0117 25 10101 info@buildingenergyexperts.co.uk buildingenergyexperts.co.uk | Prepared for: | Eastman Estates Ltd | |----------------|-----------------------------| | Project: | 20 Whiteladies Road | | Report date: | 11/07/2024 | | Produced by: | Building Energy Experts Ltd | | Report author: | Richard Millard | | Reviewed: | KG | ### Contents | 1. Executive Summary | 3 | |---|----| | Summary of total reduction in carbon emissions | 3 | | 2. Planning Policy Context | 4 | | National Policy Context | | | Regional & Local Policy Context | | | 3. Design Principles to Reduce Energy Consumption and Carbon I | | | | | | Be "Lean" – Use less energy | | | Be "Clean" – Supply energy efficiently | | | Be "Green" – Renewable energy | | | 4. Sustainable Design and Construction | | | | | | Energy Efficiency | | | Decentralised, Renewable, and Low-Carbon Energy Supply Systems | | | Avoiding Responses to Climate Impacts that Lead to Increases in Energy Use and CO ₂ Em | | | Encouraging Greener Transport Use | | | Waste and Recycling - During Construction | | | Waste and Recycling - In Operation | | | Building Materials - Type, Life Cycle, and Source | | | Pollution | 11 | | Summary | 11 | | 5. Water Management | 12 | | Water Conservation Measures | 12 | | Table 1 - Water Consumption | 12 | | Surface Water Management | 12 | | 6. Selecting Renewables | 13 | | Table 2 - Feasibility Matrix of Appropriate Renewables | 13 | | Table 3 - Feasibility Matrix of Appropriate Renewables | 14 | | Table 4 - The Heat Hierarchy | 15 | | Table 5 - Proposed Renewables | 15 | | Feasibility of Appropriate Renewables – Conclusion | 15 | | | | | 7. Baseline 'Threshold Values' & Proposed Fabric/Services Specification. | . 16 | |--|------| | Table 6 - Baseline Compliance & proposed building | 16 | | 8. Conclusion | 17 | | Table 7 – Summary Table Domestic | 17 | | Summary | 17 | | Appendix A – SAP Outputs | . 18 | ## 1. Executive Summary This Sustainability and Energy Statement demonstrates how the proposed redevelopment and conversion of an existing building into a house multiple occupation (HMO) at 20 Whiteladies Road, Bristol will comply with the following Bristol City Council (BCC) Policies: - BCS13 Climate Change - BCS14 Sustainable Energy (from the Development Framework Core Strategy) - BCS15 Sustainable Design and Construction - BCS16 Flood Risk and Water Management The statements contain the results of energy modelling, showing how the proposed development will meet BCC policy requirements to reduce carbon emissions by at least 20% for this development over the building regulation requirements. The energy strategy in this statement has been produced in line with the Energy Hierarchy: - Be "Lean" reduce energy demand. - Be "Clean" supply energy efficiently. - Be "Green" use renewable energy. SAP calculations have been completed in line with Part L (Volume 1, 2021) of the Building Regulations and the requirements of the BCC to demonstrate a 20% reduction in regulated carbon emissions using the above energy hierarchy. Firstly, SAP calculations to achieve compliance with Part L (Volume 1, 2021) were modelled using SAP10 with the threshold values to provide 'baseline' energy demand, primary energy rate and emissions. Then, additional measures were applied to provide 'residual' energy demand, primary energy rate and emissions. Finally, appropriate decentralised renewables were included in the calculations to provide the final energy demand and emissions figures for comparison. More detail is provided in the following sections. The baseline calculation uses a Gas Combi Boiler for heating and hot water in the baseline building, this is an appropriate selection for a baseline calculation as it represents a common heating method for domestic buildings in the area and is included in the notional building specification. To summarise the results, the total reduction in carbon emissions for the proposed development is as follows: ### Summary of total reduction in carbon emissions | | Before Renewables | After Renewables (PV) | |---|-------------------|-----------------------| | Baseline Target Emission Rate (TER) | 6,447.22 | | | Residual Building Emission Rate (DER) | 5,560.59 | 1,042.35 | | Total CO ₂ Saving on residual energy | 13.75% | 81.26% | ## 2. Planning Policy Context ### National Policy Context National Planning Policy Framework – Encourages the adoption of sustainable development through encouraging local authorities to adopt strategies, policies and targets that mitigate and adapt to climate change. It also recommends the move to low carbon technologies by planning new development in ways to reduce greenhouse gas emissions and adhere to standards established in the Government's zero carbon buildings policy. The government energy policy sets targets for the UK to cut carbon dioxide emissions and become net zero by 2050, as well as setting national targets for the generation of electricity from clean and renewable sources. ### Regional & Local Policy Context Local Policy requirements are set out in both Bristol City Council's Local Plan and Core Strategy. #### Policy BCS13 Development should contribute to both mitigating and adapting to climate change, and to meeting targets to reduce carbon dioxide emissions. Developments should mitigate climate change through measures including: - High standards of energy efficiency, including optimal levels of thermal insulation, passive ventilation and cooling, passive solar design, and the efficient use of natural resources in new buildings. - The use of decentralised, renewable, and low-carbon energy supply systems. - Patterns of development which encourage walking, cycling and the use of public transport instead of journeys by private car. Development should adapt to climate change through measures including: - Site layouts and approaches to design and construction that provide resilience to climate change. - Measures to conserve water supplies and minimise the risk and impact of flooding. - The use of green infrastructure to minimise and mitigate the heating of the urban environment. - Avoiding responses to climate impacts which lead to increases in energy use and carbon dioxide emissions. These measures should be integrated into the design of new development. The new development should demonstrate through this sustainability statement how it would contribute to mitigating and adapting to climate change, and to meeting targets to reduce carbon dioxide emissions by means of the above measures. #### Policy BCS14 Proposals for the utilisation, distribution, and development of renewable and low carbon sources of energy, including large-scale freestanding installations, will be encouraged. In assessing such proposals, the environmental and economic benefits of the proposed development will be afforded significant weight, alongside considerations of public health and safety and impacts on biodiversity, landscape character, the historic environment, and the residential amenity of the surrounding area. The development in Bristol should include measures to reduce carbon dioxide emissions arising from energy usage in accordance with the following energy hierarchy: - 1. Minimising energy requirements. - 2. Incorporating renewable energy sources. - 3. Incorporating low-carbon energy sources. Consistent with stage two of the above energy hierarchy, the development will be expected to use sufficient renewable energy sources to reduce carbon dioxide emissions arising from residual energy use by at least 20%. An exception will only be made in the case where a development is necessary, but where it is demonstrated that meeting the required standard would not be feasible. The use of combined heat and power (CHP), combined cooling, heat, and power (CCHP), and district heating will be encouraged. Within heat priority areas, major developments will be expected to incorporate, where feasible, infrastructure for district heating, and will be expected to connect to existing systems where available. The redevelopment will be expected to demonstrate that the heating and cooling systems have been selected according to the following heat hierarchy: - 1. Connection to existing CHP/CCHP distribution networks - 2. Site-wide renewable CHP/CCHP - 3. Site-wide gas-fired CHP/CCHP - 4. Site-wide renewable community heating/cooling - 5. Site-wide gas-fired community heating #### Policy BCS15 Sustainable design and construction will be integral to the new development in Bristol. In delivering sustainable design and construction, developments should address the following key issues: - · Maximising energy efficiency and integrating the use of renewable and low carbon energy - Waste and recycling during construction and in operation - · Conserving water resources and minimising vulnerability to flooding - · The type, life cycle and source of materials used during construction - Flexibility and adaptability, allowing future modification of use or layout to facilitate future refurbishment and retrofitting - Opportunities to incorporate measures which enhance the biodiversity value of the development, such as green roofs. The redevelopment will be required to demonstrate (as part of the sustainability statement submitted with the planning application) how the above issues have been addressed. For major developments and developments used in healthcare or education, the sustainability statement should include a BREEAM and/or Code for Sustainable Homes assessment. Additionally, in the case of a super-major development, a BREEAM for Communities assessment will be required. From 2016, residential development will be expected to meet Level 6 of the Code for Sustainable Homes. For non-residential development, also from 2016, a BREEAM
"Excellent" rating will be expected. All new development will be required to provide satisfactory arrangements for the storage of refuse and recyclable materials as an integral part of its design. Major developments should include communal facilities for waste collection and recycling where appropriate. New homes and workplaces should allow for high-speed broadband access and facilitate access to Next Generation broadband. Developments in Bristol follow a sequential approach to flood risk management, giving priority to the development of sites with the lowest risk of flooding. The development of sites with a greater risk of flooding will be considered where essential for regeneration, or where necessary to meet the development requirements of the city. Development in areas at risk of flooding will be expected to: - Be resilient to flooding through design and layout, and/or; - Incorporate sensitively designed mitigation measures, which may take the form of on-site flood defence works and a commitment to undertaking off-site measures (where they are necessary) to ensure that the development remains safe from flooding over its lifetime. All developments will also be expected to incorporate water management measures to reduce surface water run-off and ensure that it does not increase flood risks elsewhere. This should include the use of sustainable drainage systems (SUDS). ## 3. Design Principles to Reduce Energy Consumption and Carbon Emissions The energy strategy for the proposed development has been formulated in line with the energy hierarchy. It uses the following approaches to optimise energy usage, supply clean and renewable energy, and reduce embedded carbon emissions while meeting local requirements (Figure 1). Figure 1: The Energy Hierarchy ### Be "Lean" - Use less energy The proposed redevelopment has been designed with the use of efficient fabric specifications, integrating efficiency into both the new and existing thermal envelope of the dwelling. The proposed thermal elements meet or go beyond the minimum requirements set out in Approved Document L Volume 1 (2021) for retained (where possible) and new fabric elements. Target U-values have been specified to achieve or go beyond the U-values found in the national dwelling specification. When possible, the national dwelling values are much lower than the limiting factors (maximum allowed U-values) to create the target rates used in the SAP calculation. The fabric elements and fenestration have been specified using calculated U-values for the intended construction specification for the building. This includes: - Internally Insulated Ground Floor Retained External walls that achieve a U-value of at least 0.22 W/m²k. - Internally Insulated First Floor Retained External walls that achieve a U-value of at least 0.28 W/m²k. - New Cavity Walls that achieve a U-value of at least 0.18 W/m²k. - A Timber Exposed floor that achieves a U-value of at least 0.21 W/m²k. - A solid Exposed floor that achieves a U-value of at least 0.16 W/m²k. - A retained Flat Roof that achieves a U-value of at least 0.16 W/m²k. - A retained Sloping Ceiling that achieves a U-value of at least 0.16 W/m²k. - A new Flat Roof that achieves a U-value of at least 0.16 W/m²k. - A pitched roof with insulation at the flat ceiling plane that achieves a U-value of at least 0.13 W/m²k. Careful consideration will be given to the fenestration. Replacement timber sash windows with double glazing with low window U-values of 1.4W/m²k will be utilised to limit heat loss through openings. The glazing design also allows for passive heating into the buildings. However, to minimise the risk of overheating, the glazing will be openable where practical as well as feature a low e-coating. Good detailing will help to limit heat losses through the fabric of the proposed redevelopment. Where available, all non-repeating thermal bridges (e.g. between the external walls and the roofs) will be specified to enhanced construction details that represent the best practice for the proposed construction. The dwellings will be naturally ventilated, with intermittent extractor fans in the bathrooms, and a cooker hood in the kitchens. This will reduce the energy demand of active ventilation systems. The proposed building layout has been determined by several factors, such as ownership and site boundaries, relationship to adjacent buildings and site access, as well as internal walls arrangements. The internal room layouts within the resultant footprint have been designed with consideration of recommended zoning and room orientations. Although not a requirement for the building, voluntary air pressure will be conducted, and the dwellings will have designed air permeability of $5 \text{ m}^3/\text{hr/m}^2$. This is below the requirements of the building regulations $8 \text{ m}^3/\text{hr/m}^2$ and the below the default value of $15 \text{ m}^3/\text{hr/m}^2$. The design of the dwellings optimises the use of natural lighting, and it is proposed that only energy efficient lighting is installed at the properties. This means that all light fittings should have bulbs with a luminous efficacy of greater than 80 lamp lumens per circuit-watt. The proposed dwellings have been designed to allow for cross ventilation where possible, in order to minimise the need for additional mechanical methods of cooling. Windows have been sized and positioned to allow for good internal natural light and allow for solar gains during winter months. Windows will also have a large free opening area to help ensure that the risk of summer overheating is reduced. ### Be "Clean" - Supply energy efficiently The energy that is used in the redevelopment has been considered for its efficiency. Local policy supports the connection of proposed developments to heat networks. Local heat and power sources minimise distribution losses and achieve greater efficiency when compared to separate localised energy systems. This section shows the consideration given to the connection of the dwellings to any existing or planned district heating networks in the proximity of the site. There are no existing district heating systems near the development site. The redevelopment is not major (under 100 dwellings), this means the use of district heating networks, or a CHP system, would not be selected due to the unnecessary added complexity. This project is also aiming to use very efficient fabric in order to reduce the heating demand and use efficient services to reduce water demand. Therefore, the expected demand for heating and hot water would potentially not be significant enough for CHP systems. ### Be "Green" - Renewable energy Low carbon energy generation and renewable technologies have been assessed for the proposed redevelopment, with some considered appropriate. See Section 6 for further details regarding the feasibility of each assessed technologies. Based upon the feasibility matrix an air source heat pump (ASHP) will be used for the hot water and heating requirements and solar PV will be used to achieve the 20% reduction over Part L requirements. ## 4. Sustainable Design and Construction ### **Energy Efficiency** The proposed building fabric makes use of high-performance insulation materials. The U-values of the building fabric have been calculated and used in the assessment of the dwelling. The achieved U-values are lower than the limiting factors permitted by Part L and are substantially less or equal to the U-values used in the notional building. The proposed dwellings would have the potential to achieve an 83.83% total reduction in CO_2 over the baseline Building Regulation measures if low carbon technologies and energy efficiency improvements are used. ### Decentralised, Renewable, and Low-Carbon Energy Supply Systems The proposal for the dwellings makes use of two low carbon systems, including an electric air source heat pump for heating and water heating. Solar PV is also proposed to be added to the building to provide onsite renewable generation. This reduces the associated carbon emissions of the development, with solar used to offset the increase in electricity consumption on site. ## Avoiding Responses to Climate Impacts that Lead to Increases in Energy Use and CO₂ Emissions There are no proposals to include artificial cooling. The proposed dwellings have been designed to allow for cross ventilation where possible. Windows have been sized and positioned to allow for good internal natural light and allow for solar gains during winter months. The buildings will also include appropriate internal shading, such as blinds and curtains, will be used to mitigate overheating from the sun. The design of the dwellings also includes some external features to provide shading. ### **Encouraging Greener Transport Use** The proposal will include provision for secure cycle storage. The nearest bus stops are located on Whiteladies Road (1-minute walk from the property) with buses towards the City Centre, Temple Meads, Long Ashton, Cribbs Causeway, and Southmead. The nearest train station is Clifton Down, a short 7-minute walk away. The nearest supermarket and many more local services, shops, and restaurants can be found along Whiteladies Road. The area also has excellent leisure and exercise facilities nearby, with the Clifton Downs being a short walk from the proposed site. ### Waste and Recycling - During Construction A site waste management plan (SWMP) will be developed for this project. Waste groups to be monitored will be identified, and targets will be set to identify how waste can be reduced, reused, recycled, or diverted from landfills. Unavoidable waste will be disposed of responsibly. ### Waste and Recycling - In Operation Adequate waste and recycling storage will be provided within the curtilage of each dwelling to cater for the resident's waste and recycling needs. Both the internal and external provision will comply with Bristol City Council's recycling and
