

0117 25 10101

info@buildingenergyexperts.co.uk

buildingenergyexperts.co.uk

Prepared for:	Eastman Estates Ltd
Project:	20 Whiteladies Road
Report date:	11/07/2024
Produced by:	Building Energy Experts Ltd
Report author:	Richard Millard
Reviewed:	KG

Contents

1. Executive Summary	3
Summary of total reduction in carbon emissions	3
2. Planning Policy Context	4
National Policy Context	
Regional & Local Policy Context	
3. Design Principles to Reduce Energy Consumption and Carbon I	
Be "Lean" – Use less energy	
Be "Clean" – Supply energy efficiently	
Be "Green" – Renewable energy	
4. Sustainable Design and Construction	
Energy Efficiency	
Decentralised, Renewable, and Low-Carbon Energy Supply Systems	
Avoiding Responses to Climate Impacts that Lead to Increases in Energy Use and CO ₂ Em	
Encouraging Greener Transport Use	
Waste and Recycling - During Construction	
Waste and Recycling - In Operation	
Building Materials - Type, Life Cycle, and Source	
Pollution	11
Summary	11
5. Water Management	12
Water Conservation Measures	12
Table 1 - Water Consumption	12
Surface Water Management	12
6. Selecting Renewables	13
Table 2 - Feasibility Matrix of Appropriate Renewables	13
Table 3 - Feasibility Matrix of Appropriate Renewables	14
Table 4 - The Heat Hierarchy	15
Table 5 - Proposed Renewables	15
Feasibility of Appropriate Renewables – Conclusion	15

7. Baseline 'Threshold Values' & Proposed Fabric/Services Specification.	. 16
Table 6 - Baseline Compliance & proposed building	16
8. Conclusion	17
Table 7 – Summary Table Domestic	17
Summary	17
Appendix A – SAP Outputs	. 18

1. Executive Summary

This Sustainability and Energy Statement demonstrates how the proposed redevelopment and conversion of an existing building into a house multiple occupation (HMO) at 20 Whiteladies Road, Bristol will comply with the following Bristol City Council (BCC) Policies:

- BCS13 Climate Change
- BCS14 Sustainable Energy (from the Development Framework Core Strategy)
- BCS15 Sustainable Design and Construction
- BCS16 Flood Risk and Water Management

The statements contain the results of energy modelling, showing how the proposed development will meet BCC policy requirements to reduce carbon emissions by at least 20% for this development over the building regulation requirements. The energy strategy in this statement has been produced in line with the Energy Hierarchy:

- Be "Lean" reduce energy demand.
- Be "Clean" supply energy efficiently.
- Be "Green" use renewable energy.

SAP calculations have been completed in line with Part L (Volume 1, 2021) of the Building Regulations and the requirements of the BCC to demonstrate a 20% reduction in regulated carbon emissions using the above energy hierarchy.

Firstly, SAP calculations to achieve compliance with Part L (Volume 1, 2021) were modelled using SAP10 with the threshold values to provide 'baseline' energy demand, primary energy rate and emissions. Then, additional measures were applied to provide 'residual' energy demand, primary energy rate and emissions. Finally, appropriate decentralised renewables were included in the calculations to provide the final energy demand and emissions figures for comparison. More detail is provided in the following sections.

The baseline calculation uses a Gas Combi Boiler for heating and hot water in the baseline building, this is an appropriate selection for a baseline calculation as it represents a common heating method for domestic buildings in the area and is included in the notional building specification.

To summarise the results, the total reduction in carbon emissions for the proposed development is as follows:

Summary of total reduction in carbon emissions

	Before Renewables	After Renewables (PV)
Baseline Target Emission Rate (TER)	6,447.22	
Residual Building Emission Rate (DER)	5,560.59	1,042.35
Total CO ₂ Saving on residual energy	13.75%	81.26%

2. Planning Policy Context

National Policy Context

National Planning Policy Framework – Encourages the adoption of sustainable development through encouraging local authorities to adopt strategies, policies and targets that mitigate and adapt to climate change. It also recommends the move to low carbon technologies by planning new development in ways to reduce greenhouse gas emissions and adhere to standards established in the Government's zero carbon buildings policy.

The government energy policy sets targets for the UK to cut carbon dioxide emissions and become net zero by 2050, as well as setting national targets for the generation of electricity from clean and renewable sources.

Regional & Local Policy Context

Local Policy requirements are set out in both Bristol City Council's Local Plan and Core Strategy.

Policy BCS13

Development should contribute to both mitigating and adapting to climate change, and to meeting targets to reduce carbon dioxide emissions.

Developments should mitigate climate change through measures including:

- High standards of energy efficiency, including optimal levels of thermal insulation, passive ventilation and cooling, passive solar design, and the efficient use of natural resources in new buildings.
- The use of decentralised, renewable, and low-carbon energy supply systems.
- Patterns of development which encourage walking, cycling and the use of public transport instead of journeys by private car.

Development should adapt to climate change through measures including:

- Site layouts and approaches to design and construction that provide resilience to climate change.
- Measures to conserve water supplies and minimise the risk and impact of flooding.
- The use of green infrastructure to minimise and mitigate the heating of the urban environment.
- Avoiding responses to climate impacts which lead to increases in energy use and carbon dioxide emissions.

These measures should be integrated into the design of new development.

The new development should demonstrate through this sustainability statement how it would contribute to mitigating and adapting to climate change, and to meeting targets to reduce carbon dioxide emissions by means of the above measures.

Policy BCS14

Proposals for the utilisation, distribution, and development of renewable and low carbon sources of energy, including large-scale freestanding installations, will be encouraged. In assessing such proposals, the environmental and economic benefits of the proposed development will be afforded significant weight, alongside considerations of public health and safety and impacts on biodiversity, landscape character, the historic environment, and the residential amenity of the surrounding area.

The development in Bristol should include measures to reduce carbon dioxide emissions arising from energy usage in accordance with the following energy hierarchy:

- 1. Minimising energy requirements.
- 2. Incorporating renewable energy sources.
- 3. Incorporating low-carbon energy sources.

Consistent with stage two of the above energy hierarchy, the development will be expected to use sufficient renewable energy sources to reduce carbon dioxide emissions arising from residual energy use by at least 20%. An exception will only be made in the case where a development is necessary, but where it is demonstrated that meeting the required standard would not be feasible.

The use of combined heat and power (CHP), combined cooling, heat, and power (CCHP), and district heating will be encouraged. Within heat priority areas, major developments will be expected to incorporate, where feasible, infrastructure for district heating, and will be expected to connect to existing systems where available.

The redevelopment will be expected to demonstrate that the heating and cooling systems have been selected according to the following heat hierarchy:

- 1. Connection to existing CHP/CCHP distribution networks
- 2. Site-wide renewable CHP/CCHP
- 3. Site-wide gas-fired CHP/CCHP
- 4. Site-wide renewable community heating/cooling
- 5. Site-wide gas-fired community heating

Policy BCS15

Sustainable design and construction will be integral to the new development in Bristol. In delivering sustainable design and construction, developments should address the following key issues:

- · Maximising energy efficiency and integrating the use of renewable and low carbon energy
- Waste and recycling during construction and in operation
- · Conserving water resources and minimising vulnerability to flooding
- · The type, life cycle and source of materials used during construction
- Flexibility and adaptability, allowing future modification of use or layout to facilitate future refurbishment and retrofitting
- Opportunities to incorporate measures which enhance the biodiversity value of the development, such as green roofs.

The redevelopment will be required to demonstrate (as part of the sustainability statement submitted with the planning application) how the above issues have been addressed. For major developments and developments used in healthcare or education, the sustainability statement should include a BREEAM and/or Code for Sustainable Homes assessment. Additionally, in the case of a super-major development, a BREEAM for Communities assessment will be required.

From 2016, residential development will be expected to meet Level 6 of the Code for Sustainable Homes. For non-residential development, also from 2016, a BREEAM "Excellent" rating will be expected.

All new development will be required to provide satisfactory arrangements for the storage of refuse and recyclable materials as an integral part of its design. Major developments should include communal facilities for waste collection and recycling where appropriate.

New homes and workplaces should allow for high-speed broadband access and facilitate access to Next Generation broadband.

Developments in Bristol follow a sequential approach to flood risk management, giving priority to the development of sites with the lowest risk of flooding. The development of sites with a greater risk of flooding will be considered where essential for regeneration, or where necessary to meet the development requirements of the city.

Development in areas at risk of flooding will be expected to:

- Be resilient to flooding through design and layout, and/or;
- Incorporate sensitively designed mitigation measures, which may take the form of on-site flood defence works and a commitment to undertaking off-site measures (where they are necessary) to ensure that the development remains safe from flooding over its lifetime.

All developments will also be expected to incorporate water management measures to reduce surface water run-off and ensure that it does not increase flood risks elsewhere. This should include the use of sustainable drainage systems (SUDS).

3. Design Principles to Reduce Energy Consumption and Carbon Emissions

The energy strategy for the proposed development has been formulated in line with the energy hierarchy. It uses the following approaches to optimise energy usage, supply clean and renewable energy, and reduce embedded carbon emissions while meeting local requirements (Figure 1).

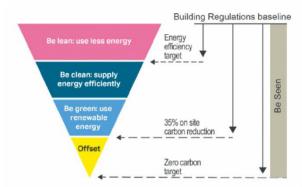


Figure 1: The Energy Hierarchy

Be "Lean" - Use less energy

The proposed redevelopment has been designed with the use of efficient fabric specifications, integrating efficiency into both the new and existing thermal envelope of the dwelling. The proposed thermal elements meet or go beyond the minimum requirements set out in Approved Document L Volume 1 (2021) for retained (where possible) and new fabric elements.

Target U-values have been specified to achieve or go beyond the U-values found in the national dwelling specification. When possible, the national dwelling values are much lower than the limiting factors (maximum allowed U-values) to create the target rates used in the SAP calculation.

The fabric elements and fenestration have been specified using calculated U-values for the intended construction specification for the building. This includes:

- Internally Insulated Ground Floor Retained External walls that achieve a U-value of at least 0.22 W/m²k.
- Internally Insulated First Floor Retained External walls that achieve a U-value of at least 0.28 W/m²k.
- New Cavity Walls that achieve a U-value of at least 0.18 W/m²k.
- A Timber Exposed floor that achieves a U-value of at least 0.21 W/m²k.
- A solid Exposed floor that achieves a U-value of at least 0.16 W/m²k.
- A retained Flat Roof that achieves a U-value of at least 0.16 W/m²k.
- A retained Sloping Ceiling that achieves a U-value of at least 0.16 W/m²k.
- A new Flat Roof that achieves a U-value of at least 0.16 W/m²k.
- A pitched roof with insulation at the flat ceiling plane that achieves a U-value of at least 0.13 W/m²k.

Careful consideration will be given to the fenestration. Replacement timber sash windows with double glazing with low window U-values of 1.4W/m²k will be utilised to limit heat loss through openings. The glazing design also allows for passive heating into the buildings. However, to minimise the risk of overheating, the glazing will be openable where practical as well as feature a low e-coating.

Good detailing will help to limit heat losses through the fabric of the proposed redevelopment. Where available, all non-repeating thermal bridges (e.g. between the external walls and the roofs) will be specified to enhanced construction details that represent the best practice for the proposed construction.

The dwellings will be naturally ventilated, with intermittent extractor fans in the bathrooms, and a cooker hood in the kitchens. This will reduce the energy demand of active ventilation systems. The proposed building layout has been determined by several factors, such as ownership and site boundaries, relationship to adjacent buildings and site access, as well as internal walls arrangements. The internal room layouts within the resultant footprint have been designed with consideration of recommended zoning and room orientations.

Although not a requirement for the building, voluntary air pressure will be conducted, and the dwellings will have designed air permeability of $5 \text{ m}^3/\text{hr/m}^2$. This is below the requirements of the building regulations $8 \text{ m}^3/\text{hr/m}^2$ and the below the default value of $15 \text{ m}^3/\text{hr/m}^2$.

The design of the dwellings optimises the use of natural lighting, and it is proposed that only energy efficient lighting is installed at the properties. This means that all light fittings should have bulbs with a luminous efficacy of greater than 80 lamp lumens per circuit-watt.

The proposed dwellings have been designed to allow for cross ventilation where possible, in order to minimise the need for additional mechanical methods of cooling. Windows have been sized and positioned to allow for good internal natural light and allow for solar gains during winter months. Windows will also have a large free opening area to help ensure that the risk of summer overheating is reduced.

Be "Clean" - Supply energy efficiently

The energy that is used in the redevelopment has been considered for its efficiency. Local policy supports the connection of proposed developments to heat networks. Local heat and power sources minimise distribution losses and achieve greater efficiency when compared to separate localised energy systems.

This section shows the consideration given to the connection of the dwellings to any existing or planned district heating networks in the proximity of the site. There are no existing district heating systems near the development site. The redevelopment is not major (under 100 dwellings), this means the use of district heating networks, or a CHP system, would not be selected due to the unnecessary added complexity. This project is also aiming to use very efficient fabric in order to reduce the heating demand and use efficient services to reduce water demand. Therefore, the expected demand for heating and hot water would potentially not be significant enough for CHP systems.

