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Forewords

Building a shared scientific understanding in a fast-moving field

I am honoured to present the International Al Safety Report. It is the
work of 96 international Al experts who collaborated in an
unprecedented effort to establish an internationally shared scientific
understanding of risks from advanced Al and methods for managing
them.

We embarked on this journey just over a year ago, shortly after the
countries present at the Bletchley Park Al Safety Summit agreed to
support the creation of this report. Since then, we published an Interim
Report in May 2024, which was presented at the Al Seoul Summit. We
are now pleased to publish the present, full report ahead of the Al
Action Summit in Paris in February 2025.

Since the Bletchley Summit, the capabilities of general-purpose Al, the
type of Al this report focuses on, have increased further. For example,
new models have shown markedly better performance at tests of
programming and scientific reasoning. In addition, many companies
are now investing in the development of general-purpose Al ‘agents’ —
systems which can autonomously plan and act to achieve goals with
little or no human oversight.

Building on the Interim Report (May 2024), the present report reflects
these new developments. In addition, the experts contributing to this
report made several other changes compared to the Interim Report.
For example, they worked to further improve the scientific rigour of all
sections, added discussion of additional topics such as open-weight
models, and restructured the report to be more relevant to
policymakers, including by highlighting evidence gaps and key
challenges for policymakers.

| extend my profound gratitude to the team of experts who
contributed to this report, including our writers, senior advisers, and
the international Expert Advisory Panel. | have been impressed with
their scientific excellence and expertise as well as the collaborative
attitude with which they have approached this challenging project. |
am also grateful to the industry and civil society organisations who
reviewed the report, contributing invaluable feedback that has led this
report to be more comprehensive than it otherwise would have been.
My thanks also go to the UK Government for starting this process and
offering outstanding operational support. It was also important for me
that the UK Government agreed that the scientists writing this report
should have complete independence.

Al remains a fast-moving field. To keep up with this pace, policymakers
and governments need to have access to the current scientific
understanding on what risks advanced Al might pose. | hope that this
report as well as future publications will help decision-makers ensure
that people around the world can reap the benefits of Al safely.



Forewords

Taking advantage of Al opportunities safely calls for global
collaboration

Since the interim version of this report was published, the capabilities
of advanced Al capabilities have continued to grow. We know that this
technology, if developed and utilised safely and responsibly, offers
extraordinary opportunities: to grow our economies, modernise our
public services, and improve lives for our people. To seize these
opportunities, it is imperative that we deepen our collective
understanding of how Al can be developed safely.

This landmark report is testament to the value of global cooperation in

forging this shared understanding. It is the result of over 90 Al experts
from different continents, sectors, and areas of expertise, coming

L]

|

l:II
V.7

together to offer leaders and decision-makers a global reference point
and a tool to inform policy on Al safety. Our collective understanding
Clara Chappaz of frontier Al systems has improved. However, this report highlights
Fra(]lcels Mmls.ter Delegate for that frontier Al remains a field of active scientific inquiry, with experts
Artificial Intelligence L. . . ) o
continuing to disagree on its trajectory and the scope of its impact.
We will maintain the momentum behind this collective effort to drive
global scientific consensus. We are excited to continue this

unprecedented and essential project of international collaboration.

The report lays the foundation for important discussions at the Al
Action Summit in France this year, which will convene international
governments, leading Al companies, civil society groups and experts.
This Summit, like the report, is a continuation of the milestones
achieved at the Bletchley Park (November 2023) and Seoul (May
2024) summits. Al is the defining opportunity of our generation.
Together, we will continue the conversation and support bold and

ambitious action to collectively master the risks of Al and benefit from
these new technologies for the greater good. There will be no adoption
of this technology without safety: safety brings trust!

IR
17 V‘R ‘0 « We are pleased to present this report and thank Professor Yoshua

Bengio and the writing team for the significant work that went into its
The Rt Hon Peter Kyle MP

) development. The UK and France look forward to continuing the
UK Secretary of State for Science,

Innovation and Technology discussion at the Al Action Summit in February.



About this report

About this report

e This is the first International Al Safety Report. Following an interim publication in May 2024, a
diverse group of 96 Artificial Intelligence (Al) experts contributed to this first full report,
including an international Expert Advisory Panel nominated by 30 countries, the Organisation for
Economic Co-operation and Development (OECD), the European Union (EU), and the United
Nations (UN). The report aims to provide scientific information that will support informed
policymaking. It does not recommend specific policies.

e The report is the work of independent experts. Led by the Chair, the independent experts
writing this report collectively had full discretion over its content.

e While this report is concerned with Al risks and Al safety, Al also offers many potential benefits
for people, businesses, and society. There are many types of Al, each with different benefits and
risks. Most of the time, in most applications, Al helps individuals and organisations be more
effective. But people around the world will only be able to fully enjoy Al's many potential
benefits safely if its risks are appropriately managed. This report focuses on identifying these
risks and evaluating methods for mitigating them. It does not aim to comprehensively assess all
possible societal impacts of Al, including its many potential benefits.

e The focus of the report is general-purpose Al. The report restricts its focus to a type of Al that
has advanced particularly rapidly in recent years, and whose associated risks have been less
studied and understood: general-purpose Al, or Al that can perform a wide variety of tasks. The
analysis in this report focuses on the most advanced general-purpose Al systems at the time of
writing, as well as future systems that might be even more capable.

e The report summarises the scientific evidence on three core questions: What can
general-purpose Al do? What are risks associated with general-purpose Al? And what
mitigation techniques are there against these risks?

e The stakes are high. We, the experts contributing to this report, continue to disagree on several
questions, minor and major, around general-purpose Al capabilities, risks, and risk mitigations.
But we consider this report essential for improving our collective understanding of this
technology and its potential risks. We hope that the report will help the international community
to move towards greater consensus about general-purpose Al and mitigate its risks more
effectively, so that people can safely experience its many potential benefits. The stakes are
high. We look forward to continuing this effort.

10



Update on latest Al advances after the writing of this report: Chair's note

Update on latest Al advances after the writing of this
report: Chair’s note

Between the end of the writing period for this report (5 December 2024) and the publication of this
report in January 2025, an important development took place. The Al company OpenAl shared early
test results from a new Al model, 03. These results indicate significantly stronger performance than
any previous model on a number of the field’s most challenging tests of programming, abstract
reasoning, and scientific reasoning. In some of these tests, 03 outperforms many (but not all)
human experts. Additionally, it achieves a breakthrough on a key abstract reasoning test that many
experts, including myself, thought was out of reach until recently. However, at the time of writing
there is no public information about its real-world capabilities, particularly for solving more
open-ended tasks.

Scores of notable models on key benchmarks over time

%

100

80

60

40

% of tasks solved in each test

20

o3
© 51
S RN NP o0, O R N
7~ o r)/"b N N N X N a o
,LQ')/ ,)/0’), 20 ()/Qr)z ,Lor)/ ,.)/0')/ 'LO{L ,Lo'l 720 ,)/Orl
Model release date
FrontierMath: Advanced mathematics * GPQA: Graduate-level science

ARC-AGI: Abstract reasoning (semi-secret evaluation) - AIME 2024: Mathematics competition for elite students
* SWE-bench: Real-world software engineering

Figure O.1: Scores of notable general-purpose Al models on key benchmarks from June 2023 to December 2024. 03
showed significantly improved performance compared to the previous state of the art (shaded region). These
benchmarks are some of the field’s most challenging tests of programming, abstract reasoning, and scientific reasoning.
For the unreleased 03, the announcement date is shown; for the other models, the release date is shown. Some of the
more recent Al models, including 03, benefited from improved scaffolding and more computation at test-time. Sources:
Anthropic, 2024; Chollet, 2024; Chollet et al, 2025; Epoch Al, 2024; Glazer et al. 2024; OpenAl, 2024a; OpenAl, 2024b;
Jimenez et al, 2024; Jimenez et al, 2025.
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Update on latest Al advances after the writing of this report: Chair's note

The o3 results are evidence that the pace of advances in Al capabilities may remain high or even
accelerate. More specifically, they suggest that giving models more computing power for solving a
given problem ('inference scaling’) may help overcome previous limitations. Generally speaking,
inference scaling makes models more expensive to use. But as another recent notable model, R7,
released by the company DeepSeek in January 2025, has shown, researchers are successfully
working on lowering these costs. Overall, inference scaling may allow Al developers to make further
advances going forward. The 03 results also underscore the need to better understand how Al
developers' growing use of Al may affect the speed of further Al development itself.

The trends evidenced by 03 could have profound implications for Al risks. Advances in science and
programming capabilities have previously generated more evidence for risks such as cyber and
biological attacks. The 03 results are also relevant to potential labour market impacts, loss of
control risk, and energy use among others. But 03's capabilities could also be used to help protect
against malfunctions and malicious uses. Overall, the risk assessments in this report should be read
with the understanding that Al has gained capabilities since the report was written. However, so far
there is no evidence yet about 03’s real world impacts, and no information to confirm nor rule out
major novel and/or immediate risks.

The improvement in capabilities suggested by the 03 results and our limited understanding of the
implications for Al risks underscore a key challenge for policymakers that this report identifies: they
will often have to weigh potential benefits and risks of imminent Al advancements without having a
large body of scientific evidence available. Nonetheless, generating evidence on the safety and
security implications of the trends implied by 03 will be an urgent priority for Al research in the
coming weeks and months.

12



Key findings of the report

Key findings of the report

e The capabilities of general-purpose Al, the type of Al that this report focuses on, have increased
rapidly in recent years and have improved further in recent months.t A few years ago, the best
large language models (LLMs) could rarely produce a coherent paragraph of text. Today,
general-purpose Al can write computer programs, generate custom photorealistic images, and
engage in extended open-ended conversations. Since the publication of the Interim Report
(May 2024), new models have shown markedly better performance at tests of scientific
reasoning and programming.

e Many companies are now investing in the development of general-purpose Al agents, as a
potential direction for further advancement. Al agents are general-purpose Al systems which
can autonomously act, plan, and delegate to achieve goals with little to no human oversight.
Sophisticated Al agents would be able to, for example, use computers to complete longer
projects than current systems, unlocking both additional benefits and additional risks.

e Further capability advancements in the coming months and years could be anything from slow
to extremely rapid." Progress will depend on whether companies will be able to rapidly deploy
even more data and computational power to train new models, and whether ‘scaling’ models in
this way will overcome their current limitations. Recent research suggests that rapidly scaling
up models may remain physically feasible for at least several years. But major capability
advances may also require other factors: for example, new research breakthroughs, which are
hard to predict, or the success of a novel scaling approach that companies have recently
adopted.

e Several harms from general-purpose Al are already well established. These include scams,
non-consensual intimate imagery (NCII) and child sexual abuse material (CSAM), model outputs
that are biased against certain groups of people or certain opinions, reliability issues, and
privacy violations. Researchers have developed mitigation techniques for these problems, but
so far no combination of techniques can fully resolve them. Since the publication of the Interim
Report, new evidence of discrimination related to general-purpose Al systems has revealed
more subtle forms of bias.

e As general-purpose Al becomes more capable, evidence of additional risks is gradually
emerging. These include risks such as large-scale labour market impacts, Al-enabled hacking or
biological attacks, and society losing control over general-purpose Al. Experts interpret the
existing evidence on these risks differently: some think that such risks are decades away, while
others think that general-purpose Al could lead to societal-scale harm within the next few
years. Recent advances in general-purpose Al capabilities — particularly in tests of scientific
reasoning and programming — have generated new evidence for potential risks such as
Al-enabled hacking and biological attacks, leading one major Al company to increase its
assessment of biological risk from its best model from ‘low’ to ‘medium’.

T Please refer to the Chair's update on the latest Al advances after the writing of this report.

13



Key findings of the report

e Risk management techniques are nascent, but progress is possible. There are various technical
methods to assess and reduce risks from general-purpose Al that developers can employ and
regulators can require, but they all have limitations. For example, current interpretability
techniques for explaining why a general-purpose Al model produced any given output remain
severely limited. However, researchers are making some progress in addressing these
limitations. In addition, researchers and policymakers are increasingly trying to standardise risk
management approaches, and to coordinate internationally.

e The pace and unpredictability of advancements in general-purpose Al pose an ‘evidence
dilemma’ for policymakers.! Given sometimes rapid and unexpected advancements,
policymakers will often have to weigh potential benefits and risks of imminent Al advancements
without having a large body of scientific evidence available. In doing so, they face a dilemma. On
the one hand, pre-emptive risk mitigation measures based on limited evidence might turn out
to be ineffective or unnecessary. On the other hand, waiting for stronger evidence of impending
risk could leave society unprepared or even make mitigation impossible — for instance if sudden
leaps in Al capabilities, and their associated risks, occur. Companies and governments are
developing early warning systems and risk management frameworks that may reduce this
dilemma. Some of these trigger specific mitigation measures when there is new evidence of
risks, while others require developers to provide evidence of safety before releasing a new
model.

e There is broad consensus among researchers that advances regarding the following questions
would be helpful: How rapidly will general-purpose Al capabilities advance in the coming years,
and how can researchers reliably measure that progress? What are sensible risk thresholds to
trigger mitigations? How can policymakers best gain access to information about
general-purpose Al that is relevant to public safety? How can researchers, technology
companies, and governments reliably assess the risks of general-purpose Al development and
deployment? How do general-purpose Al models work internally? How can general-purpose Al
be designed to behave reliably?

e Al does not happen to us: choices made by people determine its future. The future of
general-purpose Al technology is uncertain, with a wide range of trajectories appearing to be
possible even in the near future, including both very positive and very negative outcomes. This
uncertainty can evoke fatalism and make Al appear as something that happens to us. But it will
be the decisions of societies and governments on how to navigate this uncertainty that
determine which path we will take. This report aims to facilitate constructive and
evidence-based discussion about these decisions.

T Please refer to the Chair's update on the latest Al advances after the writing of this report.
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Executive Summary

The purpose of this report

This report synthesises the state of scientific understanding of general-purpose Al — Al that

can perform a wide variety of tasks — with a focus on understanding and managing its risks.

This report summarises the scientific evidence on the safety of general-purpose Al. The purpose of
this report is to help create a shared international understanding of risks from advanced Al and how
they can be mitigated. To achieve this, this report focuses on general-purpose Al — or Al that can
perform a wide variety of tasks — since this type of Al has advanced particularly rapidly in recent
years and has been deployed widely by technology companies for a range of consumer and
business purposes. The report synthesises the state of scientific understanding of general-purpose
Al, with a focus on understanding and managing its risks.

Amid rapid advancements, research on general-purpose Al is currently in a time of scientific
discovery, and — in many cases — is not yet settled science. The report provides a snapshot of the
current scientific understanding of general-purpose Al and its risks. This includes identifying areas
of scientific consensus and areas where there are different views or gaps in the current scientific
understanding.

People around the world will only be able to fully enjoy the potential benefits of general-purpose Al
safely if its risks are appropriately managed. This report focuses on identifying those risks and
evaluating technical methods for assessing and mitigating them, including ways that
general-purpose Al itself can be used to mitigate risks. It does not aim to comprehensively assess
all possible societal impacts of general-purpose Al. Most notably, the current and potential future
benefits of general-purpose Al — although they are vast — are beyond this report’s scope. Holistic
policymaking requires considering both the potential benefits of general-purpose Al and the risks
covered in this report. It also requires taking into account that other types of Al have different
risk/benefit profiles compared to current general-purpose Al.

The three main sections of the report summarise the scientific evidence on three core questions:

What can general-purpose Al do? What are risks associated with general-purpose Al? And what
mitigation techniques are there against these risks?
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Section 1 — Capabilities of general-purpose Al: What can
general-purpose Al do now and in the future?

General-purpose Al capabilities have improved rapidly in recent years, and further

advancements could be anything from slow to extremely rapid.

What Al can do is a key contributor to many of the risks it poses, and according to many metrics,
general-purpose Al capabilities have been progressing rapidly. Five years ago, the leading
general-purpose Al language models could rarely produce a coherent paragraph of text. Today,
some general-purpose Al models can engage in conversations on a wide range of topics, write
computer programs, or generate realistic short videos from a description. However, it is technically
challenging to reliably estimate and describe the capabilities of general-purpose Al.