waste collection requirements, ensuring that recyclables, and waste can be separated before collection. ### Building Materials - Type, Life Cycle, and Source Where feasible, the most local suppliers of materials will be selected to minimise the environmental impact of transportation. Materials used for the proposal will be purchased from sources that minimise carbon emissions and come from sustainable sources, in line with the developer's environmental policy. Only suppliers with a certified chain of custody from the Forest Stewardship Council (FSC) or the Programme for the Endorsement of Forest Certification (PEFC) will be used to supply materials. 100% of the timber used will be legally sourced. Material will be sourced from suppliers with an EMS certificate or equivalent. #### **Pollution** An appropriate construction management plan will be prepared to address issues regarding water, waste, noise, vibration, dust, emissions, odours, and ground contamination. The redevelopment makes use of natural building materials for the structure of the dwelling. It will also include renewable technologies and nontoxic paints, producing limited impact on air pollution in the local area. The redevelopment will also incorporate lighting measures to prevent light pollution. #### Summary The energy strategy demonstrates how the dwellings will achieve a high fabric performance and proposes the installation of Solar PV, and ASHP to further offset the carbon dioxide emissions associated with the dwellings. There is minimal perceived flood risk, and the dwellings will be specified to achieve a water use target of less than 125 liters per person per day. The proposed redevelopment is therefore judged to comply with all the relevant sustainability and climate change requirements. ## 5. Water Management ### Water Conservation Measures Internal portable water will be conserved by installing flow restrictors to taps, showers, and dual flush toilets. The following schedule provides a suggested specification which has been proven to exceed building regulations requirements for water conservation (Regulation 36 Compliance). Table 1 - Water Consumption | Area | Flow Rate/Capacity | |--|-----------------------------------| | Toilet | Dual Flush 6 and 4 Liters | | Basin Taps | 6 Litres / Minute | | Bath | 180 Litres (Capacity to Overflow) | | Shower | 10 Litres / Minute | | Kitchen Taps | 8 Litres / Minute | | Dishwasher | 1.25 Litres / Place Setting | | Washing Machine | 8.17 Litres / KG dry load | | Total Water Consumption
Litres/person/day | 125 | ### Surface Water Management The proposal site lies within Flood Zone 1, for this development, Surface water runoff will be managed through a sustainable urban drainage system (SUDs). ## 6. Selecting Renewables ### Table 2 - Feasibility Matrix of Appropriate Renewables Showing the considerations in choosing a renewable technology for this site. | Water Source Heat Pump | |---| | Not possible in this location. | | Biomass | | The proximity of residential dwellings could have an impact on the local air quality. There is not a suitable area for storage to the building. | | Combined Heat & Power (CHP) | | CHP requires a significant electricity demand, which this development does not provide. This makes CHP unviable, unless a site-wide community heating system is proposed. | | Wind | | The redevelopment is within proximity to residential properties, so wind is not suitable for this site. | | | | | The property is not within an existing district heat network, or in proximity to any planned heat network. ### Table 3 – Feasibility Matrix of Appropriate Renewables Showing the considerations in choosing a renewable technology for this site. | Technology | Requirements | Requirements
Met? | Appropriate? | | |-----------------------|--|----------------------|-------------------------------------|--| | | Roof facing east to west (through south) | YAS | | | | Photovoltaic panels | Little/no or modest over shading | Yes | Yes- Selected | | | Filotovoltale patiers | Flat roof or pitched roof not greater than 45° | Yes | res- Selected | | | | Any size development | Yes | | | | Solar thermal | All requirements for photovoltaic panels | Yes | No – area used for | | | | Hot water tank | Yes | solar PV | | | | Suitable external wall or other location on-site for equipment | Yes | | | | Air source heat pumps | Aesthetic considerations | Yes | Yes - Selected | | | | Noise impact | Yes | | | | | Any size development | Yes | | | | | External space for horizontal trench or vertical borehole | Yes | | | | Ground source heat | Medium to large sized | Yes | Would require further investigation | | | pumps | development | 163 | | | | | Archaeology | Unknown | | | | | Best suited to underfloor heating | No | | | | | Space needed for plant, fuel storage and deliveries | Yes | No - air pollution, | | | Biomass | Medium to large sized development | No | storage size and delivery location | | | | Minimal impact on residents (air quality, deliveries) | No | insufficient | | | Combined heat and | Space need for plant access and servicing | Yes | No (redevelopment | | | power | Large sized development (large heat demand) | No | intended to have low heat demand) | | | | Available network | No | | | | District heating | Very large sized development
(Substantial heat demand) | No | No | | ### Table 4 – The Heat Hierarchy Showing how the heat hierarchy can be applied to this site. | Stage | Feasible | Notes | |---|----------|-----------------------| | Connection to existing
CHP/CCHP distribution
networks | No | No network available | | 2. Site-wide renewable
CHP/CCHP | No | No network available | | 3. Site-wide gas-fired
CHP/CCHP | No | No network available | | 4. Site-wide renewable community heating/cooling | Yes | No network available | | 5. Site-wide gas-fired community heating/cooling | Yes | No network available | | 6. Individual building renewable heating | Yes | Air Source Heat Pumps | ### Table 5 – Proposed Renewables Showing renewables added to the specification to further reduce carbon emissions. This includes the use of an air source heat pump and solar PV. The table below shows the array size of the proposed solar PV installation for the entire site. | Total Array Size | Direct/Landlord's Supply | Orientation | Inclination | Overshading | |------------------|--------------------------|-------------|-------------|----------------| | 2kWp | Landlords Supply | South | 30 | None or little | | Individual Type PV Proposal | | | | | |--|-------|------------------|----|----------------| | Type Total Array Size Direct/Landlord' Inclination Overshading | | | | | | Coach House | 2 kWp | Landlords Supply | 30 | None or little | ### Feasibility of Appropriate Renewables - Conclusion The location, size and type of development makes most renewable technologies appropriate for this site. Air Source Heat Pumps (ASHP) are proposed for this redevelopment. Solar thermal hot water heating is feasible however the roof space will be required for the solar PV. The number of photovoltaic panels required to reach the required 20% reduction in carbon emissions are shown in Table 10. The redevelopment is not in an area with a planned district heating system. ## 7. Baseline 'Threshold Values' & Proposed Fabric/Services Specification Table 6 - Baseline Compliance & proposed building | Building Specification | | | | | |---|--------------------------------|--|--|--| | | Part L 2021 Limiting | Proposed Building | | | | Category | Factors | (Specified Values) | | | | Building Fat | oric | | | | | Air Permeability (m3/m2.h at 50Pa) | 15 (Default) | 5 | | | | Retained Ground Floor Wall U-value (W/m2K) | 0.30 | 0.22 | | | | Retained Updated Floor Wall U-value (W/m2K) | 0.30 | 0.28 | | | | New Wall U-value (W/m2K) | 0.18 | 0.18 | | | | Retained Flat Roof U-value (W/m2K) | 0.16 | 0.16 | | | | New Flat Roof U-value (W/m2K) | 0.16 | 0.16 | | | | Retained Sloping Ceiling U-value (W/m2K) | 0.16 | 0.16 | | | | Retained Flat Ceiling U-value (W/m2K) | 0.16 | 0.13 | | | | Ground Floor U-value (W/m2K) | - | 0.98 | | | | Exposed Floor U-value (W/m2K) | 0.25 | 0.16 | | | | Exposed Floor U-value (W/m2K) | 0.25 | 0.21 | | | | Fenestration | on | | | | | Rooflights W/m2K) | 2.2 | 1.3 | | | | Glazing U-value (W/m2K) | 1.4 | 1.4 | | | | Doors U-value (W/m2K) | 1.4 | 1.4 | | | | Thermal Brin | ging | | | | | Thermal Bringing Details | | - | | | | Building Services & Systems | | | | | | Ventilation | Natural ventilation with
fa | intermittent extractor | | | | Heating | Gas boiler | Air Source Heat
Pump | | | | Heating Controls | Time and tempera | ture zonal control | | | | Heating Systems | Gas boiler | Air source heat pump | | | | Water Heating (From main heating) | From main heating | From main heating | | | | Waste water heat recovery | Yes | No | | | | Lighting | Efficacy of 75lm/W | 15 Watts (power) with efficacy of 80lm/W | | | | Renewables | Solar PV (40% of
GA/6) | Solar PV | | | ### 8. Conclusion Table 7 - Summary Table Domestic | | Building
Regulations Part
L1b compliance
("Baseline" energy
demand and
emissions) | Be 'Clean' Proposed scheme after energy efficiency measures and CHP ("Residual" energy demand and emissions)/ASHP | Be 'Green'
Proposed scheme
after on-site
renewables | Total savings on residual emissions | |---
--|---|--|-------------------------------------| | Energy demand
(kWh pa) | 22,898.54 | 19,545.15 | | | | Energy saving achieved (%) | | 14.65% | | | | Regulated CO2
emissions (kg pa) | 6,447.22 | 5,560.59 | 1,042.35 | | | Saving achieved on residual CO2 emissions (%) | | 13.75% | 81.26% | 83.83% | | Dwelling Primary
Energy Rate (kWh
pa) | 35,919.64 | 30,900.98 | 10,656.08 | | | Energy saving achieved (%) | | 13.97% | 65.52% | | #### Summary This report demonstrates that via a fabric first approach, the proposals will result in carbon emissions being reduced by up to 13.75% against Building Regulations Part L1(B), prior to taking account of the use of renewable energy generation sources. With the renewable energy generation sources proposed within this development (air source heat pumps and photovoltaic panels on every plot), the carbon emissions will be reduced by up to a further 81.26%, culminating in a carbon emission reduction against building regulations of up to 83.83% across the site in total. BCC policy requires that all residential development will be required to reduce CO_2 emissions over and above building regulations requirements by at least 20% via the use of renewable and/or low carbon energy generation sources. As demonstrated, these proposals will achieve at least 20% in accordance with this policy. Appendix A – SAP Outputs | Property Reference | | | 20 Whiteladies | Rd | | | | D T D |) · (| Issued on Da | ate | 12/07/2024 | | |---|--|-------------------------------|-----------------------------|--|-----------------------------|-------------------------|-------------------------|----------------------------|-------------------------|----------------------------|-------------------------|--|--| | Assessment Refer | rence | | Gas Baseline | | | | | Prop Type R | Ref | | | | | | Property | | | 20 Whiteladies | Road, Clitton, B | RISTOL, BS8 2L0 | G | | | | | | | | | SAP Rating | | | | | 63 D | | DER | 31 | .05 | TER | | | | | Environmental | | | | | 66 D | | % DER < TER | | | | | N/A | | | CO ₂ Emissions (t/) | | | | | 5.38 | | DFEE | | 0.28 | TFEE | | | | | Compliance Check | k | | | | See BREL | | % DFEE < TFE | | | | | | | | % DPER < TPER | | | | | | | DPER | 17 | 2.99 | TPER | ₹ | | | | Assessor Details | | Mr. F | Richard Millard | | | | | | | Asse | ssor ID | U367-00 | D1 | | | | | | | | | | | | | | | | | SAP 10 WORKSHEET CALCULATION OF D | WELLING EM | ISSIONS | FOR REGULAT | | | | | Area
(m2)
24.6800 | | ey height
(m)
2.9300 | (2b) = | Volume
(m3)
72.3124 | (lb) - (3) | | First floor
Second floor
Total floor area
Dwelling volume | TFA = (la |)+(lb)+ | (lc)+(ld)+(le | e)(ln) | 20 | 7.6400 | | 91.4800
91.4800 | (1c) x | 2.2500
3.7200 | (2c) =
(2d) = | 205.8300 | (1c) - (3
(1d) - (3
(4) | | 2. Ventilation r | ate
 | | | | | | | | | | 1 | m3 per hour | | | Number of open of
Number of open f
Number of chimne
Number of flues
Number of flues
Number of interm
Number of passiv
Number of fluele | lues ys / flues attached to attached to d chimneys ittent ext e vents | o solid
o other
ract fa | fuel boiler
heater | fire | | | | | | | | 0.0000
0.0000
0.0000
0.0000
0.0000
100.0000
0.0000 | (6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b) | | Infiltration due
Pressure test
Pressure Test Me
Measured/design
Infiltration rat
Number of sides | thod
AP50
e | ys, flu | es and fans | = (6a)+(6b |)+(6c)+(6d)+(| 6e)+(6f)+ | (6g)+(7a)+(7 | 7b)+(7c) = | | 100.0000 | / (5) = | es per hour
0.1617
No
Blower Door
15.0000
0.9117 | (8) | | Shelter factor
Infiltration rat | e adjusted | to inc | lude shelter | factor | | | | | (20) = 1 - (2 | [0.075 x
1) = (18) | (19)] =
x (20) = | 0.8500
0.7749 | (20)
(21) | | Wind speed
Wind factor
Adi infilt rate | Jan
5.1000
1.2750 | Feb
5.000
1.250 | Mar
0 4.9000
0 1.2250 | Apr
4.4000
1.1000 | May
4.3000
1.0750 | Jun
3.8000
0.9500 | Jul
3.8000
0.9500 | Aug
3.7000
0.9250 | Sep
4.0000
1.0000 | Oct
4.3000
1.0750 | Nov
4.5000
1.1250 | Dec
4.7000
1.1750 | (22)
(22a) | | Effective ac | 0.9880
0.9881 | 0.968
0.969 | 7 0.9493
2 0.9506 | 0.8524
0.8633 | 0.8331
0.8470 | 0.7362
0.7710 | 0.7362
0.7710 | 0.7168
0.7569 | 0.7749
0.8003 | 0.8331
0.8470 | 0.8718
0.8800 | 0.9106
0.9146 | (22b)
(25) | | 3. Heat losses a | nd heat lo | ss para | meter | | | | | | | | | | | | Element
Timber Sash Wind
RF-01 | ows (Uw = | 1.40) | | Gross
m2 | Openings
m2 | Ne: | m2
.9300
.8400 | U-value
W/m2K
1.3258 | A x
W/
22.445 | U K
K
1 | -value
kJ/m2K | A x K
kJ/K | (27)
(27a) | | Element Timber Sash Wind RF-01 RF-02 Ground Floor Exposed Floor Re Exposed Floor Fr Retained Ground Retained Upper F New Cavity Wall Retained Flat Ro New Flat Roof Retained Sloping Retained Plane C Total net area o Fabric heat loss | ar
ont
Floor
loors
of
Ceiling
eiling
f external
, W/K = Su | elemen
m (A x | ts Aum(A, m2)
U) | 48.0600
194.9900
16.1500
39.3800
12.6000
27.2800
20.6500 | 4.7500
12.1800
1.6800 | | (26)(3 | 30) + (32) | = 210.472 | 3 | | | (33) | | Party Wall 1
Internal Floor 1
Internal Floor 2 | | | - | | | 24 | .2100
.6800
.4800 | 0.5000 | 58.605 | 0 18 | 8.0000 | 21097.8000
444.2400
1646.6400 | (32)
(32d) | SAP 10 Online 2.14.29 Page 1 of 4 | Internal Ceilin | | | | | | | .6800
.4800 | | | | 9.0000
9.0000 | 222.1200
823.3200 | | |--|-------------------------------------|-------------------------------|-------------------------------|-------------------------------|--|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-----------------------------------|-----------------------------------|---|--------------| | Heat capacity of Thermal mass por Thermal bridge Point Thermal 1 Total fabric ho | arameter (
s (Default
bridges | TMP = Cm / 1 | | | 1) | | | (28). | | 2) + (32a).