Be "Green" - Renewable energy

Low carbon energy generation and renewable technologies have been assessed for the proposed redevelopment, with some considered appropriate. See Section 6 for further details regarding the feasibility of each assessed technologies.

Based upon the feasibility matrix an air source heat pump (ASHP) will be used for the hot water and heating requirements and solar PV will be used to achieve the 20% reduction over Part L requirements.

4. Sustainable Design and Construction

Energy Efficiency

The proposed building fabric makes use of high-performance insulation materials. The U-values of the building fabric have been calculated and used in the assessment of the dwelling. The achieved U-values are lower than the limiting factors permitted by Part L and are substantially less or equal to the U-values used in the notional building.

The proposed dwellings would have the potential to achieve an 83.83% total reduction in CO_2 over the baseline Building Regulation measures if low carbon technologies and energy efficiency improvements are used.

Decentralised, Renewable, and Low-Carbon Energy Supply Systems

The proposal for the dwellings makes use of two low carbon systems, including an electric air source heat pump for heating and water heating. Solar PV is also proposed to be added to the building to provide onsite renewable generation. This reduces the associated carbon emissions of the development, with solar used to offset the increase in electricity consumption on site.

Avoiding Responses to Climate Impacts that Lead to Increases in Energy Use and CO₂ Emissions

There are no proposals to include artificial cooling. The proposed dwellings have been designed to allow for cross ventilation where possible. Windows have been sized and positioned to allow for good internal natural light and allow for solar gains during winter months. The buildings will also include appropriate internal shading, such as blinds and curtains, will be used to mitigate overheating from the sun. The design of the dwellings also includes some external features to provide shading.

Encouraging Greener Transport Use

The proposal will include provision for secure cycle storage. The nearest bus stops are located on Whiteladies Road (1-minute walk from the property) with buses towards the City Centre, Temple Meads, Long Ashton, Cribbs Causeway, and Southmead. The nearest train station is Clifton Down, a short 7-minute walk away.

The nearest supermarket and many more local services, shops, and restaurants can be found along Whiteladies Road. The area also has excellent leisure and exercise facilities nearby, with the Clifton Downs being a short walk from the proposed site.

Waste and Recycling - During Construction

A site waste management plan (SWMP) will be developed for this project. Waste groups to be monitored will be identified, and targets will be set to identify how waste can be reduced, reused, recycled, or diverted from landfills. Unavoidable waste will be disposed of responsibly.

Waste and Recycling - In Operation

Adequate waste and recycling storage will be provided within the curtilage of each dwelling to cater for the resident's waste and recycling needs. Both the internal and external provision will comply with Bristol City Council's recycling and waste collection requirements, ensuring that recyclables, and waste can be separated before collection.

Building Materials - Type, Life Cycle, and Source

Where feasible, the most local suppliers of materials will be selected to minimise the environmental impact of transportation. Materials used for the proposal will be purchased from sources that minimise carbon emissions and come from sustainable sources, in line with the developer's environmental policy.

Only suppliers with a certified chain of custody from the Forest Stewardship Council (FSC) or the Programme for the Endorsement of Forest Certification (PEFC) will be used to supply materials. 100% of the timber used will be legally sourced. Material will be sourced from suppliers with an EMS certificate or equivalent.

Pollution

An appropriate construction management plan will be prepared to address issues regarding water, waste, noise, vibration, dust, emissions, odours, and ground contamination. The redevelopment makes use of natural building materials for the structure of the dwelling. It will also include renewable technologies and nontoxic paints, producing limited impact on air pollution in the local area. The redevelopment will also incorporate lighting measures to prevent light pollution.

Summary

The energy strategy demonstrates how the dwellings will achieve a high fabric performance and proposes the installation of Solar PV, and ASHP to further offset the carbon dioxide emissions associated with the dwellings. There is minimal perceived flood risk, and the dwellings will be specified to achieve a water use target of less than 125 liters per person per day.

The proposed redevelopment is therefore judged to comply with all the relevant sustainability and climate change requirements.

5. Water Management

Water Conservation Measures

Internal portable water will be conserved by installing flow restrictors to taps, showers, and dual flush toilets. The following schedule provides a suggested specification which has been proven to exceed building regulations requirements for water conservation (Regulation 36 Compliance).

Table 1 - Water Consumption

Area	Flow Rate/Capacity
Toilet	Dual Flush 6 and 4 Liters
Basin Taps	6 Litres / Minute
Bath	180 Litres (Capacity to Overflow)
Shower	10 Litres / Minute
Kitchen Taps	8 Litres / Minute
Dishwasher	1.25 Litres / Place Setting
Washing Machine	8.17 Litres / KG dry load
Total Water Consumption Litres/person/day	125

Surface Water Management

The proposal site lies within Flood Zone 1, for this development, Surface water runoff will be managed through a sustainable urban drainage system (SUDs).

6. Selecting Renewables

Table 2 - Feasibility Matrix of Appropriate Renewables

Showing the considerations in choosing a renewable technology for this site.

Water Source Heat Pump
Not possible in this location.
Biomass
The proximity of residential dwellings could have an impact on the local air quality. There is not a suitable area for storage to the building.
Combined Heat & Power (CHP)
CHP requires a significant electricity demand, which this development does not provide. This makes CHP unviable, unless a site-wide community heating system is proposed.
Wind
The redevelopment is within proximity to residential properties, so wind is not suitable for this site.

The property is not within an existing district heat network, or in proximity to any planned heat network.

Table 3 – Feasibility Matrix of Appropriate Renewables

Showing the considerations in choosing a renewable technology for this site.

Technology	Requirements	Requirements Met?	Appropriate?	
	Roof facing east to west (through south)	YAS		
Photovoltaic panels	Little/no or modest over shading	Yes	Yes- Selected	
Filotovoltale patiers	Flat roof or pitched roof not greater than 45°	Yes	res- Selected	
	Any size development	Yes		
Solar thermal	All requirements for photovoltaic panels	Yes	No – area used for	
	Hot water tank	Yes	solar PV	
	Suitable external wall or other location on-site for equipment	Yes		
Air source heat pumps	Aesthetic considerations	Yes	Yes - Selected	
	Noise impact	Yes		
	Any size development	Yes		
	External space for horizontal trench or vertical borehole	Yes		
Ground source heat	Medium to large sized	Yes	Would require further investigation	
pumps	development	163		
	Archaeology	Unknown		
	Best suited to underfloor heating	No		
	Space needed for plant, fuel storage and deliveries	Yes	No - air pollution,	
Biomass	Medium to large sized development	No	storage size and delivery location	
	Minimal impact on residents (air quality, deliveries)	No	insufficient	
Combined heat and	Space need for plant access and servicing	Yes	No (redevelopment	
power	Large sized development (large heat demand)	No	intended to have low heat demand)	
	Available network	No		
District heating	Very large sized development (Substantial heat demand)	No	No	

Table 4 – The Heat Hierarchy

Showing how the heat hierarchy can be applied to this site.

Stage	Feasible	Notes
 Connection to existing CHP/CCHP distribution networks 	No	No network available
2. Site-wide renewable CHP/CCHP	No	No network available
3. Site-wide gas-fired CHP/CCHP	No	No network available
4. Site-wide renewable community heating/cooling	Yes	No network available
5. Site-wide gas-fired community heating/cooling	Yes	No network available
6. Individual building renewable heating	Yes	Air Source Heat Pumps

Table 5 – Proposed Renewables

Showing renewables added to the specification to further reduce carbon emissions. This includes the use of an air source heat pump and solar PV. The table below shows the array size of the proposed solar PV installation for the entire site.

Total Array Size	Direct/Landlord's Supply	Orientation	Inclination	Overshading
2kWp	Landlords Supply	South	30	None or little

Individual Type PV Proposal				
Type Total Array Size Direct/Landlord' Inclination Overshading				
Coach House	2 kWp	Landlords Supply	30	None or little

Feasibility of Appropriate Renewables - Conclusion

The location, size and type of development makes most renewable technologies appropriate for this site. Air Source Heat Pumps (ASHP) are proposed for this redevelopment. Solar thermal hot water heating is feasible however the roof space will be required for the solar PV. The number of photovoltaic panels required to reach the required 20% reduction in carbon emissions are shown in Table 10. The redevelopment is not in an area with a planned district heating system.

7. Baseline 'Threshold Values' & Proposed Fabric/Services Specification

Table 6 - Baseline Compliance & proposed building

Building Specification				
	Part L 2021 Limiting	Proposed Building		
Category	Factors	(Specified Values)		
Building Fat	oric			
Air Permeability (m3/m2.h at 50Pa)	15 (Default)	5		
Retained Ground Floor Wall U-value (W/m2K)	0.30	0.22		
Retained Updated Floor Wall U-value (W/m2K)	0.30	0.28		
New Wall U-value (W/m2K)	0.18	0.18		
Retained Flat Roof U-value (W/m2K)	0.16	0.16		
New Flat Roof U-value (W/m2K)	0.16	0.16		
Retained Sloping Ceiling U-value (W/m2K)	0.16	0.16		
Retained Flat Ceiling U-value (W/m2K)	0.16	0.13		
Ground Floor U-value (W/m2K)	-	0.98		
Exposed Floor U-value (W/m2K)	0.25	0.16		
Exposed Floor U-value (W/m2K)	0.25	0.21		
Fenestration	on			
Rooflights W/m2K)	2.2	1.3		
Glazing U-value (W/m2K)	1.4	1.4		
Doors U-value (W/m2K)	1.4	1.4		
Thermal Brin	ging			
Thermal Bringing Details		-		
Building Services & Systems				
Ventilation	Natural ventilation with fa	intermittent extractor		
Heating	Gas boiler	Air Source Heat Pump		
Heating Controls	Time and tempera	ture zonal control		
Heating Systems	Gas boiler	Air source heat pump		
Water Heating (From main heating)	From main heating	From main heating		
Waste water heat recovery	Yes	No		
Lighting	Efficacy of 75lm/W	15 Watts (power) with efficacy of 80lm/W		
Renewables	Solar PV (40% of GA/6)	Solar PV		

8. Conclusion

Table 7 - Summary Table Domestic

	Building Regulations Part L1b compliance ("Baseline" energy demand and emissions)	Be 'Clean' Proposed scheme after energy efficiency measures and CHP ("Residual" energy demand and emissions)/ASHP	Be 'Green' Proposed scheme after on-site renewables	Total savings on residual emissions
Energy demand (kWh pa)	22,898.54	19,545.15		
Energy saving achieved (%)		14.65%		
Regulated CO2 emissions (kg pa)	6,447.22	5,560.59	1,042.35	
Saving achieved on residual CO2 emissions (%)		13.75%	81.26%	83.83%
Dwelling Primary Energy Rate (kWh pa)	35,919.64	30,900.98	10,656.08	
Energy saving achieved (%)		13.97%	65.52%	

Summary

This report demonstrates that via a fabric first approach, the proposals will result in carbon emissions being reduced by up to 13.75% against Building Regulations Part L1(B), prior to taking account of the use of renewable energy generation sources. With the renewable energy generation sources proposed within this development (air source heat pumps and photovoltaic panels on every plot), the carbon emissions will be reduced by up to a further 81.26%, culminating in a carbon emission reduction against building regulations of up to 83.83% across the site in total.

BCC policy requires that all residential development will be required to reduce CO_2 emissions over and above building regulations requirements by at least 20% via the use of renewable and/or low carbon energy generation sources. As demonstrated, these proposals will achieve at least 20% in accordance with this policy.

