxicity HP6	≥25%	<1%	0.00550	0.00000	0.00000	0.00926	0.00000	0.00000	0.00000	0.00000	0.00465
Acute Toxicity HP6	≥0.25%	<0.1%	0.00002	0.00000	0.00000	0.00002	0.00000	0.00000	0.00000	0.00000	0.00002
Acute Toxicity HP6	≥2.5%	<0.1%	0.00365	0.00000	0.00000	0.00307	0.00000	0.00000	0.00000	0.00000	0.00403
Acute Toxicity HP6	≥15%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥55%	<1%	0.00035	0.00000	0.00000	0.00045	0.00000	0.00000	0.00000	0.00000	0.00027
Acute Toxicity HP6	≥0.1%	<0.1%	0.00000	0.00000	0.00000	0.00000 0.00354	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	≥0.5%	<0.1%	0.00402	0.00000	0.00000		0.00000	0.00000	0.00000	0.00000	0.00432
Acute Toxicity HP6	≥3.5% ≥22.5%	<0.1%	0.00042 0.00514	0.00000	0.00000 0.00000	0.00028 0.00879	0.00000 0.00000	0.00000	0.00000	0.00000	0.00042 0.01685
Acute Toxicity HP6	≥22.5%	<1%	0.00514	0.00000	0.00000	0.00879	0.00000	0.00000	0.00000	0.00000	0.01685
Carcinogenic HP7	≥0.1%		0.00000000	0.000000	0.000000	0.00000000	0.000000	0.000000	0.000000	0.000000	0.00000000
Carcinogenic HP7	≥0.1%	-	0.00000	0.00000	0.00000	0.00000	0.00000	0.0000	0.00000	0.00000	0.00000000
Carcinogenic HP7 Carcinogenic HP7 Unknown TPH with ID	≥1,000mg/kg		10.00	0.00	0.00	10.00	0.00	0.00	0.00	0.00	0.00
Carcinogenic HP7 b(a)p marker test (Unknown TPH with ID only)	≥0.01%		0.40000	#DIV/0!	#DIV/0!	0.40000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
pH Corrosive HP8 pH (soil or leachate)	H8 ≥11.5		6.76	0.00	0.00	7.47	0.00	0.00	0.00	0.00	7.34
pH Corrosive HP8 pH (soil or leachate)	H8 ≤2		6.76	0.00	0.00	7.47	0.00	0.00	0.00	0.00	7.34
Toxic for Reproduction HP10	≥0.3%		0.00182	0.00000	0.00000	0.00560	0.00000	0.00000	0.00000	0.00000	0.00343
Toxic for Reproduction HP10	≥3%		0.00365	0.00000	0.00000	0.00307	0.00000	0.00000	0.00000	0.00000	0.01010
Mutagenic HP11	≥0.1%		0.00365	0.00000	0.00000	0.00307	0.00000	0.00000	0.00000	0.00000	0.01010
Mutagenic HP11 Unknown TPH with ID	≥1,000mg/kg		10.00	0.00	0.00	10.00	0.00	0.00	0.00	0.00	0.00
Mutagenic HP11 b(a)p marker test (Unknown TPH with ID only)	≥0.01%		0.40000	#DIV/0!	#DIV/0!	0.40000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Mutagenic HP11	≥1%		0.00182	0.00000	0.00000	0.00263	0.00000	0.00000	0.00000	0.00000	0.00343
Produces Toxic Gases HP12 Sulphide	≥1,400mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Produces Toxic Gases HP12 Cyanide	≥1,200mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Produces Toxic Gases HP12 Thiocyanate	≥2,600mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
HP13 Sensitising	≥10%	1	0.00365	0.00000	0.00000	0.00307	0.00000	0.00000	0.00000	0.00000	0.00403
Ecotoxic HP14	≥1.0	<0.1% (except CompCN + Thiocyanate + Xylene + BTEX 1%).	0.04999	0.0000	0.00000	0.07160	0.00000	0.0000	0.0000	0.00000	0.05671
Ecotoxic HP14	≥25%	<0.1%	0.01240	0.00000	0.00000	0.01780	0.00000	0.00000	0.00000	0.00000	0.01194
Ecotoxic HP14	≥25%	<0.1% (except CompCN + Thiocyanate + Xylene + BTEX 1%).	0.01340	0.00000	0.00000	0.01880	0.00000	0.00000	0.00000	0.00000	0.03452
			<u> </u>		1	1					

515 Stockwood Road 732959

TP/WS/BH Depth (m) Envirolab reference

Ecotoxic HP14 individual substance specific thresholds (Benzo(a)anthracene, Dibenz(ah)anthracene (or Total PAH if only used), Sn, TriPT)	≥0.0025%
Ecotoxic HP14 individual substance specific thresholds (Co, γ-HCH, DiBT, TriBT)	≥0.025%
Persistent Organic Pollutant (PCB, PBB or POP Pesticides)	>0.005%
Persistent Organic Pollutant (Total Dioxins+Furans)	>0.000015%
Persistent Organic Pollutant (Individual Dioxins+Furans)	>0.0000015%

WS09 0.80	WS10 0.20	WS10 0.40	WS10 0.80	WS11 0.20	WS11 0.40	WS12 0.20	WS12 0.60	WS12 1.30
0.00004	0.000000	0.000000	0.000004	0.000000	0.000000	0.000000	0.000000	0.000004
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000
0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.0000000000	0.000000000	0.000000000	0.0000000000

Haswaste, developed by Dr. lain Haslock.

515 Stockwood Roa	ad
732959	

732959									
TP/WS/BH			WS12	WS11 - Tile					
Depth (m)			1.80	0.40					
Envirolab reference			1.60	0.40					
Environa reference									
% Moisture		%							
pH (soil)									
pH (leachate)									
Arsenic Cadmium	updated v5.4ei	mg/kg mg/kg							
Copper	.,	mg/kg							
CrVI or Chromium Lead		mg/kg mg/kg							
Mercury		mg/kg							
Nickel Selenium		mg/kg							
Zinc	updated v5.4ei	mg/kg mg/kg							
Barium		mg/kg							
Beryllium Vanadium		mg/kg mg/kg							
Cobalt	updated v5.4ei	mg/kg							
Manganese	updated v5.4ei	mg/kg							
Molybdenum Antimony		mg/kg mg/kg							
Aluminium		mg/kg							
Bismuth CrIII		mg/kg mg/kg				1			
Iron	updated v5.4ei	mg/kg				1			
Strontium Tellurium		mg/kg mg/kg				1			
Thallium		mg/kg mg/kg				1			
Titanium		mg/kg							
Tungsten Ammoniacal N		mg/kg mg/kg							
ws Boron		mg/kg							
PAH (Input Total PAH OR individua	I PAH results)								
Acenaphthene Acenaphthylene		mg/kg mg/kg							
Anthracene		mg/kg							
Benzo(a)anthracene		mg/kg							
Benzo(a)pyrene		mg/kg							
Benzo(b)fluoranthene Benzo(ghi)perylene		mg/kg mg/kg							
Benzo(k)fluoranthene		mg/kg							
Chrysene		mg/kg							
Dibenzo(ah)anthracene Fluoranthene		mg/kg mg/kg							
Fluorene		mg/kg							
Indeno(123cd)pyrene		mg/kg							
Naphthalene Phenanthrene		mg/kg mg/kg							
Pyrene		mg/kg							
Coronene		mg/kg							
Total PAHs (16 or 17)		mg/kg							
TPH Petrol		mg/kg							
Diesel		mg/kg							
Lube Oil		mg/kg							
Crude Oil		mg/kg							
White Spirit / Kerosene		mg/kg							
Creosote Unknown TPH with ID		mg/kg mg/kg				 			
Unknown TPHCWG		mg/kg	0.1			<u> </u>			
Total Sulphide		mg/kg	J			i İ			
Complex Cyanide		mg/kg							
Free (or Total) Cyanide Thiocyanate		mg/kg mg/kg							
Elemental/Free Sulphur		mg/kg							
Phenols Input Total Phenols HPLC	OR individual I	Phenol							
results. Phenol	Ì	mg/kg			ı	1	ı	1	
Cresols		mg/kg							
Xylenols		mg/kg							
Resourcinol Phenols Total by HPLC		mg/kg mg/kg				1			1
BTEX Input Total BTEX OR individu	ı ual BTEX result	S.			I.	1	I.		
Benzene		mg/kg							
Toluene		mg/kg				1			
Ethylbenzene Xylenes		mg/kg mg/kg				1			
Total BTEX		mg/kg						 	
PCBs (POPs)	-								
PCBs Total (eg EC7/WHO12)		mg/kg							
PBBs (POPs)	Ì				Т	1	Т		
Hexabromobiphenyl (Total or PBB153; 2,2',4,4',5,5'- if only		mg/kg				1			
available)]			

515 Stockwood Road 732959

TP/WS/BH Depth (m) Envirolab reference

WS12 WS11	Tile			
1.80 0.4				

POPs Dioxins and Furans Input Total Dioxins and Furans OR individual Dioxin and Furan results. 2,3,7,8-TeCDD mg/kg OH individual Dioxin and F 2.3.7,8-TeCDD 1,2,3.47,8-HxCDD 1,2,3.47,8-HxCDD 1,2,3.46,7.8-HpCDD 0CDD 1,2,3.46,7.8-HpCDD 0CDD 2,3.7,8-TeCDF 1,2,3.47,8-PeCDF 2,3.4,7.8-PeCDF 1,2,3.47,8-HxCDF 1,2,3.47,8-HxCDF 1,2,3.46,7.8-HxCDF 1,2,3.46,7.8-HxCDF 1,2,3.47,8-9-HpCDF 1,2,3.47,8-9-HpCDF 1,2,3.47,8-9-HpCDF 1,2,3.47,8-9-HpCDF 1,2,3.47,8-9-HpCDF 1,2,3.47,8-9-HpCDF 1,2,3.47,8-9-HpCDF 1,2,3.47,8-9-HpCDF 1,2,3.47,8-9-HpCDF 1,2,3.47,8-9-HpCDF mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

s					
))					
))					
))					
))					
)]]					
,]]					

Some Pesticides (POPs unless of	herwise stated	i)						
Aldrin		mg/kg						
α Hexachlorocyclohexane (alpha-								
HCH) (leave empty if total HCH		mg/kg						
results used)								
β Hexachlorocyclohexane (beta-								
HCH) (leave empty if total HCH results used)		mg/kg						
α Cis-Chlordane (alpha) OR Total								
Chlordane		mg/kg						
δ Hexachlorocyclohexane (delta-								
HCH) (leave empty if total HCH		mg/kg						
results used)								
Dieldrin	updated v5.4ei	mg/kg						
Endrin		mg/kg						
χ Hexachlorocyclohexane (gamma-								
HCH) (lindane) OR Total HCH	updated v5.4ei	mg/kg						
Heptachlor		mg/kg						
Hexachlorobenzene		mg/kg						
o,p'-DDT (leave empty if total DDT								
results used)		mg/kg						
p,p'-DDT OR Total DDT	updated v5.4ei	mg/kg						
χ Trans-Chlordane (gamma)	-							
(leave empty if total Chlordane		mg/kg						
results used)								
Chlordecone (kepone)		mg/kg						
Pentachlorobenzene		mg/kg						
Mirex		mg/kg						
Toxaphene (camphechlor)		mg/kg						
Tin								
Tin (leave empty if Organotin and								
Tin excl Organotin results used)		mg/kg						
Organotin	1			1	1	ı	1	Т
Dibutyltin; DiBT		mg/kg						
Tributyltin; TriBT		mg/kg						
Triphenyltin; TriPT		mg/kg						
Tetrabutyltin; TeBT		mg/kg						
Tin excluding Organotin	ı			•	•		•	
Tin excl Organotin		mg/kg						
Till CAGE Grigarionis		mg/kg						

515 Stockwood Road 732959

TP/WS/BH Depth (m) Envirolab reference

Asbestos in Soil
Asbestos detected in Soil (enter or N) Thresholds

Asbestos % Composition in Soil (Matrix Loose Fibres or Microscopic Identifiable Pieces see "Carc HP7 % Asbestos ir Soil (Fibres)" below only) Carcinogenic HP7 % Asbestos in Soil (fibres or micro pieces)

Asbestos Identifiable Pieces visible with the naked eye detected in the Soil (enter Y or N)

WS12	WS11 - Tile							
1.80	0.40							
		T	T	T		T		,
		I	sbestos in Soil above is	"Y", the soil is Hazardo	ous Waste HP5 and HF	7		l
				,				
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
If Asbestos in Soil abo	ve is "Y", but Asbestos	% above is "<0.1%", the	e soil is Non Hazardous	Waste. You can only	use Asbestos % results	where loose fibres or n	nicro pieces are only pr	esent. You cannot use
			Asbestos % results	when visual identifiable	pieces are present.			
	Y							
	·							

If visual identifiable pieces of asbestos are present, you cannot use Asbestos % results and the whole soil sample is Hazardous Waste HP5 and HP7 Construction material containing Asbestos 17 06 05.

Therefore, if Asbestos in Soil above is "Y", the Asbestos % above is "<0.1%", but the Asbestos Identifiable Pieces visible with the naked eye is "\", the soil is Hazardous Waste.

Identifiable Pieces are Cement, Fragments, Board, Rope etc. ie anything ACM that is not Loose Fibres.

All visual asbestos pieces need to be removed leaving only fibres (or micro pieces) with an Asbestos % Composition in Soil result of <0.1% for the soil to become non-hazardous waste.

	Hazardous Property	Thresholds	Cut Off Value									
	Corrosive HP8	≥5%	<1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Email HP4		≥10%										0.00000
Specify Target Organ Toxicity HPS 21% C000000 C00000 C00000 C00000 C00000 C000000 C000000		≥20%										0.00000
Specific Target Organ Toxicity HPS 215% 215% 2.000000 0.		≥1%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Special Transich HPS	Specifc Target Organ Toxicity HP5	≥20%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HPS	Specifc Target Organ Toxicity HP5	≥1%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6	Specifc Target Organ Toxicity HP5	≥10%		0.00001	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Acute Toxicity HP6												0.00000
Acute Toxicity HPS												0.00000
Acute Toxicity HPS												
Acute Toxicity HP6												
Acute Toxichy HPB												
Control First Fi												
Acute Toxicity HP6		≥2.5% >150/										
Acute Toxicity HP6		>55%										
Acute Toxicity HP6		≥0.1%										0.00000
Acute Toxicity HP6												0.00000
Acute Toxicity HP6												0.00000
Carcinogenic HP7												0.00000
Carcinogenic HP7 201% Carcinogenic HP7 201% Carcinogenic HP7 (Juhnown TPH with Driving marker test (Juhnown TPH with Driving) Carcinogenic HP7 (Juhn		≥0.1%					0.00000		0.00000		0.00000	0.00000
Carcinogenic HP7 Unknown TPH 21,000mg/kg 10,000mg/kg 20,000 0.	Carcinogenic HP7	≥0.1%		0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
Cardinogenic HP7 bidgo marker test (Unknown TP4 with ID only) FDIV/01		≥1%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Control Cont		≥1,000mg/kg		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
leachate	(Unknown TPH with ID only)	≥0.01%		#DIV/0!								
Seachate	leachate)	H8 ≥11.5		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Coxic for Reproduction HP10 2-9% 0.00001 0.00000	leachate)											
Mutagenic HP11 Mutagenic HP11 Unknown TPH Unknown TPH Mutagenic HP11 Unknown TPH		≥0.3%										
Mutagenic HP11 Unknown TPH with ID		≥3%										
With D		≥0.1%		0.00001	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Mutagenic HP11 ≥1% 1.000000 0.00000	with ID	≥1,000mg/kg		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Mutagenic HP11 ≥1% Produces Toxic Gases HP12 Sulphide ≥1,400mg/kg Produces Toxic Gases HP12 Cyanide ≥1,200mg/kg Produces Toxic Gases HP12 Thiocyanate ≥2,600mg/kg HP13 Sensitising ≥10% CompCN + Thiocyanate		≥0.01%		#DIV/0!								
Produces Toxic Gases HP12		≥1%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Cyanide 21,200m/kg 0.0	Produces Toxic Gases HP12	≥1,400mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Thiocyanate HP13 Sensitising ≥1.0 CompCN+ STEX 1%). STEX 1		≥1,200mg/kg		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ecotoxic HP14 ≥1.0 CompCN + Thiocyanate + Xylene + BTEX 1%). CompCN + BTEX 1%). CompCN + Comp												
Ecotoxic HP14 ≥1.0 CompCN + Thiocyanate + Xylene + BTEX 1%). 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000	HP13 Sensitising	≥10%		0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Ecotoxic HP14 ≥25% <0.1% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Ecotoxic HP14	≥1.0	(except CompCN + Thiocyanate + Xylene +	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
	Ecotoxic HP14	≥25%	<0.1%	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
Ecotoxic HP14	Ecotoxic HP14	≥25%	(except CompCN + Thiocyanate + Xylene +	0.00001	0.00000	0.00000	0.00000	0.0000	0.0000	0.0000	0.0000	0.00000

515 Stockwood Road 732959

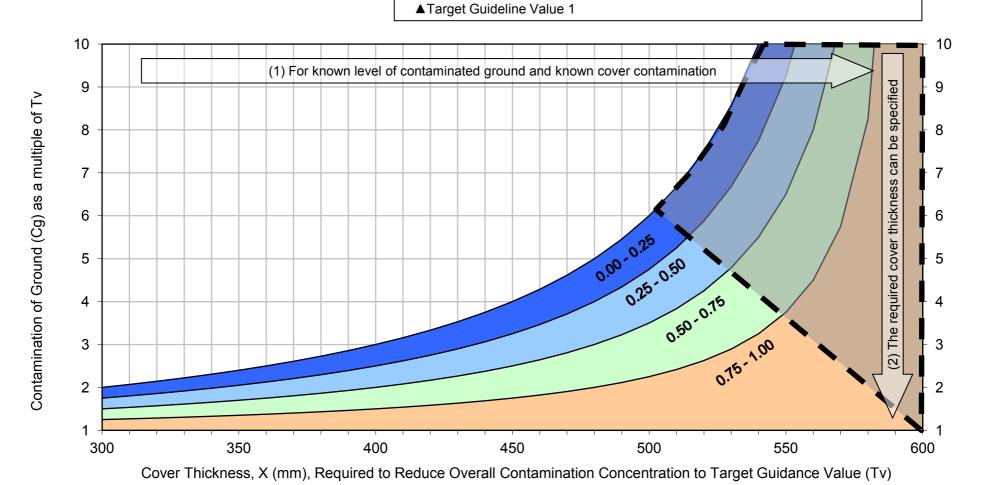
TP/WS/BH Depth (m) Envirolab reference

Ecotoxic HP14 individual substance specific thresholds (Benzo(a)anthracene, Dibenz(ah)anthracene (or Total PAH if only used), Sn, TriPT)	≥0.0025%
Ecotoxic HP14 individual substance specific thresholds (Co, y-HCH, DiBT, TriBT)	≥0.025%
Persistent Organic Pollutant (PCB, PBB or POP Pesticides)	>0.005%
Persistent Organic Pollutant (Total Dioxins+Furans)	>0.0000015%
Persistent Organic Pollutant (Individual Dioxins+Furans)	>0.0000015%

WS12 1.80	WS11 - Tile 0.40							
0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000
0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000
0.0000000000	0.0000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000
0.0000000000	0.0000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.000000000	0.0000000000

CALCULATION OF CLEAN COVER DEPTH (From BRE report BR 465)

Site: 515 Stockwood Road, Brislington


Ref: 732959 Date: 25/08/2017

Calculations based on mixed zone (M) 600 mm

Contaminant		Site	Data		Expres	sed as a Guidelir		[:] Target	Compliance	ss Required for to Specified deline Value
	Contamination of Ground	Contamination of Cover	Target Guideline Value 1	Target Guideline Value 2	Soil / Target Guideline Value 1	Cover / Target Guideline	Soil / Target Guideline Soil / Value 2	Cover / Target Guideline Value 2	Target Guideline Value 1	Target Guideline Value 2
Lead	mg/kg mg/kg Lead 508 77 310						ction	NI- TV	(m	
Lead	508	//	310		1.6	0.2	No TV	No TV	276	No TV
	1									
					Summa	rv				
					Oumma	ĺ				
						Target 0	Guideline	Value 1	Target Guide	eline Value 2
Number of contaminants							1		,	1
Number of contaminants wi	th no th	nicknes	s calcu	lation			0			1
							0			1
	Breakdown - Number for which no TV specfied Breakdown - Number for which no soil specified						0		(0
Breakdown - Numbe	Breakdown - Number for which no cover specified									0
	Breakdown - Number for which cover > TV								(0
	umber of contaminants with thickness calculation								(0
	Breakdown - Number for which no cover required						0			0
	Breakdown - Number for which cover required					1				0
* Outlying result										
Overall thickness of cover	requir	ed					276			0

Design Chart

□Cc = 0.00 - 0.25 x Trigger levels
□Cc = 0.25 - 0.50 x Trigger levels
□Cc = 0.50 - 0.75 x Trigger levels
□Cc = 0.75 - 1.00 x Trigger levels
□Target Guideline Value 2

United Kingdom Accreditation Service

ACCREDITATION CERTIFICATE

TESTING LABORATORY No. 1247

Envirolab

is accredited in accordance with the recognised International Standard ISO/IEC 17025:2005 General Requirements for the competence of testing and calibration laboratories.

This accreditation demonstrates technical competence for a defined scope as detailed in and at the locations specified in the schedule to this certificate, and the operation of a laboratory quality management system (refer joint ISO-ILAC-IAF Communiqué dated January 2009).

The schedule to this certificate is an essential accreditation document and from time to time may be revised and reissued by the United Kingdom Accreditation Service. The most recent issue of the schedule of accreditation, which bears the same accreditation number as this certificate, is available from the UKAS website www.ukas.com.

This accreditation is subject to continuing conformity with United Kingdom Accreditation Service requirements. The absence of a schedule on the UKAS website indicates that the accreditation is no longer in force.

Initial Accreditation date 2 December 1992

This certificate issued on 12 November 2012

UKAS is appointed as the sole national accreditation body for the UK by The Accreditation Regulations 2009 (SI No 3155/2009) and operates under a Memorandum of Understanding (MoU) with the Department for Business, Innovation and Skills (BIS).

APPENDIX E -BACKGROUND TO GEOENVIRONMENTAL ASSESSMENT

- (i) RSK Group Generic Assessment Criteria (GAC)
- (ii) UKWIR Guidelines
- (iii) Risk Assessment Methodology

Generic assessment criteria for human health: residential scenario without home-grown produce

Background

RSK's generic assessment criteria (GAC) were initially prepared following the publication by the Environment Agency (EA) of soil guideline value (SGV) and toxicological (TOX) reports, and associated publications in 2009⁽¹⁾. RSK GAC were updated following the publication of GAC by LQM/CIEH in 2009⁽²⁾. RSK GAC are periodically revised when updated information on toxicological, land use or receptor parameters is published.

Updates to the RSK GAC

In 2014, the publication of Category 4 Screening Levels (C4SL)^(3,4), as part of the Defra-funded research project SP1010, included modifications to certain exposure assumptions documented within EA Science Report SC050221/SR3 (herein after referred to as SR3)⁽⁵⁾ used in the generation of SGVs.

C4SL were published for six substances (cadmium, arsenic, benzene, benzo(a)pyrene, chromium VI and lead) for a sandy loam soil type with 6% soil organic matter, based on a low level of toxicological concern (LLTC; see Section 2.3 of research project report SP1010⁽³⁾). Where a C4SL has been published, the RSK GAC duplicates the C4SL published values using all input parameters within the SP1010 final project report⁽³⁾ and associated appendices⁽⁶⁾, and adopts them as GAC for these six substances.

For all other substances the C4SL exposure modifications relevant for residential without homegrown produce end use have been applied to the current RSK GAC. These include alterations to daily inhalation rates for residential and commercial scenarios, reducing soil adherence factors in children (age classes 1 to 12 only) and reducing exposure frequency for dermal contact outdoors.

The RSK GAC have also been revised with updated toxicology published by LQM/CIEH in 2015⁽⁷⁾ or by the USEPA⁽¹⁴⁾, where a C4SL has not been published.

RSK GAC derivation for metals and organic compounds

Model selection

Soil assessment criteria (SAC) were calculated using the Contaminated Land Exposure Assessment (CLEA) tool v1.071, supporting EA guidance^(5,8,9) and revised exposure scenarios published for the C4SL⁽³⁾. The SAC are also termed GAC.

Conceptual model

In accordance with SR3⁽⁵⁾, the residential <u>without</u> home-grown produce scenario considers risks to a female child between the ages of 0 and 6 years old as the highest risk scenario. In accordance with Box 3.1 of SR3⁽⁵⁾, the pathways considered for production of the SAC in the residential without home-grown produce scenario are

- direct soil and dust ingestion in areas of soft landscaping
- dermal contact with soil and indoor dust

inhalation of indoor and outdoor dust and vapours.

Figure 1 is a conceptual model illustrating these linkages.

In line with guidance in the EA SGV report for cadmium⁽¹⁾, the RSK GAC for cadmium has been derived based on estimates representative of lifetime exposure. Although young children are generally more likely to have higher exposures to soil contaminants, the renal toxicity of cadmium, and the derivation of the TDI_{oral} and TDI_{inh}, are based on considerations of the kidney burden accumulated over 50 years or so. It is therefore reasonable to consider exposure not just in childhood but averaged over a longer period.

With respect to volatilisation, the CLEA model assumes a simple linear partitioning of a chemical in the soil between the sorbed, dissolved and vapour phase⁽⁹⁾. The upper boundaries of this partitioning are represented by the maximum aqueous solubility and pure saturated vapour concentration of the chemical. The CLEA model estimates saturated soil concentrations where these limits are reached⁽⁹⁾. The CLEA software uses a traffic light system to identify when individual and/or combined assessment criteria exceed the lower of either the aqueous- or vapour-based soil saturation limits. Model output cells are flagged red where the saturated soil concentration has been exceeded and the contribution of the indoor and outdoor vapour pathway to total exposure is greater than 10%. In this case, further consideration of the following is required⁽⁹⁾:

- Free phase contamination may be present.
- Exposure from the vapour pathways will be over-predicted by the model, as in reality the vapour phase concentration will not increase at concentrations above saturation limits
- Where the vapour pathway contribution is greater than 90%, it is unlikely the relevant health criteria value (HCV) will be exceeded at soil concentrations at least a factor of ten higher than the relevant HCV.

Where the vapour pathway is the predominant pathway (contributes greater than 90% of exposure) or the only exposure route considered and the cell is highlighted red (SAC exceeds saturation limit), the risk based on the assumed conceptual model is likely to be negligible as the vapour risk is assumed to be tolerable at maximum possible soil concentrations. In such circumstances, the vapour pathway exposure should be considered based on the presence of free phase or non-aqueous phase liquid sources and the measured concentrations of volatile organic compounds (VOC) in the vapour phase. Screening could be considered based on setting the SAC as the modelled soil saturation limits. However, as stated within the CLEA handbook⁽⁹⁾, this is likely to not be practical in many cases because of the very low saturation limits and, in any case, is highly conservative.

It should also be noted that for mixtures of compounds, free phase may be present where soil (or groundwater) concentrations are well below saturation limits for individual compounds.

Where the vapour pathway is only one of the exposure pathways considered, an additional approach can then be utilised as detailed within Section 4.12 of the CLEA model handbook⁽⁹⁾, which explains how to calculate an effective assessment criterion manually.

SR3⁽⁵⁾ states that, as a general rule of thumb, it is recognised that estimating vapour phase concentrations from dissolved and sorbed phase contamination by petroleum hydrocarbons are at least a factor of ten higher than those likely to be measured on-site. RSK has therefore applied an empirical subsurface to indoor air correction factor of 10 into the CLEA model chemical database for all petroleum hydrocarbon fractions (including BTEX, trimethylbenzenes and the

polycyclic aromatic hydrocarbons (PAH) naphthalene, acenaphthene and acenaphthylene) to reduce this conservatism.

Input selection

The most up-to-date published chemical and toxicological data was obtained from EA Report SC050021/SR7⁽¹⁰⁾, the EA TOX⁽¹⁾ reports, the C4SL SP1010 project report and associated appendices^(3,6), the 2015 LQM/CIEH report⁽⁷⁾ or the USEPA IRIS database⁽¹⁴⁾. Where a C4SL has been published, the RSK GAC have duplicated the C4SL published values using all input parameters within the SP1010 final project report⁽³⁾ and associated appendices⁽⁶⁾, and has adopted them as GAC for these six substances. Toxicological and specific chemical parameters for aromatic hydrocarbon C_8 – C_9 (styrene), 1,2,4-trimethylbenzene and methyl tertiary-butyl ether (MTBE) were obtained from the CL:AIRE Soil Generic Assessment Criteria report⁽¹¹⁾.

For TPH, aromatic hydrocarbons C_5 – C_8 were not modelled, as this range comprises benzene and toluene, which are modelled separately. The aromatic C_8 – C_9 hydrocarbon fraction comprises ethylbenzene, xylene and styrene. As ethylbenzene and xylene are being modelled separately, the physical, chemical and toxicological data for aromatic C_8 – C_9 have been taken from styrene.

Physical parameters

For the residential without home-grown produce scenario, the CLEA default building is a small, two-storey terrace house with a concrete ground-bearing slab. SR3⁽⁵⁾ notes this residential building type to be the most conservative in terms of potential for vapour intrusion. The building parameters used in the production of the RSK GACs are the default CLEA v1.06 inputs presented in Table 3.3 of SR3⁽³⁾, with a dust loading factor detailed in Section 9.3 of SR3⁽⁵⁾. The parameters for a sandy loam soil type were used in line with Table 4.4 of SR3⁽⁵⁾. This includes a value of 6% for the percentage of soil organic matter (SOM) within the soil. In RSK's experience, this is rather high for many sites. To avoid undertaking site-specific risk assessments for this SOM, RSK has produced an additional set of GAC for SOM of 1% and 2.5% for all substances using the CLEA tool.

Summary of modifications to the default CLEA SR3⁽⁵⁾ input parameters for residential without home-grown produce

In summary, the RSK GAC were produced using the default input parameters for soil properties, the air dispersion model, building properties and the vapour model detailed in $SR3^{(5)}$. Modifications to the default $SR3^{(5)}$ exposure scenarios based on the C4SL exposure scenarios are presented in Table 2 below.

The final selected GAC are presented by pathway in Table 3 and the combined GAC in Table 4.

Figure 1: Conceptual model for CLEA residential scenario without home-grown produce

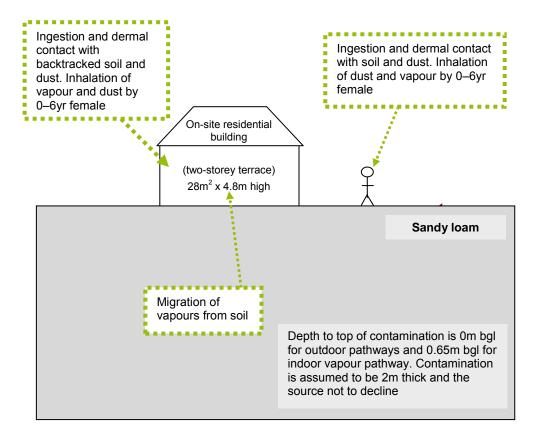


Table 1: Exposure assessment parameters for residential scenario without home-grown produce – inputs for CLEA model

Parameter	Value	Justification				
Land use	Residential without home-grown produce	Chosen land use				
Receptor	Female child	Key generic assumption given in Box 3.1, SR3 ⁽⁵⁾				
Building	Small terraced house	Key generic assumption given in Box 3.1, SR3 ⁽⁵⁾ . Small, two-storey terraced house chosen, as it is the most conservative residential building type in terms of protection from vapor intrusion (Section 3.4.6, SR3) ⁽⁵⁾				
Soil type	Sandy loam	Most common UK soil type (Section 4.3.1, from Table 3.1, SR3) ⁽⁵⁾				
Start age class (AC)	1	Range of age classes corresponding to key generic				
End AC	6	assumption that the critical receptor is a young female child aged 0–6. From Box 3.1, SR3 ⁽⁵⁾				
SOM (%)	6	Representative of sandy loamy soil according to EA guidance note dated January 2009 entitled 'Changes We Have Made to the CLEA Framework Documents' (13)				
	1	To provide SAC for sites where SOM <6% as often observed by				
	2.5	RSK				
рH	7	Model default				

Table 2: Residential without home-grown produce - modified receptor data

Parameter	Unit	Age class										
					4	5	6					
Soil to skin adherence factor – (outdoor)	mg soil/cm ² skin	0.1	0.1	0.1	0.1	0.1	0.1					
Justification	Justification					Table 3.5, SP1010 ⁽³⁾						
Inhalation rate	m³ day⁻¹	5.4	8.0	8.9	10.1	10.1	10.1					
Justification	Mean value USEPA, 2011 ⁽¹²⁾ ; Table 3.2, SP1010 ⁽³⁾											

Notes: For **cadmium**, the exposure assessment for a residential land use is based on estimates representative of lifetime exposure AC1-18. This is because the TDI_{oral} and TDI_{inh} are based on considerations of the kidney burden accumulated over 50 years. It is therefore reasonable to consider exposure not just in childhood but averaged over a longer period. See the Environment Agency Science Report SC05002/ TOX 3⁽¹⁾, Science Report SC050021/Cadmium SGV⁽¹⁾ and the project report SP1010⁽³⁾ for more information.

References

- Environment Agency (2009), 'Science Reports SC050021 SGV and TOX reports for:
 benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium,
 phenol, dioxins, furans and dioxin-like PCBs'; 'Supplementary information for the derivation
 of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic,
 cadmium, phenol, dioxins, furans and dioxin-like PCBs', and 'Contaminants in soil: updated
 collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene,
 xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like
 PCBs'. Available at: https://www.gov.uk/government/publications/land-contamination-soil-guideline-values-sgvs (accessed 4 February 2015)
- 2. Nathanial, C. P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A. G., Ogden, R. C. and Scott, D. (2009), *LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment*, second edition (Nottingham: Land Quality Press).
- 3. Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination', Revision 2, DEFRA research project SP1010.
- 4. Department for Environment, Food and Rural Affairs (Defra) (2014), 'SP1010: Development of Category 4 Screening Levels for assessment of land affected by contamination Policy Companion Document', Revision 2.
- 5. Environment Agency (2009), Science Report SC050021/SR3. Updated technical background to the CLEA model (Bristol: Environment Agency).
- 6. Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Appendices C to H). DEFRA research project SP1010'.
- 7. Nathanial, C. P., McCaffrey, C., Gillet, A. G., Ogden, R. C. and Nathanial, J. F. (2015), *The LQM/CIEH S4ULs for Human Health Risk Assessment* (Nottingham: Land Quality Press).
- 8. Environment Agency (2009), *Human health toxicological assessment of contaminants in soil. Science Report Final SC050021/SR2* (Bristol: Environment Agency).
- 9. Environment Agency (2009), *Science Report SC050021/SR4 CLEA Software (version 1.05) Handbook* (Bristol: Environment Agency).
- 10. Environment Agency (2008), *Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values* (Bristol: Environment Agency).
- 11. CL:AIRE (2009), Soil Generic Assessment Criteria for Human Health Risk Assessment (London: CL:AIRE).
- 12. USEPA (2011), *Exposure factors handbook*, EPA/600/R-090/052F (Washington, DC: Office of Research and Development).
- 13. Environment Agency (2009), 'Changes made to the CLEA framework documents after the three-month evaluation period in 2008', released January 2009.
- 14. USEPA (2010). Hydrogen cyanide and cyanide salts. Integrated Risk Information Systems (IRIS) Chemical Assessment Summary. September 2010. 9 December 2015) (accessed

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - RESIDENTIAL WITHOUT HOME-GROWN PRODUCE

Table 3
Human Health Generic Assessment Criteria by Pathway for Residential Scenario Without Home-Grown Produce

	8	SAC Appropri	iate to Pathway So	OM 1% (ma/ka)	0.110.7	SAC Appropri	ate to Pathway SOI	M 2.5% (ma/ka)	0.110	SAC Annrons	iate to Pathway S	OM 6% (ma/ka)	0.70.
Compound	otes	Oral	Inhalation	Combined	Soil Saturation Limit (mg/kg)	Oral	Inhalation	Combined	Soil Saturation Limit (mg/kg)	Oral	Inhalation	Combined	Soil Saturation Limit (mg/kg)
Compound	-	Olai	iiiiaiatioii	Combined	Limit (mg/kg)	Olai	iiiiaiatioii	Combined	Lillit (llig/kg)	Olai	illiaation	Combined	Limit (mg/kg)
Metals													
Arsenic	(a,b)	3.99E+01	5.26E+02	NR	NR	3.99E+01	5.26E+02	NR	NR	3.99E+01	5.26E+02	NR	NR
Cadmium	(a,b)	1.95E+02	4.88E+02	1.49E+02	NR	1.95E+02	4.88E+02	1.49E+02	NR	1.95E+02	4.88E+02	1.49E+02	NR
Chromium (III) - trivalent	(c)	1.98E+04	9.07E+02	NR	NR	1.98E+04	9.07E+02	1.49L+02 NR	NR	1.98E+04	9.07E+02	1.49L+02 NR	NR
Chromium (III) - trivalent Chromium (VI) - hexavalent	(a,d)	5.91E+01	9.07E+02 2.06E+01	NR	NR NR	5.91E+01	2.06E+01	NR NR	NR NR	5.91E+01	9.07E+02 2.06E+01	NR NR	NR NR
` '	(a,u)	1.08E+04	1.41E+04	7.13E+03	NR	1.08E+04	1.41E+04	7.13E+03	NR NR	1.08E+04	1.41E+04	7.13E+03	NR
Copper Lead	(a)	3.14E+02	NR	7.13E+03 NR	NR	3.14E+02	NR	7.13E+03 NR	NR NR	3.14E+02	NR	7.13E+03 NR	NR
Elemental Mercury (Hg ⁰)	(d)	3.14E+02 NR	2.41E-01	NR	4.31E+00	3.14E+02 NR	5.74E-01	NR	1.07E+01	3.14E+02 NR	1.25E+00	NR	2.58E+01
Inorganic Mercury (Hg ²⁺)	(u)	5.71E+01	3.63E+03	5.62E+01	4.31E+00	5.71E+01	3.63E+03	5.62E+01	NR	5.71E+01	3.63E+03	5.62E+01	NR
Methyl Mercury (Hg ⁴⁺)		1.80E+01	1.87E+01	9.16E+00	7.33E+01	1.80E+01	3.62E+01	1.20E+01	1.42E+02	1.80E+01	7.68E+01	1.46E+01	3.04E+02
	(d)	1.80E+01 1.88E+02	1.87E+01 1.81E+02			1.88E+02	3.62E+01 1.81E+02	1.20E+01 NR	1.42E+02 NR	1.80E+01 1.88E+02	1.81E+02		3.04E+02 NR
Nickel		4.31E+02		NR NB	NR NR					4.31E+02		NR ND	
Selenium	(b)		NR	NR	NR	4.31E+02	NR	NR NB	NR		NR	NR	NR
Zinc	(b)	4.05E+04	3.63E+07	NR	NR	4.05E+04 4.03E+01	3.63E+07	NR	NR NB	4.05E+04	3.63E+07	NR	NR
Cyanide (free)		4.03E+01	1.37E+04	4.02E+01	NR	4.03E+01	1.37E+04	4.02E+01	NR	4.03E+01	1.37E+04	4.02E+01	NR
Volatile Organic Compounds													
Benzene	(a)	7.36E+01	9.01E-01	8.90E-01	1.22E+03	7.36E+01	1.68E+00	1.64E+00	2.26E+03	7.36E+01	3.48E+00	3.33E+00	4.71E+03
Toluene	()	2.87E+04	9.08E+02	8.80E+02	8.69E+02	2.87E+04	2.00E+03	1.87E+03	1.92E+03	2.87E+04	4.55E+03	3.93E+03	4.36E+03
Ethylbenzene		1.29E+04	8.34E+01	8.29E+01	5.18E+02	1.29E+04	1.96E+02	1.93E+02	1.22E+03	1.29E+04	4.58E+02	4.42E+02	2.84E+03
Xylene - m		2.32E+04	8.25E+01	8.22E+01	6.25E+02	2.32E+04	1.95E+02	1.93E+02	1.47E+03	2.32E+04	4.56E+02	4.47E+02	3.46E+03
Xylene - o		2.32E+04	8.87E+01	8.83E+01	4.78E+02	2.32E+04	2.08E+02	2.06E+02	1.12E+03	2.32E+04	4.86E+02	4.76E+02	2.62E+03
Xylene - p		2.32E+04	7.93E+01	7.90E+01	5.76E+02	2.32E+04	1.86E+02	1.85E+02	1.35E+03	2.32E+04	4.36E+02	4.28E+02	3.17E+03
Total xylene		2.32E+04	7.93E+01	7.90E+01	6.25E+02	2.32E+04	1.86E+02	1.85E+02	1.47E+03	2.32E+04	4.36E+02	4.28E+02	3.46E+03
Methyl tertiary-Butyl ether (MTBE)		3.87E+04	1.04E+02	1.04E+02	2.04E+04	3.87E+04	1.69E+02	1.69E+02	3.31E+04	3.87E+04	3.21E+02	3.19E+02	6.27E+04
Trichloroethene		6.45E+01	1.72E-02	1.72E-02	1.54E+03	6.45E+01	3.59E-02	3.59E-02	3.22E+03	6.45E+01	7.98E-02	7.97E-02	7.14E+03
Tetrachloroethene		7.13E+02	1.79E-01	1.79E-01	4.24E+02	7.13E+02	4.02E-01	4.02E-01	9.51E+02	7.13E+02	9.21E-01	9.20E-01	2.18E+03
1,1,1-Trichloroethane		7.74E+04	9.01E+00	9.01E+00	1.43E+03	7.74E+04	1.84E+01	1.84E+01	2.92E+03	7.74E+04	4.04E+01	4.04E+01	6.39E+03
1,1,1,2 Tetrachloroethane		7.34E+02	1.54E+00	1.53E+00	2.60E+03	7.34E+02	3.56E+00	3.55E+00	6.02E+03	7.34E+02	8.29E+00	8.20E+00	1.40E+04
1,1,2,2-Tetrachloroethane		7.34E+02	3.92E+00	3.90E+00	2.67E+03	7.34E+02	8.04E+00	7.95E+00	5.46E+03	7.34E+02	1.76E+01	1.72E+01	1.20E+04
Carbon Tetrachloride		5.15E+02	2.58E-02	2.58E-02	1.52E+03	5.15E+02	5.65E-02	5.64E-02	3.32E+03	5.15E+02	1.28E-01	1.28E-01	7.54E+03
1,2-Dichloroethane		1.55E+01	9.20E-03	9.20E-03	3.41E+03	1.55E+01	1.33E-02	1.33E-02	4.91E+03	1.55E+01	2.28E-02	2.27E-02	8.43E+03
Vinyl Chloride		1.81E+00	7.73E-04	7.73E-04	1.36E+03	1.81E+00	1.00E-03	9.99E-04	1.76E+03	1.81E+00	1.53E-03	1.53E-03	2.69E+03
1,2,4-Trimethylbenzene		NR	5.58E+00	NR	4.74E+02	NR	1.29E+01	NR	1.16E+03	NR	2.69E+01	NR	2.76E+03
1,3,5-Trimethylbenzene	(e)	NR	NR	NR	2.30E+02	NR	NR	NR	5.52E+02	NR	NR	NR	1.30E+03
Semi-Volatile Organic Compounds	. , ,												
Acenaphthene		7.64E+03	4.86E+04	6.60E+03	5.70E+01	7.64E+03	1.18E+05	7.17E+03	1.41E+02	7.64E+03	2.68E+05	7.43E+03	3.36E+02
Acenaphthylene		7.65E+03	4.59E+04	6.55E+03	8.61E+01	7.65E+03	1.11E+05	7.15E+03	2.12E+02	7.65E+03	2.53E+05	7.42E+03	5.06E+02
Anthracene		3.82E+04	1.53E+05	3.06E+04	1.17E+00	3.82E+04	3.77E+05	3.47E+04	2.91E+00	3.82E+04	8.76E+05	3.66E+04	6.96E+00
Benzo(a)anthracene		1.98E+01	2.47E+01	1.10E+01	1.71E+00	1.98E+01	4.37E+01	1.36E+01	4.28E+00	1.98E+01	6.26E+01	1.50E+01	1.03E+01
Benzo(a)pyrene	(a)	5.34E+00	3.51E+01	NR	9.11E-01	5.34E+00	3.77E+01	NR	2.28E+00	5.34E+00	3.89E+01	NR	5.46E+00
Benzo(b)fluoranthene		4.97E+00	1.93E+01	3.95E+00	1.22E+00	4.97E+00	2.13E+01	4.03E+00	3.04E+00	4.97E+00	2.22E+01	4.06E+00	7.29E+00
Benzo(g,h,i)perylene		4.38E+02	1.87E+03	3.55E+02	1.54E-02	4.38E+02	1.94E+03	3.58E+02	3.85E-02	4.38E+02	1.97E+03	3.59E+02	9.23E-02
Benzo(k)fluoranthene		1.31E+02	5.41E+02	1.06E+02	6.87E-01	1.31E+02	5.76E+02	1.07E+02	1.72E+00	1.31E+02	5.91E+02	1.07E+02	4.12E+00
Chrysene		3.95E+01	1.19E+02	2.97E+01	4.40E-01	3.95E+01	1.49E+02	3.12E+01	1.10E+00	3.95E+01	1.66E+02	3.19E+01	2.64E+00
Dibenzo(a,h)anthracene		3.95E-01	1.45E+00	3.10E-01	3.93E-03	3.95E-01	1.64E+00	3.18E-01	9.82E-03	3.95E-01	1.74E+00	3.22E-01	2.36E-02
Fluoranthene		1.59E+03	3.83E+04	1.53E+03	1.89E+01	1.59E+03	8.87E+04	1.56E+03	4.73E+01	1.59E+03	1.83E+05	1.58E+03	1.13E+02
Fluorene		5.09E+03	6.20E+03	2.80E+03	3.09E+01	5.09E+03	1.53E+04	3.82E+03	7.65E+01	5.09E+03	3.62E+04	4.47E+03	1.83E+02
Indeno(1,2,3-cd)pyrene		5.65E+01	2.12E+02	4.46E+01	6.13E-02	5.65E+01	2.38E+02	4.56E+01	1.53E-01	5.65E+01	2.50E+02	4.60E+01	3.68E-01

