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Research at the Environment Agency 
Scientific research and analysis underpin everything the Environment Agency does. It 
helps us to understand and manage the environment effectively. Our own experts work 
with leading scientific organisations, universities, and other parts of the Defra group to 
bring the best knowledge to bear on the environmental problems that we face now and in 
the future. Our scientific work is published as summaries and reports, freely available to 
all.  
 
This report is the result of research commissioned by the Environment Agency’s Chief 
Scientist’s Group. 
 
You can find out more about our current science programmes at 
https://www.gov.uk/government/organisations/environment-agency/about/research 
 
If you have any comments or questions about this report or the Environment Agency’s 
other scientific work, please contact research@environment-agency.gov.uk. 

 

Dr Robert Bradburne 

Chief Scientist 
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Executive Summary 
How climate change will affect aquatic ecosystems remains uncertain. The strong 
influence of water temperature on water quality and river ecosystems suggest changes in 
river water temperature are likely to be of critical importance. Understanding where, when 
and by how much rivers may warm will inform management activities and target adaption 
actions to help reduce the adverse effects of potential changes. While projections of river 
flows under climate change have been developed for England there are currently no future 
national projections of river water temperature. This limits our understanding of future risks 
and management choices that could improve resilience to the impacts of climate change. 

Environment Agency and third-party water temperature records along with environment 
variables (air temperature, land cover and river network properties) were used to create 
models to develop water temperature projections. Most of the data used to generate the 
models were single observations collected during the working day, night- time 
temperatures are less well represented. This means that the projections developed were 
for monthly mean daytime river water temperatures. Sufficient water temperature data 
were available for 641 sites (≥3 records per month; 60+ monthly means) to generate the 
model which was then validated for 3441 sites across the English river network (4082 sites 
in total). 

The national model was then used to make monthly river water temperature projections to 
2080 using UK climate change projections (UKCP18). Based on a ‘high emissions 
scenario’, ecologically significant increases in water temperature were projected with 
summer maxima rising by 0.6 °C per decade above baseline levels (1981 to 2005 
inclusive) to 2080. An important temperature threshold of 12 °C for salmonid egg survival 
during the winter period will likely be exceeded at over 70% of sites by 2080. Adult brown 
trout will be under threat from high summer temperatures with almost all sites experiencing 
temperatures that exceed their upper growth/feeding temperature range of 19.5 °C by 
2080. 

Given England’s rivers cover a wide range of environmental conditions and exhibit 
significant variability in factors that influence river water temperature, models were 
developed for subsets of the 4082 sites representing distinct river typologies (based on 
geology and land use). These models showed no improvement over the national model 
when estimating future monthly mean temperature. However, differences were seen in the 
projected temperature responses, with arable/grassland sites on permeable rock 
experiencing the highest decadal changes in maximum temperatures (0.66 °C per decade) 
and grass upland sites experiencing the highest summer maxima by 2080 (>28 °C). 

This report presents a national perspective on where, when and by how much rivers may 
warm. The monthly average daytime projections may not reflect local temperature 
variations and will miss short-term heatwaves, which may have important ecological 
effects. Future work to explore the value of less spatially extensive but more frequently 
sampled (e.g. daily) data will be useful. However, these national projections are already 
proving useful as indicators of how temperature sensitive species may be affected and can 
be used to explore implications for water quality management. 
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Introduction  

Overview 
Climate projections for England suggest there will be an increase of warmer, wetter 
winters and hotter, drier summers along with more frequent and intense extreme weather 
events (UKCP18: Met Office, 2019). Understanding the consequences of these changes 
on water quality and aquatic biota is important to inform the targeting of management 
actions and adaptation measures to help maintain the integrity of river ecosystems and the 
services they provide.  

Flow (discharge) and water temperature (Tw) are considered master variables that 
influence river ecosystem structure and function (Poff et al., 1997, Woodward et al., 2010). 
There is a broad consensus regarding historical and likely future changes in climate, and 
emerging information on how river flows are expected to change (UKCEH, 2023). There is 
much less clarity about how and where river Tw may change. This is particularly 
problematic as assessments have highlighted the sensitivity of future eutrophication risk to 
increasing temperatures (Environment Agency, 2019). Hence, better understanding 
potential changes in thermal regimes will help identify priority areas for management 
action (Knouft et al., 2021).  

River water temperature is controlled by a complex interaction of hydrological, 
climatological and landscape characteristics, and previous models for predicting water 
temperature have utilised variables from all three of these categories (e.g., Jackson et al., 
2018). Hydrological controls include the relative proportions of surface and groundwater. 
Groundwater has a stable temperature profile which can modulate the temperature 
fluctuations observed in surface waters more influenced by atmospheric and climatological 
controls (Acornley, 1999). Landscape characteristics include riparian trees which create 
shade and reduce thermal maxima but the thermal benefit of riparian shade depends on 
physical location within the river network and on prevailing climate conditions (Garner et 
al., 2017, Wilby and Johnson, 2020).  

Quantifying the amount and timing of future warming in rivers will help understand where 
water quality and ecosystems may be affected and provide more robust evidence of where 
to target measures to adapt to these changes. To understand how best to develop future 
projections of river Tw, Environment Agency (2021) reviewed potential modelling 
approaches and produced a robust framework for doing so.  

Using chalk streams as a test case, the modelling approach recommended in the scoping 
project was tested, applied, and refined (Environment Agency, 2022). This study extends 
that analysis across the whole of England to generate river water temperature projections. 
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Project aim and outline 
The aim of this project was to develop water temperature (Tw) projections for England’s 
rivers.  

To develop the projections Tw readings were collated from various Environment Agency 
sources (including Water Quality Archive (WQA), Surface Water Temperature Archive 
(SWTA), continuous monitoring datasets from sonde sampling and gauging station 
monitoring, field studies from partner organisations) and combined (Stage 1; Figure 1), 
quality assured (Stage 2), and used to generate monthly mean Tw values (Stage 3a). 
These monthly Tw means were combined with corresponding air temperature values (Ta) 
and associated catchment data (Stage 3b/c) and assessed for the potential modelling 
options they could support (Stage 4a). A global model and landscape typology-specific 
models were then developed, tested, and compared (Stage 4b/c) before projections of Tw 
under climate change conditions were made (Stage 5). 

 

Figure 1: Overview of the steps/stages followed to generate models and predictions of 
water temperature for English rivers from available data. 
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Methods 
An overview of the data sets used, and the modelling approaches employed are presented 
here. Further detail is provided in the appendix. 

Data for modelling and projections 

Observed water temperature readings 
A river water temperature (Tw) dataset was assembled from various Environment Agency 
sources: the Surface Water Temperature Archive up to 2007 (Orr et al., 2015), the Water 
Quality Data archive (WIMS; 2000 to present), as a by-product from flow gauging stations, 
continuous temperature series from water quality sonde instrumentation, and temperature 
series from third-party organisations. Before modelling, data were screened using a 
sequential quality assurance (QA) process and removed if measurements: (1) were 
greater than ± 3 standard deviation of the mean for each site (324,981 records), (2) 
exhibited long sequences of unchanging values (1,326,700 records), (3) displayed 
extreme daily temperature shifts (>10 °C; 433,034 records) or (4) deviated significantly 
from a nine-value moving average at each site (239,088 records). This resulted in a 
dataset containing 53,731,931 unique water temperature readings covering the period 
between November 1952 and April 2023 (median: December 2009).  