Appendix A – SAP Outputs

Property Reference			20 Whiteladies	Rd				D T D) · (Issued on Da	ate	12/07/2024	
Assessment Refer	rence		Gas Baseline					Prop Type R	Ref				
Property			20 Whiteladies	Road, Clitton, B	RISTOL, BS8 2L0	G							
SAP Rating					63 D		DER	31	.05	TER			
Environmental					66 D		% DER < TER					N/A	
CO ₂ Emissions (t/)					5.38		DFEE		0.28	TFEE			
Compliance Check	k				See BREL		% DFEE < TFE						
% DPER < TPER							DPER	17	2.99	TPER	₹		
Assessor Details		Mr. F	Richard Millard							Asse	ssor ID	U367-00	D1
SAP 10 WORKSHEET CALCULATION OF D	WELLING EM	ISSIONS	FOR REGULAT					Area (m2) 24.6800		ey height (m) 2.9300	(2b) =	Volume (m3) 72.3124	(lb) - (3)
First floor Second floor Total floor area Dwelling volume	TFA = (la)+(lb)+	(lc)+(ld)+(le	e)(ln)	20	7.6400		91.4800 91.4800	(1c) x	2.2500 3.7200	(2c) = (2d) =	205.8300	(1c) - (3 (1d) - (3 (4)
2. Ventilation r	ate 										1	m3 per hour	
Number of open of Number of open f Number of chimne Number of flues Number of flues Number of interm Number of passiv Number of fluele	lues ys / flues attached to attached to d chimneys ittent ext e vents	o solid o other ract fa	fuel boiler heater	fire								0.0000 0.0000 0.0000 0.0000 0.0000 100.0000 0.0000	(6b) (6c) (6d) (6e) (6f) (7a) (7b)
Infiltration due Pressure test Pressure Test Me Measured/design Infiltration rat Number of sides	thod AP50 e	ys, flu	es and fans	= (6a)+(6b)+(6c)+(6d)+(6e)+(6f)+	(6g)+(7a)+(7	7b)+(7c) =		100.0000	/ (5) =	es per hour 0.1617 No Blower Door 15.0000 0.9117	(8)
Shelter factor Infiltration rat	e adjusted	to inc	lude shelter	factor					(20) = 1 - (2	[0.075 x 1) = (18)	(19)] = x (20) =	0.8500 0.7749	(20) (21)
Wind speed Wind factor Adi infilt rate	Jan 5.1000 1.2750	Feb 5.000 1.250	Mar 0 4.9000 0 1.2250	Apr 4.4000 1.1000	May 4.3000 1.0750	Jun 3.8000 0.9500	Jul 3.8000 0.9500	Aug 3.7000 0.9250	Sep 4.0000 1.0000	Oct 4.3000 1.0750	Nov 4.5000 1.1250	Dec 4.7000 1.1750	(22) (22a)
Effective ac	0.9880 0.9881	0.968 0.969	7 0.9493 2 0.9506	0.8524 0.8633	0.8331 0.8470	0.7362 0.7710	0.7362 0.7710	0.7168 0.7569	0.7749 0.8003	0.8331 0.8470	0.8718 0.8800	0.9106 0.9146	(22b) (25)
3. Heat losses a	nd heat lo	ss para	meter										
Element Timber Sash Wind RF-01	ows (Uw =	1.40)		Gross m2	Openings m2	Ne:	m2 .9300 .8400	U-value W/m2K 1.3258	A x W/ 22.445	U K K 1	-value kJ/m2K	A x K kJ/K	(27) (27a)
Element Timber Sash Wind RF-01 RF-02 Ground Floor Exposed Floor Re Exposed Floor Fr Retained Ground Retained Upper F New Cavity Wall Retained Flat Ro New Flat Roof Retained Sloping Retained Plane C Total net area o Fabric heat loss	ar ont Floor loors of Ceiling eiling f external , W/K = Su	elemen m (A x	ts Aum(A, m2) U)	48.0600 194.9900 16.1500 39.3800 12.6000 27.2800 20.6500	4.7500 12.1800 1.6800		(26)(3	30) + (32)	= 210.472	3			(33)
Party Wall 1 Internal Floor 1 Internal Floor 2			-			24	.2100 .6800 .4800	0.5000	58.605	0 18	8.0000	21097.8000 444.2400 1646.6400	(32) (32d)

SAP 10 Online 2.14.29 Page 1 of 4

Internal Ceilin							.6800 .4800				9.0000 9.0000	222.1200 823.3200	
Heat capacity of Thermal mass por Thermal bridge Point Thermal 1 Total fabric ho	arameter (s (Default bridges	TMP = Cm / 1			1)			(28).		2) + (32a). 33) + (36)	(36a) =	72653.4900 349.9012 90.1180 0.0000 300.5903	(35) (36)
Ventilation he	at loss ca	lculated mor	nthly (38)m Mar	= 0.33 x	(25)m x (5) May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(38)m Heat transfer	coeff	197.7951	194.0034	176.1937	172.8615	157.3498	157.3498	154.4773	163.3247	172.8615	179.6024	186.6497	
Average = Sum(498.3854 =	494.5937	476.7840	473.4518	457.9401	457.9401	455.0676	463.9150	473.4518	480.1927	487.2400 476.7680	(39)
HLP	Jan 2.4189	Feb 2.4002	Mar 2.3820	Apr 2.2962	May 2.2802	Jun 2.2055	Jul 2.2055	Aug 2.1916	Sep 2.2342	Oct 2.2802	Nov 2.3126	Dec 2.3466	
HLP (average) Days in mont	31	28	31	30	31	30	31	31	30	31	30	2.2961 31	
4. Water heati	ng energy	requirements	s (kWh/year))									
Assumed occupation Hot water usage	e for mixe											3.0119	
Hot water usage	e for bath				117.5311	112.9787	110.3911	113.2603	116.4055	121.2934	126.9438	131.5141	
Hot water usage	0.0000 e for othe 45.4744	0.0000 r uses 43.8208	0.0000 42.1672	0.0000 40.5136	0.0000 38.8600	0.0000 37.2064	0.0000 37.2064	0.0000 38.8600	0.0000 40.5136	0.0000 42.1672	0.0000 43.8208	0.0000 45.4744	
Average daily				40.3136	30.0000	37.2004	37.2004	30.0000	40.3130	42.1072	43.0200	163.0583	
Daily hot wate:		Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Energy conte Energy content	281.1076 (annual)	247.5697	169.3120 260.2263	162.1268 221.9435	156.3911 210.5324	150.1851 184.6701	147.5975 178.5064	152.1203 188.3567	156.9191 193.4970	163.4606 221.8145 Total = S	170.7646 243.2855 um(45)m =	176.9885 277.1212 2708.6309	
Distribution 1	42.1661 loss:	37.1354	45)m 39.0339	33.2915	31.5799	27.7005	26.7760	28.2535	29.0245	33.2722	36.4928	41.5682	(46)
Total storage :	0.0000	0.0000 icated solar	0.0000 r storage	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(56)
Primary loss	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(59)
Combi loss Total heat req						49.3151	50.9589	50.9589	49.3151	50.9589	49.3151	50.9589	
WWHRS PV diverter	332.0665 0.0000 -0.0000	293.5970 0.0000 -0.0000	311.1852 0.0000 -0.0000	271.2586 0.0000 -0.0000	261.4914 0.0000 -0.0000	233.9851 0.0000 -0.0000	229.4653 0.0000 -0.0000	239.3156 0.0000 -0.0000	242.8120 0.0000 -0.0000	272.7734 0.0000 -0.0000	292.6005 0.0000 -0.0000	328.0801 0.0000 -0.0000	(63a)
Solar input FGHRS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(63c)
Output from w/	h	293.5970	311.1852	271.2586	261.4914	233.9851	229.4653	239.3156	242.8120	272.7734	292.6005	328.0801	(64)
12Total per yea		ar)						Total p	er year (kW	h/year) = Si	um(64)m =	3308.6309 3309	
	0.0000	0.0000	0.0000	0.0000 Tot	0.0000 al Energy us	0.0000 sed by insta	0.0000 antaneous e	0.0000 lectric sho	0.0000 wer(s) (kWh	0.0000 /year) = Su	0.0000 m(64a)m =	0.0000	
Heat gains from	m water he 106.2080	ating, kWh/m 93.8238	99.2650	86.1250	82.7418	73.7316	72.0931	75.3683	76.6665	86.4930	93.2212	104.8825	(65)
5. Internal ga	ing (see T	ahle 5 and 9											
Metabolic gains													
(66) m	Jan 150.5929	Feb 150.5929			150.5929		150.5929		Sep 150.5929	Oct 150.5929	Nov 150.5929	Dec 150.5929	(66)
Lighting gains	224.4785	248.5298	224.4785	231.9612	224.4785	231.9612	224.4785	224.4785	231.9612	224.4785	231.9612	224.4785	(67)
Appliances gain Cooking gains	378.2496	382.1747	372.2837	351.2269	324.6465	299.6647	282.9754	279.0503	288.9413	309.9981	336.5784	361.5602	(68)
Pumps, fans	38.0593 3.0000	38.0593 3.0000	38.0593 3.0000	38.0593 3.0000	38.0593 3.0000	38.0593 0.0000	38.0593 0.0000	38.0593 0.0000	38.0593 0.0000	38.0593 3.0000	38.0593 3.0000	38.0593 3.0000	(69) (70)
Losses e.g. ev	aporation -120.4743	(negative va -120.4743	alues) (Tabl	le 5)	-120.4743								
	142.7527		133.4206	119.6181	111.2120	102.4050	96.8993	101.3015	106.4813	116.2541	129.4739	140.9712	(72)
Total internal		841.5010	801.3607	773.9840	731.5150	702.2087	672.5311	673.0083	695.5616	721.9086	769.1913	798.1878	(73)
6. Solar gains													
[Jan]			Aı	rea m2	Solar flux Table 6a W/m2	Speci:	g fic data Table 6b	Specific or Tab	FF data le 6c	Acce fact Table	ss or 6d	Gains W	
Northeast Southwest					11.2829 36.7938 11.2829 40.0991								
Northwest Southeast			3.13 1.68	300 	11.2829 40.0991		0.6300 0.6300		.7000	1.00	00	10.7929 26.7378	(81)
Solar gains Total gains	144.6810 961.3397	260.5955 1102.0965	392.3466 1193.7073	543.1875 1317.1715	658.3638 1389.8788	675.0061 1377.2149	641.9127 1314.4438	553.0892 1226.0975	444.3244 1139.8860	297.8366 1019.7452	175.9149 945.1063	122.0975 920.2853	(83) (84)
7. Ware details													

SAP 10 Online 2.14.29 Page 2 of 4

7. Mean internal temperature (heating season)

Temperature during heati	ng periods i	in the livi	ing area fro	m Table 9,	Thl (C)						21.0000	(85)
Utilisation factor for g					Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau 40.1819	40.4938	40.8043	42.3284	42.6264	44.0702	44.0702	44.3484	43.5026	42.6264	42.0280	41.4201	
alpha 3.6788 util living area	3.6996	3.7203	3.8219	3.8418	3.9380	3.9380	3.9566	3.9002	3.8418	3.8019	3.7613	
0.9997	0.9994	0.9989	0.9973	0.9918	0.9722	0.9264	0.9463	0.9884	0.9981	0.9995	0.9998	(86)
MIT 18.5216 Th 2 19.0687	18.6848 19.0799	18.9960 19.0908	19.4913 19.1432	19.9739 19.1531	20.4551 19.1999	20.7271 19.1999	20.6801 19.2086	20.2924 19.1818	19.6748 19.1531	19.0636 19.1331	18.5545 19.1123	
util rest of house 0.9995	0.9991	0.9983	0.9951	0.9829	0.9260	0.7563	0.8145	0.9688	0.9963	0.9991	0.9996	
MIT 2 16.3038	16.5195	16.9250	17.5907	18.2117	18.8348	19.1136	19.0857	18.6332	17.8325	17.0369	16.3715	(90)
Living area fraction MIT 16.5796	16.7888	17.1826	17.8270	18.4308	19.0363	19.3142	19.2839	18.8395	Living area	17.2889	0.1243 16.6430	(92)
Temperature adjustment adjusted MIT 16.5796	16.7888	17.1826	17.8270	18.4308	19.0363	19.3142	19.2839	18.8395	18.0616	17.2889	0.0000 16.6430	
8. Space heating require												
	Feb	Ma	3	Mana	T	71	2	C	0	Nov	Dec	
Jan Utilisation 0.9991	0.9984	Mar 0.9969	Apr 0.9922	May 0.9763	Jun 0.9183	Jul 0.7746	Aug 0.8244	Sep 0.9613	Oct 0.9940	0.9984	0.9993	
Useful gains 960.4693 Ext temp. 4.3000	1100.3161 4.9000	6.5000	1306.8552 8.9000	1356.9489 11.7000	1264.7483 14.6000	1018.1669 16.6000	1010.8482 16.4000	1095.7810 14.1000	1013.5997	943.6351 7.1000	919.6354 4.2000	
Heat loss rate W 6167.4675	5925.1905	5283.5263	4256.2727	3186.7119	2031.5402	1242.9396	1312.3868	2198.7229	3532.7080	4892.6314	6062.7159	(97)
Space heating kWh	3242.3156				0.0000	0.0000	0.0000		1874.2166			
Space heating requirement Solar heating kWh											22190.7355	
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Solar heating contribution Space heating kWh				1261 0405	0.0000	0.0000	0.0000	0.0000	1074 0166	2042 0000	0.0000	
Space heating requiremen	3242.3156 t after sola				0.0000 (kWh/year)	0.0000	0.0000	0.0000	1874.2166		22190.7355	
Space heating per m2									(98c) / (4) =	106.8712	(99)
9a. Energy requirements		l heating s	vstems, inc	luding micr	ro-CHP							
Fraction of space heat f											0.1000	(201)
Fraction of space heat f	rom main sys	stem(s)		(10020 11	-,						0.9000	(202)
Efficiency of main space Efficiency of main space	heating sys	stem 2 (in	%)								79.0000 0.0000	(207)
Efficiency of secondary/	supplementa	ry heating	system, %								100.0000	(208)
Jan Space heating requiremen	Feb t	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
3874.0067 Space heating efficiency	3242.3156 (main heat)			1361.3437	0.0000	0.0000	0.0000	0.0000	1874.2166	2843.2773	3826.4519	(98)
79.0000 Space heating fuel (main	79.0000 heating sys	79.0000 stem)	79.0000	79.0000	0.0000	0.0000	0.0000	0.0000	79.0000	79.0000	79.0000	(210)
	3693.7772	3469.6062		1550.8979	0.0000	0.0000	0.0000	0.0000	2135.1834	3239.1767	4359.2490	(211)
0.0000 Space heating fuel (main	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(212)
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(213)
Space heating fuel (second) 387.4007		304.5543	212.3581	136.1344	0.0000	0.0000	0.0000	0.0000	187.4217	284.3277	382.6452	(215)
Water heating												
Water heating requiremen 332.0665		311.1852	271.2586	261.4914	233.9851	229.4653	239.3156	242.8120	272.7734	292.6005	328.0801	(64)
Efficiency of water heat (217)m 83.1325	er 83.0885	82.9847	82.7656	82.2637	75.0000	75.0000	75.0000	75.0000	82.6199	82.9783	75.0000 83.1323	
Fuel for water heating, 399.4425	kWh/month 353.3545	374.9910	327.7433	317.8696	311.9802	305.9537	319.0875	323.7494	330.1546	352.6231	394.6482	(219)
Space cooling fuel requi (221)m 0.0000		0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000		
Pumps and Fa 3.4822	3.1452	3.4822 33.6909	3.3699	3.4822	3.3699	3.4822 17.3928	3.4822 22.6078	3.3699	3.4822 38.5288	3.3699 43.5182	3.4822	(231)
Lighting 46.6422 Electricity generated by		dix M) (neg	gative quant									
Electricity generated by	wind turbing	nes (Append	lix M) (nega	tive quanti				-80.0985	-69.6409	-44.5037		
(234a)m 0.0000 Electricity generated by			ators (Appen				0.0000	0.0000	0.0000	0.0000		(234a)
(235a)m 0.0000 Electricity used or net								0.0000	0.0000	0.0000		(235a)
(235c)m 0.0000 Electricity generated by	0.0000 PVs (Append	0.0000 dix M) (neg	0.0000 gative quant	0.0000 ity)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235c)
(233b)m 0.0000 Electricity generated by	0.0000	0.0000	0.0000	0.0000	0.0000 itv)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(233b)
(234b)m 0.0000 Electricity generated by	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(234b)
(235b)m 0.0000 Electricity used or net	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235b)
(235d)m 0.0000	0.0000	0.0000				0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235d)
Annual totals kWh/year Space heating fuel - main											25280.5848	
Space heating fuel - mai Space heating fuel - sec	ondary										0.0000 2219.0736	(215)
Efficiency of water heat Water heating fuel used	er										75.0000 4111.5976	
Space cooling fuel											0.0000	
Electricity for pumps an central heating pump	d fans:										41.0000	(230c)
Total electricity for the			liv I\								41.0000	(231)
Electricity for lighting				-d -O)							376.4293	(232)
Energy saving/generation PV generation	cecnnologie	es (Appendi	ces M ,N an	ia Q)							-944.7879	
												17241
Wind generation Hydro-electric generation												(235a)
	Micro CHP ((235a)