33) + (36) | (36a) = | 72653.4900
349.9012
90.1180
0.0000
300.5903 | (35)
(36) | | Ventilation he | at loss ca | lculated mor | nthly (38)m
Mar | = 0.33 x | (25)m x (5)
May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | (38)m
Heat transfer | coeff | 197.7951 | 194.0034 | 176.1937 | 172.8615 | 157.3498 | 157.3498 | 154.4773 | 163.3247 | 172.8615 | 179.6024 | 186.6497 | | | Average = Sum(| | 498.3854
= | 494.5937 | 476.7840 | 473.4518 | 457.9401 | 457.9401 | 455.0676 | 463.9150 | 473.4518 | 480.1927 | 487.2400
476.7680 | (39) | | HLP | Jan
2.4189 | Feb
2.4002 | Mar
2.3820 | Apr
2.2962 | May
2.2802 | Jun
2.2055 | Jul
2.2055 | Aug
2.1916 | Sep
2.2342 | Oct
2.2802 | Nov
2.3126 | Dec
2.3466 | | | HLP (average)
Days in mont | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 2.2961
31 | | | | | | | | | | | | | | | | | | 4. Water heati | ng energy | requirements | s (kWh/year) |) | | | | | | | | | | | Assumed occupation Hot water usage | e for mixe | | | | | | | | | | | 3.0119 | | | Hot water usage | e for bath | | | | 117.5311 | 112.9787 | 110.3911 | 113.2603 | 116.4055 | 121.2934 | 126.9438 | 131.5141 | | | Hot water usage | 0.0000
e for othe
45.4744 | 0.0000
r uses
43.8208 | 0.0000
42.1672 | 0.0000
40.5136 | 0.0000
38.8600 | 0.0000
37.2064 | 0.0000
37.2064 | 0.0000
38.8600 | 0.0000
40.5136 | 0.0000
42.1672 | 0.0000
43.8208 | 0.0000
45.4744 | | | Average daily | | | | 40.3136 | 30.0000 | 37.2004 | 37.2004 | 30.0000 | 40.3130 | 42.1072 | 43.0200 | 163.0583 | | | Daily hot wate: | | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Energy conte
Energy content | 281.1076
(annual) | 247.5697 | 169.3120
260.2263 | 162.1268
221.9435 | 156.3911
210.5324 | 150.1851
184.6701 | 147.5975
178.5064 | 152.1203
188.3567 | 156.9191
193.4970 | 163.4606
221.8145
Total = S | 170.7646
243.2855
um(45)m = | 176.9885
277.1212
2708.6309 | | | Distribution 1 | 42.1661
loss: | 37.1354 | 45)m
39.0339 | 33.2915 | 31.5799 | 27.7005 | 26.7760 | 28.2535 | 29.0245 | 33.2722 | 36.4928 | 41.5682 | (46) | | Total storage : | 0.0000 | 0.0000
icated solar | 0.0000
r storage | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (56) | | Primary loss | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (59) | | Combi loss
Total heat req | | | | | | 49.3151 | 50.9589 | 50.9589 | 49.3151 | 50.9589 | 49.3151 | 50.9589 | | | WWHRS
PV diverter | 332.0665
0.0000
-0.0000 | 293.5970
0.0000
-0.0000 | 311.1852
0.0000
-0.0000 | 271.2586
0.0000
-0.0000 | 261.4914
0.0000
-0.0000 | 233.9851
0.0000
-0.0000 | 229.4653
0.0000
-0.0000 | 239.3156
0.0000
-0.0000 |
242.8120
0.0000
-0.0000 | 272.7734
0.0000
-0.0000 | 292.6005
0.0000
-0.0000 | 328.0801
0.0000
-0.0000 | (63a) | | Solar input
FGHRS | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (63c) | | Output from w/ | h | 293.5970 | 311.1852 | 271.2586 | 261.4914 | 233.9851 | 229.4653 | 239.3156 | 242.8120 | 272.7734 | 292.6005 | 328.0801 | (64) | | 12Total per yea | | ar) | | | | | | Total p | er year (kW | h/year) = Si | um(64)m = | 3308.6309
3309 | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000
Tot | 0.0000
al Energy us | 0.0000
sed by insta | 0.0000
antaneous e | 0.0000
lectric sho | 0.0000
wer(s) (kWh | 0.0000
/year) = Su | 0.0000
m(64a)m = | 0.0000 | | | Heat gains from | m water he
106.2080 | ating, kWh/m
93.8238 | 99.2650 | 86.1250 | 82.7418 | 73.7316 | 72.0931 | 75.3683 | 76.6665 | 86.4930 | 93.2212 | 104.8825 | (65) | | 5. Internal ga | ing (see T | ahle 5 and 9 | | | | | | | | | | | | | Metabolic gains | | | | | | | | | | | | | | | (66) m | Jan
150.5929 | Feb
150.5929 | | | 150.5929 | | 150.5929 | | Sep
150.5929 | Oct
150.5929 | Nov
150.5929 | Dec
150.5929 | (66) | | Lighting gains | 224.4785 | 248.5298 | 224.4785 | 231.9612 | 224.4785 | 231.9612 | 224.4785 | 224.4785 | 231.9612 | 224.4785 | 231.9612 | 224.4785 | (67) | | Appliances gain
Cooking gains | 378.2496 | 382.1747 | 372.2837 | 351.2269 | 324.6465 | 299.6647 | 282.9754 | 279.0503 | 288.9413 | 309.9981 | 336.5784 | 361.5602 | (68) | | Pumps, fans | 38.0593
3.0000 | 38.0593
3.0000 | 38.0593
3.0000 | 38.0593
3.0000 | 38.0593
3.0000 | 38.0593
0.0000 | 38.0593
0.0000 | 38.0593
0.0000 | 38.0593
0.0000 | 38.0593
3.0000 | 38.0593
3.0000 | 38.0593
3.0000 | (69)
(70) | | Losses e.g. ev | aporation
-120.4743 | (negative va
-120.4743 | alues) (Tabl | le 5) | -120.4743 | | | | | | | | | | | 142.7527 | | 133.4206 | 119.6181 | 111.2120 | 102.4050 | 96.8993 | 101.3015 | 106.4813 | 116.2541 | 129.4739 | 140.9712 | (72) | | Total internal | | 841.5010 | 801.3607 | 773.9840 | 731.5150 | 702.2087 | 672.5311 | 673.0083 | 695.5616 | 721.9086 | 769.1913 | 798.1878 | (73) | | | | | | | | | | | | | | | | | 6. Solar gains | | | | | | | | | | | | | | | [Jan] | | | Aı | rea
m2 | Solar flux
Table 6a
W/m2 | Speci: | g
fic data
Table 6b | Specific
or Tab | FF
data
le 6c | Acce
fact
Table | ss
or
6d | Gains
W | | | Northeast
Southwest | | | | | 11.2829
36.7938
11.2829
40.0991 | | | | | | | | | | Northwest
Southeast | | | 3.13
1.68 | 300
 | 11.2829
40.0991 | | 0.6300
0.6300 | | .7000 | 1.00 | 00 | 10.7929
26.7378 | (81) | | Solar gains
Total gains | 144.6810
961.3397 | 260.5955
1102.0965 | 392.3466
1193.7073 | 543.1875
1317.1715 | 658.3638
1389.8788 | 675.0061
1377.2149 | 641.9127
1314.4438 | 553.0892
1226.0975 | 444.3244
1139.8860 | 297.8366
1019.7452 | 175.9149
945.1063 | 122.0975
920.2853 | (83)
(84) | | 7. Ware details | | | | | | | | | | | | | | SAP 10 Online 2.14.29 Page 2 of 4 7. Mean internal temperature (heating season) | Temperature during heati | ng periods i | in the livi | ing area fro | m Table 9, | Thl (C) | | | | | | 21.0000 | (85) | |--|---------------------------|-----------------------|------------------------|----------------------|----------------------|----------------------|----------------------|----------------------|--------------------|--------------------|----------------------|--------| | Utilisation factor for g | | | | | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | tau 40.1819 | 40.4938 | 40.8043 | 42.3284 | 42.6264 | 44.0702 | 44.0702 | 44.3484 | 43.5026 | 42.6264 | 42.0280 | 41.4201 | | | alpha 3.6788
util living area | 3.6996 | 3.7203 | 3.8219 | 3.8418 | 3.9380 | 3.9380 | 3.9566 | 3.9002 | 3.8418 | 3.8019 | 3.7613 | | | 0.9997 | 0.9994 | 0.9989 | 0.9973 | 0.9918 | 0.9722 | 0.9264 | 0.9463 | 0.9884 | 0.9981 | 0.9995 | 0.9998 | (86) | | MIT 18.5216
Th 2 19.0687 | 18.6848
19.0799 | 18.9960
19.0908 | 19.4913
19.1432 | 19.9739
19.1531 | 20.4551
19.1999 | 20.7271
19.1999 | 20.6801
19.2086 | 20.2924
19.1818 | 19.6748
19.1531 | 19.0636
19.1331 | 18.5545
19.1123 | | | util rest of house
0.9995 | 0.9991 | 0.9983 | 0.9951 | 0.9829 | 0.9260 | 0.7563 | 0.8145 | 0.9688 | 0.9963 | 0.9991 | 0.9996 | | | MIT 2 16.3038 | 16.5195 | 16.9250 | 17.5907 | 18.2117 | 18.8348 | 19.1136 | 19.0857 | 18.6332 | 17.8325 | 17.0369 | 16.3715 | (90) | | Living area fraction
MIT 16.5796 | 16.7888 | 17.1826 | 17.8270 | 18.4308 | 19.0363 | 19.3142 | 19.2839 | 18.8395 | Living area | 17.2889 | 0.1243
16.6430 | (92) | | Temperature adjustment
adjusted MIT 16.5796 | 16.7888 | 17.1826 | 17.8270 | 18.4308 | 19.0363 | 19.3142 | 19.2839 | 18.8395 | 18.0616 | 17.2889 | 0.0000
16.6430 | 8. Space heating require | | | | | | | | | | | | | | | Feb | Ma | 3 | Mana | T | 71 | 2 | C | 0 | Nov | Dec | | | Jan
Utilisation 0.9991 | 0.9984 | Mar
0.9969 | Apr
0.9922 | May
0.9763 | Jun
0.9183 | Jul
0.7746 | Aug
0.8244 | Sep
0.9613 | Oct
0.9940 | 0.9984 | 0.9993 | | | Useful gains 960.4693
Ext temp. 4.3000 | 1100.3161
4.9000 | 6.5000 | 1306.8552
8.9000 | 1356.9489
11.7000 | 1264.7483
14.6000 | 1018.1669
16.6000 | 1010.8482
16.4000 | 1095.7810
14.1000 | 1013.5997 | 943.6351
7.1000 | 919.6354
4.2000 | | | Heat loss rate W
6167.4675 | 5925.1905 | 5283.5263 | 4256.2727 | 3186.7119 | 2031.5402 | 1242.9396 | 1312.3868 | 2198.7229 | 3532.7080 | 4892.6314 | 6062.7159 | (97) | | Space heating kWh | 3242.3156 | | | | 0.0000 | 0.0000 | 0.0000 | | 1874.2166 | | | | | Space heating requirement
Solar heating kWh | | | | | | | | | | | 22190.7355 | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Solar heating contribution Space heating kWh | | | | 1261 0405 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1074 0166 | 2042 0000 | 0.0000 | | | Space heating requiremen | 3242.3156
t after sola | | | | 0.0000
(kWh/year) | 0.0000 | 0.0000 | 0.0000 | 1874.2166 | | 22190.7355 | | | Space heating per m2 | | | | | | | | | (98c |) / (4) = | 106.8712 | (99) | | | | | | | | | | | | | | | | 9a. Energy requirements | | l heating s | vstems, inc | luding micr | ro-CHP | | | | | | | | | Fraction of space heat f | | | | | | | | | | | 0.1000 | (201) | | Fraction of space heat f | rom main sys | stem(s) | | (10020 11 | -, | | | | | | 0.9000 | (202) | | Efficiency of main space
Efficiency of main space | heating sys | stem 2 (in | %) | | | | | | | | 79.0000
0.0000 | (207) | | Efficiency of secondary/ | supplementa | ry heating | system, % | | | | | | | | 100.0000 | (208) | | Jan
Space heating requiremen | Feb
t | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | 3874.0067
Space heating efficiency | 3242.3156
(main heat) | | | 1361.3437 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1874.2166 | 2843.2773 | 3826.4519 | (98) | | 79.0000
Space heating fuel (main | 79.0000
heating sys | 79.0000
stem) | 79.0000 | 79.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 79.0000 | 79.0000 | 79.0000 | (210) | | | 3693.7772 | 3469.6062 | | 1550.8979 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 2135.1834 | 3239.1767 | 4359.2490 | (211) | | 0.0000
Space heating fuel (main | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (212) | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (213) | | Space heating fuel (second)
387.4007 | | 304.5543 | 212.3581 | 136.1344 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 187.4217 | 284.3277 | 382.6452 | (215) | | Water heating | | | | | | | | | | | | | | Water heating requiremen
332.0665 | | 311.1852 | 271.2586 | 261.4914 | 233.9851 | 229.4653 | 239.3156 | 242.8120 | 272.7734 | 292.6005 | 328.0801 | (64) | | Efficiency of water heat
(217)m 83.1325 | er
83.0885 | 82.9847 | 82.7656 | 82.2637 | 75.0000 | 75.0000 | 75.0000 | 75.0000 | 82.6199 | 82.9783 | 75.0000
83.1323 | | | Fuel for water heating,
399.4425 | kWh/month
353.3545 | 374.9910 | 327.7433 | 317.8696 | 311.9802 | 305.9537 | 319.0875 | 323.7494 | 330.1546 | 352.6231 | 394.6482 | (219) | | Space cooling fuel requi
(221)m 0.0000 | | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | Pumps and Fa 3.4822 | 3.1452 | 3.4822
33.6909 | 3.3699 | 3.4822 | 3.3699 | 3.4822
17.3928 | 3.4822
22.6078 | 3.3699 | 3.4822
38.5288 | 3.3699
43.5182 | 3.4822 | (231) | | Lighting 46.6422 Electricity generated by | | dix M) (neg | gative quant | | | | | | | | | | | Electricity generated by | wind turbing | nes (Append | lix M) (nega | tive quanti | | | | -80.0985 | -69.6409 | -44.5037 | | | | (234a)m 0.0000
Electricity generated by | | | ators (Appen | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | (234a) | | (235a)m 0.0000
Electricity used or net | | | | | | | | 0.0000 | 0.0000 | 0.0000 | | (235a) | | (235c)m 0.0000
Electricity generated by | 0.0000
PVs (Append | 0.0000
dix M) (neg | 0.0000
gative quant | 0.0000
ity) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235c) | | (233b)m 0.0000
Electricity generated by | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
itv) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (233b) | | (234b)m 0.0000
Electricity generated by | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234b) | | (235b)m 0.0000
Electricity used or net | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235b) | | (235d)m 0.0000 | 0.0000 | 0.0000 | | | | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235d) | | Annual totals kWh/year
Space heating fuel - main | | | | | | | | | | | 25280.5848 | | | Space heating fuel - mai
Space heating fuel - sec | ondary | | | | | | | | | | 0.0000
2219.0736 | (215) | | Efficiency of water heat
Water heating fuel used | er | | | | | | | | | | 75.0000
4111.5976 | | | Space cooling fuel | | | | | | | | | | | 0.0000 | | | Electricity for pumps an
central heating pump | d fans: | | | | | | | | | | 41.0000 | (230c) | | Total electricity for the | | | liv I\ | | | | | | | | 41.0000 | (231) | | Electricity for lighting | | | | -d -O) | | | | | | | 376.4293 | (232) | | Energy saving/generation
PV generation | cecnnologie | es (Appendi | ces M ,N an | ia Q) | | | | | | | -944.7879 | | | | | | | | | | | | | | | 17241 | | Wind generation
Hydro-electric generation | | | | | | | | | | | | (235a) | | | Micro CHP (| | | | | | | | | | | (235a) | SAP 10 Online 2.14.29 Page 3 of 4 -0.0000 (236) 0.0000 (237) 31083.8973 (238) Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Energy kWh/year 25280.5848 Emission factor kg CO2/kWh 0.2100 Emissions kg CO2/year 5308.9228 Space heating - main system 1 Total CO2 associated with community systems Space heating - secondary Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting 0.0000 (373) 340.7511 (263) 863.4355 (264) 6513.1094 (265) 2219.0736 0.1536 4111.5976 0.2100 0.1387 0.1443 41.0000 376.4293 5.6872 (267) 54.3304 (268) Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported -944.7879 0.1344 -126.9339 0.0000 -126.9339 (269) 6446.1931 (272) 31.0500 (273) 0.0000 0.0000 Total CO2, kg/year EPC Dwelling Carbon Dioxide Emission Rate (DER) 13a. Primary energy - Individual heating systems including micro-CHP Energy Primary energy factor Primary energy mary energy kWh/year 28567.0608 (275) 0.0000 (473) 3480.6252 (277) 4646.1053 (278) 36693.7913 (279) 62.0248 (281) 577.3799 (282) kWh/year 25280.5848 kg CO2/kWh Space heating - main system 1 Total CO2 associated with community systems Space heating - secondary Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting 2219.0736 4111.5976 Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported -944.7879 -1413.9221 0.0000 -1413.9221 (283) 35919.2739 (286) 172.9900 (287) 0.0000 0.0000 Total Total Primary energy kWh/year Dwelling Primary energy Rate (DPER) SAP 10 Online 2.14.29 Page 4 of 4 | Property Reference | | | 20 Whiteladies | Rd | | | | D T D |) · (| Issued on Da | ate | 12/07/2024 | | |---|---|-------------------------------|-----------------------|--|-----------------------------|---|--|--|---|---|--|---|---| | Assessment Refer | rence | | Gas Residual | | | | | Prop Type R | Ref | | | | | | Property | | | 20 vyniteiadies | Road, Clitton, Bi | RISTOL, BS8 2L0 | G | | | | | | | | | SAP Rating | | | | | 68 D | | DER | 26 | .78 | TER | | | | | Environmental | | | | | 71 C | | % DER < TER | | | | | N/A | | | CO ₂ Emissions (t/) | | | | | 4.83 | | DFEE | 94 | .13 | TFEE | | | | | Compliance Chec | k | | | | See BREL | | % DFEE < TFE | | | | | | | | % DPER < TPER | | | | | | | DPER | 14 | 8.82 | TPER | ₹ | | | | Assessor Details | | Mr. F | Richard Millard | | | | | | | Asse | ssor ID | U367-00 | 01 | | | | | | | | | | | | | | | | | SAP 10 WORKSHEET CALCULATION OF D | WELLING EM | ISSIONS | FOR REGULAT | | | | | | | | | Values | | | Ground floor
First floor
Second floor
Total floor area
Dwelling volume | TFA = (la |)+(lb)+ | ·(lc)+(ld)+(le | è)(ln) | 20 | 7.6400 | | Area
(m2)
24.6800
91.4800
91.4800 | (lb) x
(lc) x | 2.2500
3.7200 | (2b) =
(2c) =
(2d) = | 205.8300 | (lb) - (3)
(lc) - (3)
(ld) - (3)
(4) | | 2. Ventilation r | ate | | | | | | | | | | 1 | m3 per hour | | | Number of open of
Number of open f
Number of chimme
Number of flues
Number of blocke
Number of interm
Number of passiv
Number of fluele | lues ys / flues attached to attached to d chimneys ittent ext e vents | o solid
o other
ract fa | fuel boiler
heater | fire | | | | | | | | 0.0000
0.0000
0.0000
0.0000
0.0000
100.0000
0.0000 | (6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b) | | Infiltration due
Pressure test
Pressure Test Me
Measured/design
Infiltration rat
Number of sides | thod
AP50
e | ys, flu | es and fans | = (6a)+(6b) |)+(6c)+(6d)+(| (6e)+(6f)+ | (6g)+(7a)+(7 | 7b)+(7c) = | | 100.0000 | / (5) = | es per hour
0.1617
Yes
Blower Door
5.0000
0.4117 | (8) | | Shelter factor
Infiltration rat | e adjusted | to inc | lude shelter | factor | | | | | (20) = 1 - (2 | [0.075 x
1) = (18) | (19)] =
x (20) = | 0.8500
0.3499 | (20)
(21) | | Wind speed
Wind factor
Adj infilt rate | | | | | | | | | | | | | | | Effective ac | 0.4462
0.5995 | 0.437
0.595 | 4 0.4287
7 0.5919 | 0.3849
0.5741 | 0.3762
0.5708 | 0.3324
0.5553 | 0.3324
0.5553 | 0.3237
0.5524 | 0.3499
0.5612 | 0.3762
0.5708 | 0.3937
0.5775 | 0.4112
0.5845 | (22b)
(25) | | 3. Heat losses a | nd heat lo | ss para | meter | | | | | | | | | | | | Element
Timber Sash Wind
RF-01 | ows (Uw = | 1.40) | | Gross
m2 | Openings
m2 | Net
16.