Al developers have rapidly improved the capabilities of general-purpose Al in recent years, mostly
through ‘scaling’.t They have continually increased the resources used for training new models (this
is often referred to as ‘scaling’) and refined existing approaches to use those resources more
efficiently. For example, according to recent estimates, state-of-the-art Al models have seen
annual increases of approximately 4x in computational resources (‘compute') used for training and
2.5x in training dataset size.

The pace of future progress in general-purpose Al capabilities has substantial implications for
managing emerging risks, but experts disagree on what to expect even in the coming months and
years. Experts variously support the possibility of general-purpose Al capabilities advancing slowly,
rapidly, or extremely rapidly.

Experts disagree about the pace of future progress because of different views on the promise of
further ‘scaling’ — and companies are exploring an additional, new type of scaling that might further
accelerate capabilities.! While scaling has often overcome the limitations of previous systems,
experts disagree about its potential to resolve the remaining limitations of today’s systems, such as
unreliability at acting in the physical world and at executing extended tasks on computers. In recent
months, a new type of scaling has shown potential for further improving capabilities: rather than
just scaling up the resources used for training models, Al companies are also increasingly interested
in ‘inference scaling’ — letting an already trained model use more computation to solve a given
problem, for example to improve on its own solution, or to write so-called ‘chains of thought’ that
break down the problem into simpler steps.

Several leading companies that develop general-purpose Al are betting on ‘scaling’ to continue
leading to performance improvements. If recent trends continue, by the end of 2026 some

T Please refer to the Chair's update on the latest Al advances after the writing of this report.
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general-purpose Al models will be trained using roughly 100x more training compute than 2023's
most compute-intensive models, growing to 10,000x more training compute by 2030, combined
with algorithms that achieve greater capabilities for a given amount of available computation. In
addition to this potential scaling of training resources, recent trends such as inference scaling and
using models to generate training data could mean that even more compute will be used overall.
However, there are potential bottlenecks to further increasing both data and compute rapidly, such
as the availability of data, Al chips, capital, and local energy capacity. Companies developing
general-purpose Al are working to navigate these potential bottlenecks.

Since the publication of the Interim Report (May 2024), general-purpose Al has reached
expert-level performance in some tests and competitions for scientific reasoning and
programming, and companies have been making large efforts to develop autonomous Al agents.
Advances in science and programming have been driven by inference scaling techniques such
as writing long ‘chains of thought'. New studies suggest that further scaling such approaches,
for instance allowing models to analyse problems by writing even longer chains of thought than
today’s models, could lead to further advances in domains where reasoning matters more, such
as science, software engineering, and planning. In addition to this trend, companies are making
large efforts to develop more advanced general-purpose Al agents, which can plan and act
autonomously to work towards a given goal. Finally, the market price of using general-purpose
Al of a given capability level has dropped sharply, making this technology more broadly
accessible and widely used.

This report focuses primarily on technical aspects of Al progress, but how fast general-purpose Al
will advance is not a purely technical question. The pace of future advancements will also depend
on non-technical factors, potentially including the approaches that governments take to regulating
Al. This report does not discuss how different approaches to regulation might affect the speed of
development and adoption of general-purpose Al.

Section 2 — Risks: What are risks associated with general-purpose
Al?

Several harms from general-purpose Al are already well-established. As general-purpose Al

becomes more capable, evidence of additional risks is gradually emerging.

This report classifies general-purpose Al risks into three categories: malicious use risks; risks from
malfunctions; and systemic risks. Each of these categories contains risks that have already
materialised as well as risks that might materialise in the next few years.

Risks from malicious use: malicious actors can use general-purpose Al to cause harm to individuals,
organisations, or society. Forms of malicious use include:
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e Harm to individuals through fake content: Malicious actors can currently use
general-purpose Al to generate fake content that harms individuals in a targeted way. These
malicious uses include non-consensual ‘'deepfake’ pornography and Al-generated CSAM,
financial fraud through voice impersonation, blackmail for extortion, sabotage of personal
and professional reputations, and psychological abuse. However, while incident reports of
harm from Al-generated fake content are common, reliable statistics on the frequency of
these incidents are still lacking.

e Manipulation of public opinion: General-purpose Al makes it easier to generate persuasive
content at scale. This can help actors who seek to manipulate public opinion, for instance to
affect political outcomes. However, evidence on how prevalent and how effective such
efforts are remains limited. Technical countermeasures like content watermarking, although
useful, can usually be circumvented by moderately sophisticated actors.

e Cyber offence: General-purpose Al can make it easier or faster for malicious actors of
varying skill levels to conduct cyberattacks. Current systems have demonstrated
capabilities in low- and medium-complexity cybersecurity tasks, and state-sponsored
actors are actively exploring Al to survey target systems. New research has confirmed that
the capabilities of general-purpose Al related to cyber offence are significantly advancing,
but it remains unclear whether this will affect the balance between attackers and defenders.

e Biological and chemical attacks: Recent general-purpose Al systems have displayed some
ability to provide instructions and troubleshooting guidance for reproducing known
biological and chemical weapons and to facilitate the design of novel toxic compounds. In
new experiments that tested for the ability to generate plans for producing biological
weapons, a general-purpose Al system sometimes performed better than human experts
with access to the internet. In response, one Al company increased its assessment of
biological risk from its best model from ‘low’ to ‘medium’. However, real-world attempts to
develop such weapons still require substantial additional resources and expertise. A
comprehensive assessment of biological and chemical risk is difficult because much of the
relevant research is classified.

Since the publication of the Interim Report, general-purpose Al has become more capable in
domains that are relevant for malicious use. For example, researchers have recently built
general-purpose Al systems that were able to find and exploit some cybersecurity
vulnerabilities on their own and, with human assistance, discover a previously unknown
vulnerability in widely used software. General-purpose Al capabilities related to reasoning and
to integrating different types of data, which can aid research on pathogens or in other dual-use

fields, have also improved.

Risks from malfunctions: general-purpose Al can also cause unintended harm. Even when users
have no intention to cause harm, serious risks can arise due to the malfunctioning of
general-purpose Al. Such malfunctions include:
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e Reliability issues: Current general-purpose Al can be unreliable, which can lead to harm. For
example, if users consult a general-purpose Al system for medical or legal advice, the
system might generate an answer that contains falsehoods. Users are often not aware of the
limitations of an Al product, for example due to limited ‘Al literacy’, misleading advertising, or
miscommunication. There are a number of known cases of harm from reliability issues, but
still limited evidence on exactly how widespread different forms of this problem are.

e Bias: General-purpose Al systems can amplify social and political biases, causing concrete
harm. They frequently display biases with respect to race, gender, culture, age, disability,
political opinion, or other aspects of human identity. This can lead to discriminatory
outcomes including unequal resource allocation, reinforcement of stereotypes, and
systematic neglect of underrepresented groups or viewpoints. Technical approaches for
mitigating bias and discrimination in general-purpose Al systems are advancing, but face
trade-offs between bias mitigation and competing objectives such as accuracy and privacy,
as well as other challenges.

e Loss of control: ‘Loss of control’ scenarios are hypothetical future scenarios in which one or
more general-purpose Al systems come to operate outside of anyone's control, with no
clear path to regaining control. There is broad consensus that current general-purpose Al
lacks the capabilities to pose this risk. However, expert opinion on the likelihood of loss of
control within the next several years varies greatly: some consider it implausible, some
consider it likely to occur, and some see it as a modest-likelihood risk that warrants
attention due to its high potential severity. Ongoing empirical and mathematical research is
gradually advancing these debates.

Since the publication of the Interim Report, new research has led to some new insights about
risks of bias and loss of control. The evidence of bias in general-purpose Al systems has
increased, and recent work has detected additional forms of Al bias. Researchers have
observed modest further advancements towards Al capabilities that are likely necessary for
commonly discussed loss of control scenarios to occur. These include capabilities for
autonomously using computers, programming, gaining unauthorised access to digital systems,
and identifying ways to evade human oversight.

Systemic risks: beyond the risks directly posed by capabilities of individual models, widespread
deployment of general-purpose Al is associated with several broader systemic risks. Examples of
systemic risks range from potential labour market impacts to privacy risks and environmental
effects:

e Labour market risks: General-purpose Al, especially if it continues to advance rapidly, has
the potential to automate a very wide range of tasks, which could have a significant effect
on the labour market. This means that many people could lose their current jobs. However,
many economists expect that potential job losses could be offset, partly or potentially even
completely, by the creation of new jobs and by increased demand in non-automated
sectors.
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e Global Al R&D divide: General-purpose Al research and development (R&D) is currently
concentrated in a few Western countries and China. This ‘Al divide" has the potential to
increase much of the world’s dependence on this small set of countries. Some experts also
expect it to contribute to global inequality. The divide has many causes, including a number
of causes that are not unique to Al. However, in significant part it stems from differing levels
of access to the very expensive compute needed to develop general-purpose Al: most
low- and middle-income countries (LMICs) have significantly less access to compute than
high-income countries (HICs).

e Market concentration and single points of failure: A small number of companies currently
dominate the market for general-purpose Al. This market concentration could make
societies more vulnerable to several systemic risks. For instance, if organisations across
critical sectors, such as finance or healthcare, all rely on a small number of general-purpose
Al systems, then a bug or vulnerability in such a system could cause simultaneous failures
and disruptions on a broad scale.

e Environmental risks: Growing compute use in general-purpose Al development and
deployment has rapidly increased the amounts of energy, water, and raw material consumed
in building and operating the necessary compute infrastructure. This trend shows no clear
indication of slowing, despite progress in techniques that allow compute to be used more
efficiently. General-purpose Al also has a number of applications that can either benefit or
harm sustainability efforts.

e Privacy risks: General-purpose Al can cause or contribute to violations of user privacy. For
example, sensitive information that was in the training data can leak unintentionally when a
user interacts with the system. In addition, when users share sensitive information with the
system, this information can also leak. But general-purpose Al can also facilitate deliberate
violations of privacy, for example if malicious actors use Al to infer sensitive information
about specific individuals from large amounts of data. However, so far, researchers have not
found evidence of widespread privacy violations associated with general-purpose Al.

e Copyright infringements: General-purpose Al both learns from and creates works of creative
expression, challenging traditional systems of data consent, compensation, and control. Data
collection and content generation can implicate a variety of data rights laws, which vary
across jurisdictions and may be under active litigation. Given the legal uncertainty around
data collection practices, Al companies are sharing less information about the data they use.
This opacity makes third-party Al safety research harder.

Since the publication of the Interim Report, additional evidence on the labour market impacts of
general-purpose Al has emerged, while new developments have heightened privacy and
copyrights concerns. New analyses of labour market data suggest that individuals are adopting
general-purpose Al very rapidly relative to previous technologies. The pace of adoption by
businesses varies widely by sector. In addition, recent advances in capabilities have led to
general-purpose Al being deployed increasingly in sensitive contexts such as healthcare or
workplace monitoring, which creates new privacy risks. Finally, as copyright disputes intensify
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and technical mitigations to copyright infringements remain unreliable, data rights holders have
been rapidly restricting access to their data.

Open-weight models: an important factor in evaluating many risks that a general-purpose Al model
might pose is how it is released to the public. So-called ‘open-weight models’ are Al models whose
central components, called ‘weights’, are shared publicly for download. Open-weight access
facilitates research and innovation, including in Al safety, as well as increasing transparency and
making it easier for the research community to detect flaws in models. However, open-weight
models can also pose risks, for example by facilitating malicious or misguided use that is difficult or
impossible for the developer of the model to monitor or mitigate. Once model weights are available
for public download, there is no way to implement a wholesale rollback of all existing copies or
ensure that all existing copies receive safety updates. Since the Interim Report, high-level
consensus has emerged that risks posed by greater Al openness should be evaluated in terms of
‘marginal’ risk: the extent to which releasing an open-weight model would increase or decrease a
given risk, relative to risks posed by existing alternatives such as closed models or other
technologies.

Section 3 — Risk management: What techniques are there for
managing risks from general-purpose Al?

Several technical approaches can help manage risks, but in many cases the best available
approaches still have highly significant limitations and no quantitative risk estimation or guarantees

that are available in other safety-critical domains.

Risk management — identifying and assessing risks, and then mitigating and monitoring them - is
difficult in the context of general-purpose Al. Although risk management has also been highly
challenging in many other domains, there are some features of general-purpose Al that appear to
create distinctive difficulties.

Several technical features of general-purpose Al make risk management in this domain particularly
difficult. They include, among others:

e The range of possible uses and use contexts for general-purpose Al systems is unusually
broad. For example, the same system may be used to provide medical advice, analyse
computer code for vulnerabilities, and generate photos. This increases the difficulty of
comprehensively anticipating relevant use cases, identifying risks, or testing how systems
will behave in relevant real-world circumstances.

e Developers still understand little about how their general-purpose Al models operate. This
lack of understanding makes it more difficult both to predict behavioural issues and to
explain and resolve known issues once they are observed. Understanding remains elusive
mainly because general-purpose Al models are not programmed in the traditional sense.
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Instead, they are trained: Al developers set up a training process that involves a large volume
of data, and the outcome of that training process is the general-purpose Al model. The inner
workings of these models are largely inscrutable, including to the model developers. Model
explanation and ‘interpretability’ techniques can improve researchers’ and developers’
understanding of how general-purpose Al models operate, but, despite recent progress, this
research remains nascent.

Increasingly capable Al agents — general-purpose Al systems that can autonomously act,
plan, and delegate to achieve goals — will likely present new, significant challenges for risk
management. Al agents typically work towards goals autonomously by using general
software such as web browsers and programming tools. Currently, most are not yet reliable
enough for widespread use, but companies are making large efforts to build more capable
and reliable Al agents and have made progress in recent months. Al agents will likely become
increasingly useful, but may also exacerbate a number of the risks discussed in this report
and introduce additional difficulties for risk management. Examples of such potential new
challenges include the possibility that users might not always know what their own Al agents
are doing, the potential for Al agents to operate outside of anyone’s control, the potential for
attackers to ‘hijack’ agents, and the potential for Al-to-Al interactions to create complex
new risks. Approaches for managing risks associated with agents are only beginning to be
developed.

Besides technical factors, several economic, political, and other societal factors make risk

management in the field of general-purpose Al particularly difficult.

The pace of advancement in general-purpose Al creates an 'evidence dilemma’ for
decision-makers.! Rapid capability advancement makes it possible for some risks to emerge
in leaps; for example, the risk of academic cheating using general-purpose Al shifted from
negligible to widespread within a year. The more quickly a risk emerges, the more difficult it
is to manage the risk reactively and the more valuable preparation becomes. However, so
long as evidence for a risk remains incomplete, decision-makers also cannot know for sure
whether the risk will emerge or perhaps even has already emerged. This creates a trade-off:
implementing pre-emptive or early mitigation measures might prove unnecessary, but
waiting for conclusive evidence could leave society vulnerable to risks that emerge rapidly.
Companies and governments are developing early warning systems and risk management
frameworks that may reduce this dilemma. Some of these trigger specific mitigation
measures when there is new evidence of risks, while others require developers to provide
evidence of safety before releasing a new model.

There is an information gap between what Al companies know about their Al systems and
what governments and non-industry researchers know. Companies often share only limited
information about their general-purpose Al systems, especially in the period before they are
widely released. Companies cite a mixture of commercial concerns and safety concerns as

T Please refer to the Chair's update on the latest Al advances after the writing of this report.
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reasons to limit information sharing. However, this information gap also makes it more
challenging for other actors to participate effectively in risk management, especially for
emerging risks.

Both Al companies and governments often face strong competitive pressure, which may
lead them to deprioritise risk management. In some circumstances, competitive pressure
may incentivise companies to invest less time or other resources into risk management than
they otherwise would. Similarly, governments may invest less in policies to support risk
management in cases where they perceive trade-offs between international competition
and risk reduction.

Nonetheless, there are various techniques and frameworks for managing risks from
general-purpose Al that companies can employ and regulators can require. These include methods
for identifying and assessing risks, as well as methods for mitigating and monitoring them.

