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Research at the Environment Agency 

Scientific research and analysis underpins everything the Environment Agency does. It 
helps us to understand and manage the environment effectively. Our own experts work 
with leading scientific organisations, universities and other parts of the Defra group to 
bring the best knowledge to bear on the environmental problems that we face now and in 
the future. Our scientific work is published as summaries and reports, freely available to 
all.  

This report comprises three Think Pieces authored by academic experts, which were 
commissioned by the Environment Agency’s Chief Scientist’s Group. The Think Pieces are 
published as submitted, except for reference lists and glossaries, which were synthesized 
for the purpose of this report. These views and opinions expressed in these think pieces 
are those of the authors. Other elements of the report were authored by scientists in the 
Environment Agency’s Chief Scientist’s Group. 
 
You can find out more about our current science programmes at 
https://www.gov.uk/government/organisations/environment-agency/about/research 
 
If you have any comments or questions about this report or the Environment Agency’s 
other scientific work, please contact research@environment-agency.gov.uk. 

 

Dr Robert Bradburne 
Chief Scientist 
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Executive summary 
Microbes (e.g. bacteria, fungi, algae, protozoa) are ecologically important components of 
ecosystems that are critical to the function and health of ecosystems. However, Microbes 
have been less extensively included in biomonitoring programmes compared to other taxa. 
Their sensitivity to biotic and abiotic drivers (e.g., species introductions and climate 
change) means that this group represents an untapped source of information to enhance 
our understanding of ecosystem health.  

Ecological network science (ENS) is an emerging and developing field in ecology that 
captures ecological interactions within and across ecosystems and the resultant networks 
that form. Interactions between organisms and the ecological networks they form are 
fundamental to ecosystem processes and therefore the delivery of ecosystem services. 
Approaches in ecological network science are able to identify interactions, construct 
networks, and analyse properties that describe the fundamental structure of ecosystems, 
such as network robustness and resilience, from ecological datasets. Combining these 
techniques with the wealth of data generated by next generation sequencing (NGS) 
presents new opportunities to unravel the complexities of ecosystem function and develop 
new measures and metrics of ecosystem health.  

Through three think piece papers authored by experts in the fields of ecological network 
science and microbial ecology, this report explores the state of ecological network science, 
including its potential application to understand impacts of environmental change on 
ecosystems as well as its limitations. It sets out recommendations to explore a 
comprehensive spatial and temporal molecular microbial dataset, generated by the 
Environment Agency using biofilm samples (aggregate of microbes within a biological 
matrix found on moist surfaces) collected as part of a new national monitoring programme, 
designed to assess the state of English rivers and their ecosystems. 

The think piece papers outlined several advantages that ENS has over other data analysis 
methods, the most pertinent of which is its ability to integrate multiple taxa and 
multidimensional datasets. Trait data can also be incorporated to help capture functional 
diversity. However, there are challenges in the application of ENS and the interpretation of 
outputs, particularly where interactions have to be inferred through patterns of co-
occurrence. One think piece author described microbial network science as being ‘in its 
infancy’ and advised caution in its use, with another advising that the limitations of ENS 
and its application to microbial data need to be carefully considered.   

All think piece papers established that interactions and therefore networks would be 
inferred from the microbial DNA data, because microbial interactions cannot be observed. 
Inferring interactions can be challenging. Multiple methods for inferring ecological 
interactions and networks were identified in the think piece papers including graphical 
inference methods (specifically SParse InversE Covariance Estimation for Ecological 
Association Inference (SPIEC-EASI) a method and software package designed for the 
analysis of microbial interaction networks based on DNA sequencing data), methods 
based on maximum entropy and matrix autoregression, joint species distribution models 
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and machine learning. While think piece authors recommended different approaches to 
inference, there was agreement in recommending the application of multiple different 
inference methods, which should be tested and evaluated to identify the most appropriate 
method(s) to apply to the microbial dataset. 

It was also recommended that timeseries analysis techniques such as Local Similarity 
Analysis be applied to longitudinal data generated through the project over time, because 
this could provide insight to how microbial communities respond to environmental 
perturbations through time and allow us to explore causal relationships. Complementary 
analysis techniques including multivariate general linear modelling and structural equation 
modelling were also recommended, as this may indicate potential causal relationships 
between environmental change, changes in the microbial ecological network, and wider 
ecosystem properties.  

Several metrics were identified to allow for microbial networks to be compared between 
sites and through time. Topological metrics involve the geometry and connectedness of a 
network; however, it is uncertain how these metrics relate to ecosystem properties. There 
was therefore disagreement between think piece papers as to the usefulness of these 
metrics. Identifying key nodes or hubs in the network may identify keystone taxa, which 
authors proposed could be the focus of future research. Robustness analysis was also 
proposed as a way to measure the tolerance of an ecosystem to species extinction. 
Response diversity, which is not a form of network analysis, was also proposed as a way 
to capture and explore the potential responses of an ecosystem to a stressor (or 
stressors). It was also recommended that new metrics specifically linked to stressors or 
elements of ecosystem function could be developed using the microbial dataset. 

Informed by the think piece papers, we intend to apply ENS approaches to the analysis of 
the NGS data generated through the RSN. As advised, we will experiment with different 
network inference methods and data analysis pipelines as well as other, more traditional 
data analysis techniques and methods. 

 

 

  



 9 

Introduction  

1. Microbial molecular ecology and the potential for new 
metrics and indicators of environmental change  
In 2018, Defra (Department for Environment, Food and Rural Affair) published its 25 Year 
Environment Plan - a commitment to enhance natural capital to ensure the continued 
provision of the benefits (ecosystem services ES)) of natural capital to society. ES are not 
only dependent on biodiversity but are influenced by both structure and functioning of the 
entire ecosystem and understanding both are essential for effective management and 
conservation. Ecosystems comprise of intricate networks of interacting organisms with 
abiotic aspects of the environment. By understanding their dynamics, including the flow of 
energy, nutrient cycling, trophic interactions, we can start to gain better insights into the 
mechanisms driving ecosystem function and thus ecosystem services (Jax, 2005). Current 
biomonitoring tools tend to focus on the assessment of community structure, but do not 
capture information on ecosystem function. However, recent advances in next generation 
sequencing (NGS, also known as high-throughput sequencing) technologies alongside 
development of big data analytics, are likely to play an important role in improving our 
understanding of ecosystem responses to stressors and enabling mechanistic insights into 
those responses (Derocles et al. 2018; Cordier et al 2019). 

Microbes (which include bacteria, algae, fungi, and other protists) are a ubiquitous and 
critical component of freshwater ecosystems but compared to macroscopic components, 
microbes are poorly understood. Microbes attach to surfaces and develop biofilms. 
Microbial life in freshwater ecosystems biofilms dominate microbial life in streams and 
rivers and drive crucial ecosystem processes and thus the delivery of ES such as nutrient 
and carbon cycling (Falowski et al., 2008; Battin et al., 2016; Lehtovirta-Morley, 2018; Liu 
et al., 2021a). Biofilms are comprised of a diverse aggregate of microbial communities 
within an extracellular polymeric substance (EPS) matrix, which promotes the growth and 
survival of the overall community (Watnick and Kolter, 2000; Flemming et al., 2016; 
Penesyan et al., 2021). As well as being important sites for ecosystem processes, biofilms 
are also hotspots for microbial interactions such as horizontal gene transfer due to the 
diversity of microbes that are in close proximity (Flemming et al., 2016).  

Diatoms, a type of algae commonly found in microbial biofilms are sensitive to changes in 
environmental conditions and are used in Europe as biological indicators to assess water 
quality to support the implementation of the Water Framework Directive (Kelly et al., 1998). 
While other microbial components of biofilms have been shown to respond, in terms of 
their diversity and function, to a range of pressures and stressors including eutrophication 
and metal and organic pollution, the full suite of taxa are not readily represented in 
biomonitoring programmes and are considered the missing link to improving our 
understanding of and developing new bioindicators and metrics for assessing impacts on 
aquatic ecosystems (Sagova-Mareckova et al., 2021). As part of the Environment 
Agency’s research programme into the development of eDNA-based methods for 
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environmental monitoring and assessment, a comprehensive eDNA microbiome dataset is 
being developed from river biofilm samples collected as part of the Environment Agency’s 
River Surveillance Network (RSN) to explore potential microbial indicators of 
environmental change and for measuring ecosystem health. 

2. Molecular data generated through the River 
Surveillance Network 
The RSN is a national river monitoring programme developed and run by the Environment 
Agency as part of the Natural Capital Ecosystem Assessment programme. The RSN is 
designed to be representative of the English river network, to give a national-scale picture 
of rivers and their ecosystems and identify where and how they are changing. Other 
sampling points that make up existing or legacy monitoring programmes tend to be located 
to monitor human or point-source pressures and on larger rivers, which gives a biased 
picture of the state of English rivers. However, the RSN is designed in such a way, using a 
‘Generalised, Randomised, Tessellation, Stratified’ (GRTS) approach, that the resulting 
sample should be representative and unbiased (Brown et al., 2015). GRTS is a spatially 
balanced, probabilistic sampling design (Kermovant et al., 2016), that was developed for 
application to large-scale monitoring and river systems (Steven and Olsen, 1999, 2004). 
Sample sites are located with a stochastic component rather than a fixed interval (Brown 
et al., 2015).  

A range of biotic and abiotic facets of the river environment are measured at sites 
monitored as part of the RSN (i.e., co-located monitoring), including a suite of water quality 
parameters (e.g., pH, conductivity etc.), water chemistry, and invertebrate and macrophyte 
survey data. This, coupled with data about the sampling location (e.g., land use), allows 
for the RSN to provide insight into a range of pressures, such as habitat, pollution etc. 
Biofilm samples have also been collected at the RSN sites as part of routine sampling, 
some of which have been analysed through this project using eDNA techniques to gain 
insight into microbial communities. 

A comprehensive spatial and temporal microbial dataset has been generated from biofilm 
samples collected during 2021, 2022, and 2023 using NGS sequencing. The dataset 
includes metabarcoding data for bacteria (16S), fungi (ITS), diatoms and other 
phytobenthic algae (rbcL) and other microeukaryotes (18S) from nearly 700 sites 
(sampling strategy is summarised in Table 1. In addition to the metabarcoding data, 
metagenomic data has been generated for 450 biofilm samples that span a nitrate 
gradient and represent samples collected from the 72 sites sampled over the three-year 
period.  
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Table 1 – Sampling strategy for biofilm samples collected by the RSN 2021-2023. 

 

 

2021  
  

72 same river sites sampled twice a year* for 3 
years  72 72  72  

13 same sites sampled twice a year* in 2 years  11 13 2   

612 unique sites sampled twice a year* for one year  266  202 144 

Total sites monitored per year  349 287 218 

Total biofilm samples analysed per year 698 574 436 

     *Spring & Autumn   

3. Ecological Network Science 
Ecological network science (ENS), or network ecology, is a field of ecology that concerns 
ecological interactions within an ecosystem and the resultant networks that form (Borrett et 
al., 2014). ENS approaches aim to identify and characterise interactions or relationships 
between species (or occasionally individuals) and construct networks based on these 
interactions. However, ENS has largely been applied to the study of macro-organisms in 
terrestrial environments, particularly to study food web dynamics. 

Combining the NGS data generated from the analysis of RSN biofilm samples with ENS 
approaches may offer a unique opportunity to understand and develop metrics that better 
capture the function and dynamics of freshwater microbial communities and their wider 
ecosystems. However, ENS has not been widely applied to microbial molecular studies 
(Deng et al., 2012) or to the study of freshwater ecosystems (Windsor, 2023). Therefore, 
the benefits of taking an ENS-based approach for exploring the NGS data generated 
through the RSN, particularly for exploring changes in community function, are not yet fully 
understood. 

4. This report 
Authored by experts in the fields of ecological network science and microbial ecology, this 
report explored the state of ENS, including its potential application to understand impacts 
of environmental change on ecosystems, as well as its limitations. Its sets out 
recommendations to explore a comprehensive spatial and temporal molecular microbial 
dataset generated from river biofilms across England. 
 
Three UK-based academics were commissioned by the Environment Agency to each write 
a think piece paper to explore the state of ENS. This report brings together their views on 
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the applications and limitations of ENS when applied to microbial molecular data as well 
as recommendations about how the river biofilm microbial dataset described above could 
be explored to bolster understanding of ecosystem function, with a view to generating new 
microbial metrics of ecosystem health. 
 
Authors were asked to specifically address the following questions in their think piece 
paper.  
  

• Where has ENS been applied and what can it tell us? This will include advantages 
and limitations and will provide an overview of the research landscape.  
 

• Can ENS be applied to measure ecosystem resilience using microbial molecular 
data and how established is this as an approach?  

 
• What network properties can be used to measure a community’s response to 

stressors and resilience? Provide a critical evaluation and evidence-based opinion 
on why and how they have potential. 

 
• What are the gaps in knowledge that need addressing for network approaches to 

be used? 
 

• What recommendation and approaches would you put forward to explore our multi-
taxa microbial molecular dataset?   

 
Think piece paper lead authors were: 
 
Think piece 1 - Dr Fredric Windsor, a lecturer and academic at Cardiff University 
(School of Biosciences) with an interest and expertise in network ecology, specifically 
inter-specific interactions, and the response of ecosystems to change. Windsor has led 
and co-authored empirical research articles on ecological network science, including on its 
application to freshwater ecology, which have been published in peer-reviewed journals 
including the Journal of Biogeography, the Journal of Applied Ecology, Agriculture, 
Ecosystems, and Environment, Perspectives in Ecology and Conservation, and Methods 
in Ecology and Evolution. Despite a focus on the ecology of macro-organisms, Windsor 
has co-authored a study addressing the inclusion of (dietary) metabarcoding data into 
ecology network analysis. 
 
Think piece 2 - Professor Darren Evans is a Professor of Ecology and Evolution at the 
University of Newcastle (School of Natural and Environmental Sciences). His research 
expertise lies in the application of network theory and DNA-metabarcoding data to 
understand species interaction and ecosystem function. Evans has published extensively 
on network ecology and specifically on the integration of eDNA-metabarcoding and other 
molecular data into network analysis in peer-reviewed journals including Science, 
Philosophical transactions of the Royal Society of London B, PLoS One, Functional 
Ecology, Molecular Ecology and Methods in Ecology and Evolution and has co-authored 
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several book chapters. Evans currently sits on the Biodiversity Expert Committee for the 
Department of Environment, Food, and Rural Affairs and the Expert Committee on Forest 
Science for the Forestry Commission and is an editor of the Journal of Animal Ecology. 
 
Think piece 3 - Professor Alex Dumbrell is a Professor of Molecular Ecology in the 
School of Life Sciences at the University of Essex. His research expertise combines 
ecological theory, with advance informatics and molecular techniques to Reunderstand the 
mechanisms regulating biodiversity (mainly mirobial) and ecosystem functioning, and how 
this changes in the presence of multiple stressors (e.g., chemicals, warming, land-use 
change, urbanisation etc). He has published extensively on a range of topics including the 
application of NGS to freshwater biomonitoring and network ecology. Research and review 
articles led and co-authored by Dumbrell on molecular ecology and network science have 
been published in peer-reviewed journals including including Nature Food, Nature 
Communications, Nature Climate Change, Proceedings of the National Academy of 
Sciences, Molecular Ecology, Journal of Ecology, Journal of Applied Ecology, Global 
Change Biology and Trends in Ecology and Evolution. Dumbrell is the current editor-in-
chief of Advances in Ecological Research. He also sits on the Peer Review College of the 
Natural Environment Research Council (NERC), the UK Research and Innovation Panel of 
Experts, and on the NERC Environmental Omics Facility steering committee.  
 
Introduction, recommendation synthesis, and next steps regarding the application of 
ENS to the NGS microbial data generated through the Environment Agency’s RSN are 
authored by Dr Laura Hunt, who is an environmental scientist in the Environment Agency’s 
Chief Scientist’s Group. 
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Think piece 1: Developing an understanding 
of ecological network science for river 
ecosystems 
Fredric M. Windsor1 

1School of Biosciences, Cardiff University 

Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX 

Executive summary 
Ecological Network Science (ENS), otherwise known as network ecology, is the study of 
ecological interactions and the networks they form. ENS has commonly been applied to 
networks of different species (e.g., plants and pollinators, predators and prey, seeds and 
seed dispersers), but there are other scales and levels of biological organisation at which 
networks can be used. Individual, spatial, social-ecological networks all provide promise. 

Extra effort, beyond that of population and community sampling, is required to collect data 
on ecological interactions. As such, it is necessary that the benefits and drawbacks of ENS 
are understood and evaluated on a case-by-case basis. The major advantages of ENS 
are: (i) flexibility; (ii) scale independence; (iii) aid in the visualisation and understanding of 
complex problems; and (iv) can link ecological structure to ecosystem functions and 
services. However, some limitations of ENS are: (i) labour and financial expense of data 
collection; (ii) limited spatial and temporal coverage; (iii) restricted spatial and temporal 
resolution; and (iv) potential to create unnecessary complexity (depending on the 
question).  

Freshwater ecosystems have received little research surrounding ecological networks, 
mainly due to the difficulties surrounding collecting interaction data under water – 
especially in lotic systems. Currently a range of methods are being developed to open up 
this field, including; automated image and video footage analysis, stable isotopes and 
molecular methods. By combining data from different methods, it will be possible to 
construct networks with positive and negative ecological interactions, and better 
understand the structure of ecosystems.  

Molecular methods, such as metabarcoding and metagenomics, are a flexible and 
powerful tool. These techniques offer an opportunity to gain information on species 
identities, phylogenies and traits. A significant limitation, however, is that interactions 
between organisms often have to be inferred, especially for microbial communities. 

Methods of network inference have been developing over the past decade, and range in 
data requirements and accuracy. Although previously criticised for their simplicity and 
inaccuracy, recent advances have looked to incorporate extra data on biological traits and 
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phylogenies to enhance accuracy and realism. Recent methodological frameworks have 
been developed to account for all of the variation in the co-occurrence and abundance of 
organisms related to these factors, with the remaining unexplained variation ascribed to 
biological interactions.  

Ecosystem scale properties can be assessed using ENS. Resilience, in particular, can be 
assessed as ENS offers an opportunity to account for both direct and indirect effects of 
environmental change and other drivers of ecosystem structure and function. Many 
methods have been proposed for monitoring stability and resilience of ecosystems in the 
face of change, however, a range of recent developments allow for an understanding of 
these properties across different scales (local to global, short- to long-term).  

Environment Agency microbial community data, generated using metabarcoding and 
metagenomics, can be analysed using a range of different methods. Ecological 
interactions and networks can be constructed from network inference, based on a 
framework that can account for spatial and environmental factors (e.g., water quality and 
quantity), as well as potential biotic interactions (i.e., facilitation or competition). Integrating 
this information in network models at the river catchment scale would allow for an 
understanding of site and catchment resilience to further environmental change. 

1. Introduction 
Ecological Network Science (ENS), otherwise known as network ecology, involves the 
study of ecological interactions and the resultant networks they form (Borrett et al., 2014). 
These networks of interactions are incredibly diverse, ranging from mutualistic through to 
antagonistic and everything in between (Jordano, 2016a), as well as spanning spatial and 
temporal scales. These individual interactions, and their combinations, convey a range of 
ecosystem functions (e.g., decomposition, pollination, herbivory), are critical for the 
resilience of ecosystems to environmental change (Evans et al., 2016) and can provide 
early warning signals for biodiversity loss (Dirzo et al., 2014; Valiente-Banuet et al., 2015). 
Monitoring and conserving ecological interactions and networks is therefore critically 
important (Gray et al., 2014), and requires further research (Windsor et al., 2023). 

Ecological interactions take many forms in the natural world. At one end of the spectrum, 
mutualisms occur, where both interacting nodes benefit from the interaction, for example 
pollination and seed dispersal (May, 1982). At the other, antagonisms, where one node 
benefits and the other is detrimentally affected, such as predation, decomposition and 
herbivory (Jordano, 2016b). There are also a variety of interaction types in between, for 
example commensalistic and amensalistic interactions (see Table 1). As well as being 
diverse in nature, interactions can form at different levels of biological organisation. As an 
example, networks of interactions form between cells, individual organisms, species, 
habitats, ecosystems and continents. I will talk more about this in Applications of ENS. 

The following sections of the report aim to cover a range of distinct, yet inherently linked 
aspects of ENS. Section 2 describes a range of ecological networks that are commonly 
constructed across different scales and levels of biological organisation and their 
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applications for monitoring and management. Section 3 identifies the major gaps in ENS, 
focusing on its applications for decision-making and monitoring. Section 4 focuses in on 
where ENS has been applied to freshwater ecosystems, which is a far smaller body of 
research in comparison to terrestrial and marine ecosystems. Section 5 covers the 
nuances and considerations around the use of molecular methods for constructing 
ecological networks and how the data generated can be used for ENS. Section 6 runs 
through the methods that can be used for inferring ecological interactions from monitoring 
data (molecular or otherwise). Section 7 details the current state of play in understanding 
the resilience and stability of ecosystems using an ENS framework. Finally, Section 8 
synthesises the above sections to provide some specific recommendations for the 
Environment Agency metagenomic dataset.  

 

2. Applications of ENS 
Ecological networks can be constructed and analysed at lots of different scales, from cells 
to ecosystems. These analyses can be used to understand the structure and function of 
ecosystems and in turn inform decision-making with regards to management. Below is a 
brief summary of ENS across a range of scales of particular interest for monitoring. 

 

2.1 Biological networks 

Individual-based networks focus on individual elements, where the nodes are elements with 
their own agency – for example individual cells or organisms (Guimarães, 2020). These can 
be incredibly useful when investigating fundamental ecological questions, such as individual 
behaviours (e.g., prey preferences) and how they influence populations, communities, 
ecosystems and ecological processes/functions (Arroyo-Correa et al., 2021; Gómez and 
Perfectti, 2011). Typically, these networks have been constructed through direct, repeated 
observations of individual behaviour. In aquatic systems, these methods have been applied 
in a few unique circumstances, for invertebrates and fish. For example, studies have looked 
at the movement of individual brook charr (Salvelinus fontinalis) throughout river courses 
over their migration cycle to understand the genetic flow upstream and downstream 
(Morrissey and Ferguson, 2011). When multiple datasets are investigated in tandem 
individual-based network analyses also can provide greater resolution and more information 
on seasonal and ontogenetic shifts, and a better understanding of temporal variation in 
network structure in comparison to aggregated, inter-specific networks (Woodward et al., 
2010). In terms of applied research, however, there has been limited use of individual-based 
methods in decision-making, conservation or restoration (but see literature on landscape 
connectivity and individual-based spatial networks; Kanagaraj et al., 2013). Into the future, 
nevertheless, these techniques will undoubtedly prove useful for understanding ecosystem 
response to environmental change. 
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Inter-specific networks are the most commonly used ecological networks due to the fact that 
species are common currency in population and community ecology. Studies typically 
assess different antagonistic and mutualistic interactions, including but not limited to: plant-
pollinator, host-parasite, plant-herbivore, predator-prey, plant-frugivore and plant-seed 
disperser (Mougi and Kondoh, 2012). These networks are constructed using lots of different 
types of methods, including: direct observation, molecular analyses, statistical inference, 
amongst others (Jordano, 2016b). Ultimately, however, all methods identify individual taxa 
and seek to identify the interactions between them, to compile complex networks of 
interactions. Such networks provide a large amount of additional information in excess of 
that achieved from ecological communities alone – for example details of decomposition, 
predation and/or pollination (Felipe-Lucia et al., 2022). As a result of this, and due to their 
inherent structure incorporating species richness and biomass flow, ecological networks 
provide an suitable option for understanding the links between biodiversity and ecological 
function (Poisot et al., 2013). Something which is uncommon in the field of ecology. Inter-
specific networks have been proposed as widely applicable for decision-making (Windsor et 
al., 2023, 2022), however, there still remains limited uptake of these methods on the ground. 

 

2.2 Social networks  

Social networks can also be constructed, including humans and their actions. Commonly 
these are individual-based networks, but they can also represent groups of people (e.g., 
land managers or regulators). Although these types of networks are not directly relevant to 
ENS from a strict ecological perspective, they are useful for thinking about the 
implementation and effectives of management activities. In particular, a new paradigm has 
formed around the use of social-ecological networks (SEN), and the ability for these 
frameworks to directly incorporate management, ecosystems and ecosystem services 
(Bodin et al., 2019; Felipe-Lucia et al., 2022; Sayles et al., 2019). This allows for an 
integrated understanding of human actions on ecological systems, moving beyond studies 
that include the effects of anthropogenic stressors implicitly in their design (e.g., through 
measuring ecological structure or function along environmental gradients). It also provides 
significant promise for making changes based on the ecological data collected. For example, 
avenues of remediation, restoration, regulation or other management decisions surrounding 
ecological systems can immediately be identified within the social network. Further to this, 
we can assess the direct and indirect effects of management on society and biodiversity, 
with the aim of preventing unintentional effects.  

 

2.3 Spatial networks 

Spatial networks are a key component of modern decision-making in ecology and 
environmental science, and are one of few examples where networks have been completely 
integrated into landscape planning and management. For example, the “Making Space for 
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Nature” report by Lawton in 2010 references connectivity and isolation of habitats, and the 
limited potential for movement of organisms at the landscape scale (Lawton et al., 2010). 

Spatial networks can resemble all of the above network typologies (individual, inter-specific 
and multilayer), however, they are different in the sense that space is the primary focus of 
the networks of interactions. The links/edges in these networks can represent many different 
processes, but most often dispersal, foraging and gene flow between populations or habitats 
are investigated (Pilosof et al., 2017). Scale, as with other types of networks, is important 
and space can be incorporated at local scales (e.g., movement between habitat patches) or 
global scales (e.g., transcontinental migrations).  

In river systems, spatial networks are confined to the river channels (for completely aquatic 
organisms), and can represent unidirectional flows for water and nutrients, or bidirectional 
flows for mobile organisms such as insects, fish, birds and mammals. Physically, river 
systems have been treated as dendritic networks previously (Peterson et al., 2013), and 
such methods have been used to estimate nutrient flows, water temperature and other 
processes that operate in a single direction (e.g., effects of climate change and wildfire on 
stream temperatures and salmonid thermal habitats; Isaak et al., 2010). Indeed, the use of 
spatial networks in freshwater ecosystem assessments has been identified as a significant 
area of future research and innovation (Erős and Lowe, 2019).  

 

2.4 Merged networks 

Some methods have been relatively recently developed to combine different networks into 
one overarching framework. Such methods, often termed multiplex, multitrophic or 
multilayer networks (see Table 1), consolidate lots of different types of data across various 
scales (e.g., individuals through to ecosystems).  

Multilayer networks, are situated at the forefront of network science, being applied to 
emerging complex problems, such as disease spread, migration, and meta-populations or 
meta-communities (Pilosof et al., 2017; Silk et al., 2018). The layers in a multilayer network 
represent discrete units in space or time, for example, habitat patches, ecosystems or 
islands but also sample units (e.g., weeks, months, seasons or years). There are 
interactions within the layers (intra-layer interactions), but also interactions between the 
layers (inter-layer interactions) which can represent a range of different processes – e.g., 
the dispersal of different taxa between habitats (Hutchinson et al., 2019; Pilosof et al., 2017). 
Multilayer network analyses are not widely applied, mainly due to the limited datasets 
available at suitable scales. However, they present great promise as they are able to 
integrate ecological interactions at different spatial and temporal scales, and have the 
potential to understand scale variant properties of networks within one analysis. For 
example, one could describe an entire landscape using a multilayer approach: inter-specific 
interaction networks within habitats and the dispersal networks for different species across 
habitats. This would allow for an understanding of the dynamics of ecosystems incorporating 
effects at multiple scales (Box 1). 
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Box 1. Examples of multilayer network analyses for integrating data across scales.  

In a seminal review by Pilosof et al. (2017), several different examples were given 
involving multilayer networks (either temporal, spatial, or multiple different 
interaction types) to demonstrate their utility. A particularly interesting example is 
provided from an analysis of data from Norwood farm, where the robustness of 
different interaction networks was calculated based on changes to the structure of 
linked networks. This is an interesting example as network robustness is a 
commonly used metric of resilience and/or stability. Two layers of interactions, plant-
pollinator and plant-leaf miner parasitoids, with shared plant species, were analysed. 
Pollinators were removed from the network and the robustness (Table 1) of plants 
and leaf miner parasitoids were assessed. Plants would become extinct if they lost 
their pollinators, and parasitoids would become extinct if they lost their host plants, 
secondary and tertiary extinctions, respectively. It was found that the robustness of 
parasitoids was significantly different in the multilayer analysis than when analysing 
the individual layers, showing that the interplay of different interaction types has a 
significant impact on the whole system structure and dynamics. 

An modelling-based example, combining different levels of biological organisation 
(population, community and meta-community) is presented by Scotti et al. (2013). 
This modelling paper showed that the probability of different interactions forming 
(e.g., social interactions or migration) affects meta-population sizes and spatial 
heterogeneity across the wider food web. Altering parameters across the three 
different levels of organisation influenced the population dynamics all individuals in 
the food web. However, unexpectedly community dynamics (e.g., food web 
interactions) were not the overriding structuring force on populations, instead social 
and landscape processes had a greater effect. 

Both examples show the importance of taking an integrated approach, and 
incorporating associated and interlinked interactions across different levels of 
biological organisation.  