0. | Area
m2
.9300
.8400 | U-value
W/m2K
1.3258
1.2357 | A x
W/
22.445
1.038 | U K
K
1 | -value
kJ/m2K | AxK
kJ/K | (27)
(27a) | | Element Timber Sash Wind RF-01 RF-02 Ground Floor Exposed Floor Re Exposed Floor Fr Retained Ground Retained Upper F New Cavity Wall Retained Flat Ro New Flat Roof Retained Sloping Retained Sloping Retained Plane C Total net area o | ar ont Floor loors of Ceiling eiling f external | elemen | ts Aum(A, m2 | 48.0600
194.9900
16.1500
39.3800
12.6000
27.2800
20.6500 | 4.7500
12.1800
1.6800 | 0.
24.
30.
36.
43.
182.
16.
39.
12.
25.
20. | 8400
6800
4400
3600
3100
8100
1500
3800
6000
6000
6500
5900 | 1.2357
0.9800
0.1600
0.2100
0.2200
0.2800
0.1800
0.1600
0.1600
0.1600 | 1.038 24.186 4.870 7.635 9.528 51.186 2.907 6.300 2.016 4.096 2.684 | 0
4 11
4 6 2
2 19
8 19
0 7
8
0
0
5 | 0.0000
0.0000
0.0000
0.0000
0.0000
9.0000
9.0000
9.0000 | 2714.8000
727.2000
8228.9000
34733.9000
1130.5000
354.4200
113.4000
230.4000
185.8500 | (27a)
(28a)
(28b)
(28b)
(29a)
(29a)
(29a)
(30)
(30)
(30)
(30)
(31) | | Fabric heat loss
Party Wall 1
Internal Floor 1
Internal Floor 2 | , W/K = Su | m (Ax | Ū) | | | 117.
24. | (26) (3 | 30) + (32) | = 198.537
58.605 | 8
0 18 | 0.0000
8.0000 | 21097.8000
444.2400
1646.6400 | (33)
(32)
(32d) | SAP 10 Online 2.14.29 Page 1 of 4 | Internal Ceilin
Internal Ceilin | | | | | | | .6800
.4800 | | | | 9.0000
9.0000 | 222.1200
823.3200 | | |---|--------------------------------------|---------------------------------|--------------------------------|-------------------------------|--|------------------------|-------------------------------|----------------------|-------------------------|-----------------------------------|-----------------------------------|---|----------------------| | Heat capacity C
Thermal mass pa
Thermal bridges
Point Thermal b
Total fabric he | arameter (?
3 (Default
oridges | TMP = Cm / 1 | | | 1) | | | (28). | | 2) + (32a).
33) + (36) | (36a) = | 72653.4900
349.9012
90.1180
0.0000
288.6558 | (35)
(36) | | Ventilation hea | t loss cai
Jan
122.3580 | lculated mor
Feb
121.5692 | nthly (38)m
Mar
120.7960 | = 0.33 x
Apr
117.1643 | (25)m x (5)
May
116.4848 | Jun
113.3217 | Jul
113.3217 | Aug
112.7359 | Sep
114.5401 | Oct
116.4848 | Nov
117.8594 | Dec
119.2964 | (38) | | Heat transfer of
Average = Sum(3 | oeff
411.0138 | 410.2250 | 409.4518 | 405.8201 | 405.1406 | 401.9775 | 401.9775 | 401.3918 | 403.1959 | 405.1406 | 406.5152 | 407.9522
405.8168 | (39) | | HLP
HLP (average) | Jan
1.9795 | Feb
1.9757 | Mar
1.9719 | Apr
1.9544 | May
1.9512 | Jun
1.9359 | Jul
1.9359 | Aug
1.9331 | Sep
1.9418 | Oct
1.9512 | Nov
1.9578 | Dec
1.9647
1.9544 | | | Days in mont | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | | | 4. Water heatin | ng energy | requirements | s (kWh/year) |) | | | | | | | | | | | Assumed occupan |
су | | | | | | | | | | | 3.0119 | (42) | | | 132.0199 | 130.0359 | 127.1448 | 121.6133 | 117.5311 | 112.9787 | 110.3911 | 113.2603 | 116.4055 | 121.2934 | 126.9438 | 131.5141 | (42a) | | Hot water usage | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (42b) | | Hot water usage
Average daily h | 45.4744 | 43.8208 | 42.1672
/day) | 40.5136 | 38.8600 | 37.2064 | 37.2064 | 38.8600 | 40.5136 | 42.1672 | 43.8208 | 45.4744
163.0583 | | | Deiler han outside | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Daily hot water
Energy conte
Energy content | 177.4943
281.1076 | 173.8567
247.5697 | 169.3120
260.2263 | 162.1268
221.9435 | 156.3911
210.5324 | 150.1851
184.6701 | 147.5975
178.5064 | 152.1203
188.3567 | 156.9191
193.4970 | 163.4606
221.8145
Total = S | 170.7646
243.2855
um(45)m = | 176.9885
277.1212
2708.6309 | | | Distribution lo
Water storage 1 | 088 (46)m
42.1661
.088: | = 0.15 x (4 | 45)m
39.0339 | 33.2915 | 31.5799 | 27.7005 | 26.7760 | 28.2535 | 29.0245 | 33.2722 | 36.4928 | 41.5682 | (46) | | Total storage 1 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (56) | | If cylinder con | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (59) | | Combi loss
Total heat requ | | | | | | 49.3151 | 50.9589 | 50.9589 | 49.3151 | 50.9589 | 49.3151 | 50.9589 | | | WWHRS | 332.0665 | 293.5970 | 311.1852
0.0000
-0.0000 | 271.2586
0.0000
-0.0000 | 261.4914
0.0000
-0.0000 | 233.9851
0.0000 | 229.4653
0.0000
-0.0000 | 239.3156 | 242.8120
0.0000 | 272.7734
0.0000 | 292.6005 | 328.0801 | (63a) | | PV diverter
Solar input | 0.0000 | -0.0000
0.0000 | 0.0000 | 0.0000 | 0.0000 | -0.0000
0.0000 | 0.0000 | -0.0000
0.0000 | -0.0000
0.0000 | -0.0000
0.0000 | -0.0000
0.0000 | -0.0000
0.0000 | (63c) | | FGHRS
Output from w/h | | 0.0000
293.5970 | 0.0000
311.1852 | 0.0000
271.2586 | 0.0000
261.4914 | 0.0000
233.9851 | 0.0000 | 0.0000
239.3156 | | 0.0000
272.7734
h/year) = S | | 0.0000
328.0801
3308.6309 | (64) | | 12Total per yea
Electric shower | | ar)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (64) | | Heat gains from | | | | | tal Energy us | | | | | | | 0.0000 | | | | 106.2080 | 93.8238 | 99.2650 | 86.1250 | 82.7418 | 73.7316 | 72.0931 | 75.3683 | 76.6665 | 86.4930 | 93.2212 | 104.8825 | (65) | | 5. Internal gai | ns (see Ta | able 5 and 5 | | | | | | | | | | | | | Metabolic gains | |), Watts
Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | (66)m
Lighting gains | 150.5929 | 150.5929 | 150.5929 | 150.5929 | 150.5929 | 150.5929 | 150.5929 | | | | | | (66) | | Appliances gain | 224.4785
s (calcula | 248.5298
ated in Appe | 224.4785
endix L. ea | 231.9612
mation L13 | 224.4785
or I.13a). a | 231.9612
so see Tab | 224.4785
le 5 | | | | | | | | Cooking gains (| 378.2496 | 382.1747 | 372.2837 | 351.2269 | 324.6465 | 299.6647 | 282.9754 | 279.0503 | 288.9413 | 309.9981 | 336.5784 | 361.5602 | (68) | | Pumps, fans | 38.0593 | 38.0593 | 38.0593 | 38.0593 | 38.0593 | 38.0593 | 38.0593 | 38.0593 | 38.0593 | 38.0593 | 38.0593 | 38.0593 | (69)
(70) | | Losses e.g. eva | poration | (negative va | alues) (Tabi | le 5) | -120.4743 | | | | | | | | | | Water heating g | gains (Tabi | le 5) | | | 111.2120 | | | | | | | | | | Total internal | gains | | | | 731.5150 | 6. Solar gains | | | | | | | | | | | | | | | [Jan] | | | A | rea
m2 | Solar flux
Table 6a
W/m2 | Speci | g
fic data | Specific | FF
data | Acce
fact | ss
or | Gains
W | | | Northeast | | | | | | | | | | | | | | | Southwest
Northwest
Southeast | | | 7.64
3.13
1.60 | 100
300
300 | 11.2829
36.7938
11.2829
40.0991 | | 0.6300
0.6300
0.6300 | 0 | .7000
.7000
.7000 | 0.77
0.77
1.00 | 00
00
00 | 85.9093
10.7929
26.7378 | (79)
(81)
(82) | | Solar gains
Total gains | 144.6810 | 260.5955 | 392.3466 | 543.1875 | 658.3638 | 675.0061 | 641.9127 | 553.0892 | 444.3244 | 297.8366 | 175.9149 | 122.0975 | (83) | | | | n | | | | | | | | | | | | SAP 10 Online 2.14.29 Page 2 of 4 | Temperature during heati | ng periods | in the livi | ng area fro | m Table 9, | Thl (C) | | | | | | 21.0000 | (85) | |--|--
--|---|---|--|--|--|--|--|--|---|---| | Utilisation factor for g | | | | | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | tau 49.1018
alpha 4.2735 | 49.1962
4.2797 | 49.2891
4.2859 | 49.7302
4.3153 | 49.8136
4.3209 | 50.2056
4.3470 | 50.2056
4.3470 | 50.2789
4.3519 | 50.0539
4.3369 | 49.8136
4.3209 | 49.6452
4.3097 | 49.4703
4.2980 | | | util living area | | | | | | | | | | | | | | 0.9998 | 0.9996 | 0.9992 | 0.9975 | 0.9915 | 0.9682 | 0.9112 | 0.9363 | 0.9876 | 0.9983 | 0.9996 | 0.9998 | | | MIT 18.9227
Th 2 19.3471 | 19.0625
19.3496 | 19.3288
19.3521 | 19.7303
19.3639 | 20.1560
19.3661 | 20.5615
19.3764 | 20.7979
19.3764 | 20.7528
19.3783 | 20.4144
19.3724 | 19.8715
19.3661 | 19.3395
19.3616 | 18.9081
19.3570 | | | util rest of house
0.9997 | 0.9994 | 0.9987 | 0.9956 | 0.9826 | 0.9197 | 0.7411 | 0.8027 | 0.9678 | 0.9967 | 0.9994 | 0.9998 | (89) | | MIT 2 16.9882
Living area fraction | 17.1692 | 17.5124 | 18.0343 | 18.5775 | 19.0797 | 19.3120 | 19.2823 | 18.9084
ft.b = | 18.2173
Living are | 17.5323 | 16.9758
0.1243 | (90) | | MIT 17.2288 | 17.4046 | 17.7382 | 18.2452 | 18.7738 | 19.2640 | 19.4968 | 19.4652 | 19.0957 | 18.4230 | 17.7570 | 17.2161
0.0000 | | | Temperature adjustment adjusted MIT 17.2288 | 17.4046 | 17.7382 | 18.2452 | 18.7738 | 19.2640 | 19.4968 | 19.4652 | 19.0957 | 18.4230 | 17.7570 | | (93) | 8. Space heating require | | | | | | | | | | | | | | | | ., | | ., | _ | | | _ | | | _ | | | Jan
Utilisation 0.9995 | Feb
0.9989 | Mar
0.9977 | Apr
0.9932 | May
0.9769 | Jun
0.9140 | Jul
0.7607 | Aug
0.8146 | Sep
0.9614 | Oct
0.9949 | Nov
0.9989 | Dec
0.9996 | (94) | | Useful gains 960.8112
Ext temp. 4.3000 | 1100.8971
4.9000 | 1190.9831
6.5000 | 1308.1772
8.9000 | 1357.8044 | 1258.8310
14.6000 | 999.8784
16.6000 | 998.7236
16.4000 | 1095.8857
14.1000 | 1014.5817 | 944.0614
7.1000 | 919.8782
4.2000 | | | Heat loss rate W | | | | | 1874.8241 | | | | | | 5309.9416 | | | Space heating kWh | | | | | | | | | | | | | | Space heating requiremen | | | 1788.6934
Th/year) | 1122.0133 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1603.1851 | 2439.4882 | 3266.2072
18703.0794 | (98a) | | Solar heating kWh
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Solar heating contributi
Space heating kWh | on - total : | per year (k | Wh/year) | | | | | | | | 0.0000 | | | |
| | 1788.6934 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1603.1851 | 2439.4882 | 3266.2072
18703.0794 | (98c) | | Space heating per m2 | t arter sor | ar contribu | icion - coca | i per year | (KWII/ YEar) | | | | (98c |) / (4) = | 90.0745 | (99) | 9a. Energy requirements | - Individua | l heating s | ystems, inc | luding micr | ro-CHP | | | | | | | | | Fraction of space heat f | | | ntary syste | m (Table 11 | .) | | | | | | 0.1000 | | | Fraction of space heat f
Efficiency of main space | heating sy | stem 1 (in | | | | | | | | | 0.9000
79.0000 | (206) | | Efficiency of main space
Efficiency of secondary/ | | | | | | | | | | | 0.0000 | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating requiremen | | 2537 /3/7 | 1788.6934 | _ | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1603.1851 | 2430 4882 | 3266.2072 | (98) | | Space heating efficiency | (main heat | ing system | 1) | | | | | | | | | | | 79.0000
Space heating fuel (main | | | 79.0000 | 79.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 79.0000 | 79.0000 | 79.0000 | | | 3689.6599
Space heating efficiency | 3084.3295 | 2890.7484 | 2037.7520 | 1278.2430 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 1826.4135 | 2779.1638 | 3720.9955 | (211) | | Space nearing eliteration | (main heat | ing system | 2) | | | | | | | | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (212) | | 0.0000
Space heating fuel (main
0.0000 | 0.0000
heating sy
0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | 0.0000
Space heating fuel (main
0.0000
Space heating fuel (seco | 0.0000
heating sy
0.0000 | 0.0000
stem 2) | 0.0000 | | | | | | | | | (213) | | 0.0000
Space heating fuel (main
0.0000
Space heating fuel (seco | 0.0000
heating sy
0.0000
ndary) | 0.0000
stem 2)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (213) | | O.0000
Space heating fuel (main
0.0000
Space heating fuel (seco
323.8702 | 0.0000
heating sy
0.0000
ndary)
270.7356 | 0.0000
stem 2)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (213) | | Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating water heating requiremen 332.0665 Efficiency of water heat | 0.0000
heating sy
0.0000
ndary)
270.7356
t
293.5970
er | 0.0000
vstem 2)
0.0000
253.7435 | 0.0000
0.0000
178.8693
271.2586 | 0.0000
112.2013
261.4914 | 0.0000
0.0000
233.9851 | 0.0000
0.0000
229.4653 | 0.0000
0.0000
239.3156 | 0.0000
0.0000
242.8120 | 0.0000
160.3185
272.7734 | 0.0000
243.9488
292.6005 | 0.0000
326.6207
328.0801
75.0000 | (213)
(215)
(64)
(216) | | O.0000 Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, | 0.0000
heating sy
0.0000
ndary)
270.7356
t
293.5970
er
82.9298
kWh/month | 0.0000
rstem 2)
0.0000
253.7435
311.1852
82.8083 | 0.0000
0.0000
178.8693
271.2586
82.5712 | 0.0000
112.2013
261.4914
81.9766 | 0.0000
0.0000
233.9851
75.0000 | 0.0000
0.0000
229.4653
75.0000 | 0.0000
0.0000
239.3156
75.0000 | 0.0000
0.0000
242.8120
75.0000 | 0.0000
160.3185
272.7734
82.4274 | 0.0000
243.9488
292.6005
82.8311 | 0.0000
326.6207
328.0801
75.0000
83.0000 | (213)
(215)
(64)
(216)
(217) | | O.0000 Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi | 0.0000
heating sy
0.0000
ndary)
270.7356
t
293.5970
er
82.9298
kWh/month
354.0306
rement | 0.0000
stem 2)
0.0000
253.7435
311.1852
82.8083
375.7897 | 0.0000
0.0000
178.8693
271.2586
82.5712
328.5150 | 0.0000
112.2013
261.4914
81.9766
318.9829 | 0.0000
0.0000
233.9851
75.0000
311.9802 | 0.0000
0.0000
229.4653
75.0000
305.9537 | 0.0000
0.0000
239.3156
75.0000
319.0875 | 0.0000
0.0000
242.8120
75.0000
323.7494 | 0.0000
160.3185
272.7734
82.4274
330.9258 | 0.0000
243.9488
292.6005
82.8311
353.2496 | 0.0000
326.6207
328.0801
75.0000
83.0000
395.2773 | (213)
(215)
(64)
(216)
(217)