Assessing general-purpose Al systems for risks is an integral part of risk management, but
existing risk assessments are severely limited. Existing evaluations of general-purpose Al risk
mainly rely on ‘spot checks’, i.e. testing the behaviour of a general-purpose Al in a set of
specific situations. This can help surface potential hazards before deploying a model.
However, existing tests often miss hazards and overestimate or underestimate
general-purpose Al capabilities and risks, because test conditions differ from the real world.
For risk identification and assessment to be effective, evaluators need substantial expertise,
resources, and sufficient access to relevant information. Rigorous risk assessment in the
context of general-purpose Al requires combining multiple evaluation approaches. These
range from technical analyses of the models and systems themselves to evaluations of
possible risks from certain use patterns. Evaluators need substantial expertise to conduct
such evaluations correctly. For comprehensive risk assessments, they often also need more
time, more direct access to the models and their training data, and more information about
the technical methodologies used than the companies developing general-purpose Al
typically provide.

There has been progress in training general-purpose Al models to function more safely, but
no current method can reliably prevent even overtly unsafe outputs. For example, a
technique called ‘adversarial training’ involves deliberately exposing Al models to examples
designed to make them fail or misbehave during training, aiming to build resistance to such
cases. However, adversaries can still find new ways (‘attacks’) to circumvent these
safeguards with low to moderate effort. In addition, recent evidence suggests that current
training methods — which rely heavily on imperfect human feedback — may inadvertently
incentivise models to mislead humans on difficult questions by making errors harder to spot.
Improving the quantity and quality of this feedback is an avenue for progress, though
nascent training techniques using Al to detect misleading behaviour also show promise.
Monitoring — identifying risks and evaluating performance once a model is already in use —
and various interventions to prevent harmful actions can improve the safety of a
general-purpose Al after it is deployed to users. Current tools can detect Al-generated
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content, track system performance, and identify potentially harmful inputs/outputs, though
moderately skilled users can often circumvent these safeguards. Several layers of defence
that combine technical monitoring and intervention capabilities with human oversight
improve safety but can introduce costs and delays. In the future, hardware-enabled
mechanisms could help customers and regulators to monitor general-purpose Al systems
more effectively during deployment and potentially help verify agreements across borders,
but reliable mechanisms of this kind do not yet exist.

e Multiple methods exist across the Al lifecycle to safeguard privacy. These include removing
sensitive information from training data, model training approaches that control how much
information is learned from data (such as ‘differential privacy’ approaches), and techniques
for using Al with sensitive data that make it hard to recover the data (such as ‘confidential
computing’ and other privacy-enhancing technologies). Many privacy-enhancing methods
from other research fields are not yet applicable to general-purpose Al systems due to the
computational requirements of Al systems. In recent months, privacy protection methods
have expanded to address Al's growing use in sensitive domains including smartphone
assistants, Al agents, always-listening voice assistants, and use in healthcare or legal
practice.

Since the publication of the Interim Report, researchers have made some further progress
towards being able to explain why a general-purpose Al model has produced a given output.
Being able to explain Al decisions could help manage risks from malfunctions ranging from bias
and factual inaccuracy to loss of control. In addition, there have been growing efforts to
standardise assessment and mitigation approaches around the world.

Conclusion: A wide range of trajectories for the future of
general-purpose Al are possible, and much will depend on how
societies and governments act

The future of general-purpose Al is uncertain, with a wide range of trajectories appearing possible
even in the near future, including both very positive and very negative outcomes. But nothing about
the future of general-purpose Al is inevitable. How general-purpose Al gets developed and by
whom, which problems it gets designed to solve, whether societies will be able to reap
general-purpose Al's full economic potential, who benefits from it, the types of risks we expose
ourselves to, and how much we invest into research to manage risks — these and many other
questions depend on the choices that societies and governments make today and in the future to
shape the development of general-purpose Al.

To help facilitate constructive discussion about these decisions, this report provides an overview of

the current state of scientific research and discussion on managing the risks of general-purpose Al.
The stakes are high. We look forward to continuing this effort.
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Introduction

We are in the midst of a technological revolution that will fundamentally alter the way we live, work,
and relate to one another. Artificial intelligence (Al) promises to transform many aspects of our
society and economy.

The capabilities of Al systems have improved rapidly in many domains over the last years. Large
language models (LLMs) are a particularly salient example. In 2019, GPT-2, then the most advanced
LLM, could not reliably produce a coherent paragraph of text and could not always count to ten.
Five years later, at the time of writing, the most powerful LLMs, such as GPT-4, o1, Claude 3.5
Sonnet, Hunyuan-Large, and Gemini 1.5 Pro, can engage consistently in multi-turn conversations,
write short computer programs, translate between multiple languages, score highly on university
entrance exams, and summarise long documents.

Because of these advances, Al is now increasingly present in our lives and is deployed in
increasingly consequential settings across many domains. Just over the last two years, there has
been rapid growth in Al adoption — ChatGPT, for instance, is amongst the fastest growing
technology applications in history, reaching over one million users just five days after its launch, and
100 million users in two months. Al is now being integrated into search engines, legal databases,
clinical decision support tools, and many more products and services.

The step-change in Al capabilities and adoption, and the potential for continued progress, could
help advance the public interest in many ways — but there are risks. Among the most promising
prospects are Al's potential for education, medical applications, research advances in fields such as
chemistry, biology, or physics, and generally increased prosperity thanks to Al-enabled innovation.
Along with this rapid progress, experts are becoming increasingly aware of current harms and
potential future risks associated with the most capable types of Al.

This report aims to contribute to an internationally shared scientific understanding of advanced Al
safety. To work towards a shared international understanding of the risks of advanced Al
government representatives and leaders from academia, business, and civil society convened in
Bletchley Park in the United Kingdom in November 2023 for the first international Al Safety Summit.
At the Summit, the nations present agreed to support the development of an International Al Safety
Report. This report will be presented at the Al Action Summit held in Paris in February 2025. An
interim version of this report was published in May 2024 and presented at the Al Seoul Summit. At
the Summit and in the weeks and months that followed, the experts writing this report received
extensive feedback from scientists, companies, civil society organisations, and policymakers. This
input has strongly informed the writing of the present report, which builds on the Interim Report
and is the first full International Al Safety Report.
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An international group of 96 Al experts, representing a breadth of views and, where relevant, a
diversity of backgrounds, contributed to this report. They considered a range of relevant scientific,
technical, and socio-economic evidence published before 5 December 2024. Since the field of Al is
developing rapidly, not all sources used for this report are peer-reviewed. However, the report is
committed to citing only high-quality sources. Indicators for a source being of high quality include:

e The piece constitutes an original contribution that advances the field.

e The piece engages comprehensively with the existing scientific literature, references the
work of others where appropriate, and interprets it accurately.

e The piece discusses possible objections to its claims in good faith.

e The piece clearly describes the methods employed for its analysis. It critically discusses the
choice of methods.

e The piece clearly highlights its methodological limitations.

e The piece has been influential in the scientific community.

Since, at the time of writing this report, a scientific consensus on the risks from advanced Al is still
being forged, in many cases the report does not put forward confident views. Rather, it offers a
snapshot of the current state of scientific understanding and consensus, or lack thereof. Where
there are gaps in the literature, the report identifies them, in the hope that this will be a spur to
further research.

This report does not comment on which policies might be appropriate responses to Al risks. It aims
to be highly relevant for Al policy, but not in any way prescriptive. Ultimately, policymakers have to
choose how to balance the opportunities and risks that advanced Al poses. Policymakers must also
choose the appropriate level of prudence and caution in response to risks that remain ambiguous.

The report focuses on ‘general-purpose’ Al — Al that can perform a wide range of tasks. Al is the
field of computer science focused on creating systems or machines capable of performing tasks
that typically require human intelligence. These tasks include learning, reasoning, problem-solving,
natural language processing, and decision making. Al research is a broad and quickly evolving field
of study, and there are many kinds of Al. This report does not address all potential risks from all
types of advanced Al. It focuses on general-purpose Al, or Al that can perform a wide range of
tasks. General-purpose Al, now known to many through applications such as ChatGPT, has
generated unprecedented interest in Al, both among the public and policymakers, in the last two
years. The capabilities of general-purpose Al have been improving particularly rapidly.
General-purpose Al is different from so-called 'narrow Al', a kind of Al that is specialised to perform
one specific task or a few very similar tasks.

To better understand how this report defines general-purpose A|, it is useful to make a distinction

between ‘Al models’ and ‘Al systems’. Al models can be thought of as the raw, mathematical
essence that is often the ‘engine’ of Al applications. An Al system is a combination of several
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components, including one or more Al models, that is designed to be particularly useful to humans
in some way. For example, the ChatGPT app is an Al system; its core engine, GPT-4, is an Al model.

The report covers risks both from general-purpose Al models and from general-purpose Al
systems. For the purposes of this report:

e An Al model is a general-purpose Al model if it can perform, or can be adapted to perform, a
wide variety of tasks. If such a model is adapted to primarily perform a narrower set of tasks,
it still counts as a general-purpose Al model.

e An Al system is a general-purpose Al system if it is based on a general-purpose Al model.

‘Adapting a model’ here refers to using techniques such as fine-tuning a model (training an already
pre-trained model on a dataset that is significantly smaller than the previous dataset used for
training), prompting it in specific ways (‘prompt engineering’), and techniques for integrating the
model into a broader system.

Large generative Al models and systems, such as chatbots based on LLMs, are well-known
examples of general-purpose Al. They allow for flexible generation of output that can readily
accommodate a wide range of distinct tasks. General-purpose Al also includes Als that can perform
a wide range of sufficiently distinct tasks within a specific domain such as structural biology.

Within the domain of general-purpose A|, this report focuses on general-purpose Al that is at least
as capable as today’s most advanced general-purpose Al. Examples include GPT-40, AlphaFold-3,
and Gemini 1.5 Pro. Note that in this report’s definition, a model or system does not need to have
multiple modalities — for example, speech, text, and images — to be considered general-purpose.
What matters is the ability to perform a wide variety of tasks, which can also be accomplished by a
model or system with only one modality.

General-purpose Al is not to be confused with ‘artificial general intelligence’ (AGl). The term AGI
lacks a universal definition but is typically used to refer to a potential future Al that equals or
surpasses human performance on all or almost all cognitive tasks. By contrast, several of today’s Al
models and systems already meet the criteria for counting as general-purpose Al as defined in this
report.

This report does not address risks from ‘narrow Al’, which is trained to perform a specific task and
captures a correspondingly very limited body of knowledge. The focus on advanced
general-purpose Al is due to progress in this field having been most rapid, and the associated risks
being less studied and understood. Narrow Al, however, can also be highly relevant from a risk and
safety perspective, and evidence relating to the risks of these systems is used across the report.
Narrow Al models and systems are used in a vast range of products and services in fields such as
medicine, advertising, or banking, and can pose significant risks. These risks can lead to harms such
as biased hiring decisions, car crashes, or harmful medical treatment recommendations. Narrow Al
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is also used in various military applications, for instance; Lethal Autonomous Weapon Systems
(LAWS) (7). Such topics are covered in other fora and are outside the scope of this report. The
scope of potential future reports is not yet decided.

A large and diverse group of leading international experts contributed to this report, including
representatives nominated by 30 nations from all UN Regional Groups, as well as the OECD, the EU,
and the UN. While our individual views sometimes differ, we share the conviction that constructive
scientific and public discourse on Al is necessary for people around the world to reap the benefits
of this technology safely. We hope that this report can contribute to that discourse and be a
foundation for future reports that will gradually improve our shared understanding of the
capabilities and risks of advanced Al.

The report is organised into five main sections: After this Introduction, 1. Capabilities of
general-purpose Al provides information on the current capabilities of general-purpose Al
underlying principles, and potential future trends. 2. Risks discusses risks associated with
general-purpose Al. 3. Technical approaches to risk management presents technical approaches to
mitigating risks from general-purpose Al and evaluates their strengths and limitations. The
Conclusion summarises and concludes.

28



+

) © © o 5 ¢ 0 0 0 0 0 C 0 0 0 00 0000 OO OO OO OP

® o o 0 0 0 ¢ 0 ¢ 0060000000000 OO OG-

.

* 0 0 0 0 0 ¢ 00 0000000000000 OOO* .

1. Capabilities of
general-purpose Al

3
.
.
-
L
L
L
-
*
L]
3
+

+
.
L 2
*

L 2
.
.

* o 0 & O o
* o o 0 0 o
s o o 0 0 o
. o & 0 0 »
* o o o o 0 0 o
e & & 0 © 9 9 o
e ¢ 0 0 & 0 0
* 0 @ O 0 o 0 0
o o 0 @ O ©® 0 ¢ 9 o

IR B N N B B B
e o0 0000 0
e o 0000 0
L
e o o © 0 0 O 0
« o o o 0 0 0 O ¢
L 2
L
[ ]
LR BN BN BN BN BN BN B R
e & O 0 0 0 0 0 0
e o O © 0 & 0 0
s & & 0 0 0 0 o
e o & & 0 0 O
[ B BN BN B B BN
o o & ® 0 O O o
e o o © 0 0 o

-
*
L]
L]
.
.
-
-
L]
L ]
L
L
L 3
L]
.
L]
.

L
.
L
(]
.
L]
-
L 3
.
L]
L
L]
L
L]
L
L]
-
-
-
-
-

* 200000 0
e o o 0000 0O

> o ¢ ¢ o 9o o 090000000

L]
L ]
* o o @
{ B B
. .
.- .
. »
| e
L B
L e 4
- .
. .
. .
. .
. .
. .
- .
. .
. .

* o
* o o 0o 0o 0 v 000000

[ ]

e o 0o o o
e o o o o
e o @ 0 o

.

|

S

* »

P,

L 2

L B 2

IR,

IS

.

—

Lo

—

!

. »

o o o o 0o o 0o 0o 00000 0
L
e o
e o
L ]
L
L]
-
*
4
-
-
L 2
.

L ]
.
+
.
L ]
L
.
.
.
.
»
.
L 3

L
-
.
.
-
-
-
L ]
.
-
-
L ]

¢ & & & ¢ &
L
-« @
. .
. .
. .
.
.
- .
. .
.- .
. o
. @
. .
* .
.
L ]

¢ & 0 @ 9 o
. o 0 O o o

L

.

.

.

.

.

.

.
.
.
.
.
.
.
13
*
13
+
*
.
*
L3
.
L

L
L]
.
.
.
L]
.
+
.
+
’
+
-
*

e & 9 0 0 0 ¢ 0
.
L
.

L ]
.
.
'Y
.
.
.
.
.
.
.
L ]

-
-*
L 2
.
.
.
.
.
.
L
L

* o o »
s &
[
L
..
.
-
L 2
L S

* & @ 9

3
.
[

.« & & 9 & 5 9 5 9 5 0 0 0

* & 0 0 0 0 0 »
* 0 0 ¢ 0 & 0 0

L]
L]
.
-
-
.
.
L
[ ]

& & & & & o 0 5 000 0000 O° OO O OO OOO O
I I B B B BN RN B B B B B B B B B B B B B B N N N N BN}
* 0 0 0 0 0 0 0 00000000 00000000000
* o o 0 0 0 0 0 050 0 060060 06000600 0000000+0 -
* 2 0 0 0 0 0 00 0 0 0 0 0 060 0 0 000000000090
® 0 0 0 0 00 O 8 0 0 0 o s 0 00 0 0 s 0 00000000000

) ¢ 0 0000008 0 0
e o 0 0 0 0 0 ¢ 0 0

e o & & & & o o

.

-

L 3

[ ]
e o & 0000 00 0 0 ¢ 9+ o
o o 000000 0 0 0 ¢ o o
oo 00000 & 0 0o 0 ¢ 0 o
e 0 00000 00 0 0 0 0 0

s o o 0 0 00O 0 9 0 & s s 0 0 8

-
L ]
L]
.
-
.
.
L]
-

L ]
L]
L ]
L]
.
-
-
L]
.
L
L
{ ]

e o 0 00000000 0 00 00 0 0
) © © O O 0 O 0 O 0 00 0 ¢ ¢ 00 0 0 ¢ o

o & o 0 © @ 0 0 0 0

L]
.
-
L]
-
.
.
.
.
.
L]
L]

) © © © © ° o s o ¢ o o
) & & © & 0 & & &
) & & & & O & 0 & o

) O O 0 O ¢ 0 0 0 0 0 o
) © O ¢ ¢ o

;

y

;

3

)

3

) © 0 0 O 0 0 0 0 0 0 0 o
) © ©® © o o

) © © @ & o o
) © O O & & ¢
)

3

:

.