SAP 10 Online 2.14.29 Page 3 of 4

-0.0000 (236) 0.0000 (237) 31083.8973 (238) Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Energy kWh/year 25280.5848 Emission factor kg CO2/kWh 0.2100 Emissions kg CO2/year 5308.9228 Space heating - main system 1
Total CO2 associated with community systems
Space heating - secondary
Water heating (other fuel)
Space and water heating
Pumps, fans and electric keep-hot
Energy for lighting 0.0000 (373) 340.7511 (263) 863.4355 (264) 6513.1094 (265) 2219.0736 0.1536 4111.5976 0.2100 0.1387 0.1443 41.0000 376.4293 5.6872 (267) 54.3304 (268) Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported -944.7879 0.1344 -126.9339 0.0000 -126.9339 (269) 6446.1931 (272) 31.0500 (273) 0.0000 0.0000 Total CO2, kg/year EPC Dwelling Carbon Dioxide Emission Rate (DER) 13a. Primary energy - Individual heating systems including micro-CHP Energy Primary energy factor Primary energy mary energy kWh/year 28567.0608 (275) 0.0000 (473) 3480.6252 (277) 4646.1053 (278) 36693.7913 (279) 62.0248 (281) 577.3799 (282) kWh/year 25280.5848 kg CO2/kWh Space heating - main system 1 Total CO2 associated with community systems Space heating - secondary Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting 2219.0736 4111.5976 Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported -944.7879 -1413.9221 0.0000 -1413.9221 (283) 35919.2739 (286) 172.9900 (287) 0.0000 0.0000 Total Total Primary energy kWh/year Dwelling Primary energy Rate (DPER)

SAP 10 Online 2.14.29 Page 4 of 4

Property Reference			20 Whiteladies	Rd				D T D) · (Issued on Da	ate	12/07/2024	
Assessment Refer	rence		Gas Residual					Prop Type R	Ref				
Property			20 vyniteiadies	Road, Clitton, Bi	RISTOL, BS8 2L0	G							
SAP Rating					68 D		DER	26	.78	TER			
Environmental					71 C		% DER < TER					N/A	
CO ₂ Emissions (t/)					4.83		DFEE	94	.13	TFEE			
Compliance Chec	k				See BREL		% DFEE < TFE						
% DPER < TPER							DPER	14	8.82	TPER	₹		
Assessor Details		Mr. F	Richard Millard							Asse	ssor ID	U367-00	01
SAP 10 WORKSHEET CALCULATION OF D	WELLING EM	ISSIONS	FOR REGULAT									Values	
Ground floor First floor Second floor Total floor area Dwelling volume	TFA = (la)+(lb)+	·(lc)+(ld)+(le	è)(ln)	20	7.6400		Area (m2) 24.6800 91.4800 91.4800	(lb) x (lc) x	2.2500 3.7200	(2b) = (2c) = (2d) =	205.8300	(lb) - (3) (lc) - (3) (ld) - (3) (4)
2. Ventilation r	ate										1	m3 per hour	
Number of open of Number of open f Number of chimme Number of flues Number of blocke Number of interm Number of passiv Number of fluele	lues ys / flues attached to attached to d chimneys ittent ext e vents	o solid o other ract fa	fuel boiler heater	fire								0.0000 0.0000 0.0000 0.0000 0.0000 100.0000 0.0000	(6b) (6c) (6d) (6e) (6f) (7a) (7b)
Infiltration due Pressure test Pressure Test Me Measured/design Infiltration rat Number of sides	thod AP50 e	ys, flu	es and fans	= (6a)+(6b))+(6c)+(6d)+((6e)+(6f)+	(6g)+(7a)+(7	7b)+(7c) =		100.0000	/ (5) =	es per hour 0.1617 Yes Blower Door 5.0000 0.4117	(8)
Shelter factor Infiltration rat	e adjusted	to inc	lude shelter	factor					(20) = 1 - (2	[0.075 x 1) = (18)	(19)] = x (20) =	0.8500 0.3499	(20) (21)
Wind speed Wind factor Adj infilt rate													
Effective ac	0.4462 0.5995	0.437 0.595	4 0.4287 7 0.5919	0.3849 0.5741	0.3762 0.5708	0.3324 0.5553	0.3324 0.5553	0.3237 0.5524	0.3499 0.5612	0.3762 0.5708	0.3937 0.5775	0.4112 0.5845	(22b) (25)
3. Heat losses a	nd heat lo	ss para	meter										
Element Timber Sash Wind RF-01	ows (Uw =	1.40)		Gross m2	Openings m2	Net 16. 0.	Area m2 .9300 .8400	U-value W/m2K 1.3258 1.2357	A x W/ 22.445 1.038	U K K 1	-value kJ/m2K	AxK kJ/K	(27) (27a)
Element Timber Sash Wind RF-01 RF-02 Ground Floor Exposed Floor Re Exposed Floor Fr Retained Ground Retained Upper F New Cavity Wall Retained Flat Ro New Flat Roof Retained Sloping Retained Sloping Retained Plane C Total net area o	ar ont Floor loors of Ceiling eiling f external	elemen	ts Aum(A, m2	48.0600 194.9900 16.1500 39.3800 12.6000 27.2800 20.6500	4.7500 12.1800 1.6800	0. 24. 30. 36. 43. 182. 16. 39. 12. 25. 20.	8400 6800 4400 3600 3100 8100 1500 3800 6000 6000 6500 5900	1.2357 0.9800 0.1600 0.2100 0.2200 0.2800 0.1800 0.1600 0.1600 0.1600	1.038 24.186 4.870 7.635 9.528 51.186 2.907 6.300 2.016 4.096 2.684	0 4 11 4 6 2 2 19 8 19 0 7 8 0 0 5	0.0000 0.0000 0.0000 0.0000 0.0000 9.0000 9.0000 9.0000	2714.8000 727.2000 8228.9000 34733.9000 1130.5000 354.4200 113.4000 230.4000 185.8500	(27a) (28a) (28b) (28b) (29a) (29a) (29a) (30) (30) (30) (30) (31)
Fabric heat loss Party Wall 1 Internal Floor 1 Internal Floor 2	, W/K = Su	m (Ax	Ū)			117. 24.	(26) (3	30) + (32)	= 198.537 58.605	8 0 18	0.0000 8.0000	21097.8000 444.2400 1646.6400	(33) (32) (32d)

SAP 10 Online 2.14.29 Page 1 of 4

Internal Ceilin Internal Ceilin							.6800 .4800				9.0000 9.0000	222.1200 823.3200	
Heat capacity C Thermal mass pa Thermal bridges Point Thermal b Total fabric he	arameter (? 3 (Default oridges	TMP = Cm / 1			1)			(28).		2) + (32a). 33) + (36)	(36a) =	72653.4900 349.9012 90.1180 0.0000 288.6558	(35) (36)
Ventilation hea	t loss cai Jan 122.3580	lculated mor Feb 121.5692	nthly (38)m Mar 120.7960	= 0.33 x Apr 117.1643	(25)m x (5) May 116.4848	Jun 113.3217	Jul 113.3217	Aug 112.7359	Sep 114.5401	Oct 116.4848	Nov 117.8594	Dec 119.2964	(38)
Heat transfer of Average = Sum(3	oeff 411.0138	410.2250	409.4518	405.8201	405.1406	401.9775	401.9775	401.3918	403.1959	405.1406	406.5152	407.9522 405.8168	(39)
HLP HLP (average)	Jan 1.9795	Feb 1.9757	Mar 1.9719	Apr 1.9544	May 1.9512	Jun 1.9359	Jul 1.9359	Aug 1.9331	Sep 1.9418	Oct 1.9512	Nov 1.9578	Dec 1.9647 1.9544	
Days in mont	31	28	31	30	31	30	31	31	30	31	30	31	
4. Water heatin	ng energy	requirements	s (kWh/year))									
Assumed occupan	су											3.0119	(42)
	132.0199	130.0359	127.1448	121.6133	117.5311	112.9787	110.3911	113.2603	116.4055	121.2934	126.9438	131.5141	(42a)
Hot water usage	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(42b)
Hot water usage Average daily h	45.4744	43.8208	42.1672 /day)	40.5136	38.8600	37.2064	37.2064	38.8600	40.5136	42.1672	43.8208	45.4744 163.0583	
Deiler han outside	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot water Energy conte Energy content	177.4943 281.1076	173.8567 247.5697	169.3120 260.2263	162.1268 221.9435	156.3911 210.5324	150.1851 184.6701	147.5975 178.5064	152.1203 188.3567	156.9191 193.4970	163.4606 221.8145 Total = S	170.7646 243.2855 um(45)m =	176.9885 277.1212 2708.6309	
Distribution lo Water storage 1	088 (46)m 42.1661 .088:	= 0.15 x (4	45)m 39.0339	33.2915	31.5799	27.7005	26.7760	28.2535	29.0245	33.2722	36.4928	41.5682	(46)
Total storage 1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(56)
If cylinder con	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(59)
Combi loss Total heat requ						49.3151	50.9589	50.9589	49.3151	50.9589	49.3151	50.9589	
WWHRS	332.0665	293.5970	311.1852 0.0000 -0.0000	271.2586 0.0000 -0.0000	261.4914 0.0000 -0.0000	233.9851 0.0000	229.4653 0.0000 -0.0000	239.3156	242.8120 0.0000	272.7734 0.0000	292.6005	328.0801	(63a)
PV diverter Solar input	0.0000	-0.0000 0.0000	0.0000	0.0000	0.0000	-0.0000 0.0000	0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	(63c)
FGHRS Output from w/h		0.0000 293.5970	0.0000 311.1852	0.0000 271.2586	0.0000 261.4914	0.0000 233.9851	0.0000	0.0000 239.3156		0.0000 272.7734 h/year) = S		0.0000 328.0801 3308.6309	(64)
12Total per yea Electric shower		ar) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(64)
Heat gains from					tal Energy us							0.0000	
	106.2080	93.8238	99.2650	86.1250	82.7418	73.7316	72.0931	75.3683	76.6665	86.4930	93.2212	104.8825	(65)
5. Internal gai	ns (see Ta	able 5 and 5											
Metabolic gains), Watts Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
(66)m Lighting gains	150.5929	150.5929	150.5929	150.5929	150.5929	150.5929	150.5929						(66)
Appliances gain	224.4785 s (calcula	248.5298 ated in Appe	224.4785 endix L. ea	231.9612 mation L13	224.4785 or I.13a). a	231.9612 so see Tab	224.4785 le 5						
Cooking gains (378.2496	382.1747	372.2837	351.2269	324.6465	299.6647	282.9754	279.0503	288.9413	309.9981	336.5784	361.5602	(68)
Pumps, fans	38.0593	38.0593	38.0593	38.0593	38.0593	38.0593	38.0593	38.0593	38.0593	38.0593	38.0593	38.0593	(69) (70)
Losses e.g. eva	poration	(negative va	alues) (Tabi	le 5)	-120.4743								
Water heating g	gains (Tabi	le 5)			111.2120								
Total internal	gains				731.5150								
6. Solar gains													
[Jan]			A	rea m2	Solar flux Table 6a W/m2	Speci	g fic data	Specific	FF data	Acce fact	ss or	Gains W	
Northeast													
Southwest Northwest Southeast			7.64 3.13 1.60	100 300 300	11.2829 36.7938 11.2829 40.0991		0.6300 0.6300 0.6300	0	.7000 .7000 .7000	0.77 0.77 1.00	00 00 00	85.9093 10.7929 26.7378	(79) (81) (82)
Solar gains Total gains	144.6810	260.5955	392.3466	543.1875	658.3638	675.0061	641.9127	553.0892	444.3244	297.8366	175.9149	122.0975	(83)
		n											

