

CLIENT:	Nyobolt Limited
PROJECT:	Pilot Facility
SUBJECT:	Low Impact Installation Criteria Assessment (REDACTED)
JOB NO.:	BM12404
DATE:	October 2024
PREPARED BY:	Dominiqua Drakeford-Allen (Associate Director)

- 1.1.1 Nyobolt Limited have commissioned Wardell Armstrong to prepare this Technical Note, demonstrating how the Low Impact Installation (LII) Criteria is met for their Pilot Facility in Haverhill, Suffolk.
- 1.1.2 The full site address is Unit 1a and b, Homefield Road, Homefield Industrial Estate, Haverhill, CB9 8QP.
- 1.1.3 Nyobolt are seeking an environmental permit to authorise their operations which will produce product A. This material has the potential to significantly improve lithium-ion battery technology allowing the storage of large amounts of energy and helping to speed up the adoption of electric vehicle technologies. Nyobolt is at the cutting edge of research and development in this area.
- 1.1.4 The process is relatively simple in regard to stages; in that two metal oxides are milled, mixed, dried, baked, deagglomerated and blended. Appendix 1 provides a process overview.
- 1.1.5 There is one emission point to air, which is described in more detail in the table below.
- 1.1.6 The pilot facility will deal with relatively low volumes of materials; and incrementally increase production. In the first year it is anticipated that up to 20 tonnes of product A may be produced, increasing to 100 200 tonnes in the subsequent year and 900 tonnes in the year after that.
- 1.1.7 Table 1 below sets out the LII criteria and provides justification and detail for each element of the criteria. The principles that this assessment has been carried out against are those set out in Guidance Notes on Part B2 General New Bespoke Permit (EPB2 Version 17, September 2023).

	Table 1: Low Impact Installation – Supporting Evid	ence and Demonstration that Criteria is Met	
LII Principal	Principal Description	Demonstration of Criteria being Met	Confirmation
	(EPB2 Version 17, September 2023)		Criteria is Met
			(Yes/No)
A. Management	All of the criteria described below must be met without having	The facility and associated processes are managed by	Yes
Techniques	to rely on significant management effort. In other words, the	Nyobolt, and under normal operating conditions have very	
	installation intrinsically must have only a low environmental	low environmental risk.	
	impact, including under start up, shut down, or abnormal		
	operating conditions.	The process is relatively simple. It comprises of stages of	
		precursors milled, mixed, dried, baked, deagglomerated and	
		blended. The process does not need chemicals being added	
		in at different stages in specific amounts, only water is	
		added to aid in the cohesion of the two oxides.	
		This is a pilot facility, and the volumes of material to be	
		processed at any one time are relatively low.	
		All of the following criteria described below rely on minimal	
		management effort.	
B. Wastewater	The installation must not release more than 50m ³ per day of	There will be no release of water from process activities.	Yes
	water from process activities conducted at the installation	Small amounts of aqueous non-hazardous slurry waste may	
	giving rise to effluent. No account need be taken of the volume	occasionally arise during cleaning or sampling, which is	
	of water exported from the installation as product. Characterise	incidental to the process.	

	Table 1: Low Impact Installation – Supporting Evid	dence and Demonstration that Criteria is Met	
LII Principal	Principal Description	Demonstration of Criteria being Met	Confirmation
	(EPB2 Version 17, September 2023)		Criteria is Met
			(Yes/No)
	and quantify any aqueous effluents released from the	No more than 50m ³ of waste water will be produced or	
	installation on a daily basis and provide justification that the	released per day from the process activities undertaken at	
	installation releases no more than 50 m ³ per day of water from	the facility.	
	process activities.		
		Nyobolt will endeavour re-using this to have zero waste.	
		Nyobolt is already in discussion with Anglian Water with	
		regards to the correct disposal of such waste, should this be	
		the preferred route. If necessary, Nyobolt will collect such	
		waste in IBCs and then filtered, precipitated or /flocculated	
		to result in a solid product A waste and clean water. The	
		procedure for flocculation is in development will be	
		developed if required.	
C. Abatement	The installation must comply with the criteria in this guidance	Nyobolt have commissioned emissions testing on the	Yes
Systems/releases	without having to rely on active abatement for releases to the	furnace emission point, which emits outside of the building.	
to air	environment outside of any buildings. Releases must not be	From the emission testing (report provided as Appendix 2)	
	dependent on continuing or correct operation of equipment,	and a H1 Assessment which has been carried out for	
	where failure of active pollution prevention systems could	emissions to air, it has been concluded that no active	
	result in an unacceptable external release. For example, if the	abatement is required for the point source emission to air.	
	installation depends on active abatement in the form of		
	scrubbers, filters or electrostatic precipitators to achieve the		