.

;

;

;

)

1

e o 0 O 0 0 0 ¢

) © 0 0 000000000 0" 00O O OO 0 0

+

L ]

) © 0 0 0 0 00000000 0O OO OO0 OO e 0000

} ¢ 0 0 0 0 0 0 00 00 000 OO0 OO0 OO OISO OE OO OFS

L A R A R A A R N e R A A A A e A A A A A A A A A N A A A N e

® O O 0 0 0 0 0 ¢ o 2 0 90 0 0 ¢ 0000000900 O O

* o 0 0 0 ¢ 0 0 00 0 0 000000 0 0
* o 0 © 0 0 0 0 0 0 0 O 000000 O

® @& O ¢ ¢ 0 0 ¢ o o

e & o & o & 0 & o

* o & ¢ 0 & 0 O 0 O 0 O PO OO O
e & & & & & 0 & 0 0 0 0 0 0 0 00 0
* o & & 0 0 & & ¢ ¢ 0 ¢ o 0 0 0 O O o

* & © © & o

e & & & o



Capabilities of general-purpose Al
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1.1. How general-purpose Al is developed

KEY INFORMATION

e General-purpose Al can perform, and help users accomplish, a wide variety of tasks. For
example, it can produce text, images, video, audio, actions, or annotations for data.

e General-purpose Al is based on ‘deep learning’. Deep learning leverages large amounts of
computational resources for an Al model to learn useful patterns from a large amount of
training data.

e The lifecycle of a general-purpose Al can be divided into distinct stages. These stages are:
o Data collection and pre-processing: developers and data workers collect, clean, label,

standardise, and transform raw training data into a format the model can effectively
learn from.

o Pre-training: developers feed Al models vast quantities of data to instil general
knowledge by learning from examples. This stage currently requires the most
computation.

o Fine-tuning: developers and contracted data workers further refine the pre-trained
‘base model’ in a process called ‘fine-tuning’ to optimise the model's performance for a
specific application or make it more useful generally. This stage can be very labour
intensive.

o System integration: developers combine one or more general-purpose Al models with
other components, such as user interfaces or content filters, to enhance capability and
safety and to produce a full ‘Al system’ that is ready for use.

o Deployment: developers make the integrated Al system available for others to use by
implementing the Al system into real-world applications or services.

o Post-deployment monitoring: developers gather and analyse user feedback, track
performance metrics, and make iterative improvements to address issues or
limitations discovered during real-world use. These improvements can include more
fine-tuning or updating the system integration.

e Since the publication of the Interim Report (May 2024), the abilities of general-purpose Al
at tests of multi-step reasoning have improved. This is largely due to fine-tuning
techniques through which a model learns to approach problems in a more structured way
before it generates an output.

Key Definitions
e Model: A computer program, often based on machine learning, designed to process inputs

and generate outputs. Al models can perform tasks such as prediction, classification,
decision-making, or generation, forming the core of Al applications.
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e System: An integrated setup that combines one or more Al models with other components,
such as user interfaces or content filters, to produce an application that users can interact
with.

e Compute: Shorthand for ‘computational resources’, which refers to the hardware (e.g.
graphics processing units (GPUs)), software (e.g. data management software) and
infrastructure (e.g. data centres) required to train and run Al systems.

e Deep learning: A machine learning technique in which large amounts of data and compute
are used to train multilayered, artificial neural networks (inspired by biological brains) to
automatically learn and extract high-level features from large datasets, enabling powerful
pattern recognition and decision-making capabilities.

e Developer: Any organisation that designs, builds, integrates, adapts or combines Al models
or systems.

e Neural network: A type of Al model consisting of a mathematical structure that is inspired by
the human brain and composed of interconnected nodes (like neurons) that process and
learn from data. Current general-purpose Al systems are based on neural networks.

e Weights: Model parameters that represent the strength of connection between nodes in a
neural network. Weights play an important part in determining the output of a model in
response to a given input and are iteratively updated during model training to improve its
performance.

‘General-purpose Al refers to artificial intelligence models or systems that can perform a wide
range of tasks rather than being specialised for one specific function. While all Al operates on a
fundamental input-to-output basis — processing data to generate results — general-purpose Al
distinguishes itself by its ability to handle a diverse range of tasks, e.g. summarising text, generating
images, or writing computer code (for a more detailed definition of general-purpose Al, see
Introduction). This versatility makes it useful, allowing applications in numerous fields such as
healthcare, finance, and engineering. However, these capabilities also present new challenges,
particularly in ensuring safety and ethical use. The complexity of managing multiple potential use
cases increases the potential for unintended consequences, biases, and misuse.

Examples of general-purpose Al include:

e Language models, such as ol (2*), GPT-40 (3*), Gemini-1.5 (4*), Claude-3.5 (5*), Command
r+ (6*), Qwen2.5 (7*), the ERNIE family (8*), Hunyuan-Large (9*), Yi-Lightning (10*), Llama-3.1
(17%), and Mistral Large (12%).

Image generators (13), such as DALL-E 3 (14*) and Stable Diffusion-3 (15%).

Video generators such as SORA (16*), Pika (17), and Runway (17).

Robotics and navigation systems, such as PaLM-E (18) and Octo (719%).

Al agents that can accomplish relatively complex tasks in pursuit of a goal with little human
involvement, such as AutoGPT (20), Sibyl (27*) and ‘The Al Scientist’ (22*).

e Predictors of biomolecular structures, such as AlphaFold-3 (23).

31



Capabilities of general-purpose Al

11 How general-purpose Al is developed

General-purpose Al models are developed via a process called ‘deep learning’. Deep learning is a
paradigm of Al development focused on building computer systems that learn from examples.
Instead of programming specific rules into systems, researchers feed these systems examples —
such as pictures, texts, or sounds — and they gradually learn to recognise patterns and make sense
of new information. Deep learning started emerging as a dominant paradigm for Al development in
the early 2010s. It was solidified as the primary paradigm after notable developments such as the
victory of the AlphaGo system against the world’s leading Go player in 2016.
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Figure 1.1: Today's general-purpose Al models are neural networks, which are inspired by the animal brain. These networks
are composed of connected nodes, where the strength of connections between nodes are called 'weights" Weights are
updated through iterative training with large quantities of data. Source: International Al Safety Report.
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There are many different types of general-purpose Al, but they are developed using common
methods and principles. Deep learning works by processing data through ‘layers’ of interconnected
mathematical nodes (see Figure 1.1), often called ‘neurons’ because they are loosely inspired by
neurons in biological brains (‘neural networks’) (24). As information flows from one layer of neurons
to the next, the model refines its representations. For example, in a vision system, the first layers
might detect simple features such as edges or basic shapes in an image, while deeper layers
combine these features to recognise more complex patterns like faces or objects. When the
system makes mistakes, deep learning algorithms adjust the strength of various connections
between neurons to improve the model’'s performance. The strength of each connection between
nodes is often called a ‘weight’. This layered approach to learning is what gives deep learning its
name, and it is effective at tasks that previously required human intelligence. Most state-of-the-art
general-purpose Al models are now based on a specific neural network architecture known as the
‘Transformer' (25), which is able to process large quantities of data simultaneously. Transformers
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have been very effective at learning from large amounts of data, leading to significant
improvements in translation and text generation and eventually leading to the development of LLMs
such as GPT-4o.

The process of developing and deploying general-purpose Al follows a series of distinct stages.
These stages occur at different points in time, depend on different resources, require different
techniques, and are sometimes undertaken by different developers (see Figure 1.2 / Table 1.1). As a
result, different policies and regulations affecting data, computational resources (‘compute’), or
human oversight may affect each stage differently.

4 4 )

Data
. Post-
collection . . . System
—> Pre-training — Fine-tuning — . Deployment — deployment
& pre- integration T
) monitoring
processing

Figure 12: The process of developing and deploying general-purpose Al follows a series of distinct stages, from data
collection and pre-processing to post-deployment monitoring. Source: International Al Safety Report.

Before training a general-purpose Al model, developers collect and prepare suitable data, which is
a large-scale operation. Creating high-quality training datasets involves complex pipelines of data
collection, cleaning, and curation. The training datasets behind state-of-the-art models comprise
an immense number of examples from across the internet. Teams often develop sophisticated
filtering systems to reduce inappropriate or harmful content, eliminate duplicate data, and improve
representation across different topics and perspectives. Data pre-processing can also help reduce
copyright and privacy concerns, handle multiple languages and formats, and improve
documentation for data provenance. Many companies employ large teams of annotators and
subject matter experts to verify and label portions of the data, develop classification systems for
content quality, and create specialised datasets for specific capabilities.

Data collection Developers collect, clean, label, standardise, and transform raw training data into a
and format the model can learn from. This is a highly labour-intensive process.
pre-processing

Pre-training Developers feed models massive amounts of diverse data — such as text, code,
and images — to instil general knowledge. Pre-training produces a ‘base model".
This is a highly compute-intensive process.

Fine-tuning Developers further train the base model to optimise it for a specific application or
make it more useful generally. This is typically done with the help of a large amount
of human-generated feedback. This is a moderately compute-intensive and highly
labour-intensive process.
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System integration Developers combine one or more general-purpose Al models with other
components such as user interfaces or content filters to create a full ‘Al system’
that is ready for use.

Deployment Developers make the integrated Al system available for others to use.
Post-deployment Developers gather and analyse user feedback, track impact and performance
monitoring metrics, and make iterative improvements to address issues or limitations

discovered during real-world use.

Table 11: At each stage of the Al lifecycle, the Al model is improved for downstream use and eventually deployed as a
fully integrated Al system.

During pre-training, developers present general-purpose Al models with large amounts of data,
which allows the model to learn patterns. At the beginning of the training process, an untrained
model produces random outputs. However, through exposure to millions or billions of examples —
such as pictures, texts, or audio — the model gradually learns facts and patterns which allow it to
make sense of information in context. Pre-training produces a ‘base model’ with general
background knowledge and capabilities.

Pre-training for general-purpose Al models is often the most computationally intensive stage of
development. The pre-training process takes weeks or months and uses tens of thousands of
graphics processing units (GPUs) or tensor processing units (TPUs) — specialised computer chips
designed to rapidly process many calculations. Today, this process uses roughly 10 billion times
more compute compared to state-of-the-art model training in 2010 (26). Some developers
conduct pre-training with their own compute, while others use resources provided by specialised
compute providers. Either way, energy costs are high, and it is projected that for the largest
general-purpose Al models, pre-training compute costs alone will exceed $1 billion for some models
by 2027 (27). See 2.3.4. Risks to the environment for a discussion of the environmental costs of

training.

After pre-training, general-purpose Al models learn from specially curated feedback and
specialised data sets to improve model performance and efficiency — a process called ‘fine-tuning’.
After pre-training, most general-purpose Al models undergo one or more additional fine-tuning
stages to refine their ability to accomplish the intended tasks. Fine-tuning can include various
techniques, including learning from desirable examples (28, 29) or from positive/negative
reinforcement (30, 37*). In some ways, fine-tuning a general-purpose Al can be compared to
teaching a student through practice and feedback. Often, fine-tuning follows this scheme:

1. researchers give a base model tasks that it then tries to solve; 2. the researchers then mark good
responses as positive examples and mistakes are marked as negative examples; 3. the model is
then updated such that it tends to favour approaches that worked well and avoid those that did
not, gradually becoming more reliable. Overall, fine-tuning improves the performance of
general-purpose Al models by allowing them to utilise existing knowledge and capabilities to
accomplish the desired task. Fine-tuning is traditionally the most labour-intensive training step,
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often requiring feedback from thousands of contracted data workers. However, general-purpose Al
systems are themselves increasingly being used to help fine-tune other general-purpose models
(32* 33*). In practice, fine-tuning is typically an iterative process in which developers will alternate
between fine-tuning and testing runs until their tests show that the system meets desired
specifications.

After fine-tuning comes ‘system integration’, which involves combining general-purpose Al models
with other components such as user interfaces or content filters to produce a general-purpose Al
system. A general-purpose Al system is a combination of one or more general-purpose Al models
and all the additional components needed to make them operational — such as user interfaces, data
processing infrastructure, and various tools. For example, GPT-4o0 is a general-purpose Al model
that processes text, images, and audio. However, ChatGPT is a general-purpose Al system that
combines the GPT-40 model with a chat interface, content processing, web access, and application
integration to create a functional product. The additional components in an Al system also aim to
enhance capability, usefulness, and safety. For example, a system might come with a filter that
detects and blocks model inputs or outputs that contain harmful content. Developers are also
increasingly designing so-called ‘scaffolding’ around general-purpose Al models that allows them to
plan ahead, pursue goals, and interact with the world (see 1.2. Current capabilities). Just like
fine-tuning, system integration typically involves alternating integration and testing steps. The final

step before deployment is typically to construct a report on the system’s development,
capabilities, and test results. This is often known as a ‘system card’ (34).

After system integration, ‘deployment’ makes Al systems available for use. Deployment is the
process of implementing Al systems into real-world applications, products, or services where they
can serve requests and operate within a larger context. Deployment can take several forms: internal
deployment for use by the system'’s developer, or external deployment either publicly or to private
customers. Very little is publicly known about internal deployments. However, companies are known
to adopt different types of strategies for external deployment. For example, companies often offer
access through online user interfaces or integrations that allow their models to be used with
custom applications designed by downstream developers. These integrations can allow for one
developer’s general-purpose Al systems to be used in numerous other applications. For example,
one company might design a bespoke customer service chatbot that is powered by another
company'’s general-purpose Al system.

‘Deployment’ and ‘model release’ are distinct activities that are easily confused. ‘Deployment’
involves putting an integrated Al system into use as described above. ‘Model release’, on the other
hand, involves making trained models available for downstream entities to further use, study,
modify, and/or integrate into their own systems. There is a spectrum of model release options
ranging from fully closed to fully open (35*). Fully closed models are maintained for internal
research and development only. Fully open models are those for which all model components (e.g.
weights, code, training data) and documentation are made freely available under an open source
licence for anyone to use, study, share, or modify (36*). Some state-of-the-art general-purpose Al
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models, such as GPT-40 (3*), are on the closed end of the spectrum, while others sit more towards
the open end of the spectrum. For example, Llama-3.1(37*) has ‘open’ weights that are available for
public download. From a risk mitigation perspective, there are advantages and disadvantages of
more open forms of model release (see 2.4. Impact of open-weight general-purpose Al models on
Al risks).

After deployment, developers can engage in ‘monitoring’ — inspecting the inputs and outputs of the
system to track performance and detect problems — and update their systems on an ongoing
basis. This process involves gathering and analysing user feedback, tracking performance metrics,
and making iterative improvements to address issues or limitations discovered during real-world
use (38). These improvements can include more fine-tuning or an updating of the system
integration. In practice, there is often a ‘cat-and-mouse game’ in which developers continually
update high-profile systems in response to newly discovered issues (39). See 3.4.2. Monitoring and

intervention, for a discussion of methods for monitoring general-purpose Al systems and
intervening where needed.

Since the publication of the Interim Report, developers have made significant advances in
system integration techniques that may enable general-purpose Al to perform more
advanced reasoning. In September 2024, OpenAl announced its new ol prototype model with
more advanced scaffolding and training methods that have enabled significant performance
gains on tasks such as mathematics and programming (2*). Unlike previous models, o1
employs ‘chain of thought’ problem-solving that breaks problems down into steps which are
then solved bit-by-bit. Chain of thought has enabled improvements in complex tasks — ol
scored 83% on International Mathematics Olympiad (IMO) qualifying exams compared to
GPT-40's 13% — and is considered an important step towards developing Al agents:
general-purpose Al systems that can autonomously interact with the world, plan ahead, and
pursue goals. However, the improved problem-solving process requires significantly more
time and compute both during training and at point of use. The extent of the reasoning
capabilities of the model remains unclear (40).