(219) | | O.0000 Space heating fuel (main 0.000) Space heating fuel (seco 323.8702) Water heating water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 | 0.0000
heating sy
0.0000
ndary)
270.7356
t
293.5970
er
82.9298
kWh/month
354.0306
rement
0.0000
3.1452 | 0.0000
(stem 2)
0.0000
253.7435
311.1852
82.8083
375.7897
0.0000
3.4822 | 0.0000
0.0000
178.8693
271.2586
82.5712
328.5150
0.0000
3.3699 | 0.0000
112.2013
261.4914
81.9766
318.9829
0.0000
3.4822 | 0.0000
0.0000
233.9851
75.0000
311.9802
0.0000
3.3699 | 0.0000
0.0000
229.4653
75.0000
305.9537
0.0000
3.4822 | 0.0000
0.0000
239.3156
75.0000
319.0875
0.0000
3.4822 | 0.0000
0.0000
242.8120
75.0000
323.7494
0.0000
3.3699 | 0.0000
160.3185
272.7734
82.4274
330.9258
0.0000
3.4822 | 0.0000
243.9488
292.6005
82.8311
353.2496
0.0000
3.3699 | 0.0000
326.6207
328.0801
75.0000
83.0000
395.2773
0.0000
3.4822 | (213)
(215)
(64)
(216)
(217)
(219)
(221)
(231) | | O.0000 Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 | 0.0000
heating sy
0.0000
ndary)
270.7356
t
293.5970
er
82.9298
kWh/month
354.0306
rement
0.0000
3.1452
37.4181 | 0.0000
stem 2)
0.0000
253.7435
311.1852
82.8083
375.7897
0.0000
3.4822
33.6909 | 0.0000
0.0000
178.8693
271.2586
82.5712
328.5150
0.0000
3.3699
24.6834 | 0.0000
112.2013
261.4914
81.9766
318.9829
0.0000
3.4822
19.0661 | 0.0000
0.0000
233.9851
75.0000
311.9802
0.0000
3.3699 | 0.0000
0.0000
229.4653
75.0000
305.9537
0.0000 | 0.0000
0.0000
239.3156
75.0000
319.0875
0.0000 | 0.0000
0.0000
242.8120
75.0000
323.7494
0.0000 | 0.0000
160.3185
272.7734
82.4274
330.9258
0.0000 | 0.0000
243.9488
292.6005
82.8311
353.2496
0.0000 | 0.0000
326.6207
328.0801
75.0000
83.0000
395.2773
0.0000
3.4822 | (213)
(215)
(64)
(216)
(217)
(219)
(221)
(231) | | O.0000 Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating Water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requiremen (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 | 0.0000
heating sy
0.0000
ndary)
270.7356
t
293.5970
er
82.9298
kWh/month
354.0306
rement
0.0000
3.1452
37.4181
PVs (Appen
-59.2631 | 0.0000 (stem 2) (0.0000 (253.7435 (2 | 0.0000
0.0000
178.8693
271.2586
82.5712
328.5150
0.0000
3.3699
24.6834
44.6834
12.7.8143 |
0.0000
112.2013
261.4914
81.9766
318.9829
0.0000
3.4822
19.0661
iity)
-118.2695 | 0.0000
0.0000
233.9851
75.0000
311.9802
0.0000
0.3699
15.5772
-101.9542 | 0.0000
0.0000
229.4653
75.0000
305.9537
0.0000
3.4822
17.3928 | 0.0000
0.0000
239.3156
75.0000
319.0875
0.0000
3.4822
22.6078 | 0.0000
0.0000
242.8120
75.0000
323.7494
0.0000
3.3699 | 0.0000
160.3185
272.7734
82.4274
330.9258
0.0000
3.4822 | 0.0000
243.9488
292.6005
82.8311
353.2496
0.0000
3.3699 | 0.0000
326.6207
328.0801
75.0000
83.0000
395.2773
0.0000
3.4822
47.9385 | (213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232) | | O.0000 Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating water heating requiremen 322.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 | 0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 PVs (Appen -59.2631 wind turbi 0.0000 0.0000 | 0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neq -90.9786 nes (Append 0.0000 | 0.0000
0.0000
178.8693
271.2586
82.5712
328.5150
0.0000
3.3699
24.6834
jative quant
-107.8143
slix M) (nega
0.0000 | 0.0000
112.2013
261.4914
81.9766
318.9829
0.0000
3.4822
19.0661
ity)
-118.2695
tive quanti
0.0000 | 0.0000
0.0000
233.9851
75.0000
311.9802
0.0000
3.3699
15.5772
-101.9542
ty) | 0.0000
0.0000
229.4653
75.0000
305.9537
0.0000
3.4822
17.3928
-100.5457
0.0000 | 0.0000
0.0000
239.3156
75.0000
319.0875
0.0000
3.4822
22.6078 | 0.0000
0.0000
242.8120
75.0000
323.7494
0.0000
3.3699
29.3653 | 0.0000
160.3185
272.7734
82.4274
330.9258
0.0000
3.4822
38.5288 | 0.0000
243.9488
292.6005
82.8311
353.2496
0.0000
3.3699
43.5182 | 0.0000
326.6207
328.0801
75.0000
83.0000
395.2773
0.0000
3.4822
47.9385
-33.3739 | (213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232)
(233a) | | O.0000 Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity generated by (234a)m 0.0000 Electricity generated by (235a)m 0.0000 | 0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 PVs (Appen -59.2631 wind turbi 0.0000 hydro-elec 0.0000 | 0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (nec -90.9786 nes (Appendontic genera | 0.0000
0.0000
178.8693
271.2586
82.5712
328.5150
0.0000
3.3699
24.6834
jative quant
-107.8143
jix M) (nega
0.0000
ttors (Appen
0.0000 | 0.0000
112.2013
261.4914
81.9766
318.9829
0.0000
3.4822
19.0661
city)
-118.2695
tive quanti
0.0000
dix M) (neg
0.0000 | 0.0000
0.0000
233.9851
75.0000
311.9802
0.0000
3.3699
15.5772
-101.9542
.ty)
0.0000
pative quant | 0.0000
0.0000
229.4653
75.0000
305.9537
0.0000
3.4822
17.3928
-100.5457
0.0000
ity) | 0.0000
0.0000
239.3156
75.0000
319.0875
0.0000
3.4822
22.6078
-92.8808
0.0000
0.0000 | 0.0000
0.0000
242.8120
75.0000
323.7494
0.0000
3.3699
29.3653
-80.0985 | 0.0000
160.3185
272.7734
82.4274
330.9258
0.0000
3.4822
38.5288
-68.9228 | 0.0000
243.9488
292.6005
82.8311
353.2496
0.0000
3.3699
43.5182
-44.1156 | 0.0000
326.6207
328.0801
75.0000
83.0000
395.2773
0.0000
3.4822
47.9385
-33.3739 | (213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232)
(233a)
(234a) | | O.0000 Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requiremen (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (235a)m 0.0000 Electricity used or net (235c)m 0.0000 | 0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 PVs (Appen -59.2631 wind turbi 0.0000 heating the control of o | 311.1852
82.8083
375.7897
0.0000
3.4822
33.6909
dix M) (neg
-90.9786
nes (Append
0.0000
tric generated
0.0000
generated
0.0000 | 0.0000
0.0000
178.8693
271.2586
82.5712
328.5150
0.0000
3.3699
24.6834
pative quant
107.8143
ix M) (nega
0.0000
itors (Appen
0.0000
by micro-CH | 0.0000
112.2013
261.4914
81.9766
318.9829
0.0000
3.4822
19.0661
ity)
-118.2695
tive quanti
0.0000
dix M) (neg
0.0000
IP (Appendix
0.0000 | 0.0000
0.0000
233.9851
75.0000
311.9802
0.0000
3.3699
15.5772
-101.9542
tty)
0.0000
(ative quant
0.0000
(s.N) (negati | 0.0000
0.0000
229.4653
75.0000
305.9537
0.0000
3.4822
17.3928
-100.5457
0.0000
ity) | 0.0000
0.0000
239.3156
75.0000
319.0875
0.0000
3.4822
22.6078
-92.8808
0.0000
0.0000 | 0.0000
0.0000
242.8120
75.0000
323.7494
0.0000
3.3699
29.3653
-80.0985
0.0000 | 0.0000
160.3185
272.7734
82.4274
330.9258
0.0000
3.4822
38.5288
-68.9228
0.0000 | 0.0000
243.9488
292.6005
82.8311
353.2496
0.0000
3.3699
43.5182
-44.1156
0.0000 | 0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 | (213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232)
(233a)
(234a)
(235a) | | O.0000 Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating water heating requiremen 322.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity generated by (235a)m 0.0000 Electricity used or net | 0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 PVs (Appen -59.2631 wind turbi 0.0000 heating the control of o | 311.1852
82.8083
375.7897
0.0000
3.4822
33.6909
dix M) (neg
-90.9786
nes (Append
0.0000
tric generated
0.0000
generated
0.0000 | 0.0000
0.0000
178.8693
271.2586
82.5712
328.5150
0.0000
3.3699
24.6834
pative quant
107.8143
ix M) (nega
0.0000
itors (Appen
0.0000
by micro-CH | 0.0000
112.2013
261.4914
81.9766
318.9829
0.0000
3.4822
19.0661
ity)
-118.2695
tive quanti
0.0000
dix M) (neg
0.0000
IP (Appendix
0.0000 | 0.0000
0.0000
233.9851
75.0000
311.9802
0.0000
3.3699
15.5772
-101.9542
ty)
0.0000
(ative quant
0.0000
(stive quant | 0.0000
0.0000
229.4653
75.0000
305.9537
0.0000
3.4822
17.3928
-100.5457
0.0000
ity)
0.0000
ve if net g | 0.0000
0.0000
239.3156
75.0000
319.0875
0.0000
3.4822
22.6078
-92.8808
0.0000
0.0000
eneration) | 0.0000
0.0000
242.8120
75.0000
323.7494
0.0000
3.3699
29.3653
-80.0985
0.0000 | 0.0000
160.3185
272.7734
82.4274
330.9258
0.0000
3.4822
38.5288
-68.9228
0.0000
0.0000 | 0.0000
243.9488
292.6005
82.8311
353.2496
0.0000
3.3699
43.5182
-44.1156
0.0000 | 0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 | (213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232)
(233a)
(234a)
(235a)
(235c) | | O.0000 Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requiremen (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity used or net (235c)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (233b)m 0.0000 | 0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 PVs (Appen 0.0000 hydro-elec 0.0000 electricity 0.0000 PVs (Appen 0.0000 wind turbi | 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neq 0.0000 tric generated 0.0000 tric generated 0.0000 dix M) (neq 0.0000 generated 0.0000 dix M) (neq 0.0000 nes (Append | 0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 pative quant 0.0000 by micro-CH 0.0000 pative quant 0.0000 lix M) (negan | 0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 dix M) (nec 0.0000 P) (Appendix 0.0000 ity) 0.0000 tive quantive quantive quantive | 0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.36599 15.5772 -101.9542 tty) 0.0000 (ative quant 0.0000 (it) (negati
0.0000 0.0000 | 0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 ve if net g 0.0000 0.0000 | 0.0000
0.0000
239.3156
75.0000
319.0875
0.0000
3.4822
22.6078
-92.8808
0.0000
0.0000
eneration)
0.0000 | 0.0000
0.0000
242.8120
75.0000
323.7494
0.0000
3.3699
29.3653
-80.0985
0.0000
0.0000
0.0000 | 0.0000
160.3185
272.7734
82.4274
330.9258
0.0000
3.4822
38.5288
-68.9228
0.0000
0.0000
0.0000 | 0.0000
243.9488
292.6005
82.8311
353.2496
0.0000
3.3699
43.5182
-44.1156
0.0000
0.0000
0.0000 | 0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 | (213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232)
(233a)
(234a)
(235a)
(235c)
(233b) | | O.0000 Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requiremen (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (235a)m 0.0000 Electricity generated by (235a)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (234b)m 0.0000 Electricity generated by (234b)m 0.0000 | 0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 PVs (Appen 0.0000 hydro-elec 0.0000 electricity 0.0000 PVs (Appen 0.0000 wind turbi 0.0000 wind turbi 0.0000 hydro-elec 0.00000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-e | 0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 -90.9786 nes (Append 0.0000 tric generated 0.0000 dix M) (neg 0.0000 dix M) (neg 0.0000 dix M) (neg 0.0000 dix M) (neg 0.0000 tric generated 0.0000 | 0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 value quant 1-107.8143 iix M) (nega 0.0000 by micro-CR 0.0000 by micro-CR 0.0000 itors (Appen | 0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 P (Appendix M) (neg 0.0000 ity) 0.0000 ity) 0.0000 tive quanti | 0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 tty) 0.0000 active quant 0.0000 tN) (negati 0.0000 ty) 0.0000 (ty) 0.0000 (active quant | 0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 0.0000 0.0000 | 0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000
0.0000
242.8120
75.0000
323.7494
0.0000
3.3699
29.3653
-80.0985
0.0000
0.0000
0.0000 | 0.0000
160.3185
272.7734
82.4274
330.9258
0.0000
3.4822
38.5288
-68.9228
0.0000
0.0000
0.0000 | 0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 | 0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 | (213)
(215)
(64)
(216)
(217)
(219)
(221)
(232)
(233a)
(234a)
(235a)
(235c)
(233b)
(234b) | | Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco 323.8702) Water heating requiremen 322.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity user down 10.0000 Electricity user down 10.0000 Electricity user down 10.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (235b)m 0.0000 | 0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 PVs (Appen -59.2631 wind turbi 0.0000 hydro-elec 0.0000 PVs (Appen 0.0000 PVs (Appen 0.0000 pVs (Appen 0.0000 pVs (Appen 0.0000 hydro-elec 0.0000 nund turbi 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec | 0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 tric genera 0.0000 dix M) (neg | 0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 iix M) (nega 0.0000 tors (Appen 0.0000 jotive quant | 0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 dix M) (nec 0.0000 ity) 0.0000 tive quanti 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 P) (Appendix 0.0000 P) (Appendix 0.0000 P) (Appendix 0.0000 P) (Appendix M) (nec | 0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000) | 0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g 0.0000 ve if net g | 0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 0.0000 eneration) | 0.0000
0.0000
242.8120
75.0000
323.7494
0.0000
3.3699
29.3653
-80.0985
0.0000
0.0000
0.0000
0.0000 | 0.0000
160.3185
272.7734
82.4274
330.9258
0.0000
3.4822
38.5288
-68.9228
0.0000
0.0000
0.0000
0.0000 | 0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000 | (213)
(215)
(64)
(216)
(217)
(219)
(221)
(232)
(232)
(233a)
(235a)
(235a)
(235c)
(233b)
(234b)