Monthly mean (n ≥ 3) water temperatures were calculated for each site. Comparisons 
between monthly means generated from spot samples (manually collected individual 
readings usually taken during the working day) and daytime monthly means from co-
located high frequency sites (automatically collected readings on a 15 minute or hourly 
basis; n = 137) indicated good correlation (𝑅𝑅2 = 0.793), providing confidence in the 
representation of these monthly mean values. Site locations falling outside the national 
boundary of England were discarded. Sites with six or more monthly mean values were 
taken forward as part of the temperature modelling dataset, with those having five or more 
years’ worth of values (60 or more monthly mean values) participating in the development 
of the water temperature models (734 potential sites). Sites with between 6 and 59 
monthly mean values comprised a model validation dataset (3,941 potential sites). Site, 
landscape, and river channel characteristics for each sampling location in the temperature 
modelling dataset were extracted from GIS sources and combined with metadata from the 
various data sources to verify sampling locations. All potential modelling site locations 
were checked against Ordnance Survey digitised maps to verify water body alignment. 
Only sites verified as aligning to inland rivers were taken onto the modelling phase; those 
aligning to lakes, canals, or transitional waters were discarded (649 model development 
sites and 3505 model validation sites remaining; Figure 2). It should be noted that there is 
a clear sampling bias in much of the river water temperature dataset with spot sampling 
measurements almost exclusively collected during working hours (median sample time = 
11:00, main range = 06:00 – 18:00, Monday - Friday), with the exception of sites with 
automated high frequency logging (4.9% of sites, 9.4% of monthly mean values). Hence, 
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the mean values should be considered as estimates of monthly mean daytime water 
temperature (MdTw).  

  

Figure 2: River Tw dataset sample sites in England available for model development (left) 
and validation (right). Sites marked in blue were discarded as they could not be verified as 
aligning with inland river sites after map analysis (some misaligned, others transitional 
waters, lakes or canals). 

Datasets used for model development 
Historical air temperature data were obtained from 1 km gridded datasets from the Met 
Office (HadUK-Grid products; Met Office 2023). Previous studies (Environment Agency, 
2022) have compared the use of monthly mean (temperature at surface; tas) and monthly 
mean of daily maximum (tasmax) air temperatures in water temperature modelling and 
found no significant difference between the two. The monthly mean air temperature at 
surface (tas) was extracted for each sample month and site for use in this study. 

To ensure the developed model was practical and suitable for use in a management 
context, covariates that could be derived solely from available GIS sources were used. 
Indicators of upstream land-use, geology and sample site characteristics were selected, 
along with potential proxies for hydrological regime (e.g., river gradient, Strahler stream 
order). An initial screen of 40 covariates was undertaken, with 20 taken forward to the 
modelling stage (Table 1; see Appendix for further details).   

Landscape characteristics considered included land cover information at 25m resolution 
obtained from Centre for Ecology and Hydrology (CEH; Land Cover Map 2015 
[LCM2015]), topographical information derived from a Digital Elevation Model (Nextmap 
50m DEM hydromodel) and LIDAR data, and watercourse characteristics from the 
Environment Agency’s Detailed River Network GIS layer (Coley et al., 2018). 
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Table 1. List of covariates selected for water temperature model development. The acronym 
is displayed along with description and data source. 

Covariate acronym Description Data source 

Altitude_Map Altitude at site (m) Environment Agency LIDAR 
Composite 2022 1m DSM 

Strahler The Strahler river order at site 
(indicator of river size) 

Environment Agency’s Detailed 
River Network GIS layer 

Shreve The Shreve river order at site 
(indicator of network complexity) 

Environment Agency’s Detailed 
River Network GIS layer 

Dist2mth Distance along the main river 
channel to the river mouth (m) 

Environment Agency’s Detailed 
River Network GIS layer 

DEM_Aspect Aspect of river section at site (0-
359°) 

50m Digital Terrain Model (DTM) 

DEM_slope Gradient of river section at site 
(m/km) 

50m Digital Terrain Model (DTM) 

Alkalinity Acid Buffering capacity at site 
(indication of upstream calcareous 
geology) (mg/l) 

Environment Agency’s Detailed 
River Network GIS layer 

AVE_CATCH_Altitud
e 

Average altitude of upstream 
catchment (m) 

50m Digital Terrain Model (DTM) 

AVE_CATCH_Aspect Average aspect of upstream 
catchment (0-359°) 

50m Digital Terrain Model (DTM) 

AVE_CATCH_Slope Average gradient of upstream 
catchment (m/km) 

50m Digital Terrain Model (DTM) 

Geo_Siliceous_PC Upstream siliceous hard geology 
(%) 

British Geological Survey 

Geo_Calcareous_PC Upstream calcareous hard geology 
(%) 

British Geological Survey 

Geo_Chalk_PC Upstream chalk hard geology (also 
calcareous; %) 

British Geological Survey 

LCM_Woodland_PC Upstream woodland, includes 
coniferous and broadleaf (%) 

CEH; Land Cover Map 2015 

LCM_Arable_PC Upstream arable farmland (%) CEH; Land Cover Map 2015 

LCM_Grassland_PC Upstream grassland (improved 
and undisturbed/natural; %) 

CEH; Land Cover Map 2015 

LCM_Water_wetland
_PC 

Upstream area containing 
water/wetland, e.g., pools, 
reservoirs, etc. (%) 

CEH; Land Cover Map 2015 

LCM_Built.up_PC Upstream land dedicated to urban 
and suburban development (%) 

CEH; Land Cover Map 2015 

Easting / Northing Spatial coordinates From water sample data 
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Future climate projections 
The Met Office UKCP18 datasets provide probabilistic projections of environmental 
variables (air temperature, rainfall, etc.) based on a range of potential future climate 
outcomes. A range of future emissions scenarios are considered, and each dataset 
comprises an ensemble of 12 potential outcomes representing the uncertainty introduced 
by perturbation of model parameters. The UK regional model projections provide access to 
spatially coherent ‘raw’ climate projection data at the highest resolution (12km grid) for the 
years 1981 to 2080 and were used in this study. These projections are based on the high 
emissions ‘RCP8.5’ scenario and are considered a basis for precautionary planning for 
climate change impacts (Met Office, 2019).  

Projected monthly mean air temperature values for the years 1981 to 2080 and for each of 
the 12 potential outcomes mentioned above were extracted from the 12km RCP8.5 
regional UKCP18 gridded dataset for each Tw sampling site. Values falling in the date 
range January 1981 to December 2005 (25-year reference period) were compared to 
observed air temperature readings for the same period (from HadUK gridded datasets) 
and differences summarised into a set of monthly bias corrections which were then applied 
across each Ta projection dataset (Lenderink et al., 2007). This bias correction aligns 
modelled datasets with a known set of values and improves reliability of subsequent 
modelling outputs.  

 

Figure 3: Ranges of bias corrections applied to the UKCP18 monthly mean air temperature 
projections prior to calculation of water temperature using developed models. 
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These bias correction adjustments are summarised in Figure 3 and, while the majority are 
small (< 1°C), an underestimate of springtime air temperatures in the UKCP18 data 
require a greater increase to align with observed values. 

Model development and generation of projections 

Selection of water temperature model 
The river water temperature modelling process was guided by the previously established 
framework developed by the Environment Agency (2021). While the availability of 
historical monthly mean water temperature data placed this study outside the 
recommended bounds (daily to weekly model output), the decision-making process 
followed a similar series of steps (flowcharts reproduced here in Appendix; Figures A3 and 
A4). A mixed effect, regression-based approach was selected as most appropriate for 
multi-site, repeated measurement data. This option also maintained visibility of any 
influential covariates allowing an assessment of their physical plausibility to take place. 

Model development and validation 
The strength of the relationship between the observed water temperature values and the 
mean air temperature values was assessed. The relationship was statistically significant 
(𝑟𝑟2 = 0.86; Figure 4) with a gradient of 0.87. Seasonal variability in the air-water 
temperature slope was also identified (Figure 5) and retained as a required element in 
model development (Mohseni and Stefan, 1999; Webb et al., 2008). 

  

Figure 4: Monthly mean air temperature / water temperature relationship across English Tw 
sampling sites. 
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Figure 5: Seasonal variation in monthly mean air temperature / water temperature 
relationship across English Tw sampling sites. Lines fitted using ordinary least squares 
regression. 