There are various challenges for policymakers stemming from how general-purpose Al is
developed. Risks and vulnerabilities can emerge at many points along the development and
deployment process, making the most effective interventions difficult to pinpoint and
prioritise. Advances in model development are also happening rapidly and are difficult to
predict. This makes it difficult to articulate robust policy interventions that will age well with a
rapidly evolving technology. Not only are the risks and vulnerabilities associated with
general-purpose Al likely to change, the demands of model development are, too. For
example, reasoning-based models such as ol demand much greater computational resources
at point of use, which presents new implications for long-term compute infrastructure
planning. 1.2. Current capabilities and 1.3. Capabilities in coming years expand on the state of
current Al capabilities and the ways in which those capabilities are likely to evolve, posing new
risks and challenges.
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1.2. Current capabilities

KEY INFORMATION'

e Understanding and measuring the capabilities of general-purpose Al is crucial for
assessing their risks. Existing governance frameworks and commitments rely on precisely
measuring general-purpose Al capabilities, but they are a moving target and difficult to
measure and define.

e Most experts agree that general-purpose Al systems are capable of tasks including:

o Assisting programmers and performing small- to medium-sized software engineering
tasks.

o Creating images that are hard to distinguish from real photographs.

o Engaging in fluent conversation in many languages.

o Finding and summarising information relevant to a question or problem from many data
sources.

o Working simultaneously with multiple ‘modalities’ such as text, video, and speech.

o Solving textbook mathematics and science problems at up to a graduate level.

e Most experts agree that general-purpose Al is currently not capable of tasks including:

o Performing useful robotic tasks such as household work.

o Consistently avoiding false statements.

o Independently executing long projects, such as multi-day programming or research
projects.

e General-purpose Al agents can increasingly act and plan autonomously by controlling
computers. Leading Al companies are making large investments in Al agents because they
are expected to be economically valuable. There is rapid progress on tests related to web
browsing, coding, and research tasks, though current Al agents still struggle with work that
requires many steps.

e Since the publication of the Interim Report (May 2024), general-purpose Al systems have
markedly improved at tests of scientific reasoning and programming. These improvements
come in part from techniques that let general-purpose Al break down complex problems
into smaller steps, by writing so-called ‘chains of thought’, before solving them.

e A key challenge for policymakers is how to account for context-specific capabilities in
regulations. The capabilities of general-purpose Al can significantly change with more
careful fine-tuning, prompting, and tools made available to the system. They can also
decline in unfamiliar contexts. More rigorous evaluations needed to avoid overestimating
or underestimating capabilities.

T Please refer to the Chair's update on the latest Al advances after the writing of this report.
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Key Definitions

e Modalities: The kinds of data that an Al system can competently receive as input and
produce as output, including text (language or code), images, video, and robotic actions.

e Capabilities: The range of tasks or functions that an Al system can perform, and how
competently it can perform them.

e Inference-time enhancements: Techniques used to improve an Al system's performance
after its initial training, without changing the underlying model. This includes clever
prompting methods, answer selection methods (e.g. sampling multiple responses and
choosing a majority answer), writing long ‘chains of thought’, agent ‘scaffolding’, and more.

e Scaffold(ing): Additional software built around an Al system that helps it to perform a task.
For example, an Al system might be given access to an external calculator app to increase
its performance on arithmetical problems. More sophisticated scaffolding may structure a
model’s outputs and guide the model to improve its answers step-by-step.

e Chain of thought: A reasoning process in which an Al generates intermediate steps or
explanations while solving a problem or answering a question. This approach mimics human
logical reasoning and internal deliberation, helping the model break down complex tasks into
smaller, sequential steps to improve accuracy and transparency in its outputs.

e Inference: The process in which an Al generates outputs based on a given input, thereby
applying the knowledge learnt during training.

e Al agent: A general-purpose Al which can make plans to achieve goals, adaptively perform
tasks involving multiple steps and uncertain outcomes along the way, and interact with its
environment — for example by creating files, taking actions on the web, or delegating tasks
to other agents — with little to no human oversight.

e Evaluations: Systematic assessments of an Al system's performance, capabilities,
vulnerabilities or potential impacts. Evaluations can include benchmarking, red-teaming and
audits and can be conducted both before and after model deployment.

e Benchmark: A standardised, often quantitative test or metric used to evaluate and compare
the performance of Al systems on a fixed set of tasks designed to represent real-world
usage.

This section focuses on the core capabilities of general-purpose Al models and systems that are
publicly available today. Section 1.3. Capabilities in coming years, discusses expected future

developments in Al capabilities, and Section 2. Risks, discusses specific dangerous capabilities and
their associated applications that contribute to risks.

A general-purpose Al system'’s capabilities are difficult to reliably measure (41). An important
caveat on assessments of Al capabilities is that their capability profiles, and the consistency with
which they exhibit certain capabilities, differ significantly from those of humans. For example, two
studies find that language models fail more often on counting and arithmetic problems involving
numbers that are rare in their training data (42* 43). An Al system’s success on a test of
capabilities depends highly on the particular examples chosen for the test, as well as how it is
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asked or instructed to solve them (which, in practice, depends on its user’s skill) — making it
particularly challenging to ensure the absence of a capability in an Al system (e.g. one that could
entail societal risks (44%)); see 2.1 Risks from malicious use. Diversity of data and appropriate

investment into methods to elicit the desired behaviour from a model (e.g. through inference-time
enhancements such as scaffolding, prompting, and fine-tuning) can help make capability
assessment more reliable.

Input and output modalities

The ‘modalities’ of an Al system are the kinds of data that it can usefully receive as input and
produce as output. For example, general-purpose Al systems with a text modality might take in
user-entered text or source documents, and produce coherent natural language, engage in
conversations, and answer reading comprehension questions about a passage. Al systems with
image and text modalities may be able to answer questions about the contents of images, or
generate images according to natural language instructions. Understanding the modalities which a
general-purpose Al system can process is important for developing an intuition about the broad
sets of tasks that it might be able to accomplish in theory, and the possible threats that it — and
future models of its kind — may pose. General-purpose systems exist for 9+ modalities (45)
including text, audio, images, and video, with some systems specifically focusing on an additional
modality such as robotic actions, representations of proteins and other molecules, time series data
(46*) or music (47*). However, text- and image-processing systems such as ChatGPT are the
source of much of the present attention on general-purpose Al. Advanced general-purpose Al
systems are increasingly able to process inputs and generate outputs in multiple modalities such
as text, video, and speech.

Text and code: General-purpose Al systems can engage in interactive dialogue and write short
computer programs. Advanced language models can generate text and engage in interactive
dialogue across a variety of natural languages, topics, and formats. Examples include OpenAl’s
GPT-4, Anthropic’s Claude, and Google's Gemini, as well as openly available models from Meta (the
Llama series of models), Mistral Al, Alibaba (the Qwen series), and DeepSeek (48*% 49% 50% 51* 52*,
53* 54*). In addition to human language, these models can process and generate many kinds of
data encoded as text, including mathematical formulae and computer code. They can write

short- to medium-length programmes, assist software developers, and perform computer actions
(such as web searches) when provided with affordances such as internet access (55, 56).

Audio and speech: General-purpose Al systems can engage in spoken conversation and
convincingly emulate humans’ voices. Some general-purpose Al systems, including GPT-40 (3*)
and Gemini 1.5 (49%), can process audio in much the same way as text, answering questions about
the contents of an audio clip (for example, a spoken conversation). One recent study on using
narrow Al for text-to-speech synthesis found that on two academic speech synthesis benchmarks,
a person’s voice could be convincingly replicated in high-quality audio from only a three-second
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recording (57*). The general-purpose Al system GPT-40 can converse in real time with human-like
speech in its ‘advanced voice mode’ and can emulate a variety of human voices.

Images: General-purpose Al systems can describe the contents of images with high accuracy,
generate images according to a detailed description, and perform other image-based tasks. Many
general-purpose Al systems can use images as both input and output. General-purpose Al systems
such as Claude, and GPT-4o, Pixtral, and Qwen2-VL can describe the contents of images in
language, including objects and activities depicted therein (3% 50% 58* 59% 60*). The most
capable models can make sense of complex images and documents, with Anthropic reporting that
its Claude 3.5 Sonnet system can correctly answer over 90% of questions in three benchmarks that
involve processing documents, charts and science diagrams, representing human standardised
testing settings (5*). General-purpose Al systems can also generate images as output, with
contents and style specified in human language (for example, systems such as Stable Diffusion 3
(15*) and DALL-E 3 (74*)). Advances in image-generation models make it easier to control their
images’ content and style, depict increasingly complex and realistic scenes, and produce images
which are close to indistinguishable from natural ones (714*). Other general-purpose Al systems can
perform image-based tasks such as categorising the objects depicted within images (61) and
identifying their locations (62*).

Video: General-purpose Al systems can transcribe or describe the contents of videos, and
generate short videos according to instructions, but the movement depicted in these videos is not
always realistic. Some general-purpose Al systems can take video as input and analyse its
contents, such as V-JEPA (63*), Gemini 1.5 (49*), GPT-40 (3*), and Qwen2-VL (60*). These systems
can enable searching and analysing long-form content, for example locating key moments or pieces
of information revealed in a video. Some general-purpose systems can also generate realistic,
high-definition video, for example Sora (16*) and Movie Gen (64*). These models can generate short
(less than one minute) videos depicting a scene described in text, optionally with reference to
other images and videos as well. They can modify videos according to instructions (e.g. changing
the depicted season from summer to winter) and generate videos depicting individuals in reference
photographs (e.g. performing a described activity). These videos generally look realistic, though the
accuracy of the generated scenes to the instructional text tends to be worse than for
state-of-the-art image generation systems, and the videos often contain unnatural or physically
impossible movements which clearly distinguish them from natural video. Advanced video models
have only reached the market in 2024 and their implications are still being explored.

Robotic actions: General-purpose Al systems can be used to plan out robotic movements, but
cannot yet themselves control physical robots or machines. General-purpose Al systems can be
used for planning multi-step robot actions and translating instructional language into robotic action
plans (65% 66). Researchers are also exploring general-purpose Al models that not only plan or
interpret, but also generate robotic actions, such as Google's RT-2-X (67), and the autonomous
driving company Waymo is developing general-purpose Al models for generating driving plans and
models of a vehicle’s environment (68*). However, general-purpose Al models’ abilities to generate
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robotic actions are relatively rudimentary. Part of the reason is that data collection for actions
generally requires running physical robots and is challenging to do at very large scale (69), although
substantial efforts are being made (67, 70, 71). General-purpose Al systems cannot yet effectively
control physical robots or machines to perform many useful tasks such as household work, as the
integration of general-purpose Al models with motor control systems remains a challenge (72).

Proteins and other molecules: General-purpose Al systems can perform a range of tasks useful to
biologists, such as predicting protein folding and aiding protein design. General-purpose Al
systems that work with proteins and other large molecules operate using various representations
(e.g. residue sequences, 3D structures). These models can predict protein structures under various
conditions (e.g. in protein—protein complexes), generate useful novel proteins, and perform a wide
range of protein-related tasks relevant to drug discovery and design (73*), qualifying them as
‘foundation models’ (74) and as general-purpose Al models under this report’s definition (see
Introduction). They can increasingly be used to generate designs of new proteins with predictable
functions across large protein families (75, 76).

Enhancements after pre-training

The tasks that a general-purpose Al system can accomplish depend on the techniques applied to it
after initial pre-training. A review of 16 enhancement methods found that they generally require less
than 1% of the computational resources to implement than was used for pre-training the systems,
while improving those systems’ capabilities approximately as much as would be expected from
devoting 5x more resources to pre-training (77). This suggests that policy around the development
and deployment of general-purpose Al systems may need to anticipate the effect that these
enhancements will have on general-purpose Al systems’ capabilities. Some common enhancement
methods (77, 78) include:

e Fine-tuning: Fine-tuning refers to further training the pre-trained base model to optimise it
for a specific application or make it more useful generally, for instance by training it to follow
instructions.

¢ Inference-time enhancements: Inference is the process in which an Al model generates
outputs based on a given input, thereby applying the knowledge learnt during training.
Inference-time enhancements are a class of system integration techniques that modify a
model’'s inputs and organise its outputs. Examples include producing multiple candidate
answers to a question and selecting the best among them (79% 80*), producing long ‘chains
of thought' (see next paragraph) to work through complex problems (2*), or using hybrids of
these approaches (81). Other inference-time enhancements include:

o Prompting methods: crafting the system'’s instructions to improve its performance,
for example by providing it with example problems and solutions (82, 83), providing
useful documents for context, or instructing it to ‘think step-by-step’ (84);

o Agent scaffolding and tool use: providing the model with means to break down a
high-level task into a plan with clear subgoals and delegate to copies of itself to
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perform each step of the plan, interacting with its environment, e.g. using websites
(85*) or running code (86* 87, 88*) to carry out its work as an Al agent (89, 90).

General-purpose Al models have markedly improved at answering Ph.D.-level science questions

Human Ph.D.-level experts
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Figure 1.3: Since the publication of the Interim Report (May 2024), general-purpose Al models have seen rapid
performance increases in answering PhD-level science questions. Researchers have been testing models on GPQA
Diamond, a collection of challenging multiple-choice questions about biology, chemistry, and physics, which people
without PhD-level expertise in each area are unable to correctly answer even with access to the internet. On these tests,
accuracy rose from 33% with GPT-4 in June 2023 (slightly above random guessing) to 49% with GPT-40 in May 2024,
reaching 70% (matching experts with a PhD in the area of each question) with ol-preview in September 2024. This
increase is partly due to ol-preview writing a long ‘chain of thought’ in which it can break down the problem and try
different approaches before producing its final answer. For progress on other tests, see Figure 1.4 in 1.3. Capabilities in

coming years. Source: Epoch Al, 2024 (917).

Since the publication of the Interim Report, studies have shown a general-purpose Al
system'’s capabilities can be significantly increased by having it devote more time and
computation to each individual problem. OpenAl's o1 system, released in September of 2024,
achieved a high enough score on the American Invitational Mathematics Examination (AIME)
to qualify for the USA Mathematical Olympiad, and reached expert PhD-level performance on
postgraduate-level physics, chemistry, and biology questions curated for high difficulty (92*)
(see Figure 1.3). The key to ol's improvements was to leverage extra computation at inference
time by writing a long ‘chain of thought' to break down the problem and work through
hypotheses. Another popular inference-time enhancement leverages increased computation
during inference-time by sampling multiple outputs from the model and choosing among
them. Two recent studies by industry, academic and civil society researchers investigate how
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capabilities scale with the amount of inference-time computation using such techniques (93,
94*). They found that capabilities increase at a rate which is approximately logarithmic with
inference-time computation investment, forming a similar trend to the relationship between
capability growth and training time computation as described in Section 1.3. Capabilities in
coming years. This, together with ol's success, suggests that the amount of inference-time

computation devoted to each problem might be a general-purpose lever by which the
capabilities of an existing general-purpose Al system may be increased (especially in science
and technology applications), i.e. by simply allowing it to produce a much longer ‘chain of
thought’ before its answer. However, eliciting improved capabilities using more inference-time
computation requires more computation, increasing costs.

What can current general-purpose Al do?

General-purpose language models can correctly answer many common-sense and factual
questions, but they can be inconsistent and make trivial errors. General-purpose Al systems
encode an extensive range of facts, with current state-of-the-art systems scoring on average
above 92% in undergraduate-level tests of knowledge in subjects such as chemistry and law (92%).
However, these systems often fail to identify subtle factual distinctions or self-contradictory
arguments (95, 96), are prone to provide biased answers on the basis of user interaction patterns
(97, 98), are less accurate at answering questions about unusual scenarios (42* 99* 100), and
commonly generate completely non-existent or false citations, biographies, or facts (101, 102* 103,
104, 105), or make simple common-sense errors (106, 107). These issues are taken by some
researchers to indicate that they lack a true understanding of how the world works (7108) and make
it difficult to adopt such systems in settings that require high reliability. See 1.3. Capabilities in

coming years for further discussion.