 

2.5 Applied ENS 

Network science, and by extension ENS, is often used in applied research. Recent reviews 
have acknowledged the diversity of potential applications of network thinking to ecology and 
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biogeography (Harvey et al., 2017; Sayles et al., 2019; Windsor et al., 2023): (i) 
conservation; (ii) invasion biology; (iii) restoration; (iv) biomonitoring; (v) species distribution 
modelling; (vi) risk governance; and (vii) landscape planning (i.e., corridors and habitat 
connectivity). Below I provide a series of examples highlighting the potential applications of 
ENS and their benefit. 

i) Conservation has a long history with network ecology (Harvey et al., 2017). A specific 
example from terrestrial ecology, is that of planning ecological conservation and restoration 
of plant-pollinator networks in forest ecosystems (Devoto et al., 2012). Individuals were 
prioritised for conservation based on restoration targets from plant-pollinator networks 
across a landscape, such as functional redundancy or complementarity. The framework, 
prioritising species conservation based on potential endpoints informed by ecological 
networks, was identified as a powerful tool for both conservation and restoration ecology 
(Devoto et al., 2012). There are many more instances where ENS can be applied to select 
conservation priorities or be used as a framework for assessing the effectiveness of 
conservation activities for ecosystem-scale interventions.  

ii) Ecological networks can aid in the identification of potential invaders (e.g., those with a 
high level of generalised interactions; Traveset and Richardson, 2014), their potential role 
in naïve systems (Romanuk et al., 2009), and the subsequent effects (e.g., competitive 
exclusion, population decline and reorganising communities; Hui and Richardson, 2022). 
Certainly, studies have shown that invasive species (both plants and seed dispersers) may 
dominate interaction networks and play key roles influencing network topology – the rules 
affecting how these invaders affect network structure, however, are the same rules as those 
governing the role of native organisms (Vizentin-Bugoni et al., 2021). 

iii) For restoration ecology, networks provide an opportunity to integrate lots of different types 
of information on organisms and their interactions, including the evolution or organisms and 
interactions (see Segar et al., 2020), and dynamical responses of organisms to species 
introductions and other changes (Raimundo et al., 2018). In restoration, a lot of emphasis is 
placed on the unknown indirect effects of introducing species, and thus these methods 
appear particularly useful within this subfield of ecology. Furthermore, restoration has 
primarily focused on a subset of organisms or individual species, whereas ENS provides an 
opportunity to understand ecosystem-scale effects of such management strategies.  

iv) Biomonitoring benefits from an ecological network perspective, in the sense that 
networks can provide additional information on ecosystem degradation (Gray et al., 2014). 
For example, significant changes in network structure can occur with little to no changes in 
the species richness or composition of the community (Valiente-Banuet et al., 2015). This is 
also important as there is potential for changes or a loss of interactions to be early warning 
signals of species loss or ecosystem scale changes (Windsor et al., 2023). It is important, 
however, not to see these methods as a replacement for standard biomonitoring, as the 
inverse of the above example can also be the case, where species identities change without 
significant fluctuations in network structure (Petanidou et al., 2008). Furthermore, there 
remains a series of developments in this field that are required prior to the widespread role 
out of ENS in standardised biomonitoring (Derocles et al., 2018). 
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v) The distribution of a species is inherently influenced by ecological interactions (Wisz et 
al., 2013). Recently, research has shown that data on ecological interactions can be used 
to truth and sense-check distribution data (Higino et al., 2023) allowing for an improved 
understanding of where organisms reside. Accounting for interactions, or their absence, in 
macroecology and biogeography is a promising area of future research – with a wide range 
of fundamental and applied uses (Windsor et al., 2023).  

vi) Decision-making is usually based on data provided by ecological studies, however, ENS 
through SEN analyses provides an opportunity to directly incorporate ecological data in 
human decisions surrounding the environment (Windsor et al., 2022). Risk governance, for 
example, has been shown to benefit from a SEN approach. For large wildfires (>100 km), 
alignment between the interactions of different actors (e.g., Forest rangers, land owners and 
residents) and the connectivity of spatial ecological networks (e.g., habitat connectivity), is 
critically important for the success of wildfire management (Hamilton et al., 2019). This 
example of applied ENS, although specific to risk governance, is more widely applicable – 
demonstrating the ability for ENS to include social, economic and any other interaction data 
from the surrounding systems.  

vii) Networks can be spatially organised (see 2.3 Spatial networks) and as such, ENS 
provides an opportunity for landscape planning and optimisation. Certainly, this has been 
where most applied ENS has been focused. For example, ENS can be used to quantify the 
levels of connectivity and the potential benefit provided by protected areas considering their 
location in spatial networks (Rayfield et al., 2011). Identifying areas that are good locations 
for conservation or restoration considering their position within the landscape is important 
as it can maximise the efficacy of site-based management strategies (Isaac et al., 2018).  

Although ENS have been widely applied to different fields of ecology and biogeography, 
there are a variety of technological and methodological developments that are required prior 
to the widespread uptake of such methods. Nevertheless, ENS has shown to be a useful 
tool in applied ecology and only through ground-truthing and continued application will these 
methods become socialised to a wider audience.  

 

2.6 Advantages of ENS 

Constructing and analysing networks is not always the most straightforward exercise in 
comparison to commonly used methods in population and community ecology (e.g., 
community sampling and taxonomic identification). But there are a number of advantages 
of ENS, from both a fundamental and applied perspective. ENS are: 

• Intuitive. Scientists have an innate appreciation for the interconnectedness of the 
natural worlds. Furthermore, many ecologists have been using networks, in the form 
of relational databases, to store all kinds of ecological data. This familiarity means 
that uptake and understanding of the results of network analyses is often high.  

• Able to integrate data across scales. As there is no prerequisite on what a node or 
a link can be (unlike other subfields of ecology where the elements are prescriptively 
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defined), networks can be used to integrate data across scales. This is uncommon in 
ecology, where scale-dependence, if often a significant issue and means that the 
results of many studies are not generalisable.  

• Useful aids in the visualisation of complex problems. Network diagrams provide 
a brilliant tool for visualising complex problems and the interconnectedness. As long 
as this is carefully executed (i.e., not confusing or overwhelming in terms of showing 
complexity) it is incredibly effective (Pocock et al., 2016).  

• Suitable for linking ecological structure to function. Ecological interactions 
describe the structure of ecosystems; however, they also represent ecological 
functions. For example, the interactions between predators and prey represent 
energy flux, plant and pollinators represent pollination, etc. Thus, by studying the 
structure and strength of ecological interactions, and their variation in space and time 
therefore affords information on the mechanisms underlying ecological function.  

• Direct links to ecosystem services. Beyond ecological functions, some interactions 
are ecosystem services. There are several examples of where direct and indirect 
ecological interactions are also ecosystem services, for example: plant-pollinator 
(pollination) and host-parasitoid (biological control). Furthermore, indirect effects on 
ecosystem service provision can be identified, for example predator-prey interactions 
between sport fish (e.g., salmonids) and insects, indirectly affect the recreational and 
provisioning services provided by fish by affecting population growth rates, biomass 
accrual, etc.  

• Flexible and can include different types of ecological and social interactions. 
As highlighted in above sections, lots of different information can be summarised in 
a network format. This provides significant analytical power when investigating 
problems that span different systems, or scales, as different types of data can be 
integrated with relative ease (Guimarães, 2020).  

The extra effort taken to capture data on the interactions between organisms therefore 
appears worth the effort. Nevertheless, there are challenges and limitations of ENS, and its 
use should be considered on a case-by-case basis. 

 

2.6 Disadvantages of ENS  

There are a number of limitations surrounding the use of ENS, which caveat some of the 
advantages described above. There are several fundamental challenges of using ecological 
networks, especially in an applied context:  

• Expense. Compared to population and community ecology, collecting information on 
ecological interactions requires significant financial and labour costs. Large numbers 
of ecologists are required to identify organisms in the field at different spatial and 
temporal scales, or samples can be collected and significant laboratory hours and 
consumables costs is incurred, for example, for molecular methods (Evans et al., 
2016).  

• Complexity. The aim of networks is to convey and understand the complex 
interactions present in the natural world. This, however, can be off-putting and 
overwhelming, and difficult to make sense of. Care therefore needs to be taken in 
presenting the important aspects of complexity without present a ‘ball of wool”. The 
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added value from visualising and appreciating the complexity of ecological networks 
should always be communicated effectively (Pocock et al., 2016).  

There are also significant technological and methodological challenges associated with 
collecting data on ecological networks:  

• Spatial coverage. Historically the coverage of ecological network data has been 
spatially restricted. Often studies sacrifice spatial coverage for temporal resolution, 
or vice versa (Windsor et al., 2023). Most studies to date have been completed at the 
site scale, for example across a single farm (e.g., Norwood farm; Evans et al., 2013; 
Pocock et al., 2012), or in a single river reach (Windsor et al., 2019). Studies at larger 
spatial scales have typically focused on a subset of interactions or taxa (e.g., only 
focusing on seed dispersing birds). This is changing, with studies able to make use 
of emerging technologies and methods (Besson et al., 2022). However, for the most 
part, spatial coverage of primary data studies remains restricted to landscape scales 
at best. This limits the extent to which findings can be translated across different sites 
or systems.  

• Temporal resolution and data aggregation. Ecological interactions do not occur all 
the time, or everywhere. Some interactions are common and may be frequently 
observed, whereas others may occur very infrequently, requiring a large sampling 
effort in order to detect them (Jordano, 2016b). As such, building complex ecological 
networks, incorporating large numbers of interactions, a certain level of temporal 
aggregation is often required. As ecological systems are extremely dynamic, this 
incurs some trade-offs in our ability to understand how interactions vary in time. As 
above, new methods for collecting data on ecological interactions are reducing this 
issue, allowing for comprehensive analyses of interactions, such that more 
information on interactions can be collected per timepoint – leading to a lesser need 
to aggregate, or aggregation over smaller timescales. This all allows for data to be 
analysed at higher temporal resolutions, understanding the dynamics of interactions 
and moving beyond the “snapshot” provided by previous network studies.  

• Sampling completeness, missing interactions and forbidden links. Linked to the 
above points on spatial coverage and temporal aggregation, making sure all possible 
interactions are sampled, is a large challenge. Some interactions occur commonly, 
and are easy to observe, others occur less frequently, and require a greater level of 
sampling effort to observe (Olesen et al., 2010). It is important that we understand 
how many of the potential or viable ecological interactions we have detected as 
network size (i.e., the number of nodes and links in a network) has a large bearing 
on many network properties. Indeed, in the past, large-scale analyses of network 
patterns can simply be an artefact of network size, rather than actual patterns in the 
topologies of the networks (Nielsen and Bascompte, 2007). It is difficult to assess 
sampling completeness, as we have an imperfect knowledge around which 
interactions are expected or not expected to occur, and this will vary in space or time. 
Nevertheless, it is generally well accepted that some level of data aggregation from 
field sampling is required to attain an acceptable probability that all ecological 
interactions have been sufficiently sampled.  

As ENS is an emerging field of research, many of these drawbacks are actively being 
addressed, for example, automated sampling of ecological interaction data (Besson et al., 
2022) and distributed, rapid next generation sequencing  
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3. Gaps in knowledge 
As with other fields of research, ENS has gaps. However, unlike many other fields, these 
gaps often relate to our ability to collect interaction data at suitable spatial and temporal 
resolutions.  

Classical methods for constructing ecological networks (e.g., gut content analysis, timed 
walks, rearing parasitoids) are time consuming, costly and requires significant labour (see 
2.7 Disadvantages of ENS). All of which restrict the number of time-points and locations that 
can be sampled to a degree that represents reality. Although new methods provide 
significant promise (see 5 Molecular methods and considerations for ENS) there remains a 
limited number of studies that operate at temporal and spatial scales useful for decision-
making, conservation, restoration, or other management activities. 

Studies on ecological networks are limited to site and landscape scales, although this is 
changing (e.g., Galiana et al., 2021, 2018). This means that we do not well understand 
biogeographic patterns in ecological interactions, as well as ecological networks (Windsor 
et al., 2023). Expanding the focus of studies to operate across broader scales (i.e., across 
multiple habitats or catchments) will provide potentially significant advances in our 
fundamental understanding. Furthermore, studies at this scale will be more suitable for 
informing management activities (Hutchinson et al., 2019). Expanding our research to 
understand spatial patterns in network structure and function, and applying this information 
to conservation, restoration, and other activities, is vitally important.  

Due to the limitations surrounding temporal resolution and the regular need to aggregate 
data across multiple time steps, we have a poor understanding of the dynamics of ecological 
networks over ecological meaningful timescales (e.g., days to weeks). However, we know 
that interactions are likely to be changing in their identity and frequency over a range of 
temporal scales (e.g., hourly to multi-decadal), based on a variety of different factors. These 
factors depend somewhat on the interaction of interest (e.g., predation, pollination or 
competition), but can be anything from resource availability (e.g., phenology of food plants 
or prey) through to individual-level foraging behaviour (i.e., accessing different habitats 
throughout the day). Understanding this variability and dynamism in ecological interactions 
is crucial for predicting the effects of environmental change as it has a range of connotations 
for processing such as adaptive rewiring (e.g., the ability of an organism to persist by 
changing who it interacts with; Raimundo et al., 2018; Thierry et al., 2011) and cascading 
extinctions (Dunne and Williams, 2009; Vieira and Almeida-Neto, 2015). Thus, being able 
to collect data on interactions at high temporal resolutions is a current gap, but a focus of 
much research.  

There remains a significant gulf in our understanding of ecological interactions and networks 
between different ecosystems. Terrestrial and marine systems have long received a greater 
amount of attention in the field of network ecology, with freshwaters receiving relatively little 
attention. I focus on this in more detail below (4 ENS in freshwater ecosystems), as it is such 
a significant and contemporary gap in our understanding.  
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4. ENS in freshwater ecosystems 
The focus of much ENS research to date has been in terrestrial and marine ecosystems. 
There are, however, a range of ecological interactions in freshwaters (Figure 1) that could 
be critically important to their function and overall health – as is the case for other 
ecosystems (Dirzo et al., 2014; Valiente-Banuet et al., 2015). We currently only understand 
a small number of the potential interactions that could be present, and the vast majority of 
research focuses on trophic interactions and food webs (Silknetter et al., 2020; Windsor, In 
Review). Classical work, by pioneers like Charles Elton, did investigate competition and 
other non-trophic interactions (Elton, 1929). Indeed, there is a strong legacy of behavioural 
ecology in freshwaters that would lend itself to collecting more information on the wider suite 
of mutualistic and antagonistic interactions in these understudied environments. Despite 
classical research, the vast majority of research has focused on trophic interactions and the 
food webs that they generate. The absence of data on non-trophic interactions in 
freshwaters is problematic. 

There is a high potential diversity of ecological interactions in freshwaters (see Figure 1 for 
some examples). They range from mutualistic through to antagonistic, and can involve both 
direct and indirect interactions between a range of taxa. These interactions can be 
summarised across scales, and also at the system scale (i.e., across dendritic river 
networks). Unlike in terrestrial and marine systems, our understanding of ecological 
networks in freshwater ecosystems is restricted to food webs (Ings et al., 2009). Yet, recent 
reviews have highlighted the importance of positive interactions, i.e., mutualisms and 
commensalisms, and their diversity in freshwaters (Silknetter et al., 2020). There is, 
however, significant potential to use ENS in freshwater ecosystems, particularly river 
systems which have a spatial network structure.  
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Figure 1 - Examples of ecological interactions in freshwaters. Produced with permission 
from Windsor et al. (In Review). 

 

5. Molecular methods and considerations for ENS 
DNA and RNA-based methods for sampling ecological networks is an area of emerging 
promise for ENS applications (Derocles et al., 2018; Evans et al., 2016; Evans and Kitson, 
2020). These methods present great promise as they offer a way of detecting previously 
hidden interactions (i.e., from microorganisms) and thus fleshing out networks (Clare et al., 
2019; Miller et al., 2021; Vacher et al., 2016), but also allow for collecting data at greater 
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spatial and temporal resolutions than possible with classical methods (Bohan et al., 2017). 
Below I discuss a range of specific advantages of this group of methods for constructing 
ecological networks.  

Where other sampling methods fail to non-invasively sample a wide range of different 
interactions, molecular methods succeed. For example, faecal samples (Drake et al., 2022), 
mouthpart and skin swabs (Evans and Kitson, 2020), water and air sampling (Clare et al., 
2022), all provide the opportunity to detect interactions ranging from mutualisms through to 
antagonisms (e.g., symbioses, parasites, and parasitoids). Collecting this array of 
interactions using a single method means that it is possible to reduce the biases associated 
with merging together interaction data from multiple types of sampling method (see Cuff et 
al., 2022). Whilst minimising sampling costs and maximising processing efficiency (i.e., all 
of those samples, after some sample specific extractions, can be processed in exactly the 
same manner).  

Molecular methods also provide an opportunity to detect previously difficult to observe 
interactions. These interactions may be challenging to detect and/or quantify for a variety of 
reasons, but these methods in one way or another can help:  

• Cryptic organisms (i.e., where taxonomic identification is extremely difficult). 
As molecular methods are not completely reliant on taxonomy (e.g., species can be 
identified based on phylogenetic dissimilarity), we can distinguish between different 
operational taxonomic units in cases where taxonomy might struggle and generate 
estimates of species richness (Helmus et al., 2007). Identification of unknown 
organisms and those taxa from poorly classified groups of organisms, such as 
microorganisms and microbes (Feng et al., 2019), is possible using these methods, 
unlike classic taxonomic methods which are reliant on expert taxonomists. 

• Rare organisms or interactions. Molecular methods are not contingent on the 
organisms and interactions being present at the exact moment in time that sampling 
takes place, as is the case for most classic methods of network construction. In fact, 
DNA-based methods can be used to detect interactions that have occurred sometime 
in the past, or from carrion prey (e.g., Neidel et al., 2022), depending on the DNA 
degradation rates in the given environment. 

• Soft or amorphous organisms/tissues. A limitation of visual analysis of gut 
contents or faecal samples is the inability to detect and quantify the contributions of 
organisms without hard parts, e.g., chitin or bone. Molecular methods are not subject 
to these same limitations and can detect organisms irrespective of their tissue 
composition (Symondson, 2002). 

• Symbionts and parasites. By sequencing the tissues of organisms, it is possible to 
concomitantly detect endosymbionts and endoparasites – interaction organisms that 
are often difficult to detect using standard visual methods (Miller et al., 2021). This is 
especially useful for organisms without distinctive features, or those groups which 
have poorly described taxonomies.  

A further major benefit of molecular approaches, touched upon above, is the relatively low 
cost of such methods. Sample collection requires simply the sampling of individuals, 
populations or communities using standard monitoring methods (e.g., kick sampling, Surber 
sampling or malaise traps), which is streamlined in comparison to the methods used for 
collecting information on interactions in the field (e.g., timed walks, transects). Samples are 
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then transported to the laboratory, where the majority of the time and financial expense is 
incurred. Per unit sample costs, however, for barcoding and metabarcoding have reduced 
drastically over the past decade – mainly due to advances in throughput of next generation 
sequencing platforms (Shokralla et al., 2012; Srivathsan et al., 2021). There is the significant 
caveat, however, that this is the cost for researchers operating in Europe, North America 
and Asia, and the costs of consumables (e.g., plastics, reagents) increases considerably in 
other regions of the globe where import taxes are levied against such items (e.g., South and 
Central America). 

Using molecular methods to identify interactions also provides an additional layer of 
information that can be used to understand the structure of ecosystems – phylogenies 
(Evans et al., 2016). Phylogenetic relatedness of organisms can be derived from meta-
barcoding data using de novo methods or constructed by matching taxonomic assignments 
from metabarcoding and bioinformatics (e.g., using GenBank and BOLD) to existing 
databases containing phylogenetic information on different organisms (e.g., rotl; 
Michonneau et al., 2016). Phylogenetically-structured networks have the ability to improve 
predictions of network structure in the face of environmental change or management. For 
example, predictions of species introductions can be enhanced by assuming that the 
introduced species will interact in a similar way to the most phylogenetically similar species 
in the existing network (Raimundo et al., 2018).  

As with any other sampling method, however, molecular methods also have limitations. One 
of the major drawbacks of molecular-based ecological networks is the necessity that data 
be binary (Cuff et al., 2022). Although read counts have been used to produce quantitative 
interaction data (e.g., trophic interactions; Deagle et al., 2013), with significant assumptions 
and caveats. In recent work methods of semi-quantitative networks based on molecular 
methods, but also combinations of different methods, have been presented, somewhat 
circumventing this limitation (Cuff et al., 2022). However, in comparison to other methods, 
the accuracy and precision of interaction quantification derived from molecular techniques 
remains restricted. This is problematic as information on the strength of interactions between 
organisms is critical for understanding the structure and function of ecosystems (Berlow et 
al., 2004).  

Another limitation for non-sample-specific methods (i.e., molecular methods applied to 
whole community samples), is that ecological interactions have to be inferred. This has 
many caveats which are discussed below (6 Inferring ecological networks from monitoring 
data), but in essence it generates data on ecological interactions and networks in which we 
have less confidence. 

Finally, there are also some fundamental ecological caveats or limitations of molecular 
methods and interpreting the data that they produce. Problems around detecting 
cannibalism and intra-guild predation (Traugott et al., 2013), identifying complex diets in 
omnivores (Tercel et al., 2021) and swamping of dietary data by predator DNA (Cuff et al., 
2023), all limit the degree to which we can construct accurate and representative ecological 
networks.  
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6. Inferring ecological networks from monitoring data 
Ecological interactions, and the ecological networks they form, can be assembled from 
alternative data sources, such as population estimates across communities (Morales-
Castilla et al., 2015) or trait matching based on a priori knowledge of which traits dictate 
ecological interactions (i.e., body size). This is a dynamic area of research with significant 
interest (as directly collecting information on ecological interactions is challenging). There 
are a variety of different methods that require different levels of data input. 

The simplest methods for inferring ecological interactions from community data are those 
that use associations and correlations for presence/absence and abundance data, 
respectively (e.g., trophic and non-trophic networks; Sander et al., 2017). These methods 
require the least amount of data types, but still require a large amount of data across either 
space or time, to be accurate. There have been significant criticism around these methods 
(Blanchet et al., 2020), as they provide no indication of an actual biotic interaction, and could 
simply result from organisms displaying similar habitat preferences. For example, it has 
been shown in stream fishes that species-habitat relationships were the major determinant 
of species co-occurrences, as opposed to species interactions (Peres-Neto, 2004). The 
direction of interactions, i.e., positive or negative, is also difficult to extract for these data. 
For example, it has been shown that abundance correlations for microbes convey very 
limited amounts of information on the networks of interactions in modelled microbial 
communities, and the direction of relationships did not always match the direction of 
interactions (Pinto et al., 2022) – i.e., negative co-occurrence patterns did not indicate 
antagonistic interactions. There are more complicated methods of analysis, i.e., conditional 
dependence-based methods (Feng et al., 2022), and for certain taxonomic groups, without 
good information on biological traits or other information, this may be the only option. 

Going a step further, it is possible to combine co-occurrence data (either presence/absence 
or abundances), with information on life history, morphology, bioenergetics or other extra 
biological data for organisms (Pichler et al., 2020). This additional step can range from 
simple (i.e., rules around size-structure in food webs; Pomeranz et al., 2019) through to 
complicated (i.e., calculating risk-reward for different seeds based on nutrients and handling 
time; Pocock et al., 2021). An alternative is using databases of previously observed 
interactions, for example Database of Insects and their Food Plants, or WebBuilder for 
trophic interactions in river organisms (Gray et al., 2015). Adding in ecological rules to what 
are solely statistical relationships increases the accuracy of estimates, but at the cost of 
collecting or collating those data. For well understood organisms, these data may be easy 
to come by, however, for organisms where these data are difficult to procure (e.g., micro-
organisms) this method may not be suitable. 

The most complicated, yet arguably accurate, methods that currently exist aim to explain all 
potential variation in the presence/absence or abundances of different organisms.  The 
methods use spatially and temporally structured variables, such as site-specific 
environmental conditions (temperature, water quantity and quality, pH), regional species 
pools and evolutionary histories (e.g., phylogenies), before then ascribing any remaining, 
unexplained co-occurrence to biotic interactions (Tikhonov et al., 2020). There are a variety 

https://www.data.gov.uk/dataset/c9bdcc74-4924-4a6f-878e-3cb564d27e43/insect-species-richness-for-each-plant-species-and-insect-plant-interactions-from-the-database-of-insects-and-their-food-plants-dbif-version-2
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of different methods that have been used, most of which have been derived from attempts 
to improve Joint-Species Distribution Models (J-SDMs; Zurell et al., 2018). Incorporating 
eco-evolutionary information, as well as how these processes manifest themselves in the 
distribution of organisms, appears to be the most robust method for inferring interactions. 
Nevertheless, these methods are contingent upon high quality data collected at appropriate 
spatial and temporal scales, and a large amount of information on the target organisms, all 
of which restrict the widescale application of methods across taxonomic groups, such as 
microbes. Nevertheless, this is where data from metabarcoding and metagenomics provides 
an opportunity to collect data that conforms to the above specifications (i.e., highly replicated 
spatially and temporally, as well as being able to collect data on traits and phylogenies).  

Inferring networks remains a growing area of interest in network ecology, considering the 
potential for using data that has not been specifically collected to construct networks. It, 
however, is clear that there are many caveats and assumptions that must be made, limiting 
the applicability of these methods and necessitating a case-by-case appraisal of the 
suitability of different techniques. However, it is also the case that for some groups of 
organisms, inferring interactions is the only feasible method of network construction 
currently, without a paradigm shift in how we collect data on interactions for microorganisms. 

7. Analysing ecosystem-scale properties (e.g., 
resilience and stability) 
There are a variety of options for understanding ecosystem-scale resilience using ENS, as 
well as using simple monitoring data (i.e., presence/absence or abundances). Resilience, 
however, is a poorly defined concept (Pimm et al., 2019). As such, it is important to 
understand the component of resilience or stability that pertains to any given research 
question, as this will dictate the appropriateness of different metrics or measurements. 
Below, I detail some of the options for understanding the ability of an ecosystem to respond 
and be resistant/resilient to environmental change. 

7.1 Topological properties of networks 

Many topological properties of networks have been suggested to represent the stability or 
resilience of ecological networks to change. These are often used as proxies, as these 
metrics do not require dynamic models or other more complicated analyses to understand 
whether a network is dynamically stable. Below I list some commonly used properties used 
to describe the complexity (and thus stability), and examples from the literature, as well as 
information as to the degree to which these metrics can be used to understand stability or 
resilience.  

• Network size – the number of nodes (e.g., species richness). This is the oldest 
measure of complexity (see MacArthur, 1955), but it does not account for a range of 
important structures within ecosystems. This measure is reliant on the assumption 
that higher biodiversity generates higher stability, which is known to not necessarily 
be the case (McCann, 2000). 
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• Connectance – the ratio of observed links to potential links or the overall density of 

links within a network. It was researchers using connectance or link density as a 
proxy for the stability of a system that originally kick-started the complexity-stability 
debate (Landi et al., 2018). Experimentalists showed that simple systems were less 
stable (Pimm, 1984), whereas some modellers showed that the more 
interconnected and complex a network is, the lower the system’s stability (May, 
1974) and others showed the opposite (De Angelis, 1975). As this is a contentious 
measure of stability, it is not the necessarily the best metric to use, however, it does 
convey the complexity of a system, if not the systems’ stability. 
 

• Interaction evenness – the distribution of links across nodes. An uneven 
distribution of links across a network can mean that it if that node is lost, there is 
likely to be a large number of unconnected species – which can be problematic for 
both mutualistic and antagonistic networks. However, this metric does not provide 
any information on how likely it is that a system changes state or that the well-
connected species will be lost. This means that inferring stability from this metric is 
challenging.   
 

• Modularity – the number of modules (well-connected subnetworks) in a network. 
There are mixed results of the effects of modularity on stability, but generally 
modularity has a moderate stabilising effect, but the inverse of modularity, i.e., 
uniform connectance, is destabilising (Grilli et al., 2016). Again, this is not the case 
in all systems, and information on the ecological meaning of modules is not 
conveyed in this simple metric. 
 

• Nestedness – the degree to which interactions from less well-connected nodes are 
subsets of the interactions of well-connected nodes. Generally, it is shown that 
nested networks are less stable (Staniczenko et al., 2013) as the loss of nodes or 
interactions would result in a wider impact as nodes are jointly connected. 
Nestedness and modularity are often talked about as being two sides of the same 
coin (Fortuna et al., 2010), therefore they offer complementary, if not slightly 
different information on the system.  

As described above, many of the metrics have complicated and inconsistent relationships 
with the stability of ecosystems, thus they do not provide useful proxies, unless under 
specific circumstances or within highly controlled experiment systems where the behaviour 
of the organisms or communities are well characterised.  

 

7.2 Network robustness  

Robustness is a classic method of assessing the tolerance of an ecological network to the 
removal of nodes (Delmas et al., 2019). It is a useful technique as robustness can be 
calculated through a logical set of rules, and it can be used to understand whether certain 
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network properties (e.g., nestedness, connectance, modularity) convey enhanced or 
decreased resilience to node loss. In ecological networks, most examples of robustness 
analyses are completed for inter-specific interaction networks, where the nodes represent 
species. Therefore, in these situations we are investigating the ability of an ecosystem to 
tolerate extinctions.  

There are many different methods for assessing the robustness of a network to extinctions, 
but the general framework is consistent:  

1. Generate an extinction list (e.g., a sequence of nodes to remove from the network, 
nodei … nodei+n)  

2. Remove node i from the list (primary extinctions) 
3. Assess whether any other nodes in the network have become isolated (e.g., no longer 

connected to any others in the network) 
4. Remove nodes that have become isolated (secondary extinctions) 
5. Repeat steps 2-4 until all nodes are lost from the network 
6. Calculate the robustness metric (e.g., 50 % loss of species; Dunne et al., 2002) 

There are lots of options for customising each step of this procedure, depending on the 
question being asked and also the data available. Firstly, the extinction list can be based on 
data collected from the field which convey some indication of extinction risk (e.g., body size 
or abundances), or some topological property of the nodes (e.g., degree) and therefore 
increase the ecological realism (Bane et al., 2018; Lu et al., 2016) – i.e., making the correct 
species extinct in the right order. Secondly, rather than a node becoming extinct once all of 
its links have been removed, a threshold of loss can be set, such that a node becomes 
extinct if it loses 50% of its links, or in the case of weighted networks, 50% of the value of 
its links (Bane et al., 2018). This means that you can adjust the sensitivity of different nodes 
to primary extinctions and potentially increase the realism of the robustness analyses, as it 
is not necessarily a suitable assumption to expect a species or individual to persist as long 
as it remains connected within the network. Thirdly, after a primary extinction, different 
ecological processes can be simulated, such as interaction rewiring – where a node can 
create new interactions with a different set of nodes, based on a predefined series of rules. 
These rules can be: (i) evolutionary – rewiring can occur with other nodes that interact with 
phylogenetically similar species (Rezende et al., 2007); (ii) morphological – organisms with 
similar traits can rewire to interact with other nodes. For example, size-matching insects and 
plants (see Pichler et al., 2020); (iii) phenological – organisms can only interact if they are 
present in the same place at the same time. For example, plants only flower at specific times 
of year, so pollinators will only interact with those plant species during defined time periods 
(Peralta et al., 2020); or (iv) behavioural – some organisms are more or less specialised and 
therefore can switch to different resources more or less easily (behavioural plasticity). For 
example, pollinators will make use of resources available to them in a non-selective way – 
i.e., there is an element of choice when multiple resources are available – and this affects 
robustness (Kaiser-Bunbury et al., 2010). 

It is also possible to enhance the ecological realism of robustness analyses by incorporating 
dynamic processes, such as short-term changes in population sizes alterations in biological 
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traits (i.e., changing body size), but also longer-term processes such as evolution and co-
evolution (Graham et al., 2023). These methods are known as dynamic or adaptive network 
models (see Segar et al., 2020), and have been applied to terrestrial ecosystems (Maia et 
al., 2021). They allow for feedback between ecological and evolutionary drivers of network 
structure, as would be the case in the real world.  

In comparison to other topological measures, network robustness provides a more realistic 
estimate of resilience or stability, as it involves a logical and ecologically sensible method of 
understanding changes within existing ecosystems. Other metrics don’t take this extra step 
and instead implicitly suggest stability or resilience. 

7.3 Engineering resilience  

First proposed by Holling (1973), the idea of using resilience in ecology is interesting, but 
difficult to define property of an ecosystem. Holling later went on to define two different types 
of resilience: engineering and ecological (Holling, 1996). Engineering resilience (Table 1) is 
a more straightforward property of a system to assess as it assumes a single stable 
equilibrium and one can measure how long it takes to return to this equilibrium. Whereas, 
more realistic, but more difficult to measure, ecological resilience assumes multiple potential 
equilibria that a system can occupy. 

Methods have been developed to calculate engineering resilience for ecological networks, 
including both positive and negative interactions (Sauve et al., 2016). Termed ‘stability’, and 
calculated as the minimum intra-specific competition (i.e., the smallest level of self-
dampening) to achieve stability within a community (Neutel et al., 2007, 2002). We can use 
these methods to determine how ‘quickly’ a system can return to its previous state based 
on a static snapshot of an ecological network. This essentially generates similar data to the 
methods described in 7.5 Persistence, however, it only requires static data (i.e., data from 
a snapshot in time), rather than a time series of values. 