Collinearity between predictor variables, the tendency for one variable to change in a very 
similar way to another, can lead to the development of overly complex models with 
compounded errors that limit predictive capability (Dormann et al., 2013). Landscape and 
river channel covariates that displayed strong correlations with each other (Pearson 
correlation coefficient; 𝑟𝑟 > 0.7) were rationalised (Appendix; Figure A5). The covariates 
taken forward to the modelling stage were:  

• Upstream Land cover – percentage upstream arable, urban development, woodland, 
grassland, and water (LCM_Arable | Built.up | Woodland | Grassland | 
Water_wetland_PC) 

• Upstream hard geology (Geo_Calcareous | Siliceous | Chalk_PC, alkalinity) 
• Average catchment Altitude, Aspect and Slope (AVE_CATCH_Altitude | Aspect | 

Slope) 
• Channel characteristics – Altitude at site, Strahler river order, Shreve river order, 

distance to river mouth, Aspect of site, Slope at site (Altitude_Map, strahler, shreve, 
dist2mth, DEM_aspect, DEM_slope) 

All models were developed using R (R core team, 2023) using functions from the base, 
lme4 and MuMin packages. A linear mixed-effects model for English river water 
temperature was developed based on 641 sites and 73,222 observations (note the lower 
number of sites due to missing covariate data). Based on exploratory data analysis the 
following features formed the basis of model development:   
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• The model must include the seasonal air / water temperature relationship 
• All selected covariates would initially be included to create a ‘full’ model which would 

then be simplified to contain only the most influential factors 
• Spatial components would be included to represent the west-east and north-south 

hydro-climatic gradients (Easting and Northing values used) 
• Variation between sample sites, catchments and to allow the water/air temperature 

relationship to vary between sites would be permitted, with the variation following a 
‘normal’ distribution (= ‘random effects’ elements) 

The ‘full’ model which included all the available covariates selected above was first fitted to 
available data (‘lmer’ command, lme4 R package) and took the form using the R syntax: 

MdTw = Tair: Season + Altitude_Map + strahler + shreve+ dist2mth + 
DEM_aspect + DEM_slope + alkalinity + AVE_CATCH_Altitude + 
AVE_CATCH_Aspect + AVE_CATCH_slope + Geo_Siliceous_PC + 
Geo_Calcareous_PC + Geo_Chalk_PC + LCM_Woodland_PC + LCM_Arable_PC 
+ LCM_Grassland_PC + LCM_Water_wetland + LCM_Built.up_PC + Easting 
+ Northing + (Random effects)  

‘Random effects’ were applied sequentially as follows (1) Absent, (2) the intercept could 
vary between sites (1 | Sites), (3) the intercept could vary between catchments (1 | 
GIS_catchment_name), or (4) the slope and intercept of the Ta / Tw relationship could 
vary between sites (Tair | Sites). The different ‘random effects’ outcomes were 
compared using Bayesian Information Criterion (BIC) and the best performing ‘full’ model 
reduced to its simplest, statistically significant form to give the following optimised ‘global’ 
model for monthly mean water temperature: 

MdTw = Tair: Season + Altitude_Map + dist2mth + Geo_Calcareous_PC + 
LCM_Built.up_PC + Northing + (Tair | Site) 

Ideally, projected Tw values generated by a model would be identical to observed Tw 
values in a training dataset so that all points would fall on the 𝑥𝑥 = 𝑦𝑦 identity line when 
plotting observed against projected Tw values. Such an outcome would have an 𝑅𝑅2 value 
of 1 and a Root Mean Squared error (RMSE) of 0.  The optimised ‘global’ model the 
developed here generated good estimates of MdTw in the training data (𝑅𝑅2 = 0.94, RMSE 
= 1.058°C; Table 2 and Figure 6-right panel) and performed well with the validation dataset 
(𝑅𝑅2 = 0.85, RMSE = 1.627°C; Figure 7- right panel). These 𝑅𝑅2 and RMSE values 
compared well with those generated by the more complex ‘full’ model (left panels of 
Figures 6 and 7), indicating that all significant factors had been retained in the optimised 
‘global’ model and that it had strong predictive performance for the generation of MdTw 
estimates for inland river sites from limited environmental and air temperature information. 
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Table 2: Structure and summary statistics of the optimised ‘global’ model for English rivers 
monthly mean daytime water temperatures. σ2 = random effect variance, τ00 = random 
intercept variance, τ11 = random slope variance, ρ01 = random slope-intercept correlation, 
ICC = intraclass correlation coefficient, Marginal R2 = correlation coefficient for fixed 
effects, Conditional R2 = correlation coefficient for fixed and random effects 

 

 

Figure 6: Performance of the ‘full’ (left) and optimised ‘global’ model (right) for English river 
water temperature prediction against the training dataset (3+ value monthly mean Tw values 
from sites with over 5 years of data; 𝒏𝒏 = 𝟕𝟕𝟕𝟕,𝟐𝟐𝟐𝟐𝟐𝟐). The red line indicates the 𝒙𝒙 = 𝒚𝒚 identity 
line. (The panels appear identical but R2 and RMSE values differ after 5 significant figures). 
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Figure 7: Performance of the ‘full’ (left) and optimised ‘global’ model (right) for English river 
water temperature prediction against the validation dataset (3+ value monthly mean Tw 
values from sites with less than 5 years of data; 𝒏𝒏 = 𝟓𝟓𝟕𝟕,𝟒𝟒𝟒𝟒𝟒𝟒). The red line indicates the 𝒙𝒙 =
𝒚𝒚 identity line. 

Projections of monthly mean daytime river water temperatures 
Bias-corrected UKCP18 monthly air temperature values and sample site covariate 
information (altitude at site, distance to river mouth, site northing, percentage calcareous 
geology and percentage urban and suburban land use upstream of the sample site) were 
used in the optimised ‘global’ model to generate predictions of monthly mean river water 
temperature at each of the 4,082 sites having at least six-monthly mean water temperature 
values. Water temperature predictions were generated for each of the twelve UKCP18 
potential outcomes and the median value taken for each month between 1981 and 2080 
for each site as a summary statistic.  

These median values of projected water temperature were used to carry out a high-level 
investigation into potential temperature changes that could impact on the life cycles of two 
important salmonid fish species, Salmo trutta (brown trout) and Salmo salar (Atlantic 
salmon). Two temperature thresholds were analysed these being 1) the critical growth and 
feeding temperature range for each species, and 2) the maximum temperatures 
experienced by eggs. For brown trout a critical growth and feeding temperature range of 
3.5 to 19.5 °C was used and for Atlantic salmon 6 to 22.5 °C (Table A12, Soloman and 
Lightfoot, 2008). Eggs are the life stage that has the lowest temperature tolerance (Table 
A12, Elliot and Elliot, 2010) and thresholds examined were 13 °C and 16 °C (the upper 
limits for brown trout and Atlantic salmon egg survival, respectively). 12 °C was also 
chosen as a threshold, due to reports of increased egg mortality, reduced size at hatching 
and increased deformity rates when this temperature is exceeded (Solomon and Lightfoot, 
2008). The percentage of sites projected to exceed these three temperature thresholds 
during the period November to February was recorded for each decade across the 
UKCP18 climate projection range 1981 – 2080. The November to February period was 
chosen to represent months of the year when salmon and trout eggs could be expected to 
be present and developing beneath gravel in the rivers. This work is presented only as a 
demonstration of the kind of investigations that can be facilitated by the model. Factors 
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such as whether sampling points coincide with localities where salmonid eggs would be 
found, differences in spawning time across the country, or the potential for genetically 
distinct populations to be adapted to different water temperatures have not been 
considered. Further work would be required to produce a robust assessment of how 
temperature changes could impact salmonid life cycles. 

Typology-specific models 
To identify river typologies, cluster analysis was carried out on the water sampling sites, 
based on the GIS-derived covariates. Ward’s method generated 6 coherent clusters 
(Figure 8) that aligned with the following typologies: ‘Permeable rock / Arable / Grassland’ 
(Cluster 1), ‘Harder rock / Grass / Arable’ (Cluster 2), ‘Urban / generally Calcareous 
geology’ (Cluster 3), ‘Grass Upland / mixed geology’ (Cluster 4), ‘Chalk streams’ (Cluster 
5), and ‘Large rivers / High Strahler order (8-9)’ (Cluster 6). The ‘full’ model with all 
selected covariates was applied in turn to each cluster’s qualifying data and the resultant 
model optimised to find the simplest solution. The performance of each optimised cluster 
model was then compared to the performance of the optimised ‘global’ model in 
generating predictions for water temperature in each of the clusters.  