General-purpose Al systems can achieve performance similar to or better than human experts on
some self-contained knowledge and reasoning tasks, but they still make mistakes on easy
problems in ways that humans do not. In one study, a general-purpose Al system was able to
predict the probability of future events with accuracy rivalling that of expert forecasters on an
online forecasting platform (109). With respect to coding, ol performs at the 89th percentile of
humans on Codeforces, an online competitive coding platform, and can resolve 41% of a sample of
self-contained, real-world engineering tasks drawn from the code-sharing platform GitHub (2*).
However, even on simple primary school mathematical word problems, general-purpose Al systems
exhibit error patterns that are distinct from those of humans. For example, two studies find that
their accuracy greatly decreases when obviously irrelevant sentences are inserted into the problem
(110*, 111*), with a 17.5% reduction in accuracy for a preview version of o1 (110*). Two recent studies
also find that as general-purpose Al systems are given problems that require more steps of
reasoning to solve, their error rate increases faster than one would expect if they had a constant
error rate per step (710% 112%). This suggests that general-purpose Al systems cannot be relied upon
for complex problems, and leads some researchers to claim that these systems ‘cannot perform
genuine logical reasoning’ (110*), although opinions on this among experts are mixed.
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Studies show that Al assistance makes software developers more productive, and adoption of Al
tools for programming is increasing. Studies on GitHub Copilot, a popular early Al coding aid, show
productivity boosts of anywhere from 8-22% (113) to 56% (7114*). Developers perceive themselves
as being more productive when surveyed (115), and Al assistance is generally more beneficial for
inexperienced developers (714* 115). In a survey of over 65,000 software developers from
May—-June 2024 by Stack Overflow, a popular programming Q&A community forum, 63% of
professional software developers reported using Al tools in their workflow (716), up from 44% the
previous year (717).

Since the publication of the Interim Report, general-purpose Al agents which independently
perform tasks on the computer have been subject to heavy investment and are rapidly
becoming more reliable on benchmarks designed to test labour automation potential. Al
agents are general-purpose Al systems that can autonomously make plans, perform complex
tasks, and interact with their environment by controlling software and computers, with little
human oversight. Al agents can be created by equipping general-purpose Al systems with a
thin layer of additional software known as ‘scaffolding’. Example tasks for Al agents include
web browsing tasks such as answering questions (85*) or online shopping (718, 119), assistance
with scientific research (22* 120, 121*), software development (122), training machine learning
models (123* 124, 125% 126), carrying out cyberattacks (127), following instructions to navigate
simulated environments (128), or controlling physical robots (719*). On most of these tasks,
current Al agents succeed in cases of low to medium complexity, but fail when the task
requires many steps or becomes more complex. In an evaluation study on 77 tasks, ranging
from simple tasks such as exploiting basic website vulnerabilities to complex, multi-step tasks
such as training machine learning models, state-of-the-art models such as GPT-40, o1, and
Claude 3.5 Sonnet succeeded at nearly 40% of tasks when equipped with agent scaffolding, a
similar rate to humans who are limited to 30 minutes for each task (2* 129). In the same
study, ol made some progress — not fully succeeding — on two out of seven difficult tasks
designed to reflect challenging tasks in Al research and development (R&D), such as
optimising neural network code (2% 129). Progress in this area is rapid: new agent
architectures are rapidly being developed (130% 137* 132*), and the top system'’s success rate
on a high-quality subset of SWE-bench, a popular software engineering agent benchmark,
increased from 22% to 45% from April to August 2024 (122).

Since the publication of the Interim Report, researchers have also made progress in leveraging
new kinds of multimodal data to train Al models for robot control. One approach involves
training a system on a large dataset of videos annotated with text descriptions of their
contents, followed by a smaller dataset of (scarce) videos annotated with robot action
commands (133*). A second new approach uses existing vision-enabled general-purpose Al
to translate videos of humans into action plans for robots, and trains robot control models
using this data (134). A third new approach trains on video alone but involves models implicitly
learning the actions depicted in it, allowing the model to quickly adapt to controlling new
robots, even if its initial training was only on videos of humans (135*). These studies suggest
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that new methods leveraging multimodal learning will soon open up the data bottleneck that
currently prevents developers from training general-purpose Al systems to control robots.

The main evidence gaps around current Al capabilities include:

e There is no consistently up-to-date comprehensive index of Al capabilities. Evidence on
Al capabilities quickly becomes outdated as new models are released and inference-time
enhancements are developed. Researchers’ understanding of Al capabilities advances
through a relatively ad hoc patchwork of academic and industry publications which can be
challenging to synthesise into a comprehensive picture. Policymakers would ideally have
access to evidence which is up to date, reliable, standardised and comprehensive.

e Evaluations of Al capabilities often do not replicate on new data. Evaluation studies
provide examples of an Al system performing a task (or failing to do so) on some sample
data, but they often do not replicate when the experiments are rerun or tried on different
data (136). For evaluations to be reliable and replicable, they should ideally be run on large,
diverse datasets which are expanded over time.

e There are no common standards for measuring how Al augments human capabilities.
There are not yet standardised benchmarks for ‘uplift’ — measuring how effectively
humans can use general-purpose Al systems to accomplish various tasks, compared to
using existing technology — which can inform the public of this aspect of progress. (Such
tests are undertaken — though the details are often confidential — for chemical, biological,
radiological and nuclear (CBRN) misuse risks; see 2.1.4. Biological and chemical attacks and
2.4 Impact of open-weight general-purpose Al models on Al risks.)

For policymakers, key challenges include:

e Standardised measures of capabilities, such as multiple-choice benchmark tests, may not
measure the capabilities of Al systems in the contexts that are most relevant to their risks
(e.g. when used as an aid by humans).

e After initial development, Al models can be continually improved upon through fine-tuning
and inference-time enhancements. These improvements will increase the contextual
capabilities and potentially affect the risks of models that are already available to the
public, and the changes would be outside the scope of tests by developers of the base
model. It will be difficult to design policy robust to this kind of continuous change.
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1.3. Capabilities in coming years

KEY INFORMATION'

e In the coming months and years, the capabilities of general-purpose Al systems could
advance slowly, rapidly, or extremely rapidly. Both expert opinions and available evidence
support each of these trajectories. To make timely decisions, policymakers will need to
account for these scenarios and their associated risks. A key question is how rapidly Al
developers can scale up existing approaches using even more compute and data, and
whether this would be sufficient to overcome the limitations of current systems, such as
their unreliability in executing lengthy tasks.

e Developers of general-purpose Al are advancing scientific, engineering, and ‘agent’
capabilities. In recent months, models have substantially improved at tests of scientific
reasoning and programming, enabling new applications. Additionally, Al developers are
making large efforts to develop more reliable general-purpose Al agents that can execute
longer tasks or projects without human oversight by using computers and software tools,
potentially with continuous learning during operation.

e General-purpose Al-based tools are increasingly being used to accelerate the
development of software and hardware, including general-purpose Al itself. They are
widely used to more efficiently write software to train and deploy Al, to aid in designing Al
chips, and to generate and curate training data. How this will affect the pace of progress
has received little study.

e Recent improvements have been primarily driven by scaling up the compute and data
used for pre-training, and by refining existing algorithmic approaches. For cutting-edge
models, current estimates suggest that these factors have, in recent years, approximately
increased:

o Compute for pre-training: 4x/year

o Pre-training dataset size: 2.5x/year

o Energy used for powering computer chips during training: 3x/year
o Algorithmic pre-training efficiency: 3x/year (higher uncertainty)

o Hardware efficiency: 1.3x/year

o |tis likely feasible for Al developers to continue to exponentially increase resources used
for training, but this is not guaranteed. If recent trends continue, by the end of 2026, Al
developers will train models using roughly 100x more training compute than 2023's most
compute-intensive models, growing to 10,000x more training compute by 2030. New
research suggests that this degree of scaling is likely feasible, depending on investment
and policy decisions. However, it is more likely that today’s pace of scaling will become
infeasible after the 2020s due to bottlenecks in data, chip production, financial capital,
and local energy supply.

T Please refer to the Chair's update on the latest Al advances after the writing of this report.
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e Researchers debate the effectiveness of scaling up resources for training with current
algorithmic techniques. Some experts are sceptical as to whether scaling up training
resources would be sufficient to overcome the limitations of current systems, while others
expect that it will continue to be the key ingredient for further advances.

e Al developers have recently adopted a potentially more effective additional scaling
approach. Models can be trained to write longer so-called ‘chains of thought' to break
down problems into steps before generating responses, allowing compute scaling during
runtime rather than training. This method has shown promise in overcoming various
limitations in tests of scientific reasoning and programming and may provide an additional
path if traditional training scaling yields diminishing returns.

e Since the publication of the Interim Report (May 2024), general-purpose Al systems have
become more affordable to use, more practically useful, and more widely adopted.
Developers have also significantly enhanced models' performance at tests of
mathematical and scientific reasoning (see 1.2. Current capabilities).

e Policymakers face challenges in monitoring and responding to Al progress. Key challenges
include quantitatively tracking Al advancements and their primary drivers, as well as
designing adaptive risk management frameworks that activate mitigations only when
capabilities (and associated risks) increase.

Key Definitions

e Scaling laws: Systematic relationships observed between an Al model’s size (or the amount
of time, data or computational resources used in training or inference) and its performance.

e Compute: Shorthand for ‘computational resources’, which refers to the hardware (e.g. GPUs),
software (e.g. data management software) and infrastructure (e.g. data centres) required to
train and run Al systems.

e Algorithmic (training) efficiency: A set of measures of how efficiently an algorithm uses
computational resources to learn from data, such as the amount of memory used or the
time taken for training.

e Al agent: A general-purpose Al which can make plans to achieve goals, adaptively perform
tasks involving multiple steps and uncertain outcomes along the way, and interact with its
environment — for example by creating files, taking actions on the web, or delegating tasks
to other agents — with little to no human oversight.

e Inference: The process in which an Al generates outputs based on a given input, thereby
applying the knowledge learnt during training.

e Chain of thought: A reasoning process in which an Al generates intermediate steps or
explanations while solving a problem or answering a question. This approach mimics human
logical reasoning and internal deliberation, helping the model break down complex tasks into
smaller, sequential steps to improve accuracy and transparency in its outputs.

e Benchmark: A standardised, often quantitative test or metric used to evaluate and compare
the performance of Al systems on a fixed set of tasks designed to represent real-world
usage.
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e Emergent behaviour: The ability of Al systems to act in ways that were not explicitly
programmed or intended by their developers or users.

e Cognitive tasks: Activities that involve processing information, problem-solving,
decision-making, and creative thinking. Examples include research, writing, and
programming.

e Synthetic data: Data like text or images that has been artificially generated, for instance by
general-purpose Al systems. Synthetic data might be used for training Al systems, e.g. when
high-quality natural data is scarce.

e Modalities: The kinds of data that an Al system can competently receive as input and
produce as output, including text (language or code), images, video, and robotic actions.

1.3.1. Recent trends in general-purpose Al capabilities

The pace of recent general-purpose Al progress has been rapid, often surpassing the expectations
of Al experts on widely used metrics. Researchers assess Al performance using ‘benchmarks’ -
standardised sets of problems designed to compare Al systems’ performance within one or
multiple domains. Over the last decade, general-purpose Al systems and earlier Al systems have
achieved or exceeded human-level performance on benchmarks across a wide variety of domains,
such as natural language processing, computer vision, speech recognition, and mathematics (see
Figure 1.4). For example, consider the MATH benchmark (137), which tests mathematical
problem-solving skills via a series of word problems. These problems range in difficulty from simple
primary school-level questions to problems that challenge international mathematics competition
winners. When this benchmark was released in 2021, general-purpose Al systems scored around
5%, but three years later, the model ol reached 94.8% (92*), matching the score of expert human
testers (in this case, a gold medallist in the IMO). However, it is often unclear how impressive
performance on benchmarks translates into performance in real-world tasks, as discussed below
(138).

Al systems have become much more cost efficient to run, with the prices for running Al systems at
a given capability level falling by multiple orders of magnitude. For example, in 2022 it cost users
~$25 to generate a million words using GPT-3, but by 2023 this fell to almost $1 using the
performance-equivalent Llama 2 7B (see Figure 1.5). These price decreases partly stem from
technological advancements, such as hardware improvements that allow more computation to be
performed at the same price (144). Price drops can also occur due to decreases in the price
markups companies charge, and the measured decrease also depends on the chosen benchmark
and level of performance.
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Al performance vs human performance on select benchmarks
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Figure 14: Performance of Al models on various benchmarks has advanced rapidly between 1998 to 2024. Note that
some earlier results used machine learning Al models that are not general-purpose models. On some recent benchmarks,
models progressed within a short period of time from having poor performance to surpassing the performance of human
subjects who are often experts. Note that early results in this graph used machine learning Al models that are not
general-purpose models. Sources: Kiela et al, 2021 (139) (for MNIST, Switchboard, ImageNet, SQUAD 1.1, 2 and GLUE). Data
for MMLU, Big Bench, GPQA are from the relevant papers (3* 5% 92* 140, 141, 142, 143*).

Since the publication of the Interim Report, research on improving general-purpose Al
capabilities has begun to focus on new directions, while efforts to scale up training resources
continue. For example, one direction is improving the autonomy of general-purpose Al
systems — producing Al agents that act and plan in pursuit of goals (150) (see 1.2. Current
capabilities, and 3.2.1. Technical challenges for risk management and policymaking). Another

direction involves using multiple copies of models together to accomplish new tasks (157%).
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Language models are offered at lower cost, generating more words per dollar
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Figure 15: This graph shows how general-purpose language models have become markedly more cost efficient to use,
measured by the number of words generated per dollar while maintaining a given performance level on the MMLU
benchmark. The version of GPT-3 175B released after September 2022 and Llama 2 7B both achieve a score of around
44% accuracy (48% 145*), whereas Mistral Large and GPT-40 mini achieve around 82% (12* 146*). The original GPT-4
from March 2023 and the recently released ol-mini both score around 86% on MMLU (92% 147*). Note that this graph is
primarily for illustrative purposes, since reported prices and MMLU performance depend on evaluation methods.
Furthermore, ol-mini writes so-called ‘chains of thought’ that users cannot access before producing a final answer, so in
practice the number of accessible words generated per dollar is likely lower than depicted in the figure. Sources: Chung
et al, 2022 (145*) and Touvron et al, 2023 (48*) (for GPT-3 175B and Llama 2 7B); Mistral Al, 2024 (12*) and OpenA,
2024f (146*) (for Mistral Large and GPT-40 mini); Open Al, 2024g (92*) and OpenAl et al, 2024 (147*) (for GPT-4 and
ol-mini); OpenAl, 2024d (148*) and Together Pricing, 2023 (149*) (for pricing data).

New evidence suggests that scaling training compute and data at current rates is technically
feasible until at least ca. 2030. Over the last decade, training compute for cutting-edge
models has increased an estimated 4x per year. If this trend continues, systems will be trained
with roughly 100x more compute than GPT-4 by the end of 2026, growing to around 10,000x
by the end of the decade (7152). However, it is unclear how this translates into improved
capabilities, and whether the economic returns are large enough to justify the expense of
such massive degrees of scaling.
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1.3.2. Can the limitations of current systems be resolved
through scaling, refining, and combining existing
approaches?

Current general-purpose Al systems have an uneven set of capabilities, and
still have many limitations

Humans and general-purpose Al systems have distinct strengths and weaknesses, making
comparisons challenging. It is tempting to compare the cognitive abilities of humans and Al
systems, for instance because this informs which economic tasks might be especially strongly
impacted by Al use. However, current general-purpose Al systems often demonstrate uneven
performance, excelling in some domains while struggling in others (753), which makes overly general
comparisons less meaningful. While general-purpose Al now outperforms humans on some
benchmarks, some scientists argue that it still lacks the deep conceptual understanding and
abstract reasoning capabilities of humans (7153). General-purpose Al systems can replace humans
in some activities, whereas in others, the distinct strengths and weaknesses of Al systems and

humans combine to produce fruitful collaborations (see 2.3.1. Labour market risks).

Current general-purpose Al systems are prone to some failures that humans are not (154, 155).
Some works suggest that general-purpose Al reasoning can struggle to cope with novel scenarios
and is overly influenced by superficial similarities (110% 153). General-purpose Al systems have also
been shown to sometimes fail at reasoning on seemingly simple tasks. For instance, a model trained
on data including the statement ‘Olaf Scholz was the ninth Chancellor of Germany’ will not always
be able to answer the question ‘Who was the ninth Chancellor of Germany?’ (154). In addition, there
is evidence that general-purpose Al systems can be caused to deviate from their usual safeguards
by nonsensical input, while humans would recognise these prompts (see 3.4.1. Training more

trustworthy models). Limitations of current systems are further discussed in 1.2. Current
capabilities.