7.4 Response diversity  

Response diversity is the range of potential responses or reactions of organisms to a given 
stressor (e.g., environmental change) or set of stressors (Elmqvist et al., 2003). The theory 
is rooted in the insurance hypothesis – that greater biodiversity guarantees that some 
organisms will maintain functioning even when others are lost (Yachi and Loreau, 1999). It 
is seen as a crucial mechanism underlying ecological resilience to change, especially during 
periods when there is reorganisation. Although response diversity is not a new concept, it 
has seen a recent resurgence in ecology, as a result of new conceptual and empirical 
thinking and an appetite for consolidating ideas around the empirical aspects of this concept 
(Ross et al., 2022). This has also led to a push in calculating metrics of response diversity, 
which until recently has been out of reach. 

Ross et al. (2022) outlines a simple, yet robust, framework to calculate response diversity 
by measuring environment-dependent ecological responses to biotic or abiotic 
environmental variables. It is based on performance-environment relationships (i.e., the 
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relationship between biological traits and gradients of environmental conditions; Figure 2). 
The method is suitable for application to field-based community data, including that collected 
over time and across multiple sites. It is, however, contingent upon measuring trait 
information on the different species within the community. Saying this, these data can take 
different forms, and the authors in fact encourage the selection of the correct data for the 
questions being asked. As such the framework is flexible and can be coupled with standard 
biomonitoring (i.e., species abundances) and secondary data on traits (e.g., cell size for 
microbes). It is feasible to use ecological interactions, associated with defined ecosystem 
functions, i.e., decomposition or resource production, as the traits in these analyses. There 
is also potential, for datasets that have multiple environmental variables operating 
simultaneously, to use environmental condition surfaces, to account for interactive effects 
of stressors on ecological communities (Ross et al., 2022). This would allow for a more 
complete understanding of the interactive (additive, antagonistic or synergistic) effects of 
multiple different stressors. 

 

 

Figure 2. Measuring response diversity using low- and high-level traits. From Ross et al 
(2022) CC-BY 2.0. 

 

7.5 Persistence  

Core to our understanding of stability, is the concept of persistence – the relative continuity 
in ecological structure or function over time. This is a classic form of analysis in community 
ecology, where the persistence of community structure is analysed over time to understand 
different aspects of the system (e.g., environmental variability; Milner et al., 2006). Applying 
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this same thought process to networks, it is possible to gain information on the temporal or 
spatial stability or resilience of ecological networks by analysing network structure. This 
could take the form of assessing specific interactions (i.e., interaction fidelity; Parra et al., 
2022), subnetworks (e.g., persistent homology), or the overall network topology.  

Persistence, as with other stability metrics, can be measured in a variety of ways. A simple 
method would be to calculate a similarity/dissimilarity metric for matrices (e.g., Jaccard’s 
index), this would indicate relative turnover in interactions and their strengths, and highlight 
where changes are occurring most rapidly or significantly. Other more recent methods have 
also been developed for monitoring persistence at both the subnetwork and network scale, 
including techniques that use subnetwork persistence to infer wider ecological persistence 
(see Song et al., 2022). 

 

7.6 Stability  

There are many different methods for monitoring the stability of an ecosystem, ranging from 
data on abundances in highly resolved time series, through to energy landscape analysis 
(Ross et al., 2021). Irrespective of the method of calculating stability and the data used, 
inter-specific interactions emerge as dominant drivers (Mougi and Kondoh, 2012). As such, 
using ecological networks to understand stability is vital. 

Options for metricising stability range from simple to complex, and there has been a wide 
range of different metrics used to describe stability (Donohue et al., 2013):  

• Variability (i.e., coefficient of variation). Calculated for structural or functional 
measurement (e.g., biomass in ciliates; Leary and Petchey, 2009). This could be 
variability in a network topology metric (i.e., connectance or nestedness).  

• Compositional turnover. Jaccard similarity of communities between consecutive 
time points. This can also be calculated for adjacency matrices of networks to look at 
interaction turnover.  

• Number of extinctions (see 7.2 Robustness). Fundamentally based on 
interactions, the direct and indirect links between species control the levels of 
extinction.  

• Number of invasions. The number of taxa observed in plots at the end of sampling 
that were absent at the start of sampling. This can also be used to assess interactions 
that were not present at the start of sampling – i.e., invasion or assembly of new 
interactions in response to a stressor.  

• Resistance. Also referred to as ‘inertia’, it is the extent of change in community 
structure in response to a disturbance/perturbation. Measured as the inverse of the 
Euclidean distance of each sample from the centroid of a control treatment. The 
Euclidean coordinates for sites could be constructed based on the ecological 
networks they form, rather than the usual community-based approach.  

Undoubtedly, there are also other metrics that could be calculated to describe the resistance 
or resilience of networks to change. However, simple, well-understood and widely used 



 36 

metrics will provide the most easily understandable results, and can be linked to the 
underlying mechanisms responsible for stability. 

 

7.7 Functional diversity/stability  

To add an extra level of detail, information on the traits of organisms can be included in 
analyses. For example, comprehensive trait databases exist for macroinvertebrates and fish 
(https://www.freshwaterecology.info/), but also diatoms and algae (e.g., Lange et al., 2016) 
and other microbial organisms, such as bacteria (e.g., BactoTraits; Cébron et al., 2021). 
These data can be leveraged to understand different aspects of the system – i.e., the loss 
of traits and functional diversity (Escalas et al., 2019) – which is not always related to 
taxonomic diversity (Mouton et al., 2020). As indicated in above sections (e.g., 7.2 Network 
Robustness), these data can be integrated into other analysis to provide enhanced 
ecological realism. They can also be used in their own right, as ultimately the trait profile of 
a population or community is an artefact of biotic (e.g., ecological interactions) and abiotic 
conditions.  

 

8. Recommendations for Environment Agency data 
The metabarcoding and metagenomic data collected by the Environment Agency can be 
used in its own right, as well as to infer ecological interactions, to understand the resilience 
of river ecosystems to environmental change. The following sections draw on the 
information and methods discussed in more detail in the above sections. Below I provide 
recommendations along these two lines. First, I run through the data processing and metric 
calculation that could be completed on the data and then detail the specific analyses that 
could be completed. This includes an extra section detailing how ENS could be used in 
conjunction with network models on the river networks themselves to monitor resilience at 
the landscape scale (accounting for variable downstream and upstream dispersal of 
organisms). 

8.1 Data processing and metrics 

Prior to detailed analyses, a range of metrics and data wrangling procedures will need to be 
completed on the described dataset to generate informative outputs. Below I describe the 
manipulation and metrics that could be used to get the data into a suitable format for the 
subsequent analyses described in 8.2 Data analysis. 

The metagenomic data can be used to generate community data (i.e., species lists), as well 
as information on gene presence and function. The first step for these data will be to create 
a sample unit (site, season and year) by species (either Operational Taxonomic Units or 
Amplicon Sequence Variants; OTUs or ASVs, respectively) matrix, populated by presence 
or absence, as well as read numbers (see above discussion of the challenges of such data). 

https://www.freshwaterecology.info/
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Secondly, data can also be summarised with a sample unit by gene matrix, detailing the 
levels of gene presence across the sample units.  

The matrices can then be analysed in their entirety using multivariate analyses, or a priori 
information on important species or genes can be used to create univariate metrics for 
further analysis. For example, from the community data, BMWP or ASPT could be 
calculated, or from the gene presence data, the diversity of genes associated with 
antimicrobial resistance could be recorded for each sample. 

 

8.2 Interrogating metabarcoding/metagenomic data 

Gene presence data could be summarised in a co-occurrence network, where it would be 
possible to understand those genes that are more or less associated with one another – this 
would provide information on the suite of genes present across sites and therefore provide 
a more comprehensive understanding of potentially important functions, such as 
antimicrobial resistance (AMR), present across the different sites. As with all methods of 
network inference, or association networks, caution is required when interpreting the results. 
However, the comprehensive spatial and temporal coverage of the proposed data will help 
to ameliorate many concerns commonly levelled at these methods through sheer 
observational power. 

Depending on the gene regions targeted, or if shotgun metagenomics is used to analyse 
samples (suggested for ~250 sites selected to monitor specific stressors), it might be 
possible to estimate other parameters of interest. Firstly, AMR could be detected within the 
samples (Grenni, 2022). Secondly, maladaptation to future pressures could be assessed 
(Lind et al., in press). Also, the response of organisms to different stressors could be 
compared by using the combined metabarcoding and metagenomic data which would 
provide information on species identities and genes present across a gradient of 
environmental conditions. 

 

8.3 Inferring ecological interactions and networks 

A Bayesian analytical framework for Joint-Species distribution modelling, called Hierarchical 
Modelling of Species Communities (HMSC), provides a brilliant opportunity to analyse the 
data collected but also construct ecological networks, based on best estimates of biotic 
interactions. I provide a full description of the entire analysis pipeline in 8.2 Data analysis. 
For the following description, it is simply important to know that in using this method, 
variation in the occurrence and co-occurrence of different organisms can be ascribed to 
environmental conditions (e.g., water quantity and quality, temperature, sediment 
conditions), traits and phylogeny. Once this variation is accounted for and partitioned, the 
remaining variance can be ascribed to biotic interactions. Remaining negative associations 
between organisms could indicate antagonistic interactions (e.g., competition or predation) 
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and remaining positive associations could indicate mutualistic interactions (e.g., facilitation) 
or niche partitioning.  

The temporal and spatial replication within the EA data provides a brilliant opportunity to 
implement these analyses. Furthermore, it is possible to extract information on the 
phylogenies of organisms, either from existing databases (e.g., rotl; Michonneau et al., 
2016) by matching species taxonomic identities from metabarcoding data or by constructing 
phylogenetic trees based on sequenced gene regions (e.g., using BEAST; Drummond and 
Rambaut, 2007; Elias et al., 2013). Doing so would allow for the most accurate estimations 
of ecological interactions as all possible mechanistic drivers (environmental, temporal, 
functional and phylogenetic variation) are included in the analytical framework. It important 
to note that there has been significant criticism of abundance correlations for constructing 
networks for microbial communities (described above in 6 Inferring ecological networks from 
monitoring data). Nevertheless, HMSC goes beyond the methods commonly criticised (i.e., 
correlating abundances without accounting for the influence of other abiotic and biotic 
factors), and therefore appears more robust.  

Using HMSC it would be possible to create merged networks of positive and negative 
associations between OTUs from the metabarcoding data. Using these networks, there are 
a range of other analyses that could be used to determine response diversity, or other 
metrics that indicate the potential resilience of ecosystems to further environmental change. 
Some network-based suggestions for further analysis include:  

• Interaction diversity 

• Network robustness 

• Engineering resilience 

• Phylogenetically structured networks 

All methods above could make use of additional information on biological traits or other 
information that is available for the taxa assessed. 

 

8.4 Response diversity 

Using the large number of sites along different environmental gradients it will be possible to 
calculate response diversity for different ecosystems using the framework laid out in Ross 
et al. (2022). Briefly, along the gradients of different conditions (e.g., urbanisation, water 
quality or nutrient status) a performance-environment curve can be generated for each taxon 
(i.e., abundance, or proportion of samples detected for temporal data). Summaries of the 
performance curves, provided by first derivatives of generalised additive models, can then 
be used to calculate diversity using hill numbers. The diversity values could then be 
compared across catchments or regions to understand the resilience of those areas to 
further change.  
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Response diversity could be calculated for sites based on temporal data collected over the 
duration of the study. Coupled with the water chemistry data collected at the same time as 
biological samples, it would be possible to calculate performance-environment relationships 
for different drivers across sites (e.g., turbidity, water temperature, flow rate) using the 
framework described in Ross et al., (2022). Data could then be interrogated in a number of 
ways to allow for a site-specific and catchment-level understanding of the potential 
ecological resilience to further changes. 

Outcomes of these analyses could be linked into the ENS framework, by looking at similarity 
in responses between interlinked species (i.e., is the reason for similar responses actually 
a result of interactions between those organisms), and also using these data to inform 
robustness simulations (i.e., in the extinction sequence organisms with similar responses 
are lost in close succession to one another).  

 

8.5 Spatial multilayer network (meta-community approach) 

The dendritic nature of river systems means it is possible to look at resilience at the river 
catchment scale. A meta-community approach (e.g., Mougi and Kondoh, 2012), including 
ecological interactions, could facilitate an understanding of the resilience of individual sites 
within the context of immigration and emigration of organisms, and thus recolonisation post-
disturbance. This would allow for an understanding of resilience (including recolonisation 
processes from other sites) beyond that of most studies that focus on the resistance of an 
ecosystem to change. 
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Figure 3. Diagram of a meta-community approach for the EA dataset. Sample locations can 
be connected using a spatial network, with downstream and upstream dispersal for 
different types of organisms (distance decay functions could be used depending on the 
dispersal ability of the organism). Ecological networks at each site constructed using 
inference. 

Any potential model could be structured around a multi-layer network framework (Figure 3) 
with the following properties and parameters: 

• Nodes 
o Organisms (OTUs or ASVs for the metabarcoding data) 

• Intra-layer links (site level) 
o Ecological interactions between different organisms (OTUs or ASVs for the 

metabarcoding data)  
o Positive and negative interactions between organisms 

• Inter-edges (river network level) 
o Organism dispersal links sample locations together into a meta-community 

 Aquatic organisms can only disperse through the river network (both 
passively downstream and actively upstream) 

 Terrestrial life stages of some organisms can disperse over land  
 Some organisms cannot disperse upstream depending on the strength 

of their dispersal 
 The distance of dispersal for organisms is dependent on their traits (i.e., 

dispersal distance over land or swimming strength, or distance covered 
per unit time) 

Different stressors could then be simulated at the catchment scale. For example, the 
upstream links for aquatic organisms could be removed between certain sections of rivers 
to simulate the installation of a weir or a dam preventing upstream dispersal. As a further 
example, species could be removed across all sites to simulate species loss due to non-
specific stressors, such as water temperature or flow restrictions. This modelling approach 
could also be tied into stability and response diversity calculations. For example, the 
probability of recolonisation of an organism from a proximal site, derived from this model, 
could be used to adjust the extinction probabilities in robustness simulations. This would 
help to understand the role of the river system in affecting site-specific conditions. 

 

9. Conclusions 
ENS provides a potential opportunity to understand how the structure, function and 
resilience of ecosystems change in space and time. It allows for the integration of many 
types of data and therefore provides a flexible framework that can make use of all available 
data, without being overly reliant on any one data source. Gaining information beyond that 
of just presence/absence and abundances also offers lots of opportunities for predicting 
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changes to ecosystems, and the potential to identify early warning signals of future 
biodiversity loss.  

Combining ENS and molecular methods appears to be a particularly effective way of 
constructing ecological networks at large spatial and temporal scales, and is also 
appropriate for understanding the ‘unseen’ biodiversity (i.e., microbial communities).  

Although ENS is methodologically and theoretically challenging, it presents a unique suite 
of techniques to understand the natural world, and how it responds to environmental change 
and anthropogenic pressures.  
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Think piece 2: Developing an understanding 
of ecological network science (ENS) for river 
ecosystems 
Darren Evans1 

1School of Natural and Environmental Sciences, Newcastle University 
Agriculture Building, King’s Road, Newcastle upon Tyne, NE1 7RU  

Summary 
The Environment Agency (EA) plans to generate a comprehensive DNA dataset from river 
biofilm samples collected over a three-year period as part of their newly designed River 
Surveillance Network (RSN) programme. This will generate microbial community data 
using high throughput sequencing, including metabarcoding data for bacteria (16S), fungi 
(ITS), diatoms and other photosynthetic microbes (rbcL), protists and other eukaryotes 
(18S). 

By using data generated from ~250 sites (500 samples) linked to a specific pressure (e.g., 
sewage treatment works or nutrient gradient), there is an unprecedented opportunity to 
examine how biodiversity and ecosystem functioning responds in the most holistic way to 
date. A key EA aim is to explore the potential to define and characterise the resilience of 
ecosystems using microbial networks in aquatic freshwater systems. However, because 
microbial networks are not yet well developed in terms of their inference and 
interpretability, there are numerous challenges to consider in the construction and analysis 
of freshwater microbial networks. But there are some very promising developments in 
network ecology for assessing the vulnerability of terrestrial and aquatic ecosystems 
based on modelling perturbations and species extinctions. 

This Think Piece will address EA’s technical requirements by providing: 1) a short 
overview/tutorial of network theory, including a description of species- and network-level 
properties (both qualitative and quantitative) that can be studied; 2) an overview of the 
pros and cons of eDNA based methods for generating network-specific data; 3) an 
introduction to network construction methods, with a detailed overview of the pros and 
cons of interaction inference methods that would be applicable to eDNA generated data 
(e.g. co-occurring organisms found within biofilm samples); 4) an overview of the ENS 
research landscape and how this can be applied in the context of biomonitoring (esp. the 
study of freshwater systems; 5) applications of network theory to study the resilience of 
interacting communities to perturbations and species loss (e.g. robustness and adaptive 
network models), and how this can be applied to microbial networks; 6) a critical 
evaluation of how and why ENS has potential for examining the resilience of freshwater 
systems, whilst identifying the knowledge gaps; 7) recommendations to explore multi-taxa 
microbial datasets, with a particular focus on multi-layer networks. 
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Given there are multiple steps involved in sample collection, laboratory processing, 
DNA/RNA extraction and metabarcoding, network inference and analysis, the Think Piece 
will create a workflow that identifies the pros and cons of each (including knowledge gaps), 
ultimately resulting in the construction of highly-resolved ecological networks. Finally, it will 
provide recommendations for how the specific data can be analysed, with potential for 
better understanding biodiversity and ecosystem functioning relationships in rivers, but 
with a focus on new, network-derived metrics that could be used for biomonitoring. 

It should be noted that although much of the seminal  food-web studies focussed on 
aquatic systems (e.g. Cohen et al., 2009), most of the recent advances in network ecology 
have tended to focus on above-ground, bipartite terrestrial networks, especially 
mutualisms (e.g. plant-pollinator networks). Thus, in building the workflow for the 
construction and analysis of microbial networks, I will mostly draw from such examples, 
but acknowledge that microbial systems can operate quite differently, have different 
architectures (e.g. Toju et al., 2014) and potentially high variation (Barroso-Bergadà et al., 
2021). In other words, the study of microbial networks, generated using advanced 
molecular methods, is still in its infancy. 

1. What are ecological networks and how can they be 
put to use in river ecosystems? 
First, it is important to define what we mean by an ecological network as they can 
represent different concepts in ecology, for example a foodweb, host-parasite interactions, 
or even a network of river systems. Here, I will refer to interspecific species-interaction 
networks, as these will be the main types derived from the type of data generated using 
molecular methods. However, before we can understand how they can be used to study 
aquatic freshwater systems, it is important to understand some basic concepts of network 
science. 

1.1 The Basics 

Network ecology is rooted in the mathematical field of graph theory where a ‘graph’ is a 
representation of a set of entities and where some pairs of these entities are connected. In 
this context a graph is made up of ‘vertices’ (singular: a ‘vertex’) or ‘nodes’ which are 
connected by ‘edges’ or ‘links’ (Fig.1.1). In essence, that is it: a network comprises pairs of 
nodes connected by links.  
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Figure 1.1 - A network comprises pairs of nodes connected by links 

In many ecological networks, the links represent ‘interactions’ which have a specific 
context and meaning. The different terms are used interchangeably within the network 
ecology literature, partly because ecologists draw quite heavily from (and use tools 
developed by) scientists working in other fields, especially computer science. The 
terminology can sometimes cause confusion so it is worth taking note what the difference 
is between, ‘vertices’ and ‘links’ (see Table 1.1). In general, I will use the terms ‘nodes’ 
and ‘links’ throughout this Think Piece because these are widely used and easier to 
understand. A comprehensive overview of networks is provided by Newman (2018), and 
Jensen (2022) examines their emerging properties, some of which we examine here.  

Table 1.1. A simplified explanation of the link between terms in network ecology. Although 
in this Think Piece I will mostly use the terminology associated with complexity science, 

some of the analytical approaches use the terms from graph theory, so it is important to be 
able to translate from one to the other. 

Descriptor Complexity science Mathematics (Graph 
Theory) 

The whole system Network Graph 

The individual entities Node Vertex (plural: Vertices) 

Their connections Link Edge 

 

1.1.1 Defining nodes and links from eDNA generated data 

Within ecological networks, nodes can represent a range of entities from individual species 
to populations to habitat patches or sites. Here, I consider them as individual ‘species’, or 
organisms mainly derived from eDNA microbial community data (i.e. bacteria, fungi, 
diatoms and other photosynthetic microbes, protists and other eukaryotes) but with all of 
the caveats of applying the species concept to microbial systems. 

The links between nodes will vary incredibly according to the network being studied, but 
can include (but are not restricted to): 

● A trophic relationship (antagonism) that is feeding upon something. 

● A mutualism, such as pollination or seed-dispersal. 

● Movement of individuals or genetic material. 

● Energy or nutrient flow. 

● Passing on information or disease. 

https://paperpile.com/c/TKiQvg/AUMi/?noauthor=1
https://paperpile.com/c/TKiQvg/NK3V/?noauthor=1
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● Associations and co-occurrence. 

Links usually join two nodes, but it is conceivable that links can go from one node back to 
the same node. These are called self-links and the most obvious example of this is 
cannibalism in food webs. 

A major challenge with microbial community data derived from eDNA is to know how these 
organisms are interacting. This will be discussed later, but for now we will assume that 
node and link information can be derived to construct highly-resolved species-interaction 
networks. 

1.1.2 Different types of networks 

A graph can represent a network of ecological interactions that may be undirected, 
meaning that there is no distinction between the two nodes associated with each link (Fig. 
1.1), or its links may be directed from one node to another (Fig. 1.2a). In the latter case, 
this might show which organisms are consuming which within a food-web,for example. 
The degree of a node is the number of links that connect to it, where self-links are counted 
twice. 

Figure 1.2. Adding detail to a network including (b) individual species and abundances and 
(c) strength of interactions. 

The number of nodes (or species) and links (interactions between species) provides the 
basic information required to begin to calculate important ‘emergent properties’ of the 
network such as complexity (e.g. the average number of links per node), connectance (i.e. 
the proportion of possible links between nodes that are realized: links/nodes2) and 
measures of the importance of the nodes, such as degree centrality (covered later).  
However, Figure 1.2a tells us rather little about the network, for example whether the 
nodes are the same species or different, whether they represent individuals, populations 
or species, and whether the entity represented by the node is abundant or rare, large or 
small. Ecological networks can include such attributes of the nodes (although it is worth 
noting that most network metrics do not incorporate node attributes, although node 
attributes are extremely useful when constructing ecologically meaningful null models for 
analysis) The example in Figure 1.1b is weighted by species abundance and we can see 
that there are more individuals of species B (shown by a largest circle size), with species C 
having the least individuals (shown by the smallest circle). 

Likewise, although the existence of a link provides some information about the presence of 
pairwise relations between the nodes (i.e. the ‘topology’ of the network), it does not show 
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the strength of the interaction and whether one pair of nodes is interacting more relative to 
another pair. Graphs with only information about the presence of links are described as 
qualitative or unweighted or binary networks. However, in addition to assigning specific 
information about the nodes, graphs can be weighted to include information about the 
interaction ‘strength’, such as the frequency of interaction between nodes. These networks 
are then called weighted or quantitative networks. Figure 1.1c shows the same network as 
Fig 1.1b, but here the interactions are weighted showing that interaction strength is highest 
between species C and A and is lowest between species C and B. Such information is 
important when going on to calculate some of the structural properties and metrics of the 
network. 

 

One other distinction between different types of networks, which is especially important in 
ecology, is when there are two distinct types of node. These networks are called bipartite 
networks, in contrast to the unipartite networks described above. The key aspect to 
bipartite networks is that links go from one type of node to another type of node; nodes of 
the same type are not linked. Examples of these include plants and pollinators, plants and 
seed dispersers, species and sites (or habitats). In the bipartite network shown in Fig. 1.3 
(Memmott, 1999), a pollinator could visit any of the plants (in theory, at least, because if a 
link is not observed then it is relevant to ask why not), whereas it is meaningless to 
consider a pollinator visiting another pollinator, or a flower being visited by a different 
flower. 

 

Figure 1.3. Seminal work by Memmott (1999) showed the structure of a quantitative, 
bipartite plant-pollinator network. Rectangles show the abundance of different plant and 

pollinator species, with triangles showing the frequency of interactions between them. It is 
notable that even in this example, not all insects are identified to species-level, but some 

attributes of the nodes (e.g. family) are included. 

Given the prevalence of bipartite networks, especially in ecology but also in other areas of 
complexity science, there are particular analytical methods and visualisation tools which 
take account of the bipartite structure of the network. This could be important for the study 
of river plant-microbe interactions, for example. Further layers can be added to create 
tripartite and increasingly multipartite networks (e.g. plants-fish-parasites). In terms of 
analyses, these multipartite networks can either be considered as bipartite networks 
layered on top of each other, or bespoke methods can be used to analyse them. For many 

https://paperpile.com/c/TKiQvg/5IR9
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multipartite networks (e.g. in food-webs) it is not really meaningful to distinguish between 
the different types of node and so they are almost always considered as unipartite 
networks. This could well be the case for microbial networks derived from biofilm. Of 
course, bipartite networks can also be undirected or directed. Traditionally the networks of 
animals visiting plants are usually considered as undirected bipartite networks (because 
the link represents a mutualism). However, they could also be considered as directed 
bipartite networks with the links from flower to the animal representing trophic interactions 
(gaining energy and nutrients by feeding on nectar or pollen) and the links from the animal 
to the flower representing, ultimately, fertilisation (and although pollination biology is a 
fascinating topic we shall not explore its complexities furthermore). Examples of different 
types of ecological networks are described in Table 1.2. 

Table 1.2. Examples of the different types of ecological networks based on link direction 
and weighting. 

 * although many bipartite networks are treated as if they are undirected, the implication is 
that either the direction is obvious (parasites parasitise their hosts, not the other way 
round) or it is a mutualism and so the implication is that the benefits gained by both parties 
are symmetrical (e.g. flowers are pollinated and insects gain food through nectar, which 
technically means that the network is a multiplex network, with different types of links). For 
convenience I will usually refer to bipartite networks as undirected. 

Network type
  

Link direction Weighting Examples 

unipartite undirected unweighted simple social network 

unipartite undirected weighted habitat patch networks, 
weighted by a function of 
distance; some social networks 

unipartite directed unweighted habitat patch network with 
thresholds; many food-webs 

unipartite directed weighted food-webs with weighted links 
(e.g. feeding rates or nutrient 
flow) 

bipartite un/directed* unweighted simple two-level food-webs or 
mutualistic networks 

bipartite 
  

un/directed*  weighted as above, but with weighted 
links 
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Figure 1.4 illustrates the value of a network approach at different scales with empirical 
data, showing how lots of information can be contained in a fairly intuitive visualisation. For 
example, the complexity of the whole system is demonstrated in the top figure, while detail 
of the context of a few different species is shown at the bottom. The bottom figure enables 
us to see something of the diversity (and, for those who know it, the phylogenetic diversity) 
of the birds and the fruits. The important links are emphasised by their width and the 
asymmetry of the interaction is shown by the relative width of the green arrows (birds 
feeding on fruits) compared to the yellow arrows (seeds being dispersed by birds). 
Crucially, the network shows how it is possible to study biodiversity (across two 
trophic levels) and ecosystem processes (i.e. seed dispersal) in a single conceptual 
framework, something I will return to later 

 

 

Figure 1.4. An example of a bipartite network showing the complexity of qualitative,  
bipartite interactions and quantitative information of the bird seed-dispersal network. Image 

courtesy of Pedro Jordano. 

 

1.1.3 Networks and scales 

So bringing it all together, networks are valuable conceptually because they provide a 
scientific way of approaching data on apparently complicated systems at different scales 
(Fig. 1.5). They can also incorporate lots of community data (including multiple microbial 
components) as whole networks, or networks of networks. 
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Figure 1.5. Node (a) through to network-level attributes (c) and networks of networks (d) can 
be studied using advances in complexity science. 

At the scale of the whole network (Fig. 1.5c), a complexity science approach provides a 
way of simplifying the description of the arrangement of links between nodes, and so 
describing the ‘emergent properties’ of the whole system. There may be many links or 
few, they may be clustered or evenly distributed, the system may be nested or modular 
(see below). Some of these descriptions are incredibly simple, others are much more 
mathematically complex. I will discuss these descriptions and metrics later, but the point is 
that they can be mathematically described.   

Secondly, at the very local scale, nodes can be described (Fig. 1.5a). This is, in some 
senses, a trivial property because a full network is not needed in order to describe the 
individual nodes. However, to put simply, a network allows, for all the nodes in the 
network, a complete description of the number of links to or from a node for (i.e. the 
‘degree’ of the node, which for directed networks can be separated in the in-degree and 
the out-degree). This helps to define how generalist or specialist a species is (with in- and 
out-degree defining its degree of generalism as a predator or prey), with other measures 
of closeness centrality and betweenness centrality etc. depending on specific questions. 

Going up a step in the scale, networks allow a simple way of assessing individual nodes in 
their context in the system – this is what can be referred to as the meso-scale (Fig. 1.5b). 
For example, the vulnerability of a specialist insect which depends on a specialist plant 
(e.g. a close co-evolutionary relationship) is very different to the vulnerability of a specialist 
insect which depends on a generalist plant. Another example is that the ‘importance’ of a 
habitat patch acting as a stepping stone between two regions is very different to the 
importance of a habitat patch acting as a network hub. Whether the importance is greater 
or less depends on how you define ‘importance’, which is a topic covered in depth by 
Jensen (2022). 

Finally, there is the scale greater than the individual network: meta-networks (Fig. 1.5d). 
So far, relatively few studies have considered these more complicated systems. One 
example would be networks which share the same nodes but the nodes are linked by 
different types of interaction. An example of this could be trophic interactions and seed 
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dispersal (Fig. 1.4), or maybe disease transmission and association in a social network. 
These types of network are technically called multiplex or multilayer networks (although 
mutualistic networks such as seed-dispersal or plant-pollinator networks are, in a strict 
sense, directed multiplex networks, they are usually considered as undirected networks). 
Another type of network is the network of networks, where individual networks are linked 
by shared nodes (e.g. the shared plants in Pocock, Evans and Memmott, 2012) or nodes 
in the different networks are linked together (e.g. power stations and internet hubs linked 
by their physical proximity in Buldyrev et al., 2010). Conceptually there is also the potential 
for networks to be hierarchical, so individual networks nested within networks. Examples 
of these could include metacommunities, where communities of interacting species exist in 
a network of habitat patches linked by dispersal of individual species. In general these 
meta-networks have not been well studied and so their importance and usefulness in 
ecology is an important research question.  

 

1.1.4 Examining the structure, complexity and dynamics of ecological networks 

Ecological networks describe the interactions between species, the underlying structure of 
communities and the function and stability of ecosystems (Montoya, Pimm and Solé, 
2006). They have the potential to quantify the effects of environmental change on a wide 
range of complex ecological interactions (Tylianakis et al., 2008).  

We have already seen in 1.1.2 that once we have information about nodes and links in a 
network, we can begin to describe it using qualitative and quantitative metrics in order to 
look for universal patterns, or to model the extinction dynamics using simulations.  