T25656 RSK GAC

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - RESIDENTIAL WITHOUT HOME-GROWN PRODUCE

1.50E+03

8.99E+02

4.19E+02

1.34E+02

1.21E+01

1.21E+01

2.58E+03

2.58E+03

2.58E+03

1.92E+03

1.93E+03

1.93E+03

2.77E+02

1.52E+03

1.68E+04

NR

NR

NR

2.69E+02

1.24E+03

2.48E+03

NR

NR

NR

3.58E+03

2.15E+03

1.00E+03

3.21E+02

2.90E+01

2.90E+01

Table 3
Human Health Generic Assessment Criteria by Pathway for Residential Scenario Without Home-Grown Produce

	8	SAC Appropri	ate to Pathway So	OM 1% (mg/kg)	Soil Saturation	SAC Appropri	ate to Pathway SO!	M 2.5% (mg/kg)	Soil Saturation	SAC Appropr	iate to Pathway S	OM 6% (mg/kg)	Soil Saturation
Compound	les	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)
Naphthalene		2.50E+03	2.33E+01	2.31E+01	7.64E+01	2.50E+03	5.58E+01	5.46E+01	1.83E+02	2.50E+03	1.31E+02	1.25E+02	4.32E+02
Phenanthrene		1.58E+03	7.17E+03	1.30E+03	3.60E+01	1.58E+03	1.76E+04	1.45E+03	8.96E+01	1.58E+03	4.07E+04	1.52E+03	2.14E+02
Pyrene		3.82E+03	8.79E+04	3.66E+03	2.20E+00	3.82E+03	2.04E+05	3.75E+03	5.49E+00	3.82E+03	4.23E+05	3.79E+03	1.32E+01
Phenol		6.48E+04	4.58E+02	4.55E+02	2.42E+04	6.48E+04	6.95E+02	6.88E+02	3.81E+04	6.48E+04	1.19E+03	1.17E+03	7.03E+04
Aliphatic hydrocarbons EC ₅ -EC ₆ Aliphatic hydrocarbons >EC ₆ -EC ₈		3.23E+05 3.23E+05	4.24E+01 1.04E+02	4.24E+01 1.04E+02	3.04E+02 1.44E+02	3.23E+05 3.23E+05	7.79E+01 2.31E+02	7.79E+01 2.31E+02	5.58E+02 3.22E+02	3.23E+05 3.23E+05	1.61E+02 5.29E+02	1.61E+02 5.29E+02	1.15E+03 7.36E+02
Total Petroleum Hydrocarbons													
Aliphatic hydrocarbons >EC ₆ -EC ₈ Aliphatic hydrocarbons >EC ₈ -EC ₁₀		3.23E+05 6.45E+03	1.04E+02 2.68E+01	1.04E+02 2.68E+01	1.44E+02 7.77E+01	3.23E+05 6.45E+03	6.55E+01	6.53E+01	3.22E+02 1.90E+02	3.23E+05 6.45E+03	5.29E+02 1.56E+02	5.29E+02 1.55E+02	7.36E+02 4.51E+02
Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂	1	6.45E+03	1.33E+02	1.32E+02	4.75E+01	6.45E+03	3.31E+02	3.27E+02	1.18E+02	6.45E+03	7.93E+02	7.67E+02	2.83E+02
Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆	1	6.45E+03	1.11E+03	1.06E+03	2.37E+01	6.45E+03	2.78E+03	2.42E+03	5.91E+01	6.45E+03	6.67E+03	4.37E+03	1.42E+02
Aliphatic hydrocarbons >EC ₁₆ -EC ₃₅	(b)	6.50E+04	NR	NR	8.48E+00	9.25E+04	NR	NR.	2.12E+01	1.11E+05	NR	NR	5.09E+01
Aliphatic hydrocarbons >EC ₃₅ -EC ₄₄	(b)	6.50E+04	NR	NR	8.48E+00	9.25E+04	NR	NR	2.12E+01	1.11E+05	NR	NR	5.09E+01
Aromatic hydrocarbons >EC ₈ -EC ₉ (styre	ene)	1.54E+03	5,22E+02	3.90E+02	6.26E+02	1.54E+03	1.20E+03	6.76E+02	1.44E+03	1.54E+03	2.79E+03	9.93E+02	3.35E+03

2.58E+03

2.58E+03

2.58E+03

1.90E+03

1.93E+03

1.93E+03

1.16E+02

6.39E+02

7.07E+03

NR

NR

NR

1.15E+02

5.94E+02

2.30E+03

NR

NR

NR

Notes:

EC - equivalent carbon. GrAC - groundwater assessment criteria. SAC - soil assessment criteria.

The CLEA model output is colour coded depending upon whether the soil saturation limit has been exceeded.

2.58E+03

2.58E+03

2.58E+03

1.86E+03

1.93E+03

1.93E+03

4.74E+01

2.58E+02

2.85E+03

NR

NR

NR

4.72E+01

2.52E+02

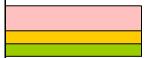
1.80E+03

NR

NR

NR

6.13E+02


3.64E+02

1.69E+02

5.37E+01

4.83E+00

4.83E+00

Aromatic hydrocarbons >EC9-EC10

Aromatic hydrocarbons >EC10-EC13

Aromatic hydrocarbons >EC12-EC16

Aromatic hydrocarbons >EC16-EC21

Aromatic hydrocarbons >EC₂₁-EC₃₅ Aromatic hydrocarbons >EC₃₅-EC₄₄

Calculated SAC exceeds soil saturation limit and may significantly affect the interpretation of any exceedances as the contribution of the indoor and outdoor vapour pathway to total exposure is >10%.

Calculated SAC exceeds soil saturation limit but the exceedance will not affect the SAC significantly as the contribution of the indoor and outdoor vapour pathway to total exposure is <10%. Calculated SAC does not exceed the soil saturation limit.

The SAC for organic compounds are dependent upon soil organic matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994.

SAC for TPH fractions, PAHs napthalene, acenaphthene and acenaphthylene, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway (Section 10.1.1, SR3)

- (a) SAC for arsenic, benzene, benzo(a)pyrene, cadmium, chromium VI and lead are derived using the C4SL toxicology data.
- (b) SAC for selenium should not include the inhalation pathway as no expert group HCV has been derived; aliphatic and aromatic hydrocarbons >EC16 should not include inhalation pathway due to their non-volatile nature and inhalation exposure being minimal (oral, dermal and inhalation exposure is compared to the oral HCV); arsenic should only be based on oral contribution (rather than combined) owing to the relative small contribution from inhalation in accordance with the SGV report. The Oral SAC should be adopted for zinc and benzo(a)pyrene.
- (c) SAC for CrIII should be based on the lower of the oral and inhalation SAC (see LQM/CIEH 2015 Section 6.8)
- (d) SAC for elemental mercury, chromium VI and nickel should be based on the inhalation pathway only.
- (e) SAC for 1,3,5-trimethylbenzene is not recorded owing to the lack of toxicological data, SAC for 1,2,4 trimethylbenzene may be used.

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - RESIDENTIAL WITHOUT HOME-GROWN PRODUCE

Table 4

Human health generic assessment criteria for residential without home-grown produce

Compound	SAC for Soil SOM 1% (mg/kg)	SAC for Soil SOM 2.5% (mg/kg)	SAC for Soil SOM 6% (mg/kg)
Metals			
Arsenic	40	40	40
Cadmium	149	149	149
Chromium (III) - trivalent	910	910	910
Chromium (VI) - hexavalent	21	21	21
Copper Lead	7,100 310	7,100 310	7,100 310
Elemental Mercury (Hg ⁰)	0.2	0.6	1.2
Inorganic Mercury (Hg ²⁺)	56	56	56
Methyl Mercury (Hg ⁴⁺)	9	12	15
Nickel	180	180	180
Selenium	430	430	430
Zinc	40,000	40,000	40,000
Cyanide (free)	40	40	40
Volatile Organic Compounds			
Benzene	0.9	1.6	3.3
Toluene	900 (869)	1,900	3,900
Ethylbenzene Yulona m	80	190	440
Xylene - m Xylene - o	80 90	190 210	450 480
Xylene - o Xylene - p	80	180	430
Total xylene	80	180	430
Methyl tertiary-Butyl ether (MTBE)	100	170	320
Trichloroethene	0.02	0.04	0.08
Tetrachloroethene	0.2	0.4	0.9
1,1,1-Trichloroethane	9.0	18.4	40.4
1,1,1,2 Tetrachloroethane	1.5	3.5	8.2
1,1,2,2-Tetrachloroethane	3.9	8.0	17.2
Carbon Tetrachloride 1,2-Dichloroethane	0.026 0.009	0.056 0.013	0.128 0.023
Vinyl Chloride	0.008	0.013	0.023
1,2,4-Trimethylbenzene	5.6	12.9	26.9
1,3,5-Trimethylbenzene	NR	NR	NR
Semi-Volatile Organic Compounds			
Acenaphthene	6,600 (57)	7,200	7,400
Acenaphthylene	6,600 (86)	7,200	7,400
Anthracene	31,000 (1.17)	35,000	37,000
Benzo(a)anthracene	11.0	13.6	15.0
Benzo(a)pyrene	5.3 4.0	5.3 4.0	5.3 4.1
Benzo(b)fluoranthene Benzo(g,h,i)perylene	355	358	359
Benzo(k)fluoranthene	106	107	107
Chrysene	30	31	32
Dibenzo(a,h)anthracene	0.31	0.32	0.32
Fluoranthene	1,500	1,600	1,600
Fluorene	2,800 (31)	3,800 (77)	4,500 (183)
Indeno(1,2,3-cd)pyrene	45	46	46
Naphthalene	23 1,300 (36)	55 1,450	125
Phenanthrene Pyrene	3,700	3,800	1,520 3,800
Phenol	440*	688	1,170
Total Petroleum Hydrocarbons			
Aliphatic hydrocarbons EC ₅ -EC ₆	42	78	161
Aliphatic hydrocarbons >EC ₆ -EC ₈			
	100	230	530
Aliphatic hydrocarbons >EC ₈ -EC ₁₀	27	65	155
Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂	130 (48)	330 (118)	770 (283)
Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆	1,100 (24)	2,400 (59)	4,400 (142)
Aliphatic hydrocarbons >EC ₁₆ -EC ₃₅	65,000 (8)	92,000 (21)	111,000
Aliphatic hydrocarbons >EC ₃₅ -EC ₄₄	65,000 (8)	92,000 (21)	111,000
Aromatic hydrocarbons >EC ₈ -EC ₉ (styrene)	390	676	993
Aromatic hydrocarbons >EC ₉ -EC ₁₀	47	115	269
Aromatic hydrocarbons >EC ₁₀ -EC ₁₂	300	600	1,200
		2,300 (419)	2,500
Aromatic hydrocarbons >EC ₁₂ -EC ₁₆	1,800 (169)	4.05-	
Aromatic hydrocarbons >EC ₁₂ -EC ₁₆ Aromatic hydrocarbons >EC ₁₆ -EC ₂₁	1,900	1,900	1,900
Aromatic hydrocarbons >EC ₁₂ -EC ₁₆ Aromatic hydrocarbons >EC ₁₆ -EC ₂₁ Aromatic hydrocarbons >EC ₂₁ -EC ₃₅		1,900 1,900	1,900 1,900
Aromatic hydrocarbons >EC ₁₀ -EC ₁₂ Aromatic hydrocarbons >EC ₁₂ -EC ₁₆ Aromatic hydrocarbons >EC ₁₆ -EC ₂₁ Aromatic hydrocarbons >EC ₂₁ -EC ₃₅ Aromatic hydrocarbons >EC ₃₅ -EC ₄₄	1,900		
Aromatic hydrocarbons >EC ₁₂ -EC ₁₆ Aromatic hydrocarbons >EC ₁₆ -EC ₂₁ Aromatic hydrocarbons >EC ₂₁ -EC ₃₅	1,900 1,900	1,900	1,900

L'Generic assessment criteria not calculated owing to low volatility of substance and therefore no pathway, or an absence of toxicological data.

NR - SAC for 1,3,5-trimethylbenzene is not recorded owing to the lack of toxicological data, SAC for 1,2,4 trimethylbenzene may be used EC - equivalent carbon. SAC - soil assessment criteria.

LOD for weight of asbestos per unit weight of soil calculated on a dry weight basis using PLM, handpicking and gravimetry.

The SAC for organic compounds are dependent on Soil Organic Matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994.

SAC for TPH fractions, PAHs napthalene, acenaphthene and acenaphthylene, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway, section 10.1.1, SR3.

(VALUE IN BRACKETS)

RSK has adopted an approach for petroleum hydrocarbons in accordance with LOM/CIEH whereby the concentration modelled for each petroleum hydrocarbon fraction has been tabulated as the SAC with the corresponding solubility or vapour saturation limits given in brackets.

Generic assessment criteria for human health: residential scenario with home-grown produce

Background

RSK's generic assessment criteria (GAC) were initially prepared following the publication by the Environment Agency (EA) of soil guideline value (SGV) and toxicological (TOX) reports, and associated publications in 2009⁽¹⁾. RSK GAC were updated following the publication of GAC by LQM/CIEH in 2009⁽²⁾. RSK GAC are periodically revised when updated information on toxicological, land use or receptor parameters is published.

Updates to the RSK GAC

In 2014, the publication of Category 4 Screening Levels $(C4SL)^{(3,4)}$, as part of the Defra-funded research project SP1010, included modifications to certain exposure assumptions documented within EA Science Report SC050221/SR3 (herein after referred to as SR3)⁽⁵⁾ used in the generation of SGVs.

C4SL were published for six substances (cadmium, arsenic, benzene, benzo(a)pyrene, chromium VI and lead) for a sandy loam soil type with 6% soil organic matter, based on a low level of toxicological concern (LLTC; see Section 2.3 of research project report SP1010⁽³⁾). Where a C4SL has been published, the RSK GAC duplicates the C4SL published values using all input parameters within the SP1010 final project report⁽³⁾ and associated appendices⁽⁶⁾, and adopts them as GAC for these six substances.

For all other substances the C4SL exposure modifications, with the exception of the "top two" produce type approach taken in the C4SL, have been applied to the current RSK GAC. These include alterations to daily inhalation rates for residential and commercial scenarios, reducing soil adherence factors in children (age classes 1 to 12 only) for residential land use, reducing exposure frequency for dermal contact outdoors for residential land use, and updated produce type consumption rates (90th percentile) based on recent data from the National Diet and Nutrition Survey.

The RSK GAC have also been revised with updated toxicology published by LQM/CIEH in 2015⁽⁷⁾ or by the USEPA⁽¹⁴⁾, where a C4SL has not been published.

RSK GAC derivation for metals and organic compounds

Model selection

Soil assessment criteria (SAC) were calculated using the Contaminated Land Exposure Assessment (CLEA) tool v1.071, supporting EA guidance $^{(5,8,9)}$ and revised exposure scenarios published for the C4SL $^{(3)}$. The SAC are also termed GAC.

Conceptual model

In accordance with SR3⁽⁵⁾, the residential with home-grown produce scenario considers risks to a female child between the ages of 0 and 6 years old as the highest risk scenario. In accordance with Box 3.1 of SR3⁽⁵⁾, the pathways considered for production of the SAC in the residential with home-grown produce scenario are

direct soil and dust ingestion

- · consumption of home-grown produce
- consumption of soil attached to home-grown produce
- · dermal contact with soil and indoor dust
- inhalation of indoor and outdoor dust and vapours.

Figure 1 is a conceptual model illustrating these linkages.

In line with guidance in the EA SGV report for cadmium⁽¹⁾, the RSK GAC for cadmium has been derived based on estimates representative of lifetime exposure. Although young children are generally more likely to have higher exposures to soil contaminants, the renal toxicity of cadmium, and the derivation of the TDI_{oral} and TDI_{inh}, are based on considerations of the kidney burden accumulated over 50 years or so. It is therefore reasonable to consider exposure not just in childhood but averaged over a longer period.

With respect to volatilisation, the CLEA model assumes a simple linear partitioning of a chemical in the soil between the sorbed, dissolved and vapour phase⁽⁹⁾. The upper boundaries of this partitioning are represented by the maximum aqueous solubility and pure saturated vapour concentration of the chemical. The CLEA model estimates saturated soil concentrations where these limits are reached⁽⁹⁾. The CLEA software uses a traffic light system to identify when individual and/or combined assessment criteria exceed the lower of either the aqueous- or vapour-based soil saturation limits. Model output cells are flagged red where the saturated soil concentration has been exceeded and the contribution of the indoor and outdoor vapour pathway to total exposure is greater than 10%. In this case, further consideration of the following is required⁽⁹⁾:

- Free phase contamination may be present.
- Exposure from the vapour pathways will be over-predicted by the model, as in reality the vapour phase concentration will not increase at concentrations above saturation limits
- Where the vapour pathway contribution is greater than 90%, it is unlikely the relevant health criteria value (HCV) will be exceeded at soil concentrations at least a factor of ten higher than the relevant HCV.

Where the vapour pathway is the predominant pathway (contributes greater than 90% of exposure) or the only exposure route considered and the cell is highlighted red (SAC exceeds saturation limit), the risk based on the assumed conceptual model is likely to be negligible as the vapour risk is assumed to be tolerable at maximum possible soil concentrations. In such circumstances, the vapour pathway exposure should be considered based on the presence of free phase or non-aqueous phase liquid sources and the measured concentrations of volatile organic compounds (VOC) in the vapour phase. Screening could be considered based on setting the SAC as the modelled soil saturation limits. However, as stated within the CLEA handbook⁽⁹⁾, this is likely to not be practical in many cases because of the very low saturation limits and, in any case, is highly conservative.

It should also be noted that for mixtures of compounds, free phase may be present where soil (or groundwater) concentrations are well below saturation limits for individual compounds.

Where the vapour pathway is only one of the exposure pathways considered, an additional approach can then be utilised as detailed within Section 4.12 of the CLEA model handbook⁽⁹⁾, which explains how to calculate an effective assessment criterion manually.

SR3⁽⁵⁾ states that, as a general rule of thumb, it is recognised that estimating vapour phase concentrations from dissolved and sorbed phase contamination by petroleum hydrocarbons are

at least a factor of ten higher than those likely to be measured on-site. RSK has therefore applied an empirical subsurface to indoor air correction factor of 10 into the CLEA model chemical database for all petroleum hydrocarbon fractions (including BTEX, trimethylbenzenes and the polycyclic aromatic hydrocarbons (PAH) naphthalene, acenaphthene and acenaphthylene) to reduce this conservatism.

Input selection

The most up-to-date published chemical and toxicological data was obtained from EA Report SC050021/SR7⁽¹⁰⁾, the EA TOX⁽¹⁾ reports, the C4SL SP1010 project report and associated appendices^(3,6). the 2015 LQM/CIEH report⁽⁷⁾ or the USEPA IRIS database⁽¹⁴⁾. Where a C4SL has been published, the RSK GAC have duplicated the C4SL published values using all input parameters within the SP1010 final project report⁽³⁾ and associated appendices⁽⁶⁾, and has adopted them as GAC for these six substances. Toxicological and specific chemical parameters for aromatic hydrocarbon C_8 – C_9 (styrene), 1,2,4-trimethylbenzene and methyl tertiary-butyl ether (MTBE) were obtained from the CL:AIRE Soil Generic Assessment Criteria report⁽¹¹⁾.

For TPH, aromatic hydrocarbons C_5 – C_8 were not modelled, as this range comprises benzene and toluene, which are modelled separately. The aromatic C_8 – C_9 hydrocarbon fraction comprises ethylbenzene, xylene and styrene. As ethylbenzene and xylene are being modelled separately, the physical, chemical and toxicological data for aromatic C_8 – C_9 have been taken from styrene.

Physical parameters

For the residential with home-grown produce scenario, the CLEA default building is a small, two-storey terrace house with a concrete ground-bearing slab. The house is assumed to have a 100m^2 private garden consisting of lawn and flowerbeds, incorporating a 20m^2 plot for growing fruit and vegetables consumed by the residents. SR3⁽⁵⁾ notes this residential building type to be the most conservative in terms of potential for vapour intrusion. The building parameters used in the production of the RSK GACs are the default CLEA v1.06 inputs presented in Table 3.3 of SR3⁽³⁾, with a dust loading factor detailed in Section 9.3 of SR3⁽⁵⁾. The parameters for a sandy loam soil type were used in line with Table 4.4 of SR3⁽⁵⁾. This includes a value of 6% for the percentage of soil organic matter (SOM) within the soil. In RSK's experience, this is rather high for many sites. To avoid undertaking site-specific risk assessments for SOM, RSK has produced an additional set of GAC for SOM of 1% and 2.5% for all substances using the CLEA tool.

Summary of modifications to the default CLEA SR3⁽⁵⁾ input parameters for residential with homegrown produce land-use scenario

In summary, the RSK GAC were produced using the default input parameters for soil properties, the air dispersion model, building properties and the vapour model detailed in $SR3^{(5)}$. Modifications to the default $SR3^{(5)}$ exposure scenarios based on the C4SL exposure scenarios are presented in Tables 2 and 3 below.

The final selected GAC are presented by pathway in Table 4 and the combined GAC in Table 5.

Figure 1: Conceptual model for residential scenario with home-grown produce

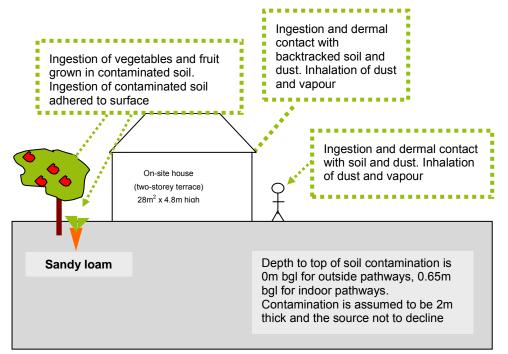


Table 1: Exposure assessment parameters for residential scenario with home-grown produce – inputs for CLEA model

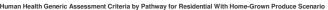
Parameter	Value	Justification
Land use	Residential with homegrown produce	Chosen land use
Receptor	Female child age 1 to 6	Key generic assumption given in Box 3.1, SR3 ⁽⁵⁾
Building	Small terraced house	Key generic assumption given in Box 3.1, SR3. Small, two-storey terraced house chosen, as it is the most conservative residential building type in terms of protection from vapor intrusion (Section 3.4.6, SR3) ⁽⁵⁾
Soil type	Sandy Loam	Most common UK soil type (Section 4.3.1, from Table 3.1, SR3) ⁽⁵⁾
Start AC (age class)	1	Range of age classes corresponding to key generic assumption that the
End AC (age class)	6	critical receptor is a young female child aged 0–6. From Box 3.1, SR3 ⁽⁵⁾
SOM (%)	6	Representative of sandy loamy soil according to EA guidance note dated January 2009 entitled 'Changes We Have Made to the CLEA Framework Documents' (13)
	1	To provide SAC for sites where
	2.5	SOM <6% as often observed by RSK
pН	7	Model default

Table 2: Residential with home-grown produce - modified home-grown produce data

Name	Consumption rate 90 th percentile (g FW kg ⁻¹ BW day ⁻¹) by age class				Dry weight conversion factor (g DW g ⁻¹	Home- grown fraction (average)	Home- grown fraction (high	Soil loading factor (g g ⁻¹ DW)	Preparation correction factor		
	1	2	3	4	5	6	FW)	(avolugo)	end)	(9 9 - 11)	
Green vegetables	7.12	5.87	5.87	5.87	4.53	4.53	0.096	0.05	0.33	1.00E-03	2.00E-01
Root vegetables	10.7	2.83	2.83	2.83	2.14	2.14	0.103	0.06	0.4	1.00E-03	1.00E+00
Tuber vegetables	16	6.6	6.6	6.6	4.95	4.95	0.21	0.02	0.13	1.00E-03	1.00E+00
Herbaceous fruit	1.83	3.39	3.39	3.39	2.24	2.24	0.058	0.06	0.4	1.00E-03	6.00E-01
Shrub fruit	2.23	0.46	0.46	0.46	0.19	0.19	0.166	0.09	0.6	1.00E-03	6.00E-01
Tree fruit	3.82	10.3	10.3	10.3	5.16	5.16	0.157	0.04	0.27	1.00E-03	6.00E-01
Justification	Table	Table 3.4, SP1010 (3)					Table 6.3, SR3 ⁽⁵⁾	Table 4.19,	SR3 ⁽⁵⁾	Table 6.3, S	R3 ⁽⁵⁾

Table 3: Residential with home-grown produce - modified and use and receptor data

Damamatan	11:4	Age clas	Age class							
Parameter	Unit	1	2	3	4	5	6			
EF (soil and dust ingestion)	day yr ⁻¹	180	365	365	365	365	365			
EF (consumption of home- grown produce)	day yr ⁻¹	180	365	365	365	365	365			
EF (skin contact, indoor)	day yr ⁻¹	180	365	365	365	365	365			
EF (skin contact, outdoor)	day yr ⁻¹	170	170	170	170	170	170			
EF (inhalation of dust and vapour, indoor)	day yr ⁻¹	365	365	365	365	365	365			
EF (inhalation of dust and vapour, outdoor)	day yr ⁻¹	365	365	365	365	365	365			
Justification		Table 3.5, SP1010 ⁽³⁾ ; Table 3.1, SR3 ⁽⁵⁾								
Soil to skin adherence factor (outdoor)	mg cm ⁻² day ⁻¹	0.1	0.1	0.1	0.1	0.1	0.1			
Justification	Table 3.5	5, SP1010	(3)							
Inhalation rate	m ³ day ⁻¹	5.4	8.0	8.9/f	10.1	10.1	10.1			
Justification		Mean va	lue USEP	A, 2011 ⁽¹²⁾	; Table 3.2	., SP1010 ⁽	3)			


Notes: For **cadmium**, the exposure assessment for a residential land use is based on estimates representative of lifetime exposure AC1-18. This is because the TDI_{oral} and TDI_{inh} are based on considerations of the kidney burden accumulated over 50 years. It is therefore reasonable to consider exposure not just in childhood but averaged over a longer period. See the Environment Agency Science Report SC05002/ TOX $3^{(1)}$, Science Report SC050021/Cadmium SGV $^{(1)}$ and the project report SP1010 $^{(3)}$ for more information.

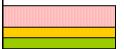
References

- Environment Agency (2009), 'Science Reports SC050021 SGV and TOX reports for:
 benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic, cadmium,
 phenol, dioxins, furans and dioxin-like PCBs'; 'Supplementary information for the derivation
 of SGV for: benzene, toluene, ethylbenzene, xylene, mercury, selenium, nickel, arsenic,
 cadmium, phenol, dioxins, furans and dioxin-like PCBs', and 'Contaminants in soil: updated
 collation of toxicological data and intake values for humans: benzene, toluene, ethylbenzene,
 xylene, mercury, selenium, nickel, arsenic, cadmium, phenol, dioxins, furans and dioxin-like
 PCBs'. Available at: https://www.gov.uk/government/publications/land-contamination-soil-guideline-values-sqvs (accessed 4 February 2015)
- 2. Nathanial, C. P., McCaffrey, C., Ashmore, M., Cheng, Y., Gillet, A. G., Ogden, R. C. and Scott, D. (2009), *LQM/CIEH Generic Assessment Criteria for Human Health Risk Assessment*, second edition (Nottingham: Land Quality Press).
- 3. Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination', Revision 2, DEFRA research project SP1010.
- 4. Department for Environment, Food and Rural Affairs (Defra) (2014), 'SP1010: Development of Category 4 Screening Levels for assessment of land affected by contamination Policy Companion Document', Revision 2.
- 5. Environment Agency (2009), Science Report SC050021/SR3. Updated technical background to the CLEA model (Bristol: Environment Agency).
- 6. Contaminated Land: Applications in Real Environment (CL:AIRE) (2014). 'Appendices C to H). DEFRA research project SP1010'.
- 7. Nathanial, C. P., McCaffrey, C., Gillet, A. G., Ogden, R. C. and Nathanial, J. F. (2015), *The LQM/CIEH S4ULs for Human Health Risk Assessment* (Nottingham: Land Quality Press).
- 8. Environment Agency (2009), *Human health toxicological assessment of contaminants in soil. Science Report Final SC050021/SR2* (Bristol: Environment Agency).
- 9. Environment Agency (2009), *Science Report SC050021/SR4 CLEA Software (version 1.05) Handbook* (Bristol: Environment Agency).
- 10. Environment Agency (2008), *Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values* (Bristol: Environment Agency).
- 11. CL:AIRE (2009), Soil Generic Assessment Criteria for Human Health Risk Assessment (London: CL:AIRE).
- 12. USEPA (2011), *Exposure factors handbook*, EPA/600/R-090/052F (Washington, DC: Office of Research and Development).
- 13. Environment Agency (2009), 'Changes made to the CLEA framework documents after the three-month evaluation period in 2008', released January 2009.
- 14. USEPA (2010). Hydrogen cyanide and cyanide salts. Integrated Risk Information Systems (IRIS) Chemical Assessment Summary. September 2010. (accessed 9 December 2015)

Human Health Generic Assessment	Criteria b	y Patriway for Re	esidentiai with no	me-Grown Produc	e Scenario								ļ
	Notes	SAC Appropri	ate to Pathway SO	OM 1% (mg/kg)	Soil Saturation	SAC Appropr	iate to Pathway SO	M 2.5% (mg/kg)	Soil Saturation	SAC Appropr	iate to Pathway S	OM 6% (mg/kg)	Soil Saturation
Compound	es	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)
Metals			ı		1			1	T				Т
Arsenic	(a,b)	3.71E+01	5.26E+02	NR	NR	3.71E+01	5.26E+02	NR	NR	3.71E+01	5.26E+02	NR	NR
Cadmium	(a)	2.30E+01	4.88E+02	2.21E+01	NR	2.30E+01	4.88E+02	2.21E+01	NR	2.30E+01	4.88E+02	2.21E+01	NR
Chromium (III) - trivalent	(c)	1.84E+04	9.07E+02	NR	NR	1.84E+04	9.07E+02	NR	NR	1.84E+04	9.07E+02	NR	NR
Chromium (VI) - hexavalent	(a,d)	5.85E+01	2.06E+01	NR	NR	5.85E+01	2.06E+01	NR	NR	5.85E+01	2.06E+01	NR	NR
Copper	()	2.72E+03	1.41E+04	2.47E+03	NR	2.72E+03	1.41E+04	2.47E+03	NR NB	2.72E+03	1.41E+04	2.47E+03	NR NB
Lead Elemental Mercury (Hq ⁰)	(a) (d)	2.01E+02 NR	NR 2.35E-01	NR NR	NR 4.31E+00	2.01E+02 NR	NR 5.60E-01	NR NR	NR 1.07E+01	2.01E+02 NR	NR 1.22E+00	NR NB	NR 2.58E+01
Inorganic Mercury (Hg ²⁺)	(a)	3.95E+01	3.63E+03	3.91E+01	4.31E+00 NR	3.95E+01	3.63E+03	NR 3.91E+01	NR	3.95E+01	3.63E+03	NR 3.91E+01	2.58E+01
Methyl Mercury (Hg ⁴⁺)		1.26E+01	1.87E+01	7.52F+00	7.33E+01	1.26E+01	3.63E+03 3.62F+01	9.34F+00	1.42E+02	1.26E+01	7.68E+01	1.08F+01	3.04E+02
, , , ,	(d)	1.27E+02	1.81E+02	7.32E+00 NR	7.33E+01 NR	1.27E+02	1.81E+02	9.34E+00	NR	1.27E+02	1.81E+02	NR	3.04E+02 NR
Nickel Selenium	(b)	2.58E+02	1.81E+02 NR	NR NR	NR NR	2.58E+02	1.81E+02 NR	NR NR	NR	2.58E+02	1.81E+02 NR	NR NR	NR NR
Zinc.	(b)	3.86E+03	3.63E+07	NR NR	NR NR	3.86E+03	3.63E+07	NR	NR	3.86E+03	3.63E+07	NR NR	NR
Cyanide (free)	(D)	1.37E+00	1.37E+04	1.37E+00	NR	1.37E+00	1.37E+04	1.37E+00	NR	1.37E+00	1.37E+04	1.37E+00	NR
Cyanide (nee)		1.37 = +00	1.37 E+04	1.37 L+00	INIT	1.372+00	1.37 = +04	1.572+00		1.57 = +00	1.372+04	1.37L+00	
Volatile Organic Compounds													
Benzene	(a)	2.62E-01	9.01E-01	2.03E-01	1.22E+03	5.39E-01	1.68E+00	4.08E-01	2.26E+03	1.16E+00	3.48E+00	8.72E-01	4.71E+03
Toluene	(/	1.53E+02	9.08E+02	1.31E+02	8.69E+02	3.49E+02	2.00E+03	2.97E+02	1.92E+03	7.95E+02	4.55E+03	6.77E+02	4.36E+03
Ethylbenzene		1.10E+02	8.34E+01	4.74E+01	5.18E+02	2.61E+02	1.96E+02	1.12E+02	1.22E+03	6.00E+02	4.58E+02	2.60E+02	2.84E+03
Xylene - m		2.10E+02	8.25E+01	5.92E+01	6.25E+02	5.01E+02	1.95E+02	1.40E+02	1.47E+03	1.15E+03	4.56E+02	3.27E+02	3.46E+03
Xylene - o		1.92E+02	8.87E+01	6.07E+01	4.78E+02	4.56E+02	2.08E+02	1.43E+02	1.12E+03	1.05E+03	4.86E+02	3.32E+02	2.62E+03
Xylene - p		1.98E+02	7.93E+01	5.66E+01	5.76E+02	4.70E+02	1.86E+02	1.33E+02	1.35E+03	1.08E+03	4.36E+02	3.10E+02	3.17E+03
Total xylene		1.92E+02	7.93E+01	5.66E+01	6.25E+02	4.56E+02	1.86E+02	1.33E+02	1.47E+03	1.05E+03	4.36E+02	3.10E+02	3.46E+03
Methyl tertiary-Butyl ether (MTBE)		1.54E+02	1.04E+02	6.22E+01	2.04E+04	2.97E+02	1.69E+02	1.08E+02	3.31E+04	6.03E+02	3.21E+02	2.10E+02	6.27E+04
Trichloroethene		2.83E-01	1.72E-02	1.62E-02	1.54E+03	6.26E-01	3.59E-02	3.40E-02	3.22E+03	1.41E+00	7.98E-02	7.55E-02	7.14E+03
Tetrachloroethene		4.49E+00	1.79E-01	1.76E-01	4.24E+02	1.04E+01	4.02E-01	3.94E-01	9.51E+02	2.38E+01	9.21E-01	9.04E-01	2.18E+03
1,1,1-Trichloroethane		3.33E+02	9.01E+00	8.77E+00	1.43E+03	7.26E+02	1.84E+01	1.80E+01	2.92E+03	1.62E+03	4.04E+01	3.94E+01	6.39E+03
1,1,1,2 Tetrachloroethane		5.39E+00	1.54E+00	1.20E+00	2.60E+03	1.27E+01	3.56E+00	2.78E+00	6.02E+03	2.92E+01	8.29E+00	6.46E+00	1.40E+04
1,1,2,2-Tetrachloroethane		2.81E+00	3.92E+00	1.64E+00	2.67E+03	6.10E+00	8.04E+00	3.47E+00	5.46E+03	1.36E+01	1.76E+01	7.67E+00	1.20E+04
Carbon Tetrachloride		3.10E+00	2.58E-02	2.57E-02	1.52E+03	7.11E+00	5.65E-02	5.62E-02	3.32E+03	1.62E+01	1.28E-01	1.27E-01	7.54E+03
1,2-Dichloroethane		3.17E-02	9.20E-03	7.13E-03	3.41E+03	5.73E-02	1.33E-02	1.08E-02	4.91E+03	1.09E-01	2.28E-02	1.88E-02	8.43E+03
Vinyl Chloride		3.82E-03	7.73E-04	6.43E-04	1.36E+03	6.87E-03	1.00E-03	8.73E-04	1.76E+03	1.25E-02	1.53E-03	1.36E-03	2.69E+03
1,2,4-Trimethylbenzene		NR	1.76E+00	NR	4.74E+02	NR	4.26E+00	NR	1.16E+03	NR	9.72E+00	NR	2.76E+03
1,3,5-Trimethylbenzene	(e)	NR	NR	NR	2.30E+02	NR	NR	NR	5.52E+02	NR	NR	NR	1.30E+03
Semi-Volatile Organic Compounds			1			1			1				T
Acenaphthene	1	2.27E+02	4.86E+04	2.26E+02	5.70E+01	5.41E+02	1.18E+05	5.38E+02	1.41E+02	1.18E+03	2.68E+05	1.17E+03	3.36E+02
Acenaphthylene	+	1.85E+02	4.59E+04	1.84E+02	8.61E+01	4.42E+02	1.11E+05	4.40E+02	2.12E+02	9.78E+02	2.53E+05	9.74E+02	5.06E+02
Anthracene	+	2.43E+03	1.53E+05	2.39E+03	1.17E+00	5.53E+03	3.77E+05	5.45E+03	2.91E+00	1.10E+04	8.76E+05	1.09E+04	6.96E+00
Benzo(a)anthracene	+	1.01E+01	2.47E+01	7.18E+00	1.71E+00	1.42E+01	4.37E+01	1.07E+01	4.28E+00	1.69E+01	6.26E+01	1.33E+01	1.03E+01
Benzo(a)pyrene	(a)	4.96E+00	3.51E+01	NR	9.11E-01	4.96E+00	3.77E+01	NR	2.28E+00	4.96E+00	3.89E+01	NR	5.46E+00
Benzo(b)fluoranthene		2.96E+00	1.93E+01	2.56E+00	1.22E+00	3.89E+00	2.13E+01	3.29E+00	3.04E+00	4.43E+00	2.22E+01	3.69E+00	7.29E+00
Benzo(g,h,i)perylene	+	3.77E+02	1.87E+03	3.14E+02	1.54E-02	4.09E+02	1.94E+03	3.38E+02	3.85E-02	4.23E+02	1.97E+03	3.48E+02	9.23E-02
Benzo(k)fluoranthene	+	8.92E+01	5.41E+02	7.66E+01	6.87E-01	1.10E+02	5.76E+02	9.22E+01	1.72E+00	1.21E+02	5.91E+02	1.00E+02	4.12E+00
Chrysene	+	1.66E+01	1.19E+02	1.46E+01	4.40E-01	2.54E+01	1.49E+02	2.17E+01	1.10E+00	3.19E+01	1.66E+02	2.67E+01	2.64E+00
Dibenzo(a,h)anthracene	+	2.90E-01	1.45E+00	2.41E-01	3.93E-03	3.43E-01 5.63E+02	1.64E+00	2.84E-01	9.82E-03	3.69E-01	1.74E+00	3.04E-01	2.36E-02
Fluoranthene	+	2.87E+02	3.83E+04	2.85E+02	1.89E+01	5.63E+02 4.19E+02	8.87E+04	5.60E+02	4.73E+01	9.00E+02	1.83E+05	8.96E+02	1.13E+02
Fluorene	+	1.77E+02 3.09E+01	6.20E+03 2.12E+02	1.72E+02 2.70E+01	3.09E+01	4.19E+02 4.22E+01	1.53E+04	4.07E+02	7.65E+01	8.98E+02 4.92E+01	3.62E+04 2.50E+02	8.77E+02	1.83E+02
Indeno(1,2,3-cd)pyrene	+	3.09E+01 2.78E+01	2.12E+02 2.33E+01	2./0E+01 1.27E+01	6.13E-02 7.64E+01	4.22E+01 6.66E+01	2.38E+02 5.58E+01	3.59E+01 3.04E+01	1.53E-01 1.83E+02	4.92E+01 1.53E+02	2.50E+02 1.31E+02	4.11E+01 7.06E+01	3.68E-01 4.32E+02
Naphthalene Phenanthrene	+	9.85E+01	7.17E+03	9.72E+01	7.64E+01 3.60E+01	2.24E+02	1.76E+04	2.22E+02	1.83E+02 8.96E+01	1.53E+02 4.48E+02	1.31E+02 4.07E+04	7.06E+01 4.43E+02	4.32E+02 2.14E+02
Pyrene Pyrene	+	9.85E+01 6.25E+02	7.17E+03 8.79E+04	9.72E+01 6.20E+02	2.20E+00	1.25E+03	1.76E+04 2.04E+05	1.24E+03	8.96E+01 5.49E+00	4.48E+02 2.05E+03	4.07E+04 4.23E+05	4.43E+02 2.04E+03	2.14E+02 1.32E+01
	+ -	1.60E+02	4.58E+02	1.20E+02		1.25E+03 2.96E+02	6.95E+02	1.24E+03 2.09E+02		5.86E+02	4.23E+05 1.19E+03	2.04E+03 3.93E+02	
Phenol		1.000+02	4.30L+02	1.201+02	2.42E+04	2.30L+02	0.33E+02	2.03L+02	3.81E+04	5.86E+02	1.19E+03	3.93E+02	7.03E+04

Table 4

Human Health Generic Assessment Criteria by Pathway for Residential With Home-Grown Produce Scenario



	8	SAC Appropri	iate to Pathway SC	M 1% (mg/kg)	Soil Saturation	SAC Appropri	ate to Pathway SO	/l 2.5% (mg/kg)	Soil Saturation	SAC Appropr	ate to Pathway So	OM 6% (mg/kg)	Soil Saturation
Compound	les	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)	Oral	Inhalation	Combined	Limit (mg/kg)
Total Petroleum Hydrocarbons													
Aliphatic hydrocarbons EC ₅ -EC ₆		4.99E+03	4.24E+01	4.23E+01	3.04E+02	1.13E+04	7.79E+01	7.78E+01	5.58E+02	2.50E+04	1.61E+02	1.60E+02	1.15E+03
Aliphatic hydrocarbons >EC ₆ -EC ₈		1.49E+04	1.04E+02	1.03E+02	1.44E+02	3.43E+04	2.31E+02	2.31E+02	3.22E+02	7.11E+04	5.29E+02	5.28E+02	7.36E+02
Aliphatic hydrocarbons >EC ₈ -EC ₁₀		1.61E+03	2.68E+01	2.67E+01	7.77E+01	2.91E+03	6.55E+01	6.51E+01	1.90E+02	4.26E+03	1.56E+02	1.54E+02	4.51E+02
Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂		4.57E+03	1.33E+02	1.32E+02	4.75E+01	5.51E+03	3.31E+02	3.26E+02	1.18E+02	5.98E+03	7.93E+02	7.65E+02	2.83E+02
Aliphatic hydrocarbons >EC ₁₂ -EC ₁₆		6.27E+03	1.11E+03	1.06E+03	2.37E+01	6.34E+03	2.78E+03	2.41E+03	5.91E+01	6.36E+03	6.67E+03	4.34E+03	1.42E+02
Aliphatic hydrocarbons >EC ₁₆ -EC ₃₅	(b)	6.46E+04	NR	NR	8.48E+00	9.17E+04	NR	NR	2.12E+01	1.10E+05	NR	NR	5.09E+01
Aliphatic hydrocarbons >EC35-EC44	(b)	6.46E+04	NR	NR	8.48E+00	9.17E+04	NR	NR	2.12E+01	1.10E+05	NR	NR	5.09E+01
Aromatic hydrocarbons >EC ₈ -EC ₉ (styre	ene)	1.08E+01	5.22E+02	1.06E+01	6.26E+02	2.53E+01	1.20E+03	2.48E+01	1.44E+03	5.81E+01	2.79E+03	5.69E+01	3.35E+03
Aromatic hydrocarbons >EC ₉ -EC ₁₀		5.76E+01	4.74E+01	3.45E+01	6.13E+02	1.38E+02	1.16E+02	8.38E+01	1.50E+03	3.07E+02	2.77E+02	1.94E+02	3.58E+02
Aromatic hydrocarbons >EC ₁₀ -EC ₁₂		8.29E+01	2.58E+02	7.52E+01	3.64E+02	1.96E+02	6.39E+02	1.79E+02	8.99E+02	4.25E+02	1.52E+03	3.91E+02	2.15E+03
Aromatic hydrocarbons >EC ₁₂ -EC ₁₆		1.47E+02	2.85E+03	1.45E+02	1.69E+02	3.36E+02	7.07E+03	3.32E+02	4.19E+02	6.81E+02	1.68E+04	6.74E+02	1.00E+03
Aromatic hydrocarbons >EC ₁₆ -EC ₂₁	(b)	2.63E+02	NR	NR	5.37E+01	5.45E+02	NR	NR	1.34E+02	9.34E+02	NR	NR	3.21E+02
Aromatic hydrocarbons >EC ₂₁ -EC ₃₅	(b)	1.09E+03	NR	NR	4.83E+00	1.47E+03	NR	NR	1.21E+01	1.70E+03	NR	NR	2.90E+01
Aromatic hydrocarbons >EC ₃₅ -EC ₄₄	(b)	1.09E+03	NR	NR	4.83E+00	1.47E+03	NR	NR	1.21E+01	1.70E+03	NR	NR	2.90E+01

Notes:

EC - equivalent carbon. SAC - soil assessment criteria.