(235b) | | Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco 323.8702) Water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (234b)m 0.0000 Electricity generated by (234b)m 0.0000 Electricity generated by (234b)m 0.0000 Electricity generated by (235b)m 0.0000 | 0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 vind turbi 0.0000 hydro-elec 0.0000 plydro-elec 0.0000 wind turbi 0.0000 hydro-elec | 0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 dtric genera 0.0000 dix M) (neg | 0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 iix M) (nega 0.0000 tors (Appen 0.0000 jotive quant | 0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 dix M) (nec 0.0000 ity) 0.0000 tive quanti 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 | 0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000) | 0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 ve if net g 0.0000 0.0000 0.0000 ity) 0.0000 | 0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 | 0.0000
0.0000
242.8120
75.0000
323.7494
0.0000
3.3699
29.3653
-80.0985
0.0000
0.0000
0.0000 | 0.0000
160.3185
272.7734
82.4274
330.9258
0.0000
3.4822
38.5288
-68.9228
0.0000
0.0000
0.0000 | 0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 | 0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000 | (213)
(215)
(64)
(216)
(217)
(219)
(221)
(232)
(232)
(233a)
(235a)
(235a)
(235c)
(233b)
(234b)
(235b) | | Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco 323.8702) Water heating requiremen 320.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (235a)m 0.0000 Electricity generated by (235a)m 0.0000 Electricity used or net (235c)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (235b)m 0.0000 Annual totals kWh/year Space heating fuel - mai | 0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 PVs (Appen -59.2631 wind turbi 0.0000 hydro-elec 0.0000 PVs (Appen 0.0000 PVs (Appen 0.0000 pVs (Appen 0.0000 electricity 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 electricity 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 | 0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 dtric genera 0.0000 dix M) (neg | 0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 iix M) (nega 0.0000 tors (Appen 0.0000 jotive quant | 0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti
0.0000 dix M) (nec 0.0000 ity) 0.0000 tive quanti 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 | 0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000) | 0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g | 0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 0.0000 eneration) | 0.0000
0.0000
242.8120
75.0000
323.7494
0.0000
3.3699
29.3653
-80.0985
0.0000
0.0000
0.0000
0.0000 | 0.0000
160.3185
272.7734
82.4274
330.9258
0.0000
3.4822
38.5288
-68.9228
0.0000
0.0000
0.0000
0.0000 | 0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | (213)
(215)
(64)
(216)
(217)
(219)
(221)
(232)
(233a)
(234a)
(235a)
(235c)
(233b)
(235b)
(235b)
(235d)
(211) | | Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco 323.8702) Water heating requiremen 322.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (235a)m 0.0000 Electricity generated by (235a)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (235d)m 0.0000 Electricity used or net (235d)m 0.0000 Annual totals kMn/year Space heating fuel mai Space heating fuel mai Space heating fuel missipace heating fuel mai Space heating fuel missipace m | 0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 vind turbi 0.0000 hydro-elec 0.0000 PVs (Appen 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 nydro-elec nydro-el | 0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 dtric genera 0.0000 dix M) (neg | 0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 iix M) (nega 0.0000 tors (Appen 0.0000 jotive quant | 0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 dix M) (nec 0.0000 ity) 0.0000 tive quanti 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 | 0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000) | 0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g | 0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 0.0000 eneration) | 0.0000
0.0000
242.8120
75.0000
323.7494
0.0000
3.3699
29.3653
-80.0985
0.0000
0.0000
0.0000
0.0000 | 0.0000
160.3185
272.7734
82.4274
330.9258
0.0000
3.4822
38.5288
-68.9228
0.0000
0.0000
0.0000
0.0000 | 0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | (213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232)
(233a)
(234a)
(235a)
(235c)
(233b)
(234b)
(235b)
(235d)
(211)
(213) | | Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco 323.8702) Water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (234b)m 0.0000 Electricity generated by (235d)m 0.0000 Electricity generated by (235d)m 0.0000 Electricity generated by (235d)m 0.0000 Almual totals kWh/year Space heating fuel - mai Space heating fuel - mai Space heating fuel - sec Efficiency of water heat | 0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 vind turbi 0.0000 hydro-elec 0.0000 PVs (Appen 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 nydro-elec nydro-el | 0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 dtric genera 0.0000 dix M) (neg | 0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 iix M) (nega 0.0000 tors (Appen 0.0000 jotive quant | 0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 dix M) (nec 0.0000 ity) 0.0000 tive quanti 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 | 0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000) | 0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g | 0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 0.0000 eneration) | 0.0000
0.0000
242.8120
75.0000
323.7494
0.0000
3.3699
29.3653
-80.0985
0.0000
0.0000
0.0000
0.0000 | 0.0000
160.3185
272.7734
82.4274
330.9258
0.0000
3.4822
38.5288
-68.9228
0.0000
0.0000
0.0000
0.0000 | 0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 | (213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232)
(233a)
(235a)
(235a)
(235b)
(235b)
(235b)
(235d)
(211)
(213)
(215)
(219) | | Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requiremen 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (235a)m 0.0000 Electricity generated by (235a)m 0.0000 Electricity generated by (235a)m 0.0000 Electricity generated by (235b)m (235d)m 0.0000 Annual totals kWh/year Space heating fuel - mai Space heating fuel - mai Space heating fuel - mai Space heating fuel - sec Efficiency of water heat | 0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 vind turbi 0.0000 hydro-elec 0.0000 PVs (Appen 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 nydro-elec nydro-el | 0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 dtric genera 0.0000 dix M) (neg | 0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 iix M) (nega 0.0000 tors (Appen 0.0000 jotive quant | 0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 dix M) (nec 0.0000 ity) 0.0000 tive quanti 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 | 0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000) | 0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g | 0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 0.0000 eneration) | 0.0000
0.0000
242.8120
75.0000
323.7494
0.0000
3.3699
29.3653
-80.0985
0.0000
0.0000
0.0000
0.0000 | 0.0000
160.3185
272.7734
82.4274
330.9258
0.0000
3.4822
38.5288
-68.9228
0.0000
0.0000
0.0000
0.0000 | 0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | (213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232)
(233a)
(235a)
(235a)
(235b)
(235b)
(235b)
(235d)
(211)
(213)
(215)
(219) | | Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco
323.8702) Water heating requiremen 322.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (235b)m 0.0000 Annual totals kWh/year Space heating fuel - mai Space heating fuel - mai Space heating fuel - sec Efficiency of water heat water heating fuel used Space cooling fuel | 0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 vind turbi 0.0000 hydro-elec 0.0000 PVS (Appen 0.0000 PVS (Appen 0.0000 hydro-elect 0.0000 hydro-elect 0.0000 hydro-elect 0.0000 hydro-elect 0.0000 n system 1 n system 2 ondary er | 0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 dtric genera 0.0000 dix M) (neg | 0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 iix M) (nega 0.0000 tors (Appen 0.0000 jotive quant | 0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 dix M) (nec 0.0000 ity) 0.0000 tive quanti 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 | 0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000) | 0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g | 0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 eneration) | 0.0000
0.0000
242.8120
75.0000
323.7494
0.0000
3.3699
29.3653
-80.0985
0.0000
0.0000
0.0000
0.0000 | 0.0000
160.3185
272.7734
82.4274
330.9258
0.0000
3.4822
38.5288
-68.9228
0.0000
0.0000
0.0000
0.0000 | 0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 0.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 21307.3056 0.0000 1870.3079 75.0000 4117.7106 0.0000 | (213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232)
(233a)
(234a)
(235a)
(235a)
(235b)
(235b)
(235b)
(235d)
(211)
(213)
(215)
(219)
(211) | | Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco 323.8702) Water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (234b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (235b)m 0.0000 Alectricity generated by (235b)m 0.0000 Alectricity generated by (235b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (25b)m 0.0000 Electricity generated by (25b)m 0.0000 Electricity generated by 0.0000 Annual totals kWh/year Space heating fuel - mai Space heating fuel - mai Space heating fuel - sec Efficiency of water heat Water heating fuel used Space cooling fuel Electricity for pumps an central heating pump Total electricity for pumps an central heating pump | 0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 PVS (Appen -59.2631 wind turbi 0.0000 hydro-elec 0.0000 ploctricity 0.0000 wind turbi 0.0000 hydro-electricity 0.0000 nydro-electricity 0.0000 nydro-electricity 0.0000 nydro-electricity 0.0000 nydro-electricity 0.0000 nydro-electricity 0.0000 nydro-electricity 0.0000 electricity 0.0000 nydro-electricity 0.0000 electricity | 0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 tric generated 0.0000 dix M) (neg 0.0000 tric generated 0.0000 constric generated 0.0000 constric generated 0.0000 dix M) (neg | 0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 pative quant -107.8143 six M) (nega 0.0000 tors (Appen 0.0000 pt micro-CH 0.0000 ix M) (nega 0.0000 ix M) (nega 0.0000 by micro-CH 0.0000 by micro-CH 0.0000 | 0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 dix M) (nec 0.0000 ity) 0.0000 tive quanti 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 dix M) (nec 0.0000 | 0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000) | 0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g | 0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 eneration) | 0.0000
0.0000
242.8120
75.0000
323.7494
0.0000
3.3699
29.3653
-80.0985
0.0000
0.0000
0.0000
0.0000 | 0.0000
160.3185
272.7734
82.4274
330.9258
0.0000
3.4822
38.5288
-68.9228
0.0000
0.0000
0.0000
0.0000 | 0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 21307.3056 0.0000 1870.3079 75.0000 411.7106 0.0000 | (213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232)
(233a)
(235a)
(235a)
(235b)
(235b)
(235b)
(235d)
(211)
(213)
(215)
(219)
(221) | | Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco 323.8702) Water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity generated by (235a)m 0.0000 Electricity used or net (235c)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (25b)m 0.0000 Electricity for net (255d)m 0.0000 Electricity for net (255d)m 0.0000 Electricity for pumps an central heating pump Total electricity for the Electricity for lighting | 0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 vind turbi 0.0000 hydro-elec 0.0000 PVs (Appen 0.0000 PVs (Appen 0.0000 hydro-electicity 0.0000 hydro-electicity 0.0000 rement 0.0000 hydro-electicity 0.0000 rement 0.0000 hydro-electicity 0.0000 hydro-electicity 0.0000 rement 0.0000 hydro-electicity 0.0000 electricity 0.0000 rement 0.0000 hydro-electicity | 0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 dix M) (neg 0.00000 dix M) (neg 0.0000 0.00000 dix M) (neg 0.00000 dix M) (neg 0.00000 dix M) (neg 0.000000000 dix M) (neg 0.00 | 0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 jix M) (nega 0.0000 by micro-CR 0.0000 jative quant | 0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 (P (Appendix M) (neg 0.0000 ity) 0.0000 (ity) 0.0000 (ity) 0.0000 (ity) (ity) 0.0000 | 0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000) | 0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g | 0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 eneration) | 0.0000
0.0000
242.8120
75.0000
323.7494