For example, Fig. 1.6 shows some potential ways in which bipartite networks could be 
structured, from discrete groups of interacting species (compartments, Fig 1.6B) or a 
highly nested structure (Fig. 1.6C). Many network studies examine nestedness and 
modularity. Nestedness measures the number of interactions shared between nodes, and 
modularity, the number of interactions shared between a subset (module) of nodes 
(reviewed by Bascompte and Jordano, 2013). Bersier et al. (2002) used the Chesapeake 
Bay ecosystem to calculate food web properties to demonstrate differences between 
species, links, chains and even consumer-prey asymmetries, paving the way for networks 
to be described both qualitatively and quantitatively. 
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Figure 1.6. The interactions between species can be examined in matrices (A-D) and 
visualised (E-H). In this example of bipartite networks, letters can represent plants and 

numbers represent different microbes interacting with them. 

A network level approach allows one to account for the whole community scale (Dunne, 
Williams and Martinez, 2002), thus integrating all direct and indirect interactions (Berlow 
et al., 2009). Indirect effects (e.g. shown in Fig. 1.5c) have been shown to drive 
coevolution in mutualistic networks (Guimarães et al., 2017) and need accounting for 
when predicting how extinctions affect the integrity of ecological networks (Pires et al., 
2020). Thus, because networks are multi-faceted objects with a rich range of structure, 
ecologists have been looking for emerging properties that can be easily measured and 
analysed, and that relate to ecological properties and processes. A number of 
challenges exist in applying these approaches to microbial networks (discussed later). 

There are a burgeoning number of freely available software packages to calculate 
qualitative and quantitative network metrics in ecology (e.g. Dormann et al., 2009; Blonder 
et al., 2012; Vaughan et al., 2018) as well as calls for syntheses and standardisation (Lau 
et al., 2017). 

1.1.5 The assembly of complex plant-fungus networks 

Drawing this together, I present a bipartite plant-fungus network by Toju et al. (2014), 
generated less than 10 years ago, to demonstrate the state-of-the-art in terms of network 
construction methods for poorly described systems, and how the the network 
‘architecture’, ‘topology’ or structure can be studied (Fig. 1.7). The study used next-
generation (454) sequencing technology, to uncover the network architecture of below-
ground plant–fungus symbioses. They examined the symbiotic network of a temperate 
forest in Japan, which included 33 plant species and 387 functionally and phylogenetically 
diverse fungal taxa. In the absence of species-specific data, molecular analyses provide 
fungal operational taxonomic units (OTUs), which can be used as an alternative identifier 
within the ecological network. 
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Figure. 1.7. The architecture of the below-ground plant–fungus network in a temperate 
forest in Japan. Source: Toju et al. 2014. 

In the bipartite network, plant species (red) interact with ectomycorrhizal (yellow) and 
arbuscular mycorrhizal (pink) fungal OTUs as well as OTUs with unknown ecological 
functions (blue). The size of nodes represents the relative abundance of plant species or 
fungal OTUs in their dataset. The authors compared measures of modularity, nestedness 
and specialization (H’2) with null models and found that overall network architecture 
differed fundamentally from that of other ecological networks. Although a relatively simple 
study, it did show that incorporating microbial data into species-rich ecological networks 
meant that they are more architecturally diverse than previously recognized. It also 
provided a roadmap for the construction and analysis of microbial networks using 
molecular methods. 

1.1.6 Robustness 

Of the numerous ecological network properties, network ‘robustness’ [a measure of the 
tolerance of the network to species extinctions (Dunne, Williams and Martinez, 2002; 
Memmott, Waser and Price, 2004)] has received particular attention, partly driven by 
advances in computational modelling (Kaiser-Bunbury et al., 2010; Staniczenko et al., 
2010), but mostly by the desire to understand the real threat of biodiversity loss to 
ecosystem services and functioning (Evans, Pocock and Memmott, 2013). Figure 1.8 
shows how robustness is calculated as the area under the curve by plotting the number of 
secondary extinctions that occur when, for example, the prey (bottom level) for fish 
species (top level) go extinct one-by-one. Secondary extinctions occur when the fish are 
no longer connected to the network due to the loss of their food sources. Simulations can 
be run thousands of times on a computer until the network completely collapses. 
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Figure 1.8. A simple demonstration of how the sequential loss of species in the lower 
trophic level (primary extinctions) affect the number of secondary extinctions in the higher 
trophic level. Eventually, the network collapses and robustness is calculated as the area 

under the curve. 

Our understanding of network robustness to species loss has advanced from studies of 
simple qualitative, bipartite mutualistic networks (Memmott et al. 2004), to investigations of 
patterns across ecosystems (Srinivasan et al., 2007) and to quantitative approaches that 
take into account species abundance (Kaiser-Bunbury et al., 2010). It is worth noting here 
that the models used can identify species (or hubs) that are disproportionately important to 
network integrity, which could be used for targeted restoration in order to build resilience 
in ecosystems, although these ideas are still theoretical (Pocock, Evans and Memmott, 
2012; Raimundo, Guimarães and Evans, 2018). It is the focus on primary and secondary 
extinctions that I will return to later in the context of assessing river ecosystem 
vulnerability. 

 

In summary, networks encode the interactions between the components in complex 
systems and play an essential role in understanding their structure, complexity and 
stability. Microbial ecological networks can provide a system-level insight for 
comprehensively understanding complex microbial interactions (Lv et al., 2019), which 
play important roles in microbial community assembly and ecosystem functioning. 

2. The pros and cons of eDNA based methods for 
generating network-specific data 
Most of the examples provided so far assume that all species-interactions within an 
ecosystem can be readily determined to create highly-resolved ecological networks. In 
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reality, network ecology is beset with sampling issues regarding sampling completeness 
(Macgregor, Evans and Pocock, In press), problems regarding specimen 
processing/identification (Derocles et al., 2015) and a range of other biases. However, 
there has been progress in these areas and it is generally recognised that a combination 
of sampling methods will result in the best resolved networks (Evans and Kitson, 2020).  

Advances in DNA sequencing technologies are resolving previously intractable questions 
in functional and taxonomic biodiversity and provide enormous potential to determine 
hitherto difficult to observe species interactions. Combining DNA metabarcoding 
approaches with ecological network analysis presents important new opportunities for 
understanding large-scale ecological and evolutionary processes, as well as providing 
powerful tools for building ecosystems that are resilient to environmental change (Evans et 
al., 2016). Several challenges, however, surround the use of metabarcoding, especially 
when metabarcoding-based interactions are merged with observation-based species 
interaction data. These include difficulties surrounding the quantification of species 
interactions, sampling perspective discrepancy (i.e. zoocentric vs. phytocentric 
sampling), experimental biases, reference database omissions (i.e. most organisms still 
lack a DNA barcode) and assumptions regarding direct and indirect consumption events, 
for example (Cuff et al., 2022). But these problems are not insurmountable and 
considerable effort is currently underway to resolve such issues (e.g. Cuff et al., 2023). 

The major advantage of eDNA approaches for generating network-specific data is the 
ability to scale-up in space and time. Metabarcoding allows more efficient processing of 
samples, and therefore the analysis of larger numbers, compared to conventional methods 
(e.g. microscopy). Constructing multiple replicated networks across a range of treatments, 
sites or time points, and testing for structural differences, comprises a powerful alternative, 
although it can be hampered by the difficulty of generating sufficient data for multiple, well-
sampled networks. For metabarcoding, investment mainly scales per plate (≤96 samples) 
rather than per sample (Derocles, Bohan and Dumbrell, 2018), whereas for microscopy, 
investment of materials and especially time increases linearly for every sample.  

 

2.1. Considerations for microbial networks 

While powerful, DNA‐based approaches do suffer from limitations important to consider 
when interpreting results of subsequent network analyses. Toju (2015) reviewed the use of 
DNA barcoding in microbial ecological network analyses, using the term to represent taxon 
identification based on specific DNA sequences and consistent with DNA metabarcoding 
approaches. That review addressed issues related to sequencing‐based approaches, 
including a list of common genetic markers for different taxa, an approach for inferring 
interaction frequencies from association networks and host frequencies, and tools for data 
processing and analysis. As such, it is a valuable guide for researchers embarking on 
surveys of ecological associations. However, there are further issues not immediately 
apparent which may represent substantial sources of bias and inaccuracy when 
characterising microbe association networks, especially biases associated with isolation, 
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amplification, and sequencing of DNA and interpreting weights of interactions (see 
Bennett, Evans and Powell, 2019 for a review of plant-microbial networks). 

It is important to acknowledge that, to date, our knowledge of ecological network 
architecture largely stems from empirical studies on macro-organismal systems such as 
those of plant–pollinator, plant–seed disperser, and prey–predator interactions described 
earlier. Whilst there has been a rapid growth in plant-microbe studies (that take advantage 
of DNA-based methods), microbial ecological networks are still in their infancy of both 
network inference and biological interpretation (Lv et al., 2019).  

 

2.1.1 Interaction data is missing from eDNA studies 

Environmental DNA (eDNA) has seen a significant increase in application in freshwater 
systems with a concurrent growth in protocol developments and a drive to gain a better 
understanding of ecological interactions and ecosystem processes (Schenekar, 2023). 
Whilst these approaches appear to be developing well for assessing the ecological status 
of freshwater systems (e.g. Vasselon et al., 2017), they generally do not provide 
information on important ecological relationships, ranging from mutualism to 
competition, that in addition to other factors (such as niche preferences and random 
processes) are known to shape microbial abundances (Faust and Raes, 2012). 

 

2.1.2 Influence of abiotic and biotic factors on aquatic eDNA studies 

How abiotic factors influence the transport, persistence, and fate of eDNA in ecosystems 
remains a substantial challenge. In aquatic systems, numerous abiotic factors, including 
stream flow (Curtis et al., 2021), substrate type , temperature (Jo et al., 2019), UV light 
(Kessler et al., 2020), and pH (Strickler et al., (2015); reviewed by Harrison et al., (2019)) 
impact the availability and longevity of eDNA. Furthermore, microbial activity can play a 
significant role in the degradation of eDNA, ostensibly impacting botanical eDNA from all 
media (Zulkefli, Kim and Hwang, 2019). In short, while some studies have examined the 
abiotic impacts on the availability, longevity, and transport of botanical eDNA (Zhu, 2006; 
Poté, Ackermann and Wildi, 2009; Yoccoz et al., 2012), considerable research is required 
on a per system basis to understand the full intricacies and interplay of abiotic factors. The 
key point is that these factors can have significant implications when trying to 
construct accurate, highly-resolved microbial networks. 

 

2.1.3 Contamination 

Across eDNA studies, the utilisation of field, extraction, and amplification blanks, sterilised 
equipment, and bleach solutions to control for contamination control have been 
established as best practices to account for contamination at all stages of sampling and 
sample processing (see Johnson et al., 2023 for a review). It is vital to ensure that biotic 
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contamination is both understood and proper control procedures are in place, as this too 
can be an important consideration for network construction methods and analyses if ‘false’ 
organisms are detected. 

3. Building microbial networks from community 
presence-absence data generated from eDNA 
Microorganisms form complex ecological interactions, including mutualisims such as 
cross-feeding and cooperation interactions, antagonisms such as predator-prey and host-
parasite interactions, and loss-loss relationships such as competitive exclusion 
interactions (Faust and Raes, 2012). These microbial interactions are known to be critical 
properties of microbial communities and play important roles in microbial community 
assembly, although they are poorly understood in freshwater systems.  

3.1 Network inference 

To date, microbial interaction networks (especially those generated from eDNA samples) 
are mostly created using network inference methods, as most (if not all) of the organism 
interactions are not known. Network inference is “the process of reconstructing the wiring 
diagram of a complex system from the behaviour of its components” (Faust and Raes, 
2012). For microbial communities, the goal of network inference is to predict ecological 
relationships between microorganisms from abundance data, which can be problematic 
when based on eDNA generated community data. Nevertheless, co-occurrence and 
correlation patterns found in these datasets are increasingly used for the prediction of 
species interactions. It should be noted, however, that there are different methods for 
inferring the presence of interactions but these are poorly studied and rarely applied to 
microbial networks, where testing can be harder than in conventional, macro-scale 
networks (but see below).  

Nevertheless, there have been some studies that have analysed microbial co-occurance 
networks generated from biofilm. Widder et al. (2014) combined co-occurrence analyses 
of biofilms based on next-generation sequencing with a probabilistic hydrological model, 
and showed how fragmentation of microbial co-occurrence networks (with a focus on 
Betweenness centrality and the random removal of nodes (similar to robustness) change 
across stream networks. But real-world studies such as this are few. 

The EA’s RSN microbial community data is well suited to testing different network 
inference methods as it is collected over spatial and temporal replicates, which is 
necessary to infer ecological networks. Specifically, inference methods based on MaxEnt 
(Volkov et al., 2009) and Matrix Autoregression (MAR) approaches (with either single 
(Hampton et al., 2013) or multiple delays (Barraquand et al., 2021)), supplemented with 
trait and phylogenies/taxonomic information (Ovaskainen et al., 2017), can be compared 
and validated. Faust and Reas (2012) suggest that, in addition to predicting links between 
taxa, the analysis of microbial association networks “reveals niches, points out keystone 
species and indicates alternative community configurations.” But they also caveat that 
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testing and evaluation is needed to determine the best-performing network inference 
technique. To address this they point to the cultivation of unknown microorganisms, 
combinatorial labelling and parallel cultivation as methods that could allow systematic co-
culturing and perturbation experiments, the latter lending itself to robustness analyses 
(described earlier) where species are removed. 

Matchado et al., (2021) provide a review of state-of-the-art methods to infer intra-kingdom 
interactions in microbial communities derived from DNA/RNA-based methods, ranging 
from simple correlation- to complex conditional dependence-based methods.  

 

3.1.1 Caveats for microbial networks 

Network inference techniques are frequently applied to microbial presence–absence or 
abundance data to detect significant patterns of co-presence and mutual exclusion 
between taxa and to represent them as a network. Barroso-Bergadà et al., (2021) recently 
examined the pros and cons of crop microbial networks inferred from eDNA data but found 
(i) very high variability of network replicates within each system; (ii) a low number of 
network replicates per system, due to the large number of samples needed to build each 
network; and (iii) difficulty in interpreting links of inferred networks. So caution is needed 
before embarking on network analyses of the RSN microbial networks. 

 

3.2 Putting microbial data into multi-layer networks 

Microbial community data generated from high throughput sequencing of biofilm provides 
the opportunity to move away from the study of bipartite networks to include multiple 
interaction types by merging bacteria, fungi, diatoms, protists and other eukaryotes into 
‘multilayer networks’ (see 1.5d). The emergent field of multilayer networks provides a 
natural framework for extending analyses of ecological systems to include multiple layers 
of complexity, as it specifically allows one to differentiate and model ‘intralayer’ and 
‘interlayer’ connectivity (Pilosof et al., 2017).  

Faust and Reas (2012) demonstrated how complex networks, generated through 
inference models, can result in a link in a network that connects more than two nodes in a 
directed way to point from the independent taxa to the dependent taxon (termed here as a 
directed hypergraph). Figure 3.1a displays a microbial network inferred from a similarity-
based approach, in which pairwise relationships are represented by edges connecting two 
nodes, whereas Fig. 3.1b gives an example of a directed hypergraph that results from 
‘association rule mining’ in a global microbial presence–absence data set (see 3.3). 
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. 

Figure 3.1. Pairwise (a) and complex relationships (b) were inferred from a global microbial 
operational taxonomic unit (OTU) presence–absence data set. a | Each node represents an 
OTU, and each edge represents a significant pairwise association between them. b | This 
network summarizes association rules mined with an a priori algorithm and filtered with 
multiple testing correction. The text box provides an example for such a rule. As the data 
set is extremely sparse, rules are restricted to positive associations involving up to three 
OTUs. Each node in network b represents an OTU, whereas each edge corresponds to a 

rule. In contrast to network a, an edge can connect three OTUs if they are all involved in the 
same rule. For ease of interpretation, the same OTU (with the same node fill and border 

colour) may occur multiple times in network b. 
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3.3 Using machine learning to construct networks 

There is considerable interest in building whole ecological networks of interactions from 
data using statistical or logic-based machine learning. The idea behind these machine 
learning methods is that embedded in a dataset is the imprint of the recent processes 
and interactions that created the data and this information can be recovered to 
reconstruct networks. The underlying hypothesis of machine learning for network 
reconstruction is therefore that ecological interactions produce correlations and relational 
patterns in the abundance of species that can be recovered. In statistical machine 
learning, the variation in the sample is treated statistically, typically using Bayesian 
approaches (Jakuschkin et al., 2016; Vacher et al., 2016). Significant correlations between 
any given pair of species within the data are then considered as potential network links. 
Logic-based machine learning treats relational patterns rather like the structure of 
grammar in a language (Muggleton and de Raedt, 1994; Tamaddoni-Nezhad et al., 2006). 

In both statistical and logic-based machine learning, the challenge is to sort, from the list of 
interactions hypothesised by the learning algorithms, those links that are ecologically 
meaningful from those that are artefacts. This selection approach is done differently in 
the two approaches. In logic-based machine learning, the grammar for an interaction can 
be coded as background information. In an agroecological network learnt by Bohan et al. 
(2011) and Tamaddoni-Nezhad et al. (2013), trophic interactions were selected by 
background information that was a set of grammar rules (a model) for a trophic interaction 
whereby the predator and prey species must co-occur in the same samples and predators 
should be larger than their prey. A trophic interaction between two species was only 
identified if this grammar rule was realised. In statistical approaches, links are selected 
using environmental factors or species functional trait covariates integrated into the 
modelling (Cazelles et al., 2016; Jakuschkin et al., 2016; Ovaskainen et al., 2016; Vacher 
et al., 2016). 

Learning networks is currently limited by our background information rules. 
Mechanistic rules for trophic interactions, based upon body or gape size, allow the 
reconstruction of food webs, but challenges for microbial networks remain. Where 
ecological networks are structured by processes for which we have no general 
mechanistic explanation, there is no background information that can be employed, and 
machine learning is of little value for reconstructing networks. However, recent 
developments in logical machine learning are now allowing background information rules 
to be discovered from data. Tamaddoni- Nezhad et al. (2015) showed using simple 
subnetworks that the trophic interaction rule ‘big things eat small things’ can be recovered. 
Developments of this work are now extending this possibility of rule learning to larger and 
noisier data sets, and with applications for biomonitoring (Ghannam and Techtmann, 
2021). 
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4. An overview of the network ecology research 
landscape and how this can be applied in the context of 
biomonitoring 
For the past decade, ecologists have made compelling arguments that reconciling 
biodiversity and ecosystems function in a single conceptual framework is best 
achieved through the application of a network approach (Thompson et al., 2012). 
Whilst theoretical ecologists have considered universal patterns (e.g. Bascompte and 
Jordano, 2013), issues of scale (Guimarães, 2020), environmental change (Memmott et 
al., 2007) and co-evolution (Thompson, 2014), applied ecologists have advocated new 
network approaches for biomonitoring (Gray et al., 2014; Derocles, Bohan and Dumbrell, 
2018; Raimundo, Guimarães and Evans, 2018). Indeed, Tylianakis (2010) proposed a 
number of network descriptors (e.g. connectance and nestedness) that can readily be 
incorporated into biomonitoring schemes.  

Bohan et al. (2017) imagined a world where a global array of autonomous samplers, 
capable of in situ DNA-sequencing, would upload data to the cloud for network 
construction using machine learning (Fig 4.1). The overall aim would be an analysis 
across highly-resolved replicated networks (similar in scope to the RSN) to detect change 
in network structure across the sample array. Although ahead of its time, there has been 
rapid development and validation of eDNA for biomonitoring aquatic systems (Schenekar, 
2023) and field-based sequencing is now happening, thanks to new platforms (i.e. Oxford 
Nanopore). However, in-cloud network reconstruction methods are a long way 
behind and, even if changes in network structures could be detected, it is unclear what 
this would actually mean in terms of ecosystem functioning and resilience (it is usually 
assumed that some sort of ecosystem degradation can be detected). 

 

  

Figure 4.1. Large-Scale Biomonitoring using next-generation sequencing. (A) Schematic 
illustration of the key components of an autonomous sampler. (B) Diagram of an array of 
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sample points, each with a sampler, and the upload of sequence data to the cloud. 
Management, identification and reconstruction of network structure is done in the cloud. 
(C) Detection and analysis of change in the structure of the monitored networks. Source 

Bohan et al. (2017). 

Nevertheless, there are some positive developments in this area. Derocles et al. (2018) 
provide a framework for measuring the robustness of multilayer networks (derived form 
next-generation sequencing) in the long term as one way of integrating ecological metrics 
more generally into biomonitoring schemes to better measure biodiversity and ecosystem 
functioning. An advantage using next-generation sequencing in this way is the ability to 
construct phylogenetically-structured networks, which allow the use of more 
sophisticated adaptive network models (see 5.3), that allow both ecological and 
evolutionary questions to be investigated. For example, DNA sequences have been 
used to explore phylogenetic signals in a network context (Elias, Fontaine and van Veen, 
2013; Rafferty and Ives, 2013). This approach would certainly bring added value to 
biomonitoring programs as ecosystem condition and coevolutionary processes could be 
monitored together. Moreover, this approach is very well suited to the study of microbial 
networks, as phylogenetic placements of OTUs (in this case undescribed microbes) can 
be determined using the sequencing data (see Czech et al., 2022 for a review). 

In summary, the application of network metrics for biomonitoring has been advocated for 
over a decade, but has lagged behind the rapid development of bulk-sample 
metabarcoding and eDNA methods. Whilst the latter is revolutionary, in its basic form it still 
only provides species inventories and does not take full advantage of the molecular data 
generated. With testing and validation, this information can be used to construct large-
scale, multi-layer  ecological networks, which can be used to monitor both ecological 
processes and ecosystem resilience. 

5. Applications of network theory to study the resilience 
of interacting communities to perturbations and species 
loss  

5.1 Robustness  

Conceptually, we have already seen how the extinction dynamics of an ecosystem can be 
studied using network robustness measures, and how this has been applied to the study 
of plant-microbe interactions (Bennett, Evans and Powell, 2019). Studies have progressed 
from simple qualitative, bipartite mutualistic networks, to investigations of patterns across 
ecosystems. There are also more sophisticated ways to study secondary extinctions, for 
example using Bayesian network approaches (Eklöf, Tang and Allesina, 2013) and/or 
taking into account interaction strengths (Bane, Pocock and James, 2018). Eng and 
Borenstein (2018)  examined taxa-function robustness in microbial communities and 
suggested that community functional robustness to taxonomic perturbations could vary 
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widely across communities with different compositions, and concluded that a systematic 
study of the inherent link between community composition and robustness is lacking. 

Pocock et al. (2012) constructed and analysed the first ‘network of ecological networks’ 
(i.e. 11 groups of animals interacting with shared plants on farmland), providing new 
analytical tools for understanding both the consequences of species extinctions across 
multiple animal groups, as well as the potential for ecological restoration. The Norwood 
Farm study provided a method to calculate the relative importance of plants (and 
habitats, Evans et al. (2013)), and thus identified key species and hubs that were 
disproportionately important in the network of networks. Although yet to be tested 
empirically, one application of this approach is that important plants could be targets for 
conservation and restoration that would benefit multiple animal groups. By examining 
the robustness of the joined networks, the study found that animal groups varied in their 
robustness to sequences of plant extinction, with the plant–pollinator network exhibiting 
much lower robustness than the seed-feeding bird network. Therefore, using a network 
approach, the authors argue that it should be possible to use robustness analysis to 
identify more sensitive groups for targeted conservation effort and/or assessment for 
biomonitoring rather than spending limited funds on charismatic species. 

5.2 Socio-ecological networks 

I have already shown how multilayer networks can link multiple groups of taxa for 
analyses. However, such networks can incorporate a diverse range of data layers, 
including information about people and ecosystem services relevant to policy makers and 
resource managers. For example, Keyes et al. (2021) compared the robustness of salt 
marsh food webs and the ecosystem services. Simulating twelve extinction scenarios for 
estuarine food webs with seven services, they find that food web and service robustness 
are highly correlated, but that robustness varies across services depending on their trophic 
level and redundancy. They used robustness to identify species that provide ecosystem 
services but do not play a critical role in stabilising food webs – whereas they found 
species playing supporting roles in ecosystem services through interactions are critical to 
the robustness of both food webs and services. Thus, there is potential for creating socio-
ecological networks from microbial networks if the services provided by the taxa within 
them can be determined. Thus, there is considerable scope for work in this area as part of 
the RSN. 

 

5.3 Adaptive networks  

Adaptive network models allow us to better understand and predict how both ecological 
and evolutionary processes shape biodiversity and ecosystem functioning. In adaptive 
networks, the feedback between the macroscopic dynamics of interaction structure and 
the microscopic dynamics of population-level processes shapes interactions, abundances, 
and traits, hence influencing resilience and functional diversity. 
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According to Raimundo et al. (2018), the increasing availability of phylogenetically-
structured network data generated through next-generation sequencing techniques (see 
4), alongside the standardisation of biomonitoring protocols, can integrate evolutionary 
principles into adaptive network models for biomonitoring and/or ecological restoration, 
providing highly-resolved information for model parameterization and assessment across 
temporal and spatial scales (Fig. 5.1) 
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Figure 5.1. Adaptive networks capture the interplay of processes occurring at different 
levels of biological organization and can be used to predict how restoration practices will 

affect community-level properties. Source: Raimundo et al. (2018). 

 

Adaptive Network Models (ANMs) account for the feedback loop between: (i) the dynamics 
of networks, which refers to temporal variation in the network structure due to interaction 
rewiring; and (ii) the dynamics on networks, which refers to changes in population-level 
properties of the species that form the network, such as mean traits and abundances 
(Figure 5.1B). ANMs can explore the relative roles of candidate mechanisms that produce 
biodiversity patterns, such as neutral and niche-based processes which can influence 
patterns of interaction among species (Vázquez et al., 2009). They can also provide 
testable predictions for changes in biodiversity arising from management practices that 
add or remove species from communities and refer to: (i) network structure (which could 
be used as a proxy for resilience); (ii) the distribution of species abundances, which relates 
to stability (Allesina and Tang, 2015); and (iii) the community-level distribution of traits, 
which relates to both robustness and functional diversity (e.g. Pillar et al., 2013). 

Unlike the Norwood Farm example, which is essentially a static snap-shot of interacting 
species in time, ANMs allow an understanding of interaction wiring, i.e. the reconfiguration 
of an ecological network arising from the establishment or cessation of pairwise 

https://paperpile.com/c/TKiQvg/w8t4
https://paperpile.com/c/TKiQvg/w8t4
https://paperpile.com/c/TKiQvg/w8t4
https://paperpile.com/c/TKiQvg/W5zu
https://paperpile.com/c/TKiQvg/UR8W/?prefix=e.g.%20
https://paperpile.com/c/TKiQvg/UR8W/?prefix=e.g.%20
https://paperpile.com/c/TKiQvg/UR8W/?prefix=e.g.%20


 65 

interactions as a consequence of adaptive or stochastic processes. The incorporation 
of realistic rewiring mechanisms (Kaiser-Bunbury et al., 2010; Ramos-Jiliberto et al., 2012) 
into ANMs can help to predict to what extent an ecosystem will be able to absorb 
perturbations by the reconfiguration of its interaction patterns without changes to 
ecosystem functioning. A roadmap for operationalizing this approach for restoration and 
biomonitoring purposes is available, but has only been considered in the context of 
conventional plant-animal species-interaction networks, and not specifically for microbial 
networks (see Raimundo, Guimarães and Evans, 2018). 

5.4 Complexity-stability modelling 

Understanding what happens to ecological networks when they lose a significant fraction 
of species is essential for assessing, and potentially mediating, the current impacts of 
biodiversity loss. Traditional theoretical approaches to ecosystem stability, well-known 
from the complexity–stability debate (May, 1972; Allesina and Tang, 2015; Donohue et al., 
2016; Landi et al., 2018), are unable to answer such questions as they concern the 
response of populations to small perturbations. Alternatives have been developed, 
including network robustness approaches described above, and relevant population-
dynamics simulations that have typically considered the effect of the loss of a single 
species (Pimm, 1984). Such simulations have highlighted factors such as complexity 
(Borrvall, Ebenman and Tomas Jonsson, 2000; Ebenman, Law and Borrvall, 2004; 
Lundberg, Ranta and Kaitala, 2008; Kaneryd et al., 2012), trophic level (Quince, Higgs and 
McKane, 2005; Borrvall and Ebenman, 2006), interaction distribution (Fowler, 2010; 
Kadoya and McCann, 2015) and network structure (Thebault, Huber and Loreau, 2007) as 
playing a role in the response of the ecosystem to species loss. The results, however, are 
sometimes conflicting (Thebault, Huber and Loreau, 2007; Sanders et al., 2018). 
Moreover, simulation approaches are numerical and typically restricted to small 
model ecosystems, both of which make it difficult to derive firm conclusions connecting 
network features and the vulnerability of species to secondary extinction (Rohr, Saavedra 
and Bascompte, 2014). 

Emary and Evans (2021) overcame many of these issues by describing a random-matrix 
theory of ecological species loss. Their model assumes a large network of interacting 
species with dynamics described by a generalised Lotka–Volterra model with random 
coefficients. They assume that an ecosystem starts in equilibrium and is then subject to 
the rapid loss of a significant fraction of the initial species (as might occur in e.g. a 
large pollution event). Using an adaptation of the dynamical cavity method, they obtained 
exact results for the distribution of species abundances following this primary extinction 
event. From this, they describe how the severity of secondary extinctions depends not 
only on the size of the primary extinction, but also on the nature of inter-species 
interactions. They found that the capacity of an ecosystem to survive the loss of a 
significant fraction of its species depends on the relative importance of competitive, 
mutualistic and antagonistic interactions. 

One of the main predictions of this work is that, for small primary extinctions when ‘only’ a 
few species have gone extinct, the ecosystem responds by changing its equilibrium 
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abundances to the new values that are normally distributed around the old values, without 
secondary extinctions taking place. Although still theoretical, empirical observation of this 
effect would not only lend some support, but the size and direction of the response would 
allow outstanding interaction parameters to be inferred. Once in possession of these 
parameters, predictions could be made concerning the response to large-scale primary 
extinctions. This could potentially provide early warning of the effects of such 
disturbances and facilitate the identification of the most vulnerable ecosystems, which 
would allow management and conservation efforts to be targeted.  

5.5 How and why network ecology has potential for examining the 
resilience of freshwater systems  

Drawing the network construction and analysis components together, I have shown that 
freshwater microbial community data generated using high throughput sequencing 
(including metabarcoding data for bacteria, fungi, diatoms and other photosynthetic 
microbes, protists and other eukaryotes) can be merged to construct multilayer networks, 
based on network inference methods (with further testing and validation work required). 
Assuming competitive, mutualistic, antagonistic and other interactions can be determined 
(for example using machine learning), the resilience of these networks to a range of 
perturbations can be examined using the theoretical advances described above - although 
they are yet to be tested on empirical data. Clearly more work is needed to bridge the 
gaps between theoretical and empirical network ecology, but there is certainly scope for 
developing freshwater ‘vulnerability’ indices using adaptive network and random-
matrix theory. 

 

6. Recommendations to explore multi-taxa microbial 
datasets, with a particular focus on multi-layer networks 
Biofilms form complex networks of interactions: a surprising level of multi-cellular 
behaviour and extensive three-dimensional structures act in concert to create 
characteristic taxonomic and functional diversity (Besemer, 2015). Yet the causes and 
consequences of biofilm biodiversity remain insufficiently understood. Ecological networks 
provide a framework by which the functioning of aquatic environments and the ecosystem 
services they provide can be studied.  