 

Figure 8: Distribution of sites within each identified typological cluster, 1 = Permeable rock / 
Arable / Grassland, 2 = Harder rock / Grass / Arable, 3 = Urban / generally Calcareous 
geology, 4 = Grass Upland / mixed geology, 5 = Chalk streams, 6 = Large rivers.  Jaccard 
Index (AveJaccard; between 0 (dissimilar) and 1 (identical)) gives an indication of similarity 
between cluster members; Instability Index (between 0 (stable) and 1 (unstable)) gives an 
indication how coherent the clusters are. Further details in Appendix.  
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Results 

National temperature projections  
Projected summer maximum water temperatures for four decades up to 2080 suggest 
substantial increases are likely by 2080 (Figures 9, 10). Regional differences are evident 
with sites in the northwest of England projected to experience the lowest increases in 
hottest month water temperatures whereas those in central / southern regions, and 
potentially associated with urban centres are projected to experience the greatest 
increase. Some ‘hotspots’ (2080 maxTw >27 °C: River Thames, 8 sites; River Trent, 3 
sites; River Ouse, 5 sites; single sites on rivers Aire, Weaver, Welland, Rother and Anglian 
Stour) as well as ‘cold spots’ (2080 maxTw <17°C: River Tees, 4 sites; River Teign, 2 sites; 
single sites on River Cerne and Beer Stream) can also be identified amongst the sites. 

While the median monthly averages of Tw, of the 12 potential outcomes derived from the 
UKCP18 climate change projections, provide a suitable summary statistic, the range of 
responses encompassed by these 12 outcomes is also of interest. Figure 11 presents the 
range of minimum (blue points), mean (black points) and maximum (red points) values 
projected for each of the twelve UKCP18 potential outcomes across all sites for the 
UKCP18 projection period 1981 to 2080. While all ranges indicate an increasing Tw trend, 
the rate of change is highest for the maximum monthly averages (22.31±1.39 °C in the 
1981-2005 reference period to 28.26±1.56 °C in decade 2070-2079; a change of +5.94 °C, 
approximately 0.6 °C per decade) and lowest for the minimum monthly averages (-
0.56±1.06 °C in the 1981-2005 reference period to 1.89±0.95 °C in decade 2070-2079; a 
change of +2.45 °C). 

There is also a slight shift in the timing of maximum and minimum temperatures across the 
projection period. During the baseline period (1981 to 2005 inclusive) the average timing 
of maximum temperatures during the year occurs at month ‘7.46’ (mid-July), with the 
minimum temperature occurring at month ‘1.24’ (early January). By the decade 2070-
2079, this has shifted to month ‘7.96’ (late July) for the maximum and month ‘1.63’ (mid-
January) for the minimum. 
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Figure 9: Projected warmest monthly water temperatures at English river sample sites for 
the decades 2010-2019, 2030-2039, 2050-2059 and 2070-2079, based on bias corrected 
UKCP18 RCP8.5 air temperature projections and the ‘global’ model for monthly mean water 
temperatures. Values represent the maximum median Tw across all UKCP18 ensemble 
members for each site in each decade. Larger versions of the figures are presented in the 
Appendix (Figure A9).  
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Figure 10: Changes in the warmest month at English river sampling sites over baseline 
levels (1981-2005 inclusive) for the decades 2010-2019, 2030-2039, 2050-2059 and 2070-
2079, based on bias corrected UKCP18 RCP8.5 air temperature projections and the ‘global’ 
model for monthly mean water temperatures. Larger versions of the figures are presented 
in the Appendix (Figure A10). 
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Figure 11: Projected change in monthly water temperature in England’s rivers over the 
UKCP18 projection period 1981 to 2080. Each series of coloured points represent the values 
projected for each of the 12 ensemble members: blue points = minimum values, black 
points = mean values, and red points = maximum values. 
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Critical temperature thresholds for brown trout and 
Atlantic salmon 
Brown trout and Atlantic salmon are two important salmonid fish species found in English 
rivers, with salmon rivers mainly being restricted to the northeast, western draining 
coastlines, and southern chalk streams, and brown trout being distributed more widely 
(CEFAS, Environment Agency, Natural Resources Wales, 2023; Figure 12). The 
percentage of sites projected to exceed the upper values of the feeding and growth 
temperature ranges (19.5 °C for brown trout and 22.5 °C for Atlantic salmon, Table A12) is 
presented in Figure 13. For brown trout we considered all sites for which we had 
projections and found that monthly mean water temperatures are projected to exceed the 
19.5 °C upper limit at the majority of sites by 2070. For salmon we considered all sites 
where we had projections on the principal salmon rivers (CEFAS, Environment Agency, 
Natural Resources Wales, 2023). The higher salmon threshold of 22.5 °C is projected to 
start being exceeded after 2050, increasing to 50% of these sites by 2080. 

 

Figure 12: distribution of potential brown trout (left panel) and Atlantic salmon (right panel) 
sites in England for which we have water temperature projections. Salmon sites are 
restricted to principal salmon rivers (CEFAS, Environment Agency, Natural Resources 
Wales, 2023). 
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Figure 13: Percentage of sites in English rivers with monthly average projections expected 
to reach upper critical temperatures for two salmonid fish species. 

The spawning season for both Atlantic salmon and brown trout is during the late autumn 
and winter months, and we have examined the November to February period as 
representing the time when eggs could be expected to be developing within the nests 
(redds) in river gravel. Egg survival is temperature dependent with critical ranges of 0 to 13 
°C for trout and 0 to 16 °C for salmon (Table A12). An additional threshold of 12 °C has 
been selected for consideration due to reports of increased egg mortality, smaller size in 
hatching and increased levels of deformity for both species (Solomon and Lightfoot, 2008). 
Sites projected to have a monthly mean that exceeds this 12 °C threshold between 
November and February in different decades up to 2080 are shown in Figures 14 and 15, 
for brown trout and Atlantic salmon respectively. While the initial sites affected appear few 
and mostly in the south of England (Figures 14 and 15, 2010 panel), with affected 
catchments including greater numbers of more northerly sites as the decades progress. 
Around 70% of sites (70.5% of potential brown trout sites and 69.5% of salmon sites) are 
projected to be impacted by 2080. Figure 16 shows the percentage of sites projected to 
experience temperatures at or above these three important spawning threshold 
temperatures of 12 °C, 13 °C and 16 °C to 2080 and indicates a significant number of sites 
reaching 12 °C and 13 °C across this period, particularly after 2040. When considering 
these results, it must be remembered that this is a high-level exercise only and further 
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factors would need to be considered for a robust assessment of future changes, including 
ensuring sampling points are in localities where spawning may occur. 

 

Figure 14: Brown trout egg thermal tolerance: Sites across England projected to exceed a 
monthly mean water temperature of 12°C in November to February when eggs could be 
expected to be within river gravels in the decades 2010-2019, 2030-2039, 2050-2059 and 
2070-2079. Sites exceeding threshold marked in red/orange (total number of sites modelled: 
4082). 
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Figure 15: Atlantic salmon egg thermal tolerance: Sites across England’s salmon rivers 
projected to exceed a monthly mean water temperature of 12°C in November to February 
when eggs could be expected to be within river gravels in the decades 2010-2019, 2030-
2039, 2050-2059 and 2070-2079. Sites exceeding threshold marked in red/orange (total 
number of sites modelled: 1399. Note: these sites are on principal salmon rivers but do not 
necessarily coincide with salmon spawning locations (CEFAS, Environment Agency, 
Natural Resources Wales, 2023).  
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Figure 16: Projected changes in thermal thresholds important for fish egg survival during 
November to February from 1981 to 2080. The 13 °C threshold is the upper limit for brown 
trout egg survival, the 16 °C threshold relates to Atlantic salmon egg survival, and the 12 °C 
threshold is associated with increased egg mortality and increased deformity rates in both 
species (Solomon and Lightfoot, 2008). 