SAP 10 Online 2.14.29 Page 2 of 4

Temperature during heati	ng periods	in the livi	ng area fro	m Table 9,	Thl (C)						21.0000	(85)
Utilisation factor for g					Jun	Jul	Aug	Sep	Oct	Nov	Dec	
tau 49.1018 alpha 4.2735	49.1962 4.2797	49.2891 4.2859	49.7302 4.3153	49.8136 4.3209	50.2056 4.3470	50.2056 4.3470	50.2789 4.3519	50.0539 4.3369	49.8136 4.3209	49.6452 4.3097	49.4703 4.2980	
util living area												
0.9998	0.9996	0.9992	0.9975	0.9915	0.9682	0.9112	0.9363	0.9876	0.9983	0.9996	0.9998	
MIT 18.9227 Th 2 19.3471	19.0625 19.3496	19.3288 19.3521	19.7303 19.3639	20.1560 19.3661	20.5615 19.3764	20.7979 19.3764	20.7528 19.3783	20.4144 19.3724	19.8715 19.3661	19.3395 19.3616	18.9081 19.3570	
util rest of house 0.9997	0.9994	0.9987	0.9956	0.9826	0.9197	0.7411	0.8027	0.9678	0.9967	0.9994	0.9998	(89)
MIT 2 16.9882 Living area fraction	17.1692	17.5124	18.0343	18.5775	19.0797	19.3120	19.2823	18.9084 ft.b =	18.2173 Living are	17.5323	16.9758 0.1243	(90)
MIT 17.2288	17.4046	17.7382	18.2452	18.7738	19.2640	19.4968	19.4652	19.0957	18.4230	17.7570	17.2161 0.0000	
Temperature adjustment adjusted MIT 17.2288	17.4046	17.7382	18.2452	18.7738	19.2640	19.4968	19.4652	19.0957	18.4230	17.7570		(93)
8. Space heating require												
		.,		.,	_			_			_	
Jan Utilisation 0.9995	Feb 0.9989	Mar 0.9977	Apr 0.9932	May 0.9769	Jun 0.9140	Jul 0.7607	Aug 0.8146	Sep 0.9614	Oct 0.9949	Nov 0.9989	Dec 0.9996	(94)
Useful gains 960.8112 Ext temp. 4.3000	1100.8971 4.9000	1190.9831 6.5000	1308.1772 8.9000	1357.8044	1258.8310 14.6000	999.8784 16.6000	998.7236 16.4000	1095.8857 14.1000	1014.5817	944.0614 7.1000	919.8782 4.2000	
Heat loss rate W					1874.8241						5309.9416	
Space heating kWh												
Space heating requiremen			1788.6934 Th/year)	1122.0133	0.0000	0.0000	0.0000	0.0000	1603.1851	2439.4882	3266.2072 18703.0794	(98a)
Solar heating kWh 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(98b)
Solar heating contributi Space heating kWh	on - total :	per year (k	Wh/year)								0.0000	
			1788.6934		0.0000	0.0000	0.0000	0.0000	1603.1851	2439.4882	3266.2072 18703.0794	(98c)
Space heating per m2	t arter sor	ar contribu	icion - coca	i per year	(KWII/ YEar)				(98c) / (4) =	90.0745	(99)
9a. Energy requirements	- Individua	l heating s	ystems, inc	luding micr	ro-CHP							
Fraction of space heat f			ntary syste	m (Table 11	.)						0.1000	
Fraction of space heat f Efficiency of main space	heating sy	stem 1 (in									0.9000 79.0000	(206)
Efficiency of main space Efficiency of secondary/											0.0000	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating requiremen		2537 /3/7	1788.6934	_	0.0000	0.0000	0.0000	0.0000	1603.1851	2430 4882	3266.2072	(98)
Space heating efficiency	(main heat	ing system	1)									
79.0000 Space heating fuel (main			79.0000	79.0000	0.0000	0.0000	0.0000	0.0000	79.0000	79.0000	79.0000	
3689.6599 Space heating efficiency	3084.3295	2890.7484	2037.7520	1278.2430	0.0000	0.0000	0.0000	0.0000	1826.4135	2779.1638	3720.9955	(211)
Space nearing eliteration	(main heat	ing system	2)									
0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(212)
0.0000 Space heating fuel (main 0.0000	0.0000 heating sy 0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
0.0000 Space heating fuel (main 0.0000 Space heating fuel (seco	0.0000 heating sy 0.0000	0.0000 stem 2)	0.0000									(213)
0.0000 Space heating fuel (main 0.0000 Space heating fuel (seco	0.0000 heating sy 0.0000 ndary)	0.0000 stem 2) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(213)
O.0000 Space heating fuel (main 0.0000 Space heating fuel (seco 323.8702	0.0000 heating sy 0.0000 ndary) 270.7356	0.0000 stem 2) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(213)
Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating water heating requiremen 332.0665 Efficiency of water heat	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er	0.0000 vstem 2) 0.0000 253.7435	0.0000 0.0000 178.8693 271.2586	0.0000 112.2013 261.4914	0.0000 0.0000 233.9851	0.0000 0.0000 229.4653	0.0000 0.0000 239.3156	0.0000 0.0000 242.8120	0.0000 160.3185 272.7734	0.0000 243.9488 292.6005	0.0000 326.6207 328.0801 75.0000	(213) (215) (64) (216)
O.0000 Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating,	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month	0.0000 rstem 2) 0.0000 253.7435 311.1852 82.8083	0.0000 0.0000 178.8693 271.2586 82.5712	0.0000 112.2013 261.4914 81.9766	0.0000 0.0000 233.9851 75.0000	0.0000 0.0000 229.4653 75.0000	0.0000 0.0000 239.3156 75.0000	0.0000 0.0000 242.8120 75.0000	0.0000 160.3185 272.7734 82.4274	0.0000 243.9488 292.6005 82.8311	0.0000 326.6207 328.0801 75.0000 83.0000	(213) (215) (64) (216) (217)
O.0000 Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement	0.0000 stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150	0.0000 112.2013 261.4914 81.9766 318.9829	0.0000 0.0000 233.9851 75.0000 311.9802	0.0000 0.0000 229.4653 75.0000 305.9537	0.0000 0.0000 239.3156 75.0000 319.0875	0.0000 0.0000 242.8120 75.0000 323.7494	0.0000 160.3185 272.7734 82.4274 330.9258	0.0000 243.9488 292.6005 82.8311 353.2496	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773	(213) (215) (64) (216) (217) (219)
O.0000 Space heating fuel (main 0.000) Space heating fuel (seco 323.8702) Water heating water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452	0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699	0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822	0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699	0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822	0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822	0.0000 0.0000 242.8120 75.0000 323.7494 0.0000 3.3699	0.0000 160.3185 272.7734 82.4274 330.9258 0.0000 3.4822	0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822	(213) (215) (64) (216) (217) (219) (221) (231)
O.0000 Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181	0.0000 stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834	0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661	0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699	0.0000 0.0000 229.4653 75.0000 305.9537 0.0000	0.0000 0.0000 239.3156 75.0000 319.0875 0.0000	0.0000 0.0000 242.8120 75.0000 323.7494 0.0000	0.0000 160.3185 272.7734 82.4274 330.9258 0.0000	0.0000 243.9488 292.6005 82.8311 353.2496 0.0000	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822	(213) (215) (64) (216) (217) (219) (221) (231)
O.0000 Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating Water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requiremen (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 PVs (Appen -59.2631	0.0000 (stem 2) (0.0000 (253.7435 (2	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 44.6834 12.7.8143	0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 iity) -118.2695	0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 0.3699 15.5772 -101.9542	0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928	0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078	0.0000 0.0000 242.8120 75.0000 323.7494 0.0000 3.3699	0.0000 160.3185 272.7734 82.4274 330.9258 0.0000 3.4822	0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385	(213) (215) (64) (216) (217) (219) (221) (231) (232)
O.0000 Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating water heating requiremen 322.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 PVs (Appen -59.2631 wind turbi 0.0000 0.0000	0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neq -90.9786 nes (Append 0.0000	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 slix M) (nega 0.0000	0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000	0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty)	0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000	0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078	0.0000 0.0000 242.8120 75.0000 323.7494 0.0000 3.3699 29.3653	0.0000 160.3185 272.7734 82.4274 330.9258 0.0000 3.4822 38.5288	0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739	(213) (215) (64) (216) (217) (219) (221) (231) (232) (233a)
O.0000 Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity generated by (234a)m 0.0000 Electricity generated by (235a)m 0.0000	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 PVs (Appen -59.2631 wind turbi 0.0000 hydro-elec 0.0000	0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (nec -90.9786 nes (Appendontic genera	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 jix M) (nega 0.0000 ttors (Appen 0.0000	0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 city) -118.2695 tive quanti 0.0000 dix M) (neg 0.0000	0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 .ty) 0.0000 pative quant	0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity)	0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000	0.0000 0.0000 242.8120 75.0000 323.7494 0.0000 3.3699 29.3653 -80.0985	0.0000 160.3185 272.7734 82.4274 330.9258 0.0000 3.4822 38.5288 -68.9228	0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739	(213) (215) (64) (216) (217) (219) (221) (231) (232) (233a) (234a)
O.0000 Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requiremen (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (235a)m 0.0000 Electricity used or net (235c)m 0.0000	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 PVs (Appen -59.2631 wind turbi 0.0000 heating the control of the control o	311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 tric generated 0.0000 generated 0.0000	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 pative quant 107.8143 ix M) (nega 0.0000 itors (Appen 0.0000 by micro-CH	0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 dix M) (neg 0.0000 IP (Appendix 0.0000	0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 tty) 0.0000 (ative quant 0.0000 (s.N) (negati	0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity)	0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000	0.0000 0.0000 242.8120 75.0000 323.7494 0.0000 3.3699 29.3653 -80.0985 0.0000	0.0000 160.3185 272.7734 82.4274 330.9258 0.0000 3.4822 38.5288 -68.9228 0.0000	0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000	(213) (215) (64) (216) (217) (219) (221) (231) (232) (233a) (234a) (235a)
O.0000 Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating water heating requiremen 322.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity generated by (235a)m 0.0000 Electricity used or net	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 PVs (Appen -59.2631 wind turbi 0.0000 heating the control of the control o	311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 tric generated 0.0000 generated 0.0000	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 pative quant 107.8143 ix M) (nega 0.0000 itors (Appen 0.0000 by micro-CH	0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 dix M) (neg 0.0000 IP (Appendix 0.0000	0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 (ative quant 0.0000 (stive quant	0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 ve if net g	0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration)	0.0000 0.0000 242.8120 75.0000 323.7494 0.0000 3.3699 29.3653 -80.0985 0.0000	0.0000 160.3185 272.7734 82.4274 330.9258 0.0000 3.4822 38.5288 -68.9228 0.0000 0.0000	0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000	(213) (215) (64) (216) (217) (219) (221) (231) (232) (233a) (234a) (235a) (235c)
O.0000 Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requiremen (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity used or net (235c)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (233b)m 0.0000	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 PVs (Appen 0.0000 hydro-elec 0.0000 electricity 0.0000 PVs (Appen 0.0000 wind turbi	311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neq 0.0000 tric generated 0.0000 tric generated 0.0000 dix M) (neq 0.0000 generated 0.0000 dix M) (neq 0.0000 nes (Append	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 pative quant 0.0000 by micro-CH 0.0000 pative quant 0.0000 lix M) (negan	0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 dix M) (nec 0.0000 P) (Appendix 0.0000 ity) 0.0000 tive quantive quantive quantive	0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.36599 15.5772 -101.9542 tty) 0.0000 (ative quant 0.0000 (it) (negati 0.0000 0.0000	0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 ve if net g 0.0000 0.0000	0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000	0.0000 0.0000 242.8120 75.0000 323.7494 0.0000 3.3699 29.3653 -80.0985 0.0000 0.0000 0.0000	0.0000 160.3185 272.7734 82.4274 330.9258 0.0000 3.4822 38.5288 -68.9228 0.0000 0.0000 0.0000	0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000	(213) (215) (64) (216) (217) (219) (221) (231) (232) (233a) (234a) (235a) (235c) (233b)
O.0000 Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requiremen (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (235a)m 0.0000 Electricity generated by (235a)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (234b)m 0.0000 Electricity generated by (234b)m 0.0000	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 PVs (Appen 0.0000 hydro-elec 0.0000 electricity 0.0000 PVs (Appen 0.0000 wind turbi 0.0000 wind turbi 0.0000 hydro-elec 0.00000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-e	0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 -90.9786 nes (Append 0.0000 tric generated 0.0000 dix M) (neg 0.0000 dix M) (neg 0.0000 dix M) (neg 0.0000 dix M) (neg 0.0000 tric generated 0.0000	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 value quant 1-107.8143 iix M) (nega 0.0000 by micro-CR 0.0000 by micro-CR 0.0000 itors (Appen 0.0000	0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 P (Appendix M) (neg 0.0000 ity) 0.0000 ity) 0.0000 tive quanti	0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 tty) 0.0000 active quant 0.0000 tN) (negati 0.0000 ty) 0.0000 (ty) 0.0000 (active quant	0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 242.8120 75.0000 323.7494 0.0000 3.3699 29.3653 -80.0985 0.0000 0.0000 0.0000	0.0000 160.3185 272.7734 82.4274 330.9258 0.0000 3.4822 38.5288 -68.9228 0.0000 0.0000 0.0000	0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000	(213) (215) (64) (216) (217) (219) (221) (232) (233a) (234a) (235a) (235c) (233b) (234b)
Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco 323.8702) Water heating requiremen 322.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity user down 10.0000 Electricity user down 10.0000 Electricity user down 10.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (235b)m 0.0000	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 PVs (Appen -59.2631 wind turbi 0.0000 hydro-elec 0.0000 PVs (Appen 0.0000 PVs (Appen 0.0000 pVs (Appen 0.0000 pVs (Appen 0.0000 hydro-elec 0.0000 nund turbi 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec	0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 tric genera 0.0000 dix M) (neg 0.0000	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 iix M) (nega 0.0000 tors (Appen 0.0000 jotive quant 0.0000	0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 dix M) (nec 0.0000 ity) 0.0000 tive quanti 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 P) (Appendix 0.0000 P) (Appendix 0.0000 P) (Appendix 0.0000 P) (Appendix M) (nec	0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000)	0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g 0.0000 ve if net g	0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 0.0000 eneration)	0.0000 0.0000 242.8120 75.0000 323.7494 0.0000 3.3699 29.3653 -80.0985 0.0000 0.0000 0.0000 0.0000	0.0000 160.3185 272.7734 82.4274 330.9258 0.0000 3.4822 38.5288 -68.9228 0.0000 0.0000 0.0000 0.0000	0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000	(213) (215) (64) (216) (217) (219) (221) (232) (232) (233a) (235a) (235a) (235c) (233b) (234b) (235b)
Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco 323.8702) Water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (234b)m 0.0000 Electricity generated by (234b)m 0.0000 Electricity generated by (234b)m 0.0000 Electricity generated by (235b)m 0.0000	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 vind turbi 0.0000 hydro-elec 0.0000 plydro-elec 0.0000 wind turbi 0.0000 hydro-elec 0.0000	0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 dtric genera 0.0000 dix M) (neg 0.0000	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 iix M) (nega 0.0000 tors (Appen 0.0000 jotive quant 0.0000	0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 dix M) (nec 0.0000 ity) 0.0000 tive quanti 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000	0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000)	0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 ve if net g 0.0000 0.0000 0.0000 ity) 0.0000	0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000	0.0000 0.0000 242.8120 75.0000 323.7494 0.0000 3.3699 29.3653 -80.0985 0.0000 0.0000 0.0000	0.0000 160.3185 272.7734 82.4274 330.9258 0.0000 3.4822 38.5288 -68.9228 0.0000 0.0000 0.0000	0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000	(213) (215) (64) (216) (217) (219) (221) (232) (232) (233a) (235a) (235a) (235c) (233b) (234b) (235b)
Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco 323.8702) Water heating requiremen 320.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (235a)m 0.0000 Electricity generated by (235a)m 0.0000 Electricity used or net (235c)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (235b)m 0.0000 Annual totals kWh/year Space heating fuel - mai	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 PVs (Appen -59.2631 wind turbi 0.0000 hydro-elec 0.0000 PVs (Appen 0.0000 PVs (Appen 0.0000 pVs (Appen 0.0000 electricity 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 electricity 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000	0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 dtric genera 0.0000 dix M) (neg 0.0000	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 iix M) (nega 0.0000 tors (Appen 0.0000 jotive quant 0.0000	0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 dix M) (nec 0.0000 ity) 0.0000 tive quanti 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000	0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000)	0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g	0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 0.0000 eneration)	0.0000 0.0000 242.8120 75.0000 323.7494 0.0000 3.3699 29.3653 -80.0985 0.0000 0.0000 0.0000 0.0000	0.0000 160.3185 272.7734 82.4274 330.9258 0.0000 3.4822 38.5288 -68.9228 0.0000 0.0000 0.0000 0.0000	0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(213) (215) (64) (216) (217) (219) (221) (232) (233a) (234a) (235a) (235c) (233b) (235b) (235b) (235d) (211)
Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco 323.8702) Water heating requiremen 322.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (235a)m 0.0000 Electricity generated by (235a)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (235d)m 0.0000 Electricity used or net (235d)m 0.0000 Annual totals kMn/year Space heating fuel mai Space heating fuel mai Space heating fuel missipace heating fuel mai Space heating fuel missipace fuel m	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 vind turbi 0.0000 hydro-elec 0.0000 PVs (Appen 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 nydro-elec 0.0000 nydro-el	0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 dtric genera 0.0000 dix M) (neg 0.0000	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 iix M) (nega 0.0000 tors (Appen 0.0000 jotive quant 0.0000	0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 dix M) (nec 0.0000 ity) 0.0000 tive quanti 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000	0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000)	0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g	0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 0.0000 eneration)	0.0000 0.0000 242.8120 75.0000 323.7494 0.0000 3.3699 29.3653 -80.0985 0.0000 0.0000 0.0000 0.0000	0.0000 160.3185 272.7734 82.4274 330.9258 0.0000 3.4822 38.5288 -68.9228 0.0000 0.0000 0.0000 0.0000	0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(213) (215) (64) (216) (217) (219) (221) (231) (232) (233a) (234a) (235a) (235c) (233b) (234b) (235b) (235d) (211) (213)
Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco 323.8702) Water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (234b)m 0.0000 Electricity generated by (235d)m 0.0000 Electricity generated by (235d)m 0.0000 Electricity generated by (235d)m 0.0000 Almual totals kWh/year Space heating fuel - mai Space heating fuel - mai Space heating fuel - sec Efficiency of water heat	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 vind turbi 0.0000 hydro-elec 0.0000 PVs (Appen 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 nydro-elec 0.0000 nydro-el	0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 dtric genera 0.0000 dix M) (neg 0.0000	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 iix M) (nega 0.0000 tors (Appen 0.0000 jotive quant 0.0000	0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 dix M) (nec 0.0000 ity) 0.0000 tive quanti 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000	0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000)	0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g	0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 0.0000 eneration)	0.0000 0.0000 242.8120 75.0000 323.7494 0.0000 3.3699 29.3653 -80.0985 0.0000 0.0000 0.0000 0.0000	0.0000 160.3185 272.7734 82.4274 330.9258 0.0000 3.4822 38.5288 -68.9228 0.0000 0.0000 0.0000 0.0000	0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000	(213) (215) (64) (216) (217) (219) (221) (231) (232) (233a) (235a) (235a) (235b) (235b) (235b) (235d) (211) (213) (215) (219)
Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requiremen 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (235a)m 0.0000 Electricity generated by (235a)m 0.0000 Electricity generated by (235a)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (235d)m 0.0000 Annual totals kWh/year Space heating fuel - mai Space heating fuel - mai Space heating fuel - mai Space heating fuel - sec Efficiency of water heat	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 vind turbi 0.0000 hydro-elec 0.0000 PVs (Appen 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 nydro-elec 0.0000 nydro-el	0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 dtric genera 0.0000 dix M) (neg 0.0000	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 iix M) (nega 0.0000 tors (Appen 0.0000 jotive quant 0.0000	0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 dix M) (nec 0.0000 ity) 0.0000 tive quanti 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000	0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000)	0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g	0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 0.0000 eneration)	0.0000 0.0000 242.8120 75.0000 323.7494 0.0000 3.3699 29.3653 -80.0985 0.0000 0.0000 0.0000 0.0000	0.0000 160.3185 272.7734 82.4274 330.9258 0.0000 3.4822 38.5288 -68.9228 0.0000 0.0000 0.0000 0.0000	0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(213) (215) (64) (216) (217) (219) (221) (231) (232) (233a) (235a) (235a) (235b) (235b) (235b) (235d) (211) (213) (215) (219)
Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco 323.8702) Water heating requiremen 322.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (235b)m 0.0000 Annual totals kWh/year Space heating fuel - mai Space heating fuel - mai Space heating fuel - sec Efficiency of water heat water heating fuel used Space cooling fuel	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 vind turbi 0.0000 hydro-elec 0.0000 PVS (Appen 0.0000 PVS (Appen 0.0000 hydro-elect 0.0000 hydro-elect 0.0000 hydro-elect 0.0000 hydro-elect 0.0000 n system 1 n system 2 ondary er	0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 dtric genera 0.0000 dix M) (neg 0.0000	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 iix M) (nega 0.0000 tors (Appen 0.0000 jotive quant 0.0000	0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 dix M) (nec 0.0000 ity) 0.0000 tive quanti 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000	0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000)	0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g	0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 eneration)	0.0000 0.0000 242.8120 75.0000 323.7494 0.0000 3.3699 29.3653 -80.0985 0.0000 0.0000 0.0000 0.0000	0.0000 160.3185 272.7734 82.4274 330.9258 0.0000 3.4822 38.5288 -68.9228 0.0000 0.0000 0.0000 0.0000	0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 0.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 21307.3056 0.0000 1870.3079 75.0000 4117.7106 0.0000	(213) (215) (64) (216) (217) (219) (221) (231) (232) (233a) (234a) (235a) (235a) (235b) (235b) (235b) (235d) (211) (213) (215) (219) (211)
Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco 323.8702) Water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (234b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (235b)m 0.0000 Alectricity generated by (235b)m 0.0000 Alectricity generated by (235b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (25b)m 0.0000 Electricity generated by (25b)m 0.0000 Electricity generated by 0.0000 Annual totals kWh/year Space heating fuel - mai Space heating fuel - mai Space heating fuel - sec Efficiency of water heat Water heating fuel used Space cooling fuel Electricity for pumps an central heating pump Total electricity for pumps an central heating pump	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 PVS (Appen -59.2631 wind turbi 0.0000 hydro-elec 0.0000 ploctricity 0.0000 wind turbi 0.0000 hydro-electricity 0.0000 nydro-electricity 0.0000 nydro-electricity 0.0000 nydro-electricity 0.0000 nydro-electricity 0.0000 nydro-electricity 0.0000 nydro-electricity 0.0000 electricity 0.0000 nydro-electricity 0.0000 electricity 0.0000	0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 tric generated 0.0000 dix M) (neg 0.0000 tric generated 0.0000 constric generated 0.0000 constric generated 0.0000 dix M) (neg 0.0000	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 pative quant -107.8143 six M) (nega 0.0000 tors (Appen 0.0000 pt micro-CH 0.0000 ix M) (nega 0.0000 ix M) (nega 0.0000 by micro-CH 0.0000 by micro-CH 0.0000	0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 dix M) (nec 0.0000 ity) 0.0000 tive quanti 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000	0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000)	0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g	0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 eneration)	0.0000 0.0000 242.8120 75.0000 323.7494 0.0000 3.3699 29.3653 -80.0985 0.0000 0.0000 0.0000 0.0000	0.0000 160.3185 272.7734 82.4274 330.9258 0.0000 3.4822 38.5288 -68.9228 0.0000 0.0000 0.0000 0.0000	0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 21307.3056 0.0000 1870.3079 75.0000 411.7106 0.0000	(213) (215) (64) (216) (217) (219) (221) (231) (232) (233a) (235a) (235a) (235b) (235b) (235b) (235d) (211) (213) (215) (219) (221)
Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco 323.8702) Water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity generated by (235a)m 0.0000 Electricity used or net (235c)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (25b)m 0.0000 Electricity for net (255d)m 0.0000 Electricity for net (255d)m 0.0000 Electricity for pumps an central heating pump Total electricity for the Electricity for lighting	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 vind turbi 0.0000 hydro-elec 0.0000 PVs (Appen 0.0000 PVs (Appen 0.0000 hydro-electicity 0.0000 hydro-electicity 0.0000 rement 0.0000 hydro-electicity 0.0000 rement 0.0000 hydro-electicity 0.0000 hydro-electicity 0.0000 rement 0.0000 hydro-electicity 0.0000 electricity 0.0000 rement 0.0000 hydro-electicity 0.0000	0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 dix M) (neg 0.00000 dix M) (neg 0.0000 dix M) (neg 0.00000 dix M) (neg 0.00000 dix M) (neg 0.00000 dix M) (neg 0.000000000 dix M) (neg 0.00	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 jix M) (nega 0.0000 by micro-CR 0.0000 jative quant 0.0000	0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 (P (Appendix M) (neg 0.0000 ity) 0.0000 (ity) 0.0000 (ity) 0.0000 (ity) (ity) 0.0000	0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000)	0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g	0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 eneration)	0.0000 0.0000 242.8120 75.0000 323.7494 0.0000 3.3699 29.3653 -80.0985 0.0000 0.0000 0.0000 0.0000	0.0000 160.3185 272.7734 82.4274 330.9258 0.0000 3.4822 38.5288 -68.9228 0.0000 0.0000 0.0000 0.0000	0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 21307.3056 0.0000 1870.3079 75.0000 411.7106 0.0000	(213) (215) (64) (216) (217) (219) (221) (231) (232) (233a) (235a) (235a) (235b) (235b) (235b) (235d) (211) (213) (215) (219) (221)
Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco 323.8702) Water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (234b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (235b)m 0.0000 Alectricity generated by (235b)m 0.0000 Alectricity generated by (235b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (25b)m 0.0000 Electricity generated by (25b)m 0.0000 Electricity generated by 0.0000 Annual totals kWh/year Space heating fuel - mai Space heating fuel - mai Space heating fuel - sec Efficiency of water heat Water heating fuel used Space cooling fuel Electricity for pumps an central heating pump Total electricity for pumps an central heating pump	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 vind turbi 0.0000 hydro-elec 0.0000 PVs (Appen 0.0000 PVs (Appen 0.0000 hydro-electicity 0.0000 hydro-electicity 0.0000 rement 0.0000 hydro-electicity 0.0000 rement 0.0000 hydro-electicity 0.0000 hydro-electicity 0.0000 rement 0.0000 hydro-electicity 0.0000 electricity 0.0000 rement 0.0000 hydro-electicity 0.0000	0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 dix M) (neg 0.00000 dix M) (neg 0.0000 dix M) (neg 0.00000 dix M) (neg 0.00000 dix M) (neg 0.00000 dix M) (neg 0.000000000 dix M) (neg 0.00	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 jix M) (nega 0.0000 by micro-CR 0.0000 jative quant 0.0000	0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 (P (Appendix M) (neg 0.0000 ity) 0.0000 (ity) 0.0000 (ity) 0.0000 (ity) (ity) 0.0000	0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000)	0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g	0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 eneration)	0.0000 0.0000 242.8120 75.0000 323.7494 0.0000 3.3699 29.3653 -80.0985 0.0000 0.0000 0.0000 0.0000	0.0000 160.3185 272.7734 82.4274 330.9258 0.0000 3.4822 38.5288 -68.9228 0.0000 0.0000 0.0000 0.0000	0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 21307.3056 0.0000 1870.3079 75.0000 411.7106 0.0000	(213) (215) (64) (216) (217) (219) (221) (231) (232) (233a) (234a) (235a) (235b) (235b) (235b) (235b) (215) (211) (213) (215) (219) (221)
Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco 323.8702) Water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (25b)m 0.0000 Electricity generated by (25b)m 0.0000 Electricity used or net (255d)m 0.0000 Annual totals kWh/year Space heating fuel - mai Space cooling fuel Electricity for pumps an central heating pump Total electricity for the Electricity for lighting Energy saving/generation Wind generation Wind generation	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 vind turbi 0.0000 hydro-elec 0.0000 electricity 0.0000 hydro-elec 0.0000 ind turbi 0.0000 hydro-elec 0.0000 nydro-elec 0.0000 nydro-elec 0.0000 nydro-elec 0.0000 nydro-elec 0.0000 hydro-elec 0.0000	0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 dix Id (neg) 0.0000 dix M) (neg) 0.0000	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 jix M) (nega 0.0000 by micro-CR 0.0000 jative quant 0.0000	0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 (P (Appendix M) (neg 0.0000 ity) 0.0000 (ity) 0.0000 (ity) 0.0000 (ity) (ity) 0.0000	0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000)	0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g	0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 eneration)	0.0000 0.0000 242.8120 75.0000 323.7494 0.0000 3.3699 29.3653 -80.0985 0.0000 0.0000 0.0000 0.0000	0.0000 160.3185 272.7734 82.4274 330.9258 0.0000 3.4822 38.5288 -68.9228 0.0000 0.0000 0.0000 0.0000	0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 21307.3056 0.0000 1870.3079 75.0000 411.7106 0.0000 41.0000 376.4293	(213) (215) (64) (216) (217) (219) (221) (231) (232) (233a) (234a) (235a) (235a) (235b) (235b) (235b) (235b) (235b) (235b) (211) (213) (215) (211) (211) (212) (212) (212) (213) (21
Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco 323.8702) Water heating requiremen 322.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (235a)m 0.0000 Electricity generated by (235a)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity used or net (235d)m 0.0000 Annual totals kMh/year Space heating fuel - mai Space heating fuel - mai Space heating fuel - mai Space heating fuel - sec Efficiency of water heat Water heating fuel used Space cooling fuel Electricity for pumps an central heating pump Total electricity for lighting Energy saving/generation FV generation	0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 0.0000 hydro-elec 0.0000 PVs (Appen 0.0000 PVs (Appen 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 rement 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 electricity 0.0000 hydro-elec 0.0000 electricity 0.0000 hydro-elec	0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neq -90.9786 nes (Appendi 0.0000 tric genera 0.0000 generated 0.0000 dix M) (neg 0.0000 generated 0.0000 dix M) (neg 0.00000 dix M) (neg 0.00000 dix M) (neg 0.00000 dix M) (neg 0.000000 dix M) (neg 0.00000000000000000000000000000000000	0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 iix M) (nega 0.0000 by micro-CH 0.0000 by micro-CH 0.0000 jative quant 0.0000	0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 (P (Appendix M) (neg 0.0000 ity) 0.0000 (ity) 0.0000 (ity) 0.0000 (ity) (ity) 0.0000	0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000)	0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g	0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 eneration)	0.0000 0.0000 242.8120 75.0000 323.7494 0.0000 3.3699 29.3653 -80.0985 0.0000 0.0000 0.0000 0.0000	0.0000 160.3185 272.7734 82.4274 330.9258 0.0000 3.4822 38.5288 -68.9228 0.0000 0.0000 0.0000 0.0000	0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1307.3056 0.0000 1870.3079 75.0000 411.7106 0.0000 41.0000 376.4293	(213) (215) (64) (216) (217) (219) (221) (231) (232) (233a) (234a) (235a) (235b) (235b) (235b) (235b) (235d) (211) (213) (211) (212) (221) (230c) (231) (232) (233) (233) (233) (233) (233) (233) (233) (233) (233) (233) (233)