The CLEA model output is colour coded depending upon whether the soil saturation limit has been exceeded.

Calculated SAC exceeds soil saturation limit and may significantly affect the interpretation of any exceedances as the contribution of the indoor and outdoor vapour pathway to total exposure is \$10%

Calculated SAC exceeds soil saturation limit but the exceedance will not affect the SAC significantly as the contribution of the indoor and outdoor vapour pathway to total exposure is <10%.

Calculated SAC does not exceed the soil saturation limit.

The SAC for organic compounds are dependant upon soil organic matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994.

SAC for TPH fractions, PAHs napthalene, acenaphthene and acenaphthylene, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the indoor air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway (Section 10.1.1, SR3)

(a) SAC for arsenic, benzene, benzo(a)pyrene, cadmium, chromium VI and lead are derived using the C4SL toxicology data.

(b) SAC for selenium should not include the inhalation pathway as no expert group HCV has been derived; aliphatic and aromatic hydrocarbons >EC16 should not include inhalation pathway due to their non-volatile nature and inhalation exposure being minimal (oral, dermal and inhalation exposure is compared to the oral HCV); arsenic should only be based on oral contribution (rather than combined) owing to the relative small contribution from inhalation in accordance with the SGV report. The Oral SAC should be adopted for zinc and benzo(a)pyrene.

(c) SAC for CrIII should be based on the lower of the oral and inhalation SAC (see LQM/CIEH 2015 Section 6.8)

(d) SAC for elemental mercury, chromium VI and nickel should be based on the inhalation pathway only.

(e) SAC for 1,3,5-trimethylbenzene is not recorded owing to the lack of toxicological data, SAC for 1,2,4 trimethylbenzene may be used.

GENERIC ASSESSMENT CRITERIA FOR HUMAN HEALTH - RESIDENTIAL WITH HOME-GROWN PRODUCE

Table 5

	SAC for Soil SOM 1%	SAC for Soil SOM 2.5%	SAC for Soil SOM 6%
Compound	(mg/kg)	(mg/kg)	(mg/kg)
Metals			
Arsenic	37	37	37
Cadmium	22	22	22
Chromium (III) - trivalent	910	910	910
Chromium (VI) - hexavalent	21	21	21
Copper	2,500	2,500	2,500
Lead	200	200	200
Elemental Mercury (Hg ⁰)	0.2	0.6	1.2
norganic Mercury (Hg ²⁺)	39	39	39
Methyl Mercury (Hg ⁴⁺)	10	10	10
Nickel	130	130	130
Selenium	258	258	258
Zinc	3,900	3,900	3,900
Cyanide (free)	1.4	1.4	1.4
/olatile Organic Compounds			
Benzene	0.20	0.41	0.87
Toluene	130	300	680
Ethylbenzene	50	110	260
Kylene - m	59	140	327
(ylene - o	61	143	332
Kylene - p	57	133	310
Fotal xylene	57	133	310
Methyl tertiary-Butyl ether (MTBE)	60	110	210
Trichloroethene	0.02	0.03	0.08
Tetrachloroethene	0.2	0.4	0.9
,1,1-Trichloroethane	9	18	39
,1,1,2 Tetrachloroethane	1.2	2.8	6.5
,1,2,2-Tetrachloroethane	1.6	3.5	7.7
Carbon Tetrachloride	0.026	0.056	0.127
1,2-Dichloroethane	0.007	0.011	0.019
Vinyl Chloride	0.0006	0.0009	0.0014
1,2,4-Trimethylbenzene	1.8	4.3	9.7
1,3,5-Trimethylbenzene	NR	NR	NR
Semi-Volatile Organic Compounds			
Acenaphthene	230	540	1,170
Acenaphthylene	180	440	970
Anthracene	2,400	5,500	10,900
Benzo(a)anthracene	7	11	13
Benzo(a)pyrene	5	5	5
Benzo(b)fluoranthene	2.6	3.3	3.7
Benzo(g,h,i)perylene	310	340	350
Benzo(k)fluoranthene	77	92	100
Chrysene	15	22	27
Dibenzo(a,h)anthracene	0.24	0.28	0.30
Fluoranthene	290	560	900
Fluorene	170	410	880
ndeno(1,2,3-cd)pyrene	27	36	41
Naphthalene	13	30	71
Phenanthrene	100	220	440
Pyrene	620	1,240	2,040
Phenol	120	210	390
Total Petroleum Hydrocarbons			
Aliphatic hydrocarbons EC ₅ -EC ₆	42	78	160
Aliphatic hydrocarbons >EC ₆ -EC ₈	100	230	530
Aliphatic hydrocarbons >EC ₈ -EC ₁₀	27	65	154
Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂	130 (48)	330 (118)	760 (283)
Aliphatic hydrocarbons >EC ₁₀ -EC ₁₂			
1 , 12 10	1,100 (24)	2,400 (59)	4,300 (142)
Aliphatic hydrocarbons >EC ₁₆ -EC ₃₅	65,000 (8)	92,000 (21)	110,000
Aliphatic hydrocarbons >EC ₃₅ -EC ₄₄	65,000 (8)	92,000 (21)	110,000
Aromatic hydrocarbons >EC ₈ -EC ₉ (styrene)	11	25	57
Aromatic hydrocarbons >EC ₉ -EC ₁₀	30	80	190
Aromatic hydrocarbons >EC ₁₀ -EC ₁₂	80	180	390
* ** **			
Aromatic hydrocarbons >EC ₁₂ -EC ₁₆	140	330	670
Aromatic hydrocarbons >EC ₁₆ -EC ₂₁	260	540	930
Aromatic hydrocarbons >EC ₂₁ -EC ₃₅	1,100	1,500	1,700
Aromatic hydrocarbons >EC ₂₅ -EC ₄₄	1 100	1 500	1 700

Minerals

No asbestos detected with ID or <0.001% dry weight¹ Asbestos

- Generic assessment criteria not calculated owing to low volatility of substance and therefore no pathway, or an absence of toxicological data.

1,100

- NR SAC for 1,3,5-trimethylbenzene is not recorded owing to the lack of toxicological data, SAC for 1,2,4 trimethylbenzene may be used EC - equivalent carbon. SAC - soil assessment criteria.
- ¹LOD for weight of asbestos per unit weight of soil calculated on a dry weight basis using PLM, handpicking and gravimetry.

The SAC for organic compounds are dependent on Soil Organic Matter (SOM) (%) content. To obtain SOM from total organic carbon (TOC) (%) divide by 0.58. 1% SOM is 0.58% TOC. DL Rowell Soil Science: Methods and Applications, Longmans, 1994.

SAC for TPH fractions, PAHs napthalene, acenaphthene and acenaphthylene, BTEX and trimethylbenzene compounds were produced using an attenuation factor for the ind air inhalation pathway of 10 to reduce conservatism associated with the vapour inhalation pathway, section 10.1.1, SR3.

1,500

1,700

Aromatic hydrocarbons >EC₃₅-EC₄₄

(VALUE IN BRACKETS)

RSK has adopted an approach for petroleum hydrocarbons in accordance with LOM/CIEH whereby the concentration modelled for each petroleum hydrocarbon fraction has been tabulated as the SAC with the corresponding solubility or vapour saturation limits given in brackets.

GENERIC ASSESSMENT CRITERIA FOR CONTROLLED WATERS

Protection of the water environment

The water environment in the United Kingdom is protected under a number of regulatory regimes. The relevant environmental regulator is consulted where there may be a risk that pollution of 'controlled waters' may occur or may have occurred in the past.

The term 'controlled waters' refers to coastal waters, inland freshwaters and groundwater. The EU Water Framework Directive (WFD) (2000/60/EC) is implemented via domestic regulations and guidance, covering aspects of groundwater and surface water protection as well as drinking water supply policy. Domestic legislation and guidance will vary across the United Kingdom. Therefore, the relevant legislation for England, Wales, Northern Ireland and Scotland should be reviewed, alongside guidance provided by the Environment Agency (EA), Natural Resource Wales (NRW), the Scottish Environmental Protection Agency (SEPA) or the Northern Ireland Environment Agency (NIEA), as appropriate.

The main objectives of the protection and remediation of groundwater under threat from land contamination are set out within "The Environment Agency's approach to groundwater protection", version 1.0 (March 2017)⁽¹⁾ and the associated guidance "Land contamination groundwater compliance points: quantitative risk assessments (March 2017)^(1a) that have replaced the previous guidance document "Groundwater Principles and Practice (GP3)". When assessing risks to groundwater, the following need to be considered:

- Where pollutants have not yet entered groundwater, all necessary and reasonable measures must be taken to:
 - prevent the input of hazardous substances into groundwater (see description of hazardous substances below)
 - **limit** the entry of other (non-hazardous) pollutants into groundwater to avoid pollution, deterioration in the status of groundwater bodies and to prevent sustained, upward trends in pollutant concentrations in groundwater.
- Where pollutants have already entered groundwater, the priority is to take all necessary and reasonable measures to:
 - minimise further entry of "contaminants" where there is a defined source
 - *limit the pollution* of groundwater or any effect on the status of the groundwater body from the future expansion of the 'plume', if necessary, by actively reducing its extent.

Within the context of groundwater risk assessments on sites affected by land contamination, "reasonable" means feasible without involving disproportionate costs. What costs are "disproportionate" depends on site-specific circumstances, which may include:

- Considerations of technical feasibility such as identified by the remedial options appraisal, this
 may be due to the distribution or nature of the contamination and the available remedial
 methods to treat the identified contamination;
- Sustainability considerations.

DEFINITIONS AND SUBSTANCE CLASSIFICATIONS

Risks to surface waters:

When assessing risks to surface waters, the following list of definitions should be understood:

Priority substances (PS) are harmful substances originally identified under the Water Framework Directive (WFD) 2000/60/EC as substances 'presenting a significant risk to or via the aquatic environment' at a European level. Member States are required to incorporate the identified **PS** into their country-wide monitoring programmes. There are currently 33 **PS** defined within the Priority Substances Directive (2013/39/EU; Annex 1), with a further 12 additional substances due to come into force from 22 December 2018. Directive 2013/39/EU has been transposed into domestic legislation for England and Wales by The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.

Under the umbrella of **PS**, there is a sub-set of substances identified as being "hazardous", and these are referred to as **Priority hazardous substances (PHS).** The list of **PHS** is defined at EU level within the Priority Substances Directive (2013/39/EU). The WFD defines hazardous substances as 'substances (or groups of substances) that are toxic, persistent and liable to bioaccumulate, and other substances or groups of substances that give rise to an equivalent level of concern.' There are currently 15 **PHS**, with a further 6 additional substances due to come into force from 22 December 2018.

There is also another group of substances defined at EU level and which are referred to as **other pollutants (OP)** in Directive 2013/39/EU. These are additional substances which although not **priority substances**, have EQS which are identical to those laid down in the legislation which applied prior to 13 January 2009 (Directive 2008/105/EU). The **OP** are listed along with the **priority substance (PS)** within the Priority Substances Directive (2013/39/EU), and their associated EQS are also listed therein. There are 6 **OP** defined within the Priority Substances Directive (2013/39/EU).

In addition to the EU level substances, there are also a group of pollutants defined at a Member State level, referred to as **Specific pollutants (SP)**. These substances are pollutants which are released in significant quantities into water bodies in each of the individual European Member States. Under the WFD, Member States are required to set their own EQS for these substances. An indicative list of **SP** is given in Annex VIII of the WFD. Many of the substances categorised as **SP** in the UK were formerly List 2 substances under the old Groundwater Directive (80/68/EEC). The **SP** are defined within Part 2 (Table 1) of The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.

Risks to groundwater:

When assessing risks to groundwater, the following definitions should be understood:

Under the requirements of the Groundwater Daughter Directive (2006/118/EU), the UK has published a list of substances it considers to be **hazardous substances** with respect to groundwater. In their advisory capacity to the government, this list has been derived by the UK Joint Agencies Groundwater Directive Advisory Group (JAGDAG), of which the Environment Agency is a member. The JAGDAG list of **hazardous substances** was published in January 2017 and the Environment Agency will use the updated list of hazardous substances from this date for all new activities that may lead to the discharge of hazardous substances to groundwater. The list is extensive and can be found in full at:

Selecting the appropriate assessment criteria

When assessing the risks to controlled waters, various assessment criteria apply, depending on the nature of the assessment and the conceptual site model.

Where a surface water body is involved, then Environmental Quality Standards (EQS) are the relevant assessment criteria as they are designed to be protective of surface water ecology.

Where a public water supply or a Principal aquifer is involved, then the standards defined in The Water Supply (Water Quality) Regulations⁽²⁾ are the primary source of assessment criteria. The Private Water Supplies Regulations⁽³⁾ may also be applicable in some cases. For instances where there are no UK assessment criteria, then the World Health Organisation (WHO) drinking water guidelines⁽⁴⁾ may be used.

This appendix presents the generic assessment criteria (GAC) that RSK considers suitable for assessing risks to controlled waters for our most commonly encountered determinants. A full list of EQS for England and Wales are included in The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.

The RSK GAC for controlled waters are presented in **Table 1** and **Table 2**. In line with the Environment Agency's Remedial Targets Methodology, the GAC for controlled waters are termed 'target concentrations'.

The appropriate target concentrations should be selected with consideration to:

- the site conceptual model (i.e. the receptor at potential risk);
- whether the substance is already present in groundwater at the site;
- whether or not the substance is classified as a priority hazardous substance under the Priority Substances Directive (2013/39/EC) (see above), or as a hazardous substance according to the current list of JAGDAG determinations⁽⁵⁾; and
- background concentrations in the aquifer (if applicable).

It is important to remember that the WFD and Environment Agency guidance^(1 & 1a) support a sustainable, risk-based approach be applied to groundwater contamination. Exceedance of any target concentration does not necessarily imply that an unacceptable risk exists or that remediation is inevitably required.

Target concentrations shaded in green are <u>statutory values</u>

Target concentrations shaded in orange are <u>non-statutory values</u>

Note: Units μg/l throughout (unless otherwise stated)

Table 1: Target concentrations for controlled waters (excluding TPH CWG fractions)

Substanc	e classification			Target conc	entrations (µg/l)		
			Minimum	III drinking woter	EQS or best equivalent		
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	UK drinking water standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters	
		Metal	s & other inor	ganics			
Hazardous substance	Specific pollutant	Arsenic	-	10 ⁽²⁾	50 ^(6a)	25 ^(6a)	
Non-hazardous pollutant	Priority substance	Cadmium	0.1 ⁽⁷⁾	5 ⁽²⁾	≤0.08, 0.08, 0.09, 0.15, 0.25 ^(6b)	0.2 ^(6a)	
(Not determined)	-	Chromium (total)	-	50 ⁽²⁾	Sum values for chr	omium III and VI	
(None	Specific pollutant	Chromium (III)	-	Use value for total chromium	4.7 ^(6a)	-	
Hazardous substance	Specific pollutant	Chromium (VI)			3.4 ^(6a)	0.6 ^(6a)	

Substanc	e classification			Target conc	entrations (µg/l)	
			Minimum	UK drinking water	EQS or best	equivalent
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters
						3.76 dissolved, where DOC ≤1mg/I ^(6a)
(Not determined)	Specific pollutant	Copper	-	2,000 ⁽²⁾	1 bioavailable ^(6a)	3.76µg/l + (2.677µg/l x ((DOC/2) – 0.5µg/l)) dissolved, where DOC >1mg/l ^(6a)
Hazardous substance	Priority substance	Lead	-	10 ⁽²⁾	1.2 bioavailable ^(6a)	1.3 ^(6a)
Hazardous substance	Priority hazardous substance	Mercury	0.01 ⁽⁷⁾	1 ⁽²⁾	0.07 ^(6c)	0.07 ^(6c)
Non-hazardous pollutant	Priority substance	Nickel	-	20 ⁽²⁾	4.0 bioavailable ^(6a)	8.6 ^(6a)
Non-hazardous pollutant	-	Selenium	-	10 ⁽²⁾	-	-
Non-hazardous pollutant	Specific pollutant	Zinc	-	3,000 ⁽⁸⁾	10.9 bioavailable ^(6a)	6.8 dissolved (6a)
None	Specific pollutant	Iron	-	200 ⁽²⁾	1000 ^{(6a)*1}	1000 ^(6a))*1
None	Specific pollutant	Manganese	-	50 ⁽²⁾ (0.05mg/l)	123 bioavailable ^(6a) (0.123mg/l)	-
(Not determined)	-	Aluminium	-	200 ⁽²⁾	-	-

Substanc	e classification			Target conce	entrations (µg/l)	
			Minimum		EQS or best	equivalent
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	UK drinking water standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters
Hazardous substance	Priority hazardous substance	Tributyltin compounds (Tributyltin-cation)	0.001 ⁽⁷⁾	-	0.0002 ^(6a)	0.0002 ^(6a)
(Not determined)	-	Sodium	-	200,000 ⁽²⁾ (200 mg/l)	-	-
Non-hazardous pollutant	Specific pollutant	Cyanide (Hydrogen cyanide)	-	50 ⁽²⁾ (0.05 mg/l)	1 ^(6a) (0.001 mg/l)	1 ^(6a) (0.001 mg/l)
Non-hazardous pollutant	-	Total ammonia ^{\$} (ammonium (as NH ₄ ⁺) plus ammonia (NH ₃)	-	500 ⁽²⁾ (0.5 mg/l)	300 ^(6f) (0.3 mg/l)	-
Non-hazardous pollutant	Specific pollutant	Ammonia un-ionised (NH ₃)	-	-	-	21 ^(6a) (0.021 mg/l)
Non-hazardous pollutant	Specific pollutant	Chlorine	-	-	2 ^(6a) (0.002 mg/l)	10 ^(6d) (0.01 mg/l)
(Not determined)	-	Chloride	-	250,000 ⁽²⁾ (250 mg/l)	-	-
(Not determined)	-	Sulphate	-	250,000 ⁽²⁾ (250 mg/l)	-	-
(Not determined)	-	Nitrate (as NO₃)	-	50,000 ⁽²⁾ (50 mg/l)	-	-
(Not determined)	-	Nitrite (as NO ₂)	-	500 ⁽²⁾ (0.5 mg/l)	10 ⁽⁹⁾ (0.01 mg/l)	-
		Volatile or	ganic compou	ınds (VOC)		

Substanc	e classification			Target conce	entrations (µg/l)	
			Minimum	UK drinking water	EQS or best	equivalent
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters
Non-hazardous pollutant	Other pollutant	Tetrachloroethene (tetrachloroethylene)	0.1 ⁽⁷⁾	10 ⁽²⁾	10 ^(6a)	10 ^(6a)
Hazardous substance	Other pollutant	Trichloroethene (trichloroethylene)	0.1 ⁽⁷⁾	10 ⁽²⁾	10 ^(6a)	10 ^(6a)
None	Specific pollutant	Tetrachloroethane	-	-	140 ^(6a)	-
Hazardous substance	Other pollutant	Carbon tetrachloride (tetrachloromethane)	0.1 ⁽⁷⁾	3.0 ⁽²⁾	12 ^(6a)	12 ^(6a)
Non-hazardous pollutant	Priority substance	1,2-Dichloroethane	1.0 ⁽⁷⁾	3.0 ⁽²⁾	10 ^(6a)	10 ^(6a)
Hazardous substance	-	Vinyl chloride (chloroethene)	-	0.5 ⁽²⁾	-	-
Non-hazardous pollutant	Priority substance	Dichloromethane	-	20 ⁽⁴⁾	20 ^(6a)	20 ^(6a)
Non-hazardous pollutant	Priority substance	Trichlorobenzenes	0.01 ⁽⁷⁾	-	0.4 ^(6a)	0.4 ^{((6a)}
(Not determined)	-	Trihalomethanes	-	100 ^(2a)	-	-
Hazardous substance	Priority substance	Trichloromethane (Chloroform)	0.1 ⁽⁷⁾	(see "Trihalomethanes"above)	2.5 ^(6a)	2.5 ^(6a)
Non-hazardous pollutant	Priority hazardous substance	Di(2-ethylhexyl) phthalate (bis(2-ethylhexyl) phthalate, DEHP)	-	8 ⁽⁴⁾	1.3 ^(6a)	1.3 ^(6a)

Substanc	e classification			Target conc	entrations (µg/l)		
			Minimum	UK drinking water	EQS or best equivalent		
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters	
None	Specific pollutant	Benzyl butyl phthalate	-	-	7.5 ^(6a)	0.75 ^(6e)	
Hazardous substance	Priority hazardous substance	Hexachlorobutadiene	0.005 ⁽⁷⁾	0.6 ⁽⁴⁾	0.6 ^(6c)	0.6 ^(6c)	
		Semi-volatile	organic comp	ounds (SVOC)			
(Not determined)	-	Acenaphthylene (C12-C16)	-	-	5.8 ⁽¹	0)	
Hazardous substance	Priority hazardous substance	Anthracene (C16-C35)	-	-	0.1 ^(6a)	0.1 ^(6a)	
Non-hazardous pollutant	Priority substance	Naphthalene (C10-C12)	-	-	2 ^(6a)	2 ^(6a)	
Hazardous substance	Priority substance	Fluoranthene (C16-C35)	-	-	0.0063 ^(6a)	0.0063 ^(6a)	
		Benzo(a)pyrene (C16-C35)	-	0.01 ⁽²⁾	0.00017 ^(6a)	0.00017 ^(6a)	
Hazardous substance(s)	Priority hazardous substance(s)	Benzo(b)fluoranthene (C16-C35)	-	0.1 ⁽²⁾ sum of the concentration of the	No EQS for these substances. B(a)P should be used as the indicator		
		Benzo(k)fluoranthene (C16-C35)	-	four specified compounds	compound		

Substance classification			Target concentrations (μg/l)			
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	Minimum reporting value	UK drinking water standard (or best equivalent)	EQS or best equivalent	
					Freshwater	Transitional (estuaries) and coastal waters
		Benzo(g,h,i)perylene (C16-C35)	-			
		Indeno(1,2,3-cd) pyrene (C16-C35)	-			
Non-hazardous pollutant	Specific pollutant	Phenol		-	7.7 ^(6a)	7.7 ^(6a)
Hazardous substance	Specific pollutant	2,4-Dichlorophenol	0.1 ⁽⁷⁾	-	4.2 ^(6a)	0.42 ^(6a)
Hazardous substance	Priority substance	Pentachloro-phenol (PCP)	0.1 ⁽⁷⁾	9 ⁽⁴⁾	0.4 ^(6a)	0.4 ^(6a)
		Petro	leum hydroca	rbons		
Hazardous substance	-	Total petroleum hydrocarbons	-	See Table 2 for individual (non-statutory) TPH CWG fractions with respect to drinking water receptors	See individual risk driving compounds (i.e. BTEX and PAH) for specific EQS	
Hazardous substance	Priority substance	Benzene	1 ⁽⁷⁾	1 ⁽²⁾	10 ^(6a)	8 ^(6a)
Hazardous substance	Specific pollutant	Toluene	4 ⁽⁷⁾	700 ⁽⁴⁾	74 ^(6a)	74 ^(6a)
Hazardous substance	-	Ethylbenzene	-	300 ⁽⁴⁾	-	-
(Not determined)		Xylenes	3 ⁽⁷⁾	500 ⁽⁴⁾	30 ⁽¹¹⁾	-

Substance classification			Target concentrations (µg/I)				
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	Minimum		EQS or best equivalent		
			reporting value		Freshwater	Transitional (estuaries) and coastal waters	
Non-hazardous pollutant	-	Methyl tertiary butyl ether (MTBE)	-	15 ⁽¹²⁾	-		
		Pesticides, fungic	ides, insecticio	des and herbicides			
	Other pollutant (Cyclodiene pesticides)	Aldrin	0.003 ⁽⁷⁾	0.03 ⁽²⁾	0.01 ^(6a)		
Hazardous		Dieldrin	0.003 ⁽⁷⁾	0.03 ⁽²⁾		0.005 ^(6a)	
substance(s)		Endrin	0.003 ⁽⁷⁾	0.1 ^(2b)			
		Isodrin*2	0.003 ⁽⁷⁾	0.1 ^(2b)			
Hazardous substance	Other pollutant	DDT (total)	0.002 ⁽⁷⁾	1 ⁽⁴⁾	0.025 ^(6a)	0.025 ^(6a)	
(Not determined) – assume to be Hazardous Substance	-	Total pesticides	-	0.5 ⁽²⁾	-	-	
(Not determined) - assume to be Hazardous Substance	-	Other individual pesticides	-	0.1(2)			

Substance classification			Target concentrations (μg/l)				
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	Minimum reporting value	UK drinking water standard (or best equivalent)	EQS or best equivalent		
					Freshwater	Transitional (estuaries) and coastal waters	
Hazardous substance	Specific pollutant	Carbendazim	-	-	0.15 ^(6a)	-	
Hazardous substance	Specific pollutant	Chlorothalonil	-	-	0.035 ^(6a)	-	
Hazardous substance	Specific pollutant (until 22/12/18, after which it becomes a Priority substance)	Cypermethrin	-	-	0.0001 ^(6a) From 22/12/18: 8.0E-5 ^(6a)	0.0001 ^(6a) From 22/12/18: 8.0E-6 ^(6a)	
Hazardous substance	Specific pollutant	Dimethoate	0.01 ⁽⁷⁾	-	0.48 ^(6a)	0.48 ^(6a)	
(Not determined)	Specific pollutant	Glyphosate	-	-	196 ^(6a)	196 ^(6a)	
Hazardous substance	Specific pollutant	Linuron		-	0.5 ^(6a)	0.5 ^(6a)	
Non- hazardous pollutant	Specific pollutant	Mecoprop	0.04 ⁽⁷⁾	-	18 ^(6a)	18 ^(6a)	
Non- hazardous pollutant	Specific pollutant	Methiocarb	-	-	0.01 ^(6a)	-	
Non- hazardous pollutant	Specific pollutant	Pendimethalin	-	20 ⁽⁴⁾	0.3 ^(6a)	-	

Substan	ce classification		Target concentrations (μg/l)										
			Minimum	UK drinking water	EQS or best	equivalent							
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters							
Hazardous substance	Specific pollutant	Permethrin	0.001 ⁽⁷⁾	-	0.001 ^(6a)	0.0002 ^(6a)							
Hazardous substance	Priority substance	Alachlor	-	20 ⁽⁴⁾	0.3 ^(6a)	0.3 ^(6a)							
Hazardous substance	Priority substance	Atrazine	0.03 ⁽⁷⁾	100 ⁽⁴⁾	0.6 ^(6a)	0.6 ^(6a)							
Hazardous substance	Priority substance	Diuron	-	-	0.2 ^(6a)	0.2 ^(6a)							
Hazardous substance	Priority hazardous substance	Endosulphan	0.005 ⁽⁷⁾	-	0.005 ^(6a)	0.0005 ^(6a)							
Non- hazardous pollutant	Priority substance	Isoproturon	-	9 ⁽⁴⁾	0.3 ^(6a)	0.3 ^(6a)							
Hazardous substance	Priority substance	Simazine	0.03 ⁽⁷⁾	2 ⁽⁴⁾	1 ^(6a)	1 ^(6a)							
Hazardous substance	Priority hazardous substance	Trifluralin	0.01 ⁽⁷⁾	20 ⁽⁴⁾	0.03 ^(6a)	0.03 ^(6a)							
(Not determined)	From 22/12/18: Priority substance	Dichlorovos	-	-	From 22/12/18: 6.0E-4 ^(6a)	From 22/12/18: 6.0E-5 ^(6a)							
Hazardous substance	From 22/12/18: Priority substance	Heptachlor and heptachlor epoxide	-	0.03 ⁽²⁾	From 22/12/18: 2.0E-7 ^(6a)	From 22/12/18: 1.0E-08 ^(6a)							
			Miscellaneous										

Substand	ce classification		Target concentrations (μg/l)									
			Minimum	UK drinking water	EQS or best equivalent							
Groundwater receptors ⁽⁵⁾	Surface water receptors ⁽⁶⁾	Determinant	reporting value	standard (or best equivalent)	Freshwater	Transitional (estuaries) and coastal waters						
None	Specific pollutant	Triclosan (antibacterial agent)	-	-	0.1 ^(6a)	0.1 ^(6a)						
Hazardous substance	From 22/12/18: Priority hazardous substance	Perfluoro-octane sulfonic acid (and its derivatives) (PFOS)	-	-	From 22/12/18: 6.5E-4 ^(6a)	From 22/12/18: 1.3E-4 ^(6a)						
Hazardous substance	From 22/12/18: Priority hazardous substance	Hexabromo cyclododecane (HBCDD)	-	-	From 22/12/18: 0.0016 ^(6a)	From 22/12/18: 0.0016 ^(6a)						

Notes:

"Bioavailable" in relation to copper, zinc, nickel and manganese (but not lead) is the generic EQSbioavailable (6a) derived from the Metal Bioavailability Assessment Tool (M-BAT) developed by the Water Framework Directive UK Technical Advisory Group (WFDTAG). Exceedance of this value should prompt a site-specific assessment using the M-BAT with pH, DOC and Ca to derive a site-specific EQS termed the PNEC_{dissolved}.

For zinc, if there is an exceedance of the EQSbioavailable in an initial GQRA, Tier 2 required that the EQS for zinc should also have the ambient background concentration of zinc added as well

^{&#}x27;-' A target concentration is not available.

^{\$}Please note that total ammonia (NH₄⁺ and NH₃) is equivalent to ammoniacal nitrogen in laboratory reports

^{*1} Please note that although iron is listed in the 2015 Direction as 1.000 μg/l, the EQS remains at 1mg/l in Scotland and it is assumed this is an error and should read either 1,000 or 1000μg/l.

^{*2} Please note that although Isodrin is not listed in name within the group of "Cyclodiene pesticides" in Table 1 of Schedule 3 Part 3 of the 2015 Direction⁽⁶⁾, the CAS number for Isodrin (465-73-6) <u>is</u> listed and therefore it is assumed that it has been missed off the named list of substances.

^{*&}lt;sup>3</sup> Total petroleum hydrocarbons is used for consistency, but is an analytical method-defined measurement for a mixture of hydrocarbons subject to environmental analysis¹¹.

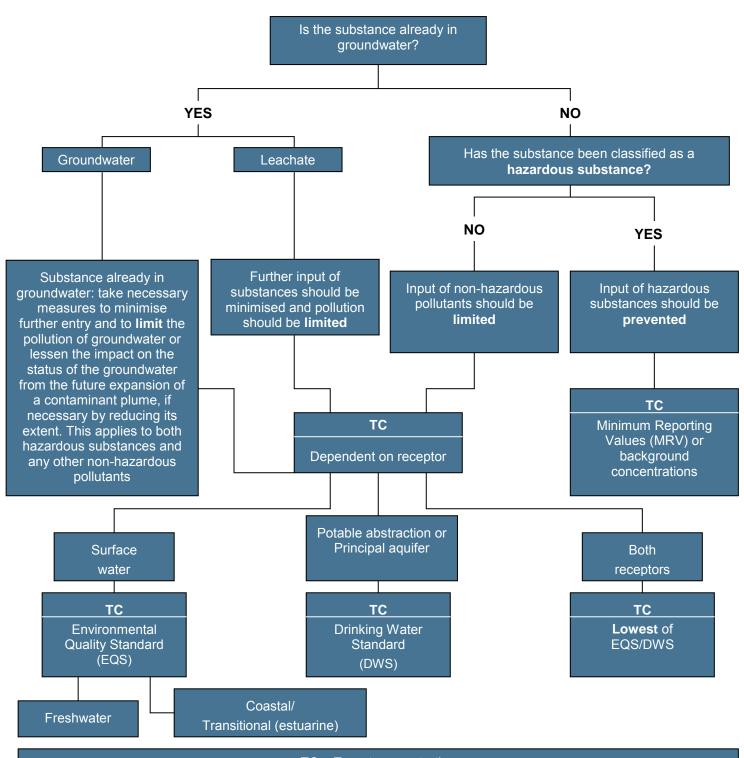
Table 2: World Health Organization (WHO) guide values for TPH CWG fractions in drinking water $^{(13)}$ (as referenced in CL:AIRE, 2017 $^{(11)}$)

TPH CWG fraction	WHO guide value for drinking water ⁽¹³⁾ (µg/l)
Aliphatic fractions:	
Aliphatic EC5-EC6	15,000
Aliphatic >EC6-EC8	15,000
Aliphatic >EC8-EC10	300
Aliphatic >EC10-EC12	300
Aliphatic >EC12-EC16	300
Aliphatic >EC16-EC21	-
Aliphatic >EC21-EC35	-
Aromatic fractions:	
Aromatic EC5-EC6	10 (benzene)
Aromatic >EC6-EC8	700 (toluene)
Aromatic >EC8-EC10	300 (ethyl benzene)
	500 (xylenes)
Aromatic >EC10-EC12	90
Aromatic >EC12-EC16	90
Aromatic >EC16-EC21	90
Aromatic >EC21-EC35	90

Reference: World Health Organisation (WHO), 2008. Petroleum products in drinkingwater. Background document for development of WHO guidelines for drinking water quality. WHO/SDE/WSH/05.08/123. World Health Organisation, Geneva⁽¹³⁾.

References

- Environment Agency (2017), 'The Environment Agency's approach to groundwater protection', version 1.0, March 2017 (formerly contained within GP3) [accessed 29 March 2017]. https://www.gov.uk/government/collections/groundwater-protection
- Environment Agency (2017), 'Land contamination groundwater compliance points: quantitative risk assessments', March 2017 (formerly contained within GP3) [accessed 29 March 2017]. https://www.gov.uk/government/collections/groundwater-protection
- 2. The Water Supply (Water Quality) Regulations 2016 (SI 2016/619)
 - 2a. Sum of chloroform, bromoform, dibromochloromethane and bromodichloromethane
 - 2b. Standard applies to individual pesticides except aldrin, dieldrin, heptachlor and heptachlor epoxide, for which a separate standard is defined.
- 3. The Private Water Supplies (England) Regulations 2016. SI 2016 / 618
- 4. WHO (2011), Guidelines for drinking-water quality, 4th edn
- 5. JAGDAG hazard substance determinations: This list contains substances that are determined to be hazardous substances or non-hazardous pollutants for the purposes of the groundwater directive 2006/118/EC. The absence of an assessment or substance from the list means an assessment has not been done yet and is presented as 'Not yet determined'; if a substance has been assessed but does not fall into either category it is presented as 'None'. For further details on how substances are assessed, see the Joint Agencies Groundwater Directive Advisory Group (JAGDAG) 'Methodology for the determination of hazardous substances in groundwater for the purposes of the groundwater directive 2006/118/EC' which is available from the JAGDAG website. The methodology is a UK –wide framework that sets criteria for how to assess whether a substance is a hazardous substances in groundwater. The list of substances can be found at:
- 6. The Water Framework Directive (Standards and Classification) Directions (England and Wales) 2015.
 - 6a. The EQS for these substances are based on a "long term mean" or an "annual average (AA)" EQS.
 - 6b. For cadmium and its compounds the EQS values vary depending on the hardness of the water as specified in five class categories (Class 1: < 40 mg CaCO3/I, Class 2: 40 to < 50 mg CaCO3/I, Class 3: 50 to < 100 mg CaCO3/I, Class 4: 100 to < 200 mg CaCO3/I and Class 5: ≥ 200 mg CaCO3/I).
 - 6c. The EQS for Mercury and hexachlorobutadiene are based on a "maximum acceptable concentration (MAC)" EQS in absence of an "annual average (AA)" EQS.
 - 6d. The EQS for chlorine in saltwater is based on the 95th percentile concentration of total residual oxidant, which refers to the sum of all oxidising agents existing in water, expressed as available chlorine.
 - 6e. The recommended saltwater standard is derived using a safety factor of 100. Where the standard is failed, it is recommended that supporting evidence of ecological damage should be obtained before committing to expensive action.
 - 6f. EQS for total ammonia is as per Schedule 3, Part 1, Table 7 of of the above directions. EQS applies to river types 1, 2 and 4 and 6 (namely upland and low alkalinity). The EQS for a lowland and high alkalinity rivers (types 3, 5 and 7) is 600μg/l (0.6mg/l).



Additional information on the Metal Bioavailability Assessment Tool (M-BAT) is available at

- 7. Minimum reporting values listed at https://www.gov.uk/government/publications/values-for-groundwater-risk-assessments/hazardous-substances-to-groundwater-minimum-reporting-values (updated 13 January 2017; accessed 29 March 2017). Note target concentration for xylenes is 3 μg/l each for o-xylene and m/p xylene as it may not be possible to separate m- and p-xylene; 135 tcb, 124 tcb, 123 tcb each to 0.01 μg/l)
- 8. The Surface Waters (Abstraction for Drinking Water) (Classification) Regulations 1996 (as amended). SI 1996 / 3001
- 9. Council Directive on the Quality of Fresh Waters Needing Protection or Improvement in Order to Support Fish Life (Freshwater Fish Directive) (78/659/EEC)
- 10. WRc plc (2002), R&D Technical Report P45.
- 11. CL:AIRE, 2017. Petroleum Hydrocarbons in Groundwater: Guidance on assessing petroleum hydrocarbons using existing hydrogeological risk assessment methodologies. V1.1.
- 12. Drinking Water Inspectorate (London, UK). Environmental Information Request on MTBE in drinking water. Ref. DWI 1/10/18; dated 28 November 2006. Value is based on the odour threshold for MTBE, which is lower than a health-based guideline value
- World Health Organisation (WHO), 2008. Petroleum products in drinking-water. Background document for development of WHO guidelines for drinking water quality.
 WHO/SDE/WSH/05.08/123. World Health Organisation, Geneva. [accessed 29 March 2017]

FLOW CHART TO ASSIST WITH SELECTION OF TARGET CONCENTRATIONS

TC = Target concentration

When leachate is being assessed the 'compliance point' is the groundwater body. Therefore dilution within the groundwater body may be applied <u>with caution</u> before comparing with the TC.