	Table 1: Low Impact Installation – Supporting Evid	ence and Demonstration that Criteria is Met	
LII Principal	Principal Description	Demonstration of Criteria being Met	Confirmation
	(EPB2 Version 17, September 2023)		Criteria is Met
			(Yes/No)
	releases to the environment set out in this guidance, it is	Internally, localised extraction is used by way of mobile	
	unlikely that it can be treated as having only a low potential for	extraction. This is a movable and mobile piece of equipment	
	impact. However, abatement systems installed solely for the	which can be used to 'hoover' fines during unloading of	
	protection of workers (where abatement is not to attenuate	materials into tanks, or to clear up any spillages. The	
	external environmental releases) need not be included in this	extraction system will have a HEPA filter, and fines will be	
	assessment.	collected into a drum. Nyobolt will seek to reintroduce fines	
		back into the process where possible, to minimise losses.	
		This system is in place to protect workers during operations.	
		If this equipment wasn't used, there is extremely low risk of	
		dust/particulate matter being airborne and leaving/escaping	
		the building. The fines are heavy and are prone to	
		settlement rather than becoming airborne.	
D. Emissions to	There must be no planned or fugitive emission from the	There are no planned or fugitive emissions to groundwater.	Yes
groundwater	permitted installation into the ground, or any soakaway. This	The facility and all associated operations will be carried out	
	does not preclude the discharge of clean rainwater run-off into	inside a building, which comprises impermeable flooring,	
	soakaways.	impervious to leaks and spills.	
E. Waste	The installation must not produce more than one tonne of	The substances used in the process are non-hazardous, and	Yes
Production	waste or 10 kg of hazardous waste per day, averaged over a	the only addition to the metal oxides is water.	
	year, with not more than 20 tonnes of waste or 200 kg of		
	hazardous waste being produced in any one day.		

	Table 1: Low Impact Installation – Supporting Evid	ence and Demonstration that Criteria is Met	
LII Principal	Principal Description	Demonstration of Criteria being Met	Confirmation
	(EPB2 Version 17, September 2023)		Criteria is Met
			(Yes/No)
		Waste production from the process will be under the	
		threshold of 1 tonne. There will no hazardous waste	
		produced, and therefore will be within the criteria of less	
		than 10kg of hazardous waste.	
		Small amounts of aqueous non-hazardous slurry waste may occasionally arise during cleaning or sampling. Where possible, fines of material will be reused in the process to minimise losses. Nyobolt will endeavour re-using this to have zero waste.	
F. Energy	The installation must not consume energy at a rate greater than	The furnace specification is provided as Appendix 3.	Yes
Consumption	3 MW or, if the installation uses a combined heat and power	The furnace is electric with the energy consumption rate	
	installation to supply any internal process heat, 10 MW. These	approximately 0.4 MW, which is significantly lower than the	
	limits apply to the sum of energy imported as electricity and	energy consumption limit for Low Impact Installations.	
	produced on site through the combustion of fuels.		
G. Accident	You must have in place satisfactory containment measures to	There are no chemicals stored at the facility. The metal	Yes
Prevention	prevent fugitive emissions to surface water, sewer or land and	oxides used in the process are non-hazardous and non-	
	ensure that these are adequately maintained at all times. This	reactive. The only addition to the metal oxides is water.	

	Table 1: Low Impact Installation – Supporting Evid	ence and Demonstration that Criteria is Met	
LII Principal	Principal Description	Demonstration of Criteria being Met	Confirmation
	(EPB2 Version 17, September 2023)		Criteria is Met
			(Yes/No)
	requirement applies to all substances present on site and in any		
	quantity.	In the event of a spill or leak, this would comprise of either	
		water, or water which contains metal oxide particles which	
		would not be hazardous or reactive.	
		The facility is within an enclosed unit, with impermeable	
		flooring impervious to leaks and spills with a sealed drainage	
		system.	
		The equipment installed will be state of the art and installed	
		by a qualified engineer. During operation, if an equipment	
		failure is identified, operations will cease immediately to	
		identify the fault. Any repairs will be carried out by a suitably	
		qualified person. A defects log will be maintained to record	
		and register any issues encountered, and detail of any	
		remedial actions taken. The log will be held on site and	
		electronic copies made.	