SAP 10 Online 2.14.29 Page 3 of 4

-0.0000 (236) 0.0000 (237) 26775.4224 (238) Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Energy kWh/year 21307.3056 Emission factor kg CO2/kWh 0.2100 Emissions Space heating - main system 1
Total CO2 associated with community systems
Space heating - secondary
Water heating (other fuel)
Space and water heating
Pumps, fans and electric keep-hot
Energy for lighting 0.0000 (373) 287.1989 (263) 1870.3079 0.1536 864.7192 (264) 5626.4523 (265) 4117.7106 0.2100 0.1387 0.1443 41.0000 376.4293 5.6872 (267) 54.3304 (268) Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported -937.3310 0.1343 -125.8511 0.0000 -125.8511 (269) 5560.6189 (272) 26.7800 (273) 0.0000 0.0000 Total CO2, kg/year EPC Dwelling Carbon Dioxide Emission Rate (DER) 13a. Primary energy - Individual heating systems including micro-CHP Energy Primary energy factor Primary energy mary energy kWh/year 24077.2553 (275) 0.0000 (473) 2933.5959 (277) 4653.0130 (278) 31663.6642 (279) 62.0248 (281) 577.3799 (282) kWh/year 21307.3056 kg CO2/kWh Space heating - main system 1 Total CO2 associated with community systems Space heating - secondary Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting 1870.3079 4117.7106 Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported -937.3310 -1402.4563 0.0000 0.0000 0.0000 -1402.4563 (283) Total Total Primary energy kWh/year Dwelling Primary energy Rate (DPER) 30900.8126 (286) 148.8200 (287)

SAP 10 Online 2.14.29 Page 4 of 4

Property Reference			20 Whiteladies	Rd				D T D		Issued on Da	ate	12/07/2024	
Assessment Refer	ence		Proposed PV	D 01:5 DI	DIOTOL DOG 31			Prop Type R	cer				
Property			20 Writelaules	Road, Ciliton, Bi	RISTOL, BS8 2L0	<u> </u>							
SAP Rating					70 C		DER	5.0	02	TER			
Environmental					95 A		% DER < TER					N/A	
CO ₂ Emissions (t/)					0.89		DFEE		.13	TFEE			
Compliance Check	k				See BREL		% DFEE < TFE			T055			
% DPER < TPER							DPER	51	.32	TPER	ξ		
Assessor Details		Mr. F	Richard Millard							Asses	ssor ID	U367-00	D1
SAP 10 WORKSHEET CALCULATION OF D						022)							
1. Overall dwell Ground floor First floor	ing charac	teristi	CS					Area (m2) 24.6800 91.4800	(lb) x (lc) x	2.2500	(2b) = (2c) =	205.8300	(1b) - (3l (1c) - (3c
Second floor Total floor area Dwelling volume 2. Ventilation r)+(1b)+	(1c) + (1d) + (1e	e)(ln)	20	7.6400		91.4800	(1d) x 3a)+(3b)+(3c)	3.7200 +(3d)+(3e)	(3n) =	618.4480 m3 per hour	
Number of open c Number of open f Number of chimme Number of flues Number of flues Number of blocke Number of interm Number of passiv Number of fluele	lues ys / flues attached to attached to d chimneys ittent ext e vents	o solid o other ract fa	fuel boiler heater	fire								0.0000 0.0000 0.0000 0.0000 0.0000 100.0000 0.0000	(6b) (6c) (6d) (6e) (6f) (7a) (7b)
Infiltration due Pressure test Pressure Test Me Measured/design Infiltration rat Number of sides	thod AP50 e	ys, flu	es and fans	= (6a)+(6b))+(6c)+(6d)+(6e)+(6f)+((6g) + (7a) + (7	7b)+(7c) =		100.0000	/ (5) =	es per hour 0.1617 Yes Blower Door 5.0000 0.4117	(8)
Shelter factor Infiltration rat										1) = (18) :	x (20) =	0.3499	(21)
Wind speed Wind factor Adj infilt rate													
Effective ac	0.4462 0.5995	0.437 0.595	4 0.4287 7 0.5919	0.3849 0.5741	0.3762 0.5708	0.3324 0.5553	0.3324 0.5553	0.3237 0.5524	0.3499 0.5612	0.3762 0.5708	0.3937 0.5775	0.4112 0.5845	(22b) (25)
3. Heat losses a	nd heat lo	ss para	meter									_	
Element Timber Sash Wind RF-01 RF-02	ows (Uw =)	1.40)		Gross m2	Openings m2	Net 16. 0.	Area m2 .9300 .8400 .8400	U-value W/m2K 1.3258 1.2357 1.2357	A x W/ 22.445 1.038 1.038	U K K 1 1 0	-value kJ/m2K	A x K kJ/K	(27) (27a) (27a)
Element Timber Sash Wind RF-01 RF-02 Ground Floor Exposed Floor Fr Retained Ground Retained Upper F New Cavity Wall Retained Flat Ro New Flat Roof Retained Sloping Retained Flane C Total net area o	ar ont Floor loors of Ceiling eiling f external	elemen	ts Aum(A, m2)	48.0600 194.9900 16.1500 39.3800 12.6000 27.2800 20.6500	4.7500 12.1800 1.6800	24. 30. 36. 43. 182. 16. 39. 12. 25. 20. 450.	6800 4400 3600 3100 8100 1500 3800 6000 6500 5900	0.9800 0.1600 0.2100 0.2200 0.2800 0.1800 0.1600 0.1600 0.1600	24.186 4.870 7.635 9.528 51.186 2.907 6.300 2.016 4.096 2.684	4 11: 46 2: 2 19: 8 19: 0 7: 8 0	0.0000 0.0000 0.0000 0.0000 9.0000 9.0000 9.0000 9.0000	2714.8000 727.2000 8228.9000 34733.9000 1130.5000 354.4200 113.4000 230.4000 185.8500	(28a) (28b) (28b) (29a) (29a) (29a) (30) (30) (30) (30) (31)
Fabric heat loss Party Wall 1 Internal Floor 1 Internal Floor 2	, W/K = Su	m (Axi	U)			117. 24.	(26)(3	30) + (32)	= 198.537 58.605	8 0 18 1	0.0000 8.0000	21097.8000 444.2400 1646.6400	(33) (32) (32d)