One of the main constraints to operationalizing adaptive network ecology for 
biomonitoring, restoration and management is the lack of spatial and temporal data 
(Raimundo, Guimarães and Evans, 2018). This is necessary for model parameterisation, 
determining rewiring rules and testing theoretical predictions. The DNA dataset from river 
biofilm samples collected over a three-year period as part of the EA’s newly designed 
River Surveillance Network (RSN) programme provides an unprecedented opportunity 
to apply spatio-temporal data to a number of fundamental questions in network 
ecology, from methodological validation through to biomonitoring and long-term 
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forecasting. Below I recommend a number of key questions and/or recommendations that 
could be beneficial for freshwater biomonitoring. 

6.1 Linking ecological network structure to measures of water quality 

The RSN collects both biotic and abiotic data. This provides an unprecedented opportunity 
to explore relationships between network structure and complexity (both merged and non-
merged, e.g. diatom networks), abiotic factors and ultimately measures of water quality, 
thus linking biodiversity and ecosystem functioning in a novel way.  

6.2 Overcoming primer, DNA extraction, sequencing and bioinformatic 
biases 

Many studies of soil microbial communities tend to analyse bacteria and fungi separately 
due to known amplification biases. A concerted focus on biofilm samples is 
recommended, as biases in organism detection and abundance will undoubtedly 
affect network construction methods and analyses. Repeat samples in space and time 
will allow for sampling completeness to be tested (for example through standard species 
accumulation curves), and with similar approaches available for ecological networks (e.g. 
Macgregor, Evans and Pocock, In Press). Around 80% sampling completeness is the 
general rule of thumb before cross-network comparisons can be made. However, the 
systematic structure of the RSN can still be used to explore relationships in space and 
time, as any biases will be standard across the network. Quantification of microbe 
abundances will remain a challenge. 

6.3 Multilayer networks created using muti-taxa microbial datasets 

Microbial networks generated from next-generation sequencing will, in their most basic 
form, be undirected and unweighted. While examination of network complexity and 
robustness is possible, I have already shown how the capacity of an ecosystem to survive 
the loss of a significant fraction of its species depends on the relative importance of 
competitive, mutualistic and antagonistic interactions. Thus a key challenge is to 
determine the direction and strength of relationships between microbes. While some 
of this information can be brought a priori into network models (e.g. for well studied groups 
of diatoms), a programme of work (both computer and lab-based) is required to better 
understand such interactions. The problem becomes manifest when multi-taxa microbial 
datasets are merged into multilayer networks, where the number of potential direct and 
indirect interactions can grow rapidly. However, state-of-the-art mathematical and machine 
learning approaches are helping to resolve such issues, although to my knowledge) not 
specifically in freshwater microbial systems. 
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6.4 Identifying key hubs 

Multilayer network analysis should be able to identify key taxa, or groups of interacting 
organisms (hubs or modules), within the networks that could be involved in key 
ecological processes. Thus a preliminary analysis of the RSN data should be seen as 
hypothesis forming, allowing more targeted microbial research to confirm or otherwise 
some of the emerging properties associated with ecosystem functioning. If this is indeed 
the case, then these could be candidates for future biomonitoring work using next-
generation sequencing, as opposed to generating entire networks, which may continue to 
be costly (although sequencing costs are scalable). Or the latter might be preferable for 
the early detection of pests and pathogens as well as a more holistic understanding of 
freshwater microbial ecology.  

6.5 Measuring the vulnerability of freshwater ecosystems - new metrics 

I have shown how examining the extinction dynamics of ecological networks provides new 
measures of ecosystem resilience to perturbation. With work, it is not inconceivable that 
the vulnerability of a river ecosystem could be assessed by taking a water sample, 
extracting DNA and RNA, and using sequencing data to construct networks that can then 
be perturbed using the approaches described to provide an overall resilience metric. One 
immediate way to operationalise and test this is to use the RSN data from samples 
taken up- and down-stream from sewage outlets. The resilience of freshwater microbial 
networks to this perturbation event can be compared. Furthermore, I have already 
described how advancing network approaches for biomonitoring is hampered by the lack 
of spatially and temporally resolved data required for model parameterisation. By using 
data generated from ~250 sites (500 samples), there is an unprecedented opportunity to 
test and validate models empirically. 

 

6.6 Big data and processing power 

A final consideration is the storage and sharing of microbial switch to this approach, 
especially if the RSN will continue to analyse biofilm samples into the future. Running 
robustness analyses (e.g. based on 10,000 random simulation events) takes large 
computer processing power, even more so for multilayer networks. Here there is an 
opportunity to construct multilayer networks for ~250 sites, which is unprecedented, and 
simultaneous extinction modelling will require access to High Power Computers. 
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Summary 
Ecosystems globally are under increasing pressures from multiple and often interacting 
stressors, ranging from inputs of novel chemicals to the persistent pressures associated 
with climate change. The need to understand the ecological effects of these stressors, 
how they shape the biodiversity and functionality of ecosystems, and what management 
solutions may mitigate against negative effects, has generated renewed interest in 
environmental monitoring. To date, most environmental biomonitoring programs have 
calculated diversity indices/metrics from a targeted group of indicator taxa, relying on 
phenomenological pattern fitting, with little mechanistic insight or predictive capacity. 
Moreover, their narrow taxonomic focus, excludes capturing the full diversity of the 
functionally most important components of natural ecosystems, the microbes. Thus, there 
is need for a new biomonitoring approach able to capture the diversity and functions of 
microbial communities, and provide a mechanistic, predictive framework linking this to 
ecosystem health, stability, and functionality. 

Microbial communities underpin all biogeochemical cycles, including major transformations 
of carbon and nitrogen, as well as providing the base of most food webs. Thus changes in 
the diversity, composition and ecological interactions within these communities have direct 
links to ecosystem functioning. The development of molecular-based methods for profiling 
microbial communities, notably next generation (high-throughput or second generation) 
DNA/RNA sequencing (NGS) has provided the tools required to survey the diversity and 
composition of microbial communities, and certain functional attributes (e.g. genes 
associated with carbon and nitrogen transformations), but it does not directly quantify 
ecological interactions. Yet, it is this network of ecological interactions that ultimately 
determines the stability of ecological communities and their capacity to deliver ecosystem 
functions. To address this, various computational methods have been proposed to infer 
microbial ecological networks, which describe aspects of ecological interactions, from NGS 
data. 

Microbial ecological network analysis uses associations within spatial or temporal species 
count data generated from NGS surveys to infer ecological interactions between 
constituent microbial species. Multiple algorithms exist to achieve this that range in their 
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computational complexity, applicability to different datasets, ease of use, sample size 
requirements, precision and sensitivity. Some of these algorithms simply describe which 
microbial species are more or less likely to co-occur, while others are able to resolve the 
form (e.g. positive, negative, and neutral) and magnitude of interactions, with many 
algorithms delivering outputs between these two extremes. Once microbial ecological 
networks have been inferred, metrics of these networks (e.g. number of nodes, edges, 
betweenness centrality, connectivity etc) can be calculated and used as a proxy for 
various ecosystem properties. Multiple studies now exist that correlate properties of 
microbial ecological networks with ecosystem attributes, processes and functions. 
However, a lack of consistency in both findings, and approaches, including naming 
definitions of network properties, exists across studies, making generalisations limited.  

While microbial ecological network analysis offers a promising approach for use in 
contemporary biomonitoring programs, it is not without limitations. Multiple methodological 
considerations remain without satisfactory solutions; for example, best practice 
approaches for data pre-processing, dealing with rarer taxa and environmental factors, 
capturing higher order interactions, and understanding what various network metrics and 
emergent properties mean in an ecological context. Perhaps the biggest limitation is that 
microbial ecological network analysis captures association networks, and doesn’t 
necessarily represent underlying biological interactions. Currently our understanding of 
ecological interactions within microbial communities is limited, and it remains relatively 
unresolved as to exactly what ecological interactions (and underlying community and 
population processes) are represented by inferred interactions from microbial ecological 
network analysis. This leaves an important missing link between mechanisms grounded in 
ecological theory that explain how species interactions support the stability and functioning 
of ecosystems, and how this relates to inferred microbial ecological networks.  

New biomonitoring programs (e.g. River Surveillance Network (RSN) programme) need to 
carefully consider the limits of microbial ecological network analysis within the context of 
the data they collect. Users need to remain abreast of methodological developments within 
this rapidly evolving field of research, and be aware that as biomonitoring programs 
continue, a shift from network inferences based on spatial (cross-sectional) data to those 
based on time-series (longitudinal) data may yield more robust insights. Moreover, 
biomonitoring programs should not rely solely on microbial ecological network analysis to 
assess the health, stability and functioning of ecosystems. New developments in related 
analyses, which use functional and trait based approaches, or those that rely on functional 
as opposed to phylogenetic marker genes, can complement microbial ecological network 
analysis to provide a more holistic understanding of ecosystems. 
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1. Introduction 

1.1 Integrating Microbes into Next Generation Biomonitoring 

The integration of DNA (or eDNA) metabarcoding (and metagenomic) data with ecological 
network analysis is increasingly viewed as a leading contender to provide a Next 
Generation Biomonitoring (NGB) solution to track, understand, and predict the health of 
ecosystems (Bohan et al. 2017; Derocles et al. 2018; Dubart et al. 2021). At its core, NGB 
is deceptively simple. Nucleic acids (commonly DNA, but can also be RNA) are extracted 
from environmental samples, and either phylogenetic marker genes (e.g. 16S, 18S, COI, 
etc) are amplified and sequenced (metabarcoding), or the entire extract is shotgun 
sequenced (metagenomics). The metabarcoding or metagenomic data are then used to 
reconstruct ecological networks, and the properties of these networks are used to make 
inferences about the health, stability and functionality (among other properties) of the 
ecosystem. This broad NGB approach has only recently (over the last ~10yrs) become a 
viable option for monitoring ecosystems due to the simultaneous maturation of two 
separate methodologies (Bohan et al. 2017): (1) massively parallel (next or second 
generation) sequencing (NGS) to provide the depth and coverage of require DNA/RNA 
sequence data, and (2) ecological network analysis, specifically developments in machine 
learning, statistical inference, and inductive logic approaches to infer the ecological 
networks. Consequently, NGB provides two (among many other) significant potential 
benefits to biomonitoring systems; it relies on a single common unit of measure to capture 
biodiversity (DNA/RNA sequence data), and returns an ecological network analysis with 
properties that reflect multiple levels of biological organisation, spanning populations, 
communities, and ecosystem stability and functionality as well as the potential to better 
predict the status of ecosystem services delivery.  

Focusing on quantifying biodiversity via DNA and/or RNA based methods has clear 
benefits over traditional morphology based approaches with regards to time, expertise, 
consistency and comparability (both across taxa and sites) of the data (Cordier et al. 
2020). Importantly, and in the context of this think piece, it also provides a method to 
capture microbial diversity (Clark et al. 2018). Since the advent of modern molecular 
microbial ecology, microbiologists have relied on DNA/RNA based methods to quantify 
microbial diversity and overcome the inherent limitations of culture-based techniques that 
often struggle to capture the majority of microbes present in a sample (Clark et al. 2018). It 
is now the rule and not the exception that environmental microbial ecology researchers 
use 16S, 18S, ITS (or other phylogenic marker gene) metabarcoding to quantify microbial 
diversity, with examples covering all ecosystems (e.g. Cordier et al. 2022; Thompson et al. 
2017; Tedersoo et al. 2014). Microbes are ubiquitous, with >1030 microbes (Whitman et 
al. 1998) from >1012 different species (Locey & Lennon 2016), and comprising >109 tons 
of carbon (Kallmeyer et al. 2012) globally. They support a range of ecosystem processes 
and functions, alongside driving all major biogeochemical cycles, and thus, having a 
disproportionately large impact on ecosystem services (Falkowski et al. 2008). Yet, 
microbial community analysis have generally been excluded from routine biomonitoring, 
despite the tools now being readily available to do this and the role of microbial 
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communities in ecological food webs having been highlighted long before the advent of 
next generation sequencing (e.g. Woodward et al. 2005). Moreover, microbial populations 
and communities can act as sentinels to environmental change, responding rapidly to 
novel abiotic stressors (e.g. Thompson et al. 2016) and also changes in the structure of 
the wider food web (e.g. Ferguson et al. 2021).  

Effective environmental biomonitoring programs capture information about the state, 
health and functionality of ecosystems, and the progress of any management practices 
applied to these systems. The ability of DNA and/or RNA based methods to sample local 
species diversity across all domains of life provides an ideal foundation to achieve this. 
This is because a positive relationship between local diversity and ecosystem functions – 
the processes controlling the flows of energy, nutrients and organic matter through the 
environment – exists across ecosystems and has been confirmed by multiple studies 
(Cardinale et al. 2012). For example, multiple plant biodiversity experiments have shown a 
positive asymptotic response of community productivity to increasing plant species 
richness (Hector et al. 1999; Cardinale et al. 2007), and similar relationships have been 
observed in microbial communities (Bell et al. 2005). Furthermore, biodiversity-ecosystem 
functioning (BEF) relationships have been observed across multiple ecosystem functions, 
and it is apparent that within a multifunctionality context (i.e. considering all functions 
within an ecosystem), that different species contribute differentially to different functions, 
and that interactions between species further supports ecosystem multifunctionality 
(Hector & Bagchi 2007; Slade et al.2017). Similarly, the relationship between biodiversity 
and stability may be viewed in a multistability context. Ecological stability is inherently 
multidimensional, comprising, for example, asymptotic stability, variability, persistence, 
resistance and resilience (Pimm 1984). As with ecosystem functions, different species may 
contribute differentially to supporting different aspects of stability (Donohue et al. 2013). 
Thus from a biomonitoring perspective, a single metric of alpha-diversity (e.g. species 
richness) is a poor predictor across multiple functions and stabilities, as it ignores species-
specific contributions, and the ecological interactions that promote multifunctionality and 
stability. A framework that explicitly considers the network of ecological interactions within 
natural ecosystems, and the functional contributions of different species members, is a 
more desirable biomonitoring option. 

However, despite the huge potential for NGB to provide the global solution to the routine 
monitoring of the health, stability and functionality of ecosystems there are still many 
nuances and considerations that require exploration. This is particularly true if we focus 
solely on applying the NGB philosophy to the study of microbial biodiversity. In this think 
piece, we will explore combining microbial DNA-based metabarcoding and shotgun 
metagenomics with ecological network analysis to fully integrate this into NGB 
approaches. We will outline (1) the available methods for reconstructing microbial 
ecological networks before (2) exploring the metrics used to examine network properties 
and what these may reveal about microbial communities. Building on this, we (3) examine 
examples of where network analysis has been applied, and what (if anything) it has 
revealed about stressor responses and higher level ecosystem properties, such as 
ecological stability and functionality. Next, we will explore (4) the current methodological 
limitations to microbial ecological network analysis, including inherent limitations in the 
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underlying molecular data, sampling scales (spatial and temporal) and sampling designs, 
and what can robustly be inferred from microbial ecological network analysis. 
Complementing this, we will examine (5) the most significant knowledge gap that needs 
addressing to make microbial ecological network analysis a routine component of NGB. 
We will examine (6) complementary analyses to microbial ecological network analysis, and 
what combination of network metrics and non-network analyses based on the same 
dataset may be most appropriate for routine biomonitoring. Finally, we will (7) focus on the 
biofilm samples collected over a three-year period as part of the Environment Agency’s 
newly designed River Surveillance Network (RSN) programme, and the types of analyses 
most suited to that specific dataset.  

 

2. Building Microbial Ecological Networks 

2.1 Microbial Ecological Network Inference  

The majority of well resolved ecological networks (especially food webs) have been 
constructed for macro-organisms (e.g. Woodward et al. 2005). These typically use direct 
observations of biotic interactions to determine links between species (nodes) in the 
network, although for ecosystems with poorly defined interactions (e.g. agricultural 
systems), logic-based machine learning methods have managed to reconstruct ecological 
networks as accurately as methods based on direct observations of biotic interactions 
(Tamaddoni-Nezhad et al. 2013). These macro-organism ecological networks range from 
describing food webs, host-parasitoid webs and mutualistic webs (among others) and 
importantly are underpinned by a substantial body of supporting theory that explains what 
is happening in these networks, and thus what network properties mean in an ecological 
context (Ings et al. 2009). For example, within food webs there is a clear understanding of 
what a predator-prey interaction is, and supporting theory that describes how changes in its 
interaction strength may alter networks properties, such as the role weak interactions play 
in stabilizing webs (Kadoya & McCann 2015). Therefore, within a biomonitoring context, 
changes in the properties of macro-organism ecological networks in response to 
environmental perturbations, has a direct, known, and understandable connection to the 
underlying biology of the system. However, in contrast, microbial ecological networks are 
almost exclusively inferred, with no direct observations of biotic interactions included in their 
construction, and in general, construction is entirely based on patterns of species co-
occurrence in DNA/RNA metabarcoding/metagenomic data (Faust 2021). Consequently, a 
substantial body of research into developing the most robust microbial ecological network 
inference algorithms exist, with multiple new algorithms published yearly (see Vacher et al. 
2016; Cappellato et al. 2021; Matchado et al. 2021 for reviews).  

The overall aim of inferring microbial ecological networks from species co-occurrence 
data, is to identify taxa (species, Operational Taxonomic Units (OTUs) or Amplicon 
Sequence Variants (ASVs)) that co-occur in a non-random manner and are thus more 
likely to be interacting with each other while avoiding erroneously assigning interactions 
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between species that are independently responding to the same local environmental 
conditions but do not interact. Within the inferred microbial ecological networks, nodes 
represent species, and the edges (links between nodes) represent the potential 
interactions inferred from the co-occurrence data. Typically, these observed microbial 
ecological networks are compared against null model networks inferred from randomly 
generated data and this is used to evaluate the strength and significance of inferred 
interactions and evaluate overall statistical confidence (Cardona et al. 2016). Building on 
this the strength of the pairwise interactions can be evaluated (often denoted by the 
thickness of the edge) and more recent algorithms also try to evaluate the direction of 
these interactions (e.g. positive, negative, neutral etc.). Once microbial ecological 
networks have been constructed, multiple network properties can be examined and used 
to evaluate ecological properties of the system being studied (see below and Liu et al. 
2021a). There are multiple methods available for inferring microbial ecological networks, 
ranging from those based on correlation/regression approaches, graphical model 
inference, Bayesian and other statistical inference approaches, to logic-based and 
Machine Learning algorithms (Cardona et al. 2016; Vacher et al. 2016).  

 

2.2 Correlation or Regression Methods for Network Inference  

Correlation/regression (association-based) approaches are one of the most straightforward 
and popular approaches for inferring microbial ecological networks (Cardona et al. 2016), 
and include tools such as: ReBoot (Faust et al. 2012); CCREPE (The Huttenhower Lab); 
WGCNA (Langfelder & Horvath 2008); SparCC (Friedman & Alm 2012); REBACCA (Ban 
et al. 2015); CCLasso (Fang et al. 2015); CoNet (Faust et al. 2012); Meta-Network (Yang 
et al. 2019); CCN (Yang et al. 2020); and MENAP (Deng et al. 2012). The range of different 
correlation/regression-based approaches represent developments in network science and 
specifically various methods and approaches that attempt to overcome some of the major 
limitations of inferring microbial ecological networks (see Limitations to Microbial 
Ecological Networks Analysis).  

Briefly, these methods first identify pairwise associations within the species co-occurrence 
data, using methods like Spearman or Pearson correlation coefficients, multiple linear 
regressions (typically sparse multiple regression to avoid issues of overfitting; Cardona et 
al. 2016), and quantitative (e.g. Bray Curtis) or qualitative (e.g. Jaccard’s) similarity indices, 
or they use an ensemble of these different methods (e.g CoNet; Faust et al. 2012; CCREPE; 
The Huttenhower Lab), or other variations on this theme such as association rule mining 
(Meta-Network; Yang et al. 2019). Typically, associations are then compared to a null model, 
which provides the probability distribution of the association metric (e.g. Spearman 
correlations coefficient, or Bray Curtis similarity) produced via a randomisation method. The 
simplest method is often to randomly shuffle the rows of the OTU/ASV input data and 
calculate association metric for a given number of permutations. P-values are calculated as 
the probability the observed association metric between two taxa (OTUs/ASV) is greater 
than the one calculated by a chance resampling of the initial data. Significant associations 
are commonly defined as those where P < 0.05 (Weiss et al. 2016), and various corrections 
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such as Bonferroni or False Discovery Rate, are used to overcome issues of multiple testing. 
Modifications to this class of network inference methods, includes overcoming issues with 
non-independence within compositional data (see Limitations to Microbial Ecological 
Networks Analysis), such as permutation and bootstrap methods that resample the 
OTU/ASV dataset (e.g. ReBoot; Faust et al. 2012; CCREPE The Huttenhower Lab).  

Of all these methods, SparCC (Friedman & Alm 2012) has gained notable traction, 
popularity and widespread use, this provides the benefit of multiple other studies using a 
consistent method against which to contextualise findings. SparCC was an early method to 
tackle issues with the compositional nature of microbial NGS datasets (see Limitations to 
Microbial Ecological Networks Analysis), whereby an increase in the absolute 
abundance of a single taxa can cause decreases in the relative abundance of all other taxa 
in the absence of any changes in their absolute abundance. SparCC uses an iterative 
approximation approach and log-ratio transformed data on which to base pairwise 
associations (Friedman & Alm 2012), with more recent methods building on this and claiming 
improved accuracy (REBACCA; Ban et al. 2015). 

Another method attempting to overcome various methodological limitations is to construct 
molecular ecological networks (MENs) using random matrix theory (RMT). Here, interaction 
thresholds are detected automatically from data rather than being set arbitrarily or inferred 
from biological information (which is unlikely to be available for the majority of microbes) 
(Deng et al. 2012). RMT was developed in the area of theoretical physics and shown to be 
applicable to many biological networks; for example, protein interaction networks, metabolic 
networks in yeast (Luo et al. 2006) and gene co-expression networks (Luo et al. 2007). It 
has been applied to microbial ecological networks using both functional (creating fMENs; 
Zhou et al. 2010) and phylogenetic (creating pMENs; Zhou et al. 2011) marker genes. The 
aim of the RMT is to create the adjacency matrix for the system. This is a matrix of all 
pairwise interactions of all species/functional genes included in the analysis. From a 
phylogenetic perspective, the network inferred from the adjacency matrix is the map of which 
species interact, and if a weighted network is used, how strongly the species interact. 
OTU/ASV count data are standardised for each species across samples and pairwise 
Pearson correlation coefficients are calculated to measure the abundance-similarity 
between species. The absolute values of these correlation coefficients are the basis for the 
adjacency matrix, bound between zero if that value is below the threshold, and the absolute 
value of the correlation coefficient otherwise (Deng et al. 2012). The appropriate threshold 
is determined using an iterative process where the nearest neighbour spacing distribution 
(NNSD) of eigen values of the adjacency matrix switches from Gaussian orthogonal 
ensemble to Poisson (Deng et al. 2012). At each iteration, rows and columns of the matrix 
are removed, if all of their interactions fall to zero after the threshold is adjusted in the search, 
then the new eigen values and their new NNSD is then calculated (Deng et al. 2012). Freely 
available pipelines (MENAP) have been created to carry out these processes (Deng et al. 
2012). 
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2.3 Influence of Data Properties on Correlation or Regression Based 
Network Inference 

It is worth noting that none of the aforementioned methods are perfect, and of those that 
have previously been directly compared a wide range of precision and sensitivity is 
observed (Weiss et al. 2016). Importantly, it appears that different methods are better 
suited (in terms of sensitivity and precision) to dealing with data with different attributes. 
For example, SparCC performs particularly well on data with high compositionality 
properties, whereas an ensemble approach (e.g. combining CoNET, SparCC, Pearson 
and Spearman) is preferred when dealing with data that are <50% sparse (Weiss et al. 
2016). Generally speaking, the correlation/regression (association-based) class of network 
inference methods, have decent false-positive rates (but in cases where very low false 
positives are required an ensemble of CoNet and Pearson works best), but all benefit from 
increasing the critical value of association metrics from P < 0.05 to P < 0.001 (Weiss et al. 
2016). When tested on modelled data, designed to include a range of interactions 
(amensalism, commensalism, competition, mutualism, parasitic, syntrophic), most 
methods detect interactions that were from mutualism and commensalism, but those 
originating from amensalism and syntrophy where never detected (Weiss et al. 2016). This 
raises a number of questions, including: are there methods to infer edges within microbial 
networks that arise from all forms of biological interactions, can we robustly estimate what 
form that interaction originally took in the environment (e.g. competition vs predation), and 
do interactions whose definitions largely arise from observations of macro-organisms 
apply to microbial communities in the first place? 

 

2.4 Overcoming Limitations of Correlation or Regression Based 
Network Inference 

Correlation/regression (association-based) approaches often still fail to differentiate 
between direct and indirect associations (Matchado et al. 2021) and many still don’t fully 
account for issues of non-independence within the OTU/ASV co-occurrence data 
(compositionality) and the far greater number of OTUs than samples in most microbial 
surveys (Cardona et al. 2016). A number of different approaches (including, but not limited 
to, graphical model inferences, Bayesian/statistical inference, and logic-based and ML 
algorithms) have been developed to overcome some or all of these limitations. However, it 
is worth noting that many of these more sophisticated algorithms come with considerable 
computational costs. Thus a trade off between analytical speed, computational power, and 
resources (both computational and human expertise), and the precision, sensitivity and 
rigour of the analysis is likely to exist for the time being. This may become a core 
consideration in a NGB context, if a decent first-order approximation of the microbial 
ecological networks can be generated quickly and be used to detect rapid or transient 
changes in the environment rather than waiting longer for the inferred network to be better 
resolved.  
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2.5 Graphical Methods for Network Inference 

As with correlation/regression (association-based) approaches, multiple methods based 
on graphical model inference exist, including: gCoda (Fang et al. 2017); MDiNE 
(McGregor et al. 2020); MixMPLN (Tavakoli & Yooseph 2019); MPLasso (Lo & 
Marculescu 2017a); SPRING (Yoon et al. 2019); and SPIEC-EASI (Kurtz et al. 2015). 
Arguably the most well known is SPIEC-EASI, and similar to SparCC has provided 
multiple studies against which to contextualise findings. Also, many of the other methods 
have been developed from SPIEC-EASI, and now offer increased speed and performance 
(e.g. gCoda; Fang et al. 2017; and to some extent SPRING Yoon et al. 2019). There are 
also tools to implement many of these in combination with correlation/regression 
(association-based) approaches via user friendly packages (e.g. NetCoMi; Peschel et al. 
2021, microeco; Liu et al. 2021b), making them an appealing option. Broadly, these 
graphical model inference methods take an approach that begins with the consideration of 
conditional independence between species (OTUs/ASV) in the network. Conditional 
independence suggests that for two species they are conditionally independent when the 
abundance value of one species (relative to all species withing the dataset) does not 
provide any information on the probability of the other species occurring. This results in an 
undirected weighted graph where the edges imply this conditional dependency between 
nodes. Underpinning this is often some form of partial correlation (or similar approaches) 
that helps to differentiate between direct and indirect interactions. The majority of 
approaches also consider the influences of biological covariates and other methodological 
biases (e.g. NGS read depth). For example, SPIEC-EASI (Kurtz et al. 2015) avoids 
erroneously inferred interactions driven by abiotic factors and indirect effects via using 
sparse inverse covariance to capture associations or neighbourhood selection. It avoids 
issues of compositionality by using a center-log transformation of the OTU/ASV co-
occurrence (abundance) data and deals with issues of data sparsity via random 
subsampling.  

 

2.6 Bayesian Methods for Network Inference 

Bayesian methods have the potential to provide a greater predictive capability when 
capturing microbial interactions. Several packages have been developed that rely on 
Bayesian approaches, including: BAnOCC (Schwager et al. 2017); BioMiCo (Shafiei et al. 
2015); BiomeNet (Shafiei et al. 2014), which initially focused on inferring metabolic 
interaction networks within microbial communities; and MDSINE (Bucci et al. 2016) and 
CGBayesNets (Lugo-Martinez et al. 2019), which use Dynamic Bayesian networks and 
are applied to time-series data. Other methods mentioned previously (e.g. MDiNE; 
McGregor et al. 2020), include some aspect of Bayesian inference within their algorithms. 
Bayesian fitting methods provide a platform to simultaneously capture multiple forms of 
relationships between species within a community (e.g. linear vs non-linear) through 
considering the joint multivariate probability distributions of multiple species 
simultaneously (Cardona et al. 2016). This has the potential to reveal interactions within 
complex communities and various interdependencies that may be missed using other 
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statistical inference methods. However, while Bayesian approaches are increasing being 
used, far fewer studies have deployed these methods compared to correlation or graphical 
methods (e.g. SparCC and SPIEC-EASI). Whilst this is not an inherent limitation, it does 
mean contextualising results of Bayesian network inferences is harder. Moreover, very few 
benchmarking studies that examine the performance (e.g. sensitivity, precision, etc.) of 
microbial ecological network algorithms have considered Bayesian methods. However, 
one major criticism of inferring microbial ecological networks, is that a comprehensive and 
quantitative comparison and validation of all approaches, and how these link to different 
data properties does not exist.  

 

2.7 Logic-Based and Machine Learning (ML) Algorithms for Network 
Inference 

Logic-based and ML algorithms offer a very promising approach to inferring microbial 
ecological networks. However, these have yet to be applied widely to the analysis of 
microbial communities surveyed using NGS approaches (Vacher et al. 2016). 
Nonetheless, these methods have been used to successfully learn ecological interaction 
networks from species co-occurrence data when it was combined with background 
knowledge of the ecosystem when applied to macro-organisms (Bohan et al. 2011; 
Tamaddoni-Nezhad et al. 2013). Including reconstructing ecological networks as 
accurately as methods based on direct observations of biotic interactions (Tamaddoni-
Nezhad et al. 2013). Barroso Bergadà (2022) made recent progress in applying these 
approaches to microbial NGS data, and developed (with collaborators) “InfIntE: a generic, 
logic-based inference tool for learning networks in R” for conducting the analysis. The 
Abductive/Inductive Logic Programming behind InfIntE performed well at identifying 
ecological interactions in both trials using computational simulations, and when applied to 
microbial NGS data collected from vineyards (Barroso Bergadà 2022). Impressively, it was 
able to capture known interactions, and their forms (e.g. negative, positive, neutral) 
between species (Barroso Bergadà 2022). As these methods develop, they may provide 
the ideal platform for inferring microbial ecological networks in a NGB context.  

 

2.8 Inferring Microbial Ecological Networks from Longitudinal (time 
series) Data 

The majority of approaches already described are most appropriately applicable to cross-
sectional data. This is intentional, as all new NGB programmes will initially only have 
spatial (cross-sectional) data available, until they have operated for sufficient time to build 
a time-series and provide longitudinal data. However, inference of microbial ecological 
networks from longitudinal as opposed to cross-sectional data may be more rigorous. 
While the same issues of compositionality and sparsity of DNA/RNA-based NGS data exist 
and need to be dealt with in longitudinal approaches, by taking repeated samples from the 
same system, the likelihood of introducing spurious association from indirect abiotic effect 
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may be greatly reduced. Currently, there are a number of tools for inferring microbial 
ecological networks from longitudinal data (Faust et al. 2015), but given the rapid speed of 
development of new approaches, novel NGB programmes should explore newer options 
at the point it becomes clear that sufficient longitudinal data will be generated. 