Typology specific models 
The ‘full’ model (see page 16) was applied to each of the six identified cluster groups and 
the resultant models simplified to retain only significant covariate factors. Projected water 
temperature values from each of these models was compared with those generated by the 
optimised ‘global’ model and none were found to differ significantly (ANOVA; p<0.05). 
Demonstrating that these models showed no improvement over the national model when 
estimating future monthly mean temperature. Further details are available in the Appendix. 
The projected temperature responses of sites within these clusters were analysed and 
differences were seen in the expected decadal rates of temperature change (Figure 17, 
Table 3). Differences were seen in the projected temperature responses of these groups, 
with arable/grassland sites on permeable rock experiencing the highest decadal changes 
in maximum temperatures (0.66 °C per decade) and chalk the lowest (0.51 °C per 
decade). Grass upland sites are projected to experience the highest summer maxima by 
2080 (>28 °C) and chalk the lowest summer maxima (<26 °C). 
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Figure 17: Projected change in monthly water temperature in England’s rivers over the UKCP18 projection period 1981 to 2080 for each 
cluster / typological group. Each series of coloured points represent the values projected for each of the 12 ensemble members: blue 
points = minimum values, black points = mean values, and red points = maximum values. 
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Table 3: Trends in projected monthly mean water temperature predictions, including 
average decadal change in temperature for each cluster / typological group.  

Cluster Typology Range 
Baseline 

mean (°C; 
1981 – 2005) 

2070-2079 
mean (°C) 

Decadal 
change (°C) 

1 
Permeable 
rock, arable / 
grass 

Maximum 20.93 27.52 0.66 
Mean 10.88 14.14 0.33 
Minimum 2.47 4.90 0.24 

2 Harder rock, 
grass / arable 

Maximum 20.69 27.01 0.63 
Mean 11.46 14.57 0.31 
Minimum 2.45 4.80 0.24 

3 
Urban, 
generally 
permeable 

Maximum 20.88 26.83 0.60 
Mean 11.64 14.90 0.33 
Minimum 3.50 5.93 0.24 

4 Grass upland 

Maximum 22.07 28.11 0.60 
Mean 9.85 12.99 0.31 
Minimum -0.56 1.89 0.25 

5 Chalk 
streams 

Maximum 20.80 25.92 0.51 
Mean 11.29 14.51 0.32 
Minimum 3.84 6.36 0.25 

6 Large rivers 

Maximum 22.18 27.74 0.56 
Mean 11.31 14.77 0.35 
Minimum 2.75 5.77 0.30 
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Discussion 

Temperature projections 
Validation of the developed ‘global’ model for English river water temperatures showed 
strong predictive performance (𝑅𝑅2=0.85). Application of this model to predict monthly mean 
water temperature values at sites under the influence of climate change showed significant 
water temperature increases of ecological significance. Regional variation in the level of 
Tw rise is seen with sites around London showing the highest increases and those in 
northern England the lowest.  

It should be noted that the projections are based on a simple future scenario where only 
air temperature is changing. More complex future scenarios incorporating changes in 
rainfall frequency and intensity, surface water/groundwater balance (including changes in 
abstractions), evapotranspiration, as well as changes in water-temperature-influencing 
environmental and landscape characteristics would help increase confidence in water 
temperature projections. Future changes would also be associated with wider changes in 
human activity (such as altering land use) and climate change such as river flows, rainfall 
intensity and heat waves. 

Changes in a monthly mean value will disguise potentially significant fluctuations in water 
temperature that may occur throughout that monthly period. An increased frequency of 
summer heat waves may only influence the monthly mean temperature by a small amount, 
yet may cause significant stress on ecological habitats, including aquatic ecosystems. 
Model sensitivity to such fluctuations would require a move to higher frequency Tw data 
collection in the sub-daily range. 

The ecological significance of potential increases in river water temperatures is illustrated 
by the effect on important temperature thresholds for salmonid fish. Thermal boundaries 
are known to affect salmonid at different stages of their life cycles.  The increasing number 
of sites projected to experience water temperatures above critical ranges for brown trout 
(19.5°C) is of particular concern (Solomon and Lightfoot, 2008; Elliott and Elliott, 2010). 
The challenge to salmonid egg survival is also projected to increase throughout the 
UKCP18 projection period, with the important 12°C threshold (Solomon and Lightfoot, 
2008) over which increased deformity rates and decreased egg survival are experienced, 
being breached extensively by 2080. Further work is needed to increase the robustness of 
these assessments. 

Data availability 
Effective modelling of water temperature in complex fluvial systems requires a baseline of 
water temperature records at a sufficient sampling frequency and over a sufficient period 
to reflect the temporal dynamics of in-channel temperature variability (Environment 
Agency, 2021). Much of the water temperature data collected under the Environment 
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Agency’s long-term environmental monitoring programme has been linked to statutory 
monitoring requirements to inform an understanding of river health rather than to explore 
river water temperature dynamics. Hence, the data available for this study was collected at 
coarse timesteps that supported the development of a monthly daytime mean water 
temperature model for England’s rivers. Using a monthly mean value as an indicator of a 
temporally and spatially dynamic variable such as water temperature is useful in assessing 
long-term trends and relative changes. However, highly dynamic events, such as heat 
waves, may be missed.  

The spot-sample water temperature readings in the combined Tw dataset provide a 
‘snapshot’ temperature value for water from various sources (e.g., upstream flow, 
precipitation, surface water runoff, groundwater supply; Leach et al., 2022) all of which will 
have different temperature profiles and volume contributions to the water in the river. They 
will also contain a reflection of the physical environment surrounding the river channel and 
the dynamics of water exchange between different compartments within the channel. 
These contributions will vary throughout the year and across climatic cycles and model 
development requires a strong baseline of measurements which encompass a significant 
amount of this variation. The qualifying threshold of sites to have a minimum of five years 
monthly mean water temperature data before inclusion in the model development process 
was a pragmatic choice given the data available but was regarded as an absolute 
minimum to reflect meaningful interannual Tw variation. Modelling at this temporal scale 
can, however, limit the model’s sensitivity to environmental and landscape characteristics 
known to influence river water temperature (Jackson et al., 2018). 

Targeted placement of temperature dataloggers with 15-minute monitoring resolution 
across catchments and regions at sites representative of different temperature-influencing 
landscape and environmental features is driving water quality management decisions in 
Scotland (Jackson et al., 2016; 2018; 2020) and offers an alternative to staff-intensive 
synoptic monitoring approaches (Webb et al., 2008). High frequency water temperature 
information from existing Environment Agency and partner organisations provide potential 
datasets that could facilitate higher resolution projections. Whichever data are used in 
modelling the outputs will be limited by where the input observations are recorded, 
reducing the potential to apply any generated water temperature models to unmonitored 
sites.  

Additional improvements could be made through incorporation of a national dataset of 
groundwater level and flow data and incorporating a shading model. Riparian shading 
along the river channel is a factor known to influence water temperature and identified as a 
future management technique to mitigate adverse river temperatures (Garner et al., 2017). 

Modelling process 
The model development process previously described by the Environment Agency (2021) 
was successfully implemented to develop a model for English river water temperature 
based around monthly mean daytime values, despite the limitations of the data available. 
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The selection of suitable covariates known to influence in-channel water temperatures was 
guided by previous studies (Jackson et al., 2016, 2018) and the pragmatic choice to limit 
these to values that could be derived from GIS sources was taken with practical 
management application in mind. Establishing values for all selected covariates using this 
method was not entirely successful as sample site locations did not always coincide with 
river sections where such values could be derived. Covariate values for river width could 
not be calculated for multi-channel reaches or where channel modification (culverts, pipes, 
underground sections) had taken place, and ‘distance’ metrics (distance to mouth of river, 
Strahler river order) could not be calculated for sites associated with secondary river 
channels rather than the main channel. This reduced the number of sites that could 
participate in model development and could potentially be mitigated by closer inspection of 
site/GIS alignments and/or the development of automated processing to establish suitable 
values from nearby sites. 