When directly assessing a receptor, e.g., a river, the appropriate TC should be selected.

GENERIC ASSESSMENT CRITERIA FOR POTABLE WATER SUPPLY PIPES

A range of pipe materials is available and careful selection, design and installation is required to ensure that water supply pipes are satisfactorily installed and meet the requirements of the Water Supply (Water Fittings) Regulations 1999 in England and Wales, the Byelaws 2000 in Scotland and the Northern Ireland Water Regulations. The regulations include a requirement to use only suitable materials when laying water pipes and laying water pipes without protection is not permitted at contaminated sites. The water supply company has a statutory duty to enforce the regulations.

Contaminants in the ground can pose a risk to human health by permeating potable water supply pipes. To fulfil their statutory obligation, UK water supply companies require robust evidence from developers to demonstrate either that the ground in which new plastic supply pipes will be laid is free from specific contaminants, or that the proposed remedial strategy will mitigate any existing risk. If these requirements cannot be demonstrated to the satisfaction of the relevant water company, it becomes necessary to specify an alternative pipe material on the whole development or in specific zones.

In 2010, UK Water Industry Research (UKWIR) published *Guidance for the Selection of Water Supply Pipes to be used in Brownfield Sites* (Report Ref. No. 10/WM/03/21). This report reviewed previously published industry guidelines and threshold concentrations adopted by individual water supply companies.

The focus of the UKWIR research project was to develop clear and concise procedures, which provide consistency in the pipe selection decision process. It was intended to provide guidance that can be used to ensure compliance with current regulations and to prevent water supply pipe failing prematurely due to the presence of contamination.

The report concluded that in most circumstances only organic contaminants pose a potential risk to plastic pipe materials and Table 3.1 of the report provides threshold concentrations for polyethylene (PE) and polyvinyl chloride (PVC) pipes for the organic contaminants of concern. The report also makes recommendations for the procedures to be adopted in the design of site investigations and sampling strategies, and the assessment of data, to ensure that the ground through which water supply pipes will be laid is adequately characterised.

Risks to water supply pipes have therefore been assessed against the threshold concentrations for PE and PVC pipe specified in Table 3.1 of Report 10/WM/03/21, which have been adopted as the GAC for this linkage and are reproduced in Table A3 below.

Since water supply pipes are typically laid at a minimum depth of 0.75m below finished ground levels, sample results from depths between 0.5m and 1.5m below finished level are generally considered suitable for assessing risks to water supply. Samples outside these depths can be used, providing the stratum is the same as that in which water supply pipes are likely to be

located. The report specifies that sampling should characterise the ground conditions to a minimum of 0.5m below the proposed depth of the pipe.

It should be noted that the assessment provided in this report is a guide and the method of assessment and recommendations should be checked with the relevant water supply company.

Table A3: Generic assessment criteria for water supply pipes

		Pipe materia	ıl
		GAC (mg/kg)
	Parameter group	PE	PVC
1	Extended VOC suite by purge and trap or head space and GC-MS with TIC	0.5	0.125
	(Not including compounds within group 1a)		
1a	BTEX + MTBE	0.1	0.03
2	SVOCs TIC by purge and trap or head space and GC-MS with TIC (aliphatic and aromatic $C_5\!\!-\!\!C_{10})$	2	1.4
	(Not including compounds within group 2e and 2f)		
2e	Phenols	2	0.4
2f	Cresols and chlorinated phenols	2	0.04
3	Mineral oil C ₁₁ –C ₂₀	10	Suitable
4	Mineral oil C ₂₁ –C ₄₀	500	Suitable
5	Corrosive (conductivity, redox and pH)	Suitable	Suitable
Spec	ific suite identified as relevant following site investigation		
2a	Ethers	0.5	1
2b	Nitrobenzene	0.5	0.4
2c	Ketones	0.5	0.02
2d	Aldehydes	0.5	0.02
6	Amines	Not suitable	Suitable

Notes: where indicated as 'suitable', the material is considered resistant to permeation or degradation and no threshold concentration has been specified by UKWIR.

1 RISK ASSESSMENT METHODOLOGY

Risk is a combination of the 'likelihood' of an event occurring and the magnitude of its 'consequences'. Therefore, in order to assess risk, both the likelihood and the consequences of an event must be taken into account. RSK Group Plc has adopted guidance provided in CIRIA C552 for use in the production of risk assessments.

The likelihood of an event can be classified on a four point system using the following terms and definitions based on CIRIA C552:

Highly likely: The event appears very likely in the short term and almost inevitable over the long term, or there is evidence at the receptor of harm or pollution;

Likely: It is probable that an event will occur, or circumstances are such that the event is not inevitable, but possible in the short term and likely over the long term;

Low likelihood: Circumstances are possible under which an event could occur, but it is not certain even in the long term that an event would occur and it is less likely in the short term;

Unlikely: Circumstances are such that it is improbable the event would occur even in the long term.

The severity can be classified using a similar system similarly based on CIRIA C552:

Severe: Short term (acute) risk to human health likely to result in 'significant harm' as defined by the Environment Protection Act 1990, Part IIA. Short-term risk of pollution of sensitive water resources. Catastrophic damage to buildings or property. Short term risk to an ecosystem or organism forming part of that ecosystem (note definition of ecosystem in 'Draft Circular on Contaminated Land', DETR 2000);

Medium: Chronic damage to human health ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000), pollution of sensitive water resources, significant change in an ecosystem or organism forming part of that ecosystem (note definition of ecosystem in 'Draft Circular on Contaminated Land', DETR 2000);

Mild: Pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ('significant harm' as defined in 'Draft Circular on Contaminated Land', DETR 2000). Damage to sensitive buildings, structures or the environment; and

Minor: Harm, not necessarily significant, but that could result in financial loss or expenditure to resolve. Non-permanent human health effects easily prevented by use of personal protective clothing. Easily repairable damage to buildings, structures and services.

Once the likelihood of an event occurring and its severity have been classified, a risk category can be assigned the table below. RISK CLASSIFICATION SYSTEM (CIRIA 552)

		RISK CLASSIFICATION SYSTEM (CIRIA 552)										
	Consequence											
		Severe	Medium	Mild	Minor							
lity	Highly likely	Very high	High	Moderate	Moderate/Low							
babili	Likely	High	Moderate	Moderate/Low	Low							
roba	Low likelihood	Moderate	Moderate/Low	Low	Very Low							
P.	Unlikely	Moderate/Low	Low	Very Low	Very Low							

1

APPENDIX F - MONITORING RECORDS

(i) Gas/Groundwater Monitoring Results

[Pressures] Previous	During	<u>Start</u>	<u>End</u>	Equipment Used & Remarks
Round 1 Falling Round 2 Rising Round 3 Falling Round 4 Falling	Constant Falling Falling Rising	1007 1021 1014 1010	1007 1021 1014 1010	GA5000 + Dipmeter + Weather: Cloudy + Ground: Dry + Wind: Light + Air Temp: 18DegC GA5000 + Dipmeter + Weather: Sunny + Ground: Dry + Wind: Light + Air Temp: 20DegC GA5000 + Dipmeter + Weather: Cloudy + Ground: Dry + Wind: Light + Air Temp: 18DegC GA5000 + Dipmeter + Weather: Cloudy + Ground: Dry + Wind: Light + Air Temp: 25DegC

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS1	1	50	1	2.37		1.00 to 2.40	08/08/2017 13:46:00	1007	1007	0.0 _(I)	-	-	-	-	-	-	-
WS1	1	50	1			1.00 to 2.40	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS1	1	50	1 (2)	2.37		1.00 to 2.40	08/08/2017 13:47:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS1	1	50	1 (2)			1.00 to 2.40	15 secs	-	-	-	-	0.9	0.0	19.8	0.0	0	0
WS1	1	50	1 (2)			1.00 to 2.40	30 secs	-	-	-	-	0.9	0.0	19.2	0.0	0	0
WS1	1	50	1 (2)			1.00 to 2.40	60 secs	-	-	-	-	1.2	0.0	18.6	0.0	0	0
WS1	1	50	1 (2)			1.00 to 2.40	90 secs	-	-	-	-	1.5	0.0	17.8	0.0	0	0
WS1	1	50	1 (2)			1.00 to 2.40	120 secs	-	-	-	-	1.7	0.0	17.5	0.0	0	0
WS1	1	50	1 (2)			1.00 to 2.40	180 secs	-	-	-	-	1.7	0.0	17.3	0.0	0	0
WS1	1	50	1 (2)			1.00 to 2.40	240 secs	-	-	-	-	1.7	0.0	17.4	0.0	0	0
WS1	1	50	1 (2)			1.00 to 2.40	300 secs	-	-	-	-	1.6	0.0	17.3	0.0	0	0
WS1	1	50	1 (3)	2.37	2.31	1.00 to 2.40	08/08/2017 13:53:00	-	-	-	1.57	-	-	-	-	-	-
WS1	1	50	2	2.37		1.00 to 2.40	10/08/2017 12:15:00	1021	1021	0.0 _(I)	-	-	-	-	-	-	-
WS1	1	50	2			1.00 to 2.40	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS1	1	50	2 (2)	2.37		1.00 to 2.40	10/08/2017 12:16:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS1	1	50	2 (2)			1.00 to 2.40	15 secs	-	-	-	-	0.9	0.0	17.7	0.0	1	0
WS1	1	50	2 (2)			1.00 to 2.40	30 secs	-	-	-	-	0.9	0.0	17.0	0.0	1	0
WS1	1	50	2 (2)			1.00 to 2.40	60 secs	-	-	-	_	1.1	0.0	16.4	0.0	1	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

STRUCTURAL SOILS The Old School Stillhouse Lane Bedminster Bristol BS3 4EB

Contract:

Compiled By

Checked By Date 05/09/17

515 Stockwood Road, Brislington

Date 24/08/17 Contract Ref: 732959

Page:

[Pressures] Previous Equipment Used & Remarks <u>During</u> Start End

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS1	1	50	2 (2)			1.00 to 2.40	90 secs	-	-	-	-	1.2	0.0	15.9	0.0	1	0
WS1	1	50	2 (2)			1.00 to 2.40	120 secs	-	-	-	-	1.4	0.0	15.4	0.0	1	0
WS1	1	50	2 (2)			1.00 to 2.40	180 secs	-	-	-	-	1.4	0.0	15.3	0.0	1	0
WS1	1	50	2 (2)			1.00 to 2.40	240 secs	-	-	-	-	1.4	0.0	15.2	0.0	1	0
WS1	1	50	2 (2)			1.00 to 2.40	300 secs	-	-	-	-	1.3	0.0	15.2	0.0	0	0
WS1	1	50	2 (3)	2.37	2.40	1.00 to 2.40	10/08/2017 12:22:00	-	-	-	1.95	-	-	-	-	-	-
WS1	1	50	3	2.37		1.00 to 2.40	16/08/2017 12:35:00	1014	1014	0.0(1)	-	-	-	-	-	-	-
WS1	1	50	3			1.00 to 2.40	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS1	1	50	3 (2)	2.37		1.00 to 2.40	16/08/2017 12:36:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS1	1	50	3 (2)			1.00 to 2.40	15 secs	-	-	-	-	1.8	0.0	18.8	0.0	0	0
WS1	1	50	3 (2)			1.00 to 2.40	30 secs	-	-	-	-	1.8	0.0	17.9	0.0	0	0
WS1	1	50	3 (2)			1.00 to 2.40	60 secs	-	-	-	-	2.0	0.0	17.6	0.0	0	0
WS1	1	50	3 (2)			1.00 to 2.40	90 secs	-	-	-	-	2.1	0.0	17.3	0.0	0	0
WS1	1	50	3 (2)			1.00 to 2.40	120 secs	-	-	-	-	2.2	0.0	17.1	0.0	0	0
WS1	1	50	3 (2)			1.00 to 2.40	180 secs	-	-	-	-	2.2	0.0	17.1	0.0	0	0
WS1	1	50	3 (2)			1.00 to 2.40	240 secs	-	-	-	-	2.2	0.0	17.1	0.0	0	0
WS1	1	50	3 (2)			1.00 to 2.40	300 secs	-	-	-	-	2.2	0.0	17.1	0.0	0	0
WS1	1	50	3 (3)	2.37	2.31	1.00 to 2.40	16/08/2017 12:42:00	-	-	-	2.22	-	-	-	-	-	-

515 Stockwood Road, Brislington

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

STRUCTURAL SC The Old Schoo Stillhouse Land Bedminster Bristol BS3 4EB

OILS	
ol [
e	C

Contract:

Compiled By Date 05/09/17 Checked By

Date 24/08/17 Contract Ref:

732959

Page:

[Pressures] Previous Equipment Used & Remarks <u>During</u> Start End

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS1	1	50	4	2.37		1.00 to 2.40	23/08/2017 12:55:00	1010	1010	0.0(1)	-	-	-	-	-	-	-
WS1	1	50	4			1.00 to 2.40	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS1	1	50	4 (2)	2.37		1.00 to 2.40	23/08/2017 12:56:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS1	1	50	4 (2)			1.00 to 2.40	15 secs	-	-	-	-	1.6	0.0	18.3	0.0	0	0
WS1	1	50	4 (2)			1.00 to 2.40	30 secs	-	-	-	-	1.9	0.0	17.5	0.0	0	0
WS1	1	50	4 (2)			1.00 to 2.40	60 secs	-	-	-	-	2.0	0.0	17.2	0.0	0	0
WS1	1	50	4 (2)			1.00 to 2.40	90 secs	-	-	-	-	2.1	0.0	17.0	0.0	0	0
WS1	1	50	4 (2)			1.00 to 2.40	120 secs	-	-	-	-	2.2	0.0	16.8	0.0	0	0
WS1	1	50	4 (2)			1.00 to 2.40	180 secs	-	-	-	-	2.2	0.0	16.8	0.0	0	0
WS1	1	50	4 (2)			1.00 to 2.40	240 secs	-	-	-	-	2.2	0.0	16.8	0.0	0	0
WS1	1	50	4 (2)			1.00 to 2.40	300 secs	-	-	-	-	2.2	0.0	16.8	0.0	0	0
WS1	1	50	4 (3)	2.37	2.41	1.00 to 2.40	23/08/2017 13:02:00	-	-	-	2.08	-	-	-	-	-	-
	+.																
WS7	1	50	1	4.70		0.70 to 4.70	08/08/2017 14:07:00	1007	1007	0.0 _(I)	-	-	-	-	-	-	-
WS7	1	50	1			0.70 to 4.70	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS7	1	50	1 (2)	4.70		0.70 to 4.70	08/08/2017 14:08:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS7	1	50	1 (2)			0.70 to 4.70	15 secs	-	-	-	-	3.9	0.0	17.5	0.0	3	0
WS7	1	50	1 (2)			0.70 to 4.70	30 secs	-	-	-	-	4.3	0.0	16.0	0.0	1	0

Date

05/09/17

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

STRUCTURAL SC The Old Schoo Stillhouse Lane Bedminster Bristol BS3 4EB

DILS	
ol	
е	С

Contract:

Compiled By

515 Stockwood Road, Brislington

Checked By

Contract Ref: Date 24/08/17

732959

Page:

[Pressures] Previous Equipment Used & Remarks <u>During</u> Start End

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressurel (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS7	1	50	1 (2)			0.70 to 4.70	60 secs	-	-	-	-	5.2	0.0	14.8	0.0	0	0
WS7	1	50	1 (2)			0.70 to 4.70	90 secs	-	-	-	-	5.8	0.0	13.9	0.0	0	0
WS7	1	50	1 (2)			0.70 to 4.70	120 secs	-	-	-	-	6.0	0.0	13.7	0.0	0	0
WS7	1	50	1 (2)			0.70 to 4.70	180 secs	-	-	-	-	6.1	0.0	13.5	0.0	0	0
WS7	1	50	1 (2)			0.70 to 4.70	240 secs	-	-	-	-	6.1	0.0	13.5	0.0	0	0
WS7	1	50	1 (2)			0.70 to 4.70	300 secs	-	-	-	-	6.1	0.0	13.5	0.0	0	0
WS7	1	50	1 (3)	4.70	4.63	0.70 to 4.70	08/08/2017 14:14:00	-	-	-	DRY	-	-	-	-	-	-
WS7	1	50	2	4.70		0.70 to 4.70	10/08/2017 11:30:00	1021	1021	0.0(1)	-	-	-	-	-	-	-
WS7	1	50	2			0.70 to 4.70	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS7	1	50	2 (2)	4.70		0.70 to 4.70	10/08/2017 11:31:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS7	1	50	2 (2)			0.70 to 4.70	15 secs	-		-	-	2.4	0.0	19.4	0.0	2	0
WS7	1	50	2 (2)			0.70 to 4.70	30 secs	-	-	-	-	2.9	0.0	17.9	0.0	0	0
WS7	1	50	2 (2)			0.70 to 4.70	60 secs	-		-	-	4.4	0.0	15.7	0.0	0	0
WS7	1	50	2 (2)			0.70 to 4.70	90 secs	-	-	-	-	5.4	0.0	14.2	0.0	0	0
WS7	1	50	2 (2)			0.70 to 4.70	120 secs	-	-	-	-	5.7	0.0	13.9	0.0	0	0
WS7	1	50	2 (2)			0.70 to 4.70	180 secs	-	-	-	-	5.8	0.0	13.7	0.0	0	0
WS7	1	50	2 (2)			0.70 to 4.70	240 secs	-	-	-	-	5.8	0.0	13.7	0.0	0	0
WS7	1	50	2 (2)			0.70 to 4.70	300 secs	-	-	-	-	5.8	0.0	13.7	0.0	0	0

515 Stockwood Road, Brislington

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

STRUCTURAL SC The Old Schoo Stillhouse Land Bedminster Bristol BS3 4EB

OILS	
ol	
e	c

Compiled By Contract

Date 05/09/17

Checked By

Contract Ref: Date 24/08/17

732959

Page:

[Pressures] Previous Equipment Used & Remarks <u>During</u> Start End

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS7	1	50	2 (3)	4.70	4.63	0.70 to 4.70	10/08/2017 11:37:00	-	-	-	DRY	-	-	-	-	-	-
WS7	1	50	3	4.70		0.70 to 4.70	16/08/2017 12:00:00	1014	1014	0.0 _(I)	-	-	-	-	-	-	-
WS7	1	50	3			0.70 to 4.70	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS7	1	50	3 (2)	4.70		0.70 to 4.70	16/08/2017 12:01:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS7	1	50	3 (2)			0.70 to 4.70	15 secs	-	-	-	-	4.8	0.0	18.2	0.0	1	0
WS7	1	50	3 (2)			0.70 to 4.70	30 secs	-	-	-	-	5.1	0.0	16.1	0.0	0	0
WS7	1	50	3 (2)			0.70 to 4.70	60 secs	-	-	-	-	5.7	0.0	14.9	0.0	0	0
WS7	1	50	3 (2)			0.70 to 4.70	90 secs	-	-	-	-	5.9	0.0	14.6	0.0	0	0
WS7	1	50	3 (2)			0.70 to 4.70	120 secs	-	-	-	-	6.0	0.0	14.4	0.0	0	0
WS7	1	50	3 (2)			0.70 to 4.70	180 secs	-	-	-	-	6.0	0.0	14.4	0.0	0	0
WS7	1	50	3 (2)			0.70 to 4.70	240 secs	-	-	-	-	5.9	0.0	14.5	0.0	0	0
WS7	1	50	3 (2)			0.70 to 4.70	300 secs	-	-	-	-	5.9	0.0	14.5	0.0	0	0
WS7	1	50	3 (3)	4.70	4.62	0.70 to 4.70	16/08/2017 12:07:00	-	-	-	DRY	-	-	-	-	-	-
WS7	1	50	4	4.70		0.70 to 4.70	23/08/2017 12:19:00	1010	1010	0.0 _(I)	-	-	-	-	-	-	-
WS7	1	50	4			0.70 to 4.70	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS7	1	50	4 (2)	4.70		0.70 to 4.70	23/08/2017 12:20:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS7	1	50	4 (2)			0.70 to 4.70	15 secs	-	-	-	-	4.8	0.0	18.8	0.0	1	0
WS7	1	50	4 (2)			0.70 to 4.70	30 secs	-	-	-	-	5.0	0.0	16.3	0.0	0	0

Date

05/09/17

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

STRUCTURAL SC The Old Schoo Stillhouse Lane Bedminster Bristol BS3 4EB

OILS	
ol	
e	C

Contract:

Compiled By

515 Stockwood Road, Brislington

Checked By Date

24/08/17

Contract Ref:

732959

Page:

[Pressures] Previous Equipment Used & Remarks <u>During</u> Start End

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS7	1	50	4 (2)			0.70 to 4.70	60 secs	-	-	-	-	5.1	0.0	16.1	0.0	0	0
WS7	1	50	4 (2)			0.70 to 4.70	90 secs	-	-	-	-	5.2	0.0	15.9	0.0	0	0
WS7	1	50	4 (2)			0.70 to 4.70	120 secs	-	-	-	-	5.2	0.0	15.8	0.0	0	0
WS7	1	50	4 (2)			0.70 to 4.70	180 secs	-	-	-	-	5.3	0.0	15.8	0.0	0	0
WS7	1	50	4 (2)			0.70 to 4.70	240 secs	-	-	-	-	5.3	0.0	15.8	0.0	0	0
WS7	1	50	4 (2)			0.70 to 4.70	300 secs	-	-	-	-	5.3	0.0	15.8	0.0	0	0
WS7	1	50	4 (3)	4.70	4.62	0.70 to 4.70	23/08/2017 12:26:00	-	-	-	DRY	-	-	-	-	-	-
WS10	1	50	1	2.40		1.00 to 2.40	08/08/2017 13:07:00	1007	1007	0.0(1)	-	-	-	-	-	-	-
WS10	1	50	1			1.00 to 2.40	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS10	1	50	1 (2)	2.40		1.00 to 2.40	08/08/2017 13:08:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS10	1	50	1 (2)			1.00 to 2.40	15 secs	-	-	-	-	0.5	0.0	20.6	0.0	1	0
WS10	1	50	1 (2)			1.00 to 2.40	30 secs	-	-	-	-	0.6	0.0	20.3	0.0	1	0
WS10	1	50	1 (2)			1.00 to 2.40	60 secs	-	-	-	-	1.1	0.0	19.8	0.0	1	0
WS10	1	50	1 (2)			1.00 to 2.40	90 secs	-	-	-	-	1.5	0.0	19.4	0.0	1	0
WS10	1	50	1 (2)			1.00 to 2.40	120 secs	-	-	-	-	1.8	0.0	19.0	0.0	0	0
WS10	1	50	1 (2)			1.00 to 2.40	180 secs	-	-	-	-	1.6	0.0	18.9	0.0	1	0
WS10	1	50	1 (2)			1.00 to 2.40	240 secs	-	-	-	-	1.4	0.0	19.0	0.0	1	0

Date

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

STRUCTURAL SC The Old Schoo Stillhouse Land Bedminster Bristol BS3 4EB

OILS	
e	6

Compiled By Contract:

05/09/17

515 Stockwood Road, Brislington

Checked By

Date 24/08/17 Contract Ref:

732959

Page:

[Pressures] Previous Equipment Used & Remarks <u>During</u> Start End

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS10	1	50	1 (2)			1.00 to 2.40	300 secs	-	-	-	-	1.3	0.0	19.0	0.0	0	0
WS10	1	50	1 (3)	2.40	2.52	1.00 to 2.40	08/08/2017 13:14:00	-	-	-	1.73	-	-	-	-	-	-
WS10	1	50	2	2.40		1.00 to 2.40	10/08/2017 11:45:00	1021	1021	0.0 _(I)	-	-	-	-	-	-	-
WS10	1	50	2			1.00 to 2.40	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS10	1	50	2 (2)	2.40		1.00 to 2.40	10/08/2017 11:46:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS10	1	50	2 (2)			1.00 to 2.40	15 secs	-	-	-	-	1.0	0.0	19.5	0.0	0	0
WS10	1	50	2 (2)			1.00 to 2.40	30 secs	-	-	-	-	1.2	0.0	18.5	0.0	0	0
WS10	1	50	2 (2)			1.00 to 2.40	60 secs	-	-	-	-	1.3	0.0	18.2	0.0	0	0
WS10	1	50	2 (2)			1.00 to 2.40	90 secs	-	-	-	-	1.4	0.0	18.0	0.0	0	0
WS10	1	50	2 (2)			1.00 to 2.40	120 secs	-	-	-	-	1.5	0.0	17.8	0.0	0	0
WS10	1	50	2 (2)			1.00 to 2.40	180 secs	-	-	-	-	1.4	0.0	17.8	0.0	0	0
WS10	1	50	2 (2)			1.00 to 2.40	240 secs	-	-	-	-	1.2	0.0	18.0	0.0	0	0
WS10	1	50	2 (2)			1.00 to 2.40	300 secs	-	-	-	-	1.1	0.0	18.2	0.0	0	0
WS10	1	50	2 (3)	2.40	2.52	1.00 to 2.40	10/08/2017 11:52:00	-	-	-	2.05	-	-	-	-	-	-
WS10	1	50	3	2.40		1.00 to 2.40	16/08/2017 12:13:00	1014	1014	0.0(1)	-	-	-	-	-	-	-
WS10	1	50	3			1.00 to 2.40	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS10	1	50	3 (2)	2.40		1.00 to 2.40	16/08/2017 12:14:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS10	1	50	3 (2)			1.00 to 2.40	15 secs	-	-	-	-	1.8	0.0	19.7	0.0	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

STRUCTURAL SOILS The Old School Stillhouse Lane Bedminster Bristol BS3 4EB

Compiled By Contract:

Date 05/09/17

515 Stockwood Road, Brislington

Checked By

24/08/17

Date

Contract Ref:

732959

Page:

[Pressures] Previous Equipment Used & Remarks <u>During</u> Start End

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS10	1	50	3 (2)			1.00 to 2.40	30 secs	-	-	-	-	1.9	0.0	18.8	0.0	0	0
WS10	1	50	3 (2)			1.00 to 2.40	60 secs	-	-	-	-	2.0	0.0	18.5	0.0	0	0
WS10	1	50	3 (2)			1.00 to 2.40	90 secs	-	-	-	-	2.2	0.0	18.2	0.0	0	0
WS10	1	50	3 (2)			1.00 to 2.40	120 secs	-	-	-	-	2.3	0.0	18.1	0.0	0	0
WS10	1	50	3 (2)			1.00 to 2.40	180 secs	-	-	-	-	2.0	0.0	18.2	0.0	0	0
WS10	1	50	3 (2)			1.00 to 2.40	240 secs	-	-	-	-	1.7	0.0	18.4	0.0	0	0
WS10	1	50	3 (2)			1.00 to 2.40	300 secs	-	-	-	-	1.6	0.0	18.5	0.0	0	0
WS10	1	50	3 (3)	2.40	2.51	1.00 to 2.40	16/08/2017 12:20:00	-	-	-	2.14	-	-	-	-	-	-
WS10	1	50	4	2.40		1.00 to 2.40	23/08/2017 12:30:00	1010	1010	0.0(1)	-	-	-	-	-	-	-
WS10	1	50	4			1.00 to 2.40	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS10	1	50	4 (2)	2.40		1.00 to 2.40	23/08/2017 12:31:00	-		-	-	0.0	0.0	20.9	0.0	0	0
WS10	1	50	4 (2)			1.00 to 2.40	15 secs	-	-	-	-	1.4	0.0	19.7	0.0	0	0
WS10	1	50	4 (2)			1.00 to 2.40	30 secs	-		-	-	1.5	0.0	18.4	0.0	0	0
WS10	1	50	4 (2)			1.00 to 2.40	60 secs	-	-	-	-	1.5	0.0	18.3	0.0	0	0
WS10	1	50	4 (2)			1.00 to 2.40	90 secs	-	-	-	-	1.5	0.0	18.3	0.0	0	0
WS10	1	50	4 (2)			1.00 to 2.40	120 secs	-	-	-	-	1.5	0.0	18.3	0.0	0	0
WS10	1	50	4 (2)			1.00 to 2.40	180 secs	-	-	-	-	1.4	0.0	18.5	0.0	0	0
WS10	1	50	4 (2)			1.00 to 2.40	240 secs	-	-	-	-	1.2	0.0	18.7	0.0	0	0

515 Stockwood Road, Brislington

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

STRUCTURAL SC The Old Schoo Stillhouse Land Bedminster Bristol BS3 4EB

OILS	
ol	
e	7

Compiled By Date 05/09/17 Contract:

Checked By

Contract Ref: Date 24/08/17

732959

Page:

[Pressures] Previous Equipment Used & Remarks <u>During</u> Start End

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	D-4- 0 Time-	Borehole Pressure (mb)		Gas Flow (l/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS10	1	50	4 (2)			1.00 to 2.40	300 secs	-	-	-	-	1.1	0.0	18.9	0.0	0	0
WS10	1	50	4 (3)	2.40	2.52	1.00 to 2.40	23/08/2017 12:37:00	-	-	-	1.98	-	-	-	-	-	-
WS12	1	50	1	2.40		1.00 to 2.40	08/08/2017 13:26:00	1007	1007	0.0 _(I)	-	-	-	-	-	-	-
WS12	1	50	1			1.00 to 2.40	30 secs	-	-	0.0 _(SS)	-	-	-	I	-	-	-
WS12	1	50	1 (2)	2.40		1.00 to 2.40	08/08/2017 13:27:00	-	-	-	_	0.0	0.0	20.9	0.0	0	0
WS12	1	50	1 (2)			1.00 to 2.40	15 secs	-	-	-	-	0.3	0.0	20.7	0.0	1	0
WS12	1	50	1 (2)			1.00 to 2.40	30 secs	-	-	-	-	0.2	0.0	20.9	0.0	1	0
WS12	1	50	1 (2)			1.00 to 2.40	60 secs	-	-	-	-	0.1	0.0	21.0	0.0	1	0
WS12	1	50	1 (2)			1.00 to 2.40	90 secs	-	-	-	-	0.1	0.0	21.0	0.0	1	0
WS12	1	50	1 (2)			1.00 to 2.40	120 secs	-	-	-	-	0.1	0.0	21.1	0.0	1	0
WS12	1	50	1 (2)			1.00 to 2.40	180 secs	-	-	-	-	0.1	0.0	21.1	0.0	1	0
WS12	1	50	1 (2)			1.00 to 2.40	240 secs	-	-	-	-	0.1	0.0	21.1	0.0	1	0
WS12	1	50	1 (2)			1.00 to 2.40	300 secs	-	-	-	-	0.1	0.0	21.2	0.0	1	0
WS12	1	50	1 (3)	2.40	2.47	1.00 to 2.40	08/08/2017 13:33:00	-	-	-	0.40	-	-	-	-	-	-
WS12	1	50	2	2.40		1.00 to 2.40	10/08/2017 12:01:00	1021	1021	0.0 _(I)	-	-	-	-	-	-	-
WS12	1	50	2			1.00 to 2.40	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS12	1	50	2 (2)	2.40		1.00 to 2.40	10/08/2017 12:02:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

STRUCTURAL SC The Old Schoo Stillhouse Land Bedminster Bristol BS3 4EB

_

Compiled By Contract:

Date 05/09/17

Checked By

515 Stockwood Road, Brislington

24/08/17

Contract Ref: Date

732959

Page:

[Pressures] Previous Equipment Used & Remarks <u>During</u> Start End

Exploratory Position ID	Pipe ref	Pipe diameter (mm)	Monitoring Round	Reported Installation Depth (m)	Measured Installation Depth (mbgl)	Response Zone	Date & Time of Monitoring (elapsed time)	Borehole Pressure (mb)		Gas Flow (I/hr)	Water Depth (mbgl)	Carbon Dioxide (% / vol)	Methane (% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydrogen Sulphide (ppm)
WS12	1	50	2 (2)			1.00 to 2.40	15 secs	-	-	-	-	0.2	0.0	20.6	0.0	1	0
WS12	1	50	2 (2)			1.00 to 2.40	30 secs	-	-	-	-	0.2	0.0	20.5	0.0	1	0
WS12	1	50	2 (2)			1.00 to 2.40	60 secs	-	-	-	-	0.1	0.0	20.5	0.0	1	0
WS12	1	50	2 (2)			1.00 to 2.40	90 secs	-	-	-	-	0.1	0.0	20.4	0.0	0	0
WS12	1	50	2 (2)			1.00 to 2.40	120 secs	-	-	-	-	0.1	0.0	20.4	0.0	0	0
WS12	1	50	2 (2)			1.00 to 2.40	180 secs	-	-	-	-	0.1	0.0	20.4	0.0	0	0
WS12	1	50	2 (2)			1.00 to 2.40	240 secs	-	-	-	-	0.1	0.0	20.3	0.0	0	0
WS12	1	50	2 (2)			1.00 to 2.40	300 secs	-	-	-	-	0.1	0.0	20.2	0.0	0	0
WS12	1	50	2 (3)	2.40	2.37	1.00 to 2.40	10/08/2017 12:08:00	-	-	-	0.88	-	-	-	-	-	-
WS12	1	50	3	2.40		1.00 to 2.40	16/08/2017 12:23:00	1014	1014	0.0 _(I)	-	-	-	-	-	-	-
WS12	1	50	3			1.00 to 2.40	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
WS12	1	50	3 (2)	2.40		1.00 to 2.40	16/08/2017 12:24:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
WS12	1	50	3 (2)			1.00 to 2.40	15 secs	-	-	-	-	0.2	0.0	20.7	0.0	1	0
WS12	1	50	3 (2)			1.00 to 2.40	30 secs	-	-	-	-	0.1	0.0	20.7	0.0	1	0
WS12	1	50	3 (2)			1.00 to 2.40	60 secs	-	-	-	-	0.1	0.0	20.6	0.0	1	0
WS12	1	50	3 (2)			1.00 to 2.40	90 secs	-	-	-	-	0.1	0.0	20.6	0.0	1	0
WS12	1	50	3 (2)			1.00 to 2.40	120 secs	-	-	-	-	0.1	0.0	20.6	0.0	1	0
WS12	1	50	3 (2)			1.00 to 2.40	180 secs	-	-	-	-	0.1	0.0	20.6	0.0	1	0

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

STRUCTURAL SC The Old Schoo Stillhouse Land Bedminster Bristol BS3 4EB

OILS	
e	
•	ľ

Compiled By Contract:

Date 05/09/17

515 Stockwood Road, Brislington

Checked By Date 24/08/17 Contract Ref:

732959

Page:

[Pressures] Previous Equipment Used & Remarks <u>During</u> Start End

		(elapsed time)	(mb)	Pressure (mb)	Flow (l/hr)	Depth (mbgl)	Dioxide (% / vol)	(% / vol)	Oxygen (% / vol)	LEL (%)	Carbon Monoxide (ppm)	Hydroger Sulphide (ppm)
	1.00 to 2.40	240 secs	-	-	-	-	0.1	0.0	20.5	0.0	1	0
	1.00 to 2.40	300 secs	-	-	-	-	0.1	0.0	20.5	0.0	1	0
2.40 2.38	1.00 to 2.40	16/08/2017 12:30:00	-	-	-	0.92	-	-	-	-	-	-
2.40	1.00 to 2.40	23/08/2017 12:43:00	1010	1010	0.0(1)	-	-	-	-	-	-	-
	1.00 to 2.40	30 secs	-	-	0.0 _(SS)	-	-	-	-	-	-	-
2.40	1.00 to 2.40	23/08/2017 12:44:00	-	-	-	-	0.0	0.0	20.9	0.0	0	0
	1.00 to 2.40	15 secs	-	-	-	-	0.3	0.0	20.6	0.0	1	0
	1.00 to 2.40	30 secs	-	-	-	-	0.2	0.0	20.7	0.0	1	0
	1.00 to 2.40	60 secs	-	-	-	-	0.1	0.0	20.8	0.0	1	0
	1.00 to 2.40	90 secs	-	-	-	-	0.1	0.0	20.8	0.0	1	0
	1.00 to 2.40	120 secs	-	-	-	-	0.1	0.0	20.8	0.0	1	0
	1.00 to 2.40	180 secs	-	-	-	-	0.1	0.0	20.8	0.0	1	0
	1.00 to 2.40	240 secs	-	-	-	-	0.1	0.0	20.8	0.0	1	0
	1.00 to 2.40	300 secs	-	-	-	-	0.1	0.0	20.8	0.0	1	0
2.40 2.37	1.00 to 2.40	23/08/2017 12:50:00	-	-	-	0.75	-	-	-	-	-	-
	2.40 2.37											

Date

05/09/17

Key: I = Initial, P = Peak, SS = Steady State. Note: LEL = Lower Explosive Limit = 5% v/v.

STRUCTURAL SC The Old Schoo Stillhouse Lane Bedminster Bristol BS3 4EB

OILS	
ol	
e	C

Compiled By Contract:

515 Stockwood Road, Brislington

Checked By Date

24/08/17

Contract Ref:

732959

Page:

APPENDIX G - DESK STUDY INFORMATION

- (i) Landmark Environmental Data Sheets
- (ii) Historical Mapping

Envirocheck® Report:

Datasheet

Order Details:

Order Number:

132920054_1_1

Customer Reference:

732959

National Grid Reference:

362560, 170010

Slice:

Α

Site Area (Ha):

0.69

Search Buffer (m):

1000

Site Details:

Ground Floor, 515-517 Stockwood Road Brislington BRISTOL BS4 5LR

Client Details:

S Pond Structural Soils Ltd The Old School House Stillhouse Lane, Bedminster Bristol BS3 4EB

Prepared For:

515 Stockwood LLP

Order Number: 132920054_1_1 Date: 20-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service

Report Section	Page Number
Summary	-
Agency & Hydrological	1
Waste	21
Hazardous Substances	-
Geological	24
Industrial Land Use	29
Sensitive Land Use	58
Data Currency	59
Data Suppliers	65
Useful Contacts	66

Introduction

The Environment Act 1995 has made site sensitivity a key issue, as the legislation pays as much attention to the pathways by which contamination could spread, and to the vulnerable targets of contamination, as it does the potential sources of contamination. For this reason, Landmark's Site Sensitivity maps and Datasheet(s) place great emphasis on statutory data provided by the Environment Agency/Natural Resources Wales and the Scottish Environment Protection Agency; it also incorporates data from Natural England (and the Scottish and Welsh equivalents) and Local Authorities; and highlights hydrogeological features required by environmental and geotechnical consultants. It does not include any information concerning past uses of land. The datasheet is produced by querying the Landmark database to a distance defined by the client from a site boundary provided by the client.

In the attached datasheet the National Grid References (NGRs) are rounded to the nearest 10m in accordance with Landmark's agreements with a number of Data Suppliers.

Copyright Notice

© Landmark Information Group Limited 2017. The Copyright on the information and data and its format as contained in this Envirocheck® Report ("Report") is the property of Landmark Information Group Limited ("Landmark") and several other Data Providers, including (but not limited to) Ordnance Survey, British Geological Survey, the Environment Agency/Natural Resources Wales and Natural England, and must not be reproduced in whole or in part by photocopying or any other method. The Report is supplied under Landmark's Terms and Conditions accepted by the Customer.

A copy of Landmark's Terms and Conditions can be found with the Index Map for this report. Additional copies of the Report may be obtained from Landmark, subject to Landmark's charges in force from time to time. The Copyright, design rights and any other intellectual rights shall remain the exclusive property of Landmark and /or other Data providers, whose Copyright material has been included in this Report.

Natural England Copyright Notice

Site of Special Scientific Interest, National Nature Reserve, Ramsar, Special Protection Area, Special Conservation Area, Marine Nature Reserve data (derived from Ordnance Survey 1:10000 raster) is provided by, and used with the permission of, Natural England who retain the copyright and Intellectual Property Rights for the data.

Ove Arup Copyright Notice

The Data provided in this report was obtained on Licence from Ove Arup & Partners Limited (for further information, contact mining.review@arup.com). No reproduction or further use of such Data is to be made without the prior written consent of Ove Arup & Partners Limited. The information and data supplied in the product are derived from publicly available records and other third party sources and neither Ove Arup & Partners nor Landmark warrant the accuracy or completeness of such information or data.

Peter Brett Associates Copyright Notice

The cavity data presented has been extracted from the PBA enhanced version of the original DEFRA national cavity databases. PBA/DEFRA retain the copyright & intellectual property rights in the data. Whilst all reasonable efforts are made to check that the information contained in the cavity databases is accurate we do not warrant that the data is complete or error free. The information is based upon our own researches and those collated from a number of external sources and is continually being augmented and updated by PBA. In no event shall PBA/DEFRA or Landmark be liable for any loss or damage including, without limitation, indirect or consequential loss or damage arising from the use of this data.

Radon Potential dataset Copyright Notice

Information supplied from a joint dataset compiled by The British Geological Survey and Public Health England.