Available methods for dealing with longitudinal/time-series data include: statistical 
approaches based on autoregressive integrated moving average (ARIMA) with Poisson 
errors and fit with elastic-net regularisation (Ridenhour et al. 2017); RMN (Tsai et al. 
2015); eLSA (Xia et al. 2013); FASTLSA (Durno et al. 2013); and a suite of methods 
based around generalised Lotka-Volterra (gLV) models which includes, MTPLasso (Lo & 
Marculescu 2017b); TIME (Baksi et al. 2018); metaMIS (Shaw et al. 2016); and LIMITS 
(Fisher & Mehta 2014). The use of gLV is intuitive from an ecological perspective as vast 
amounts of ecological theory, including food web theory (as the dominant form of 
ecological network analysis), is built on examining Lotka-Volterra dynamics (e.g. Lewis & 
Law 2007). The gLV approach models the community’s dynamics by considering the 
growth rate of each species within the network, their influence on all other species’ growth 
rates, and additional stochastic influences from sampling errors and environmental factors 
(Cappellato et al. 2021). The model interaction coefficients are then estimated from the 
data using a range of regression approaches and these become edges within the network. 
The statistical approaches behind the inference of these model parameters is the major 
difference between the various algorithms behind these analyses. Potentially using gLV 
approaches has a great benefit to NGB, as it could provide a historically better developed 
mechanistic underpinning of the observed microbial ecological networks. However, there 
remains questions over the logistical feasibility of this approach to deliver within a NGB 
context. For example, while longer-term trends in the behaviour of the ecosystem will be 
described it may not be the most suitable approach for detecting rapid or more transient 
phenomena. It is also unclear as to what an appropriate samples size is (i.e. number of 
samples through time) to produce a rigorous analysis of microbial ecological networks 
using these methods.  

One other longitudinal/time-series data option is based around Local Similarity Analysis 
(LSA; e.g. eLSA; Xia et al. 2013 and FASTLSA; Durno et al. 2013). LSA infers co-
occurrence networks via a dynamic programming approach that identifies lags and 
association between two times series by minimising similarity scores between then. This 
makes it particularly good at identifying species interactions that occur in short periods 
over time, or those where the cause-effect relationship involves lags (Cappellato et al. 
2021). They are also particularly suited to accurately identifying associations within data 
where interactions are sparse (Weiss et al. 2016). 
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3. Analysing Microbial Ecological Networks 

3.1 Network Properties and Metrics 

Multiple properties of microbial ecological networks can be measured, ranging from those 
of individual network nodes to higher level properties of the network. Even the simplest of 
these measures should be considered carefully in the context of the microbial ecological 
network. The number of nodes in the network is the simplest network measure, and is the 
number of OTUs/ASVs/taxa/species/functional genes that are connected. Assuming for 
simplicity, that the nodes are species, even this simple measure will only be equivalent to 
the ecological concept of species richness if all species sampled are present in the 
network, i.e. there are no species that exist in isolation (or these species are not removed 
from analysis). Number of nodes is commonly used as measure of ecosystem response to 
a perturbation (Favila et al. 2022). For ease of understanding, each node will be 
considered as a microbial species while defining the network measures. The edges 
between nodes represent the associations between the species, with the weighting (in a 
weighted network) indicating a measure of the strength of the interaction/association. All 
measures that follow have been used to infer something about the ecological role of the 
species (e.g. a keystone species), the health or functioning of the ecosystem or its 
response to some form of perturbation. It is important to be cautious in these 
interpretations however, as most are still based on extrapolating from other ecological 
networks where the interaction is better understood, without experimental validation in 
microbial networks (Guseva et al. 2022).  

The degree (or occasionally connectivity e.g. Deng et al. 2012) of a node is the number of 
edges connected to that node (i.e. the number of other species that a species is 
associated with) and its degree centrality is its degree divided by the maximum possible 
degree were the node is directly connected to all other nodes (i.e. degree standardised 
between 0 and 1). Measures of degree have been used in identifying hub species and 
keystone species, although the validity of this is questioned by Guseva et al. (2022), who 
suggest it is more reflective of niche preference. The betweenness of a particular node is 
the number of shortest paths between any two other nodes that pass through that node. 
Betweenness centrality of a node is its betweenness divided by its maximum possible 
betweenness (Liu et al. 2021a) (i.e. betweenness standardised between 0 and 1 as it 
otherwise increases with the size of the network). Confusingly, some studies do not 
standardise betweenness in this way, but still refer to it as betweenness centrality (e.g. Ma 
et al. 2016; Xue et al. 2018) and others do standardise it, but refer to it only as 
betweenness (e.g. Deng et al. 2012). To add additional confusion, betweenness is also 
sometimes referred to as stress or stress centrality (Deng et al. 2012; Costa et al. 2019). 
Alongside having high degree, the betweenness of a node is often used to identify 
keystone species, however sometimes low betweenness centrality is required (Berry & 
Widder 2014, Ma et al. 2016; Xue et al. 2018; Liu et al. 2021a,c) and sometimes high 
betweenness centrality is required (Tipton et al. 2018; Ishimoto et al. 2021). The 
clustering coefficient of a node is the number of nodes that it is directly connected to, 
that are also directly connected to each other divided by the total number of edges 
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possible if all of its neighbours were directly connected to each other (Watts & Strogatz, 
1998). The closeness or closeness centrality of a node is the reciprocal of the sum of 
the shortest path between it and all other nodes in the network (Liu et al. 2021a). Again, 
this is sometimes, but not always, standardised by multiplying by the number of nodes in 
the network minus one (i.e. the minimum possible distance in an undirected graph; 
Wasserman & Faust 1994). It can identify nodes that can influence the network fastest and 
therefore has a role in identifying keystone species (Favila et al. 2022). 

Some measures of centrality have already been mentioned, and although less frequently 
used, there are other measures of centrality that are considered for microbial communities. 
In particular, eigenvector centrality of a node is its associated value in the standardised 
eigenvector that corresponds to the maximum eigenvalue of the adjacency matrix (Liu et 
al. 2021). It reflects a node’s importance based on the importance of its neighbours, where 
importance is measured by degree centrality i.e. neighbours with a high degree are worth 
more (Golbeck 2013). It is not obvious what eigenvector centrality means for a microbial 
co-occurrence network, although it has been measured for several (e.g. Deng et al. 2012; 
Yuan et al. 2021; Mercado et al. 2022; Fang et al. 2023) and Baldassano & Basset (2016) 
found that it was a useful measure to identify species previously implicated in, and 
possibly implicated in, Inflammatory Bowel Disease.  

Next, we consider metrics at the level of the network. The average degree is simply the 
average of all node degrees (Liu et al. 2021) and reflects the complexity of the network 
and hence might have a role in stability, particularly resilience (Favila et al. 2022). The 
density or connectance is the total number of edges in the network as a proportion of all 
possible edges if the network were fully connected, and is also possibly related to 
ecosystem resilience (Favila et al. 2022). Connectivity is sometimes used instead of 
connectance, but is simply the total number of edges in the network (Favila et al. 2022). 
The degree distribution is the probability distribution that a randomly chosen node has a 
particular degree. This can be used to infer non-random assembly processes (Barabási & 
Albert 1999). Average shortest path length/characteristic path length, average 
geodesic path length in unweighted networks are all terms for the length of the shortest 
path between two nodes in the network, averaged over all pairs of nodes (Watts & 
Strogatz, 1998; Favila et al. 2022). One issue to be aware of is that in weighted networks 
the shortest path is actually the path with the smallest sum of weights (this is true in all 
networks, but in unweighted networks all non-zero interaction weights are 1) (Liu et al. 
2021a), which is meaningless in networks where interaction strengths reflect interaction 
frequency (Costa et al. 2019). This path length is usually small in microbial networks and 
has implications for ecological resilience through the speed of the network’s response to 
perturbations, and also community cohesion (Favila et al. 2022). The clustering 
coefficient of a network is the clustering coefficient of each node averaged over all nodes 
in the network (Watts & Strogatz 1998). This means that it is the average probability that 
two species which are both directly associated with a third species are also directly 
associated with each other. High clustering coefficient has implications for redundancy 
(Favila et al. 2022), and can indicate modules within a network (Liu et al. 2021a). 
Modularity is a measure of the compartmentalisation of the network into subgroups that 
are highly connected within themselves but sparsely connected with each other (Newman 
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2006), and the presence of modules can be due to shared ecological functions of the 
clustered species, spatial compartmentalization or similar habitat preferences (Favila et al. 
2022), or niches (Faust and Raes, 2012, Favilla et al. 2022). The presence of modules has 
also been implicated in community resilience and resistance (aspects of stability) (Favila et 
al. 2022). 

Hub nodes/modular hub nodes are nodes that are highly connected to other nodes (i.e. 
have a high degree) in the network or within a module. The presence of a few highly 
connected nodes is a property of scale-free networks (Barabási & Albert 1999), which 
microbial association networks have been shown to be (see Faust & Raes 2012). Such 
networks are robust to random node removal but not to the removal of hubs (Albert et al. 
2000), although the importance of the hubs in microbial networks is questioned (Faust & 
Raes 2012). In a co-occurrence network, hub nodes/modular hub nodes represent species 
that are directly associated with many other species (across the whole network or within a 
module). Consequently, species identified as occupying hub nodes are often considered 
as possible keystone species within the network. Sometimes keystones are identified as 
those nodes with a high degree alongside high closeness centrality (Berry & Widder, 
2014), playing an important role in stability (Liu et al. 2022). The role of betweenness in 
identifying keystone species is less clear. Connector nodes (bridging nodes) are nodes 
that connect modules within networks, thus have high betweenness centrality (Costa et al. 
2019; Favila et al. 2022) (or other centrality measure; Costa et al. 2019). These nodes 
play an important role in communication (Favila et al. 2022) and the spread of 
perturbations (Costa et al. 2019). Although connector nodes do not necessarily have a 
high degree, they are also sometimes considered as keystone species (Favila et al. 2022; 
Liu et al. 2022) as their removal could cause networks to become disconnected.  

4. Current applications of microbial ecological networks 
analysis  
Network theory and analysis have been applied to many systems from social networks, 
computer networks, and power networks, to biological networks such as neural networks, 
epidemiological networks and molecular interaction networks (for a review, see Strogatz 
2001). In particular, a large body of work taking a network approach to the classification 
and modelling of macro-organisms in food webs, mutualistic webs and host-parasitoid 
webs exists (for a review, see Ings et al. 2009). This approach proved particularly useful in 
understanding the role of complexity in the stability of food webs (see Ings et al. 2009). 
After applying network theory to interaction networks of macro-organisms it is logical to 
extend this to the networks of microbial interactions. Network theory has been well 
developed in these aforementioned areas and hence potentially useful insights may be 
learned from these other disciplines.  

 

The simplest use of the network approach applied to microbial networks is to measure 
network topology (e.g. clustering coefficient, average degree, degree distribution, mean 
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shortest path) as a way to classify or compare between networks (Steele et al. 2011). This 
approach has been used to describe how microbial networks change under changing 
conditions, for example elevated carbon dioxide levels (Zhou et al. 2011), warming (Deng 
et al. 2012; Yuan et al. 2021), salinity (Zheng et al. 2017) seasonality (Lin et al. 2019; 
Fang et al. 2023), elevation (Chen et al. 2022) and water and nutrient availability 
(Hernandez et al. 2021). It has also been used to compare between undisturbed networks 
and those subject to industrial waste (Zapellini et al. 2015). Network measures have also 
been used to investigate the effects of and recovery from perturbations such as changes 
in pH (Feng et al. 2017) and drought (de Vries et al. 2018).  

Network approaches applied to microbial communities predominantly investigate four main 
aspects of interest (and these are not mutually exclusive within studies). In the majority of 
studies, understanding how the community network topology changes, is a precursor to 
understanding the stability of the community, although this is not entirely straightforward 
in co-occurrence networks. The identification of keystone species through the properties 
of the nodes also makes up a significant amount of research in this area, but is also not 
without controversy. The inclusion of environmental variables as network nodes has 
enabled some interesting findings. Finally, there is some research that directly considers 
ecosystem functioning. It is worth noting, that the response of microbial ecological 
networks to stressors (especially multiple interacting stressors) and how this links to issues 
of stability and functioning is poorly explored in freshwater systems (Codello et al. 2022). 

 

4.1 Ecological Stability Inferred from Microbial Ecological Network 
Analysis 

To a large extent, community stability is inferred from our understanding of how network 
properties relate to stability developed from other areas. For example, Wang et al. (2018) 
showed that microbial (bacterial and archaeal) interactions in empirical semi-arid 
grassland soil networks strengthened with higher precipitation, generating more complex 
networks, with higher clustering and connectance, more negative interactions, more 
module hubs and connectors. From this they inferred (rather than tested) that higher 
precipitation would lead to higher stability networks, or conversely that desertification 
would lead to less stable networks. In an attempt to provide some empirical support for a 
link between certain network properties and stability, de Vries et al. (2018) considered 
bacterial and fungal networks before, during and after drought conditions, measuring 
network properties associated with stability and also community measures of stability 
(species richness, species evenness and Bray-Curtis similarity between drought and 
control communities) through time. They found that bacterial networks showed network 
properties associated with low stability (e.g. high connectivity and centrality, and low 
modularity), while fungal networks showed properties associated with higher stability. They 
also found that bacterial communities were more strongly impacted by drought than fungal 
networks (i.e. were less resistant) and bacterial communities did not return to pre-drought 
communities (i.e. were less resilient), indicating agreement with the low-stability indicators 
of high connectance and centrality and low modularity. Interestingly, connectedness and 
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centrality of nodes in bacterial networks increased further after drought conditions, 
indicating even lower stability. The opposite was true of fungal networks. In their study 
system, there is considerably more going on that could affect stability than just network 
properties. The plants present were strongly affected by drought and had a much stronger 
link with the bacterial community than with the fungal community. However, the study is 
one of only a few to explicitly investigate rather than assume a link between network 
properties and stability in microbial networks. It would be particularly useful to consider 
network topological properties (connectance etc.) and measures of community stability in 
response to perturbations only within bacterial networks, but this would probably require a 
large range of habitats and/or bacterial taxa present to generate sufficient differences in 
network measures to be insightful.  

The concept of network modularity has also been explored to assess microbial networks. 
For example, commonalities between taxa/OTUs in a module can be discovered once 
modules (groups of closely interacting taxa/OTUs) have been identified (e.g. Zhou et al. 
2011; Xiong et al. 2018). High modularity is an indicator of stability in many ecological 
networks (while not without controversy and conflicting results, this seems to be generally 
accepted – see Teng & McCann 2004; Stouffer & Bascompte 2011; Grilli et al. 2016). 
Recently, Hernandez et al. (2021) studied soil microbial communities along environmental 
stress gradients (water and nutrient availability), and measured modularity and cohesion 
(the negative:positive interactions ratio) of the co-occurrence networks. They found 
networks with lower water and nutrient availability (under higher stress) were less modular 
and had lower cohesion (i.e. dominated by positive co-occurrences) than those from lower 
stress environments. Using low modularity (and low cohesion) as an indicator of low 
stability, they took this as indicating lower network stability in high stress environments, 
thus it was concluded that environmental stress destabilizes microbial community 
networks (Hernandez et al. 2021). However, recent studies of microbial communities have 
shown both less modularity under stress (Wang et al. 2018 – precipitation in semi-arid 
grasslands; Hernandez et al. 2021 – water and nutrient availability; Price et al. 2021 – 
addition of an alkaline stabilized biosolid stressor; Ye et al. 2021 – water availability) and 
more modularity under stress (Zheng et al. 2017 – salinity; Yuan et al. 2021 – warming), 
suggesting network response in terms of its modular structure is as yet unclear. 

Hernandez et al. (2021) also focuses on the role of the ratio of negative to positive 
interactions in response to stress. It uses a measure of cohesion originally developed by 
Herren & McMahon (2017), not as a network metric, but using the same network 
correlation matrix, essentially weighting positive and negative interactions of taxa 
(correlations) by their relative abundances in samples. Cohesion was shown to be a good 
predictor of community turnover, particularly negative cohesion (i.e. weighted negative 
interactions/correlations), better in fact, than using all of the available environmental 
variables. The importance of negative interactions on network stability is well established, 
especially in food webs (e.g. McCann et al. 1998; Neutal et al. 2002; Teng & McCann 
2004), and it has also been shown mathematically in networks which reflect the types of 
interactions that are present in microbial networks (Coyte et al. 2015). There is also 
empirical evidence for this in microbial communities. Feng et al. (2017) found that the 
negative interactions between key functional taxa in a biofilm community might 
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fundamentally impact resilience. However, they found increased strength of this negative 
interaction was associated with a longer recovery time (Feng et al. 2017). In a 
complementary approach, it has also been shown empirically that negative interactions 
are lost in high stress environments (Hernandez et al. 2021). 

A common way to consider the effects of interaction strengths across an ecological 
network is to directly consider linear stability of the system, particularly of a system 
described by a set of generalised Lotka-Volterra (gLV) equations. Linear stability considers 
the ability of the system to return to its equilibrium state after a perturbation, i.e. the 
resilience of a system (Pimm 1984). This method is very common in networks of macro-
organisms such as food webs beginning with May (1972), but less so for microbial 
networks. Partly this must be due to the difficulties in parameterising true interactions 
between microbes, i.e. causal relationships where changing abundances of one taxon 
directly affects the abundance of another, something that is more easily done and better 
understood in macro-organisms. Guesseva et al. (2022) are particularly cautious of the 
gLV approach as microbial interactions are usually inferred from co-occurrences rather 
than from causal relationships. However, the use of time series data offers a method to 
achieve this. Stein et al. (2013) use time series data of simple (few species) intestinal 
bacterial communities training and testing on subsets of the data. Coyte et al. (2015) 
tested their theoretical model using the time series data of Stein et al. (2013). This 
approach, however is obviously quite data intensive and longer time series data for large 
communities do not exist in general for new NGB programmes. One other possible 
method is to directly establish interactions through culturing. A study of microbial UTI 
communities by de Vos et al. (2017) took this approach and also showed over 
representation of competitive interactions particularly between closely related isolates 
(within genus), suggesting such interactions promote stability in these networks. They 
parameterised a gLV model for interacting species based on their empirical data and 
identified the communities which had (linearly) stable communities, and those that, due to 
the presence of an additional unstable fixed point/community, could only be assembled in 
certain ways (otherwise at least one species would be absent from the final community – 
i.e. it would reach the alternative fixed point community) (de Vos et al. 2017). The obvious 
limitation to this approach is the microbes must be culturable, and secondly there will be a 
limit on the number of interactions it is feasible to investigate in this way. 

A final word of caution in the use of networks to consider microbial community stability 
relates to the complexity-stability debate. The debate around whether complexity leads to 
stability in food webs was largely triggered by May (1972) and generated many 
discoveries, such as the type of links and strength of links being important, rather than just 
the presence of links (e.g. McCann et al. 1998; Neutal et al. 2002; Teng & McCann 2004). 
There are some studies of microbial networks that either show or assume that high 
connectivity (a measure of high complexity) means less stable networks (de Vries et al. 
2018). Alternatively, there are some that show or assume high connectivity (more 
complexity) means more stable microbial networks (Wang et al. 2018; Yuan et al. 2021). 
Closer investigation, however, suggests that the apparent disagreement is a result of the 
types of interactions being included in the network analysis. The study of de Vries et 
al.(2018) includes only positive associations, and large numbers of these have been 
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shown to be destabilising. Wang et al. (2018) include all interactions, and we know from 
the diversity-stability debate that more negative links can be stabilising. It is therefore 
worth being very clear about the types of interactions included in any network before 
drawing conclusions about stability. 

 

4.2 Keystone species in Microbial Ecological Networks 

A lot of attention has been given to the identification of microbial keystone species/taxa 
using network measures, understandable given the clear links to stability and ecosystem 
health. In general ecology, keystone species are those that have a large effect relative to 
their abundance (Power et al. 1996) – i.e. they are found in low numbers but have a large 
effect. This is not necessarily true for microbes, however, as some taxa can have very 
important keystone roles and are often found at high abundances. An example of this 
given by Banerjee et al. (2018) is a species of bacteria found in the human intestine, which 
is an anaerobic symbiont. This prompted Banerjee at al. (2018) to provide the following 
definition of a microbial keystone: “keystone taxa are the taxa which have major influence 
on microbiome composition and function at a particular space or time. These taxa often, 
but not always, have an over-proportional influence in the community, relative to their 
abundance.”  

The majority of the studies that identify keystone (or potential keystone) species/taxa do 
so using network metrics based on how candidate taxa are connected to others in the 
network. There is however some disagreement about what these should be. Berry & 
Widder (2014) use those with high mean degree, low betweenness centrality (few of the 
shortest paths between any two nodes in the graph pass through a keystone node), high 
closeness centrality (a keystone node has low average distance to any other node), and 
high transitivity. Many studies have used this classification to identify keystone species in 
microbial networks (e.g. Ma et al. 2016; Liu et al.2021c). While high degree is often 
accepted as a required property of a keystone species, even this is not necessarily 
generally true. For example, bridging nodes/connectors connect modules within the 
network, thus occupying a potentially important ecological role and whose loss could 
cause networks to become disconnected, they themselves tend to be connected to only a 
few other nodes (low degree). These too should be (and sometimes are) considered as 
potential keystones (e.g. Fang et al. 2023). 

There is also difficulty in identifying an appropriate level of “betweenness” to classify 
keystone taxa. In contrast to the Berry & Widder (2014) approach of using low 
betweenness centrality, others use high betweenness centrality (alongside high degree) 
as an indicator (e.g. Tipton et al. 2018; Ishimoto et al. 2021). The argument for using high 
betweenness is a logical one, i.e. that a node appearing in more paths between other 
nodes shows a greater influence over more nodes. Berry and Widder (2014) used 
simulations to identify “keystoneness” of taxa, removing nodes from networks and 
measuring the impact, hence their requirement of a low level of betweenness stems from 
simulated data. Although this adds some weight to the argument to use low betweenness, 
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Guseva et al. (2022) caution against the use of network topology to identify keystone 
species specifically because removing a node in a simulated network based on co-
occurrences will not necessarily have the same effects in a real-life networks, as co-
occurrences do not imply dependencies.  This disagreement in whether to use high or low 
values of betweenness, somewhat weakens the argument for using network properties to 
identify keystone species in microbial networks. It could be linked to the previously 
mentioned issues surrounding stability and complexity, that is whether all associations or 
only positive associations in the network are being considered. Whatever the underlying 
reason, is an issue that needs to be resolved before using “betweenness” in any 
meaningful way going forward.  

Finally, keystone identification from networks of correlations has obvious limitations that 
we have previously mentioned as general limitations, such as habitat filtering and spurious 
associations (Banerjee et al. 2018) and lack of causal relationships between taxa 
(Banerjee et al. 2018; Guseva et al. 2022). To avoid these issues there is a sensible 
requirement to support theoretical suggestions of candidate keystone taxa with empirical 
evidence (Banerjee et al. 2018; Banerjee et al. 2019). There are, however, clear limitations 
to testing “keystoneness” empirically, in that not all microbes are culturable therefore 
identifying potential keystone taxa has value (Banerjee et al. 2019).  

 

4.3 Incorporating Environmental Variables into Microbial Ecological 
Networks 

The most obvious way to consider links between the environment and network structure is 
simply to carry out tests of association between the two (e.g. Wang et al. 2018). However, 
environmental variables have been included in the analysis as network nodes to identify 
positive and negative associations between taxa/OTUs and the environment (e.g. Ju & 
Zhang 2015; Zhao et al. 2016; Wang et al. 2018; Lin et al. 2019). As well as providing 
useful results in its own right, the method of including environmental variables as nodes is 
one way to deal with the issues of co-occurrences that are due to taxa having very similar 
niche requirements (Faust, 2021). Interactions between taxa can then be clearly identified 
as indirect (through the environmental variables) rather than direct. It is also possible to 
specifically consider environmental variables as nodes between modules in a network to 
understand how these affect the network and which variables are most important (Zhao et 
al. 2016). For this, eigengene network analysis has been used where an abundance 
profile is produced for each of the modules within the network (called the module 
eigengene) (Zhao et al. 2016). This method was developed for gene expression networks 
(Langfelder & Horvath 2007), but has been applied to microbial networks with some 
success (Zhou et al. 2011; Deng et al. 2012; Deng et al. 2016; Zhao et al. 2016; Zheng et 
al. 2017; Yuan et al. 2021). However, it is unclear if there is any particular advantage to 
approaching this question with a network methodology, or via statistical methods that 
model (e.g. via multivariate general linear models) the response of all microbial taxa within 
a community to changes in environmental conditions (e.g. Alzarhani et al. 2019; Ferguson 
et al. 2021). 
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4.4 Linking Microbial Ecological Networks to Ecosystem Functioning 

Given the importance of microbes in ecosystem functioning, many studies have 
incorporated some aspect of functional role into the study of networks of microbes. Some 
of these present findings that are only possible because of taking the network approach to 
studying the microbes present. For example, Chen et al. (2022), sampled fungal and 
bacterial communities at increasing elevation, built co-occurrence networks at each 
elevation, and also measured species diversity (using standard diversity indices). At each 
elevation they also measured ecosystem multifunctionality, which combines 18 ecosystem 
functions known to be regulated by microbes (including soil carbon, nitrogen, and 
phosphorous, plant growth, mitigation of greenhouse gases, and control of potential fungal 
plant pathogens in soils). They found steeper relationships, with more variance explained, 
between network complexity and multifunctionality than between diversity and 
multifunctionality. Interestingly, once confounding variables (climate, soil and biotic factors) 
were accounted for in their analyses, there was little or no association between diversity 
and multifunctionality, but positive relationships between network measures and 
multifunctionality persisted. 

Functional molecular ecological networks (fMENs) have been useful in studying 
ecosystem function in this way. This approach enabled detection of such things as the 
most highly connected functional gene nodes in an elevated CO2 soil being different to 
those in corresponding ambient CO2 networks, and the same functional gene nodes 
having very different network characteristics under the different treatments (Zhou et al. 
2010). For example, N fixers interacted with nodes associated with N fixation, 
denitrification, C fixation, C degradation, sulphate reduction, sulphur oxidation and P 
utilization under elevated CO2, but interacted with very few other functional gene nodes 
under ambient CO2 (Zhou et al. 2010). This was correlated with changes in soil 
biogeochemical properties hence indicating the importance of network structure on 
ecosystem function (Zhou et al. 2010). Yuan et al. (2021) further support the link between 
network structure (particularly complexity) and microbial community functional structure 
and therefore ecosystem function. Deng et al. (2016) studied uranium degradation in 
groundwater microbial communities subjected to the addition of an emulsified vegetable oil 
(EVO). This would be expected to increase the “phylogenetic richness and diversity” of the 
network. However, only a bacterial taxon associated with sulphate reduction increased 
dramatically (Deng et al. 2016). Through network analysis from a functional trait point of 
view, Deng et al. (2016) showed that this taxon occupied a hub node and had 
predominantly negative interactions with its neighbours, in particular its eight neighbours 
which carried carbon cycling genes. The much higher abundance of this taxon after the 
EVO addition limited the growth of its neighbours, preventing the expected increase in 
richness and diversity. The network approach allowed insight into why the system did not 
behave in the expected way, and importantly, identified implications for carbon cycling, 
which would otherwise have been overlooked (Deng et al. 2016). 
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5. Methodological limitations to microbial ecological 
networks analysis 

5.1 Underlying Problems with Microbial Ecological Network Analysis 

As with all emergent methodologies, there are multiple issues, limitations and 
considerations with microbial ecological network analyses that have yet to be fully 
resolved (Röttjers & Faust 2019; Faust 2021). Within the context of NGB, this is further 
confounded by the inherent limitations and methodological biases associated with 
DNA/RNA based metabarcoding and environmental metagenomics/metatranscriptomics. 
We have covered specific limitations associated with various methods, approaches and 
interpretations of microbial ecological networks earlier in this think piece. Moreover, issues 
with the underlying molecular ecology approaches are addressed in detail elsewhere (e.g. 
Albertsen et al. 2015; Schirmer et al. 2015; Gołęzbiewski & Tretyn 2019; Porath-Krause et 
al. 2022) and numerous best practice guidelines have been published (e.g. Zinger et al. 
2019; Bohmann et al. 2022; Tedersoo et al. 2022). Here we cover major background 
limitations general to all microbial ecological network analyses. 

While addressing every molecular ecology issue would be superfluous, a very specific set 
of attributes of these approaches have a disproportionate impact on microbial ecological 
network analyses (Faust 2021). These include, the compositional nature of microbiome 
NGS datasets (Quinn et al. 2018; Gloor et al. 2017), the influence of data processing 
choices and bioinformatics pipelines on OTU/ASV count data (e.g. Schirmer et al. 2015; 
Siegwald et al.2019; Prodan et al. 2020), underlying issues with amplification biases and 
multi-copy genes (Dahllöf 2002; Gonzalez et al. 2012; Pierella Karlusich et al. 2022). In 
addition, to issues driven by the properties of NGS datasets, there are also fundamental 
issues with samples sizes and with spatial and temporal scales of analyses that influence 
both network inference and properties. Moreover, there are additional issues regarding the 
interpretation and meaning of microbial ecological networks. These range from linking 
inferred interactions to ecological/biological interactions and how interaction strength may 
or may not influence community composition (Faust 2021), how to deal with higher order 
interactions, “hairballs” and identifying core networks (Faust 2021) and importantly from a 
NGB perspective, the links between microbial networks and ecosystem-level properties 
(e.g. stability, functionality etc).  

 

5.2 Limitations to Microbial Ecological Network Analysis from Molecular 
Data 

Microbial OTU/ASV count data generated via NGS platforms is both sparse and 
compositional (Quinn et al. 2018; Gloor et al. 2017). The former refers to the high 
proportion of null values within a typically zero-inflated dataset; this can range between 
70%-90% of values for a 16S rRNA gene metabarcoding dataset (Cappellato et al. 2021). 
The later refers to microbial OTU/ASV count data representing relative proportions of a 
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total rather than counts on a continuous scale. This is because all current NGS platforms 
have an upper maximum to the number of sequences they return, and these are then split 
across the OTUs/ASVs present in each sample sequenced, such that an increase in the 
relative abundance of one OTU/ASV will cause a decrease in the relative abundance of 
others (Quinn et al. 2018; Gloor et al. 2017). Both the sparse and compositional natures of 
these data can produce issues with microbial ecological network inference, but these are 
well known and a range of solutions has been provided (see, for example, SparCC, 
Friedman & Alm 2012; SPIEC-EASI, Kurtz et al. 2015). These data properties have a 
strong influence on correlation-based (and those based on other statistical methods for 
evaluating associations) network inferences, which if ignored (i.e. left unaccounted for in 
the network inference algorithms used) may lead to erroneous correlations with no 
underlying biological significance. This is because all pairwise associations within the 
OTU/ASV count data are non-independent (i.e. because they are proportions of a total, 
any change in one variable will automatically lead to a change in others regardless of 
whether this is biologically meaningful or not), violating the basic assumptions of many 
statistical approaches for evaluating associations. As Friedman & Alm (2012) note, this 
has been well known for >100 years, and consequently there are existing statistical 
approaches that can overcome these issues. 