SAP 10 Online 2.14.29 Page 1 of 4

Internal Ceilin							.6800 .4800				9.0000 9.0000	222.1200 823.3200	
Heat capacity (Thermal mass portion of the property of the pr	arameter (s (Default oridges	TMP = Cm / 1			1)			(28).		2) + (32a) 33) + (36) +	(36a) =	72653.4900 349.9012 90.1180 0.0000 288.6558	(35) (36)
Ventilation hea						_							
(38)m	Jan 122.3580	Feb 121.5692	Mar 120.7960	Apr 117.1643	May 116.4848	Jun 113.3217	Jul 113.3217	Aug 112.7359	Sep 114.5401	Oct 116.4848	Nov 117.8594	Dec 119.2964	(38)
Heat transfer (Average = Sum(411.0138	410.2250	409.4518	405.8201	405.1406	401.9775	401.9775	401.3918	403.1959	405.1406	406.5152	407.9522 405.8168	(39)
HLP	Jan 1.9795	Feb 1.9757	Mar 1.9719	Apr 1.9544	May 1.9512	Jun 1.9359	Jul 1.9359	Aug 1.9331	Sep 1.9418	Oct 1.9512	Nov 1.9578	Dec 1.9647	(40)
HLP (average) Days in mont	31	28	31	30	31	30	31	31	30	31	30	1.9544	
4. Water heating			s (kWh/year)	1									
Assumed occupan	псу											3.0119	(42)
Hot water usage	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(42a)
Hot water usage	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(42b)
Average daily I	45.4744	43.8208	42.1672 /day)	40.5136	38.8600	37.2064	37.2064	38.8600	40.5136	42.1672	43.8208	45.4744 41.3404	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Daily hot water	45.4744	43.8208	42.1672	40.5136	38.8600	37.2064	37.2064	38.8600	40.5136	42.1672	43.8208	45.4744	
Energy conte Energy content Distribution 10		62.4003	64.8094	55.4611	52.3130	45.7496	44.9979	48.1168	49.9573	57.2205 Total = Si	62.4308 am(45)m =	71.2020 686.6790	(45)
Water storage :	0.0000 loss:	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(46)
Total storage :	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(56)
Primary loss	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Combi loss Total heat req	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
WWHRS	61.2173 0.0000	53.0402 0.0000	55.0880 0.0000	47.1419 0.0000	44.4660 0.0000	38.8871 0.0000	38.2482 0.0000	40.8993 0.0000	42.4637 0.0000	48.6374 0.0000	53.0662 0.0000	60.5217 0.0000	
PV diverter Solar input	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	(63c)
FGHRS Output from w/l	0.0000 h 61.2173	0.0000 53.0402	0.0000 55.0880	0.0000	0.0000	0.0000 38.8871	0.0000	0.0000 40.8993	0.0000	0.0000	0.0000	0.0000	
12Total per yea	ar (kWh/ye		55.0000	47.1419	44.4660	30.00/1	38.2482		42.4637 er year (kW	48.6374 h/year) = Si	53.0662 um(64)m =	60.5217 583.6771 584	
Electric shower	76.8916	68.5110	74.8114	71.3916 Tot	72.7313 al Energy us	69.3786	71.6912	72.7313	71.3916 wer(s) (WWh	74.8114 /wear) = Sur	73.4047		
Heat gains from	n water he 34.5272	ating, kWh/r 30.3878	month 32.4749	29.6334	29.2993	27.0664	27.4848	28.4076	28.4638	30.8622	31.6177	34.3533	
5. Internal gas	ins (see T	able 5 and 5	5a) 										
Metabolic gains	Jan	Feb	Mar	Apr		Jun	Jul		Sep	Oct	Nov	Dec	
(66)m Lighting gains	(calculate	ed in Append	dix L, equat	ion L9 or	150.5929 L9a), also s	see Table 5							
Appliances gain	ns (calcula	ated in Appe	endix L. em	ation L13	224.4785 or L13a), al 324.6465	lso see Tabi	le 5						
Cooking gains	(calculate	d in Append:	ix L, equati	ion L15 or	Ll5a), also	see Table	5						
Pumps, fans Losses e.g. eva	0.0000 aporation	0.0000 (negative va	0.0000 alues) (Tabl	0.0000 Le 5)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(70)
Water heating	gains (Tab	le 5)			-120.4743								
Total internal	gains				39.3808								
	717.3136	744.1023	708.5891	692.5234	656.6838	637.3960	612.5738	609.8890	628.6135	644.1360	680.6310	700.3905	(73)
6. Solar gains													
[Jan]									FF	Acces	35	Gains	
					Solar flux Table 6a W/m2								
Northeast Southwest Northwest			6.16 7.64 3.13	500 100 300	11.2829 36.7938 11.2829 40.0991		0.6300 0.6300 0.6300	0 0 0	.7000 .7000 .7000	0.770 0.770 0.770	00 00 00	21.2410 85.9093 10.7929	(75) (79) (81)
Southeast			1.68	300	40.0991		0.6300	ō	.7000	1.000	00	26.7378	(82)
Solar gains Total gains	144.6810 861.9946	260.5955 1004.6978	392.3466 1100.9357	543.1875 1235.7109	658.3638 1315.0476	675.0061 1312.4022	641.9127 1254.4865	553.0892 1162.9782	444.3244 1072.9379	297.8366 941.9726	175.9149 856.5459	122.0975 822.4880	(83) (84)
7 Moon interes													

SAP 10 Online 2.14.29 Page 2 of 4

7. Mean internal temperature (heating season)

Temperature du Utilisation fa						Th1 (C)						21.0000	(85)
tau alpha	Jan 49.1018 4.2735	Feb 49.1962 4.2797	Mar 49.2891 4.2859	Apr 49.7302 4.3153	May 49.8136 4.3209	Jun 50.2056 4.3470	Jul 50.2056 4.3470	Aug 50.2789 4.3519	Sep 50.0539 4.3369	Oct 49.8136 4.3209	Nov 49.6452 4.3097	Dec 49.4703 4.2980	
util living ar	0.9999	0.9997	0.9994	0.9981	0.9931	0.9730	0.9223	0.9459	0.9901	0.9988	0.9998	0.9999	(86)
Living Non living 24 / 16 24 / 9	18.8877 16.9434 0 31	19.0282 17.1253 0 28	19.2962 17.4707 0 31	19.7019 17.9981 0 30	20.1306 18.5461 0 31	20.5415 19.0590 0 30	20.7836 19.3040 0 31	20.7358 19.2707 0 31	20.3919 18.8820 0 30	19.8442 18.1825 0	19.3082 17.4923 0	18.8736 16.9316 0 31	
16 / 9 MIT Th 2	0 21.0000 19.3471	0 21.0000 19.3496	0 21.0000 19.3521	0 21.0000 19.3639	0 21.0000 19.3661	0 21.0000 19.3764	0 21.0000 19.3764	0 21.0000 19.3783	0 21.0000 19.3724	0 21.0000 19.3661	0 21.0000 19.3616	0 21.0000 19.3570	(87)
util rest of h	0.9998 19.3471	0.9996 19.3496	0.9990 19.3521	0.9966 19.3639	0.9858 19.3661	0.9304 19.3764	0.7626 19.3764	0.8242 19.3783	0.9738 19.3724	0.9976 19.3661	0.9996 19.3616	0.9999 19.3570	(90)
Living area fr MIT Temperature ad	19.5526 ljustment	19.5548	19.5570	19.5673	19.5693	19.5783	19.5783	19.5800	19.5748	Living are 19.5693	19.5654	0.1243 19.5613 0.0000	
adjusted MIT	19.5526	19.5548	19.5570	19.5673	19.5693	19.5783	19.5783	19.5800	19.5748	19.5693	19.5654	19.5613	(93)
8. Space heati	ng require	ment											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation Useful gains Ext temp. Heat loss rate	0.9998 861.8401 4.3000	0.9996 1004.3020 4.9000	0.9991	0.9968 1231.7580 8.9000	0.9871 1298.0624 11.7000	0.9386 1231.7736 14.6000	0.7935 995.4377 16.6000	0.8489 987.2706 16.4000	0.9770 1048.2761 14.1000	0.9978 939.9280 10.6000	0.9996 856.2108 7.1000	0.9999 822.3722 4.2000	(95)
Space heating		6011.7807	5346.2226	4329.0170	3188.1581	2001.1573	1197.2023	1276.4079	2207.4185	3633.8128	5067.3560	6266.6668	(97)
Space heating Solar heating	requiremen		3159.2381 er year (kW		1406.2312	0.0000	0.0000	0.0000	0.0000	2004.2503	3032.0246	4050.5551 23270.3025	(98a)
Solar heating Space heating	0.0000 contributi	0.0000 on - total	0.0000 per year (k	0.0000 Wh/year)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 0.0000	(98b)
	4022.9511 requiremen		3159.2381 ar contribu			0.0000 (kWh/year)	0.0000	0.0000	0.0000	2004.2503 (98c		4050.5551 23270.3025 112.0704	
9a. Energy req	uirements	- Individua	al heating s	ystems, inc	luding micr	ro-CHP							
Fraction of sp				 ntary syste	m (Table 11	L)						0.0000	
Fraction of sp Efficiency of Efficiency of Efficiency of	main space main space	heating sy heating sy	stem 1 (in stem 2 (in	%)								1.0000 386.6586 0.0000 100.0000	(206) (207)
Space heating	Jan requiremen	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	4022.9511	3365.0257	3159.2381		1406.2312	0.0000	0.0000	0.0000	0.0000	2004.2503	3032.0246	4050.5551	(98)
Space heating	386.6586	386.6586	386.6586		386.6586	0.0000	0.0000	0.0000	0.0000	386.6586	386.6586	386.6586	(210)
	1040.4400	870.2833	817.0613	576.7430 2)	363.6880	0.0000	0.0000	0.0000	0.0000	518.3514	784.1606	1047.5791	(211)
Space heating	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(212)
Space heating			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating Water heating				45 1410	44.4660	00 0071	22 2422	40.0000	40, 4600	40.5074	50.000	60 5015	(54)
Efficiency of (217)m			55.0880 100.0000	47.1419 100.0000	44.4660 100.0000	38.8871 100.0000	38.2482 100.0000	40.8993	42.4637 100.0000	48.6374 100.0000	53.0662 100.0000	60.5217 100.0000	(216)
Fuel for water			55.0880	47.1419	44.4660	38.8871	38.2482	40.8993	42.4637	48.6374	53.0662	100.0000	
Space cooling (221)m			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Pumps and Fa Lighting	0.0000 46.6422	0.0000 37.4181	0.0000	0.0000 24.6834	0.0000 19.0661	0.0000	0.0000 17.3928	0.0000 22.6078	0.0000 29.3653	0.0000 38.5288	0.0000 43.5182	0.0000 47.9385	(231)
Electricity ge (233a)m	nerated by	PVs (Appen		ative quant	ity)				-87.2307	-77.5428	-48.1823	-35.8214	
Electricity ge (234a)m	nerated by 0.0000			ix M) (nega 0.0000	tive quanti 0.0000		0.0000	0.0000	0.0000	0.0000	0.0000		(234a)
Electricity ge (235a)m	nerated by 0.0000		tric genera	tors (Appen 0.0000	dix M) (neg 0.0000	gative quant 0.0000	ity) 0.0000	0.0000	0.0000	0.0000	0.0000		(235a)
Electricity us (235c)m	ed or net 0.0000	electricity 0.0000		by micro-CH 0.0000	P (Appendix 0.0000		ve if net g 0.0000	eneration) 0.0000	0.0000	0.0000	0.0000		(235c)
Electricity ge (233b)m	nerated by 0.0000	PVs (Appen 0.0000			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(233b)
Electricity ge (234b)m	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(234b)
Electricity ge (235b)m	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235b)
Electricity us (235d)m	0.0000	electricity 0.0000		by micro-CH 0.0000			ve if net g 0.0000	eneration) 0.0000	0.0000	0.0000	0.0000	0.0000	(235d)
Annual totals Space heating Space heating Space heating Efficiency of Water heating	fuel - mai fuel - mai fuel - sec water heat fuel used	n system 2 ondary										6018.3067 0.0000 0.0000 100.0000 583.6771	(213) (215) (219)
Space cooling Electricity fo Total electric	r pumps an	e above, kW		iw T\								0.0000	(231)
Electricity fo Energy saving/					d Q)							376.4293	
PV generation												-1052.3411	(233)

SAP 10 Online 2.14.29 Page 3 of 4

Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses			0.0000 (234) 0.0000 (235a) 0.0000 (235) -0.0000 (236) 0.0000 (237) 6800.7094 (238)
12a. Carbon dioxide emissions - Individual heating systems including micro-CHP			
Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Energy for instantaneous electric shower(s) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total Total CO2, kg/year EPC Dwelling Carbon Dioxide Emission Rate (DER)	Energy kWh/year 6018.3067 583.6771 874.6373 0.0000 376.4293 -1052.3411 0.0000	kg CO2/kWh 0.1535 0.1416 0.1391 0.0000 0.1443	kg CO2/year 923.9879 (261) 0.0000 (373) 82.6702 (264) 121.6814 (264a) 1006.6581 (265) 0.0000 (267)
13a. Primary energy - Individual heating systems including micro-CHP			
Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Energy for instantaneous electric shower(s) Space and water heating Pumps, fans and electric keep-hot Energy for lighting	Energy	1.5238 1.5143 0.0000	MWh/year 9439.1587 (275) 0.0000 (473) 889.3809 (278) 1324.4932 (278a) 10328.5396 (279) 0.0000 (281)
Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total Primary energy kWh/year Dwelling Primary energy Rate (DPER)	-1052.3411 0.0000		-1574.7030 0.0000 -1574.7030 (283) 10655.7096 (286) 51.3200 (287)

SAP 10 Online 2.14.29 Page 4 of 4

BRIDGING THE PERFORMANCE GAP

Building Energy Experts is an award-winning sustainability consulting, testing, and retrofit company. We help housebuilders, homeowners, architects, and planners to design robust sustainability strategies, calculate energy profiles, and model the energy performance of new buildings.

buildingenergy experts.co.uk