	Table 1: Low Impact Installation – Supporting Evid	ence and Demonstration that Criteria is Met	
LII Principal	Principal Description	Demonstration of Criteria being Met	Confirmation
	(EPB2 Version 17, September 2023)		Criteria is Met
			(Yes/No)
		Staff will undergo training suitable for their role and	
		responsibilities. Refresher training will be delivered to staff	
		in accordance with Nyobolt's training policy.	
		Incoming raw materials and outgoing products will arrive	
		and leave the site in secure containment.	
H. Noise	There must be only a low potential for causing offence due to	All operations will be carried out inside the building.	Yes
	noise. An installation will not be considered as a low impact	For the health and safety of staff, a noise attenuation screen	
	installation if it may give rise to noise noticeable outside the	will be placed around the milling/mixing equipment.	
	installation boundary. This requires the exercise of judgement,		
	taking account of any history of noise complaint arising from	Given the site is located on a large industrial estate with no	
	the installation and consideration of the likely offsite noise	nearby sensitive receptors, e.g. residential, the risk of noise	
	levels and proximity of sensitive receptors. Describe the main	causing offence is considered very low and very unlikely to	
	sources of noise from the installation, the nearest noise	arise beyond the installation boundary.	
	sensitive locations any relevant noise measurement surveys		
	which have been undertaken; and the proposed techniques and		
	measures for the control of noise. Provide justification that		
	there is only a low potential for offence due to noise.		

		Table 1: Low Impact Installation – Supporting Evid	ence and Demonstration that Criteria is Met	
LII Principal		Principal Description	Demonstration of Criteria being Met	Confirmation
		(EPB2 Version 17, September 2023)		Criteria is Met
				(Yes/No)
I. Emissions	of	Justify that there will be no likelihood of a release to the	Emissions testing has been undertaken for the emission	Yes
polluting		environment of any particular substance from the whole	point from the furnace to outside of the building. The	
substances		installation at a rate greater than that determined as	emissions testing report is provided in Appendix 2.	
		insignificant as set out in our guidance note (see	This emission testing demonstrated that the risk is so low,	
		https://www.gov.uk/guidance/control-and-monitor-	abatement is not required.	
		emissions-for-your-environmental-permit).		
		Describe the nature, quantities and sources of foreseeable	The H1 Screening Tool has been completed, and the	
		emissions from the installation.	outcome confirms that no additional air quality modelling or	
			further assessment is required.	
J. Odour		There must be only a low potential for giving offence due to	The metal oxides used in the process are inherently low	Yes
		odour. An installation will not be considered as a low impact	odour materials. No organic chemicals are added during the	
		installation if it may give rise to an offensive smell noticeable	production process, only water.	
		outside the installation boundary. This requires the exercise of		
		judgement, taking account of any history of odour complaint	The risk of odour from the operations is considered	
		from the installation and whether this class of activity is known	extremely low.	
		by experience to give rise to smells. A significant possibility or		
		actual history of excursions or fugitive emissions, for example		
		from stored materials, would suggest that the installation could		
		not be treated as having a low impact. Provide details of		

	Table 1: Low Impact Installation – Supporting Evid	ence and Demonstration that Criteria is Met	
LII Principal	Principal Description	Demonstration of Criteria being Met	Confirmation
	(EPB2 Version 17, September 2023)		Criteria is Met
			(Yes/No)
	potential sources of odour from the installation, for example		
	from stored materials, and justify that there is only a low		
	potential for offence due to odour.		
K. Compliance	If any of the following enforcement actions have taken place at	Nyobolt Limited are a new operator and have no history of	Yes
history	the same installation under the same management (and where	enforcement actions being taken against them. There is no	
	appropriate, have not been overturned on appeal), then it will	history of enforcement action being taken at the facility.	
	not normally be considered further as a low impact installation:		
	prosecution*		
	formal caution*		
	suspension notice*		
	enforcement notice relating to an actual or potential		
	environment incident*		
	* (All under EPR or the equivalent under previous		
	environmental regimes)		

APPENDICES

APPENDIX 1

Process Overview

APPENDIX 2

Emissions Testing

STACK EMISSIONS MONITORING REPORT

Units C & D Bankside Trade Park Cirencester GL7 1YT Tel: 01285 700 593

Your contact at SOCOTEC LTD

Mike Davies Business Manager - South Tel: 07976 297 465 Email: mike.davies@socotec.com

Operator & Address:	
Nyobolt Limited	
1b Homefield Road	
Haverhill	
Suffolk	
CB9 8QP	