The developed models displayed a strong reliance on the air temperature / water 
temperature relationship. The seasonal nature of this relationship (Mohseni and Stefan, 
1999; Webb et al., 2008) was reflected in the monthly mean water temperature 
measurements derived from the combined Tw dataset and a series of seasonal linear 
relationships were included to approximate the ‘S’ shaped curve usually used to describe 
this relationship in river and open water systems. The ‘summer’ Ta / Tw relationship is of 
particular significance when modelling maximum water temperatures as too steep a 
gradient in this section of the relationship will over-estimate water temperatures from the 
corresponding air temperature values. Including this seasonal aspect of the Ta / Tw 
relationship was judged essential in model development and was therefore present in all 
model solutions. 

The ‘global’ model for monthly mean daytime water temperatures for English rivers 
presented here is a relatively simple one. Apart from the seasonal Ta / Tw relationship, the 
model is only dependent on five covariate values, the percentage upstream calcareous 
hard geology, the percentage urban and suburban land use upstream, an ‘x-y-z’ coordinate 
type combination of ‘Distance to mouth’, ‘Northing’, and site altitude, and a ‘random effects’ 
component allowing the seasonal Ta / Tw relationship to vary between sites. This concise 
group of dependencies is seen as a function of the monthly timestep employed and the 
large spatial scale of the modelled sites. The influence of landscape and river channel 
covariates would be expected to increase if the modelling timestep, or spatial scale were 
reduced. Typology-specific models did select different groups of covariates than the 
‘global’ model (see Appendix) but the limited influence of these covariates against the 
overwhelming influence of the Ta / Tw relationship meant that the optimised ‘global’ model 
produced equally effective water temperature estimates.  

The hydrological basis behind the model’s selected covariates indicates broad landscape 
controls to river water temperature at this temporal scale. The percentage of upstream 
calcareous hard geology gives an indication of potential water sources entering the river 
channel, with low percentages reflecting impermeable underlying geology and surface 
water dominated systems, and greater groundwater contributions with increasing rock 
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permeability (Berrie, 1992). Groundwater exhibits a stable temperature profile and can 
modulate the temperature fluctuations seen in surface water where atmospheric and 
climatological influences prevail (Acornley, 1999). Levels of urbanisation have direct and 
indirect influences on water temperature by increasing the surface water component in 
river channels due to hard surface runoff, increased industrial and water processing inputs, 
modifying groundwater/surface water interactions due to river channel modification (lining, 
straightening/canalising, culverting, for example), and indirectly through urban heat island 
effects (Ficklin et al., 2023). Distance to river mouth can be considered an indication of 
continentality and the different thermal properties (specific heat capacity and heat 
exchange processes) between land and water, and site altitude and Northing indicate 
differences in the vertical and north-south air temperature gradients (Jackson et al., 2016). 

The ‘global’ model outputs presented here are based on the high emissions RCP8.5 
scenarios of the UKCP18 climate change projections. While these are seen as a suitable 
basis for contingency planning there is some debate whether they present a realistic 
projection given their reliance on continued rises in CO2 levels due to fossil fuel burning 
well into the 21st century. The ‘global’ model is not dependent on this particular projection 
of future Ta and so Tw could be projected using different scenarios as they are developed 
and refined. 
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Conclusions 
The future impacts of climate change on aquatic ecosystems remain uncertain. Future 
changes in river flows and temperature increases are expected to be of critical importance. 
Quantifying the magnitude and timing of future warming in rivers is needed to understand 
where and when changes may happen and inform potential adaptation measures and 
management actions.  

This project has generated the first national water temperature projections for English 
rivers. Based on the UKCP18 ‘high emissions scenario’, ecologically significant increases 
in water temperature were projected with the warmest monthly average rising by 0.6 °C 
per decade above reference levels to 2080. An important temperature threshold of 12 °C 
for salmonid egg survival during the winter will likely be exceeded at over 70% of sites by 
2080. Adult brown trout will be under threat from high summer temperatures with almost all 
sites experiencing temperatures that exceed their upper growth/feeding temperature range 
of 19.5 °C by 2080. Further work is needed to increase the robustness of these 
assessments. 

Whilst the projected increases in monthly mean river water temperatures will 
underestimate impacts of short-term events such as heat waves, they are the first 
indication of the magnitude of change which may happen and where and when it may 
occur. These results will enable more informed decisions about potential management 
actions and adaptation measures. The temporal and spatial resolution of the projections 
may be improved as more higher resolution data become available.  
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List of abbreviations 
BIC Bayesian Information Criterion  

CEH Centre for Ecology and Hydrology 

DRN Digital River Network 

GAM Generalized Additive Model 

GAMM Generalized Additive Mixed effect Model 

GIS Geographical Information Systems 

LCM Land Cover Map 

LIDAR Light detection and ranging 

LM Linear Model 

LMM Linear Mixed effect Model 

MdTw Monthly mean daytime water temperature 

RMSE Root Mean Squared Error 

RNS River Network Smoother 

SSN Spatial Statistical Model 

SWTA Surface Water Temperature Archive (Environment Agency) 

Ta Temperature of the air at the land surface 

Tw Temperature of the water 

UCR Upper Critical Range 

WIMS Water quality data archive (Environment Agency) 

WFD Water Framework Directive 

 

  



40 of 60 

Appendix 

Detailed methodology 
All data analysis presented herein was conducted using R (R Core Team, 2021). In 
addition to the base functions in R the following packages were used: the ‘tidyverse’ 
ecosystem (Wickham et al., 2019), ‘readxl’ (Wickham and Bryan, 2023), ‘lubridate’ 
(Grolemund and Wickham, 2011), ‘data.table’ (Dowle and Srinivasan, 2023) and ‘skimr’ 
(Waring et al., 2022) for data import, manipulation, generating summaries and plotting 
data; ‘car’ (Fox and Weisberg, 2019) for correlation analysis; ‘sp’ (Pebesma and Bivand, 
2005, Bivand et al., 2013) and ‘sf’ (Pebesma, 2018, Pebesma and Bivand, 2023) for 
spatial data analysis; ‘lme4’ (Bates et al., 2015), ‘lmerTest’ (Kuznetsova et al., 2017), 
‘MuMIn’ (Barton, 2023), ‘caret’ (Kuhn, 2008), ‘effects’ (Fox and Weisberg, 2019) and 
‘sjstats’ (Lüdecke, 2022) for developing mixed effects models and aiding model selection. 

Data preparation 
Observed water temperature data were acquired from 5 main sources: the Environment 
Agency’s Surface Water Temperature Archive up to 2007 (Orr et al., 2015), Water Quality 
Data (WIMS; 2000 to present), water temperature data rescued from river flow monitoring 
stations, water quality monitoring studies using sonde probes, and ecological studies from 
partner organisations. Details regarding the creation of the former can be found in Orr et 
al., 2015 (and on data.gov.uk). It consists of 7 Microsoft Access databases, one containing 
data for each of the previous 7 Environment Agency regions in England. All water 
temperature data were filtered to select only those samples collected from “RIVER / 
RUNNING SURFACE WATER”. These were then extracted and saved as CSV files for 
each region. Data on OpenWIMS is available from 2000. All samples between the years 
2000 and 2023 were downloaded for the determinand “0076” (Temperature of Water) and 
filtered for those where the sampled Material Type was “RIVER / RUNNING SURFACE 
WATER” and saved as an additional CSV file. Data rescued from flow monitoring stations 
was provided by the Environment Agency as an R dataframe file (.rds type) or discrete 
comma delimited files (CSV) for each site, and sonde monitoring datasets downloaded as 
CSV files from the Epimorphics web site (https://hydrology-
uat.epimorphics.net/hydrology/explore). Temperature datasets from partner organisation 
ecological studies were provided in either Microsoft Excel/xlsx or comma delimited/CSV 
formats (Lyd and Chess catchments). 