Existing Al training approaches will likely extend model capabilities, but the
degree of improvement and its real-world significance are heavily debated

Evidence suggests that further resource scaling will increase overall Al capabilities.
Researchers have discovered empirical ‘scaling laws’ (see Figure 1.6), which are mathematical
relationships that quantify the relationship between inputs of the Al training process (such as
amounts of data and compute) and the capabilities of the model on broad performance tasks
such as next-word prediction (156* 157*). These studies demonstrate that Al models’
performance tends to improve with increased computational resources across a range of
domains, including computer vision (158% 159), language modelling (156* 157*), and game
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playing (160*). Although many performance measures do not directly test real-world
capabilities, general-purpose Al model performance has been observed to consistently
improve on broad benchmarks that test many capabilities, such as MMLU (740), as the models
are scaled up.

Performance at predicting the next word improves predictably with more computation
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Figure 16: Performance (as measured by ‘training loss’) improves predictably as Al developers use more compute for
training (lower ‘training loss’ means better performance) (157*). In this experiment, additional compute was allocated to
training larger language models (more parameters, indicated by colour) on more data. FLOP (floating point operations)
refers to the number of computational operations performed during training. Each line shows how performance (as
measured by a lower ‘training loss’, which is a proxy measure for capabilities) improves as training FLOP increases for a
model of a given size. Source: Hoffmann et al, 2022 (157%).

However, it is unclear whether further resource scaling will improve Al capabilities at the same rate
as in the last decade. Scaling laws have proven robust, holding across a range of million-fold to
billion-fold increases in training computation. However, these scaling laws have thus far been
derived from empirical observations, not from inviolable principles (although theoretical models
have been proposed to explain them) (167% 162% 163, 164, 165). Furthermore, some scaling laws are
derived from limited data, which makes them less reliable (41, 166* 167, 168* 169, 170*). As a result,
there is no mathematical guarantee that scaling laws will continue to hold at larger scales, beyond
the range of the empirical data used to establish them. On the other hand, a breakdown of the main
scaling laws has not been scientifically established either, despite ongoing news reports.

While aggregate Al capabilities improve predictably with scale, it is difficult to predict when
specific capabilities will appear. There are many documented examples of capabilities that appear
when models reach a certain scale, sometimes suddenly, without being explicitly programmed into
the model (170% 171,172, 173% 174, 175). For example, LLMs at a certain scale have gained the ability
to accurately add large numbers, when prompted to perform the calculation step-by-step. Some
researchers define these as ‘emergent’ capabilities (171, 172, 173% 174), indicating that they are
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present in larger models but not in smaller models and so their emergence is often hard to predict
in advance. On the other hand, recent research has made some progress in predicting ‘emergent’
capabilities (176, 177). There is ongoing debate about whether capabilities can be called ‘emergent”:
some definitions of emergence require that the capability appears suddenly or unpredictably at a
certain scale (which is not always the case), whereas other definitions only require that the
capability appears as models are scaled, without being explicitly designed to have the capability.

It is debated to what extent benchmark performance reflects real-world understanding or utility. Al
models have made rapid progress on many benchmark metrics, but these benchmarks are limited
compared to real-world tasks, and experts debate whether these metrics effectively evaluate truly
general capabilities (778, 179*). State-of-the-art general-purpose Al models often exhibit
unexpected weaknesses or a lack of robustness on some benchmarks. For example, these systems
perform worse on rare or more difficult variants of tasks that are not seen in the training data (40,
110*). Some researchers hypothesise that this is because the systems partly or fully rely on
memorising patterns rather than employing robust reasoning or abstract thinking (153, 180*). In
some cases, models were trained on the benchmark solutions, leading to high benchmark
performance despite the models not being able to perform well on the task in real-world contexts
(181,182). Models also struggle to adapt to cultures that are less represented in the training data
(183). Issues like these underscore the difficulty of assessing what benchmark results imply about
models’ capacity to reliably apply knowledge to practical, real-world scenarios.

However, sometimes general-purpose Al systems perform well on difficult tasks designed to test
reasoning, without having had a chance to memorise the solutions. In general, the presence of
memorisation found in some studies does not imply the absence of more advanced processes like
reasoning — it is possible for both to exist in different models or within the same model. There is
evidence (184% 185) that some Al models have generalised their learning to situations that they
have not been trained on, suggesting that they are not only memorising data. Some
general-purpose language models (and systems built with them) have performed well on reasoning
and mathematics problems whose solutions were not part of their training data (186*). This extends
to reaching medal-level performance at the recent International Olympiads for mathematics (187%,
188) and computer science (92*) and the challenging Abstraction and Reasoning Corpus (ARC,

(189)).

There is substantial disagreement about whether Al developers can achieve broadly human-level Al
on most cognitive tasks by scaling training resources as well as refining and combining existing
techniques. Some argue that continued scaling (potentially combined with refining and combining
existing approaches) could lead to the development of general-purpose Al systems that perform at
a broadly human level or beyond for most cognitive tasks (790). This view draws support from the
observation of consistent scaling laws and how increased scale has overcome many limitations of
early language models such as GPT-1, which could rarely generate a coherent paragraph of text.
Others contend that deep learning has fundamental limitations which cannot be solved through
scaling alone. These critics argue current systems rely on memorisation (at least partially, see
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above), and lack true common sense reasoning (153, 191, 192), causal reasoning (193), or an
understanding of the physical world (7153, 197, 193), alongside other limitations discussed in 1.2.
Current capabilities. Addressing current limitations, they argue, may require significant conceptual

breakthroughs and innovations beyond the current paradigm of deep learning and scaling. However,
with the discovery of o1 (2*), researchers have recently identified a potentially more effective
scaling method that could overcome previous limitations or serve as an alternative if the returns
from traditional scaling diminish significantly (see 1.2. Current capabilities).

1.3.3. How much scaling and refinement of existing
approaches is expected in coming years?

Computing resources dedicated to training Al have been rapidly scaled up,
and further rapid scaling until 2030 appears feasible

Al developers have increased training compute for flagship models quickly, with growth at ~4x/year.
Training compute usage has grown exponentially since the early 2010s (see Figure 1.7), with the
average amount used to train machine learning models doubling approximately every six months
(26). For illustration, notable machine learning models (194, 195, 196) in 2010 were trained with
around ten billion times less compute than the largest models in 2023 (197, 198*).

Al companies have also invested more computational resources in deployment. This is both
because more general-purpose Al systems have been deployed to serve users (199), and because
deployed systems have access to more computational resources to increase capabilities. Models
can be run for longer, or the results of multiple models can be aggregated, resulting in performance
gains that complement the gains from using more training compute (80% 92* 93, 94% 200* 20],
202%* 203* 204). For example, some estimates indicate that OpenAl incurred $700k/day in
deployment costs in 2023 (205), and that running Al represented 60% of Google’s CO, emissions
from machine learning infrastructure as of 2022 (206).

The amount of training compute available has been growing, mostly due to large capital
expenditures increasing the quantity of Al chips. Since 2010, computing hardware has become
cheaper due to hardware improvements, meaning that the amount of computing power (compute)
that Al companies can buy with a dollar is increasing at a rate of 1.35x per year (144, 207). However,
the total compute used in training notable Al systems has increased by approximately 4x per year
since 2010 (26), outpacing the rate of hardware efficiency improvements. This suggests that the
primary driver of training compute growth has been investments to expand the Al chip stock, not
improvements in chip performance.

Al computation has massive energy demands, but current growth rates in Al power consumption
could persist for several years. Global Al computation is projected to require electricity
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consumption similar to that of Austria or Finland by 2026 (208) (see 2.3.4. Risks to the environment
for more information). Based on current growth rates in power consumption for Al training, the
largest Al training runs in 2030 will need 1-5 gigawatts (GW) of power. Indeed, a compute provider
recently purchased a data centre with a 960-megawatt power supply (209). Thus, depending on
investment and policy decisions, energy bottlenecks likely will not prevent compute from scaling at
current rates until the end of the decade.

More training compute was used for notable machine learning systems over time
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Figure 1.7: Al developers have consistently used more compute to train notable machine learning models over time, at an
increasing pace since 2010 (26, 197). Computation is measured in total FLOP (floating point operations) estimated from
Al literature — this refers to the number of computational operations performed during training. Estimates are expected
to be accurate within a factor of two, or a factor of five for recent undisclosed models such as GPT-4. Sources: Epoch Al,
2024 (26, 197); Sevilla et al, 2022 (26, 197).

Challenges to producing and improving Al chips exist, but can likely be overcome. It typically takes
3-5 years to build a computer chip fabrication plant (210, 211), and supply chain shortages
sometimes delay the production of important chip components (212, 213, 214). However, major Al
companies can still sustain compute growth in the near term by capturing large fractions of the Al
chip stock. For example, one study estimates that the share of the world’s data centre Al chips
owned by a single Al company at any point in time is somewhere between 10% and 40% (215).
Moreover, an analysis of existing trends and technical possibilities in chip production suggest that it
is possible to train Al systems with 100,000x more training compute than GPT-4 (the leading
language model of 2023) by 2030. This is sufficient to support existing growth rates in training
compute, which imply a total increase of 10,000x over the same period (215). Hence, chip
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production constraints are significant, but they are unlikely to prevent further scaling of the largest
models at current rates until 2030 if investment is sustained (see Figure 1.8).

Feasibility of continuing to scale training runs until 2030
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Figure 1.8: Four physical constraints to training general-purpose Al models using more compute by 2030. There are many
orders of magnitude of uncertainty in the overall estimates, but training runs using 10,000x more computation than
GPT-4 (released in 2023), which is in line with the existing trend, appear technically feasible based on these estimates.
Source: Sevilla et al. 2024 (215).

Training Al systems across a very large number of Al chips is difficult, which may prevent extremely
large training runs. For example, some estimates suggest that training runs that are 10,000 to 10
million times larger than GPT-4's will be impossible due to constraints on how much information
can be moved between chips, and limits on the time to process data (215, 216). If these estimates
are correct, then these bottlenecks will limit the ability of Al developers to increase training
compute at existing rates over the next decade. However, it is possible that novel techniques or
simple workarounds will permit much larger training runs.

There is likely enough pre-training data for scaling until 2030, but projections
are highly uncertain after this point

Data shortages are a plausible bottleneck to continued scaling of language model pre-training.

Since 2010, data requirements for pre-training general-purpose Al systems have grown around 10x
every three years (197). For example, a state-of-the-art model in 2017 was trained with a few billion
words, whereas state-of-the-art general-purpose models in 2023 were trained with several trillion
(217% 218*). A lot of this growth has been possible due to internet data availability, but growth rates
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in the demand for data appear rapid enough to exhaust human-generated internet text data by
2030 (219, 220). These challenges are exacerbated by data copyright issues, as it may become
illegal for Al companies to train Al on certain types of data (see 2.3.6. Risks of copyright

infringement).

The degree of data scarcity is specific to the domain and actor. In some domains data gathering
can be substantially scaled up, such as in general-purpose robotics, where systems gather data
during deployment (227*).

Sourcing data from different modalities could help sustain data scaling. General-purpose Al
systems are increasingly being trained on multimodal data, combining textual, visual, auditory, or
biological information (59% 222, 223, 224*). Several studies suggest that this will increase the
amount of training data available for models and endow models with novel capabilities, such as the
ability to analyse documents with both text and graphics (4% 50%* 147*). The most comprehensive
estimates suggest there is enough multimodal data to support training runs a thousand to ten
million times larger than GPT-4's in terms of compute size, which requires roughly ten times the
data (215, 225). However, these estimates are very uncertain, since it is difficult to gauge how well
training on one data modality impacts performance on another modality.

Machine-generated synthetic data could dramatically alleviate data bottlenecks, but evidence for
its utility is mixed. Training datasets can also be augmented by ‘synthetic’ general-purpose Al
outputs, which can be useful when real data is limited (226* 227) or for improving model
generalisation (227, 228). However, some argue that naively training on general-purpose Al outputs
degrades performance or has rapidly diminishing returns (229, 230, 231, 232, 233, 234*, 235, 236).
Others argue that these issues can be circumvented with better training techniques, such as by
mixing in ‘natural’ data (229, 231, 235, 237* 238), improving data quality by (for example) using a
model to rate its quality (226* 239* 240, 241), and training on negative examples (i.e. teaching the
Al what not to do) (242*). Recent flagship models such as Llama 3 have made substantial use of
synthetic data during multiple stages of training (37*). The ol model's recent improvements in
reasoning and programming tests were achieved largely by learning from its own self-generated
‘chains of thought’ — analysing which reasoning paths led to success or failure (2*).

Most existing successes with synthetic data have been restricted to certain domains. Synthetic
data training can be highly successful in domains where model outputs can be formally checked,
such as mathematics and programming (187%, 188, 243, 244*). However, it is still unclear whether
synthetic data training methods will be effective in domains where outputs cannot be easily
verified. One such example is medical research, where data often needs to be verified by
performing experiments lasting months or even years.
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1.3.4. How much will Al capabilities be improved through the
invention or refinement of algorithms?

Existing techniques and training methods for general-purpose Al have been
improved and refined consistently

Algorithmic improvements allow general-purpose Al models to be trained with fewer resources.
The techniques and training methods underpinning the most capable general-purpose Al models
have consistently and reliably improved over time. The computational efficiency of Al techniques
for training has been increasing by 10x approximately every 2-5 years in key domains such as
image classification, game-playing, and language modelling (245% 246). For example, the amount of
compute required to train a model to achieve a set level of performance at image classification
decreased by 44x between 2012 and 2019, meaning that efficiency doubled every 16 months.
Game-playing Al systems require half as many training examples every 5—20 months (247). In
language modelling, the compute required to reach a fixed performance level has halved
approximately every eight months on average since 2012 (246). This corresponds to a 3x
algorithmic training efficiency improvement per year, amounting to roughly a 27x total
improvement by the end of 2026. These advances have enabled general-purpose Al researchers
and companies to develop more capable models over time within a limited hardware budget.

Algorithmic innovations also occur across other dimensions, but these are less well-measured. For
example, new techniques have allowed general-purpose Al systems to process larger quantities of
contextual information for each query to the Al system (248*). Some algorithmic innovations also
help increase performance, allow general-purpose Al systems to use tools (22*), and better
leverage computation at deployment (94*). These capabilities vary along different dimensions, their
rates of improvement are challenging to measure, and they are often less well-understood.

Enhancements after pre-training can be used to significantly improve general-purpose Al model
capabilities at low cost. There is a rapidly growing body of work on algorithmic innovations after
initial training, such as improved fine-tuning, giving models access to software tools, and
structuring models’ outputs for reasoning tasks (see 1.2. Current capabilities). This means that a
wide range of actors, including low-resource actors, could use enhancements (sometimes called

‘post-training enhancements’) to advance general-purpose Al capabilities — an important factor for
governance to account for.

Capability progress from applying Al systems to Al development

General-purpose Al systems are increasingly deployed to automate and accelerate Al research and
development, and its effects on the pace of progress are understudied. Narrow Al systems have
already been used to develop and improve algorithms (249, 250), and design the latest Al chips
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(251). Recent LLMs are widely used in areas related to Al R&D, particularly in programming (55),
generating and optimising prompts and training settings (252, 253, 254, 255), providing oversight
by replacing human feedback data (256*), and selecting high-quality training data (257*). Recent
prototypes also used LLMs to propose novel research ideas (258*). A recently released LLM-based
system performed competitively with typical human teams in real-world Al engineering
competitions (125*). A recent study comparing Al systems to expert human engineers found that
carefully tuned Al agents, built on state-of-the-art models, performed comparably to humans on Al
research engineering tasks that typically take engineers eight hours to complete (see Figure 1.9)
(259). The Al agents showed better performance than humans on tasks shorter than eight hours
but fell behind on longer ones, following a typical pattern seen in Al performance. Al engineering
tasks consume the largest portion of time in Al research and development work, making the
application of Al to these tasks particularly important (260). As the capabilities of general-purpose
Al systems advance, their overall effect on algorithmic progress and engineering in Al will require
more research to understand.