0.0000
3.3699
29.3653
-80.0985
0.0000
0.0000
0.0000
0.0000 | 0.0000
160.3185
272.7734
82.4274
330.9258
0.0000
3.4822
38.5288
-68.9228
0.0000
0.0000
0.0000
0.0000 | 0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 21307.3056 0.0000 1870.3079 75.0000 411.7106 0.0000 | (213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232)
(233a)
(235a)
(235a)
(235b)
(235b)
(235b)
(235d)
(211)
(213)
(215)
(219)
(221) | | Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco 323.8702) Water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (234b)m
0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (235b)m 0.0000 Alectricity generated by (235b)m 0.0000 Alectricity generated by (235b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (25b)m 0.0000 Electricity generated by (25b)m 0.0000 Electricity generated by 0.0000 Annual totals kWh/year Space heating fuel - mai Space heating fuel - mai Space heating fuel - sec Efficiency of water heat Water heating fuel used Space cooling fuel Electricity for pumps an central heating pump Total electricity for pumps an central heating pump | 0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 vind turbi 0.0000 hydro-elec 0.0000 PVs (Appen 0.0000 PVs (Appen 0.0000 hydro-electicity 0.0000 hydro-electicity 0.0000 rement 0.0000 hydro-electicity 0.0000 rement 0.0000 hydro-electicity 0.0000 hydro-electicity 0.0000 rement 0.0000 hydro-electicity 0.0000 electricity 0.0000 rement 0.0000 hydro-electicity | 0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 dix M) (neg 0.00000 dix M) (neg 0.0000 0.00000 dix M) (neg 0.00000 dix M) (neg 0.00000 dix M) (neg 0.000000000 dix M) (neg 0.00 | 0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 jix M) (nega 0.0000 by micro-CR 0.0000 jative quant | 0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 (P (Appendix M) (neg 0.0000 ity) 0.0000 (ity) 0.0000 (ity) 0.0000 (ity) (ity) 0.0000 | 0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000) | 0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g | 0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 eneration) | 0.0000
0.0000
242.8120
75.0000
323.7494
0.0000
3.3699
29.3653
-80.0985
0.0000
0.0000
0.0000
0.0000 | 0.0000
160.3185
272.7734
82.4274
330.9258
0.0000
3.4822
38.5288
-68.9228
0.0000
0.0000
0.0000
0.0000 | 0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 21307.3056 0.0000 1870.3079 75.0000 411.7106 0.0000 | (213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232)
(233a)
(234a)
(235a)
(235b)
(235b)
(235b)
(235b)
(215)
(211)
(213)
(215)
(219)
(221) | | Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco 323.8702) Water heating requiremen 332.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (234a)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235c)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (25b)m 0.0000 Electricity generated by (25b)m 0.0000 Electricity used or net (255d)m 0.0000 Annual totals kWh/year Space heating fuel - mai cooling fuel Electricity for pumps an central heating pump Total electricity for the Electricity for lighting Energy saving/generation Wind generation Wind generation | 0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 vind turbi 0.0000 hydro-elec 0.0000 electricity 0.0000 hydro-elec 0.0000 ind turbi 0.0000 hydro-elec 0.0000 nydro-elec 0.0000 nydro-elec 0.0000 nydro-elec 0.0000 nydro-elec 0.0000 hydro-elec | 0.0000 (stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neg -90.9786 nes (Append 0.0000 dix Id (neg) 0.0000 dix M) | 0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 jix M) (nega 0.0000 by micro-CR 0.0000 jative quant | 0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 (P (Appendix M) (neg 0.0000 ity) 0.0000 (ity) 0.0000 (ity) 0.0000 (ity) (ity) 0.0000 | 0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000) | 0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g | 0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 eneration) | 0.0000
0.0000
242.8120
75.0000
323.7494
0.0000
3.3699
29.3653
-80.0985
0.0000
0.0000
0.0000
0.0000 | 0.0000
160.3185
272.7734
82.4274
330.9258
0.0000
3.4822
38.5288
-68.9228
0.0000
0.0000
0.0000
0.0000 | 0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 21307.3056 0.0000 1870.3079 75.0000 411.7106 0.0000 41.0000 376.4293 | (213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232)
(233a)
(234a)
(235a)
(235a)
(235b)
(235b)
(235b)
(235b)
(235b)
(235b)
(211)
(213)
(215)
(211)
(211)
(212)
(212)
(212)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(213)
(21 | | Space heating fuel (main 0.0000) Space heating fuel (seco 323.8702) Water heating fuel (seco 323.8702) Water heating requiremen 322.0665 Efficiency of water heat (217)m 82.9816 Fuel for water heating, 400.1689 Space cooling fuel requi (221)m 0.0000 Pumps and Fa 3.4822 Lighting 46.6422 Electricity generated by (233a)m -39.1139 Electricity generated by (235a)m 0.0000 Electricity generated by (235a)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (233b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity generated by (235b)m 0.0000 Electricity used or net (235d)m 0.0000 Annual totals kMh/year Space heating fuel - mai Space heating fuel - mai Space heating fuel - mai Space heating fuel - sec Efficiency of water heat Water heating fuel used Space cooling fuel Electricity for pumps an central heating pump Total electricity for lighting Energy saving/generation FV generation | 0.0000 heating sy 0.0000 ndary) 270.7356 t 293.5970 er 82.9298 kWh/month 354.0306 rement 0.0000 3.1452 37.4181 0.0000 hydro-elec 0.0000 PVs (Appen 0.0000 PVs (Appen 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 rement 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 hydro-elec 0.0000 electricity 0.0000 hydro-elec 0.0000 electricity 0.0000 hydro-elec | 0.0000
(stem 2) 0.0000 253.7435 311.1852 82.8083 375.7897 0.0000 3.4822 33.6909 dix M) (neq -90.9786 nes (Appendi 0.0000 tric genera 0.0000 generated 0.0000 dix M) (neg 0.0000 generated 0.0000 dix M) (neg 0.00000 dix M) (neg 0.00000 dix M) (neg 0.00000 dix M) (neg 0.000000 dix M) (neg 0.00000000000000000000000000000000000 | 0.0000 0.0000 178.8693 271.2586 82.5712 328.5150 0.0000 3.3699 24.6834 jative quant -107.8143 iix M) (nega 0.0000 by micro-CH 0.0000 by micro-CH 0.0000 jative quant | 0.0000 112.2013 261.4914 81.9766 318.9829 0.0000 3.4822 19.0661 ity) -118.2695 tive quanti 0.0000 (P (Appendix M) (neg 0.0000 ity) 0.0000 (ity) 0.0000 (ity) 0.0000 (ity) (ity) 0.0000 | 0.0000 0.0000 233.9851 75.0000 311.9802 0.0000 3.3699 15.5772 -101.9542 ty) 0.0000 x N) (negative quant 0.0000 0.0000 ty) 0.0000 (ative quant 0.0000 (ative quant 0.0000 0.0000 (ative quant 0.0000 (ative quant 0.0000 (ative quant 0.0000) | 0.0000 0.0000 229.4653 75.0000 305.9537 0.0000 3.4822 17.3928 -100.5457 0.0000 ity) 0.0000 0.0000 ve if net g | 0.0000 0.0000 239.3156 75.0000 319.0875 0.0000 3.4822 22.6078 -92.8808 0.0000 0.0000 eneration) 0.0000 0.0000 0.0000 eneration) | 0.0000
0.0000
242.8120
75.0000
323.7494
0.0000
3.3699
29.3653
-80.0985
0.0000
0.0000
0.0000
0.0000 | 0.0000
160.3185
272.7734
82.4274
330.9258
0.0000
3.4822
38.5288
-68.9228
0.0000
0.0000
0.0000
0.0000 | 0.0000 243.9488 292.6005 82.8311 353.2496 0.0000 3.3699 43.5182 -44.1156 0.0000 0.0000 0.0000 0.0000 0.0000 | 0.0000 326.6207 328.0801 75.0000 83.0000 395.2773 0.0000 3.4822 47.9385 -33.3739 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1307.3056 0.0000 1870.3079 75.0000 411.7106 0.0000 41.0000 376.4293 | (213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232)
(233a)
(234a)
(235a)
(235b)
(235b)
(235b)
(235b)
(235d)
(211)
(213)
(211)
(212)
(221)
(230c)
(231)
(232)
(233)
(233)
(233)
(233)
(233)
(233)
(233)
(233)
(233)
(233)
(233) | SAP 10 Online 2.14.29 Page 3 of 4 -0.0000 (236) 0.0000 (237) 26775.4224 (238) Energy saved or generated Energy used Total delivered energy for all uses 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP Energy kWh/year 21307.3056 Emission factor kg CO2/kWh 0.2100 Emissions Space heating - main system 1 Total CO2 associated with community systems Space heating - secondary Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting 0.0000 (373) 287.1989 (263) 1870.3079 0.1536 864.7192 (264) 5626.4523 (265) 4117.7106 0.2100 0.1387 0.1443 41.0000 376.4293 5.6872 (267) 54.3304 (268) Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported -937.3310 0.1343 -125.8511 0.0000 -125.8511 (269) 5560.6189 (272) 26.7800 (273) 0.0000 0.0000 Total CO2, kg/year EPC Dwelling Carbon Dioxide Emission Rate (DER) 13a. Primary energy - Individual heating systems including micro-CHP Energy Primary energy factor Primary energy mary energy kWh/year 24077.2553 (275) 0.0000 (473) 2933.5959 (277) 4653.0130 (278) 31663.6642 (279) 62.0248 (281) 577.3799 (282) kWh/year 21307.3056 kg CO2/kWh Space heating - main system 1 Total CO2 associated with community systems Space heating - secondary Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting 1870.3079 4117.7106 Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported -937.3310 -1402.4563 0.0000 0.0000 0.0000 -1402.4563 (283) Total Total Primary energy kWh/year Dwelling Primary energy Rate (DPER) 30900.8126 (286) 148.8200 (287) SAP 10 Online 2.14.29 Page 4 of 4 | Property Reference | | | 20 Whiteladies | Rd | | | | D T D | | Issued on Da | ate | 12/07/2024 | | |---|---|-------------------------------|-----------------------|--|-----------------------------|---|--|--|--|---|--|---|--| | Assessment Refer | ence | | Proposed PV | D 01:5 DI | DIOTOL DOG 31 | | | Prop Type R | cer | | | | | | Property | | | 20 Writelaules | Road, Ciliton, Bi | RISTOL, BS8 2L0 | <u> </u> | | | | | | | | | SAP Rating | | | | | 70 C | | DER | 5.0 | 02 | TER | | | | | Environmental | | | | | 95 A | | % DER < TER | | | | | N/A | | | CO ₂ Emissions (t/) | | | | | 0.89 | | DFEE | | .13 | TFEE | | | | | Compliance Check | k | | | | See BREL | | % DFEE < TFE | | | T055 | | | | | % DPER < TPER | | | | | | | DPER | 51 | .32 | TPER | ξ | | | | Assessor Details | | Mr. F | Richard Millard | | | | | | | Asses | ssor ID | U367-00 | D1 | | SAP 10 WORKSHEET
CALCULATION OF D | | | | | | 022) | | | | | | | | | 1. Overall dwell Ground floor First floor | ing charac | teristi | CS | | | | | Area
(m2)
24.6800
91.4800 | (lb) x
(lc) x | 2.2500 | (2b) =
(2c) = | 205.8300 | (1b) - (3l
(1c) - (3c | | Second floor Total floor area Dwelling volume 2. Ventilation r | |)+(1b)+ | (1c) + (1d) + (1e | e)(ln) | 20 | 7.6400 | | 91.4800 | (1d) x
3a)+(3b)+(3c) | 3.7200
+(3d)+(3e) | (3n) = | 618.4480
m3 per hour | | | Number of open c
Number of open f
Number of chimme
Number of flues
Number of flues
Number of blocke
Number of interm
Number of passiv
Number of fluele | lues ys / flues attached to attached to d chimneys ittent ext e vents | o solid
o other
ract fa | fuel boiler
heater | fire | | | | | | | | 0.0000
0.0000
0.0000
0.0000
0.0000
100.0000
0.0000 | (6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b) | | Infiltration due
Pressure test
Pressure Test Me
Measured/design
Infiltration rat
Number of sides | thod
AP50
e | ys, flu | es and fans | = (6a)+(6b) |)+(6c)+(6d)+(| 6e)+(6f)+(| (6g) + (7a) + (7 | 7b)+(7c) = | | 100.0000 | / (5) = | es per hour
0.1617
Yes
Blower Door
5.0000
0.4117 | (8) | | Shelter factor
Infiltration rat | | | | | | | | | | 1) = (18) : | x (20) = | 0.3499 | (21) | | Wind speed
Wind factor
Adj infilt rate | | | | | | | | | | | | | | | Effective ac | 0.4462
0.5995 | 0.437
0.595 | 4 0.4287
7 0.5919 | 0.3849
0.5741 | 0.3762
0.5708 | 0.3324
0.5553 | 0.3324
0.5553 | 0.3237
0.5524 | 0.3499
0.5612 | 0.3762
0.5708 | 0.3937
0.5775 | 0.4112
0.5845 | (22b)
(25) | | 3. Heat losses a | nd heat lo | ss para | meter | | | | | | | | | _ | | | Element
Timber Sash Wind
RF-01
RF-02 | ows (Uw =) | 1.40) | | Gross
m2 | Openings
m2 | Net
16.
0. | Area
m2
.9300
.8400
.8400 | U-value
W/m2K
1.3258
1.2357
1.2357 | A x
W/
22.445
1.038
1.038 | U K
K 1
1
0 | -value
kJ/m2K | A x K
kJ/K | (27)
(27a)
(27a) | | Element Timber Sash Wind RF-01 RF-02 Ground Floor Exposed Floor Fr Retained Ground Retained Upper F New Cavity Wall Retained Flat Ro New Flat Roof Retained Sloping Retained Flane C Total net area o | ar ont Floor loors of Ceiling eiling f external | elemen | ts Aum(A, m2) | 48.0600
194.9900
16.1500
39.3800
12.6000
27.2800
20.6500 | 4.7500
12.1800
1.6800 | 24.
30.
36.
43.
182.
16.
39.
12.
25.
20.
450. | 6800
4400
3600
3100
8100
1500
3800
6000
6500
5900 | 0.9800
0.1600
0.2100
0.2200
0.2800
0.1800
0.1600
0.1600
0.1600 | 24.186
4.870
7.635
9.528
51.186
2.907
6.300
2.016
4.096
2.684 | 4 11:
46 2:
2 19:
8 19:
0 7:
8 0 | 0.0000
0.0000
0.0000
0.0000
9.0000
9.0000
9.0000
9.0000 | 2714.8000 727.2000 8228.9000 34733.9000 1130.5000 354.4200 113.4000 230.4000 185.8500 | (28a)
(28b)
(28b)
(29a)
(29a)
(29a)
(30)
(30)
(30)
(30)
(31) | | Fabric heat loss
Party Wall 1
Internal Floor 1
Internal Floor 2 | , W/K = Su | m (Axi | U) | | | 117.