Report Version v53.0

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Agency & Hydrological					
BGS Groundwater Flooding Susceptibility	pg 1	Yes	Yes	Yes	n/a
Contaminated Land Register Entries and Notices					
Discharge Consents	pg 2			2	27
Prosecutions Relating to Controlled Waters			n/a	n/a	n/a
Enforcement and Prohibition Notices					
Integrated Pollution Controls	pg 9			4	
Integrated Pollution Prevention And Control	pg 9		1		
Local Authority Integrated Pollution Prevention And Control					
Local Authority Pollution Prevention and Controls	pg 10		1	4	3
Local Authority Pollution Prevention and Control Enforcements					
Nearest Surface Water Feature	pg 11		Yes		
Pollution Incidents to Controlled Waters	pg 11				2
Prosecutions Relating to Authorised Processes	pg 11			1	
Registered Radioactive Substances					
River Quality					
River Quality Biology Sampling Points					
River Quality Chemistry Sampling Points					
Substantiated Pollution Incident Register					
Water Abstractions	pg 11				(*7)
Water Industry Act Referrals					
Groundwater Vulnerability	pg 13	Yes	n/a	n/a	n/a
Drift Deposits			n/a	n/a	n/a
Bedrock Aquifer Designations	pg 13	Yes	n/a	n/a	n/a
Superficial Aquifer Designations			n/a	n/a	n/a
Source Protection Zones					
Extreme Flooding from Rivers or Sea without Defences				n/a	n/a
Flooding from Rivers or Sea without Defences				n/a	n/a
Areas Benefiting from Flood Defences				n/a	n/a
Flood Water Storage Areas				n/a	n/a
Flood Defences				n/a	n/a
OS Water Network Lines	pg 14		1	14	43

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Waste					
BGS Recorded Landfill Sites	pg 21			1	
Historical Landfill Sites	pg 21			1	1
Integrated Pollution Control Registered Waste Sites					
Licensed Waste Management Facilities (Landfill Boundaries)					
Licensed Waste Management Facilities (Locations)	pg 21		3	3	
Local Authority Landfill Coverage	pg 22	1	n/a	n/a	n/a
Local Authority Recorded Landfill Sites	pg 23			1	1
Potentially Infilled Land (Non-Water)	pg 23			1	
Potentially Infilled Land (Water)	pg 23			1	3
Registered Landfill Sites					
Registered Waste Transfer Sites					
Registered Waste Treatment or Disposal Sites	pg 23				1
Hazardous Substances					
Control of Major Accident Hazards Sites (COMAH)					
Explosive Sites					
Notification of Installations Handling Hazardous Substances (NIHHS)					
Planning Hazardous Substance Consents					
Planning Hazardous Substance Enforcements					

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Geological					
BGS 1:625,000 Solid Geology	pg 24	Yes	n/a	n/a	n/a
BGS Estimated Soil Chemistry	pg 24	Yes		Yes	Yes
BGS Recorded Mineral Sites	pg 26		2	2	1
BGS Urban Soil Chemistry					
BGS Urban Soil Chemistry Averages					
CBSCB Compensation District			n/a	n/a	n/a
Coal Mining Affected Areas	pg 27	Yes	n/a	n/a	n/a
Mining Instability	pg 27	Yes	n/a	n/a	n/a
Man-Made Mining Cavities					
Natural Cavities					
Non Coal Mining Areas of Great Britain				n/a	n/a
Potential for Collapsible Ground Stability Hazards	pg 27	Yes		n/a	n/a
Potential for Compressible Ground Stability Hazards				n/a	n/a
Potential for Ground Dissolution Stability Hazards				n/a	n/a
Potential for Landslide Ground Stability Hazards	pg 27	Yes	Yes	n/a	n/a
Potential for Running Sand Ground Stability Hazards				n/a	n/a
Potential for Shrinking or Swelling Clay Ground Stability Hazards	pg 27	Yes		n/a	n/a
Radon Potential - Radon Affected Areas	pg 28	Yes	n/a	n/a	n/a
Radon Potential - Radon Protection Measures			n/a	n/a	n/a
Industrial Land Use					
Contemporary Trade Directory Entries	pg 29	1	30	96	116
Fuel Station Entries	pg 49		1	1	2
Points of Interest - Commercial Services	pg 49		19	28	22
Points of Interest - Education and Health					
Points of Interest - Manufacturing and Production	pg 55			5	11
Points of Interest - Public Infrastructure	pg 57		2		8
Points of Interest - Recreational and Environmental	pg 57			2	
Gas Pipelines					
Underground Electrical Cables					

Data Type	Page Number	On Site	0 to 250m	251 to 500m	501 to 1000m (*up to 2000m)
Sensitive Land Use					
Ancient Woodland	pg 58				1
Areas of Adopted Green Belt	pg 58		1		1
Areas of Unadopted Green Belt	pg 58				1
Areas of Outstanding Natural Beauty					
Environmentally Sensitive Areas					
Forest Parks					
Local Nature Reserves	pg 58			1	
Marine Nature Reserves					
National Nature Reserves					
National Parks					
Nitrate Sensitive Areas					
Nitrate Vulnerable Zones					
Ramsar Sites					
Sites of Special Scientific Interest					
Special Areas of Conservation					
Special Protection Areas					
World Heritage Sites					

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13SW (SW)	0	1	362550 170000
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13NW (W)	3	1	362500 170012
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13NE (NE)	36	1	362600 170100
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13SE (E)	188	1	362800 170000
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13NE (NE)	195	1	362750 170200
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13NE (NE)	207	1	362800 170150
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13SW (SW)	233	1	362400 169750
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13NE (E)	240	1	362850 170100
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A14NW (E)	287	1	362900 170050
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A13NE (NE)	303	1	362800 170300
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding to Occur at Surface	A13SW (SW)	333	1	362300 169700
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A8NW (SW)	344	1	362350 169650
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A8NW (SW)	372	1	362300 169650
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A14SW (E)	388	1	363000 170000
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A8NW (SW)	388	1	362350 169600
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A8NW (S)	405	1	362450 169550
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A8NE (SE)	437	1	362800 169600
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A14SW (E)	443	1	363050 169950
	BGS Groundwater Flooding Susceptibility Flooding Type: Potential for Groundwater Flooding of Property Situated Below Ground Level	A12NE (W)	451	1	362100 170200
	BGS Groundwater Flooding Susceptibility Flooding Type: Limited Potential for Groundwater Flooding to Occur	A9NW (SE)	499	1	362900 169600

Order Number: 132920054_1_1 Date: 20-Jul-2017 rpr_ec_datasheet v53.0 A Landmark Information Group Service Page 1 of 66

Page 2 of 66

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
1	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Wessex Water Services Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Flowers Hill, Junc With Bath Road, Bristol Environment Agency, South West Region Tidal Bristol Avon 011324 1 12th September 1989 Not Supplied 6th October 1998 Public Sewage: Storm Sewage Overflow Freshwater Stream/River Unknown Temporary Consents (Water Act 1989, Section 113) Located by supplier to within 100m	A13NW (NW)	256	2	362410 170270
1	Discharge Consent: Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:		A13NW (NW)	262	2	362400 170270
2	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Wessex Water Services Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Ironmould Lane, 120m North Of Bath Road, Bristol, Bs4 5rt Environment Agency, South West Region Tidal Bristol Avon 011185 1 12th September 1989 Not Supplied 27th March 2006 Public Sewage: Storm Sewage Overflow Freshwater Stream/River Unknown Application refused - 1961 Rivers (Prevention of Pollution) Act Located by supplier to within 100m	A14NE (E)	702	2	363310 170140
3	Discharge Consent: Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Bristol City Council SPORT, AMUSEMENT+RECREATION/GOLF CLUB/GYM/THEME PK/SPA Stockwood Open Space, Stockwood Road, Bristol Environment Agency, South West Region Tidal Bristol Avon 103860 1 14th March 2008 14th March 2008 Not Supplied Trade Discharge - Process Water Freshwater Stream/River The Scotland Stream New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A9NW (SE)	732	2	363100 169470

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Discharge Consent	s				
3	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Bristol City Council CSO ON UNADOPTED SEWERAGE NETWORK (NOT WATER COMPANY) Stockwood Lane, Near Old Tip, Bristol Environment Agency, South West Region Tidal Bristol Avon 011330 2 14th April 2009 14th April 2009 Not Supplied Storm sewage overflow discharge Freshwater Stream/River Tributary Of River Avon New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A9NW (SE)	740	2	363120 169480
	Discharge Consent	S				
3	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	Bristol City Council CSO ON UNADOPTED SEWERAGE NETWORK (NOT WATER COMPANY) Stockwood Lane, Near Old Tip, Bristol Environment Agency, South West Region Tidal Bristol Avon 011330 1 12th September 1989 Not Supplied 13th April 2009 Storm sewage overflow discharge Freshwater Stream/River Tributary Of River Avon Temporary Consents (Water Act 1989, Section 113) Located by supplier to within 100m	A9NW (SE)	740	2	363120 169480
4	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	Wessex Water Services Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Outside 247 Broomhill Road, Bristol, Bs4 4tu Environment Agency, South West Region Tidal Bristol Avon 011329 1 12th September 1989 12th September 1989 23rd December 2008 Public Sewage: Storm Sewage Overflow Freshwater Stream/River Unknown Revoked (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 100m	A19NW (NE)	805	2	363090 170710
	Discharge Consent	s				
5	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Wessex Water Services Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Bath Road, Junc Flowers Hill, Bristol Environment Agency, South West Region Tidal Bristol Avon 100582/Cs/01 1 6th October 1998 6th October 1998 Not Supplied Public Sewage: Storm Sewage Overflow Freshwater Stream/River Brislington Brook New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 100m	A17SE (NW)	813	2	361990 170645

Page 4 of 66

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
5	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Disc	Wessex Water Services Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Bath Road, Junc Flowers Hill, Bristol Environment Agency, South West Region Tidal Bristol Avon 100581/Cs/01 1 6th October 1998 6th October 1998 Not Supplied Public Sewage: Storm Sewage Overflow Freshwater Stream/River Brislington Brook New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 100m	A17SE (NW)	817	2	361990 170650
6	Discharge Consent: Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Wessex Water Services Limited STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Brislington Hill Swr Storm Overflow, Brislington, Bristol, Bs4 5bg Environment Agency, South West Region Not Supplied 012935 2 24th October 2013 24th October 2013 Not Supplied Public Sewage: Storm Sewage Overflow Freshwater Stream/River Brislington Brook Varied under EPR 2010 Located by supplier to within 10m	A17NE (NW)	869	2	361980 170709
6		Wessex Water Services Limited STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Brislington Hill Swr Storm Overflow, Brislington, Bristol, Bs4 5bg Environment Agency, South West Region Not Supplied 012935 3 16th January 2013 16th January 2013 23rd October 2013 Public Sewage: Storm Sewage Overflow Freshwater Stream/River Brislington Brook Varied under EPR 2010 Manually positioned within the geographical locality	A17NE (NW)	869	2	361980 170709
6	Discharge Consents Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Wessex Water Services Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Brislington Hill, S.S.O, Brislington, Bristol, Bs4 4lf Environment Agency, South West Region Tidal Bristol Avon 010326 1 25th April 1988 Not Supplied 14th November 1997 Public Sewage: Storm Sewage Overflow Freshwater Stream/River Brislington Brook Revoked (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 100m	A17NE (NW)	884	2	361970 170720

Page 5 of 66

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
7	Discharge Consent Operator:	s Wessex Water Services Ltd	A19NW	875	2	363200
	Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Outside 8 Sidcot, Bristol, Bs4 4ty Environment Agency, South West Region Tidal Bristol Avon 011183 1 12th September 1989 Not Supplied 6th October 1998 Public Sewage: Storm Sewage Overflow Freshwater Stream/River Unknown Temporary Consents (Water Act 1989, Section 113) Located by supplier to within 100m	(NE)		-	170710
7	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Wessex Water Services Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Outside 12 Sidcot, Bristol, Bs4 4ty Environment Agency, South West Region Tidal Bristol Avon 011184 1 12th September 1989 Not Supplied 6th October 1998 Public Sewage: Storm Sewage Overflow Freshwater Stream/River Unknown Temporary Consents (Water Act 1989, Section 113) Located by supplier to within 100m	A19NE (NE)	917	2	363240 170730
8	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Wessex Water Services Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Church Hill, Junc With School Road, Bristol, Bs4 4lt Environment Agency, South West Region Tidal Bristol Avon 011319 2 28th September 2010 28th September 2010 3rd September 2014 Public Sewage: Storm Sewage Overflow Freshwater Stream/River Trib. Brislington Brook Surrendered under EPR 2010 Located by supplier to within 10m	A17NE (NW)	904	2	362080 170830
8	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Wessex Water Services Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Church Hill, Junc With School Road, Bristol, Bs4 4lt Environment Agency, South West Region Tidal Bristol Avon 011319 1 12th September 1989 Not Supplied 27th September 2010 Public Sewage: Storm Sewage Overflow Freshwater Stream/River Unknown Temporary Consents (Water Act 1989, Section 113) Located by supplier to within 100m	A17NE (NW)	904	2	362080 170830

Page 6 of 66

Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
9	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Wessex Water Services Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Rear Of 8 Hulse Road, Bristol, Bristol, Bs4 5al Environment Agency, South West Region Tidal Bristol Avon 011315 2 28th September 2010 28th September 2010 Not Supplied Public Sewage: Storm Sewage Overflow Freshwater Stream/River Trib. Brislington Brook Varied under EPR 2010 Located by supplier to within 10m	A17SW (NW)	913	2	361750 170520
9	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Wessex Water Services Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Rear Of 8 Hulse Road, Bristol, Bristol, Bs4 5al Environment Agency, South West Region Tidal Bristol Avon 011315 1 12th September 1989 Not Supplied 27th September 2010 Public Sewage: Storm Sewage Overflow Freshwater Stream/River Unknown Temporary Consents (Water Act 1989, Section 113) Located by supplier to within 100m	A17SW (NW)	913	2	361750 170520
10	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Wessex Water Services Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Ellesmere Road Cso, R.O. 15/16 Ellesmere Road, Brislington, Bristol, Bs4 5dy Environment Agency, South West Region Tidal Bristol Avon 103766 1 1st April 2008 21st September 2007 Not Supplied Public Sewage: Storm Sewage Overflow Freshwater Stream/River The Brislington Brook(S) New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A12SW (W)	916	2	361590 169930
11	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Wessex Water Services Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Bristol Hill, Outside No 43, Bristol, Bs4 5aa Environment Agency, South West Region Tidal Bristol Avon 011317 1 12th September 1989 Not Supplied 13th December 1995 Public Sewage: Storm Sewage Overflow Freshwater Stream/River Unknown Consent revoked or revised: New Consent issued (Section 37(1)) Located by supplier to within 100m	A17NW (NW)	949	2	361860 170710

Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Discharge Consent	s				
12	Operator: Property Type: Location:	Wessex Water Services Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Ellesmere Road Cso, Outside No.1 Ellesmere Road, Brislington, Bristol, Bs4 5dy	A12NW (W)	956	2	361550 170065
	Authority: Catchment Area: Reference: Permit Version:	Environment Agency, South West Region Tidal Bristol Avon 100580/Cs/01				
	Effective Date: Issued Date: Revocation Date: Discharge Type:	6th October 1998 6th October 1998 31st March 2008 Public Sewage: Storm Sewage Overflow				
	Discharge Environment: Receiving Water: Status:	Freshwater Stream/River Brislington Brook Revoked (Water Resources Act 1991, Section 88 & Schedule 10 as				
	Positional Accuracy:	amended by Environment Act 1995) Located by supplier to within 100m				
	Discharge Consent	s				
12	Operator: Property Type: Location: Authority: Catchment Area: Reference:	Wessex Water Services Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Ellesmere Road S.W.O, Bristol, Bs4 5dy Environment Agency, South West Region Tidal Bristol Avon 010325	(W)	956	2	361550 170070
	Permit Version: Effective Date: Issued Date: Revocation Date:	1 25th April 1988 Not Supplied 6th October 1998				
	Discharge Type: Discharge Environment: Receiving Water:	Public Sewage: Storm Sewage Overflow Freshwater Stream/River Brislington Brook				
	Status: Positional Accuracy:	New Consent, by Application (Water Resources Act 1991, Section 88) Located by supplier to within 100m				
	Discharge Consent	S				
13	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version:	Wessex Water Services Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Outside 112 School Road, Bristol, Bs4 4ly Environment Agency, South West Region Tidal Bristol Avon 011321	A17NE (N)	986	2	362190 170980
	Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge	12th September 1989 Not Supplied 6th October 1998 Public Sewage: Storm Sewage Overflow Freshwater Stream/River				
	Environment: Receiving Water: Status: Positional Accuracy:	Unknown Temporary Consents (Water Act 1989, Section 113) Located by supplier to within 100m				
	Discharge Consents					
13	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version:	Wessex Water Services Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Outside 112 School Road, Bristol, Bs4 4ly Environment Agency, South West Region Tidal Bristol Avon 100583/Cs/01	A17NE (N)	1000	2	362180 170990
	Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge	6th October 1998 6th October 1998 Not Supplied Public Sewage: Storm Sewage Overflow Freshwater Stream/River				
	Environment: Receiving Water: Status:	Brislington Brook New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 100m				

Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR	
	Discharge Consent	Discharge Consents					
14	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Wessex Water Services Limited STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Outside 247 Broomhill Road, Bristol, Bs4 4tu Environment Agency, South West Region Tidal Bristol Avon 100587/Cs/01 1 6th October 1998 6th October 1998 Not Supplied Public Sewage: Storm Sewage Overflow Freshwater Stream/River River Avon(S) New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A19SE (NE)	987	2	363390 170670	
14	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Wessex Water Services Limited STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Outside 8 Sidcot, Bristol, Bs4 4ty Environment Agency, South West Region Tidal Bristol Avon 100586/Cs/01 1 6th October 1998 6th October 1998 Not Supplied Public Sewage: Storm Sewage Overflow Freshwater Stream/River River Avon(S) New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 10m	A19SE (NE)	987	2	363390 170670	
14	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status: Positional Accuracy:	Wessex Water Services Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) 12 Sidcot Road Cso, Outside 12 Sidcot Road, Brislington, Bristol, Bs4 4ty Environment Agency, South West Region Tidal Bristol Avon 100585/Cs/01 1 6th October 1998 6th October 1998 Not Supplied Public Sewage: Storm Sewage Overflow Freshwater Stream/River River Avon New Consent (Water Resources Act 1991, Section 88 & Schedule 10 as amended by Environment Act 1995) Located by supplier to within 100m	A19SE (NE)	987	2	363390 170670	
15	Discharge Consent Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	Wessex Water Services Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Bristol Hill, Outside No 25, Bristol, Bs4 5aa Environment Agency, South West Region Tidal Bristol Avon 011316 1 12th September 1989 Not Supplied 13th December 1995 Public Sewage: Storm Sewage Overflow Freshwater Stream/River Unknown Consent revoked or revised: New Consent issued (Section 37(1)) Located by supplier to within 100m	A17NW (NW)	998	2	361790 170710	

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Discharge Consent	S				
16	Operator: Property Type: Location: Authority: Catchment Area: Reference: Permit Version: Effective Date: Issued Date: Revocation Date: Discharge Type: Discharge Environment: Receiving Water: Status:	Wessex Water Services Ltd STORM TANK/CSO ON SEWERAGE NETWORK (WATER COMPANY) Grove Park Avenue, Outside No 62, Bristol, Bs4 4jq Environment Agency, South West Region Tidal Bristol Avon 011318 1 12th September 1989 Not Supplied 13th December 1995 Public Sewage: Storm Sewage Overflow Freshwater Stream/River Unknown Consent revoked or revised: New Consent issued (Section 37(1))	A17NW (NW)	1000	2	361860 170780
	Positional Accuracy:	Located by supplier to within 100m				
17	Integrated Pollution Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	European Friction Industries Ltd Enterprise House, 6/7 Bonville Road, Brislinton, BRISTOL, Avon, BS4 5PE Environment Agency, South West Region BE5548 24th November 1998 IPC minor (non-substantial) variation to previous variation 3.2 A (B) processes involving Asbestos within the Mineral Industry Authorisation revokedRevoked Manually positioned to the address or location	A18SW (N)	450	2	362485 170511
	Integrated Pollution	n Controls				
17	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	European Friction Industries Ltd Enterprise House, 6-7 Bonville Road, Brislington, BRISTOL, Avon, BS4 5NZ Environment Agency, South West Region BB6416 30th July 1998 IPC minor (non-substantial) variation to previous variation 3.2 A (B) processes involving Asbestos within the Mineral Industry Authorisation superseded by a substantial or non substantial variationSuperseded Automatically positioned to the address	A18SW (N)	453	2	362466 170510
	Integrated Pollution	••				
17	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	European Friction Industries Ltd Enterprise House, 6-7 Bonville Road, Brislington, BRISTOL, Avon, BS4 5NZ Environment Agency, South West Region AM8555 1st May 1994 IPC minor (non-substantial) variation to previous variation 3.2 A (B) processes involving Asbestos within the Mineral Industry Authorisation superseded by a substantial or non substantial variationSuperseded Automatically positioned to the address	A18SW (N)	454	2	362461 170510
	Integrated Pollution	Controls				
17	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	European Friction Industries Ltd Enterprise House, 6-7 Bonville Road, Brislington, BRISTOL, Avon, BS4 5NZ Environment Agency, South West Region Al1655 30th July 1993 IPC application for process that was regulated by HMIP for air releases under previous legislation 3.2 A (B) processes involving Asbestos within the Mineral Industry Authorisation superseded by a substantial or non substantial variationSuperseded Automatically positioned to the address	A18SW (N)	459	2	362461 170515
	Integrated Pollution	Prevention And Control				
18	Name: Location: Authority: Permit Reference: Original Permit Ref: Effective Date: Status: Application Type: App. Sub Type: Positional Accuracy: Activity Code: Activity Description:	6th September 2006 Revoked Application New Located by supplier to within 100m 2.3 A(1) (A)	A13SW (SW)	131	2	362400 169900

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
19	Local Authority Pol Name: Location: Authority: Permit Reference:	Iution Prevention and Controls Transport Brakes Ltd Emery Road, BRISTOL, Avon, BS4 5PF Bristol City Council, Environmental Health Department AF2868	A13NE (NE)	205	3	362676 170256
	Dated: Process Type: Description:	6th May 1992 Application under SI 318, 1989 The Control of Industrial Air Pollution (Registration of Works) Regulations 1989 Processes registered under S. 9 of the Alkali Act 1906 and S. 5 of the Health & Safety at Work Act 1974				
	Status: Positional Accuracy:	Authorised Manually positioned to the road within the address or location				
20	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Iution Prevention and Controls Brislingotn Park (Forecourt) Ltd 803-805 Bath Road, Brislington, BRISTOL, Avon, BS4 5NL Bristol City Council, Environmental Health Department Ep199 Not Supplied Local Authority Air Pollution Control PG1/14 Petrol filling station Authorised Manually positioned to the address or location	A18SW (NW)	393	3	362304 170360
	Local Authority Pol	lution Prevention and Controls				
21	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Garlen Fabrications 18-20 Emery Road, BRISTOL, Avon, BS4 5QA Bristol City Council, Environmental Health Department EP034 31st March 1993 Local Authority Air Pollution Control PG2/1Furnaces for the extraction of non-ferrous metal from scrap Authorisation revokedRevoked Automatically positioned to the address	A18SE (N)	459	3	362691 170514
	-	lution Prevention and Controls				
22	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	P J Pothecary 1A Bonville Road, BRISTOL, BS4 5NZ Bristol City Council, Environmental Health Department AF2795 6th May 1992 Application under SI 318, 1989 The Control of Industrial Air Pollution (Registration of Works) Regulations 1989 Processes registered under S. 9 of the Alkali Act 1906 and S. 5 of the Health & Safety at Work Act 1974 Authorised Manually positioned to the road within the address or location	A18SW (N)	485	3	362481 170546
	-	lution Prevention and Controls				
22	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	P J Pothecary 1A Bonville Road, BRISTOL, BS4 5NZ Bristol City Council, Environmental Health Department AG9892 17th November 1992 Application under SI 318, 1989 The Control of Industrial Air Pollution (Registration of Works) Regulations 1989 Processes registered under S. 9 of the Alkali Act 1906 and S. 5 of the Health & Safety at Work Act 1974 Authorised Manually positioned to the road within the address or location	A18SW (N)	486	3	362481 170547
22	-	lution Prevention and Controls	A100E	E42	2	262764
23		Southern L & F Ltd 19 Clothier Road, Brislington, BRISTOL, Avon, BS4 5SS Bristol City Council, Environmental Health Department EP035 Not Supplied Local Authority Air Pollution Control PG2/1Furnaces for the extraction of non-ferrous metal from scrap Application Withdrawn Manually positioned to the road within the address or location	A18SE (N)	543	3	362764 170583
24	-	lution Prevention and Controls	A4005	500	•	200701
24	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status: Positional Accuracy:	Pitstop Garages (Bristol) Ltd 5 Clothier Road, Brislington, BRISTOL, Avon, BS4 5PS Bristol City Council, Environmental Health Department EP003 31st March 1993 Local Authority Air Pollution Control PG1/1Waste oil burners, less than 0.4MW net rated thermal input Authorisation revokedRevoked Manually positioned to the road within the address or location	A18SE (N)	598	3	362721 170649

Page 11 of 66

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
25	Name: Location: Authority: Permit Reference: Dated: Process Type: Description: Status:	Iution Prevention and Controls Murco Service Station The Square, Brislington, BRISTOL, Avon, BS4 5AD Bristol City Council, Environmental Health Department Ep158 31st December 1998 Local Authority Pollution Prevention and Control PG1/14 Petrol filling station Permitted Automatically positioned to the address	A17SE (NW)	859	3	361950 170671
	Nearest Surface Wa	ater Feature	A13NE (NE)	245	-	362730 170276
26	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters No Premises Identified Brislington Brook, BRISTOL, Bristol City Environment Agency, South West Region No Pollutant Not Supplied 29th April 1999 38602 Mid Avon Catchment Not Given Not Given Category 3 - Minor Incident Approximate location provided by supplier	A17SE (NW)	702	2	362000 170500
27	Property Type: Location: Authority: Pollutant: Note: Incident Date: Incident Reference: Catchment Area: Receiving Water: Cause of Incident: Incident Severity:	to Controlled Waters Miscellaneous Drainage: Surface Water Drainage Conf With Siston Bk-Conham, BRISLINGTON Environment Agency, South West Region Miscellaneous - Vehicle Washings And De Waxing Not Supplied 27th August 1996 17632 Not Given Not Given Pollution Risk: Water Quality Category 3 - Minor Incident Located by supplier to within 100m	A17NE (NW)	868	2	362100 170800
28	Location: Prosecution Text: Prosecution Act: Hearing Date: Verdict: Fine: Costs:	ing to Authorised Processes Wilverley Industrial Estate, Bath Road, BRISLINGTON, Avon, BS4 EA News Release 21/07/1997 (Case 3 of 4), Illegally dumping waste on four sites in the south-west and failing to obtain registration as a carrier of waste. Given a six month prison sentence. EPA90 21st July 1997 Guilty 0 0 Manually positioned within the geographical locality	A13NW (NW)	254	2	362439 170287
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Imperial Athletic Club 175301S186 Not Supplied Location Description Not Available Environment Agency, South West Region Spray Irrigation Not Supplied River 0 272 St. Anne's W/C Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 100m	A11NW (W)	1307	2	361200 170100

Page 12 of 66

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Mr P J Hemmings 17/53/001/S/147b 100 Charlton Bottom Stream Environment Agency, South West Region General Agriculture: Spray Irrigation - Direct Water may be abstracted from a river or stream reach, or a row of wellpoints Surface Not Supplied Not Supplied Charlton Bottom W/C 01 March 31 October 1st April 2005 Not Supplied Located by supplier to within 100m	A5SW (SE)	1716	2	363600 168600
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	D & P Moon 17/53/001/S/090 100 Stockwood Bottom W/C Environment Agency, South West Region Horticulture And Nurseries: Spray Irrigation - Direct Water may be abstracted from a single point Surface 0 Not Supplied Stockwood Bottom W/C 01 March 30 September 25th March 1966 Not Supplied Located by supplier to within 100m	A4SE (SE)	1826	2	363500 168400
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Mr P J Hemmings 17/53/001/S/147a 100 Charlton Bottom Environment Agency, South West Region General Agriculture: Spray Irrigation - Direct Water may be abstracted from a river or stream reach, or a row of wellpoints Surface Not Supplied Not Supplied Charlton Bottom W/C 01 April 31 March 1st April 2002 Not Supplied Located by supplier to within 100m	A5SW (SE)	1856	2	363700 168500
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	Mr G L Ellis 17/53/001/S/374 100 Charlton Bottom Environment Agency, South West Region General Agriculture: Spray Irrigation - Direct Water may be abstracted from a single point Surface Not Supplied Not Supplied Not Supplied O1 April 31 October 1st August 1966 Not Supplied Located by supplier to within 10m	A5NE (SE)	1918	2	364040 168740

lap ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised End: Permit Start Date: Permit End Date:	Mr P J Young 175301S374 Not Supplied 15 Queens Road, Keynsham, BRISTOL Environment Agency, South West Region Spray Irrigation And Agriculture Not Supplied River 18 726 Charlton Bottom Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied	A5NE (SE)	1927	2	364100 168795
	Positional Accuracy:	Located by supplier to within 100m				
	Water Abstractions Operator: Licence Number: Permit Version: Location: Authority: Abstraction Type: Source: Daily Rate (m3): Yearly Rate (m3): Details: Authorised Start: Authorised Start: Authorised End: Permit Start Date: Permit End Date: Positional Accuracy:	R C Stokes 175301S386 Not Supplied BRISTOL Environment Agency, South West Region Spray Irrigation And Agriculture Not Supplied River 27 1140 Expired: 07-Oct-1992; Charlton Bottom Watercourse Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 100m	A5NE (SE)	1989	2	364100 168700
	Groundwater Vulne	rability				
	Soil Classification: Map Sheet: Scale: Groundwater Vulne Soil Classification: Map Sheet: Scale:	Soils of High Leaching Potential (U) - Soil information for restored mineral workings and urban areas is based on fewer observations than elsewhere. A worst case vulnerability classification (H) assumed, until proved otherwise Sheet 37 Southern Cotswolds 1:100,000 rability Soils of High Leaching Potential (H3)- Coarse textured or moderately shallow soils which readily transmit non-absorbed pollutants and liquid discharges but which have some ability to attenuate absorbed pollutants because of their large clay or organic matter contents Sheet 37 Southern Cotswolds 1:100,000	A13NW (NW)	0	2	362538 170025 362559 170012
	Drift Deposits	1.100,000				
	None					
	Bedrock Aquifer De Aquifer Designation:	signations Secondary Aquifer - A	A13SE (S)	0	1	362559 170000
	Bedrock Aquifer De Aquifer Designation:	signations Secondary Aquifer - A	A13NE (SW)	0	1	362559 170012
	Superficial Aquifer No Data Available	Designations				
	Extreme Flooding for None	rom Rivers or Sea without Defences				
	Flooding from River None	rs or Sea without Defences				
	Areas Benefiting from	om Flood Defences				
	Flood Water Storag None	e Areas				
	Flood Defences None					

Page 14 of 66

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
29	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 16.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A13NE (NE)	245	4	362730 170276
30	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 145.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A14NW (E)	293	4	362902 170106
31	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A12SE (SW)	365	4	362194 169788
32	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A12SE (SW)	415	4	362163 169739
33	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: 9.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A12SE (SW)	436	4	362167 169695
34	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 9.1 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A12SE (SW)	440	4	362168 169686
35	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 42.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A12SE (SW)	444	4	362171 169677
36	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 522.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A7NE (SW)	449	4	362202 169633
37	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 6.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A7NE (SW)	449	4	362193 169642

Page 15 of 66

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
38	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 9.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A7NE (SW)	449	4	362193 169642
39	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A7NE (SW)	456	4	362188 169638
40	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A7NE (SW)	487	4	362164 169617
41	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A7NE (SW)	488	4	362164 169617
42	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 115.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A8NE (S)	499	4	362593 169454
43	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 21.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A8NE (S)	499	4	362597 169455
44	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 33.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A12SE (W)	507	4	361997 169973
45	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 68.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A12NE (W)	518	4	361987 170048
46	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 1.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A12NE (W)	518	4	361987 170048

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
47	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 80.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A12SE (W)	536	4	361969 169955
48	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 1.5 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A7NE (SW)	552	4	362123 169567
49	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A7NE (SW)	553	4	362122 169566
50	OS Water Network Lines Watercourse Form: Lake Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A8NW (S)	599	4	362542 169350
51	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A12SE (W)	610	4	361900 169912
52	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 31.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A12SE (W)	624	4	361885 169916
53	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 4.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A12SE (W)	626	4	361885 169906
54	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 199.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A12SE (W)	627	4	361884 169902
55	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 79.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A7NE (SW)	666	4	362098 169434

Page 17 of 66

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
56	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: Underground Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A9NW (SE)	739	4	363140 169503
57	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 594.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A9NW (SE)	739	4	363143 169505
58	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A9NW (SE)	739	4	363140 169503
59	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: 50.6 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A7NE (SW)	743	4	362061 169365
60	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A12SW (W)	778	4	361764 169759
61	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 747.5 Watercourse Level: On ground surface Permanent: True Watercourse Name: Brislington Brook Catchment Name: Avon Bristol Primacy: 1	A17SE (NW)	779	4	361948 170559
62	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 21.2 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A7SE (SW)	792	4	362044 169317
63	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 49.0 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A7SE (SW)	812	4	362036 169298
64	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 334.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A18NE (N)	819	4	362686 170879

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
65	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 71.8 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Brislington Brook Catchment Name: Avon Bristol Primacy: 1	A17SE (NW)	828	4	361988 170662
66	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 72.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A12SW (W)	834	4	361707 169751
67	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A18NW (N)	836	4	362456 170897
68	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: 64.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A7SE (SW)	859	4	362018 169252
69	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 12.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A12SW (W)	885	4	361645 169787
70	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 76.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Brislington Brook Catchment Name: Avon Bristol Primacy: 1	A17NE (NW)	889	4	361978 170734
71	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 483.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A12SW (W)	890	4	361630 169827
72	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 1043.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A12SW (W)	893	4	361637 169781
73	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 32.3 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A7SE (SW)	921	4	361998 169191

Page 19 of 66

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
74	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 74.3 Watercourse Level: Not Supplied Permanent: True Watercourse Name: Brislington Brook Catchment Name: Avon Bristol Primacy: 1	A17NE (NW)	932	4	361999 170807
75	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 155.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A7SE (SW)	952	4	361987 169160
76	OS Water Network Lines Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A18NW (N)	954	4	362427 171012
77	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 80.4 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A18NW (N)	957	4	362425 171015
78	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 252.8 Watercourse Level: On ground surface Permanent: True Watercourse Name: Brislington Brook Catchment Name: Avon Bristol Primacy: 1	A17NE (NW)	965	4	362034 170873
79	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 91.6 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A3NE (S)	985	4	362666 168974
80	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 2.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A3NE (S)	988	4	362685 168974
81	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 4.0 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A3NE (S)	989	4	362685 168973
82	OS Water Network Lines Watercourse Form: Inland river Watercourse Length: 1.7 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A3NE (S)	990	4	362683 168972

Page 20 of 66

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	OS Water Network Lines				
83	Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A3NE (S)	991	4	362682 168971
	OS Water Network Lines				
84	Watercourse Form: Inland river Watercourse Length: 128.9 Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A19SE (NE)	991	4	363396 170669
	OS Water Network Lines				
85	Watercourse Form: Inland river Watercourse Length: 2.3 Watercourse Level: Not Supplied True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A11NE (W)	992	4	361538 170228
	OS Water Network Lines				
86	Watercourse Form: Inland river Watercourse Level: On ground surface Permanent: True Watercourse Name: Not Supplied Catchment Name: Avon Bristol Primacy: 1	A11NE (W)	994	4	361536 170230

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Recorded Lan	dfill Sites				
87	Site Name: Location: Authority: Ground Water: Surface Water: Geology: Positional Accuracy: Boundary Accuracy:	Stockwood Lane BRISTOL, Avon British Geological Survey, National Geoscience Information Service Information not available Information not available N/A Positioned by the supplier Moderate	A8NE (SE)	440	-	362876 169658
	Historical Landfill S	ites				
88	Licence Holder: Location: Name: Operator Location: Boundary Accuracy: Provider Reference: First Input Date: Last Input Date: Specified Waste Type: EA Waste Ref: Regis Ref: WRC Ref: BGS Ref: Other Ref:		A8NE (SE)	441	2	362876 169657
	Historical Landfill S	tites				
89	Licence Holder: Location: Name: Operator Location: Boundary Accuracy: Provider Reference: First Input Date: Last Input Date: Specified Waste Type: EA Waste Ref: Regis Ref: WRC Ref: BGS Ref: Other Ref:		A12SW (W)	868	2	361644 169879
	Licensed Waste Ma	nagement Facilities (Locations)				
90		26104 Unit 2b, Flowers Hill, Brislington, Bristol, Avon, BS4 5JJ Wolland Frederick Not Supplied Environment Agency - South West Region, Wessex Area End of Life Vehicles Issued 26th July 2004 Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 10m	A13SW (SW)	89	2	362430 169940
		nagement Facilities (Locations)				
91	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference: Positional Accuracy:	103704 Unit 1, Flowers Hill Close, Brislington, Bristol, Avon, BS4 5LF All Car Spares Ltd Not Supplied Environment Agency - South West Region, Wessex Area Vehicle Depollution Facility <5000 tps Issued 24th May 2012 Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 10m	A13NW (NW)	138	2	362440 170140

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Licensed Waste Ma	nagement Facilities (Locations)				
92	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	26125 822 Bath Road, Brislington, Bristol, Avon, BS4 5LQ Bewley Alan Not Supplied Environment Agency - South West Region, Wessex Area End of Life Vehicles Surrendered 25th April 2005 Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied 13th May 2013 Not Supplied Located by supplier to within 10m	A13NW (NW)	198	2	362430 170210
	Licensed Waste Ma	nagement Facilities (Locations)				
93	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	26144 9 Clothier Road, Brislington, Bristol, Avon, BS4 5PS The Workshop Saab Specialist Ltd Not Supplied Environment Agency - South West Region, Wessex Area End of Life Vehicles Issued 16th March 2006 Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 10m	A18SE (N)	472	2	362760 170510
	Licensed Waste Ma	nagement Facilities (Locations)				
94	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference: Positional Accuracy:	26121 236 Broomhill Road, Brislington, Bristol, Avon, BS4 5RG Chiswell Dean Not Supplied Environment Agency - South West Region, Wessex Area End of Life Vehicles Issued 25th April 2005 Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 10m	A18SE (NE)	477	2	362890 170450
94	Licence Number: Location: Operator Name: Operator Location: Authority: Site Category: Licence Status: Issued: Last Modified: Expires: Suspended: Revoked: Surrendered: IPPC Reference:	Anagement Facilities (Locations) 402852 234-236 Broomhill Road, Brislington, Bristol, BS4 5RG Euro Motor Servicing Ltd Not Supplied Environment Agency - South West Region, Wessex Area Vehicle depollution facility Issued 20th June 2016 Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Not Supplied Located by supplier to within 10m	A19SW (NE)	498	2	362902 170467
	Local Authority Lar	ndfill Coverage				
	Name:	Bristol City Unitary Authority - Has no landfill data to supply		0	5	362559 170012
	Local Authority Lar Name:	ndfill Coverage Bath and North East Somerset Unitary Council - Has supplied landfill data		748	6	363154 169504

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
95	Location: Reference: Authority: Last Reported Status: Types of Waste: Date of Closure:	Not Supplied Not Supplied Bath and North East Somerset Council, Planning Services Department Unknown Not Supplied Not Supplied Not Supplied Positioned by the supplier Moderate	A9NW (SE)	490	6	362907 169619
96	Location: Reference: Authority: Last Reported Status: Types of Waste: Date of Closure:	Not Supplied Not Supplied Bath and North East Somerset Council, Planning Services Department Unknown Not Supplied Not Supplied Positioned by the supplier Moderate	A8SE (SE)	784	6	362891 169255
97	Potentially Infilled L Bearing Ref: Use: Date of Mapping:	Land (Non-Water) SE Unknown Filled Ground (Pit, quarry etc) 1982	A14SW (SE)	358	-	362922 169840
98	Potentially Infilled L Use: Date of Mapping:	Land (Water) Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1955	A14SW (E)	380	-	362991 169987
99	Potentially Infilled L Use: Date of Mapping:	Land (Water) Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1938	A17SE (NW)	802	-	361988 170629
100	Potentially Infilled L Use: Date of Mapping:	Land (Water) Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1955	A12SW (W)	864	-	361647 169887
101	Potentially Infilled L Use: Date of Mapping:	Land (Water) Unknown Filled Ground (Pond, marsh, river, stream, dock etc) 1921	A19SE (NE)	954	-	363364 170649
102	Registered Waste T Licence Holder: Licence Reference: Site Location: Operator Location: Authority: Site Category: Max Input Rate: Waste Source Restrictions: Licence Status: Dated: Preceded By Licence: Superseded By Licence: Positional Accuracy: Boundary Quality: Authorised Waste Prohibited Waste	Unit 23 Brislington Trading Estate, Dixon Road, Brislington, BRISTOL, Avon, BS4 5QW As Site Address Environment Agency - South West Region, North Wessex Area Scrapyard Small (Equal to or greater than 10,000 and less than 25,000 tonnes per year) No known restriction on source of waste May not be working & exemptExempt 12th August 1994 Not Given	A18NE (N)	751	2	362750 170800

Geological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS 1:625,000 Solid Description:	d Geology Warwickshire Group	A13NE (SW)	0	1	362559 170012
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A13NE (SW)	0	1	362559 170012
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg <1.8 mg/kg 60 - 90 mg/kg <100 mg/kg 15 - 30 mg/kg	A8NW (S)	496	1	362412 169464
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg <1.8 mg/kg 90 - 120 mg/kg	A12NE (W)	521	1	362000 170136
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg <1.8 mg/kg 90 - 120 mg/kg	A12NE (W)	543	1	362000 170202
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg <1.8 mg/kg 60 - 90 mg/kg	A19SW (NE)	585	1	363000 170500
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration: Nickel Concentration:	British Geological Survey, National Geoscience Information Service Sediment 25 - 35 mg/kg <1.8 mg/kg 90 - 120 mg/kg	A7NE (SW)	757	1	361885 169539

Order Number: 132920054_1_1

Geological

Map ID	Details		Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic Concentration:	British Geological Survey, National Geoscience Information Service Sediment 35 - 45 mg/kg	A7NW (SW)	790	1	361869 169504
	Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration: Lead Concentration:	60 - 90 mg/kg <100 ma/ka				
	Nickel Concentration:	30 - 45 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type:	British Geological Survey, National Geoscience Information Service Sediment	A17NE (NW)	857	1	362000 17071
	Arsenic Concentration:	15 - 25 mg/kg				-
	Cadmium Concentration: Chromium	<1.8 mg/kg 90 - 120 mg/kg				
	Concentration: Lead Concentration:					
	Nickel Concentration:	15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment 25 - 35 mg/kg	A8SW (S)	858	1	36246 16909
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	90 - 120 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 30 - 45 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment <15 mg/kg	A17NE (NW)	860	1	36197 17069
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel	<100 mg/kg 15 - 30 mg/kg				
	Concentration:					
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment 15 - 25 mg/kg	A17NE (NW)	893	1	36193 17070
	Concentration: Cadmium Concentration:	<1.8 mg/kg				
	Chromium Concentration:	90 - 120 mg/kg				
	Lead Concentration: Nickel Concentration:	<100 mg/kg 15 - 30 mg/kg				
	BGS Estimated Soil	Chemistry				
	Source: Soil Sample Type: Arsenic	British Geological Survey, National Geoscience Information Service Sediment 35 - 45 mg/kg	A8SW (S)	899	1	36245 16905
	Concentration: Cadmium	<1.8 mg/kg				
	Concentration: Chromium Concentration:	60 - 90 mg/kg				
	Lead Concentration: Nickel	<100 mg/kg 30 - 45 mg/kg				
	Concentration:					