The resultant dataset of 60,059,841 records comprised a mixture of spot sample and high 
frequency (sub hourly) water temperature readings often in a raw/unchecked state. The 
data for identifiable sites was passed through five quality-assurance (QA) ‘filters’ to identify 
and remove outliers and suspect data points: 

1. Points outside a robust (Winsorized) mean ± 3 x standard deviations range were 
removed (flagged as ’Trimmed’; high frequency and spot sample data series) 
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2. Points exhibiting extreme daily temperature ranges (>10°C) were removed (flagged 
‘Air’; high frequency data series only) 

3. Extreme deviations from a moving average were removed (flagged ‘ExtremeSD’; 
high frequency data series only) 

4. Non-changing sequences of values (> 1 day) were removed (flagged ‘FixedRuns’; 
high frequency and spot sample data series)  

5. Daily temperature fluctuations modelled to a sine function and fit assessed (data 
points with poor fit flagged ‘PoorFit’ rather than removed; high frequency data series 
only)  

An example of output from this QA process is presented in Figure A1. This process was 
completed for each of the 38,142 identifiable sites with 6,327,910 data points being 
removed, leaving 53,731,931 to take forward in the study. 

 

Figure A1: An example of the output from Quality-Assurance processes used to clean water 
temperature data. The top panel indicates some of the categories assigned to questionable 
data points, with the cleaned raw data presented in the middle panel. The lower panel show 
the resultant daily means generated from the raw data. 
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It should be noted that these QA filters did not capture all suspect data points and a further 
round of ‘Outlier checking’ was required before Tw modelling was undertaken. 

Gridded air temperature values were downloaded from the Centre for Environmental Data 
Analysis (CEDA) website https://archive.ceda.ac.uk. Historical air temperature values were 
obtained from the HADUK 1km gridded datasets to cover the same date range as seen in 
the Tw samples (1952 to present day). Monthly mean air temperature (tas) datasets were 
downloaded in NetCDF format (one file per year). ‘tas’ datasets of monthly data were also 
obtained for the UKCP18 regional projections at 12km resolution for 1980-2080 for all 
RCP8.5 scenarios from the same site (NetCDF format). 

R code data folder structure 

<DataRoot folder> ─ External_data ─ CEDA ─ Air_temp ─ monthly ─ Ta_mean_1km (HADUK tas) 
        │                 │           │                   
        │                 │           └─── ukcp18 ─ Ta_mean (UKCP18 tas) 
        │                 │                    
        │                 ├──────── CEH_LCM_DRN ─ EA_GIS (Site DRN data) 
        │                 ├──────── EA ─ Water_temperature data 
        │                 │          ├────── Continuous_monitoring 
        │                 │          ├────── epimorphics 
        │                 │          ├────── GaugingStations 
        │                 │          ├────── SWTA 
        │                 │          └────── WQA 
        │                 └──────── shapefiles  
        │                                ├────── EA_Operational_Catchments (Eng. Regions) 
        │                                ├────── EA_River_Water_Bodies (WFD catchments) 
        │                                └────── England_Rivers (EA Main river map) 
        │ 
        ├────────── Generated_data (R code generated output) 
        │                  
        ├────────── England-R_Code (stage-based R scripts) 
        │                  
        └────────── ENG_figures (folders containing R-generated figures) 

 

Observed water temperature readings: sampling frequency 
considerations 
While there was a deliberate effort to assemble higher frequency Tw data series for use in 
this study, the initial aim was to extend the previous ‘chalk stream’ study (Environment 
Agency, 2022) to the whole of England and, therefore, the monthly time step was retained 
for mean Tw generation. A comparison between the distribution of sites available for daily 
and monthly mean modelling is shown in figure A2. It should also be noted that data series 
duration was significantly more extensive for the monthly mean model development data 
(start February 1965, end April 2023, median time series duration 28.5 years) versus the 
equivalent daily data (start July 1986, end April 2023, median time series duration 5.4 
years). 



43 of 60 

 

Figure A2: Sites available for modelling: Top panels show high frequency sites that could 
contribute to a daily mean Tw model (L: model development; R: model validation) and 
Lower panels show sites available from a monthly mean Tw model (L; model development; 
R: model validation)  

Selection of water temperature model 
Similar to the chalk stream study (Environment Agency, 20223), the river water 
temperature modelling process was guided by the previously established framework 
developed by Environment Agency (2021) and summarised in Figures A3 and A4. The first 
stage involved identification of the most suitable modelling approaches given the data sets 
available. An initial assessment highlighted that adequate data was not available to build a 
‘process-based’ or ‘hybrid’ model to predict water temperature. A regression-based 
approach was favoured over a machine-learning model or black-box model as the ability to 
assess the physical plausibility of coefficients was deemed essential. The schematic in 
Figure A4 was adopted to identify the most suitable regression approach. A temporally 
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dynamic model was required and given the data available at multiple sites, a mixed model 
was identified as the most suitable approach. 

 

Figure A3: Decision tree for selecting the appropriate regression-based method for water 
temperature modelling. Taken from Environment Agency (2021) 

 

Figure A4: High-level schematic representation of the steps required when developing 
regression-based models for site specific water temperature predictions. Taken from 
Environment Agency (2021).  
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Model development and validation: Covariate correlation analysis 
Relationships between covariates were assessed and those displaying strong correlations 
(Pearson correlation coefficient; r > 0.7) were rationalised (Figure A5). The site altitude 
covariates (Altitude_Map, Altitude_SWTA & DEM_Altitude) were rationalised to 
‘Altitude_Map’, network complexity covariates (Shreve, us_accum, wet_are_us, dist_src 
and catchment_sqm) rationalised to ‘Shreve’, and the catchment altitude covariates 
(AVE_CATCH_Altitude and src_alt) rationalised to ‘AVE_CATCH_Altitude. Covariates with 
significant numbers of missing values were also excluded (seg_length, seg_width and 
seg_gradient). Hard geology and land-use variables with limited/low ranges 
(Geo_Unspecified_PC, Geo_salt_PC, Geo_Peat_PC, LCM_Unspecified_PC and 
LCM_Other_PC) were also dropped. This left 18 covariates plus 2 spatial coordinates 
(Easting and Northing) to take forward to the modelling stage.   

 

Figure A5: Correlation matrix of covariates indicating Pearson correlation coefficients. Blue 
circles indicate positive correlations and red circles indicate negative correlations. Circle 
size is proportional to the Pearson correlation coefficient. 
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Table A6: Covariates selected for water temperature model generation. Boxplots indicate 
the median, interquartile range, and distribution of the variables within the monitoring sites  

 
Identifier Description Minimum  Maximum 

Altitude_Map Altitude at site (m) -9.21 535.23 

 
Strahler The Strahler river order at 

site (indicator of river size) 
1 9 

 
Shreve The Shreve river order at site 

(indicator of network 
complexity) 

1 26,860 

 

Dist2mth Distance along the main river 
channel to the river mouth 
(m) 

2.35 359,185 

 

DEM_aspect Aspect of river section at site 
(0-359°) 

0 359 

 
DEM_slope Gradient of river section at 

site (m/km) 
0 54 

 
Alkalinity Acid Buffering capacity at 

site (indication of upstream 
calcareous geology) (mg/l) 

0.18 597.4 

 

AVE_CATCH_Altit
ude 

Average altitude of upstream 
catchment (m) 

-0.12 655.8 

 
AVE_CATCH_Asp
ect 

Average aspect of upstream 
catchment (0-359°) 

24 341 

 
AVE_CATCH_Slo
pe 

Average gradient of 
upstream catchment 

0.1 23.5 

 
Geo_Siliceous_P
C 

Upstream siliceous hard 
geology (%) 

0 100 

 
Geo_Calcareous_
PC 

Upstream calcareous hard 
geology (%) 

0 100 

 
Geo_Chalk_PC Upstream chalk hard geology 

(also calcareous; %) 
0 100 

 
LCM_Woodland_
PC 
 

Upstream woodland (%) 0 100 
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Identifier Description Minimum  Maximum 

LCM_Arable_PC Upstream arable farmland 
(%) 

0 100 

 
LCM_Grassland_
PC 
 

Upstream grassland 
(improved and 
undisturbed/natural; %) 

0 100 

 

LCM_Water_wetla
nd_PC 

Upstream area containing 
water/wetland, e.g., pools, 
reservoirs, etc. (%) 

0 83 

 

LCM_Built.up_PC 
 

Upstream land dedicated to 
urban and suburban 
development (%) 

0 100 

 

Easting / Northing Spatial coordinates  

Review of outliers 
Additional outliers that had survived the QA process were identified while model 
preparation was underway. An iterative process was undertaken to identify the nature of 
these outliers and assess whether it was justifiable to remove some or all of them. 