Whilst the majority of current network inference algorithms account for the compositionality 
and sparsity of microbial NGS data, it appears that different algorithms are better suited (in 
terms of sensitivity and precision) to data that are more vs less sparse, have higher vs 
lower compositionality (Weiss et al. 2016), alongside other properties associated with 
species richness and rarity. Moreover, while this issue is known for a subset of microbial 
network inference algorithms (for example, those explored in Weiss et al. 2016), it remains 
largely unknown as to the extent of this problem across all microbial network inference 
algorithms when applied to datasets with a range of properties. This is because a 
comprehensive validation of all microbial network algorithms against both real world, and 
simulated data, with known variation across a range of data properties does not currently 
exist. This wouldn’t be an issue if all microbial NGS data had similar properties, but these 
vary significant across datasets and this is due both to differences in the ecosystems and 
environments sampled, and difference in the bioinformatics pre-processing before 
networks are built. Differences between ecosystems and environments in their microbial 
communities, and the properties of microbial NGS data when surveying these is not a 
major issue for NGB programs, as these are likely to focus on specific 
ecosystems/environments in isolation (e.g. River Surveillance Network). However, it does 
raise the issue of how the NGS data are pre-processed before any network analysis is 
undertaken (Faust 2021).  

The bioinformatics behind the processing of NGS data, which produce the species 
(OTUs/ASVs) count table on which network analyses are built, is covered elsewhere (e.g. 
Dumbrell et al. 2017). It is clear that choices associated with sequence trimming, quality 
checking, error correction, and pair-end alignments all influence the properties of the 
species (OTUs/ASVs) count table (Schirmer et al. 2015; Siegwald et al. 2019; Prodan et 
al. 2020; Barroso-Bergada et al. 2021). Currently the most popular pipeline (based on 
citations) for these analysis is DADA2 (Callahan et al. 2016), but whether this popularity is 
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due to superior performance, or ease of use (as a package for the R language, it avoids 
the need for additional computational knowledge), or a combination of both is unclear. 
From an NGB perspective, the use of a popular approach brings additional logistical 
benefits in terms of a wider user-base to support problem solving.  

In terms of influencing results of ecological network analysis, two of the final stages in 
NGS metabarcoding bioinformatics are likely to have disproportional influences, these are 
data normalisation and the choice of generating either OTUs (and the associated 
clustering algorithm) or ASVs. Due to differences in sample processing and sample 
concentrations loaded on NGS platforms, the number of sequence reads returned will 
differ across samples. As this is related to the number of unique sequences each sample 
will have (i.e. richness of OTUs/ASVs), with more new sequence types likely to be 
observed in samples with greater sequencing depth, some form of data normalisation is 
recommended. As this influences the compositionality of the data, it is clear to see how 
this may influence network inference. Multiple approaches to this normalisation have been 
proposed and there is extensive literature discussing the relative merits of each method 
(McMurdie & Holmes 2014; Weiss et al. 2017; McKnight et al. 2019; Cameron et al. 2021). 
However, these have generally been compared from a community ecology perspective, 
with suggestions, for example, that the rarefaction method works best when comparing 
communities (McKnight et al. 2019), but it is still unclear which is the most appropriate 
method to support robust microbial ecological network analysis (Faust 2021).  

In recent years, there has been a shift from OTU based methods to ASV based methods. 
OTUs work by clustering together sequences that are similar to each other (e.g. within 
97% sequence similarity) and using this as the fundamental taxonomic measure (i.e. 
representing bacterial species). ASVs take exact sequence variants and use this to 
represent species, based on the assumption that current methods for removing errors from 
Illumina NGS data is sufficient to avoid artefactual ASVs (Callahan et al. 2017). The 
choice of approach affects estimates of species richness, and may have a greater 
influence on data properties than choice of normalisation approach (Chiarello et al. 2022). 
It is not clear which method (and how this should be combined with normalisation 
approaches) is most suited to microbial ecological network analysis, although it is clear 
due to the affects these have on data properties that it will be important. One thing that is 
worth noting, is that the choice to use OTUs or ASVs may be taxon-specific. For example, 
fungal metabarcoding based on the ITS region, is more suited to analysis via OTUs than 
ASVs (Tedersoo et al. 2022). Thus for any NGB programme that works across taxonomic 
groups (e.g. fungi, bacteria, algae), the decision to use OTUs or ASVs may well be 
determined by the taxon with diversity estimates most susceptible to this methodological 
decision.  
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5.3 Spatial and Temporal Scale of Analysis and Appropriate Sample 
Sizes 

In a NGB context, there are a few considerations (as opposed to inherent limitations and 
issues) around samples sizes and the spatial and temporal scales of analyses. There is 
variation across algorithms for co-occurrence network inference in their required samples 
size. For example, correlation/regression (association-based) approaches and graphical 
model inference approaches may be able to operate on smaller sample sizes than 
methods based on Machine Learning. However, while many microbial ecological network 
inference methods have to some extent examined their own performance relative to 
different sample sizes (e.g. Kurtz et al. 2015; Lo & Marculescu 2017a), best practice 
recommendations across different inference algorithms and from microbial communities 
sampled from different ecosystems or operating under different ecological contexts have 
yet to emerge. In general, larger samples sizes produce more robust network inferences 
(Berry & Widder 2014). For example, Kurtz et al. (2015) showed optimal performance with 
n > 1300, but also adequate performance with fewer samples. For new NGB programmes, 
some preliminary analysis examining how their perceived microbial ecological networks 
are influenced by differences in sample size is probably needed. Ideally, this would be 
validated using microbial communities with known properties and interactions, but this is 
hard to achieve and doesn’t currently exist (Faust 2021). There have been some recent 
developments in conducting power analyses for microbiome studies (Kelly et al. 2015; 
Ferdous et al. 2022). While these don’t specifically focus on microbial ecological network 
analysis, they do examine sample size (power) issues across a range of commonly 
applied metrics and statistical tests, and this could be developed further to cover network 
inference.  

Related to issues of sample size, is the spatial and temporal scale of sampling, and in 
some cases these issues are intertwined. Microbial ecological networks describe the 
microbial community at a far larger spatial (or temporal) scale than the individual samples 
were collected at. For example, a river might have n = 100 samples collected where each 
comes from a few grams of sediment at the millimetre scale, but a single co-occurrence 
network is inferred across these and thus describing something closer to the river scale. 
As species richness scales with space (i.e. Species Area Relationships) and the strength 
of this relationship is influenced by environmental heterogeneity, any changes in 
heterogeneity between area/habitats being compared will lead to scale dependent results 
(Dumbrell et al. 2008). How these issues of scale-dependencies translate to network 
inference is not well explored, but it is conceivable they may influence comparisons 
between inferred networks as species richness and evenness have minor but noticeable 
affects on network inference (Berry & Widder 2014). Moreover, underlying spatial structure 
in the sampled microbial communities, may influence the ability of microbial ecological 
network analysis to accurately identify interactions (Armitage & Jones 2019). These issues 
are likely caused by the disconnect between the spatial scale species interactions operate 
over, and the spatial scale of sampling. However, this could potentially be accounted for 
by measuring small-scale spatial heterogeneity and including this in part of the analyses 
(Armitage & Jones 2019). Potentially a bigger logistical challenge for NGB programmes is 
in the initial phases, where ecosystem process or ecosystem function measurements may 
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be collected and related to properties of the microbial ecological networks. Here it is likely 
that the disconnect between the spatial scale of sampling, and the spatial scale the 
network is constructed over is even more exaggerated. For example, if a single process 
measurement is taken at the location of each microbial sample, then issues of integrating 
the process data to match the spatial scale the network is constructed over will exist.  

 

6. The major knowledge gap in microbial ecological 
networks analysis 
Faust (2021) outlined 10 major challenges in microbial ecological network analysis, and 
these represent some of the major knowledge gaps that exist. Many of these are outlined 
in some manner within this think piece; for example, issues of NGS data pre-processing, 
the inclusion of environmental factors in networks, and what we can learn from various 
network properties. It is tempting to simply reiterate the various limitations, lacks of 
consensus, and underlying problems covered earlier and state that addressing these 
(alongside those in Faust 2021) will address the major knowledge gaps. To some extent 
this is true, however, most of these are specific methodological limitations (which we have 
already discussed). This would overlook the major issue that microbial ecological network 
analysis does not have an underlying theoretical basis and mechanistic framework that 
has been developed to the same extent as that of other ecological networks (e.g. food 
webs; Ings et al. 2009). This is a major issue for NGB programmes, as their goal should 
be to move away from phenomenological pattern fitting towards mechanistic, predictive 
frameworks. 

Microbiology as a research area is counterintuitively both very old and very young. 
Microbes have been studied for hundreds of years, but due to the limitations of culture-
dependent methods, this research was confined to a limited number of taxa (and their 
interactions) of which we now have considerable knowledge. In contrast, the ability to fully 
enumerate the diversity of natural microbial communities via NGS approaches is 
exclusively 21st century research. Thus for some particularly well studied species that are 
amenable to culture we have a theoretical foundation from which to interpret their role in 
microbial ecological networks, but for the other ~99% this is entirely absent. This is further 
confounded by trying to apply existing ecological theory to microbial networks. Within a 
food web, we have a clear understanding of interactions, such as predation, competition 
and mutualism, all defined clearly from observational studies of higher taxa. Whereas 
microbial interactions also encompass the transfer of genetic material, chemical signalling 
between cells, and various synergistic interactions not observed in higher taxa 
(Tshikantwa et al. 2018). There may even be potential for greater diversity of interaction 
types within microbial ecological networks, many of which are poorly understood. In 
addition to this, our understanding of microbial ecology in general requires a greater 
development of theory (Prosser et al. 2007) and while there is no doubt that the advent of 
NGS technologies has significantly advanced our understanding of microbial communities, 
it has typically generated far more methodological, descriptive, or exploratory studies than 
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those grounded in hypothetico-deductive rigour (Prosser 2020). While it is entirely possible 
to apply understanding gained from the analysis of other ecological networks to the 
interpretation of microbial ecological networks, without developing the theoretical and 
mechanistic framework specific to microbes to interpret these, we run the risk of falling 
short of a central goal in NGB.   

Examples of where the issue of underdeveloped understanding of the mechanisms 
structuring and influencing microbial ecological networks is particularly acute are around 
higher-order interactions (Faust 2021), issues around stochastic vs deterministic assembly 
process in microbial communities, and links to ecosystem functions. Higher order 
interactions (i.e. the alteration of interactions between species by an additional species) 
are problematic to infer from association networks,yet may be important in promoting 
stability (Faust 2021). This adds an additional layer of complexity to understanding what 
aspects of microbial ecological networks contribute to ecological stability. In other 
ecological networks, we know interaction type and strength are potentially more important 
than the existence of links (McCann et al. 1998; Neutal et al. 2002; Teng & McCann 2004), 
but for microbial ecological networks there exist interactions (like higher order interactions) 
of which we know relatively little or can’t capture. However, when microbial interactions are 
experimentally examined, we do see similar properties in microbial communities. For 
example, Ratzke et al. (2020) showed experimentally that the strength of interactions does 
determine stability in microbial communities. Further experimental validation of this nature 
is urgently needed to move microbial ecological network science inline with our broader 
understanding of ecological networks.  

Other issues resolve around the relative influences of different assembly processes 
structuring microbial communities. A large volume of research has attempted to 
understand the relative influences of stochastic and deterministic processes in structing 
microbial communities (e.g. Dumbrell et al. 2010; Dini-Andreote et al. 2015; Zhou & Ning 
2017). Most papers find a contribution of both processes, yet the importance of one over 
the other is still hotly debated (Zhou & Ning 2017). However, from a microbial ecological 
network context, networks inferred from more deterministically assembled (i.e. niche-
based) communities may face different issues to those inferred from highly stochastically 
assembled (i.e. neutral-based) communities. For example, separating direct and indirect 
(via strong responses to environmental factors) interactions may be harder in more niche-
structure communities. However, what remains unclear is how a shift from being 
deterministically to stochastically structured (e.g. in response to stressors) may influence 
network properties, or indeed ecologically what this means.  

Finally, until a greater understanding of the mechanisms underpinning microbial ecological 
networks is developed, links to ecosystem-level properties in NGB programmes will remain 
tenuous. It is clear that aspects of ecological stability can be correlated to properties of 
microbial ecological networks (see Ecological Stability Inferred from Microbial 
Ecological Network Analysis), and our understanding of this is developing. However, the 
relationships between microbial ecological networks and ecosystem functions, for 
example, carbon and nitrogen transformations and biogeochemical cycling, are less well 
established. This is a clear example of where the need to develop the ecological 
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understanding of microbial networks is required, as many of the key taxa involved in these 
functions are already identified. For example, the microbial taxa (and their functional 
genes) for known transformations within the nitrogen cycle have been identified (e.g. 
Smith et al. 2016), as have microbes involved in methanogenesis and methanotrophy (Zhu 
et al. 2020). Thus, the knowledge gap is around how interactions across the microbial 
ecological network modulate these functions, whether network properties are 
mechanistically linked to these functions, and if these provide more robust functional 
predictions than alternative methods (e.g. based on qPCR copy numbers of functional 
marker genes). 

 

7. Complementary approaches to microbial ecological 
network analysis 

7.1 Molecular Ecology 

There is a range of molecular approaches that can provide additional complementary data, 
or data that can be included in the inference of microbial ecological networks. Given 
ecosystem processes are driven largely by biomass or abundance and not just the identity 
of taxa present, it makes sense to apply any molecular approaches that can support 
estimating abundance to the same DNA extracts being used for NGS. For example, when 
incorporating microbial responses within a food-web based approach to examine pesticide 
spills, the abundance of key microbial groups (as opposed to richness or identity) initially 
changed, reflecting their functional role in the environment (Thompson et al. 2016). 
Methods such as qPCR or ddPCR can be used to estimate the gene-copy abundance of 
key microbial groups, especially those with clear links to ecosystems process. For 
example, the abundance (qPCR gene copy number) of the fungal cellobiohydrolase gene 
(cbh1) is positively related to freshwater fungal decomposition (Fell et al. 2021). Data from 
these assays can then be viewed either as an additional component of the network (similar 
to the inclusion of environmental data) or as response of the network (given their links to 
other ecosystem processes).  

Other approaches that provide a link to functions and traits of the microbial taxa are also 
useful to help develop the mechanistic framework required to underpin microbial 
ecological network analysis. Metagenomic analysis provides functional information about 
the entire community, and as NGS costs decrease may well replace metabarcoding as the 
new data platform for microbial ecological network analyses. Potentially, the functional 
attributes of individual species as opposed to the entire community is more important for 
understanding microbial ecological networks and responses of these to environmental 
change. Metagenomics has the potential to provide metagenome-assembled genomes 
(MAGs) and thus provide species-specific functional information (Singleton et al. 2021), 
but this is likely to currently be cost prohibitive for most NGB programmes. Alternative 
methods to achieve this include Emulsion, Paired Isolation and Concatenation PCR 
(epicPCR), which provides a method to co-amplify both a phylogenetic and functional 
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marker gene (linking functions to individual species) in NGS metabarcoding (Spencer et al. 
2016; Roman et al. 2021). This approach is highly suited to aquatic samples, and could 
potentially provide a greater functional framework for NGB. Another approach would be to 
infer functions of individual species bioinformatically. This could be achieved via tools such 
as PICRUSt2 (Douglas et al. 2020), Taxa4Fun2 (Wemheuer et al. 2020), and FUNGuild 
(Nguyen et al. 2016), which assign functions to data generated from phylogenetic marker 
genes, or via querying assembled trait databases such as BactoTraits (Cébron et al. 
2021). The use of PICRUSt2, Taxa4Fun2 or FUNGuild could easily be incorporated into 
any NGS bioinformatics pipelines being used by NGB programmes, whereas open-source 
code to query BactoTraits is currently not available. 

 

7.2 Statistical Ecology 

One of the main limitations of studying the co-occurrence networks of microbes is that it is 
observational/correlation-based, and does not in itself provide information about causal 
links between taxa and network properties. Therefore, to understand underlying 
relationships, additional analyses need to be carried out. Structural equation modelling 
(SEM) has recently become a popular tool used alongside network analysis of microbial 
ecological networks to explore the causal relationships of interest (de Vries et al. 2018; 
Mamet et al. 2019; Kruk & Paturej 2020; Kaplan-Shabtai et al. 2021; Xue et al. 2022). For 
example, SEM allows relationships between environmental variables, microbial taxa and 
stability to be established (Xue et al. 2022). Whereas Banerjee et al. (2018) suggested 
that SEM should be used to explore keystone taxa. A possible drawback to SEM is that it 
requires a large sample size (Banerjee et al. 2018, Kaplan-Shabtai et al. 2021), which 
should not be a major limitation for microbial NGS data. However, it may be an issues 
when relating network properties to other variables, such as ecosystem process or 
function measurement, that are typically collected with lower samples sizes. Developments 
in multivariate general linear modelling (Warton 2011; Wang et al. 2012) have been 
presented as a solution to overreliance on reducing the dimensionality of community 
composition data via ordination approaches. It can be used to model the response of 
community composition and changes in the relative abundance of individual taxa 
(species/OTU/ASV) to environmental factors. This has already been used to show how 
every OTU within a microbial dataset has responded to changes in both the abiotic and 
biotic environment (although noting that biotic interactions were not directly measured) and 
the relative importance of each in structuring the microbial community (Alzarhani et al. 
2019; Ferguson et al. 2021). Importantly, deploying an approach such as this may help 
reveal which OTUs have strong niche associations to different environmental variables. 
This provides both a more mechanistic link to changes in environmental conditions, which 
is important in a NGB context, and an additional method to help reveal indirect interactions 
within the microbial ecological network. In a similar manner, Species Distribution Models 
(SDMs) and Joint Species Distribution Models (JSDMs) are explicit environmental (or 
ecological) niche models and could potentially be used for all taxa within the microbial 
NGS data. This is particularly true for JSDMs which include co-occurrence patterns within 
their analyses, directly linking them to ecological networks. However, whether this is 
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computationally tractable within a large microbial NGS dataset spanning taxonomic 
domains, remains to be seen. 

8. Recommendations for the River Surveillance Network 
(RSN) programme 
Until RSN has had time to develop and generate longitudinal data, a network inference 
approach that utilise is cross-sectional data is most appropriate. Currently, the leading 
contender is likely to be SPIEC-EASI (Kurtz et al. 2015) or more efficient methods 
originating from it (e.g. gCoda; Fang et al. 2017), this is due to its ease of use, applicability 
to initial RSN data, and the volume of previous research using this method against which 
to contextualise findings. As Abductive/Inductive Logic Programming approaches develop, 
a switch to these may be beneficial due to the increase capacity to identify the form 
(negative, positive, neutral), magnitude and directionality of interactions (Barroso Bergadà 
2022). Complementary to this, as the RSN data develop, a switch towards longitudinal 
analysis, which may help reveal the causal direction of responses, and avoid spurious 
interaction inferences, may be desirable (Cappellato et al. 2021). Approaches based 
around Local Similarity Analysis (LSA; e.g. eLSA; Xia et al. 2013 and FASTLSA; Durno et 
al. 2013) are widely used providing background research against which to contextualise 
findings, as well as being particularly suited to accurately identifying associations within 
data where interactions are sparse (Weiss et al. 2016). 

The approach to the bioinformatics data pre-processing needs to be considered and some 
choices made. Once RSN data becomes available it would be entirely appropriate to 
explore a range of bioinformatics pipelines and how these influence properties of species 
(OTUs/ASVs) count tables that are of particular relevance to ecological network analysis 
and explore how these influence the inferred networks. This analysis should then guide 
subsequent choices. With regards to the two big choices around data normalisation 
methods and generating either OTUs or ASVs, some practical considerations may be 
involved until it is fully understood how these choices impact network inferences. Within 
the RSN, fungal communities will be examined via ITS metabarcoding, where OTUs 
outperform ASVs in recovering fungal diversity (Tedersoo et al. 2022). In contrast, using 
rarefaction and clustering OTUs at 99% similarities, avoids major differences between 
OTUs and ASVs for bacterial 16S rRNA data (Chiarello et al. 2022). Thus, choosing an 
OTU based approach may provide a consistent method across taxonomic groups. For 
NGS data normalisation, rarefaction may be the most practical method. Not only can it 
help reduce issues of using OTUs for 16S rRNA data, but it has been demonstrated to be 
the most appropriate method for analyses exploring ecological comparisons (McKnight et 
al. 2019), that may provide a complementary approach to microbial ecological network 
analysis.  

As the RSN will measure a range of environmental data, including physical chemistry, 
hydrology, traditional invertebrate and macrophyte data, specific pressures (e.g., sewage 
treatment works or nutrient gradient) and organic chemical analytes such as pesticides, it 
will be beneficial to explore how multiple network properties respond to changes in these. 
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This initial exploratory approach can be used to generate specific hypotheses (Röttjers & 
Faust 2019), which may be followed up with analyses focused around identifying 
mechanisms (see below). Moreover, it provides the opportunity to explore the inclusion of 
environmental variables within the networks themselves, an approach which can help 
separate indirect from direct edges and reveal functional mechanisms underpinning 
patterns of co-occurrence (Röttjers & Faust 2019). While it is worth exploring a range of 
network properties (see Liu et al. 2021a and Network Properties and Metrics for a 
detailed list) from the RSN data, a few key metrics are likely to be disproportionality 
relevant to the RSN goals. Measurements of network modularity and overall network 
connectivity, connectance or density of links are likely to be important in revealing network 
responses to environmental perturbations (Wang et al. 2018, Hernandez et al. 2021, Yuan 
et al. 2021). There is also evidence that these properties may be linked with the stability 
(and potentially resilience) of the network, but also a lack of consensus around the 
direction (i.e. higher vs lower values promoting or reducing stability) of this link (de Vries et 
al. 2018, Wang et al. 2018, Hernandez et al. 2021, Yuan et al. 2021). Measures of highly 
connected nodes, or connector/bridging nodes, can identify nodes important for structuring 
the network (Banerjee et al. 2018, Fang et al. 2023). While there is considerable debate as 
to what these represent ecologically (e.g. are they keystone species or not; Banerjee et al. 
2018; Röttjers & Faust 2019; Banerjee et al. 2019), it is clear these nodes are important in 
the network context. Once identified, complementary analyses can be used to explore 
these taxa further with the aim of providing a greater mechanistic understanding. 

It may be beneficial to the RSN to expand its analysis to directly capture aspects of carbon 
and nitrogen cycling, and other biogeochemical processes driven by microbial 
communities. Microbial networks underpin key biogeochemical fluxes, processes, and 
nutrient transformations, although the nature of their relationship with microbial ecological 
networks is poorly understood. Taking direct measurements of these processes from the 
environment is often considered costly and time consuming but may be a worthwhile 
undertaking for a few key sites to establish links to microbial network properties. This may 
help to provide a mechanistic link between microbial ecological networks and key 
ecosystem processes that can be explored further as the RSN develops. Complementary 
to this, would be a targeted qPCR analysis of key functional genes that are known to 
correlate with ecosystem processes and functions. For example, the gene abundances 
(qPCR copy number) of cbh1 correlate to rates of fungal decomposition (Fell et al. 2021), 
mcrA correlates with CH4 production (Morris et al. 2016), ureC and amoA correlate with 
NH4+ concentrations and nirK with NO3- concentrations (Yu et al. 2020). Gene abundance 
data can be obtained from the same DNA extracts as used for NGS data, and 
subsequently either linked to ecological network properties or included within the networks 
themselves (analogous to environmental data). This has the potential to provide additional 
mechanistic insights and directly causal relations between network properties and key 
ecosystem process and functions inferred from the abundances of genes driving them.  

For the RSN to be effective as a NGB programme it must move away from 
phenomenological pattern fitting approaches of the past and provide an approach that 
both captures the diversity and functions of microbial communities, and provides a 
mechanistic, predictive framework linking this to ecosystem status. There is potential for 
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this with the proposed data being collected, but there remains as risk with microbial 
ecological network analysis that it simply becomes an approach for reducing the 
dimensionality of the NGS data describing microbial communities into a few key metrics 
(network properties) without a mechanistic link to ecosystem properties. While developing 
the underlying theory behind microbial ecological networks to the same extent that exist 
for food webs is likely outside the scope of RSN, deploying complementary analysis of the 
NGS data to reveal mechanistic insight is achievable. For example, developments in 
multivariate general linear modelling (Warton 2011; Wang et al. 2012) can be used to 
understand both community-level and population-level (species/OTU/ASV) responses to 
environmental conditions, helping to establish a causal relationship as to why certain 
nodes within the network behave the way they do. Whereas structural equation modelling 
can be used to establish causal relationships between changes in the environment and 
changes within the microbial ecological network and any links this has to ecosystem 
properties (Mamet et al. 2019).  
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Recommendations synthesis 
Recommendations are made in the think pieces regarding the processing and analysis of 
data generated by the RSN. These include, how data could be analysed such as the 
construction and interrogation of microbial ecological networks, as well as practical 
considerations around their implementation. These recommendations are synthesized, 
compared, and contrasted herein.  

1. Data processing 
Prior to data exploration and analysis, data generated by metabarcoding and 
metagenomic analysis must be processed into a format that is suitable for analysis.  

Dumbrell et al. outlined that an early decision should be made whether to work with OTU 
or ASV data because differences in how the data is treated to derive OTUs compared to 
ASVs may impact network inferences, although the extent to which this is a concern is 
unknown (p. 98). However, sequencing data can be normalised prior to analysis to ensure 
that comparisons between samples are not biased by technical artifacts or sequencing 
depth and OTUs can be clustered at a high percentage similarity to avoid major 
differences between OTUs and ASVs for 16S rRNA data (Chiarello et al., 2022). In 
addition, OTUs have been shown to outperform ASVs in recovering fungal diversity 
(Tedersoo et al., 2022). Dumbrell et al. suggested that an OTU-based approach for 
analysing the RSN microbial data may provide a more consistent approach across 
different taxonomic groups (p. 98).  

2. Preliminary data analysis 
Evans and Dumbrell et al. both recommended that preliminary analysis of the NGS data 
generated is undertaken and used to form hypotheses to be subsequently tested and 
explored (p. 68, 99). Think pieces by both authors suggested forming and testing 
hypotheses around ecosystem function and mechanisms (p. 68, 99).   

Windsor suggested exploring the NGS data using more traditional data analysis 
techniques in the first instance, specifically suggesting the use of multivariate analyses (p. 
37); these methods can be helpful in exploring and describing large, multi-dimensional 
datasets (Paily and Shankar, 2016). There are several challenges in applying some 
multivariate techniques to microbial datasets; however, specific techniques have been 
developed to negate these. For example, molecular analysis methods tend to generate the 
relative abundance of microbial taxa (i.e. data are highly compositional because they are 
based on relative as opposed to absolute abundances), which undermines statistical 
assumptions about the interdependence of variables. Methods, such as SparCC and 
newer iterations of this method (e.g., REBACCA), have been developed to construct 
networks by performing a centre log-ratio transformation on the data, which removes the 
effect of the constant-sum constraint (i.e., the assumption that the values for a certain 
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sample unit will always have the same sum) on co-variance and correlation matrices (p. 
76). Similarly, microbial datasets tend to be sparse (i.e., have many variables with a value 
or abundance of 0); this is often the case for microbial datasets, particularly when using a 
taxonomy free approach (Martino et al., 2019). However, models have been developed to 
aid the analysis of zero inflated datasets (e.g., Zeng et al., 2022). 

3. Inference networks  
Windsor, Evans, and Dumbrell et al. all advise that networks can only be constructed on 
the basis of inferred organism interactions because microbial interactions cannot be 
directly observed (p. 37, 56, 74). Organism interactions are generally inferred based on 
patterns of species co-occurrence. Microbial interactions can be inferred from eDNA 
metabarcoding or metagenomic data (p. 74), with organism interactions inferred from 
presence/absence data or by correlation from species abundance data (p. 29). The think 
pieces highlighted some, albeit not many, studies that have developed inferred microbial 
networks in aquatic ecosystems (e.g., Widder et al., 2014).  

The inference of interactions based on species co-occurrence or correlation has been the 
subject of significant criticism (Blanchet et al., 2020) and was described by Windsor as a 
significant limitation of taking a network approach (p. 28). For example, it has been shown 
that abundance correlations for microbes convey very limited information on network 
interactions for modelled microbial communities (p. 28). Current understanding of 
ecological interactions as represented by microbial co-occurrence or correlations is limited, 
meaning there is a missing link between species interactions and our understanding of 
mechanistic ecosystem function (p. 71).  

There are a number of difficulties in inferring biotic interactions from microbial abundance 
or presence/absence data. Firstly, eDNA abundance data does not provide information on 
ecological interaction (p. 55). Secondly, studies have shown that microbial abundance 
correlations do not always match the direction of interactions (Pinto et al., 2022, p. 29). 
Another challenge is that species co-occurrence or correlation may not be a result of biotic 
interaction; instead, variation in species abundance or presence/absence may arise from 
habitat preference (p. 29). Furthermore, abiotic factors (e.g., flow, substrate, temperature, 
pH etc.) influences the concentration and degradation of eDNA in the environment, 
creating difficulty in interpreting the abundance or presence/absence of species from 
eDNA data (p. 55). In addition to this, the sparse and compositional nature of microbial 
datasets can present further issues, although there are solutions to help overcome this 
(e.g., Zang et al., 2020, p. 90-91). Studies have also highlighted issues with inferred 
network reproducibility (Barroso-Bergadà et al., 2021, p. 57). 

Evans described microbial network science as being ‘in its infancy’ (p. 55) and advised 
caution when applying network analyses to NGS data generated by the RSN (p. 57). 
However, advances in network science that have addressed some of the problems with 
inference networks have been identified (synthesised in ‘4. Network inference methods’, p. 
103). Additionally, Windsor highlighted that the spatial and temporal coverage of microbial 
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data collected by the RSN will help to ameliorate many of the concerns through sheer 
observational power (p. 37). 

4. Network inference methods 
Multiple methods for constructing ecological networks were described in the think pieces. 
These include correlation and regression approaches, graphical model inference, 
Bayesian and other statistical inference approaches, and machine learning. Dumbrell 
highlighted that these methods are mostly applicable to cross-sectional (i.e., spatial) data 
(p. 79) and Evans noted that many of these methods are rarely applied to microbial 
networks (p. 56).  

While think piece authors recommended different approaches for inferring/constructing 
networks, both Evans and Dumbrell et al. advised testing and evaluating different network 
inference methods and data analysis pipelines (p. 56, 98). Evans noted that the RSN 
dataset is well suited to this due to its collection over spatial and temporal replicates (p. 
56). 

4.1 Graphical methods 

Dumbrell et al. recommended the use of a graphical inference method, Sparse InversE 
Covariance estimation for Ecological Association and Statistical Inference (SPIEC-EASI), 
or newer methods that have built on this framework for inferring ecological networks from 
the RSN data, such as gCoda (p. 98).  

Simpler, correlation-based methods often do not differentiate between direct and indirect 
microbial correlations (or associations). As such, graphical methods such as SPIEC-EASI 
have been developed to model conditional dependency and distinguish between direct 
and indirect interactions between organisms. These typically are more computational 
complex and have longer run times compared to correlation-based methods. The models 
create a unidirectional, weighted graph where edges imply the conditional dependency 
between two taxa (Kurtz et al., 2015; Matchado et al., 2021).  

Firstly, SPIEC-EASI performs a transformation on the data to address compositionality 
issues with the data; this is required because OTU data is normalised to the count number 
meaning that microbial abundances are not independent of each other, and thus lead to 
spurious statistical results. An interaction graph is then estimated by one of two methods 
(either ‘Glasso’ or ‘Neighbourhood selection’) which effectively excludes OTUs that are 
correlated but not indirectly connected (Kurtz et al., 2015; Matchado et al., 2021).  