Order Number: 132920054_1_1

Order Number: 132920054_1_1

Geological

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Estimated Soil Source: Soil Sample Type: Arsenic Concentration: Cadmium Concentration: Chromium Concentration: Lead Concentration:	British Geological Survey, National Geoscience Information Service Sediment 35 - 45 mg/kg <1.8 mg/kg 90 - 120 mg/kg <100 mg/kg	A8SW (S)	948	1	362515 169000
	Nickel Concentration: BGS Recorded Mine	30 - 45 mg/kg eral Sites				
103	Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Brislington Pit Bath Road, Brislington, Bristol, Avon British Geological Survey, National Geoscience Information Service 25144 Underground Ceased Not Supplied Not Supplied Carboniferous South Wales Upper Coal Measures Formation Coal - Deep Located by supplier to within 10m	A13NE (NE)	99	1	362625 170160
104	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Brislington Pit Bath Road, Brislington, Bristol, Avon British Geological Survey, National Geoscience Information Service 25145 Underground Ceased Not Supplied Not Supplied Carboniferous South Wales Upper Coal Measures Formation Coal - Deep Located by supplier to within 10m	A13NW (NW)	141	1	362465 170165
105	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Cherry Orchard Farm , Brislington, Bristol, Avon British Geological Survey, National Geoscience Information Service 61424 Opencast Ceased Not Supplied Not Supplied Carboniferous Farrington Member And Barren Red Member (Digmap Composite) Sandstone Located by supplier to within 10m	A14SW (SE)	353	1	362915 169838
105	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Cherry Orchard Farm Quarry , Bristol, Bristol, Avon British Geological Survey, National Geoscience Information Service 67488 Opencast Ceased Not Supplied Not Supplied Carboniferous Farrington Member And Barren Red Member (Undifferentiated) Sandstone Located by supplier to within 10m	A14SW (E)	373	1	362946 169854
106	BGS Recorded Mine Site Name: Location: Source: Reference: Type: Status: Operator: Operator Location: Periodic Type: Geology: Commodity: Positional Accuracy:	Brislington Pit , Brislington, Bristol, Avon British Geological Survey, National Geoscience Information Service 25146 Underground Ceased Not Supplied Not Supplied Carboniferous South Wales Upper Coal Measures Formation Coal - Deep Located by supplier to within 10m	A17NE (NW)	922	1	361975 170775

Geological

lap ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	BGS Measured Urb No data available	an Soil Chemistry				
	BGS Urban Soil Ch	emistry Averages				
	No data available					
	Coal Mining Affecte				_	
	Description:	In an area which may be affected by coal mining activity. It is recommended that a coal mining report is obtained from the Coal Authority. Contact details are included in the Useful Contacts section of this report.	A13NE (SW)	0	7	362559 170012
	Mining Instability Mining Evidence: Source:	Inconclusive Coal Mining Ove Arup & Partners	A13NE (SW)	0	-	36255 17001
	Boundary Quality:	As Supplied	(011)			
	Non Coal Mining Ar No Hazard	eas of Great Britain				
	Potential for Collap	sible Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NE (SW)	0	1	36255 17001
		sible Ground Stability Hazards	ζ- /			
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13SE (S)	0	1	36255 17000
	Potential for Compi Hazard Potential: Source:	ressible Ground Stability Hazards No Hazard British Geological Survey, National Geoscience Information Service	A13NE (SW)	0	1	36255 17001
		ressible Ground Stability Hazards	(011)			17001
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SE (S)	0	1	36255 17000
		d Dissolution Stability Hazards No Hazard	AAONE	0	4	26255
	Hazard Potential: Source:	British Geological Survey, National Geoscience Information Service	A13NE (SW)	0	1	36255 17001
	Potential for Groun Hazard Potential: Source:	d Dissolution Stability Hazards No Hazard British Geological Survey, National Geoscience Information Service	A13SE (S)	0	1	36255 17000
		lide Ground Stability Hazards	(0)			17000
	Hazard Potential: Source:	Low British Geological Survey, National Geoscience Information Service	A13NE (SW)	0	1	36255 17001
		lide Ground Stability Hazards				
	Hazard Potential: Source:	Low British Geological Survey, National Geoscience Information Service	A13SE (S)	0	1	36255 17000
	Potential for Lands	lide Ground Stability Hazards	. ,			
	Hazard Potential:	Very Low	A13SW	0	1	36254
	Source:	British Geological Survey, National Geoscience Information Service	(SW)			17000
	Potential for Lands Hazard Potential:	lide Ground Stability Hazards Verv Low	A13SW	0	1	36254
	Source:	British Geological Survey, National Geoscience Information Service	(SW)			16999
_	Potential for Lands Hazard Potential: Source:	lide Ground Stability Hazards Low British Geological Survey, National Geoscience Information Service	A13NE (NE)	148	1	36272 17015
		lide Ground Stability Hazards	(142)			17013
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13NE (NE)	208	1	36275 17021
	Potential for Lands	lide Ground Stability Hazards				
	Hazard Potential: Source:	Low British Geological Survey, National Geoscience Information Service	A13SW (SW)	215	1	36236 16980
	Potential for Runnii Hazard Potential: Source:	ng Sand Ground Stability Hazards No Hazard British Geological Survey, National Geoscience Information Service	A13NE (SW)	0	1	36255 17001
	Potential for Runnii	ng Sand Ground Stability Hazards	. ,			
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SE (S)	0	1	36255 17000
	Potential for Shrink Hazard Potential:	ing or Swelling Clay Ground Stability Hazards Very Low British Geological Survey, National Geoscience Information Service	A13NE (SW)	0	1	36255 17001

Geological

/lap ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	Very Low British Geological Survey, National Geoscience Information Service	A13SE (S)	0	1	362559 170000
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SW (SW)	0	1	362543 170000
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SW (SW)	0	1	362545 169998
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13NE (NE)	51	1	362643 170103
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13SE (E)	141	1	362752 170000
	Potential for Shrink	ing or Swelling Clay Ground Stability Hazards				
	Hazard Potential: Source:	No Hazard British Geological Survey, National Geoscience Information Service	A13NE (NE)	208	1	362754 170213
	Radon Potential - R	adon Affected Areas				
	Affected Area: Source:	The property is in a Lower probability radon area (less than 1% of homes are estimated to be at or above the Action Level). British Geological Survey, National Geoscience Information Service	A13NE (N)	0	1	362574 170050
		adon Affected Areas				
	Affected Area:	The property is in an Intermediate probability radon area (1 to 3% of homes are estimated to be at or above the Action Level).	A13NE (SW)	0	1	362559 170012
	Source:	British Geological Survey, National Geoscience Information Service				
	Radon Potential - R	adon Affected Areas				
	Affected Area: Source:	The property is in an Intermediate probability radon area (1 to 3% of homes are estimated to be at or above the Action Level). British Geological Survey, National Geoscience Information Service	A13SE (S)	0	1	362559 170000
		adon Protection Measures				
		No radon protective measures are necessary in the construction of new	A13NE	0	1	362574
	Source:	dwellings or extensions British Geological Survey, National Geoscience Information Service	(N)		•	170050
	Radon Potential - R	adon Protection Measures				
		No radon protective measures are necessary in the construction of new dwellings or extensions	A13NE (SW)	0	1	362559 170012
	Source:	British Geological Survey, National Geoscience Information Service				
		adon Protection Measures No radon protective measures are necessary in the construction of new	A13SE	0	1	36255
	Source:	dwellings or extensions British Geological Survey, National Geoscience Information Service	(S)			17000

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	e Directory Entries				
107	Name: Location: Classification: Status: Positional Accuracy:	Arrow Services 513, Stockwood Road, Bristol, BS4 5LR Cleaning Materials & Equipment Inactive Automatically positioned in the proximity of the address	A13NE (NE)	0	-	362587 170061
108	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Van World 513, Stockwood Road, Brislington, Bristol, BS4 5LR Commercial Vehicle Dealers Active Automatically positioned to the address	A13SE (SE)	14	-	362580 169985
109	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Brislington M O T Centre Unit E3, Flowers Hill, Bristol, Avon, BS4 5JJ Mot Testing Centres Active Automatically positioned to the address	A13SW (W)	47	-	362463 169976
110	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Throsper Engineering Co Ltd Flowers Hill Close, Bristol, BS4 5LF Tool Design, Manufacturers & Makers Inactive Automatically positioned to the address	A13NW (NW)	67	-	362470 170074
111	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Reynolds Collcutt Furniture 4, Flowers Hill Close, BRISTOL, BS4 5LF Cabinet Makers Active Automatically positioned to the address	A13NW (NW)	69	-	362510 170106
112	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Supreme Alushield Ltd Unit 1/2, Flowers Hill, Bristol, BS4 5JJ Anodisers Inactive Automatically positioned to the address	A13SW (SW)	94	-	362426 169936
112	Contemporary Trad Name: Location: Classification: Status:	•	A13SW (SW)	94	-	362426 169936
112	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Bristol Peugeot Unit 2B, Flowers Hill, Bristol, BS4 5JJ Car Breakers & Dismantlers Active Automatically positioned to the address	A13SW (SW)	94	-	362426 169936
112	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Bristol Renault Brakers Unit 2B, Flowers Hill, Bristol, BS4 5JJ Car Breakers & Dismantlers Inactive Automatically positioned to the address	A13SW (SW)	94	-	362426 169936
112	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Igp (Uk) Contracts Ltd Unit 1/2, Flowers Hill, Bristol, Avon, BS4 5JJ Powder Coatings Inactive Manually positioned to the address or location	A13SW (SW)	94	-	362426 169936
112	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Mdtoxal Ltd Unit 1, Flowers Hill, Bristol, Avon, BS4 5JJ Anodisers Inactive Automatically positioned to the address	A13SW (SW)	94	-	362426 169936
113	Contemporary Trad Name: Location: Classification: Status:		A13NW (NW)	111	-	362466 170126

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	e Directory Entries				
113	Name: Location: Classification: Status:	Sandison Windows 6, Flowers Hill Close, Bristol, BS4 5LF Window Frames - Sales & Service Active Automatically positioned to the address	A13NW (NW)	111	-	362466 170126
113	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Alansons 7, Flowers Hill, Bristol, BS4 5JJ Adhesives, Glues & Sealants Active Automatically positioned to the address	A13NW (NW)	127	-	362431 170120
113	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Circle Salvage 7, Flowers Hill, Bristol, BS4 5JJ Salvage Dealers Inactive Automatically positioned to the address	A13NW (NW)	127	-	362431 170120
113	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Source Antiques 5, Flowers Hill Close, Bristol, BS4 5LF Antiques - Repairing & Restoring Active Automatically positioned to the address	A13NW (NW)	132	-	362461 170148
113	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Melhuish & Bateman Ltd 5, Flowers Hill Close, Bristol, BS4 5LF Sheet Metal Work Inactive Automatically positioned to the address	A13NW (NW)	132	-	362461 170148
113	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries J A Till & Co Ltd 1a, Flowers Hill Close, Bristol, BS4 5LF Bakery Equipment Manufacturers & Suppliers Inactive Automatically positioned to the address	A13NW (NW)	132	-	362461 170148
113	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	All Car Spares 1, Flowers Hill Close, Bristol, BS4 5LF Commercial Vehicle Servicing, Repairs, Parts & Accessories Inactive Automatically positioned to the address	A13NW (NW)	137	-	362443 170141
113	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Le Directory Entries Europa Engineering Services Unit H, Flowers Hill, Bristol, BS4 5JJ Engineers - General Inactive Automatically positioned in the proximity of the address	A13NW (NW)	138	-	362413 170117
113	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Fastframe Trade 3a, Flowers Hill, BRISTOL, BS4 5JJ Window Frame Manufacturers' Equipment Inactive Automatically positioned to the address	A13NW (NW)	173	-	362395 170148
113	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Steve Hill Landrovers 3, Flowers Hill, Bristol, BS4 5JJ Garage Services Active Automatically positioned to the address	A13NW (NW)	173	-	362395 170147
114	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Be Directory Entries Bristol Honda 834, Bath Road, Brislington, Bristol, BS4 5LQ Car Dealers Inactive Automatically positioned to the address	A13NW (N)	132	-	362509 170187
115	Contemporary Trad Name: Location: Classification: Status:	Motorline Toyota Bristol South 832, Bath Road, Brislington, Bristol, BS4 5LQ Car Dealers Active Automatically positioned to the address	A13NW (NW)	160	-	362455 170182

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
116	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries National Tyre And Autocare 830, Bath Road, Brislington, BRISTOL, BS4 5LQ Tyre Dealers Active Automatically positioned to the address	A13NW (NW)	175	-	362458 170204
116	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Supertune Car Clinics Ltd 828, Bath Road, Brislington, Bristol, BS4 5LQ Car Engine Tuning & Diagnostic Services Inactive Automatically positioned to the address	A13NW (NW)	187	-	362443 170208
116		e Directory Entries Whitehouse V W Centre The White House, 822, Bath Road, Brislington, Bristol, BS4 5LQ Garage Services Inactive Automatically positioned to the address	A13NW (NW)	199	-	362432 170213
116	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Garafit Services Ltd Willis House, Flowers Hill, Bristol, BS4 5JJ Garage Equipment Active Automatically positioned to the address	A13NW (NW)	202	-	362393 170186
116	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Bathwick Tyres Ltd 820, Bath Road, Brislington, Bristol, BS4 5LQ Tyre Dealers Active Automatically positioned to the address	A13NW (NW)	220	-	362412 170224
117	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Solid Wood Co 821, Bath Road, Brislington, Bristol, Avon, BS4 5NL Furniture Manufacturers - Home & Office Inactive Automatically positioned to the address	A13NW (N)	188	-	362557 170257
118	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Toyota World 832 Bath Rd, Brislington, Bristol, Avon, BS4 5LQ Car Dealers Inactive Manually positioned to the address or location	A13NE (N)	225	-	362609 170290
119	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Micklegate Engineering Ltd Unit 6, Wilverley Trading Estate, 813-815, Bath Road, Brislington, Bristol, BS4 5NL Hydraulic Engineers Inactive Automatically positioned to the address	A13NW (N)	276	-	362487 170333
120	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Qualitronics Uk Ltd Unit 1, Wilverley Trading Estate, 813-815, Bath Road, Brislington, Bristol, BS4 5NL Plant & Machinery Repairs Active Automatically positioned to the address	A13NW (NW)	282	-	362422 170310
120		e Directory Entries European Friction Industries Ltd Unit 1, Wilverley Trading Estate, 813-815, Bath Road, Brislington, Bristol, BS4 5NL Brake & Clutch Manufacturers Inactive Automatically positioned to the address	A13NW (NW)	282	-	362422 170310
120	Contemporary Trade Name: Location: Classification: Status:		A13NW (NW)	282	-	362422 170310

ntries ction Industries Ltd verley Trading Estate, 813-815, Bath Road, Brislington, 64 5NL ch Manufacturers v positioned to the address ntries verley Trading Estate, 813-815, Bath Road, Brislington, Bristol, ng, Flavouring & Additive Manufacturers & Distributors v positioned to the address ntries par h Road, Brislington, Bristol, BS4 5NL v positioned to the address ntries par ntries par	A13NW (NW) A18SW (N) A18SW (NW)	312	-	362422 170310 362435 170351
verley Trading Estate, 813-815, Bath Road, Brislington, S4 5NL ch Manufacturers verley Trading Estate, 813-815, Bath Road, Brislington, Bristol, Indiana Propositioned to the address verley Trading Estate, 813-815, Bath Road, Brislington, Bristol, Indiana Propositioned to the address verley Trading & Additive Manufacturers & Distributors verley positioned to the address verley Brislington, Bristol, BS4 5NL verley positioned to the address verley Trading Estate, 813-815, Bath Road, Brislington, Bristol, BS4 5NL verley positioned to the address verley Trading Estate, 813-815, Bath Road, Brislington, Bristol, BS4 5NL verley positioned to the address verley Trading Estate, 813-815, Bath Road, Brislington, Bristol, BS4 5NL verley Trading Estate, 813-815, Bath Road, Brislington, Bristol, BS4 5NL verley Trading Estate, 813-815, Bath Road, Brislington, Bristol, BS4 5NL verley Trading Estate, 813-815, Bath Road, Brislington, Bristol, BS4 5NL verley Trading Estate, 813-815, Bath Road, Brislington, Bristol, BS4 5NL verley Trading Estate, 813-815, Bath Road, Brislington, Bristol, BS4 5NL verley Trading Estate, 813-815, Bath Road, Brislington, Bristol, BS4 5NL verley Trading Estate, 813-815, Bath Road, Brislington, Bristol, BS4 5NL verley Trading Estate, 813-815, Bath Road, Brislington, Bristol, BS4 5NL verley Trading Estate, 813-815, Bath Road, Brislington, Bristol, BS4 5NL verley Trading Estate, 813-815, Bath Road, Brislington, Bristol, BS4 5NL verley Trading Estate, 813-815, Bath Road, Brislington, Bristol, BS4 5NL verley Trading Estate, 813-815, Bath Road, Brislington, Bristol, BS4 5NL verley Trading Estate, 813-815, Bath Road, Brislington, Brislingto	A18SW (N)	312	-	170310 362435
r positioned to the address ntries verley Trading Estate, 813-815, Bath Road, Brislington, Bristol, ng, Flavouring & Additive Manufacturers & Distributors r positioned to the address ntries uar h Road, Brislington, Bristol, BS4 5NL r positioned to the address ntries	(N)		-	
verley Trading Estate, 813-815, Bath Road, Brislington, Bristol, ng, Flavouring & Additive Manufacturers & Distributors v positioned to the address Intries Jar h Road, Brislington, Bristol, BS4 5NL v positioned to the address Intries	(N)		-	
ng, Flavouring & Additive Manufacturers & Distributors / positioned to the address ntries uar h Road, Brislington, Bristol, BS4 5NL / positioned to the address ntries	(N)		-	
prositioned to the address Intries Diar In Road, Brislington, Bristol, BS4 5NL Propositioned to the address Intries		322		
par h Road, Brislington, Bristol, BS4 5NL r positioned to the address ntries		322		
h Road, Brislington, Bristol, BS4 5NL positioned to the address ntries		322		
ntries			-	362406 170347
h Road, Brislington, Bristol, BS4 5NL positioned to the address	A13NW (NW)	323	-	362397 170343
ntries				
uar h Road, Brislington, Bristol, BS4 5NL v positioned to the address	A13NW (NW)	323	-	362397 170343
ntries				
tation toad, Bristol, BS4 5PF Centres	A13NE (NE)	282	-	362718 170323
·				
enham Garage toad, Bristol, BS4 5PF tices prositioned to the address	A13NE (NE)	288	-	362713 170332
ntries				
vice Centre toad, Bristol, BS4 5PF Centres	A13NE (NE)	288	-	362713 170332
·				
o Ltd	A18SE	332	_	362748
ill Road, Bristol, BS4 5RB Ventilation Systems positioned to the address	(NE)			170365
ntries				
ill Road, Bristol, BS4 5RG Services	A18SE (NE)	332	-	362748 170365
•				
ntries gineering	A18SE	332	-	362748
// rnttatatacoccicioccicicoccicicoccicicoccicicoccicicoccicicoccicicoccicicoccicionalistatacoccicicoccicionalistatacoccicicoccicionalistatacoccicionalis	positioned to the address tries tion ad, Bristol, BS4 5PF entres positioned to the address tries tham Garage ad, Bristol, BS4 5PF es positioned to the address tries ce Centre ad, Bristol, BS4 5PF entres positioned to the address tries Ltd Road, Bristol, BS4 5RB /entilation Systems positioned to the address tries Road, Bristol, BS4 5RG envices positioned to the address tries Road, Bristol, BS4 5RG envices positioned to the address tries positioned to the address tries positioned to the address tries positioned to the address tries positioned to the address tries positioned to the address	positioned to the address tries ation add, Bristol, BS4 5PF entres positioned to the address tries tham Garage ad, Bristol, BS4 5PF es positioned to the address tries ce Centre ad, Bristol, BS4 5PF entres co Centre ad, Bristol, BS4 5PF entres positioned to the address tries Ltd Road, Bristol, BS4 5RB /entilation Systems positioned to the address tries Road, Bristol, BS4 5RG ervices A18SE Road, Bristol, BS4 5RG ervices positioned to the address tries A18SE (NE)	positioned to the address tries tition A13NE (NE) ad, Bristol, BS4 5PF (NE) positioned to the address tries tham Garage A13NE (NE) positioned to the address tries ce Centre A13NE (NE) positioned to the address tries tries tries A13NE (NE) A13N	positioned to the address tries ation ad, Bristol, BS4 5PF entres positioned to the address tries ad, Bristol, BS4 5PF es positioned to the address tries ce Centre ad, Bristol, BS4 5PF entres positioned to the address tries tries ce Centre ad, Bristol, BS4 5PF entres positioned to the address tries tries Ltd A13NE (NE) A13N

A Landmark Information Group Service Order Number: 132920054_1_1 Date: 20-Jul-2017 rpr_ec_datasheet v53.0

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	e Directory Entries				
122	Name: Location: Classification: Status: Positional Accuracy:	Inchbrook Colour Print 10, Emery Road, Bristol, BS4 5PF Printers Inactive Automatically positioned to the address	A18SE (N)	333	-	362711 170379
122	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Jon'S 5 Emery Rd, Bristol, Avon, BS4 5PF Garage Services Inactive Manually positioned to the road within the address or location	A18SE (N)	353	-	362681 170408
122	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Commercial World 12, Emery Road, Bristol, BS4 5PF Commercial Vehicle Dealers Inactive Automatically positioned to the address	A18SE (N)	366	-	362714 170413
122	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries P & P Services 12, Emery Road, Bristol, BS4 5PF Builders' Merchants Inactive Automatically positioned to the address	A18SE (N)	366	-	362714 170413
122	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Marchway 12, Emery Road, Bristol, BS4 5PF Garage Services Inactive Automatically positioned to the address	A18SE (N)	366	-	362714 170413
122	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Lifeshield Pharmacy 12, Emery Road, Bristol, BS4 5PF Chemists' & Pharmacists' Suppliers & Wholesalers Active Automatically positioned to the address	A18SE (N)	366	-	362714 170413
123	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Eco Solutions Ltd Unit 7-8, 7-9, Emery Road, Bristol, Avon, BS4 5PF Paint & Varnish Stripping Inactive Manually positioned to the address or location	A18SE (N)	290	-	362609 170356
123	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Webb Unit 2, 7-9, Emery Road, Bristol, Avon, BS4 5PF Road Haulage Services Inactive Automatically positioned to the address	A18SE (N)	291	-	362609 170356
123	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Big Office 7-9, Emery Road, Bristol, BS4 5PF Office Furniture & Equipment Inactive Automatically positioned to the address	A18SE (N)	304	-	362649 170364
123	Contemporary Trad Name: Location: Classification: Status:		A18SE (N)	310	-	362654 170369
123	Contemporary Trad Name: Location: Classification: Status:	* * * * * * * * * * * * * * * * * * * *	A18SE (N)	310	-	362654 170369
124	Contemporary Trad Name: Location: Classification: Status:	**	A13NW (NW)	309	-	362249 170180

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
125	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries The Window Glass Company Bristol Ltd 11, Emery Road, Bristol, BS4 5PF Aluminium Fabricators Active Automatically positioned to the address	A18SW (N)	320	-	362521 170385
125	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Southern P V C Systems Unit 1, Carrick Business Centre 4-5, Bonville Road, Bristol, BS4 5NZ Window Frame Manufacturers Active Automatically positioned to the address	A18SW (N)	334	-	362472 170389
125	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries R Hamilton & Co Ltd Unit 10, Carrick Business Centre, 4-5, Bonville Road, Bristol, BS4 5NZ Electrical Goods - Manufacturers & Wholesalers Inactive Automatically positioned to the address	A18SW (N)	334	-	362472 170389
125	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries R Hamilton & Company Ltd Unit 10, Carrick Business Centre 4-5, Bonville Road, Bristol, BS4 5NZ Electrical Goods Sales, Manufacturers & Wholesalers Active Automatically positioned to the address	A18SW (N)	334	-	362472 170389
125	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Folio Bristol Unit 3-7, Carrick Business Centre, 4-5, Bonville Road, Bristol, Avon, BS4 5NZ Print Finishers Active Automatically positioned to the address	A18SW (N)	334	-	362472 170389
126	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Avon County Choppers Unit 4, 306, Industrial Estate, 242-244, Broomhill Road, Bristol, BS4 5RG Motor Cycle Repairs Active Automatically positioned to the address	A18SE (NE)	354	-	362780 170374
126	Contemporary Trad Name: Location: Classification: Status:		A18SE (NE)	354	-	362780 170374
126	Contemporary Trad Name: Location: Classification: Status:		A18SE (NE)	376	-	362819 170376
126	Contemporary Trad Name: Location: Classification: Status:		A18SE (NE)	376	-	362818 170376
126	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Power Fixings Crompton House, 240, Broomhill Road, Bristol, BS4 5RG Hardware Inactive Automatically positioned to the address	A18SE (NE)	406	-	362813 170414
126	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Pe Directory Entries One Stop Mobile Engineering 306 Broomhill Rd, Bristol, Avon, BS4 5RG Garage Services Inactive Manually positioned within the geographical locality	A18SE (NE)	406	-	362813 170414
127	Contemporary Trad Name: Location: Classification: Status:		A13NW (NW)	355	-	362261 170272

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	le Directory Entries				
128	Name: Location: Classification: Status:	R C Simulations 306, Broomhill Road, Bristol, Avon, BS4 5RG Distribution Services Inactive Automatically positioned to the address	A18SE (NE)	363	-	362767 170391
	Contemporary Trad	le Directory Entries				
129	Name: Location: Classification: Status: Positional Accuracy:	Central Bodyshop 807, Bath Road, Brislington, Bristol, BS4 5NL Car Body Repairs Active Automatically positioned to the address	A18SW (NW)	365	-	362349 170360
	Contemporary Trad	le Directory Entries				
130	Name: Location: Classification: Status: Positional Accuracy:	Sportshak Ltd 91, Hungerford Road, Bristol, BS4 5HG Sports Equipment Manufacturers & Distributors Inactive Automatically positioned to the address	A12NE (W)	371	-	362135 170043
	Contemporary Trad	le Directory Entries				
131	Name: Location: Classification: Status: Positional Accuracy:	Dale Maintenance Unit 4, Birchills Trading Estate, Emery Road, Bristol, BS4 5PF Timber Preservation Services Active Automatically positioned to the address	A18SE (N)	390	-	362701 170441
	Contemporary Trad	le Directory Entries				
131	Name: Location: Classification: Status: Positional Accuracy:	G M B Garages Unit 4 Heston House, 7-9 Emery Road, Bristol, Avon, BS4 5PF Mot Testing Centres Active Manually positioned within the geographical locality	A18SE (N)	397	-	362693 170450
	Contemporary Trad					
131	Name: Location: Classification: Status:	Tallis Of Bath Unit 1, Birchills Trading Estate, Emery Road, Bristol, Avon, BS4 5PF Car Dealers Inactive Manually positioned to the address or location	A18SE (N)	397	-	362693 170450
	Contemporary Trad					
131	Name: Location: Classification: Status:	Platinum Natural Pet Food & Care Ltd Unit 9-10, Birchills Trading Estate, Emery Road, Bristol, BS4 5PF Pet Foods & Animal Feeds Active Automatically positioned to the address	A18SE (NE)	400	-	362738 170441
	Contemporary Trad	le Directory Entries				
131	Name: Location: Classification: Status:	Activ-Air Automation Ltd Unit 8, Birchills Trading Estate, Emery Road, Bristol, BS4 5PF Pneumatic Systems & Equipment Active Automatically positioned to the address	A18SE (N)	414	-	362739 170455
-	Contemporary Trad					
131	Name: Location: Classification: Status:	Activ-An Automation Ltd Unit 8, Birchills Trading Estate, Emery Road, Bristol, BS4 5PF Air Compressors Inactive Automatically positioned to the address	A18SE (N)	414	-	362739 170455
	Contemporary Trad	le Directory Entries				
131	Name: Location: Classification: Status: Positional Accuracy:	M J N Motors 16, Emery Road, Bristol, BS4 5PF Garage Services Active Automatically positioned to the address	A18SE (N)	417	-	362692 170471
	Contemporary Trad	le Directory Entries				
131	Name: Location: Classification: Status:	Adhq Engineering Unit 7, Birchills Trading Estate, Emery Road, Bristol, BS4 5PF Engineering Services Inactive Automatically positioned to the address	A18SE (N)	421	-	362736 170464
	Contemporary Trad					
131	Name: Location: Classification: Status:	Hygiene Services Ltd Unit 6, Birchills Trading Estate, Emery Road, Bristol, BS4 5PF Cleaning Services - Commercial Inactive Automatically positioned to the address	A18SE (N)	429	-	362733 170473

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
46.	Contemporary Trad	•				
131	Name: Location: Classification: Status: Positional Accuracy:	Global Coatings Heathcote House, 13, Clothier Road, Bristol, BS4 5PS Metal Finishing Services Active Automatically positioned to the address	A18SE (NE)	443	-	362762 170479
	Contemporary Trad	e Directory Entries				
132	Name: Location: Classification: Status: Positional Accuracy:	City Heating Spares 13-15, Emery Road, Bristol, BS4 5PR Central Heating Supplies & Equipment Inactive Automatically positioned to the address	A18SE (N)	397	-	362616 170463
	Contemporary Trad	e Directory Entries				
132	Name: Location: Classification: Status: Positional Accuracy:	Travis Perkins Plc 13-15, Emery Road, Bristol, BS4 5PR Builders' Merchants Active Automatically positioned to the address	A18SE (N)	397	-	362616 170463
	Contemporary Trad	e Directory Entries				
133	Name: Location: Classification: Status: Positional Accuracy:	Avon Auto Colours 1, Bonville Road, Bristol, BS4 5NZ Car Paint & Lacquer Manufacturers & Suppliers Active Automatically positioned to the address	A18SW (NW)	398	-	362368 170413
	Contemporary Trad	e Directory Entries				
133	Name: Location: Classification: Status: Positional Accuracy:	P P Engineering Unit 2-3, Bonville Road, Bristol, Avon, BS4 5NZ Engineers - General Inactive Manually positioned to the address or location	A18SW (NW)	432	-	362353 170443
	Contemporary Trad	* *				
134	Name: Location: Classification: Status:	P D Sales The Beeches, Broomhill Road, Brislington, Bristol, BS4 5BF Car Dealers Inactive Automatically positioned to the address	A14NW (NE)	401	-	362922 170317
	Contemporary Trad	**				
135	Name: Location: Classification: Status:	Car Paint Medics 5, Clothier Road, Bristol, BS4 5PS Car Paint & Lacquer Manufacturers & Suppliers Active Automatically positioned to the address	A18SE (NE)	421	-	362808 170434
	Contemporary Trad	e Directory Entries				
135	Name: Location: Classification: Status: Positional Accuracy:	Mike & Alan Engineers 5, Clothier Road, Bristol, BS4 5PS Garage Services Active Automatically positioned to the address	A18SE (NE)	421	-	362808 170434
	Contemporary Trad	e Directory Entries				
135	Name: Location: Classification: Status: Positional Accuracy:	M A Engineers 5, Clothier Road, Bristol, Avon, BS4 5PS Garage Services Inactive Automatically positioned to the address	A18SE (NE)	421	-	362808 170434
135	Contemporary Trad Name: Location: Classification: Status:	Lindo 238, Broomhill Road, Bristol, BS4 5RG Musical Instrument - Manufacturers Inactive	A18SE (NE)	433	-	362839 170431
	Contemporary Trad	Automatically positioned to the address				
136	Name: Location: Classification: Status:	Whites 17-19, Emery Road, Bristol, Avon, BS4 5PF Machinery - Industrial & Commercial Active Automatically positioned to the address	A18SE (N)	422	-	362572 170491
	Contemporary Trad					
136	Name: Location: Classification: Status:	P H Laminators 21-23, Emery Road, Bristol, BS4 5PF Print Finishers Active Automatically positioned to the address	A18SW (N)	444	-	362548 170512

rpr_ec_datasheet v53.0 A Landmark Information Group Service Order Number: 132920054_1_1 Date: 20-Jul-2017

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	e Directory Entries				
136	Name: Location: Classification: Status:	Thermo Logistics 21-23, Emery Road, Bristol, BS4 5PF Heat Exchangers Active Automatically positioned to the address	A18SW (N)	444	-	362548 170512
136	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Grant Motor Sport 21-23, Emery Road, Bristol, BS4 5PF Garage Services Inactive Automatically positioned to the address	A18SW (N)	444	-	362548 170512
137	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Brislington Park 803-805, Bath Road, Brislington, Bristol, BS4 5NL Car Dealers Inactive Automatically positioned to the address	A18SW (NW)	434	-	362291 170402
137	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Brislington Park 803-805, Bath Road, Brislington, Bristol, BS4 5NL Car Dealers Inactive Automatically positioned to the address	A18SW (NW)	434	-	362291 170402
137	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Simon Stone Motor Group 803-805, Bath Road, Brislington, Bristol, BS4 5NL Car Customisation & Conversion Specialists Active Automatically positioned to the address	A18SW (NW)	434	-	362291 170402
138	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Folio Unit 7, Carrick Business Centre, 4-5, Bonville Road, Bristol, Avon, BS4 5NZ Print Finishers Inactive Automatically positioned to the address	A18SW (N)	445	-	362439 170494
138	Contemporary Trad Name: Location: Classification: Status:	••	A18SW (N)	445	-	362439 170494
138	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Hussmann (Europe) Ltd 4-5, Bonville Road, Bristol, BS4 5NF Refrigeration Equipment - Commercial Inactive Automatically positioned to the address	A18SW (N)	445	-	362439 170494
138	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Laidlaw Solutions Ltd 4-5, Bonville Road, Bristol, BS4 5NF Hardware Inactive Automatically positioned to the address	A18SW (N)	445	-	362439 170494
138	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Hussmann 4-5, Bonville Road, Bristol, BS4 5NF Refrigeration Equipment - Commercial Inactive Automatically positioned to the address	A18SW (N)	445	-	362439 170494
138	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Avon Dies 4-5, Bonville Road, Bristol, Avon, BS4 5NF Print Finishers Inactive Manually positioned to the address or location	A18SW (N)	445	-	362439 170494
138	Contemporary Trad Name: Location: Classification: Status:		A18SW (N)	459	-	362461 170515

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
138	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries European Friction Industries 6-7, Bonville Road, Bristol, Avon, BS4 5NZ Brake & Clutch Manufacturers Inactive Automatically positioned to the address	A18SW (N)	459	-	362461 170515
138	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Ke Directory Entries Kool Cars Air Conditioning Ltd The Coach House & Garage,Bonville Rd, Bristol, Avon, BS4 5NZ Refrigerators & Freezers - Servicing & Repairs Inactive Manually positioned to the road within the address or location	A18SW (N)	474	-	362445 170527
138	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Dunraven Manufacturing 9 Bonville Rd, Bristol, Avon, BS4 5QR PVC-U Products - Manufacturers & Suppliers Inactive Manually positioned to the road within the address or location	A18SW (N)	490	-	362486 170552
139	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Space Workshop 12-13, Yelverton Road, Bristol, BS4 5HP Office Furniture & Equipment Inactive Automatically positioned to the address	A12NE (NW)	449	-	362154 170290
139	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Springfield Supplies & Projects 12-13, Yelverton Road, Bristol, BS4 5HP Office Furniture & Equipment Active Automatically positioned to the address	A12NE (NW)	452	-	362153 170294
140	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Vitcas Ltd 8, Bonville Road, Bristol, BS4 5NZ Refractory Materials & Supplies Active Automatically positioned to the address	A18SW (N)	456	-	362514 170522
141	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Be Directory Entries Bristol Galvanizers Ltd 18-20, Emery Road, Bristol, BS4 5QA Galvanising Inactive Automatically positioned to the address	A18SE (N)	459	-	362691 170514
142	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Simply Saab 9, Clothier Road, Bristol, BS4 5PS Car Dealers Inactive Automatically positioned to the address	A18SE (NE)	476	-	362792 170502
142	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	A P S Body Works 11 Clothier Rd, Bristol, Avon, BS4 5PS Commercial Vehicle Bodybuilders & Repairers Inactive Manually positioned to the address or location	A18SE (N)	478	-	362760 170516
142	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Parts-Asap 9, Clothier Road, Bristol, BS4 5PS Car Dealers - Used Active Automatically positioned to the address	A18SE (N)	479	-	362760 170517
142	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Phoenix Enhancement Services Ltd 11, Clothier Road, Bristol, BS4 5PS Car Body Repairs Inactive Automatically positioned to the address	A18SE (N)	479	-	362760 170517
142	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Phoenix Alloys 11, Clothier Road, Bristol, BS4 5PS Car Body Repairs Active Automatically positioned to the address	A18SE (NE)	493	-	362774 170527

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	le Directory Entries				
143	Name: Location: Classification: Status: Positional Accuracy:	Euro Motor Servicing E L V Ltd 234-236, Broomhill Road, Bristol, BS4 5RG Scrap Metal Merchants Inactive Automatically positioned to the address	A18SE (NE)	478	-	362887 170453
143	Contemporary Trad	le Directory Entries All Euro Servicing Ltd	A18SE	478	-	362887
	Location: Classification: Status:	234-236, Broomhill Road, Bristol, Avon, BS4 5RG Commercial Vehicle Servicing, Repairs, Parts & Accessories Inactive Automatically positioned to the address	(NE)			170453
	Contemporary Trad	le Directory Entries				
143	Name: Location: Classification: Status: Positional Accuracy:	Euro Services Ltd 234-236, Broomhill Road, Bristol, Avon, BS4 5RG Garage Services Inactive Automatically positioned to the address	A18SE (NE)	478	-	362887 170453
	Contemporary Trad	le Directory Entries				
143	Name: Location: Classification: Status: Positional Accuracy:	All Audi 234-236, Broomhill Road, Bristol, Avon, BS4 5RG Car Breakers & Dismantlers Inactive Automatically positioned to the address	A18SE (NE)	478	-	362887 170453
	Contemporary Trad	le Directory Entries				
143	Name: Location: Classification: Status:	All Audi 234-236, Broomhill Road, Bristol, BS4 5RG Garage Services Inactive Automatically positioned to the address	A18SE (NE)	478	-	362887 170453
	Contemporary Trad					
143	Name: Location: Classification: Status:	Euro Services 234-236, Broomhill Road, Bristol, Avon, BS4 5RG Mot Testing Centres Inactive Manually positioned to the address or location	A18SE (NE)	478	-	362887 170453
	-					
143	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	All Audi 234-236, Broomhill Road, Bristol, BS4 5RG Garage Services Active Automatically positioned to the address	A19SW (NE)	498	-	362902 170467
	Contemporary Trad	le Directory Entries				
143	Name: Location: Classification: Status:	Euro Motor Servicing E L V Ltd 234-236, Broomhill Road, Bristol, BS4 5RG Scrap Metal Merchants Active Automatically positioned to the address	A19SW (NE)	498	-	362902 170467
	Contemporary Trad	• • • • • • • • • • • • • • • • • • • •				
144	Name: Location: Classification: Status:	Charles Ware Clothier Rd, Bristol, Avon, BS4 5PS Classic Car Specialists Inactive Manually positioned to the road within the address or location	A18SE (NE)	480	-	362836 170486
145	Contemporary Trad Name: Location:	le Directory Entries Hulse Heating 24 Emery Rd, Bristol, BS4 5PF	A18SE	512	-	362648 170574
	Classification: Status:	Boilers - Servicing, Replacements & Repairs Inactive Manually positioned to the address or location	(N)			110014
	Contemporary Trad	le Directory Entries				
146	Name: Location: Classification: Status:	Redcliffe Magtronics 19, Clothier Road, BRISTOL, BS4 5PS Electronic Engineers Inactive	A18SE (N)	515	-	362723 170564
	_	Automatically positioned to the address				
146	Contemporary Trad Name: Location: Classification: Status:	le Directory Entries One Holding 19, Clothier Road, Bristol, Avon, BS4 5PS Bed & Mattress Manufacturers Inactive	A18SE (N)	515	-	362723 170564
		Manually positioned to the address or location				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	e Directory Entries				
147	Name: Location: Classification: Status:	Bradman Lake Group 1-9, Yelverton Road, Bristol, BS4 5HP Packaging & Wrapping Equipment & Supplies Active Automatically positioned to the address	A12NE (NW)	522	-	362070 170295
147	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Eyrevac Prosurf 7-15, Hungerford Road, Bristol, BS4 5HU Sports Equipment Manufacturers & Distributors Inactive Automatically positioned to the address	A12NE (NW)	533	-	362046 170276
148	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Bains Fireplaces 801, Bath Road, Brislington, Bristol, BS4 5NL Fireplaces & Mantelpieces Active Automatically positioned to the address	A18SW (NW)	535	-	362231 170485
149	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries B S Commercial Repairs Ltd 3, Clothier Road, BRISTOL, BS4 5PS Commercial Vehicle Bodybuilders & Repairers Active Automatically positioned to the address	A18SE (NE)	546	-	362832 170562
149	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Avalon Trade Finishers Ltd 12-14, Clothier Road, Bristol, BS4 5PS Print Finishers Inactive Automatically positioned to the address	A18SE (NE)	550	-	362824 170570
149	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Miniture Marketing 12-14, Clothier Road, Bristol, Avon, BS4 5PS Print Finishers Inactive Manually positioned to the address or location	A18SE (NE)	550	-	362824 170570
149	Contemporary Trad Name: Location: Classification: Status:	• • • • • • • • • • • • • • • • • • • •	A18SE (NE)	550	-	362824 170570
150	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Avalon Mailing Services 16, Clothier Road, Bristol, Avon, BS4 5PS Print Finishers Inactive Automatically positioned to the address	A18SE (N)	560	-	362785 170594
150	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Avalon (South West) Ltd 16 Clothier Rd, Bristol, Avon, BS4 5PS Print Finishers Inactive Manually positioned to the address or location	A18SE (N)	560	-	362784 170594
151	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Science Systems Space Ltd 23, Clothier Road, Bristol, BS4 5SS Laboratories Active Automatically positioned to the address	A18SE (N)	576	-	362668 170636
152	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Moores 18, Clothier Road, Bristol, Avon, BS4 5PS Boilers - Servicing, Replacements & Repairs Inactive Manually positioned to the address or location	A18SE (N)	579	-	362762 170621
152	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Legacy Windows 18, Clothier Road, Bristol, BS4 5PS Door Manufacturers - Domestic Inactive Automatically positioned to the address	A18SE (N)	585	-	362774 170624

rpr_ec_datasheet v53.0 Order Number: 132920054_1_1 Date: 20-Jul-2017

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	e Directory Entries				
152	Name: Location: Classification: Status:	New Wave Doors 18, Clothier Road, Bristol, BS4 5PS Door Manufacturers - Domestic Active Automatically positioned to the address	A18SE (N)	585	-	362774 170624
152	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Charles Ware'S Morris Minor Centre Ltd 20, Clothier Road, Bristol, BS4 5PS Car Body Repairs Active Automatically positioned to the address	A18SE (N)	602	-	362748 170648
153	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Grafix Screen Printing 21, West Town Lane, Bristol, BS4 5DA T-Shirts Inactive Automatically positioned to the address	A12NE (NW)	587	-	362025 170345
154	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Majestic Carpet Cleaning & Oven 13, Lucas Close, Bristol, BS4 5DG Oven cleaning Inactive Automatically positioned to the address	A12NE (W)	591	-	361913 170012
155	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Industrial Gas Services 8, West Town Lane, Bristol, BS4 5BN Gas Companies Inactive Automatically positioned to the address	A17SE (NW)	597	-	362103 170456
155	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries J S Promotions Ltd 10 West Town La, Bristol, Avon, BS4 5BN T-Shirts Inactive Manually positioned to the address or location	A17SE (NW)	602	-	362094 170454
156	Contemporary Trad Name: Location: Classification: Status:		A19SW (NE)	615	-	362966 170565
157	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Caledonian Windows & Conservatories Brislington Trading Est,24-25 Dixon Rd, Bristol, Avon, BS4 5QW Window Frames - Sales & Service Inactive Manually positioned to the road within the address or location	A18SE (NE)	661	-	362870 170670
158	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Allseasons Comfort Cooling 35, Fairway, Bristol, BS4 5DF Air Conditioning & Refrigeration Contractors Inactive Automatically positioned to the address	A12NW (W)	668	-	361837 170038
159	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Cains Mechanical Services Ltd 2, West Town Court, Bristol, BS4 5BH Air Conditioning & Refrigeration Contractors Inactive Automatically positioned to the address	A17SE (NW)	677	-	362037 170503
160	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Be Directory Entries Brimar Plastics Ltd 18, Dixon Road, Bristol, BS4 5QW Plastic Products - Manufacturers Active Automatically positioned to the address	A18NE (NE)	682	-	362883 170688
160	Contemporary Trad Name: Location: Classification: Status:	Farrow Furniture Uk Ltd Unit 6-8, Dixon Business Centre, Dixon Road, Bristol, BS4 5QW Furniture Manufacturers - Home & Office Inactive Automatically positioned to the address	A18NE (NE)	729	-	362885 170737