    

Figure A7: Potential outliers (red) in the model development (left) and verification (right) 
datasets. 

Two sites were completely removed from the verification dataset (W4007 and 26M06) and 
thirteen sites were identified that had sequences of spurious Tw values (example in Figure 
A8) which were selectively deleted. Individual readings at fourteen sites were removed and 
241 means with high standard deviations (>6) were taken out. 
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Figure A8: Outliers at Site 4007 / Shardlow. The QA plot (right, blue highlight) indicates a 
sequence of readings that are significantly dissimilar to the rest of the time series and 
constitute all the filled blue outliers in the left panel. These values were removed from the 
Tw dataset ahead of the modelling process. 
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Global model temperature predictions 

 

Figure A9(i): Enlarged version of Figure 9, top-left panel showing the maximum MdTw 
projected at each qualifying site in the decade 2010 to 2019. 
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Figure A9(ii): Enlarged version of Figure 9, top-right panel showing the maximum MdTw 
projected at each qualifying site in the decade 2030 to 2039. 
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Figure A9(iii): Enlarged version of Figure 9, bottom-left panel showing the maximum MdTw 
projected at each qualifying site in the decade 2050 to 2059. 
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Figure A9(iv): Enlarged version of Figure 9, bottom-right panel showing the maximum MdTw 
projected at each qualifying site in the decade 2070 to 2079. 
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Global model temperature predictions: differences from 1981-2025 
baseline 

 

Figure A10(i): Enlarged version of Figure 10, top-left panel showing the change in maximum 
MdTw projected at each qualifying site over baseline (1981 to 2005 inclusive) levels in the 
decade 2010 to 2019. 
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Figure A10(ii): Enlarged version of Figure 10, top-right panel showing the change in 
maximum MdTw projected at each qualifying site over baseline (1981 to 2005 inclusive) 
levels in the decade 2030 to 2039. 
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Figure A10(iii): Enlarged version of Figure 10, bottom-left panel showing the change in 
maximum MdTw projected at each qualifying site over baseline (1981 to 2005 inclusive) 
levels in the decade 2050 to 2059. 
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Figure A10(iv): Enlarged version of Figure 10, bottom-right panel showing the change in 
maximum MdTw projected at each qualifying site over baseline (1981 to 2005 inclusive) 
levels in the decade 2070 to 2079. 
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Typology specific models 
Typological clusters were identified (Ward’s method) based on site covariate values. An 
average Jaccard value (values between 0 and 1 with 1 being most robust) and Instability 
Index (values between 0 and 1, with 0 being most stable) were used to identify coherent 
clusters and the pivot point fell in the region of 6 or 7 clusters. Cluster group 4 from the ‘6 
cluster’ analysis (Grass Upland, mixed geology) split into two when generating 7 clusters, 
with a ‘higher altitude’ and a ‘lower altitude’ grouping. The Instability Index for this ‘higher 
altitude’ grouping rose to 0.93 and little value was seen in maintaining this split, thus 
arriving at 6 cluster groups. The ‘full’ model was applied to each of these clusters and 
resulting models optimised to identify influential covariates. The projected Tw values 
obtained from these cluster models was compared to those obtained from the optimised 
‘global’ model and no significant difference could be seen (𝑅𝑅2 = [0.9989,1]). 
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Table A11: Cluster model characteristics and comparison to the ‘global’ model 

 Global 
Model 

Cluster 
1 

Cluster 
2 

Cluster 
3 

Cluster 
4 

Cluster 
5 

Cluster 
6 

Typology All England Permeable 
rock, arable 
/ grass 

Harder 
rock, grass 
/ arable 

Urban, gen. 
permeable 

Grass 
upland 

Chalk 
streams 

Large rivers 

Top model Site altitude 
Dist to mouth 
Calc Geol % 
Urbanised % 
Northing 

Shreve 
Urbanised % 
Northing 

Chalk % 
Arable % 
Urbanised % 
Northing 

Northing Shreve 
Urbanised % 

Alkalinity 
Dist to mouth 
Arable % 
Grassland % 
Northing 

Ave. Slope 
Calc Geol % 
Silic Geol % 
Chalk % 
Arable % 
Grassland % 
Woodland % 
Urbanised % 

Model 
averaged 
(δ<=2) 

Site altitude 
-Dist to 
mouth 
Calc Geol % 
Urbanised % 
Northing 

- Shreve 
Urbanised % 
Northing 

- Chalk % 
Arable % 
Urbanised % 
Northing 

Northing Shreve 
Urbanised % 

-Alkalinity 
-Dist to 
mouth 
-Arable % 
-Grassland 
% 
-Northing 

Ave. Slope 
Calc Geol % 
Silic Geol % 
Chalk % 
Arable % 
Grassland % 
Woodland % 
Urbanised % 

R2 / RMSE 
Model dev 
Validation 

 
0.935 / 1.13 
0.854 / 1.62 

 
0.938 / 1.13 
0.858 / 1.63  

 
0.941 / 0.95 
0.864 / 1.46 

 
0.918 / 1.25 
0.828 / 1.79 

 
0.927 / 1.24 
0.875 / 1.50 

 
0.948 / 0.89 
0.830 / 1.58 

 
0.921 / 1.44 
0.726 / 2.87 

Global 
comparison 

---  /  --- 
---  /  --- 

0.938 / 1.13 
0.860 / 1.61 

0.939 / 0.95 
0.865 / 1.52 

0.918 / 1.25 
0.826 / 1.89 

0.927 / 1.24 
0.869 / 1.49 

0.948 / 0.89 
0.849 / 1.60 

0.921 / 1.45 
0.855 / 2.07 

Fitted 
values R2 

1.0000 0.9999 0.9989 0.9993 0.9998 1.0000 0.9995 
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Fish temperature thresholds 
Table A12: Thermal thresholds for Salmo salar (Atlantic salmon) and Salmo trutta (brown 
trout), from Solomon and Lightfoot, 2008 and Elliott and Elliott, 2010. All values in degrees 
Celsius. The ‘Stress Zone’ for egg survival correlates with increased mortality and 
deformity of resultant fry. 

 Egg survival Feeding / growth 
range 

Adult survival critical 
range 

 S. salar S. trutta S. salar S. trutta S. salar S. trutta 

Low limit 0 0 6 3.5 2.5 0.7 

Optimal 4 to 7 1 to 8 15.9 13.1 2.5 to 22 2.5 to 22 

Stress zone 12 12 -- -- 24-26 24 

High limit 16 13 22.5 19.5 28 25 
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Would you like to find out more about us or your 
environment? 
Then call us on 

03708 506 506 (Monday to Friday, 8am to 6pm) 

Email: enquiries@environment-agency.gov.uk 

Or visit our website 

www.gov.uk/environment-agency 

incident hotline  
0800 807060 (24 hours) 

floodline  
0345 988 1188 (24 hours) 

Find out about call charges (https://www.gov.uk/call-charges) 

Environment first 
Are you viewing this onscreen? Please consider the environment and only print if 
absolutely necessary. If you are reading a paper copy, please don’t forget to reuse and 
recycle. 

 
 

mailto:enquiries@environment-agency.gov.uk
https://www.gov.uk/environment-agency
https://www.gov.uk/environment-agency
https://www.gov.uk/call-charges
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