Al vs human engineer performance at Al research engineering tasks
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Figure 1.9: In a set of experiments, LLM-based Al agents released in 2024 performed better than expert human engineers
at open-ended Al research engineering tasks when both were given two hours or less to complete the work. Conversely,
human experts performed better when given eight hours or more. Different ‘'system integrations’ refer to different ways
of using the same model, which can lead to varying performance. The shaded regions correspond to 95% confidence
intervals. Source: Wijk et al, 2024 (259).
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Will the invention of novel approaches lead to rapid progress in coming years?

Sudden large and broad improvements in Al algorithms are rare but cannot be ruled out.
Fundamental conceptual breakthroughs are rare, and hard to predict since data on these is
relatively scarce. Such rare events cannot be easily forecasted by extrapolating past trends. At
best, statistical models that analyse past improvements on Al benchmarks find suggestive
evidence that sudden large performance improvements are unlikely but cannot be ruled out (267*).
The corpus of evidence in this area is highly limited and substantial uncertainty remains.

Even if developers achieve fundamental conceptual breakthroughs in algorithms, they might not
immediately lead to large capability improvements. For example, one study found that some
algorithmic innovations show more pronounced effects at larger scales than at smaller scales of
training compute (262*), making it hard to observe improvements in small experiments. Algorithmic
innovations also need to be optimised to work well with existing hardware, or to be integrated into
existing infrastructure or developer conventions (263, 264% 265*). These pose barriers to
implementation at scale, so if a major conceptual breakthrough is required to overcome the
limitations of current general-purpose Al, it could take many years.

Policy challenges

As these technical trends continue, policymakers face new challenges in addressing the
societal impacts of general-purpose Al.

One challenge for policymakers is the limited availability of high-quality assessment data
about general-purpose Al capabilities. For instance, a major shortcoming with current
benchmarks is that they do not always accurately represent real-world capabilities.
Consequently, there has been an increase in efforts to build more challenging benchmarks and
to establish teams specialising in evaluating model capabilities (266* 267, 268, 269). These
issues

with data quality are further compounded by the limited quantity of data, which means that
some estimates of the rate of Al progress (e.g. for algorithmic efficiency) are highly uncertain.

Navigating the uncertainty in the trajectory of future capabilities is a key challenge. Different
general-purpose Al capabilities could have substantially different ramifications for societal
impacts and Al policy. For example, the best estimates of the rate of algorithmic progress are
highly uncertain, but the specific rate has important implications for policy approaches that
emphasise monitoring training compute usage (270). On the whole there is much uncertainty
about future Al capabilities, and additional work on monitoring Al progress (for example with
improved benchmarks), as well as anticipating future progress, would be valuable.
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2.1. Risks from malicious use

2.1.1. Harm to individuals through fake content

KEY INFORMATION

e Malicious actors can use general-purpose Al to generate fake content that harms
individuals in a targeted way. For example, they can use such fake content for scams,
extortion, psychological manipulation, generation of non-consensual intimate imagery
(NCII) and child sexual abuse material (CSAM), or targeted sabotage of individuals and
organisations.

e However, the scientific evidence on these uses is limited. Anecdotal reports of harm from
Al-generated fake content are common, but reliable statistics on the frequency and
impact of these incidents are lacking. Therefore, it is difficult to make precise statements
about the harms from fake content generated by general-purpose Al.

¢ In recent months, limited progress has been made in scientifically capturing the extent of
the problem. Since the publication of the Interim Report (May 2024), some new evidence
has suggested a significant increase in the prevalence of Al-generated deepfake content
online. Overall, reliable data on the full extent of the problem remains limited.

e Several mitigation techniques exist, but they all have serious limitations. Detection
techniques can sometimes help identify content generated by general-purpose Al, but
fundamental challenges remain. Media authentication techniques such as watermarks can
provide an additional line of defence, but moderately skilled actors can usually remove
them.

Key Definitions

e Al-generated fake content: Audio, text, or visual content, produced by generative Al, that
depicts people or events in a way that differs from reality in a malicious or deceptive way,
e.g. showing people doing things they did not do, saying things they did not say, changing
the location of real events, or depicting events that did not happen.

e Deepfake: A type of Al-generated fake content, consisting of audio or visual content, that
misrepresents real people as doing or saying something that they did not actually do or say.

Malicious actors can misuse Al-generated fake content to extort, scam, psychologically manipulate,
or sabotage targeted individuals or organisations (see Table 2.1) (271). This threatens universal
human rights, for example the right against attacks upon one’s honour and reputation (272). This
section focuses on harms caused to individuals through Al-generated fake content. Potential
impacts of Al-generated and -mediated influence campaigns on the societal level are covered in
2.1.2. Manipulation of public opinion.
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Scams / fraud Using Al to generate content such as an audio clip impersonating a victim’s voice in
order to, for example, authorise a financial transaction.

Blackmail / Generating fake content of an individual, such as intimate images, without their
extortion consent and threatening to release them unless financial demands are met.
Sabotage Generating fake content that presents an individual engaging in compromising

activities, such as sexual activity or using drugs, and then releasing that content in
order to erode a person’s reputation, harm their career, and/or force them to
disengage from public-facing activities (e.g. in politics, journalism, or entertainment).

Psychological Generating harmful representations of an individual for the primary purpose of
abuse / bullying abusing them and causing them psychological trauma. Victims are often children.

Table 2.1: Al-generated fake content has been used to cause different kinds of harm to individuals, including through
scams, blackmail, sabotage, and psychological abuse.

A key evidence gap around harm to individuals through fake content is the lack of
comprehensive and reliable statistics on the above harms, which makes precise assessment
of their frequency and severity difficult. Many experts believe that artificially generated fake
content, and especially sexual content, is on the rise, but most accounts of such cases remain
anecdotal. Key empirical evidence gaps pertain to the prevalence of deepfake financial fraud
and instances of extortion and sabotage. Reluctance to report may be contributing to these
challenges in understanding the full impact of Al-generated content intended to harm
individuals. For example, institutions often hesitate to disclose their struggles with
Al-powered fraud. Similarly, individuals attacked with Al-generated compromising material
about themselves may stay silent out of embarrassment and to avoid further harm (273).

Criminals can exploit Al-generated fake content to impersonate authority figures or trusted
individuals to commit financial fraud. There have been numerous cases in which criminals used
artificially generated audio and video clips to trick individuals into transferring money. For example,
phishing attacks can leverage Al-generated fake content to make fraudulent messages, calls, or
videos more convincing and effective, aiming to obtain sensitive information or money by
impersonating a trusted entity (273, 274). Incidents range from high-profile fraud cases where bank
executives were persuaded to transfer millions of dollars, to ordinary individuals being tricked into
transferring smaller sums to (supposedly) loved ones in need. Al-generated fake content can also
be used for identity theft, whereby a victim’'s impersonated voice or likeness is used to authorise
bank transfers or to set up new bank accounts in a victim’s name. Alternatively, fake content can
also be used to trick system administrators into sharing password and username information that
can facilitate identity theft at a later date (275).

Al-generated fake content can also be used as blackmail for extortion. In such cases, criminals
demand money, business secrets, or nude images or videos, using compromising realistic
Al-generated content as leverage (276). Different types of Al-generated fake content — ranging
from video, voice clones, images, and more — can vary in their realism and effectiveness (277). The
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fake content can feature any compromising or reputationally damaging activity, but has received
particular attention in cases of deepfake pornography, where general-purpose Al is used to create
pornographic or other intimate audiovisual representations of individuals without their consent
(278, 279, 280). This content is then used to extort victims for ransom — demanding money to
prevent the images from being released — or to gain compliance for other demands, such as
supplying additional illicit content.

Such compromising fake content can also be used to sabotage individuals in their personal and
professional lives, violating the human right against attacks upon one’s honour and reputation (272).
Compromising fake images and video — such as images of professional athletes taking drugs —
have, in some cases, resulted in reputational damage leading to lost opportunities and broken
business deals (271). The possibility of becoming the subject of harmful deepfake content and the
associated threat of reputational damage and psychological abuse to oneself and family can drive
people to disengage from publicly-visible activities such as politics and journalism, even when they
have not been directly targeted (287). However, the severity of this ‘silencing effect’ is difficult to
accurately estimate, as evidence at this stage is largely anecdotal.

Abuse using fake pornographic or intimate content overwhelmingly targets women and girls. A 2019
study found that 96% of deepfake videos are pornographic, and that all content on the five most
popular websites for pornographic deepfakes targets women (282). The same study found that the
vast majority of deepfake abuse (99% on deepfake porn sites and 81% on YouTube) is targeted at
female entertainers, followed by female politicians (12% on YouTube). Moreover, sexual deepfakes
are increasingly being used as a tool in intimate partner abuse, disproportionately affecting women
(271, 283). One nationally representative survey of 1,403 UK adults indicated that women were
significantly more likely than men to report being fearful of becoming a target of deepfake
pornography, becoming a target of a deepfake scam, and becoming a target of other potentially
harmful deepfakes (284*). This heightened concern among women could reflect an awareness of
their increased vulnerability to such abuse, suggesting a potential psychological impact of this
technology even on those not directly targeted. However, the sample size of the survey was limited
and not globally representative, and in general further research is needed to understand the
psychological impact of deepfakes on women.

Children face distinct types of harm from Al-generated sexual content. First, malicious actors can
harness Al tools to generate CSAM. In late 2023, an academic investigation found hundreds of
images of child sexual abuse in an open dataset used to train popular Al text-to-image generation
models such as Stable Diffusion (285). In the UK, of surveyed adults who reported being exposed to
sexual deepfakes in the last six months, 17% thought they had seen images portraying minors (286).
Second, children can also perpetrate abuse using Al. In the last year, schools have begun grappling
with a new issue as students use easily downloadable ‘nudify apps’ to generate and distribute
naked, pornographic pictures of their (disproportionately female) peers (287).
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Since the publication of the Interim Report, some new evidence has suggested a significant
prevalence of Al-generated content online. In the UK, a study found that 43% of people aged 16+
say that they have seen at least one deepfake (in the form of videos, voice imitations, and
images) online in the last six months (50% among children aged 8-15) (286). However, reliable
data remains comparably limited. Understanding the impact of deepfakes on individuals will
require more extensive research over an extended period of time.

Countermeasures that help people detect fake Al-generated content, such as warning labels and
watermarking, show mixed efficacy. Certain Al tools can help detect anomalies in images and flag
them as likely fake Al-generated content. This is done either by using machine learning algorithms
to look for specific features in fake images or by training deep neural networks to identify and
analyse anomalous image features independently (288). Warning labels on potentially misleading
content have shown limited effectiveness even in less harmful contexts — for example, in an
experimental study using Al-generated videos of a public figure alongside authentic clips, warning
labels only improved participants' detection rate from 10.7% to 21.6% (289). However, the
overwhelming majority of respondents who received warnings were still unable to distinguish
deepfakes from unaltered videos (289). Another authentication measure intended to prevent
Al-generated fake content is ‘watermarking’, which involves embedding a digital signature into the
content during creation. Watermarking techniques have shown promise in helping people identify
the origin and authenticity of digital media for videos (290, 291), images (292, 293, 294*), audio
(295, 296), and text (297). However, watermarking techniques face several limitations, including
watermark removal by sophisticated adversaries (298* 299) and methods for tricking watermark
detectors (299). There are also concerns about privacy and potential misuse of watermarking
technology to track and identify users (300). Moreover, for many types of harmful content
discussed in this section, such as non-consensual pornographic or intimate content, the ability to
identify content as Al-generated does not necessarily prevent the harm from occurring. Even when
content is proven to be fake, the damage to reputation and relationships may persist, as people
often retain their initial emotional response to the content — for example, an individual's standing in
their community may not be restored simply by exposing the content as fake.

There are several key challenges facing policymakers working to mitigate harm to individuals
from Al-generated fake content. Assessing the scale of the problem is difficult due to
underreporting and lack of reliable statistics. This may make it difficult to determine the
appropriate intervention. Current detection methods and watermarking techniques, while
progressing, show mixed results and face persisting technical challenges. This means there is
currently no single robust solution for detecting and reducing the spread of harmful
Al-generated content. Finally, the rapid advancement of Al technology often outpaces
detection methods, highlighting potential limitations of relying solely on technical and reactive
interventions.
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For risk management practices related to Al-generated fake content, see:

e 3.4.1. Training more trustworthy models

e 3.4.2. Monitoring and intervention
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2.1.2. Manipulation of public opinion

KEY INFORMATION

Malicious actors can use general-purpose Al to generate fake content such as text,
images, or videos, for attempts to manipulate public opinion. Researchers believe that if
successful, such attempts could have several harmful consequences.

General-purpose Al can generate potentially persuasive content at unprecedented scale
and with a high degree of sophistication. Previously, generating content to manipulate
public opinion often involved a strong trade-off between quality and quantity.
General-purpose Al outputs, however, are often indistinguishable to people from content
generated by humans, and generating them is extremely cheap. Some studies have also
found them to be as persuasive as human-generated content.

However, there is no scientific consensus on the expected impact of this potential abuse
of general-purpose Al. There is limited evidence on the broader societal effects of false
information, whether intentionally created or unknowingly shared, and whether Al-enabled
or not. Some researchers believe that attempts at manipulating public opinion using
general-purpose Al are most bottlenecked by a lack of effective distribution channels. This
view implies that advances in manipulative content generation should have a limited
impact on the efficacy of such campaigns.

Since the publication of the Interim Report (May 2024), more research has emerged on
the virality of, and possible mitigations for, Al-based attempts at manipulation. A new
study finds that Al-generated manipulative content is perceived as less accurate but
shared at similar rates to human-generated content, which suggests that such content
can easily go viral regardless of whether it is Al or human-generated. New technical
detection methods integrating both text and visual data have shown some success, but
are not fully reliable.

Policymakers face limited mitigation techniques and difficult trade-offs. Attempts to
address manipulation risk from general-purpose Al can, in some settings, be difficult to
reconcile with protection of free speech. Further, as general-purpose Al outputs become
increasingly persuasive and realistic, detecting cases of manipulation through Al can get
harder. Prevention techniques, such as watermarking content, are useful but can be
circumvented with moderate effort.

Key Definitions

Al-generated fake content: Audio, text, or visual content, produced by generative Al, that

depicts people or events in a way that differs from reality in a malicious or deceptive way,
e.g. showing people doing things they did not do, saying things they did not say, changing
the location of real events, or depicting events that did not happen.
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e Al agent: A general-purpose Al which can make plans to achieve goals, adaptively perform
tasks involving multiple steps and uncertain outcomes along the way and interact with its
environment — for example by creating files, taking actions on the web, or delegating tasks
to other agents — with little to no human oversight.

General-purpose Al can help people generate realistic content at scale, which malicious actors
could use for attempts to manipulate public opinion and spread certain narratives. Studies show
that humans often find general-purpose Al-generated text indistinguishable from genuine
human-generated material (307, 302, 303, 304). Moreover, research indicates that while people
struggle to accurately identify Al-generated content, they often overestimate their ability to do so
(305). There is also evidence that such content is already being disseminated at scale (306).
Recent research has observed a significant increase in Al-generated news articles (307), and has
found that Al language models can reduce content generation costs by up to 70% for highly reliable
models (308%*).

There is evidence that content generated by general-purpose Al can be as persuasive as content
generated by humans, at least under experimental settings. Recent work has measured the
persuasiveness of general-purpose Al-generated political messages. Several studies have found
that they can influence readers’ opinions of psychological experiments (309, 310, 371, 312, 313*),in a
potentially durable fashion (314), though the generalisability to real-world contexts of these effects
remains understudied. One study found that during debates, people were just as likely to agree with
Al opponents as they were with human opponents (315), and more likely to be persuaded by the Al
if the Al had access to personal information of the kind that one can find on social media accounts.
Recent research also explores how general-purpose Al agents could influence user beliefs using
more sophisticated techniques, including by creating and exploiting users’ emotional dependence,
feeding their anxieties or anger, or threatening to expose information if users do not comply (316*).

As general-purpose Al systems grow in capability, there is evidence that it will become easier to
maliciously use them for deceptive or manipulative means, possibly even with higher effectiveness
than skilled humans, and to encourage users to take actions that are against their own best
interests (317, 318*). There is also some evidence that Al systems can use new Al-specific
manipulation tactics that humans are especially vulnerable to because our defences against
manipula