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	le Directory Entries				
160	Name: Location: Classification: Status: Positional Accuracy:	Jeff Fishlock Ltd Unit 3, Dixon Business Centre, Dixon Road, Bristol, BS4 5QW Catering Equipment Inactive Automatically positioned to the address	A18NE (NE)	729	-	362885 170737
	Contemporary Trad	·				
160	Name: Location: Classification: Status: Positional Accuracy:	Solid Wood Unit 3, Dixon Business Centre, Dixon Road, Bristol, Avon, BS4 5QW Furniture Manufacturers - Home & Office Inactive Automatically positioned to the address	A18NE (NE)	729	-	362885 170737
	Contemporary Trad	le Directory Entries				
160	Name: Location: Classification: Status: Positional Accuracy:	A B Fluid Power Ltd Unit 24-25, Dixon Business Centre, Dixon Road, Bristol, BS4 5QW Hydraulic Engineers Active Automatically positioned to the address	A19NW (NE)	736	-	362931 170726
	Contemporary Trad	le Directory Entries				
160	Name: Location: Classification: Status: Positional Accuracy:	Duncan Rogers Unit 14, Dixon Business Centre, Dixon Road, Bristol, BS4 5QW Hydraulic Equipment & Accessories - Sales & Service Active Automatically positioned to the address	A18NE (NE)	737	-	362874 170750
	Contemporary Trad	le Directory Entries				
160	Name: Location: Classification: Status: Positional Accuracy:	Mark 2 Joinery Unit 13, Dixon Business Centre, Dixon Road, Bristol, BS4 5QW Joinery Manufacturers Inactive Automatically positioned to the address	A18NE (NE)	737	-	362874 170750
	Contemporary Trad	**				
160	Name: Location: Classification: Status:	Bristol Folding & Finishing Ltd Unit 9-11 Dixon Rd, Bristol, Avon, BS4 5QW Print Finishers Inactive Manually positioned within the geographical locality	A18NE (NE)	737	-	362874 170750
	Contemporary Trad					
161	Name: Location: Classification: Status:	Scotty'S Gates Brislington Trading Estate, 27, Dixon Road, Bristol, BS4 5QW Gate Manufacturers Active Automatically positioned to the address	A18NE (N)	711	-	362742 170760
	Contemporary Trad					
162	Name: Location: Classification: Status: Positional Accuracy:	Ayrtek Unit 39, Dixon Business Centre, Dixon Road, Bristol, BS4 5QW Sports Equipment Manufacturers & Distributors Inactive Automatically positioned to the address	A19NW (NE)	721	-	362955 170696
	Contemporary Trad	le Directory Entries				
162	Name: Location: Classification: Status: Positional Accuracy:	D & H Cars Hulbert Close, Bristol, BS4 5RY Car Dealers - Used Inactive Automatically positioned to the address	A19NW (NE)	747	-	362971 170717
	Contemporary Trad	le Directory Entries				
162	Name: Location: Classification: Status: Positional Accuracy:	Euro Car Sales Hulbert Close, Bristol, BS4 5RY Car Dealers - Used Inactive Automatically positioned to the address	A19NW (NE)	747	-	362971 170717
	Contemporary Trad	le Directory Entries				
162	Name: Location: Classification: Status: Positional Accuracy:	Euro Cooling Services Hulbert Close, Bristol, BS4 5RY Car Radiator Servicing & Repairs Inactive Automatically positioned to the address	A19NW (NE)	747	-	362971 170717
	Contemporary Trad					
163	Name: Location: Classification: Status:	Classic Home Cuisine 35, Brislington Hill, Bristol, BS4 5BE Food Products - Manufacturers Inactive Automatically positioned to the address	A17SE (NW)	728	-	362095 170623

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
163	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Viridian Distribution Ltd Viridian House, Glenarm Road, Bristol, BS4 4LW Knitting Yarn Manufacturers & Wholesalers Active Automatically positioned to the address	A17SE (NW)	728	-	362095 170623
163	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Hollywood Frames Ltd 35 Brislington Hill, Bristol, Avon, BS4 5BE Window Frame Manufacturers Active Manually positioned to the address or location	A17SE (NW)	728	-	362095 170622
163	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Laseredup 29, Brislington Hill, Bristol, BS4 5BE Electrolysis Active Automatically positioned to the address	A17SE (NW)	743	-	362086 170635
163	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Kaphirchelvan 19, Brislington Hill, Bristol, BS4 5BE Laundries & Launderettes Inactive Automatically positioned to the address	A17SE (NW)	770	-	362069 170655
164	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Housekeepers Of Bristol 22, Glenarm Walk, Bristol, BS4 4LS Cleaning Services - Domestic Active Automatically positioned to the address	A17NE (NW)	747	-	362166 170698
165	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries B & T Ironmould Lane, Bristol, Avon, BS4 5SA Engineers - General Inactive Automatically positioned to the address	A14NE (E)	753	-	363324 170309
165	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Wilf'S Auto Services Unit 1c, Ironmould Lane, Bristol, BS4 5SA Garage Services Inactive Automatically positioned to the address	A14NE (E)	756	-	363328 170306
166	Contemporary Trad Name: Location: Classification: Status:		A18NE (N)	755	-	362850 170778
166	Contemporary Trad Name: Location: Classification: Status:	, , , , , , , , , , , , , , , , , , ,	A18NE (N)	755	-	362850 170778
167	Contemporary Trad Name: Location: Classification: Status:		A12SW (W)	763	-	361740 169975
168	Contemporary Trad Name: Location: Classification: Status:	**	A19NW (NE)	766	-	362957 170746
168	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Fulton Boiler Works Ltd 210, Broomhill Road, Bristol, BS4 4TU Boiler Manufacturers Inactive Automatically positioned to the address	A19NW (NE)	802	-	363004 170761

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
168	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Fulton Boiler Works Ltd 210, Broomhill Road, Bristol, BS4 4TU Boilers - Servicing, Replacements & Repairs Inactive Automatically positioned to the address	A19NW (NE)	802	-	363004 170761
169	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Avon Electromech Ltd Unit 5, Bonville Business Centre, Dixon Road, Bristol, BS4 5QQ Plant & Machinery Repairs Active Automatically positioned to the address	A18NE (N)	772	-	362770 170817
169	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Alan Williams & Co Unit 4, Bonville Business Centre, Dixon Road, Bristol, BS4 5QQ Ventilators & Ventilation Systems Active Automatically positioned to the address	A18NE (N)	775	-	362763 170822
169	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Bristol Hydra Lifts Unit 3, Bonville Business Centre, Dixon Road, Bristol, BS4 5QQ Lifting Equipment Active Automatically positioned to the address	A18NE (N)	778	-	362756 170826
169	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Wessex Process Systems Ltd Unit 3, Bonville Business Centre, Dixon Road, Bristol, BS4 5QQ Engineering Services Inactive Automatically positioned to the address	A18NE (N)	778	-	362756 170826
169	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Bearing Warehouse Ltd Unit 19-20, Bonville Business Centre, Bonville Road, BRISTOL, BS4 5QR Bearing Manufacturers Active Automatically positioned to the address	A18NE (N)	800	-	362809 170837
169	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Car Paint Warehouse Ltd Unit 17-18, Bonville Business Centre, Bonville Road, Bristol, BS4 5QR Car Paint & Lacquer Manufacturers & Suppliers Active Automatically positioned to the address	A18NE (N)	807	-	362794 170848
169	Contemporary Trade Name: Location: Classification: Status:		A18NE (N)	808	-	362794 170848
169	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Metro Products Unit 15, Bonville Business Centre, Bonville Road, Bristol, BS4 5QR Office Furniture & Equipment Inactive Automatically positioned to the address	A18NE (N)	811	-	362774 170856
169	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Minster Cleaning Services Unit 14, Bonville Business Centre, Bonville Road, Bristol, BS4 5QR Commercial Cleaning Services Active Automatically positioned to the address	A18NE (N)	812	-	362769 170858
169	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Camtech Mechanical Services Ltd Unit 11,Bonville Business Centre,Bonville Rd, Bristol, BS4 5QR Air Conditioning & Refrigeration Contractors Inactive Manually positioned to the address or location	A18NE (N)	813	-	362765 170860
169	Contemporary Trade Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Tci Automotive Bonville Business Centre,Bonville Rd, Bristol, BS4 5QR Garage Services Inactive Manually positioned to the address or location	A18NE (N)	833	-	362794 170874

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Contemporary Trad	e Directory Entries				
169	Name: Location: Classification: Status:	Express Car & Commercial 20, Bonville Road, Bristol, BS4 5QH Car Body Repairs Inactive Automatically positioned to the address	A18NE (N)	835	-	362772 170881
169	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Edgewood Joinery Unit 24, Bonville Business Centre, Bonville Road, Bristol, BS4 5QR Joinery Manufacturers Active Automatically positioned to the address	A18NE (N)	840	-	362798 170881
170	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Rhogar Print Finishers 214-224, Broomhill Road, Bristol, BS4 5RG Print Finishers Active Automatically positioned to the address	A19SW (NE)	774	-	363074 170683
171	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Morley Press Regency House, Bonville Road, BRISTOL, BS4 5QH Printers Active Automatically positioned to the address	A18NE (N)	786	-	362727 170839
171	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Avon Equipment Ltd Regency House, Dixon Road, Bristol, BS4 5QW Machine Tools - Manufacturers & Distributors Inactive Automatically positioned to the address	A18NE (N)	786	-	362727 170839
171	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Trowbridge Office Cleaning Services Ltd Regency House,Bonville Road, Bristol, Avon, BS4 5QH Commercial Cleaning Services Active Automatically positioned to the address	A18NE (N)	786	-	362727 170839
171	Contemporary Trad Name: Location: Classification: Status:	**	A18NE (N)	786	-	362727 170839
171	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Rocktron Regency House, Bonville Road, Bristol, Avon, BS4 5QH Mineral Merchants Inactive Manually positioned to the address or location	A18NE (N)	786	-	362727 170839
172	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Clay Supplies & Distribution Ltd Ironmould Lane, Bristol, BS4 5SA Sports Equipment Manufacturers & Distributors Inactive Automatically positioned to the address	A14NE (E)	796	-	363383 170265
172	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries S M J Bristol Car Repairs Unit 22,Ironmould Lane, Bristol, Avon, BS4 5SA Garage Services Active Manually positioned within the geographical locality	A14NE (E)	825	-	363415 170254
172	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Baber Transport Ltd Unit 31-32 Ironmould Lane, Bristol, Avon, BS4 5SA Road Haulage Services Active Manually positioned within the geographical locality	A14NE (E)	846	-	363430 170280
172	Contemporary Trad Name: Location: Classification: Status:	e Directory Entries Bristol Foundry Unit 3, Ironmould Lane, Bristol, Avon, BS4 5SA Foundries Inactive Automatically positioned to the address	A14NE (E)	846	-	363430 170280

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
173	Contemporary Trad	Printgraphicsign	A17SE	798	-	362052
	Location: Classification: Status: Positional Accuracy:	9, Brislington Hill, Bristol, BS4 5BE T-Shirts Active Automatically positioned to the address	(NW)			170678
	Contemporary Trad	e Directory Entries				
173	Name: Location: Classification: Status: Positional Accuracy:	Printgraphicsign 9, Brislington Hill, Bristol, BS4 5BE T-Shirts Inactive Automatically positioned to the address	A17SE (NW)	798	-	362052 170678
	Contemporary Trad	e Directory Entries				
173	Name: Location: Classification: Status: Positional Accuracy:	H R W Cars The Sq, Brislington, Bristol, BS4 5AD Car Dealers - Used Inactive Manually positioned within the geographical locality	A17NE (NW)	834	-	362038 170713
	Contemporary Trad	e Directory Entries				
174	Name: Location: Classification: Status: Positional Accuracy:	S T P Distribution Ltd Unit 3, Bonville Trading Estate, Bonville Road, Bristol, BS4 5QU Door Manufacturers - Domestic Inactive Automatically positioned to the address	A18NE (N)	807	-	362850 170833
	Contemporary Trad	e Directory Entries				
174	Name: Location: Classification: Status: Positional Accuracy:	Vent-Tech Ltd Unit 32, Bonville Business Centre, Bonville Road, Bristol, BS4 5QR Dust Extraction Plant & Equipment Manufacturers Inactive Automatically positioned to the address	A18NE (N)	855	-	362851 170882
	Contemporary Trad					
174	Name: Location: Classification: Status:	Hydrotech Es Ltd Unit 32, Bonville Business Centre, Bonville Road, Bristol, BS4 5QR Hygiene & Cleansing Services Inactive Automatically positioned to the address	A18NE (N)	855	-	362851 170882
	Contemporary Trad	· · · · · · · · · · · · · · · · · · ·				
175	Name: Location: Classification: Status:	F P Cartons Ltd Ironmould Lane, Bristol, BS4 5SA Boxes & Cartons Active Automatically positioned to the address	A14NE (E)	833	-	363408 170312
	Contemporary Trad					
176	Name: Location: Classification: Status:	Motor Village The Square, Brislington, Bristol, BS4 5AD Car Dealers - Used Inactive Automatically positioned to the address	A17SE (NW)	835	-	361981 170666
	Contemporary Trad					
176	Name: Location: Classification: Status:	Motor Village The Square, Brislington, BRISTOL, BS4 5AD Car Dealers Active Automatically positioned to the address	A17SE (NW)	835	-	361981 170666
	Contemporary Trad	e Directory Entries				
176	Name: Location: Classification: Status: Positional Accuracy:	Motor Village The Square, Brislington, Bristol, BS4 5AD Car Dealers - Used Inactive Automatically positioned to the address	A17SE (NW)	835	-	361981 170666
	Contemporary Trad	e Directory Entries				
176	Name: Location: Classification: Status: Positional Accuracy:	Brislington Motors Co The Square, Brislington, Bristol, BS4 5AD Car Dealers - Used Inactive Automatically positioned to the address	A17SE (NW)	838	-	361972 170662
	-	Automatically positioned to the address				
176	Contemporary Trad Name: Location: Classification: Status:	B Directory Entries J A S Cars The Sq, Brislington, Bristol, BS4 5AD Car Dealers - Used Inactive	A17SE (NW)	845	-	361972 170672
		Manually positioned within the geographical locality				

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
176	Contemporary Trad Name: Location: Classification:	le Directory Entries N & C Auto Services Ltd The Square,Bath Road, Brislington, Bristol, Avon, BS4 5AD Mot Testing Centres	A17SE (NW)	856	-	361955 170672
	Status: Positional Accuracy:	Active Manually positioned to the address or location				
176	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	N C Auto Services Ltd The Square, Brislington, Bristol, BS4 5AD Garage Services Inactive Automatically positioned to the address	A17SE (NW)	858	-	361950 170671
176	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Murco Petroleum Ltd The Square, Brislington, Bristol, BS4 5AD Petrol Filling Stations Inactive Automatically positioned to the address	A17SE (NW)	858	-	361950 170671
176	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Brislington Motor Co The Square, Brislington, Bristol, Avon, BS4 5AD Car Dealers - Used Inactive Automatically positioned to the address	A17SE (NW)	858	-	361950 170671
177	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Leman Ltd Unit 28, Ironmould Lane, Bristol, BS4 5SA Freight Forwarders Inactive Automatically positioned to the address	A14NE (E)	853	-	363449 170231
177	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Keydale Precision Patterns Unit 19, Ironmould Lane, Bristol, BS4 5SA Pattern Makers - Industrial Inactive Automatically positioned to the address	A14NE (E)	860	-	363460 170212
177	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries D & J Scaffolding Ltd Unit 19a, Ironmould Lane, Bristol, BS4 5SA Scaffolding & Work Platforms Active Automatically positioned to the address	A14NE (E)	867	-	363465 170222
177	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	le Directory Entries Harvey Litho Ltd Ironmould Lane, Bristol, BS4 5SA Printers Inactive Automatically positioned to the address	A14NE (E)	881	-	363481 170215
177	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Brislington Fasteners Ironmould Lane, Bristol, Avon, BS4 5SA Fasteners & Fixing Devices Inactive Automatically positioned to the address	A14NE (E)	893	-	363494 170207
178	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Arrowspeed Ltd Unit 5, Bonville Trading Estate, Bonville Road, Bristol, BS4 5QU Road Haulage Services Inactive Automatically positioned to the address	A19NW (NE)	856	-	362993 170828
178	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Plastivan Unit 4, Bonville Trading Estate, Bonville Road, Bristol, BS4 5QU PVC-U Products - Manufacturers & Suppliers Active Automatically positioned to the address	A19NW (NE)	877	-	362965 170864
179	Contemporary Trad Name: Location: Classification: Status:	Mayborn Engineering 4 X 4 Ironmould La, Bristol, BS4 4TZ Garage Services Inactive Manually positioned to the road within the address or location	A19SW (NE)	857	-	363232 170654

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
180	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Publow Press Ltd 23, Bonville Road, Bristol, BS4 5QH Printers Inactive Automatically positioned to the address	A18NE (N)	873	-	362782 170918
180	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Heli-Tec International 24, Bonville Road, Bristol, BS4 5QH Precision Engineers Active Automatically positioned to the address	A18NE (N)	885	-	362786 170929
180	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries M C F 24, Bonville Road, Bristol, Avon, BS4 5QH Commercial Cleaning Services Inactive Manually positioned to the address or location	A18NE (N)	885	-	362786 170929
180	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Label Makers Bonville Rd, Bristol, Avon, BS4 5QH Printers Inactive Manually positioned within the geographical locality	A18NE (N)	896	-	362794 170939
181	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Murco Service Station The Square, Brislington, Bristol, BS4 5AD Petrol Filling Stations Inactive Automatically positioned to the address	A17NE (NW)	880	-	361985 170728
181	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Texaco The Square, Brislington, Bristol, BS4 5AD Petrol Filling Stations Active Automatically positioned to the address	A17NE (NW)	882	-	361977 170723
182	Contemporary Trad Name: Location: Classification: Status:		A18NE (N)	887	-	362855 170915
183	Contemporary Trad Name: Location: Classification: Status:		A19SE (NE)	888	-	363430 170408
183	Contemporary Trad Name: Location: Classification: Status:		A19SE (NE)	892	-	363436 170404
184	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Abrichem Composite Ltd Unit 20 Heath Farm Estate, Ironmould Lane, Bristol, Avon, BS4 5RS Glass Fibre Moulding, Materials & Manufacturers Active Manually positioned within the geographical locality	A19NE (NE)	916	-	363278 170691
185	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Mcarthur Manufacturing 198-202, Broomhill Road, Bristol, BS4 5SF Fencing Manufacturers Inactive Automatically positioned to the address	A19NW (NE)	932	-	363063 170877
186	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Proper Job 1, Warrington Road, Bristol, BS4 5AQ Hardware Active Automatically positioned to the address	A17SW (NW)	936	-	361847 170679

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
187	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Modern Baking Systems Bristol Ltd 27, Bonville Road, Bristol, BS4 5QH Bakery Equipment Manufacturers & Suppliers Inactive Automatically positioned to the address	A18NE (N)	970	-	362846 171003
187	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries A F Conveyor Belting Supplies Unit 22 Bonville Rd, Bristol, Avon, BS4 5QH Conveyors & Conveyor Belts Inactive Manually positioned to the road within the address or location	A18NE (N)	983	-	362838 171018
187	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Swemko 29, Bonville Road, Bristol, BS4 5QH Cutlery Manufacturers Active Automatically positioned to the address	A18NE (N)	984	-	362872 171011
187	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	Nomenca Unit 11, 30, Bonville Road, Bristol, BS4 5QH Control Panels Inactive Automatically positioned to the address	A18NE (N)	990	-	362883 171014
188	Contemporary Trad Name: Location: Classification: Status: Positional Accuracy:	e Directory Entries Car-Tek Hollywood Rd, Bristol, Avon, BS4 4LF Garage Services Inactive Manually positioned to the road within the address or location	A17NE (NW)	976	-	361996 170860
189	Fuel Station Entries Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Westgate Service Station Bath Road, Brislington, BRISTOL, BS4 5LQ OBSOLETE Not Applicable Obsolete Approximate location provided by supplier	A13NE (NE)	133	-	362667 170183
190	Fuel Station Entries Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Brislington Park Service Station 803-805 Bath Road, Bonville Road, Brislington, BRISTOL, BS4 5NL Obsolete Not Applicable Obsolete Approximate location provided by supplier	A18SW (N)	354	-	362427 170393
191	Fuel Station Entries Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Brislington Motor Services Bristol Hill, Kenneth Road, Brislington, BRISTOL, BS4 5AB Obsolete Not Applicable Obsolete Automatically positioned to the address	A17SE (NW)	858	-	361950 170670
192	Fuel Station Entries Name: Location: Brand: Premises Type: Status: Positional Accuracy:	Brislington Service Station Brislington Service Station, The Square, Brislington, Bristol, BS4 5AD Texaco Petrol Station Open Manually positioned to the address or location	A17NE (NW)	879	-	361986 170728
193	Name: Location: Category: Class Code:	Commercial Services Cash for Cars Ltd 513 Stockwood Road, Brislington, Bristol, BS4 5LR Recycling Services Scrap Metal Merchants Positioned to address or location	A13SE (SE)	14	8	362580 169985
194	Name: Location: Category: Class Code:	Commercial Services Brislington MOT Centre Unit E3, Flowers Hill, Bristol, BS4 5JJ Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A13SW (W)	47	8	362463 169976

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
194	Name: Location: Category: Class Code:	Commercial Services Brislington M O T Centre Unit E3, Flowers Hill, Bristol, BS4 5JJ Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A13SW (W)	48	8	362462 169976
194	Name: Location: Category: Class Code:	Commercial Services Avon Auto Electrical Unit 2B, Flowers Hill, Bristol, BS4 5JJ Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A13SW (SW)	94	8	362426 169936
194	Name: Location: Category: Class Code:	Commercial Services Avon Auto Electrical Unit 2b, Flowers Hill, Bristol, BS4 5JJ Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A13SW (SW)	95	8	362425 169936
194	Name: Location: Category: Class Code:	Commercial Services Bristol Peugeot Unit 2B, Flowers Hill, Bristol, BS4 5JJ Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A13SW (SW)	95	8	362425 169936
195	Name: Location: Category: Class Code:	Commercial Services D W Holley 6 Flowers Hill Close, Bristol, BS4 5LF Transport, Storage and Delivery Distribution and Haulage Positioned to address or location	A13NW (NW)	67	8	362470 170074
195	Name: Location: Category: Class Code:	Commercial Services Melhuish & Bateman Ltd 5 Flowers Hill Close, Bristol, BS4 5LF Construction Services Metalworkers Including Blacksmiths Positioned to address or location	A13NW (NW)	69	8	362482 170086
195	Name: Location: Category: Class Code:	Commercial Services A S L 5 Flowers Hill Close, Bristol, BS4 5LF Construction Services Metalworkers Including Blacksmiths Positioned to address or location	A13NW (NW)	69	8	362481 170085
195	Name: Location: Category: Class Code:	Commercial Services Melhuish & Bateman Ltd 5 Flowers Hill Close, Bristol, BS4 5LF Construction Services Metalworkers Including Blacksmiths Positioned to address or location	A13NW (NW)	132	8	362461 170148
195	Name: Location: Category: Class Code:	Commercial Services Melhuish & Bateman Ltd 5 Flowers Hill Close, Bristol, BS4 5LF Construction Services Metalworkers Including Blacksmiths Positioned to address or location	A13NW (NW)	132	8	362461 170148
195	Name: Location: Category: Class Code:	Commercial Services All Car Spares 1 Flowers Hill Close, Bristol, BS4 5LF Recycling Services Scrap Metal Merchants Positioned to address or location	A13NW (NW)	137	8	362443 170141
195	Name: Location: Category: Class Code:	Commercial Services Steve Hill 3 Flowers Hill, Bristol, BS4 5JJ Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A13NW (NW)	173	8	362395 170147
195	Name: Location: Category: Class Code:	Commercial Services Wash Worx 3 Flowers Hill, Bristol, BS4 5JJ Personal, Consumer and other Services Vehicle Cleaning Services Positioned to address or location	A13NW (NW)	173	8	362395 170147

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
195	Location: 3 Flower Category: Repair	hill Landrovers ers Hill, Bristol, BS4 5JJ and Servicing Repair, Testing and Servicing	A13NW (NW)	173	8	362394 170147
195	Location: 830 Bar Category: Repair	ll Tyres and Autocare th Road, Brislington, Bristol, BS4 5LQ and Servicing Repair, Testing and Servicing	A13NW (NW)	175	8	362457 170204
195	Location: 830 Bar Category: Repair	ll Tyres and Autocare th Road, Brislington, Bristol, BS4 5LQ and Servicing Repair, Testing and Servicing	A13NW (NW)	175	8	362458 170204
195	Location: The Wh Category: Repair	ouse V W Centre hite House 822, Bath Road, Brislington, Bristol, BS4 5LQ and Servicing Repair, Testing and Servicing	A13NW (NW)	199	8	362432 170213
195	Location: The Wh Category: Repair	ouse V W Centre nite House 822, Bath Road, Brislington, Bristol, BS4 5LQ and Servicing Repair, Testing and Servicing	A13NW (NW)	199	8	362432 170213
196	Location: 6-8 Em Category: Repair	O T Station ery Road, Bristol, BS4 5PF and Servicing Repair, Testing and Servicing	A13NE (NE)	282	8	362718 170323
197	Location: Unit 1-2 BS4 5N Category: Repair	an Friction Industries Ltd ? Wilverley Trading Estate 813-815, Bath Road, Brislington, Bristol, IL and Servicing Repair, Testing and Servicing	A13NW (NW)	282	8	362422 170310
198	Location: 6-8 Em Category: Repair	& Service Centre ery Road, Bristol, BS4 5PF and Servicing Repair, Testing and Servicing	A13NE (NE)	288	8	362713 170331
198	Location: 12 Eme Category: Repair	vay Motor Centre sry Road, Bristol, BS4 5PF and Servicing Repair, Testing and Servicing	A18SE (N)	366	8	362714 170413
198	Location: 12 Eme Category: Repair	vey Motor Centre stry Road, Bristol, BS4 5PF and Servicing Repair, Testing and Servicing	A18SE (N)	366	8	362714 170413
198	Category: Repair	Notors rry Road, Bristol, BS4 5PF and Servicing Repair, Testing and Servicing	A18SE (N)	413	8	362682 170468
198	Category: Repair	Motors rry Road, Bristol, BS4 5PF and Servicing Repair, Testing and Servicing	A18SE (N)	413	8	362682 170468

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Points of Interest - Com	nmercial Services				
199	Category: Trai	ebb it 2 7-9, Emery Road, Bristol, BS4 5PF ansport, Storage and Delivery stribution and Haulage sitioned to address or location	A18SE (N)	291	8	362609 170356
199	Location: 7-9 Category: Tra Class Code: Dist	nmercial Services bibb Distribution Ltd Emery Road, Bristol, BS4 5PF ansport, Storage and Delivery stribution and Haulage sitioned to address or location	A18SE (N)	291	8	362653 170350
199	Location: Unit Category: Rep Class Code: Veh	nmercial Services n's Auto Cave it 5 Heston House, 7-9 Emery Road, Bristol, BS4 5PF pair and Servicing hicle Repair, Testing and Servicing sitioned to address or location	A18SE (N)	305	8	362649 170364
199	Location: Unit Category: Rep Class Code: Veh	nmercial Services M B Garages it 4 Heston House, 7-9 Emery Road, Bristol, BS4 5PF pair and Servicing hicle Repair, Testing and Servicing sitioned to address or location	A18SE (N)	310	8	362655 170368
199	Location: Unit Category: Rep Class Code: Veh	nmercial Services E Autos it 5 7-9, Emery Road, Bristol, BS4 5PF pair and Servicing hicle Repair, Testing and Servicing sitioned to address or location	A18SE (N)	310	8	362654 170369
200	Location: Unit 5RC Category: Rep Class Code: Ver	e Stop Mobile Engineering it 3, 306 Industrial Estate 242-244, Broomhill Road, Brislington, Bristol, BS4	A18SE (NE)	350	8	362785 170366
200	Points of Interest - Com Name: One Location: Uni 5RC Category: Rep Class Code: Ver	nmercial Services le Stop Mobile Engineering it 3, 306 Industrial Estate 242-244, Broomhill Road, Brislington, Bristol, BS4	A18SE (NE)	350	8	362785 170366
200	Points of Interest - Com Name: Avo Location: Unit Category: Rep Class Code: Ver		A18SE (NE)	353	8	362779 170373
200	Location: Unit Category: Rep Class Code: Ver	nmercial Services r Paint Medics it, 3 5 Clothier Road, Bristol, BS4 5PS pair and Servicing hicle Repair, Testing and Servicing sitioned to address or location	A18SE (NE)	421	8	362808 170434
200	Location: 5 C Category: Rep Class Code: Veh	nmercial Services A Engineering Clothier Road, Bristol, BS4 5PS pair and Servicing hicle Repair, Testing and Servicing sitioned to address or location	A18SE (NE)	421	8	362808 170434
200	Location: 5 C Category: Rep Class Code: Veh	nmercial Services ke & Alan Engineers Clothier Road, Bristol, BS4 5PS pair and Servicing hicle Repair, Testing and Servicing sitioned to address or location	A18SE (NE)	421	8	362808 170434

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
200	Category: Rep Class Code: Veh		A18SE (NE)	477	8	362886 170452
200	Location: 234 Category: Rep Class Code: Veh	mercial Services o Motor Servicing Ltd -236 Broomhill Road, Bristol, BS4 5RG pair and Servicing picle Repair, Testing and Servicing itioned to address or location	A18SE (NE)	478	8	362887 170453
200	Category: Rep Class Code: Veh		A18SE (NE)	478	8	362887 170453
200	Location: 234 Category: Rep Class Code: Veh	mercial Services o Services -236 Broomhill Road, Bristol, BS4 5RG nair and Servicing icle Repair, Testing and Servicing itioned to address or location	A18SE (NE)	478	8	362887 170453
200	Location: 234 Category: Rep Class Code: Veh	mercial Services o Servicing Ltd -236 Broomhill Road, Bristol, BS4 5RG pair and Servicing picle Repair, Testing and Servicing itioned to address or location	A18SE (NE)	478	8	362887 170453
201	Location: 807 Category: Rep Class Code: Veh	mercial Services Intral Bodyshop Bath Road, Brislington, Bristol, BS4 5NL Intral Bodyshop	A18SW (NW)	365	8	362349 170360
201	Location: 807 Category: Rep Class Code: Veh	mercial Services Intral Bodyshop Bath Road, Brislington, Bristol, BS4 5NL Intral Bodyshop Bath Road, Brislington, Bristol, BS4 5NL Intral Bodyshop Bath Road, Brislington, Bristol, BS4 5NL Intral Bodyshop Bath Road, BS4 5NL Bath Road, BS5	A18SW (NW)	365	8	362348 170360
202	Location: 11 (Category: Rep Class Code: Veh	mercial Services penix Alloys Clothier Road, Bristol, BS4 5PS pair and Servicing picle Repair, Testing and Servicing itioned to address or location	A18SE (N)	478	8	362760 170516
202	Location: 9 Clategory: Rep Class Code: Veh	mercial Services ply Saab lothier Road, Bristol, BS4 5PS pair and Servicing licle Repair, Testing and Servicing litioned to address or location	A18SE (N)	479	8	362760 170517
202	Location: 3 C Category: Rep Class Code: Veh	mercial Services Commercial Repairs Ltd lothier Road, Bristol, BS4 5PS lair and Servicing licle Repair, Testing and Servicing litioned to address or location	A18SE (NE)	546	8	362832 170562
203	Location: 234 Category: Rec Class Code: Scra	mercial Services o Motor Servicing E L V Ltd -236 Broomhill Road, Bristol, BS4 5RG cycling Services ap Metal Merchants itioned to address or location	A19SW (NE)	497	8	362901 170466
204	Location: 20 C Category: Rep Class Code: Veh	mercial Services In les Ware's Morris Minor Centre Clothier Road, Bristol, BS4 5PS In les and Servicing In les Repair, Testing and Servicing It it it is a didress or location	A18SE (N)	602	8	362748 170648

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
205	Name: Location: Category: Class Code:	Commercial Services Commercial Transfer Ltd 14-16 Brislington Trading Estate, Dixon Road, Bristol, BS4 5QW Transport, Storage and Delivery Distribution and Haulage Positioned to address or location	A19SW (NE)	694	8	362933 170677
206	Name: Location: Category: Class Code:	Commercial Services Dcs (Bristol) Ltd Unit 21 Dixon Business Centre, Dixon Road, Bristol, BS4 5QW Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A18NE (N)	755	8	362850 170778
206	Name: Location: Category: Class Code:	Commercial Services D C S Bristol Ltd Unit 19 Dixon Business Centre, Brislington, Bristol, BS4 5QW Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A18NE (N)	755	8	362850 170778
207	Name: Location: Category: Class Code:	Commercial Services Wilf's Auto Services Unit 1c, Ironmould Lane, Bristol, BS4 5SA Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A14NE (E)	756	8	363328 170306
207	Name: Location: Category: Class Code:	Commercial Services R G S Vehicle Services Ironmould Lane, Bristol, BS4 5SA Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A14NE (E)	759	8	363333 170304
208	Name: Location: Category: Class Code:	Commercial Services G & L Unit 11, Bonville Business Centre, Bonville Rd, Brislington, Bristol, Avon, BS4 5QR Recycling Services Recycling, Reclamation and Disposal Positioned to address or location	A18NE (N)	816	8	362758 170864
209	Name: Location: Category: Class Code:	Commercial Services Leman Ltd Unit 28, Ironmould Lane, Bristol, BS4 5SA Transport, Storage and Delivery Distribution and Haulage Positioned to address or location	A14NE (E)	853	8	363449 170231
209	Name: Location: Category: Class Code:	Commercial Services Leman Ltd Unit 28, Ironmould Lane, Bristol, BS4 5SA Transport, Storage and Delivery Distribution and Haulage Positioned to address or location	A14NE (E)	853	8	363449 170231
209	Name: Location: Category: Class Code:	Commercial Services Baber Transport Ltd Ironmould Lane, Bristol, BS4 5RS Transport, Storage and Delivery Distribution and Haulage Positioned to address or location	A14NE (E)	889	8	363481 170254
209	Name: Location: Category: Class Code:	Commercial Services S M J Bristol Car Repairs Unit 22, Ironmould Lane, Bristol, BS4 5SA Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A14NE (E)	893	8	363491 170226
210	Name: Location: Category: Class Code:	Commercial Services N & C Auto Services Ltd The Square, Bath Road, Brislington, Bristol, BS4 5AD Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A17SE (NW)	856	8	361955 170672
210	Name: Location: Category: Class Code:	Commercial Services Brislington Motor Services Ltd The Square, Brislington, Bristol, BS4 5AD Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A17SE (NW)	858	8	361950 170671

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
210	Name: Location: Category: Class Code:	Commercial Services Brislington Motor Services The Square, Brislington, Bristol, BS4 5AD Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A17SE (NW)	858	8	361950 170670
210	Name: Location: Category: Class Code:	Commercial Services Brislington Service Station Brislington Service Station, The Square, Brislington, Bristol, BS4 5AD Personal, Consumer and other Services Vehicle Cleaning Services Positioned to address or location	A17NE (NW)	879	8	361986 170728
210	Name: Location: Category: Class Code:	Commercial Services Car Wash Brislington Service Station, The Square, Brislington, Bristol, BS4 5AD Personal, Consumer and other Services Vehicle Cleaning Services Positioned to address or location	A17NE (NW)	879	8	361986 170728
211	Name: Location: Category: Class Code:	Commercial Services Arrowspeed Ltd Unit 5 Bonville Trading Estate, Bonville Road, Bristol, BS4 5QU Transport, Storage and Delivery Distribution and Haulage Positioned to address or location	A19NW (NE)	856	8	362993 170828
211	Name: Location: Category: Class Code:	Commercial Services Arrowspeed Unit 5 Bonville Trading Estate, Bonville Road, Bristol, BS4 5QU Transport, Storage and Delivery Distribution and Haulage Positioned to address or location	A19NW (NE)	856	8	362993 170828
212	Name: Location: Category: Class Code:	Commercial Services Phoenix Enhancement Services Ltd Unit 31 Bonville Business Centre, Bonville Rd, Bristol, Avon, BS4 5QR Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A18NE (N)	876	8	362841 170907
212	Name: Location: Category: Class Code:	Commercial Services Three Points Ltd Unit 29-31 Bonville Business Centre, Bonville Road, Bristol, BS4 5QR Repair and Servicing Vehicle Repair, Testing and Servicing Positioned to address or location	A18NE (N)	878	8	362833 170911
213	Name: Location: Category: Class Code:	Commercial Services Point to Point Solutions 2 Old Pooles Yard, Bristol, BS4 4SL Transport, Storage and Delivery Distribution and Haulage Positioned to address or location	A17NE (NW)	943	8	361996 170819
214	Name: Location: Category: Class Code:	Manufacturing and Production Wilverly Industrial Estate BS4 Industrial Features Business Parks and Industrial Estates Positioned to an adjacent address or location	A13NW (N)	277	8	362511 170340
214	Name: Location: Category: Class Code:	Manufacturing and Production Wilverley Industrial Estate BS4 Industrial Features Business Parks and Industrial Estates Positioned to an adjacent address or location	A13NW (N)	279	8	362458 170325
215	Name: Location: Category: Class Code:	Manufacturing and Production Tank BS4 Industrial Features Tanks (Generic) Positioned to address or location	A18SW (N)	375	8	362556 170444
216	Name: Location: Category: Class Code:	Manufacturing and Production Factory BS4 Industrial Features Unspecified Works Or Factories Positioned to address or location	A18SE (N)	440	8	362681 170496

Map ID	Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
217	Points of Interest - Manufacturing and Production Name: Industrial Estate Location: BS4 Category: Industrial Features Class Code: Business Parks and Industrial Estates Positional Accuracy: Positioned to an adjacent address or location	A12NE (NW)	491	8	362123 170318
218	Points of Interest - Manufacturing and Production Name: Industrial Estate Location: BS4 Category: Industrial Features Class Code: Business Parks and Industrial Estates Positional Accuracy: Positioned to an adjacent address or location	A12NE (NW)	509	8	362059 170247
219	Points of Interest - Manufacturing and Production Name: Tanks Location: BS4 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A19SW (NE)	557	8	362904 170536
219	Points of Interest - Manufacturing and Production Name: Wks Location: BS4 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A18SE (NE)	557	8	362852 170564
219	Points of Interest - Manufacturing and Production Name: Wks Location: BS4 Category: Industrial Features Class Code: Unspecified Works Or Factories Positional Accuracy: Positioned to an adjacent address or location	A19SW (NE)	639	8	362960 170598
220	Points of Interest - Manufacturing and Production Name: Rocktron Location: Regency House, Bonville Road, Bristol, BS4 5QH Category: Extractive Industries Class Code: Sand, Gravel and Clay Extraction and Merchants Positional Accuracy: Positioned to address or location	A18NE (N)	786	8	362727 170839
220	Points of Interest - Manufacturing and Production Name: Bonville Business Centre Location: BS4 Category: Industrial Features Class Code: Business Parks and Industrial Estates Positional Accuracy: Positioned to an adjacent address or location	A18NE (N)	796	8	362768 170842
221	Points of Interest - Manufacturing and Production Name: Tank Location: BS4 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A18NE (N)	886	8	362825 170921
221	Points of Interest - Manufacturing and Production Name: Tank Location: BS4 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A18NE (N)	902	8	362807 170942
222	Points of Interest - Manufacturing and Production Name: Tank Location: BS4 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A19NE (NE)	907	8	363255 170702
222	Points of Interest - Manufacturing and Production Name: Tank Location: BS4 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A19NE (NE)	911	8	363254 170708
223	Points of Interest - Manufacturing and Production Name: Tank Location: BS4 Category: Industrial Features Class Code: Tanks (Generic) Positional Accuracy: Positioned to an adjacent address or location	A19NW (NE)	941	8	362967 170933

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
224	Name: Location: Category: Class Code:	Public Infrastructure Burial Ground (Disused) Not Supplied Infrastructure and Facilities Cemeteries and Crematoria Positioned to an adjacent address or location	A13NW (N)	78	8	362518 170129
224	Name: Location: Category: Class Code:	Public Infrastructure Burial Ground (Disused) BS4 Infrastructure and Facilities Cemeteries and Crematoria Positioned to an adjacent address or location	A13NW (N)	80	8	362518 170131
225	Name: Location: Category: Class Code:	Public Infrastructure Brislington Fire Station Brislington Fire Station 14, Bonville Road, Bristol, BS4 5QF Central and Local Government Fire Brigade Stations Positioned to address or location	A18NE (N)	655	8	362662 170717
226	Name: Location: Category: Class Code:	Public Infrastructure Metro Products Unit 15 Bonville Business Centre, Bonville Road, Bristol, BS4 5QR Infrastructure and Facilities Waste Storage, Processing and Disposal Positioned to address or location	A18NE (N)	810	8	362774 170856
227	Name: Location: Category: Class Code:	Public Infrastructure Cemetery BS4 Infrastructure and Facilities Cemeteries and Crematoria Positioned to an adjacent address or location	A18NW (N)	851	8	362293 170874
227	Name: Location: Category: Class Code:	Public Infrastructure Cemetery Not Supplied Infrastructure and Facilities Cemeteries and Crematoria Positioned to an adjacent address or location	A18NW (N)	852	8	362286 170873
228	Name: Location: Category: Class Code:	Public Infrastructure Brislington Murco Service Station The Square, Brislington, Bristol, BS4 5AD Road And Rail Petrol and Fuel Stations Positioned to address or location	A17SE (NW)	858	8	361950 170671
228	Name: Location: Category: Class Code:	Public Infrastructure Brislington Service Station Brislington Service Station, The Square, Brislington, Bristol, BS4 5AD Road And Rail Petrol and Fuel Stations Positioned to address or location	A17NE (NW)	879	8	361986 170728
228	Name: Location: Category: Class Code:	Public Infrastructure Murco Service Station The Square, Brislington, Bristol, BS4 5AD Road And Rail Petrol and Fuel Stations Positioned to address or location	A17NE (NW)	880	8	361985 170728
228	Name: Location: Category: Class Code:	Public Infrastructure Texaco The Square, Brislington, Bristol, BS4 5AD Road And Rail Petrol and Fuel Stations Positioned to address or location	A17NE (NW)	881	8	361984 170728
229	Name: Location: Category: Class Code:	Recreational and Environmental Playground Hungerford Gardens, BS4 Recreational Playgrounds Positioned to an adjacent address or location	A12SE (SW)	387	8	362191 169747
229	Name: Location: Category: Class Code:	Recreational and Environmental Playground Not Supplied Recreational Playgrounds Positioned to an adjacent address or location	A12SE (SW)	388	8	362191 169746