24. | (26)(3 | 30) + (32) | = 198.537
58.605 | 8
0 18
1 | 0.0000
8.0000 | 21097.8000
444.2400
1646.6400 | (33)
(32)
(32d) | SAP 10 Online 2.14.29 Page 1 of 4 | Internal Ceilin | | | | | | | .6800
.4800 | | | | 9.0000
9.0000 | 222.1200
823.3200 | |
--|-------------------------------------|-------------------------|------------------------|-----------------------|--|-----------------------|----------------------------|-----------------------|-------------------------|----------------------------|----------------------|---|----------------------| | Heat capacity (Thermal mass portion of the property pr | arameter (
s (Default
oridges | TMP = Cm / 1 | | | 1) | | | (28). | | 2) + (32a)
33) + (36) + | (36a) = | 72653.4900
349.9012
90.1180
0.0000
288.6558 | (35)
(36) | | Ventilation hea | | | | | | _ | | | | | | | | | (38)m | Jan
122.3580 | Feb
121.5692 | Mar
120.7960 | Apr
117.1643 | May
116.4848 | Jun
113.3217 | Jul
113.3217 | Aug
112.7359 | Sep
114.5401 | Oct
116.4848 | Nov
117.8594 | Dec
119.2964 | (38) | | Heat transfer (Average = Sum(| 411.0138 | 410.2250 | 409.4518 | 405.8201 | 405.1406 | 401.9775 | 401.9775 | 401.3918 | 403.1959 | 405.1406 | 406.5152 | 407.9522
405.8168 | (39) | | HLP | Jan
1.9795 | Feb
1.9757 | Mar
1.9719 | Apr
1.9544 | May
1.9512 | Jun
1.9359 | Jul
1.9359 | Aug
1.9331 | Sep
1.9418 | Oct
1.9512 | Nov
1.9578 | Dec
1.9647 | (40) | | HLP (average)
Days in mont | 31 | 28 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 1.9544 | | | | | | | | | | | | | | | | | | 4. Water heating | | | s (kWh/year) | 1 | | | | | | | | | | | Assumed occupan | псу | | | | | | | | | | | 3.0119 | (42) | | Hot water usage | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (42a) | | Hot water usage | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (42b) | | Average daily I | 45.4744 | 43.8208 | 42.1672
/day) | 40.5136 | 38.8600 | 37.2064 | 37.2064 | 38.8600 | 40.5136 | 42.1672 | 43.8208 | 45.4744
41.3404 | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Daily hot water | 45.4744 | 43.8208 | 42.1672 | 40.5136 | 38.8600 | 37.2064 | 37.2064 | 38.8600 | 40.5136 | 42.1672 | 43.8208 | 45.4744 | | | Energy conte
Energy content
Distribution 10 | | 62.4003 | 64.8094 | 55.4611 | 52.3130 | 45.7496 | 44.9979 | 48.1168 | 49.9573 | 57.2205
Total = Si | 62.4308
am(45)m = | 71.2020
686.6790 | (45) | | Water storage : | 0.0000
loss: | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (46) | | Total storage : | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (56) | | Primary loss | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Combi loss
Total heat req | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | WWHRS | 61.2173
0.0000 | 53.0402
0.0000 | 55.0880
0.0000 | 47.1419
0.0000 | 44.4660
0.0000 | 38.8871
0.0000 | 38.2482
0.0000 | 40.8993
0.0000 | 42.4637
0.0000 | 48.6374
0.0000 | 53.0662
0.0000 | 60.5217
0.0000 | | | PV diverter
Solar input | -0.0000
0.0000 (63c) | | FGHRS
Output from w/l | 0.0000
h
61.2173 | 0.0000
53.0402 | 0.0000
55.0880 | 0.0000 | 0.0000 | 0.0000
38.8871 | 0.0000 | 0.0000
40.8993 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | 12Total per yea | ar (kWh/ye | | 55.0000 | 47.1419 | 44.4660 | 30.00/1 | 38.2482 | | 42.4637
er year (kW | 48.6374
h/year) = Si | 53.0662
um(64)m = | 60.5217
583.6771
584 | | | Electric shower | 76.8916 | 68.5110 | 74.8114 | 71.3916
Tot | 72.7313
al Energy us | 69.3786 | 71.6912 | 72.7313 | 71.3916
wer(s) (WWh | 74.8114
/wear) = Sur | 73.4047 | | | | Heat gains from | n water he
34.5272 | ating, kWh/r
30.3878 | month
32.4749 | 29.6334 | 29.2993 | 27.0664 | 27.4848 | 28.4076 | 28.4638 | 30.8622 | 31.6177 | 34.3533 | | | | | | | | | | | | | | | | | | 5. Internal gas | ins (see T | able 5 and 5 | 5a)
 | | | | | | | | | | | | Metabolic gains | Jan | Feb | Mar | Apr | | Jun | Jul | | Sep | Oct | Nov | Dec | | | (66)m
Lighting gains | (calculate | ed in Append | dix L, equat | ion L9 or | 150.5929
L9a), also s | see Table 5 | | | | | | | | | Appliances gain | ns (calcula | ated in Appe | endix L. em | ation L13 | 224.4785
or L13a), al
324.6465 | lso see Tabi | le 5 | | | | | | | | Cooking gains | (calculate | d in Append: | ix L, equati | ion L15 or | Ll5a), also | see Table | 5 | | | | | | | | Pumps, fans
Losses e.g. eva | 0.0000
aporation | 0.0000
(negative va | 0.0000
alues) (Tabl | 0.0000
Le 5) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (70) | | Water heating | gains (Tab | le 5) | | | -120.4743 | | | | | | | | | | Total internal | gains | | | | 39.3808 | | | | | | | | | | | 717.3136 | 744.1023 | 708.5891 | 692.5234 | 656.6838 | 637.3960 | 612.5738 | 609.8890 | 628.6135 | 644.1360 | 680.6310 | 700.3905 | (73) | | 6. Solar gains | | | | | | | | | | | | | | | [Jan] | | | | | | | | | FF | Acces | 35 | Gains | | | | | | | | Solar flux
Table 6a
W/m2 | | | | | | | | | | Northeast
Southwest
Northwest | | | 6.16
7.64
3.13 | 500
100
300 | 11.2829
36.7938
11.2829
40.0991 | | 0.6300
0.6300
0.6300 | 0
0
0 | .7000
.7000
.7000 | 0.770
0.770
0.770 | 00
00
00 | 21.2410
85.9093
10.7929 | (75)
(79)
(81) | | Southeast | | | 1.68 | 300 | 40.0991 | | 0.6300 | ō | .7000 | 1.000 | 00 | 26.7378 | (82) | | Solar gains
Total gains | 144.6810
861.9946 | 260.5955
1004.6978 | 392.3466
1100.9357 | 543.1875
1235.7109 | 658.3638
1315.0476 | 675.0061
1312.4022 | 641.9127
1254.4865 | 553.0892
1162.9782 | 444.3244
1072.9379 | 297.8366
941.9726 | 175.9149
856.5459 | 122.0975
822.4880 | (83)
(84) | | 7 Moon interes | | | | | | | | | | | | | | SAP 10 Online 2.14.29 Page 2 of 4 7. Mean internal temperature (heating season) | Temperature du
Utilisation fa | | | | | | Th1 (C) | | | | | | 21.0000 | (85) | |--|---|-------------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|-------------------------------|-------------------------------|--------------------------------|-------------------------------|------------------------------|---|-------------------------| | tau
alpha | Jan
49.1018
4.2735 | Feb
49.1962
4.2797 | Mar
49.2891
4.2859 | Apr
49.7302
4.3153 | May
49.8136
4.3209 | Jun
50.2056
4.3470 | Jul
50.2056
4.3470 | Aug
50.2789
4.3519 | Sep
50.0539
4.3369 | Oct
49.8136
4.3209 | Nov
49.6452
4.3097 | Dec
49.4703
4.2980 | | | util living ar | 0.9999 | 0.9997 | 0.9994 | 0.9981 | 0.9931 | 0.9730 | 0.9223 | 0.9459 | 0.9901 | 0.9988 | 0.9998 | 0.9999 | (86) | | Living
Non living
24 / 16
24 / 9 | 18.8877
16.9434
0
31 | 19.0282
17.1253
0
28 | 19.2962
17.4707
0
31 | 19.7019
17.9981
0
30 | 20.1306
18.5461
0
31 | 20.5415
19.0590
0
30 | 20.7836
19.3040
0
31 | 20.7358
19.2707
0
31 | 20.3919
18.8820
0
30 | 19.8442
18.1825
0 | 19.3082
17.4923
0 | 18.8736
16.9316
0
31 | | | 16 / 9
MIT
Th 2 | 0
21.0000
19.3471 | 0
21.0000
19.3496 | 0
21.0000
19.3521 | 0
21.0000
19.3639 | 0
21.0000
19.3661 | 0
21.0000
19.3764 | 0
21.0000
19.3764 | 0
21.0000
19.3783 | 0
21.0000
19.3724 |
0
21.0000
19.3661 | 0
21.0000
19.3616 | 0
21.0000
19.3570 | (87) | | util rest of h | 0.9998
19.3471 | 0.9996
19.3496 | 0.9990
19.3521 | 0.9966
19.3639 | 0.9858
19.3661 | 0.9304
19.3764 | 0.7626
19.3764 | 0.8242
19.3783 | 0.9738
19.3724 | 0.9976
19.3661 | 0.9996
19.3616 | 0.9999
19.3570 | (90) | | Living area fr
MIT
Temperature ad | 19.5526
ljustment | 19.5548 | 19.5570 | 19.5673 | 19.5693 | 19.5783 | 19.5783 | 19.5800 | 19.5748 | Living are
19.5693 | 19.5654 | 0.1243
19.5613
0.0000 | | | adjusted MIT | 19.5526 | 19.5548 | 19.5570 | 19.5673 | 19.5693 | 19.5783 | 19.5783 | 19.5800 | 19.5748 | 19.5693 | 19.5654 | 19.5613 | (93) | | | | | | | | | | | | | | | | | 8. Space heati | ng require | ment | | | | | | | | | | | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Utilisation Useful gains Ext temp. Heat loss rate | 0.9998
861.8401
4.3000 | 0.9996
1004.3020
4.9000 | 0.9991 | 0.9968
1231.7580
8.9000 | 0.9871
1298.0624
11.7000 | 0.9386
1231.7736
14.6000 | 0.7935
995.4377
16.6000 | 0.8489
987.2706
16.4000 | 0.9770
1048.2761
14.1000 | 0.9978
939.9280
10.6000 | 0.9996
856.2108
7.1000 | 0.9999
822.3722
4.2000 | (95) | | Space heating | | 6011.7807 | 5346.2226 | 4329.0170 | 3188.1581 | 2001.1573 | 1197.2023 | 1276.4079 | 2207.4185 | 3633.8128 | 5067.3560 | 6266.6668 | (97) | | Space heating
Solar heating | requiremen | | 3159.2381
er year (kW | | 1406.2312 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 2004.2503 | 3032.0246 | 4050.5551
23270.3025 | (98a) | | Solar heating
Space heating | 0.0000
contributi | 0.0000
on - total | 0.0000
per year (k | 0.0000
Wh/year) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
0.0000 | (98b) | | | 4022.9511
requiremen | | 3159.2381
ar contribu | | | 0.0000
(kWh/year) | 0.0000 | 0.0000 | 0.0000 | 2004.2503
(98c | | 4050.5551
23270.3025
112.0704 | | | | | | | | | | | | | | | | | | 9a. Energy req | uirements | - Individua | al heating s | ystems, inc | luding micr | ro-CHP | | | | | | | | | Fraction of sp | | | |
ntary syste | m (Table 11 | L) | | | | | | 0.0000 | | | Fraction of sp
Efficiency of
Efficiency of
Efficiency of | main space
main space | heating sy
heating sy | stem 1 (in
stem 2 (in | %) | | | | | | | | 1.0000
386.6586
0.0000
100.0000 | (206)
(207) | | Space heating | Jan
requiremen | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | | 4022.9511 | 3365.0257 | 3159.2381 | | 1406.2312 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 2004.2503 | 3032.0246 | 4050.5551 | (98) | | Space heating | 386.6586 | 386.6586 | 386.6586 | | 386.6586 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 386.6586 | 386.6586 | 386.6586 | (210) | | | 1040.4400 | 870.2833 | 817.0613 | 576.7430
2) | 363.6880 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 518.3514 | 784.1606 | 1047.5791 | (211) | | Space heating | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (212) | | Space heating | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating
Water heating | | | | 45 1410 | 44.4660 | 00 0071 | 22 2422 | 40.0000 | 40, 4600 | 40.5074 | 50.000 | 60 5015 | (54) | | Efficiency of (217)m | | | 55.0880
100.0000 | 47.1419
100.0000 | 44.4660
100.0000 | 38.8871
100.0000 | 38.2482
100.0000 | 40.8993 | 42.4637
100.0000 | 48.6374
100.0000 | 53.0662
100.0000 | 60.5217
100.0000 | (216) | | Fuel for water | | | 55.0880 | 47.1419 | 44.4660 | 38.8871 | 38.2482 | 40.8993 | 42.4637 | 48.6374 | 53.0662 | 100.0000 | | | Space cooling (221)m | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Pumps and Fa
Lighting | 0.0000
46.6422 | 0.0000
37.4181 | 0.0000 | 0.0000
24.6834 | 0.0000
19.0661 | 0.0000 | 0.0000
17.3928 | 0.0000
22.6078 | 0.0000
29.3653 | 0.0000
38.5288 | 0.0000
43.5182 | 0.0000
47.9385 | (231) | | Electricity ge
(233a)m | nerated by | PVs (Appen | | ative quant | ity) | | | | -87.2307 | -77.5428 | -48.1823 | -35.8214 | | | Electricity ge
(234a)m | nerated by 0.0000 | | | ix M) (nega
0.0000 | tive quanti
0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | (234a) | | Electricity ge
(235a)m | nerated by 0.0000 | | tric genera | tors (Appen
0.0000 | dix M) (neg
0.0000 | gative quant
0.0000 | ity)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | (235a) | | Electricity us
(235c)m | ed or net
0.0000 | electricity
0.0000 | | by micro-CH
0.0000 | P (Appendix
0.0000 | | ve if net g
0.0000 | eneration)
0.0000 | 0.0000 | 0.0000 | 0.0000 | | (235c) | | Electricity ge
(233b)m | nerated by
0.0000 | PVs (Appen
0.0000 | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (233b) | | Electricity ge
(234b)m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234b) | | Electricity ge
(235b)m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235b) | | Electricity us
(235d)m | 0.0000 | electricity
0.0000 | | by micro-CH
0.0000 | | | ve if net g
0.0000 | eneration)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235d) | | Annual totals
Space heating
Space heating
Space heating
Efficiency of
Water heating | fuel - mai
fuel - mai
fuel - sec
water heat
fuel used | n system 2
ondary | | | | | | | | | | 6018.3067
0.0000
0.0000
100.0000
583.6771 | (213)
(215)
(219) | | Space cooling Electricity fo Total electric | r pumps an | e above, kW | | iw T\ | | | | | | | | 0.0000 | (231) | | Electricity fo
Energy saving/ | | | | | d Q) | | | | | | | 376.4293 | | | PV generation | | | | | | | | | | | | -1052.3411 | (233) | SAP 10 Online 2.14.29 Page 3 of 4 | Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses | | | 0.0000 (234)
0.0000 (235a)
0.0000 (235)
-0.0000 (236)
0.0000 (237)
6800.7094 (238) | |---|---|--|---| | 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP | | | | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Energy for instantaneous electric shower(s) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total Total CO2, kg/year EPC Dwelling Carbon Dioxide Emission Rate (DER) | Energy
kWh/year
6018.3067
583.6771
874.6373
0.0000
376.4293
-1052.3411
0.0000 | kg CO2/kWh
0.1535
0.1416
0.1391
0.0000
0.1443 | kg CO2/year
923.9879 (261)
0.0000 (373)
82.6702 (264)
121.6814 (264a)
1006.6581 (265)
0.0000 (267) | | 13a. Primary energy - Individual heating systems including micro-CHP | | | | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Energy for instantaneous electric shower(s) Space and water heating Pumps, fans and electric keep-hot Energy for lighting | Energy | 1.5238
1.5143
0.0000 | MWh/year
9439.1587 (275)
0.0000 (473)
889.3809 (278)
1324.4932 (278a)
10328.5396 (279)
0.0000 (281) | | Energy saving/generation technologies
PV Unit electricity used in dwelling
PV Unit electricity exported
Total
Total Primary energy kWh/year
Dwelling Primary energy Rate (DPER) | -1052.3411
0.0000 | | -1574.7030
0.0000
-1574.7030 (283)
10655.7096 (286)
51.3200 (287) | SAP 10 Online 2.14.29 Page 4 of 4 #### BRIDGING THE PERFORMANCE GAP Building Energy Experts is an award-winning sustainability consulting, testing, and retrofit company. We help housebuilders, homeowners, architects, and planners to design robust sustainability strategies, calculate energy profiles, and model the energy performance of new buildings. buildingenergy experts.co.uk