SPIEC-EASI has been described as ‘a relatively robust method to infer microbiome 
networks’ (Birt and Dennis, 2021), and has been utilised by multiple published studies that 
have inferred microbial networks from SPIEC-EASI (e.g., Lam and Ye, 2022; Tipton et al., 
2018). Dumbrell suggested that this is advantageous because it allows for the 
contextualisation of findings from the RSN (p. 98). 
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Other methods which take a similar, graphical approach to network inference have also 
been developed. gCoda was developed on the back of SPIEC-EASI and is reported to be 
more stable, accurate, and have a faster runtime compared to SPIEC-EASI. Other 
graphical methods include MDiNE, MixMPLN, NetComi, Environmental Driven Edge 
Detecton, Mint, mLDM, HARONIES, Hubs weighted graphical lasso, Flash Weave, and 
COZINE (Matchado et al., 2021). Each method offers slightly different advantages and 
have different limitations, which have been discussed further by Matchado et al., (2021).  

4.2 Maximum Entropy 

The Maximum Entropy (MaxEnt) method is an approach to network inference based on a 
statistical principle rooted in the principle of maximum entropy, whereby the probability 
distribution that ‘best’ fits a system or dataset is the one with the largest entropy. 
Effectively, this method determines the probability distribution from a dataset that is 
consistent with observations but is non-biased (De Martino and De Martino, 2018); MaxEnt 
has been shown to produce the least biased predictions of probability distributions 
consistent with prior knowledge of the constraints of those distributions (Harte and 
Newman, 2014). By selecting the most unbiased probability distribution that fits the 
dataset and known constraint, MaxEnt tends to avoid overfitting (Radosavljevic and 
Anderson, 2014). 

This principle has been incorporated into multiple aspects of statistical modelling including 
niche modelling (Harte and Newman, 2014) and network inference (Caruso et al., 2022). 
MaxEnt is particularly useful in ecology and ecological network analysis because it allows 
for sparse or incomplete datasets to be analysed without making strong assumptions 
about data that is missing (De Martino and De Martino, 2019). Furthermore, it has been 
suggested that methods grounded in MaxEnt could help to differentiate between direct and 
indirect associations in networks (Menon et al., 2018 in Hirano and Takemoto., 2019).  

Evans recommended ‘Maximum Entropy’ (MaxEnt) as a method of network inference to 
test on the NGS data (p.56). However, while MaxEnt approaches to network inferences 
have been developed for and applied to macro-ecology (e.g., networks of plants and 
pollinators; Caruso et al., 2022) and for the human microbiome (Li and Convertino, 2019), 
as have other approaches to network inference, there has been little application of MaxEnt 
to environmental NGS data.  

4.3 Matrix Autoregression  

Another network inference method that Evans suggested testing on the RSN data is Matrix 
Autoregression (p. 56). This method is typically applied to timeseries datasets and 
incorporates a species interaction matrix and a co-variate matrix capturing the impact of 
environmental drivers. A threshold is applied to identify significant interactions (Hampton 
et al., 2013). MAR models have been identified as particularly effective for studying 
interactions in dynamic communities (Hampton et al., 2013). Matrix autoregression is 
similar to multivariate or vector autoregression but looks at an entire matrix of variables 
instead of single time series variables.  
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As highlighted by Evans, MAR can be run with either single (e.g., Hampton et al., 2013) or 
multiple delays (i.e., time lags; e.g., Barraquand et al., 2021). Running the model with a 
single time point will analyse relationships between taxa at the current and immediately 
preceding timepoint, capturing more immediate dependencies and interactions in the data. 
Incorporating multiple delays into the MAR model allows exploration of longer term and 
perhaps more complex dependencies and interactions between taxa and environmental 
varies. MAR has been applied to studies looking at aquatic plankton community dynamics 
but has less readily been adopted in other aspects of ecology (e.g., Hampton et al., 2013). 
MAR modelling could be particularly useful in the analysis of the RSN data because it can 
be used to compute metrics of ecosystem stability (Hampton et al., 2013).  

4.4 Joint Species Distribution Models  

Windsor proposed the use of joint-species distribution models (J-SDM), specifically a type 
of model called ‘Hierarchical Modelling of Species Communities’ (HMSC), to explore the 
RSN data and infer ecological networks.  

Joint-species distribution models are a type of species distribution model that can model 
the distribution of multiple species simultaneously (Pollock et al., 2014). They may be of 
value to this work because they take the presence of interactions between organisms into 
account (Ovaskainen et al., 2017). They combine habitat modelling and community 
ecology (Pollock et al., 2014) by incorporating spatially and temporally structured variables 
such as site-specific environmental conditions (temperature, water quality and quantity, 
pH), regional species pools and evolutionary histories (Tikhonov et al., 2020). Any 
remaining, unexplained co-occurrence is attributed to biotic interaction (Tikhonov et al., 
2020). A study assessing the ability of J-SDMs to identify interactions found that they can 
identify mutualism and competition interactions of species well (Zurell et al., 2018).  

HMSC is a Bayesian framework (available as an R package) that can integrate community 
ecology data with environmental covariates, species traits, phylogenetic relationships and 
the spatio-temporal context of the study to provide insight and predict multiple species 
distribution (Ovaskainen et al., 2017; Tikhonov et al., 2020) and estimate the percentage 
of community variability arising from different factors (Leite and Kuramae, 2020). 
Information on organism phylogeny can be incorporated from existing databases (e.g., rotl; 
Michonneau et al., 2016) by matching species taxonomy using metabarcoding data or by 
constructing phylogenetic trees based on sequenced gene regions (e.g., using BEAST; 
Drummond and Rambaut, 2007; Elias et al., 2013). Windsor advises that taking this 
approach would allow for the ‘most accurate estimations of ecological interactions’ 
because while the use of abundance correlations to construct microbial community 
networks has been heavily criticised, HMSC accounts for other abiotic and biotic 
influences making it more robust (p. 37). While HMSC has not been directly applied to 
microbial studies, hierarchical Bayesian joint distribution modelling has been developed 
and applied to microbial communities (e.g., Farrer et al., 2017; Yang et al., 2017; Bjork et 
al., 2018). Similar to other studies that have developed association networks using JSDM 
(e.g., Tikhonov et al., 2020), Windsor further suggests that merged networks of positive 
associations between OTUs could be created using HMSC (p. 38).  
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However, it would be challenging to apply J-SDMS to microbial data generated by the 
RSN. JSDMs are reliant on high quality data collected on appropriate temporal and spatial 
scales and a large amount of information on the target organisms, which is often not 
available for microbes (p. 30). Microbial communities usually have a higher proportion of 
rare taxa compared to macro-organisms communities. Furthermore, most taxa likely occur 
too sparsely to be modelled with a JSDM, although there are methods that can be used to 
help model rare taxa (Ruuskanen et al., 2021). J-SDMs also require a very high computer 
processing power. The diversity of microbe species in freshwater ecosystems would 
require computational power that is beyond the processing power that is readily available. 

4.5 Machine learning and logic-based programming methods  

Machine learning and logic-based programming were identified as methods for inferring 
and constructing ecological networks by Evans and Dumbrell (p. 59, 79) and may be 
applicable to the RSN data. Application of machine learning methods to network inference 
have been shown to reconstruct ecological networks as accurately as methods based on 
direct observations (Tamaddoni-Nezhad et al. 2013, p. 74). Similarly, machine learning 
methods have been able to learn ecological interactions from macro-organism species co-
occurrence data when combined with background knowledge of the ecosystem (Bohan et 
al. 2011; Tamaddoni-Nezhad et al. 2013). 

The major obstacle to the application of the machine learning methods to the RSN dataset 
is that they have not yet been applied extensively to microbial communities (Vacher et al., 
2016), and even less so to freshwater microbial communities (p. 67). However, there has 
been significant development in the application of machine learning methods to microbial 
NGS data in the form of an R package called ‘Interaction Inference using Explainable 
Machine Learning’ (InfIntE; p. 79). InfIntE is described as a ‘generic, logic-based inference 
tool for learning networks in R’ and has been shown to perform well at identifying 
ecological interactions from microbial NGS data, as it is able to capture interactions 
between species and their forms (i.e., negative, positive, neutral; Barroso Bergadà 2022, 
p. 79). 

Many artificial intelligence and machine learning methods and tools are underpinned by 
abductive and inductive logic programming respectively. Abductive logic programming 
derives the best hypothesis or explanation from a set of observations or dataset, whereas 
inductive logic programming derives a set of rules or principles from a dataset or specific 
examples. Dumbrell et al. suggested that as these methods develop, it could be 
advantageous to test out the use of AI and machine learning tools in inferring networks 
because of the methods’ increased capability to identify the form (positive, negative, 
neutral), magnitude, and directionality of interactions (Barros-Bergada et al., 2022, p.79).  

4.6 Evaluating network inference methods  

Both Evans and Dumbrell et al. suggested that different methods to network analysis 
should be applied to the RSN data and evaluated to determine the best method for 
inferring microbial networks (p. 56, p. 98). However, there is not extensive detail within the 
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think pieces as to how network inference methods should be evaluated. That being said, 
Dumbrell et al. highlighted a study by Faust and Reas (2012) that suggested that 
cultivation of unknown microorganisms, combinatorial labelling and parallel cultivation 
could facilitate systematic co-culturing and perturbation experiments, which can be linked 
into robustness analyses (see recommendations synthesis section 6.3). Evans suggested 
that mesocosm experiments could also be used to evaluate microbial networks, citing 
studies that have used mescosm experiments to look at microbial community response to 
copper contamination (Sutcliffe et al., 2019) and bacterial community response to warming 
(Yang et al., 2023; Evans, pers. comms, 02/05/2024). 

5. Spatial multi-layer networks  
Windsor recommended that multiple layers of ecological information and spatial 
information could be combined to better explore resilience on a river catchment scale, in 
what was termed a ‘meta-community approach’ (p. 39). The ability for network analysis to 
integrate multiple ‘layers’ of ecological information is considered by many, including the 
think piece authors, to be one of the strengths and benefits of a network approach. 
Windsor proposed that incorporating spatial ‘rules’ into the network (such as rules 
governing transport and dispersal distance of organisms) would allow for the resilience of 
individual sites in the context of the immigration and emigration of organisms and post-
disturbance colonisation to be understood (p.39). Furthermore, Windsor suggested that 
different stressors could be simulated across the catchment, and that this approach could 
be tied into stability calculations (p. 40).  

Evans highlighted the computational challenges that can be encountered when bringing 
multi-taxa microbial datasets into multi-layer networks due to the large number of 
interactions that can occur (p. 67).  

6. Network interrogation and metrics 
The think piece authors recommended or suggested several metrics or analyses that 
could be performed on networks inferred from the RSN data. This would allow for 
comparison of microbial networks and their properties between sites and through time.  

6.1 Topological metrics  

Topological metrics are related to the geometry and connectedness of a network and 
include metrics such as network modularity, connectivity, density and/or connectivity of 
links, network size, interaction evenness, and modularity. Both Windsor and Dumbrell 
acknowledge that the relationship between these network properties and ecosystem 
stability is complex with no consensus around the direction of relationship between metrics 
and ecosystem stability (p. 31, p. 81-83). This means that the interpretation of these 
metrics can be challenging. However, while Windsor recommends that this means these 
metrics are not particularly useful in analysis of the RSN data (p. 31), Dumbrell suggests 
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that they may be useful in exploring network responses to environmental perturbations (p. 
99).  

6.2 Identification of key nodes/hubs 

Evans and Dumbrell et al. both suggested that key or highly connected taxa (nodes) or 
groups of taxa (hubs), which are important in the network structure (Banerjee et al. 2018, 
Fang et al. 2023) and may be involved in key ecological processes, could be identified in 
the networks inferred from the RSN data (p. 68, p. 99). However, while these nodes/hubs 
are important in the context of environmental networks, it is uncertain what they represent 
ecologically, for example, it is uncertain whether key nodes represent cornerstone species 
within an ecosystem (Banerjee et al. 2018; Röttjers & Faust 2019; Banerjee et al. 2019). 

Dumbrell et al. suggested that following the identification of key taxa, complementary 
analyses could be used to explore these taxa further and develop a greater mechanistic 
understanding of their role in the ecosystem (p. 99). On a similar note, Evans suggested 
that it may be possible for future research to focus on these key hubs rather than 
generating entire networks (p. 68). The metagenomic data generated may also be helpful 
in determining likely functioning roles specific taxa perform. 

6.3 Network robustness 

Robustness is a measure of the tolerance of an ecological network to species extensions 
(i.e., removal of nodes; Dunne et al., 2002), and was identified as a possible avenue to 
explore in networks generated by the RSN data by Windsor (p. 38). Robustness analysis 
can also help to establish how network properties such as nestedness and connectance 
enhance or decrease resilience to loss of taxa/nodes and may be able to identify more 
less robust/sensitive groups within an ecosystem (Evans et al., 2013). Robustness 
analysis and metrics have previously been applied to a study looking at the robustness of 
a microbial community’s functional profile to changes in community composition (Eng and 
Borenstein, 2018). Advances in methods for studying the robustness of ecological 
networks has facilitated the investigation of patterns across ecosystems and secondary 
extinctions (p. 61-62). 

Windsor and Evans both illustrated how to assess the robustness of a network to 
extinctions (p. 31-33, 61-62). This involves removing a node from the network (primary 
extinction), identifying and subsequently removing any nodes that become separated from 
the network as a result (secondary extinction), and then repeating this until all nodes are 
lost from the network. This framework can be tailored to the context; from the data 
included to the inclusion of ecological knowledge (e.g., the likely order of species 
extinction), the introduction of thresholds for extinction based on the number of 
connections lost, and the introduction of interaction rewiring to simulate taxa interacting 
different taxa following an extinction. Evans noted that running robustness simulations on 
networks of any significant size requires large computer processing power (p. 68). 
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Evans suggested that adaptation network models could be used to investigate the how 
microbial networks respond to extinction events (p. 62-66). While robustness analysis 
tends to be concerned with the analysis stochastic networks (i.e., a snapshot of a network 
at a specific moment in time), adaptation network models include temporal dynamics 
Raimundo et al.. Specifically, adaptation network models include network rewiring, 
accounting for how species interactions adapt to species extinctions within a network (for 
example, predators may being to prey on other animals). Furthermore, by including 
network rewirings that we are likely to see in the real world, this model type may be able to 
help us identify or predict how a network may absorb or respond to environmental 
perturbations (Kaiser-Bunbury et al., 2010; Ramos-Jiliberto et al., 2012). However, this 
approach has not been previously applied to microbial interactions. Evans also highlighted 
that complexity-stability modelling could also be useful in simulating network response to 
species loss, and illustrated how this had been achieved through application of random 
matrix theory (p. 65).  Evans suggests that there is scope in the future for developing 
freshwater ‘vulnerability indices’ by using adaptive network models and random matrix 
theory (p. 66). 

6.4 Response diversity  

Response diversity, a theory rooted in the insurance hypothesis of biodiversity (that 
greater biodiversity guarantees some organisms will maintain function even when others 
are lost; Yachi and Loreau, 1999), is described in Windsor’s think piece as the range of 
potential responses or reactions of organisms to a given stressor or set of stressors 
(Elmqvist et al., 2023, p. 33). Windsor proposed that response diversity could be 
calculated for different environmental gradients represented in the RSN, specifically 
suggesting the use of the framework proposed by Ross et al., 2022 (p. 38-39). This is not 
a form of network analysis but would instead generate performance-environment curves 
for different taxon across different environmental conditions/gradients based on measured 
trait information from different species in the community.  

At present this framework has only been applied to macro-ecological studies (e.g., White 
et al., 2023). However, Windsor noted that it is a flexible framework and could be coupled 
with biomonitoring data and secondary data, such as cell size for microbes (p. 34). It is 
possible for datasets to have multiple environmental variables within this framework and 
would therefore account for interacting stressors and interactive effects on the 
communities. 

Windsor suggested that summaries of performance curves (provided by first derivatives of 
generalised additive models) can be used to calculate diversity using Hill numbers (p. 38). 
Diversity values could subsequently be compared across catchments/regions to 
understand the resilience of these areas to further change. It was also suggested that this 
approach could be applied to longitudinal data to calculate response diversity and 
combined with abiotic (water chemistry) data to calculate performance-environment curves 
for different (abiotic) drivers across the sites. Windsor suggested that further analysis of 
these performance-environment curves could provide site- and catchment-level insight into 
ecological resilience to future change (p. 38).  

https://paperpile.com/c/TKiQvg/Gnay+BcJQ
https://paperpile.com/c/TKiQvg/Gnay+BcJQ
https://paperpile.com/c/TKiQvg/Gnay+BcJQ
https://paperpile.com/c/TKiQvg/Gnay+BcJQ
https://paperpile.com/c/TKiQvg/Gnay+BcJQ
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Windsor proposed that the outcomes of these analyses could be combined with aspects of 
ecological network analysis. For example, looking at the similarity of response between 
interlinked species could help to establish whether the co-occurrence of organisms is a 
result of their interaction (or not; p. 39). Similarly, outputs could be used to inform 
robustness simulations, whereby organisms with similar responses are lost in close 
succession. 

6.5 Metrics linked to specific drivers and ecosystem function  

Both Evans and Dumbrell et al. suggested that it could be beneficial to develop metrics 
linked to specific environmental perturbations and ecosystem services (p. 68, 99-100). 
Evans recommended developing metrics of ecosystem resilience linked to specific 
pressures, giving the example of analysing samples taken from RSN sites up and down 
stream of sewage outlets to measure the resilience of microbial networks to this 
perturbation (p. 68).  

Microbial networks are known to underpin biogeochemical fluxes and nutrient 
transformations but relationships between the two are poorly understood. Dumbrell et al., 
suggested that it may be beneficial to link carbon and nitrogen cycling and other 
biogeochemical processes to microbial networks by taking direct measurements of these 
processes for a few key sites (p. 99). Additional to this, it was also suggested that targeted 
testing for key functional genes which are associated with ecosystem processes and 
functions is undertaken, as this may help provide insight into mechanisms and causal 
relationships between microbial networks and their properties and ecosystem processes 
and function. Dumbrell noted that this would require gene abundance data which can be 
obtained from the same DNA extracts as NGS and either linked to ecological network 
properties or included within networks.  

Dumbrell stated that the real value of the RSN data would be if it was able to unravel 
mechanisms and causality and mechanistically link microbial communities and networks to 
ecosystem properties (p. 99-100). It was suggested that complementary analyses could be 
undertaken to do this; approaches invoking multivariate generalised linear modelling 
(Warton 2011; Wang et al. 2012) or structural equations (Mamet et al. 2019) may be able 
to do this (p. 97, p. 99).  

6.6 Functional diversity  

Windsor suggested that it may be beneficial to include information about the traits of 
organisms in (network) analyses because this can provide insight and used to develop 
metrics around functional diversity (Escalas et al., 2019,  p. 36). This may also help add 
ecological realism to analyses such as robustness analysis.  

Although trait data about micro-organisms is not as comprehensive as for macro-
organisms, some trait data is available for diatoms and algae (e.g., Lange et al., 2016), 
bacteria (e.g., BactoTraits; Cébron et al., 2021, and PICRUSt2; Douglas et al., 2021), and 
fungi (e.g., FUNGuild; Nguyen et al., 2016, and FunFun; Krivonos et al., 2023). 
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7. Timeseries analysis 
The recommendations outlined so far have focussed on the exploration and analysis of 
cross-sectional (i.e., spatial) data, however Dumbrell advised that it could be 
advantageous to undertake longitudinal (i.e., timeseries) data analysis as data is collected 
over time through the RSN (p. 80). Time series analysis of microbial ecology data will likely 
aid understanding of ecosystem dynamics, particularly because microbial communities 
can respond abruptly to perturbations in environmental conditions (Faust et al., 2015). This 
approach may be particularly helpful because it can help elucidate the causal direction of 
microbial responses (p. 98). Furthermore, it has also been suggested that interactions 
inferred through this approach may be more rigorous (p. 79).  

Local Similarity Analysis (LSA) is valuable tool in understanding the varying dynamics of 
biological systems (Xia et al., 2013) and was identified by Dumbrell et al. as a possible 
LSA method to use in analysing the RSN data (p. 80, p. 98). LSA is able to identify the 
existence of local and lagged relationships and dependencies between taxa over short 
time periods from longitudinal data (Durno et al., 2013) and therefore the causal direction 
of responses (Cappellato et al., 2021). LSA was identified as a particularly applicable 
approach for analysing the RSN datasets because it is suitable for analysing sparse 
datasets (Weiss et al., 2016, p.80). 

Dumbrell identified Extended Local Similarity Analysis (eLSA) as another possible method 
to apply to the RSN longitudinal data (p. 79, p. 98). eLSA was developed specifically for 
the analysis of microbial datasets, and has has been shown to identify statistically 
significant local and potentially time-delayed association patterns in replicated time series 
data (Xia et al., 2013). The incorporation of replicates facilitates understanding of the 
variability in local similarity metrics and obtain confidence intervals. As highlighted by 
Dumbrell et al., eLSA has been applied to numerous environmental microbial datasets to 
infer and analyse networks (e.g., Xia et al., 2011; Chow et al., 2013; Needham et al., 
2017; Giner et al., 2018, Wang et al., 2021), thus providing a rich background of research 
against which to contextualise findings (p. 80). 

An optimised version of eLSA, termed fastLSA has been developed and was also 
highlighted by Dumbrell et al. as a possible approach for the RSN data (p. 98). fastLSA 
was developed to perform LSA on big datasets. fastLSA takes a different approach in how 
statistical significance is assessed and calculated, which is much faster than preceding 
LSA methods (including eLSA). This means the computational time of fastLSA is much 
less because computationally intense permutation tests are not needed. Another 
difference is that fastLSA does not assume normality of the data, which is unlikely to be 
the case for ‘real-world’ datasets (Durno et al., 2013). 

8. Complementary analyses 
Dumbrell highlighted that a major challenge in the application of ENS to microbial ecology 
is the lack of mechanistic framework for the interpretation of microbial ecological networks 
(p. 95-96). This limits the interpretation of ecological network properties in terms of 
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ecological function. Dumbrell suggested that other, complementary analyses could aid 
microbial ecological network analysis. Specifically, they recommend the application of 
multivariate general linear modelling to understand community- and population-level 
responses to environmental pressures and establish causal relationships (e.g., Warton et 
al., 2011; Wang et al., 2012, p. 100), and structural equation modelling to establish causal 
relationships between environmental change, changes in the microbial network, and 
ecosystem properties (e.g., Mamet et al., 2019, p. 100). 

9. Computing power and data storage  
In his think piece, Evans recommends that requirements for storing data generated 
through this project are considered (p. 68). Metagenomic analysis generates huge 
volumes of data, with the volume of data generated by many projects employing NGS 
likely to exceed the storage capacity of individual hard drives (Hahn et al., 2016). Evans 
also highlighted that considerations should be made around about how data generated 
through the project is shared (p. 68). In an opinion piece addressing the infrastructure 
required a future in which large volumes of NGS data is produced, Hahn et al., 2016 
proposed the use of cloud computing and distributed file storing systems as a solution to 
both storing large volumes of data and enabling access by multiple users; data is stored 
on the cloud and can then be accessed from and downloaded to personal devices. A 
number of publicly available online storage resources including the Earth Microbiome 
Project, the Joint Genome Institute’s Genome Portal, and the National Centre for 
Biotechnology Information have been developed to enable large volumes of microbial data 
to be stored and publicly accessed (Hahn et al., 2016).  

Evans also highlighted that some of the data analyses recommended (e.g., robustness 
analyses and simultaneous extinction modelling) will require large computer processing 
power and therefore access to High Power Computers is required (p. 68). Hahn et al., 
2016 outlined that cloud-based computing could facilitate access to HPCs to analyse big 
microbial datasets as it allows individuals to remotely access to shared high-power 
computers from relatively basic personal computers. Cloud-based computing also others 
other benefits for data analysis, specifically for improving data reproducibility as it 
facilitates better documentation of how data has been manipulated and sharing of code 
(Hahn et al., 2016).  
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Next Steps 
The think piece papers highlight the advantages and opportunities that ENS offers. Of 
particular value to the Environment Agency and the analysis of the RSN data is the 
potential it offers in furthering understanding of ecosystem function and dynamics and the 
development of metrics relating to these. Furthermore, it can be helpful in identifying 
important taxa or ‘hubs’ in ecosystem function, which could guide both future research and 
future monitoring. We therefore intend to experiment with ENS approaches and analysis 
pipelines in the analysis of the biofilm NGS data generated through the Environment 
Agency’s RSN.  
 
The think pieces outline that microbial ecological networks must be inferred because 
interactions cannot be observed. There are multiple different methods for inferring 
networks; as advised by Evans and Dumbrell, we intend to test a number of different 
methods for inferring networks on the RSN data. Similarly, there are other aspects of the 
data analysis pipeline that we will experiment with, such as selecting to work with OTUs or 
ASVs, to find the optimum and most appropriate way to analyse the data.  
 
The think piece authors highlight that microbial ENS is still in its infancy as a discipline and 
data analysis tool. We therefore intend to use other, more established data analysis 
methods alongside ENS and will compare the outputs from these methods. 
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List of abbreviations 
AI - Artificial intelligence 

ASV - Amplicon Sequence Variants 

eDNA - Environmental DNA (Deoxyribonucleic acid) 

eLSA - Extended Llocal Similarity Analysis 

ENS - Ecological network science 

EPS - Extracellular polymeric substance 

GRTS - Generalised, randomised, tessellation, stratified 

HMSC - Hierarchical Modelling of Species Vommunities 

HPC - High power computers 

J-SDM - Joint-species distribution model 

LSA – Local Similarity Analysis 

MAR – Matrix autoregression  

MaxEnt – Maximum entropy 

NGS – Next Generation Sequencing 

OTU - Operational Taxonomic Units 

RSN – River Surveillance Network 

SPIEC-EASI - SParse InversE Covariance Estimation for Ecological Association Inference 

TP – Think Piece  
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Glossary 
Amensalisms - Interactions where one node is negatively affected whilst the other 
receives no benefit (e.g., animal trampling plants). 

Antagonisms - Interactions where one node benefits at the expense of another (e.g., 
predator-prey or host-parasite interactions). 

Binary network - A network comprised of interactions which are either present or absent 
(i.e., 1 or 0). 

Biofilm - A diverse aggregate of microbial communities comprising bacteri, fungi, alage, 
and other protozoa within an extracellular polymeric substance matrix.  

Commensalisms - Interactions where one node is positively affected whilst the other 
receives no benefit (e.g., cleaner-client interactions). 

Connectance - The proportion of possible links between nodes that are realised. 

Degree - The number of interactions associated with a node. For a directional graph this 
can be in degree (number of incoming interactions) and out degree (number of outgoing 
interactions). 

Ecological network - A network which is comprised of living organisms and their 
interaction with other organisms and abiotic features in an ecosystem. 

Ecosystem - A community of living organisms, which, together with their physical 
environment, interact as a functional unit. 

Ecosystem function - The processes and activities carried out within an ecosystem. 
These functions contribute to the overall health of ecosystem. 

Ecosystem services - The benefits to humans that are provided by ecosystems and 
ecosystem function. 

Engineering resilience - Stability near a steady-state equilibrium, where the measure is 
the return time or speed of return to the equilibrium state. 

Facilitation - A mutualistic or commensalistic interaction where the activity of one 
organism enables the activity of another (e.g., an organism feeding on leaves breaks the 
leaves into smaller pieces that another organism can feed on). 

Forbidden links - Interactions between nodes that cannot possibly exist (e.g., two 
organisms do not occupy the same habitat, or coexist during the same seasons). 

Functional diversity - The variety and range of functional traits and environmental 
processes exhibited by organisms within an ecosystem or community. 
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Interaction - The relationship and exchange that occurs between organisms or an 
organism and its abiotic environment. 

Link - Interactions between the elements in a network (e.g., species interactions, 
movement, migration, foraging). 

Metabarcoding - An eDNA data analysis method which determines the range and 
diversity of many taxa from a single sample. Species ID are assigned through comparison 
to a reference library. 

Microbe - Micro-organisms including bacteria, archaea, fungi, and protists. 

Modularity - A measure of the degree to which a network is divided into more strongly 
connected subnetworks. A modular network is one where subsets of nodes are more 
strongly or densely connected to one another, with weak or sparse links between these 
strongly connected subnetworks. 

Multilayer network - An interaction network which is organised into different “layers” 
where each layer represents different interactions, or spatial and temporal segregation 
(e.g., networks across habitats or time points). There are intra-layer edges, those 
interactions that occur within layers, but also inter-layer edges, those interactions that link 
nodes across layers. Intra-layer edges are usually standard types of interaction, e.g., 
mutualistic and antagonistic, and inter-layer edges can represent links between the same 
individuals over time, or the same species across different habitats, or the same individual 
across different habitats (i.e., foraging or dispersal). 

Multiplex network - An interaction network where individuals are connected across 
multiple networks of different types of interaction (i.e., merged mutualistic and antagonistic 
networks). 

Multitrophic network - An interaction network where individuals are connected across 
different trophic levels. Interactions can be either mutualistic or antagonistic, however, the 
interactions between each group of organisms are consistent (i.e., plants-herbivores-
parasitoids or microbes-plants-pollinators). 

Multivariate - Datasets or statistical analyses which involve two or more variables. 

Mutualisms - Interactions where both nodes benefit (e.g., plant-pollinator or host-
symbiont). 

Nestedness - A measure of the propensity for nodes to interact with subsets of the 
interaction partners of well-connected nodes. For example, a nested network is one where 
nodes with few connections all interact with nodes that well-connected nodes also interact 
with. 

Network - A collection of interconnected elements (i.e., nodes) linked together through 
relationships or interactions. 
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Next generation sequencing  - Synonym high-throughput sequencing. A broad term 
used to describe modern sequencing technologies that are able to sequence DNA and 
RNA more rapidly that Sanger sequencing. 

Node - Distinct elements in a network (e.g., cells, species, habitats, ecosystems). 

Response diversity - Range of potential responses or reactions of organisms to a given 
stressor (e.g., environmental change) or set of stressors. 

Robustness - The tolerance of a network structure to node removal (I.e., in inter-specific 
ecological networks, the number of secondary extinctions resulting from a sequence of 
primary extinctions). 

Sampling completeness - The degree to which the observed networks (constructed 
through sampling) represent the potential interactions that could occur in a given network. 

Social-ecological networks - A merged network which includes social interactions, 
ecological interactions and the reciprocal interactions between these two interaction types 
(e.g., management and ecosystem service provision, respectively). 

Spatial networks - A network where the nodes and links are organised spatially (i.e., the 
nodes are habitat patches and the links are the movements of organisms or populations). 

Stability - The ability of an ecosystem to resist, or be resilient to, perturbations. 

Topology - The arrangement of nodes and edges in a network. This is also commonly 
referred to as network structure. 

Weighted network – A network where interactions are quantified (e.g., number of prey 
consumed, number of flowers visited, parasite abundance).  
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Would you like to find out more about us or 
your environment? 
Then call us on 

03708 506 506 (Monday to Friday, 8am to 6pm) 

Email: enquiries@environment-agency.gov.uk 

Or visit our website 

www.gov.uk/environment-agency 

incident hotline  
0800 807060 (24 hours) 

floodline  
0345 988 1188 (24 hours) 

Find out about call charges (https://www.gov.uk/call-charges) 

Environment first 
Are you viewing this onscreen? Please consider the environment and only print if 
absolutely necessary. If you are reading a paper copy, please don’t forget to reuse and 
recycle. 

mailto:enquiries@environment-agency.gov.uk
https://www.gov.uk/environment-agency
https://www.gov.uk/environment-agency
https://www.gov.uk/call-charges
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