Sensitive Land Use

Map ID		Details	Quadrant Reference (Compass Direction)	Estimated Distance From Site	Contact	NGR
	Ancient Woodland					
230	Name: Reference: Area(m²): Type:	Not Supplied 1418525 96000.05 Ancient and Semi-Natural Woodland	A19SE (NE)	989	9	363389 170675
	Areas of Adopted	Green Belt				
231	Authority: Plan Name: Status: Plan Date:	Bristol City Council Core Strategy Adopted 21st June 2011	A13NE (E)	27	5	362640 170019
	Areas of Adopted	Green Belt				
232	Authority: Plan Name: Status: Plan Date:	Bath and North East Somerset Council Bath And North East Somerset Council Adopted 18th October 2007	A9NW (SE)	749	10	363154 169503
	Areas of Unadopte	d Green Belt				
233	Authority: Plan Name: Status: Plan Date:	Bath and North East Somerset Council Placemaking Plan Submission Draft 12th April 2016	A9NE (SE)	778	10	363303 169662
	Local Nature Reserves					
234	Name: Multiple Area: Area (m2): Source: Designation Date:	Stockwood Open Space N 529320.49 Natural England 1st January 1995	A13SE (SE)	412	9	362862 169684

Agency & Hydrological	Version	Update Cycle
Contaminated Land Register Entries and Notices		
South Gloucestershire Council - Environmental Services Department	January 2015	Annual Rolling Update
Bristol City Council - Environmental Health Department	March 2014	Annual Rolling Update
Bath and North East Somerset Council - Environmental Health Department	October 2014	Annual Rolling Update
North Somerset Council - Environmental Health Department	September 2014	Annual Rolling Update
Discharge Consents		
Environment Agency - South West Region	April 2017	Quarterly
Enforcement and Prohibition Notices		
Environment Agency - South West Region	March 2013	As notified
ntegrated Pollution Controls		
Environment Agency - South West Region	October 2008	Not Applicable
ntegrated Pollution Prevention And Control		
Environment Agency - South West Region	April 2017	Quarterly
ocal Authority Integrated Pollution Prevention And Control		
Bath and North East Somerset Council - Environmental Health Department	February 2015	Annual Rolling Update
Bristol City Council - Environmental Health Department	February 2015	Annual Rolling Update
South Gloucestershire Council - Environmental Services Department	January 2015	Annual Rolling Updat
North Somerset Council - Environmental Health Department	September 2013	Annual Rolling Updat
ocal Authority Pollution Prevention and Controls		
Bath and North East Somerset Council - Environmental Health Department	February 2015	Annual Rolling Updat
Bristol City Council - Environmental Health Department	February 2015	Annual Rolling Updat
South Gloucestershire Council - Environmental Services Department	January 2015	Annual Rolling Updat
North Somerset Council - Environmental Health Department	March 2015	Annual Rolling Updat
ocal Authority Pollution Prevention and Control Enforcements		<u> </u>
Bath and North East Somerset Council - Environmental Health Department	February 2015	Annual Rolling Updat
Bristol City Council - Environmental Health Department	February 2015	Annual Rolling Updat
South Gloucestershire Council - Environmental Services Department	January 2015	Annual Rolling Update
North Somerset Council - Environmental Health Department	September 2013	Annual Rolling Update
Nearest Surface Water Feature		
Ordnance Survey	May 2017	
Pollution Incidents to Controlled Waters		
Environment Agency - South West Region	September 1999	Not Applicable
Prosecutions Relating to Authorised Processes		11 11
Environment Agency - South West Region	March 2013	As notified
	Water 2010	As notified
Prosecutions Relating to Controlled Waters	March 2012	As notified
Environment Agency - South West Region	March 2013	As notined
Registered Radioactive Substances		
Environment Agency - South West Region	January 2015	
River Quality		
Environment Agency - Head Office	November 2001	Not Applicable
River Quality Biology Sampling Points		
Invironment Agency Lload Office	July 2012	Annually
Environment Agency - Head Office		
River Quality Chemistry Sampling Points		
	July 2012	Annually
River Quality Chemistry Sampling Points	July 2012	Annually
River Quality Chemistry Sampling Points Environment Agency - Head Office	July 2012 April 2017	Annually Quarterly
River Quality Chemistry Sampling Points Environment Agency - Head Office Substantiated Pollution Incident Register	·	,
River Quality Chemistry Sampling Points Environment Agency - Head Office Substantiated Pollution Incident Register Environment Agency - South West Region - North Wessex Area	April 2017	Quarterly
River Quality Chemistry Sampling Points Environment Agency - Head Office Substantiated Pollution Incident Register Environment Agency - South West Region - North Wessex Area Environment Agency - South West Region - Wessex Area	April 2017	Quarterly
River Quality Chemistry Sampling Points Environment Agency - Head Office Substantiated Pollution Incident Register Environment Agency - South West Region - North Wessex Area Environment Agency - South West Region - Wessex Area Water Abstractions	April 2017 April 2017	Quarterly Quarterly

Agency & Hydrological	Version	Update Cycle
Groundwater Vulnerability		
Environment Agency - Head Office	April 2015	Not Applicable
Drift Deposits		
Environment Agency - Head Office	January 1999	Not Applicable
Bedrock Aquifer Designations		
British Geological Survey - National Geoscience Information Service	August 2015	As notified
Superficial Aquifer Designations		
British Geological Survey - National Geoscience Information Service	August 2015	As notified
Source Protection Zones		
Environment Agency - Head Office	April 2017	Quarterly
Extreme Flooding from Rivers or Sea without Defences		
Environment Agency - Head Office	May 2017	Quarterly
Flooding from Rivers or Sea without Defences		
Environment Agency - Head Office	May 2017	Quarterly
Areas Benefiting from Flood Defences		
Environment Agency - Head Office	May 2017	Quarterly
Flood Water Storage Areas		
Environment Agency - Head Office	May 2017	Quarterly
Flood Defences		
Environment Agency - Head Office	May 2017	Quarterly
OS Water Network Lines		
Ordnance Survey	April 2017	6 Weekly
Surface Water 1 in 30 year Flood Extent		
Environment Agency - Head Office	October 2013	As notified
Surface Water 1 in 100 year Flood Extent		
Environment Agency - Head Office	October 2013	As notified
Surface Water 1 in 1000 year Flood Extent		
Environment Agency - Head Office	October 2013	As notified
Surface Water Suitability		
Environment Agency - Head Office	October 2013	As notified
BGS Groundwater Flooding Susceptibility		
British Geological Survey - National Geoscience Information Service	May 2013	Annually

Waste	Version	Update Cycle
BGS Recorded Landfill Sites		
British Geological Survey - National Geoscience Information Service	June 1996	Not Applicable
Historical Landfill Sites		
Environment Agency - Head Office	May 2017	Quarterly
Integrated Pollution Control Registered Waste Sites		
Environment Agency - South West Region	October 2008	Not Applicable
Licensed Waste Management Facilities (Landfill Boundaries)		
Environment Agency - South West Region - North Wessex Area	May 2017	Quarterly
Environment Agency - South West Region - Wessex Area	May 2017	Quarterly
Licensed Waste Management Facilities (Locations)		
Environment Agency - South West Region - North Wessex Area	May 2017	Quarterly
Environment Agency - South West Region - Wessex Area	May 2017	Quarterly
Local Authority Landfill Coverage		
Bath and North East Somerset Council - Planning Services Department	May 2000	Not Applicable
Bristol City Council	May 2000	Not Applicable
North Somerset Council	May 2000	Not Applicable
South Gloucestershire Council - Environmental Services Department	May 2000	Not Applicable
Local Authority Recorded Landfill Sites		
Bath and North East Somerset Council - Planning Services Department	May 2000	Not Applicable
Bristol City Council	May 2000	Not Applicable
North Somerset Council	May 2000	Not Applicable
South Gloucestershire Council - Environmental Services Department	May 2000	Not Applicable
Potentially Infilled Land (Non-Water)		
Landmark Information Group Limited	December 1999	Not Applicable
Potentially Infilled Land (Water)		
Landmark Information Group Limited	December 1999	Not Applicable
Registered Landfill Sites		
Environment Agency - South West Region - North Wessex Area	March 2003	Not Applicable
Environment Agency - South West Region - Wessex Area	March 2003	Not Applicable
Registered Waste Transfer Sites		
Environment Agency - South West Region - North Wessex Area	March 2003	Not Applicable
Environment Agency - South West Region - Wessex Area	March 2003	Not Applicable
Registered Waste Treatment or Disposal Sites		
Environment Agency - South West Region - North Wessex Area	March 2003	Not Applicable
Environment Agency - South West Region - Wessex Area	March 2003	Not Applicable

Hazardous Substances	Version	Update Cycle
Control of Major Accident Hazards Sites (COMAH)	Mb 0047	Di Amazalla
Health and Safety Executive	March 2017	Bi-Annually
Explosive Sites		
Health and Safety Executive	March 2017	Bi-Annually
Notification of Installations Handling Hazardous Substances (NIHHS) Health and Safety Executive	November 2000	Not Applicable
,	November 2000	Not Applicable
Planning Hazardous Substance Enforcements		
Bristol City Council - Planning Department	April 2015	Annual Rolling Updat
Bath and North East Somerset Council - Economic and Environmental Development	February 2016	Annual Rolling Updat
North Somerset Council	February 2016	Annual Rolling Updat
South Gloucestershire Council - Development Control: Planning	May 2016	Annual Rolling Updat
Planning Hazardous Substance Consents		
Bristol City Council - Planning Department	April 2015	Annual Rolling Updat
Bath and North East Somerset Council - Economic and Environmental Development	February 2016	Annual Rolling Updat
North Somerset Council	February 2016	Annual Rolling Updat
South Gloucestershire Council - Development Control: Planning	May 2016	Annual Rolling Updat
Geological	Version	Update Cycle
BGS 1:625,000 Solid Geology		
British Geological Survey - National Geoscience Information Service	January 2009	Not Applicable
BGS Estimated Soil Chemistry		
British Geological Survey - National Geoscience Information Service	October 2015	As notified
BGS Recorded Mineral Sites		
British Geological Survey - National Geoscience Information Service	April 2017	Bi-Annually
CBSCB Compensation District	7.0 = 0	2.7
Cheshire Brine Subsidence Compensation Board (CBSCB)	August 2011	Not Applicable
	August 2011	Not Applicable
Coal Mining Affected Areas		
The Coal Authority - Property Searches	March 2014	As notified
Mining Instability		
Ove Arup & Partners	October 2000	Not Applicable
Non Coal Mining Areas of Great Britain		
British Geological Survey - National Geoscience Information Service	May 2015	Not Applicable
Potential for Collapsible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	June 2015	Annually
Potential for Compressible Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	June 2015	Annually
	00110 2010	7 timedity
Potential for Ground Dissolution Stability Hazards	luna 2015	A
British Geological Survey - National Geoscience Information Service	June 2015	Annually
Potential for Landslide Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	June 2015	Annually
Potential for Running Sand Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	June 2015	Annually
Potential for Shrinking or Swelling Clay Ground Stability Hazards		
British Geological Survey - National Geoscience Information Service	June 2015	Annually
Radon Potential - Radon Affected Areas		†
British Geological Survey - National Geoscience Information Service	July 2011	As notified
	July 2011	AS HOUREU
Radon Potential - Radon Protection Measures British Geological Survey - National Geoscience Information Service	July 2011	
		As notified

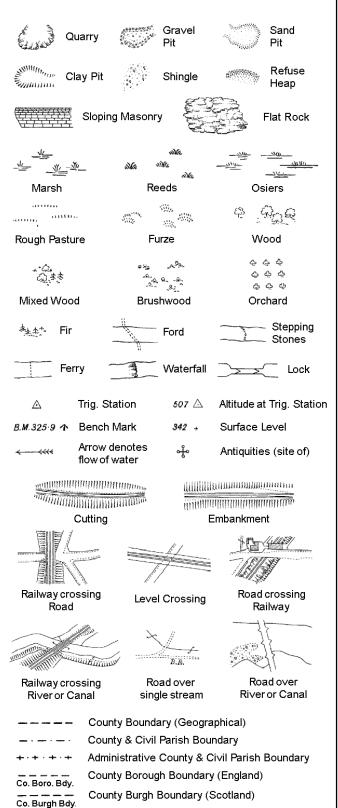
Industrial Land Use	Version	Update Cycle
Contemporary Trade Directory Entries		
Thomson Directories	June 2017	Quarterly
Fuel Station Entries		
Catalist Ltd - Experian	May 2017	Quarterly
Gas Pipelines		
National Grid	July 2014	Quarterly
Points of Interest - Commercial Services		
PointX	December 2016	Quarterly
Points of Interest - Education and Health		
PointX	December 2016	Quarterly
Points of Interest - Manufacturing and Production		
PointX	December 2016	Quarterly
Points of Interest - Public Infrastructure		
PointX	December 2016	Quarterly
Points of Interest - Recreational and Environmental		
PointX	December 2016	Quarterly
Underground Electrical Cables		
National Grid	December 2015	Bi-Annually

Ancient Woodland Natural England		
Natural England		
. 1010.0. —	May 2017	Bi-Annually
Areas of Adopted Green Belt		
Bath and North East Somerset Council	May 2017	As notified
Bristol City Council	May 2017	As notified
North Somerset Council	May 2017	As notified
South Gloucestershire Council	May 2017	As notified
Areas of Unadopted Green Belt		
Bath and North East Somerset Council	May 2017	As notified
Bristol City Council	May 2017	As notified
North Somerset Council	May 2017	As notified
South Gloucestershire Council	May 2017	As notified
Areas of Outstanding Natural Beauty		
Natural England	January 2017	Bi-Annually
Environmentally Sensitive Areas		
Natural England	January 2017	Annually
Forest Parks		
Forestry Commission	April 1997	Not Applicable
Local Nature Reserves		
Natural England	June 2017	Bi-Annually
Marine Nature Reserves		
Natural England	January 2017	Bi-Annually
National Nature Reserves		
Natural England	January 2017	Bi-Annually
National Parks		
Natural England	February 2017	Bi-Annually
Nitrate Vulnerable Zones		
Department for Environment, Food and Rural Affairs (DEFRA - formerly FRCA)	October 2015	Annually
Ramsar Sites		
Natural England	January 2017	Bi-Annually
Sites of Special Scientific Interest		
Natural England	January 2017	Bi-Annually
Special Areas of Conservation		
Natural England	January 2017	Bi-Annually
Special Protection Areas		
Natural England	January 2017	Bi-Annually
World Heritage Sites	,	†
English Heritage - National Monument Record Centre	May 2017	Bi-Annually

Data Suppliers

A selection of organisations who provide data within this report

Data Supplier	Data Supplier Logo
Ordnance Survey	Mop data
Environment Agency	Environment Agency
Scottish Environment Protection Agency	S E PA
The Coal Authority	The Coal Authority
British Geological Survey	British Geological Survey NATURAL ENVIRONMENT RESEARCH COUNCIL
Centre for Ecology and Hydrology	Centre for Ecology & Hydrology NATURAL ENVIRONMENT RESEARCH COUNCIL
Natural Resources Wales	Cyfoeth Naturiol Cymru Matural Resources Walees
Scottish Natural Heritage	SCOTTISH NATURAL HERITAGE W公司
Natural England	NATURAL ENGLAND
Public Health England	Public Health England
Ove Arup	ARUP
Peter Brett Associates	peterbrett


Useful Contacts

Contact	Name and Address	Contact Details
1	British Geological Survey - Enquiry Service British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham, Nottinghamshire, NG12 5GG	Telephone: 0115 936 3143 Fax: 0115 936 3276 Email: enquiries@bgs.ac.uk Website:
2	Environment Agency - National Customer Contact Centre (NCCC)	Telephone: 03708 506 506 Email: enquiries@environment-agency.gov.uk
	PO Box 544, Templeborough, Rotherham, S60 1BY	
3	Bristol City Council - Environmental Health Department Brunel House, St Georges Road, Bristol, Avon, BS1 5UY	Telephone: 0117 922 3810 Fax: 0117 922 3886
4	Ordnance Survey Adanac Drive, Southampton, Hampshire, SO16 0AS	Telephone: 023 8079 2000 Email: customerservices@ordnancesurvey.co.uk Website: www.ordnancesurvey.gov.uk
5	Bristol City Council The Council House, College Green, Bristol, Avon, BS1 5TR	Telephone: 0117 922 2000 Fax: 0117 922 3886 Website: www.bristol-city.gov.uk
6	Bath and North East Somerset Council - Planning Services Department Trimbridge House, Trim Street, Bath, BA1 2DP	Website: www.bathnes.gov.uk
7	The Coal Authority - Property Searches 200 Lichfield Lane, Mansfield, Nottinghamshire, NG18 4RG	Telephone: 0345 762 6848 Fax: 01623 637 338 Email: groundstability@coal.gov.uk
8	PointX 7 Abbey Court, Eagle Way, Sowton, Exeter, Devon, EX2 7HY	Website:
9	Natural England County Hall, Spetchley Road, Worcester, WR5 2NP	Telephone: 0300 060 3900 Email: enquiries@naturalengland.org.uk Website:
10	Bath and North East Somerset Council Guildhall, High Street, Bath, BA1 5AW	Telephone: 01225 477000 Fax: 01225 477489 Website: www.bathnes.gov.uk
11	South Gloucestershire Council Council Offices, Castle Street, Thornbury, Bristol, Gloucestershire, BS12 1HF	Telephone: 01454 868686 Fax: 01454 419754 Website: www.southglos.gov.uk
12	Environment Agency - Head Office Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol, Avon, BS32 4UD	Telephone: 01454 624400 Fax: 01454 624409
-	Public Health England - Radon Survey, Centre for Radiation, Chemical and Environmental Hazards Chilton, Didcot, Oxfordshire, OX11 0RQ	Telephone: 01235 822622 Fax: 01235 833891 Email: radon@phe.gov.uk Website:
-	Landmark Information Group Limited Imperium, Imperial Way, Reading, Berkshire, RG2 0TD	Telephone: 0844 844 9952 Fax: 0844 844 9951 Email: customerservices@landmarkinfo.co.uk Website:

Please note that the Environment Agency / Natural Resources Wales / SEPA have a charging policy in place for enquiries.

Historical Mapping Legends

Ordnance Survey County Series and Ordnance Survey Plan 1:2,500

B.R.

E.P

F.B.

M.S

Bridle Road

Foot Bridge

Mile Stone

M.P.M.R. Mooring Post or Ring

Electricity Pylor

Guide Post or Board

Police Call Box

Telephone Call Box

Signal Post

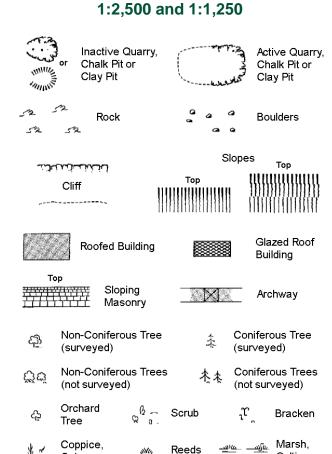
Pump

Sluice

Spring

Trough

Well


S.P

T.C.B

Sl.

 T_{T}

Ordnance Survey Plan, Additional SIMs and Large-Scale National Grid Data 1:2,500 and **Supply of Unpublished Survey Information**

Reeds Saltings Rough Culvert Grassland Direction Bench Antiquity of water flow (site of) Electricity Cave Triangulation

ETL Elect	ricity Transmission Line	
	County Boundary (Geograp	hical)
· — · — ·	County & Civil Parish Bound	dary
	Civil Parish Boundary	
· · ·	Admin. County or County Bo	r. Boundary
L B Bdy	London Borough Boundary	
24	Symbol marking point where mereing changes	boundary

Entrance

вн	Beer House	Р	Pillar, Pole or Post
BP, BS	Boundary Post or Stone	PO	Post Office
Cn, C	Capstan, Crane	PC	Public Convenience
Chy	Chimney	PH	Public House
D Fn	Drinking Fountain	Pp	Pump
EIP	Electricity Pillar or Post	SB, S Br	Signal Box or Bridge
FAP	Fire Alarm Pillar	SP, SL	Signal Post or Light
FB	Foot Bridge	Spr	Spring
GP	Guide Post	Tk	Tank or Track
Н	Hydrant or Hydraulic	TCB	Telephone Call Box
LC	Level Crossing	TCP	Telephone Call Post
MH	Manhole	Tr	Trough
MP	Mile Post or Mooring Post	WrPt,WrT	Water Point, Water Tap
MS	Mile Stone	W	Well
NTL	Normal Tidal Limit	Wd Pp	Wind Pump

GVC

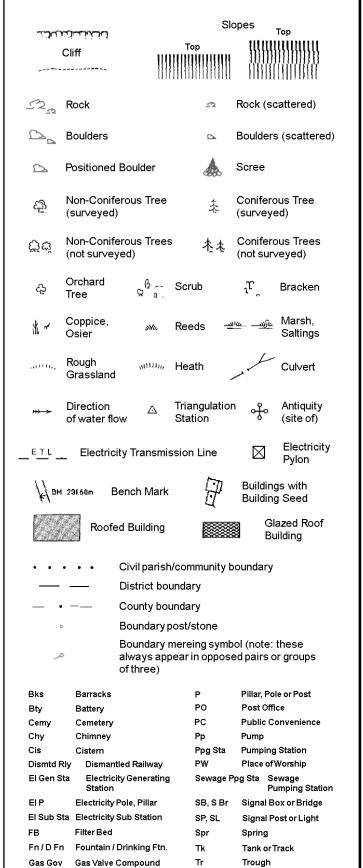
MP, MS

Gas Governer

Mile Post or Mile Stone

Guide Post

Manhole

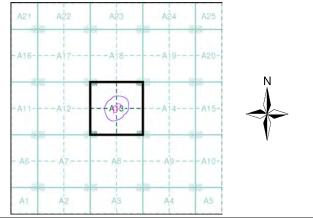

Wd Pp

Wks

Wind Pump Wr Pt. Wr T Water Point, Water Tap

Works (building or area)

1:1,250



A Member of the RSK Group plc

Historical Mapping & Photography included:

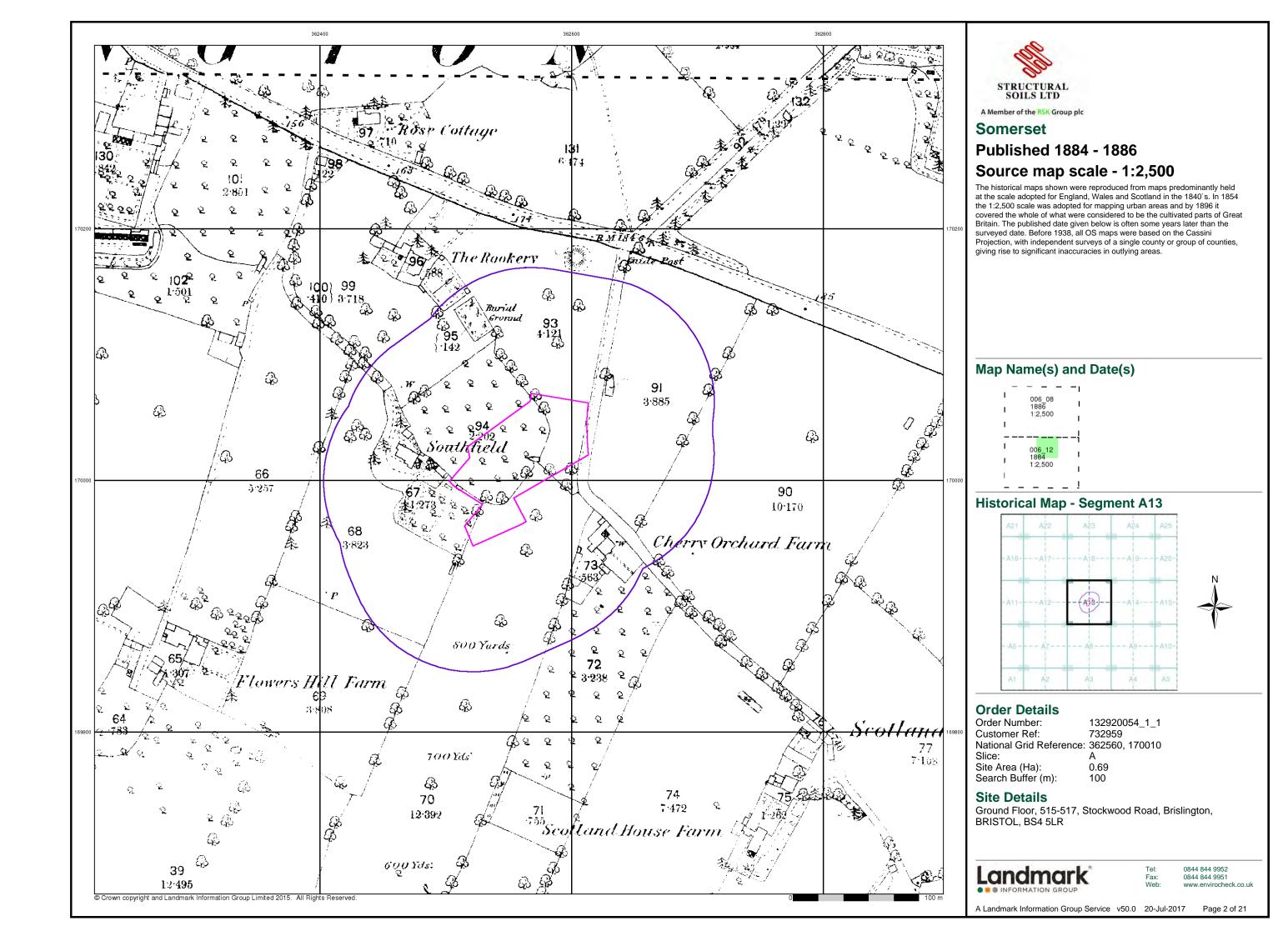
Mapping Type	Scale	Date	Pg
Somerset	1:2,500	1884 - 1886	2
Gloucestershire	1:2,500	1884	3
Gloucestershire	1:2,500	1904	4
Somerset	1:2,500	1904	5
Gloucestershire	1:2,500	1916	6
Somerset	1:2,500	1916	7
Somerset	1:2,500	1931	8
Ordnance Survey Plan	1:1,250	1947 - 1960	9
Ordnance Survey Plan	1:1,250	1950 - 1976	10
Ordnance Survey Plan	1:1,250	1960 - 1965	11
Ordnance Survey Plan	1:2,500	1961	12
Ordnance Survey Plan	1:1,250	1965	13
Ordnance Survey Plan	1:2,500	1970	14
Additional SIMs	1:1,250	1984 - 1988	15
Additional SIMs	1:1,250	1989	16
Ordnance Survey Plan	1:1,250	1991	17
Large-Scale National Grid Data	1:1,250	1992	18
Large-Scale National Grid Data	1:1,250	1994	19
Large-Scale National Grid Data	1:1,250	1994	20
Historical Aerial Photography	1:2,500	1999	21

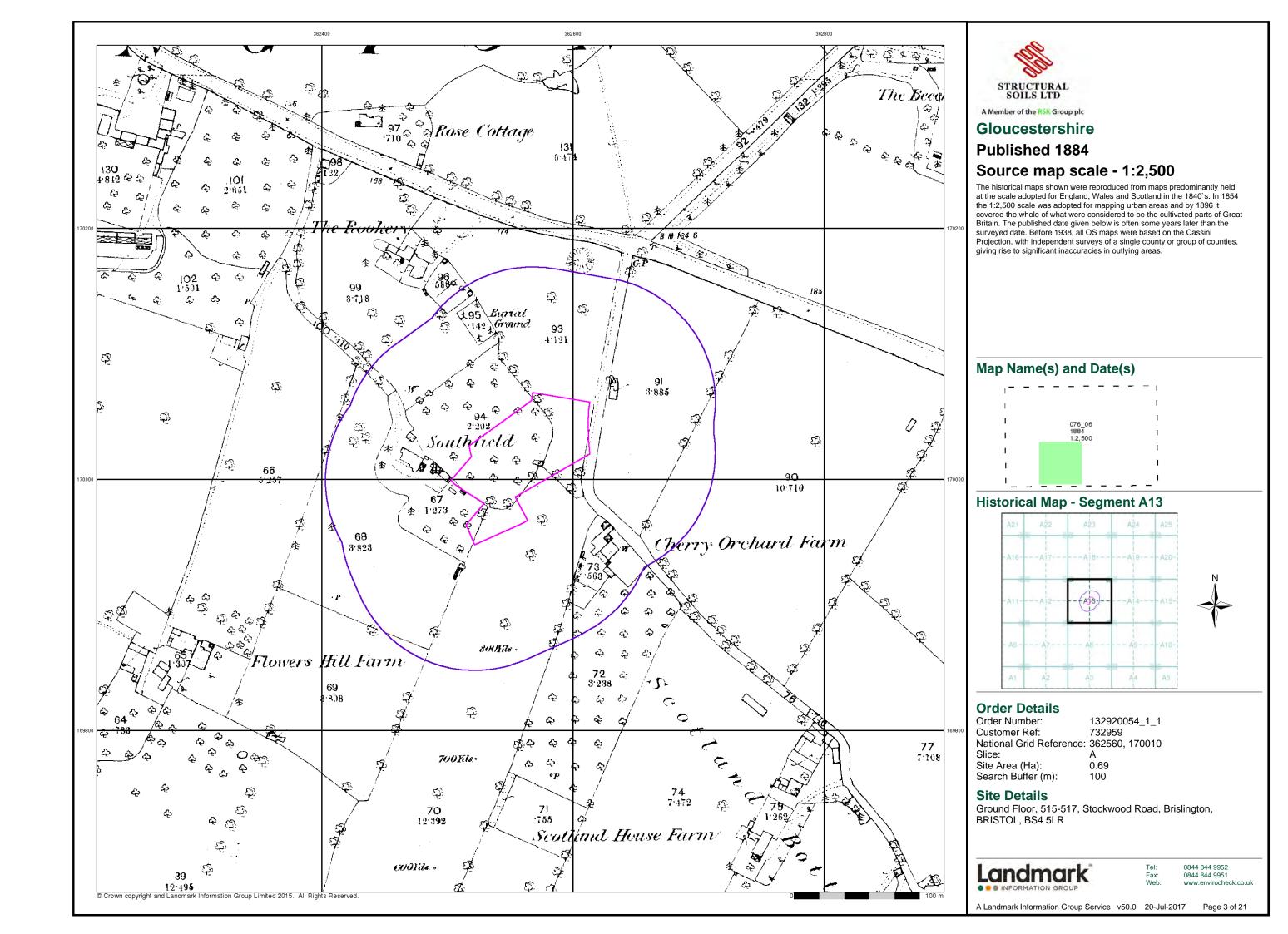
Historical Map - Segment A13

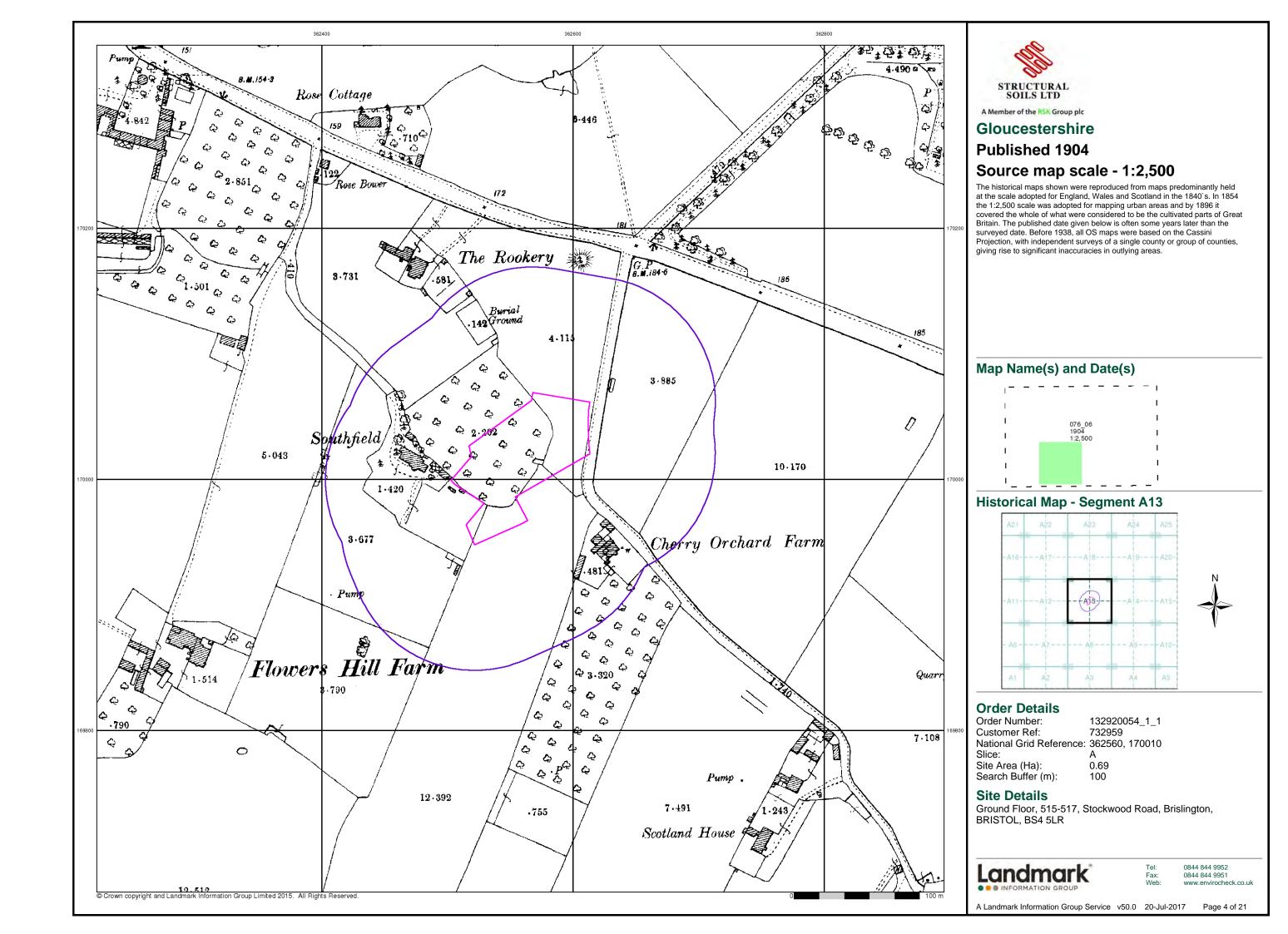
Order Details

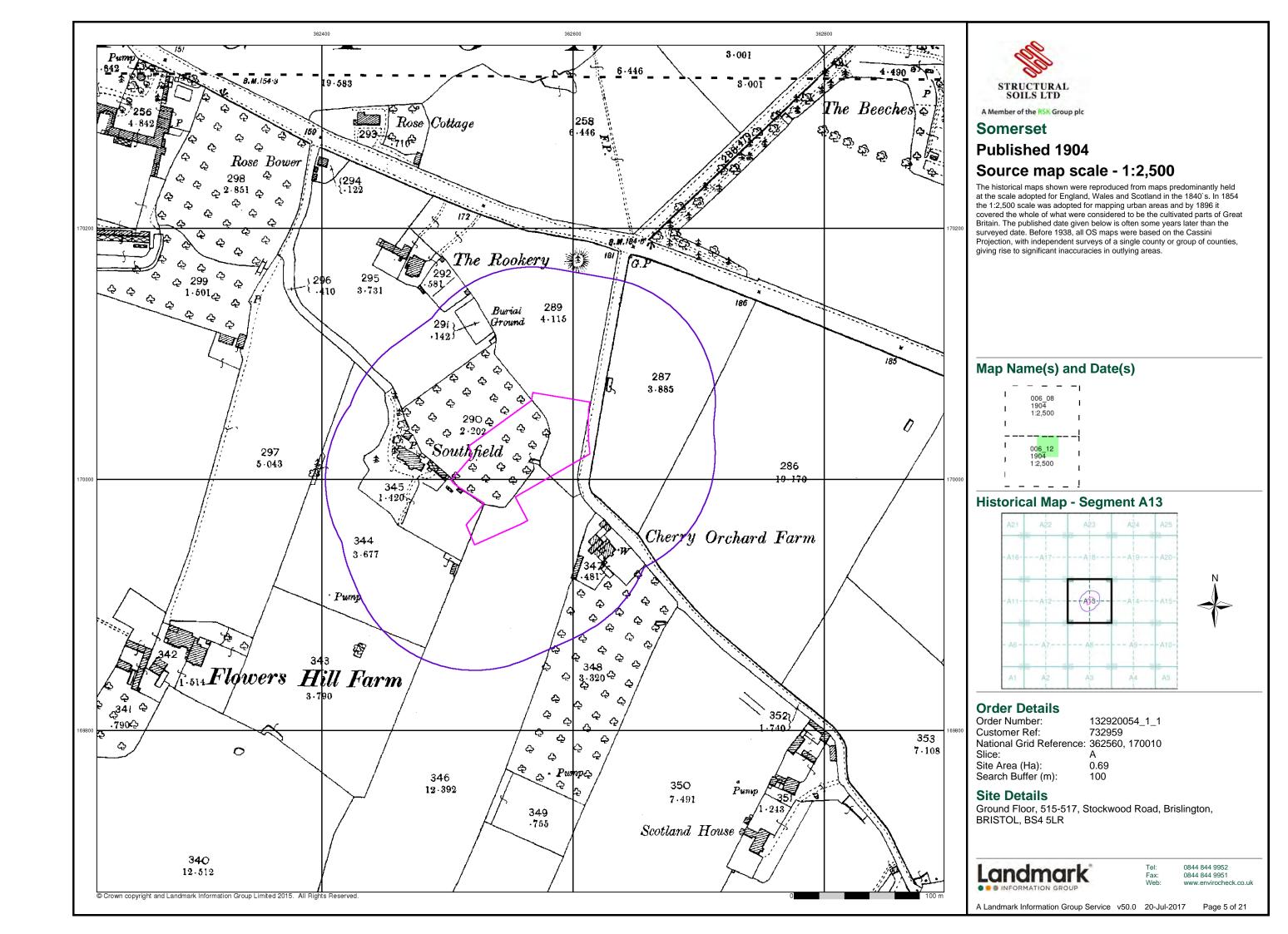
Order Number: 132920054_1_1 732959 Customer Ref: National Grid Reference: 362560, 170010 Slice:

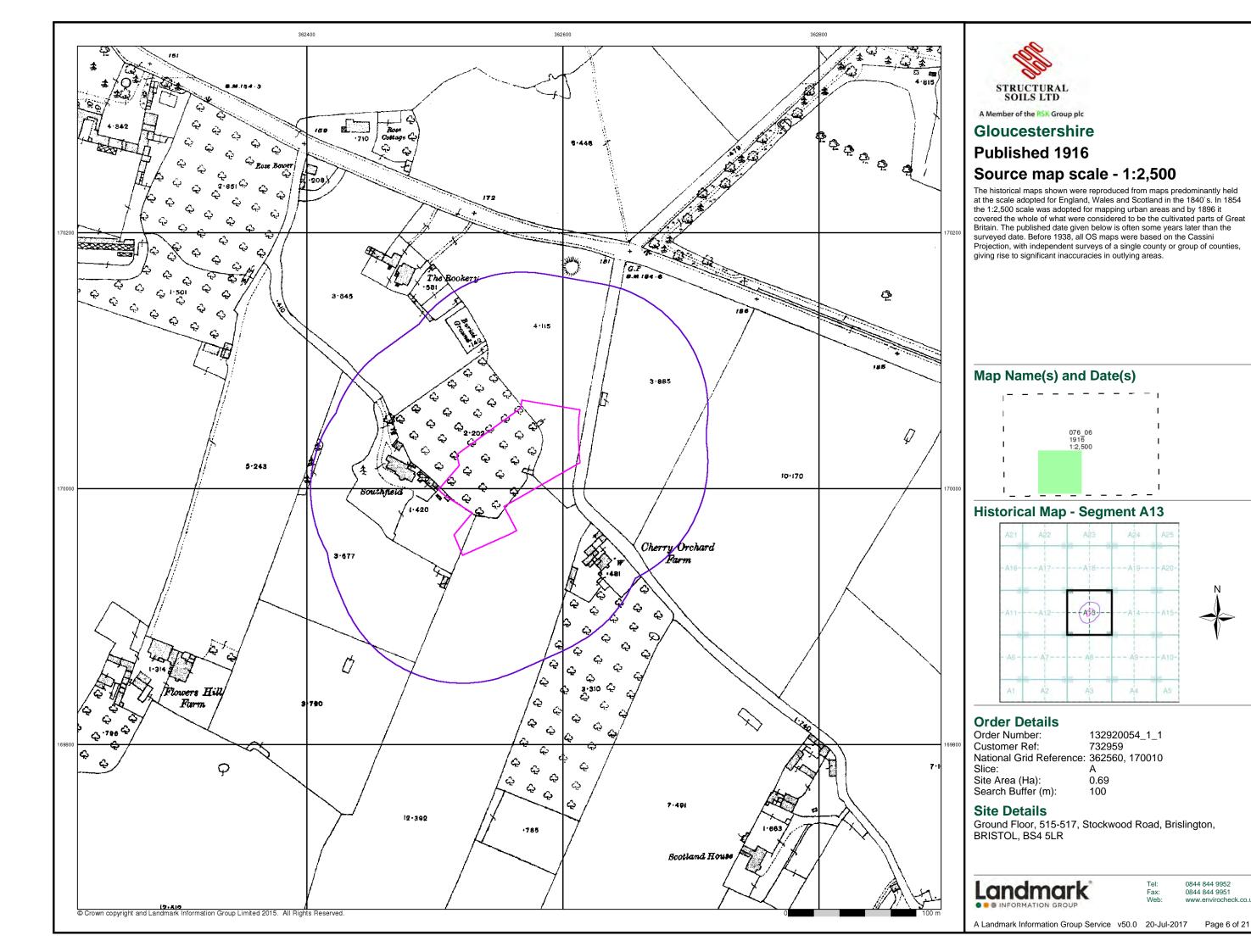
Site Area (Ha): 0.69 Search Buffer (m): 100


Site Details


Ground Floor, 515-517, Stockwood Road, Brislington, BRISTOL, BS4 5LR




0844 844 9952 www.envirocheck.co.uk


A Landmark Information Group Service v50.0 20-Jul-2017 Page 1 of 21