Permit Reference: N/A - Investigative Test

Release Point: Heat Treatment Exhaust

> Sampling Date(s): 01 - 03 May 2024

SOCOTEC Job Number:	LSW 240525
Report Date:	05th June 2024
Version:	1
Report By:	Catherine Elsey
MCERTS Number:	MM 08 996
MCERTS Level:	MCERTS Level 2 - Team Leader
Technical Endorsements:	1, 2, 3 & 4
Report Approved By:	Mike Davies
MCERTS Number:	MM 02 087
Business Title:	MCERTS Level 2 - Business Manager
Technical Endorsements:	1, 2, 3 & 4
Signature:	Dan ies

CONTENTS

EXECUTIVE SUMMARY

Stack Emissions Monitoring Objectives

- Plant
- Operator
- Stack Emissions Monitoring Test House

Emissions Summary Monitoring Times Process Details Monitoring Methods Analytical Methods - Sampling Methods with Subsequent Analysis - On-Site Testing Sampling Location - Sampling Plane Validation Criteria

- Duct Characteristics
- Sampling Lines & Sample Points
- Sampling Platform
- Sampling Location / Platform Improvement Recommendations

Sampling and Analytical Method Deviations

APPENDICES

APPENDIX 1 - Monitoring Schedule, Calibration Checklist & Monitoring Team

APPENDIX 2 - Summaries, Calculations, Raw Data and Charts

APPENDIX 3 - Measurement Uncertainty Budget Calculations

MONITORING OBJECTIVES

Nyobolt Limited operates a lab furnace extraction process at Haverhill

SOCOTEC LTD were commissioned by Jenny Shackleton to carry out stack emissions monitoring to determine the release of prescribed pollutants from the following Plant under trial operating conditions.

<u>Plant</u>

Heat Treatment Exhaust

Operator

Nyobolt Limited 1b Homefield Road Haverhill Suffolk CB9 8QP

No Permit Applicable: Investigative

Stack Emissions Monitoring Test House

SOCOTEC - Cirencester Laboratory Units C & D Bankside Trade Park Cirencester GL7 1YT UKAS and MCERTS Accreditation Number: 1015

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation. The results of this testing relate only to the emission release point(s) listed in the report. MCERTS accredited results will only be claimed where both the sampling and analytical stages are MCERTS accredited. This test report shall not be reproduced, except in full, without written approval of SOCOTEC LTD.

EMISSIONS SUMMARY

Parameter	Units	Result	Calculated	Emission Limit	Accreditation
			Uncertainty	Value (ELV)	
			+/-		
Tungsten	mg/m³	0.0496	0.0030	-	None
Tungsten Emission Rate	g/hr	0.2712	0.0165	-	None
Niobium	mg/m³	0.00044	0.000027	-	None
Niobium Emission Rate	g/hr	0.0024	0.000148	-	None
Moisture	%	1.94	0.06	-	MCERTS
Stack Gas Temperature	°C	37	-	-	
Stack Gas Velocity	m/s	7.4	0.16	-	
Gas Volumetric Flow Rate (Actual)	m³/hr	6600	330	-	MCERTS
Gas Volumetric Flow Rate (STP, Wet)	m³/hr	5726	286	-	MOLITIS
Gas Volumetric Flow Rate (STP, Dry)	m³/hr	5615	280	-	
Gas Volumetric Flow Rate at Reference Conditions	m³/hr	5726	286	-	

ND = None Detected,

Results at or below the limit of detection are highlighted by bold italic text.

The above volumetric flow rate is calculated using data from the preliminary survey. Mass emissions for non isokinetic tests are calculated using these values. For all isokinetic testing the mass emission is calculated using test specific flow data and not the above values. Reference conditions are 273K, 101.3kPa without correction for water vapour

Note 1. At least one of the metals analysed fall outside of the labs UKAS accreditation. For an individual breakdown please refer to the individual metals summary table in appendix 2

MONITORING TIMES							
Parameter	Sampling Date(s)	Sampling Times	Sampling Duration				
Heavy Metals Run 1	01 May 2024	12:55 - 01:14	2160 minutes				
Preliminary Stack Traverse	30 April 2024	11:20	-				

PROCESS DETAILS								
Parameter	Process Details							
Description of process	Lab Furnace extraction							
Continuous or batch	Batch							
Product Details	Molten Metal							
Part of batch to be monitored (if applicable)	Complete batch cycle.							
Normal load, throughput or continuous rating	Normal operational cycle							
Fuel used during monitoring	N/A							
Abatement	None							
Plume Appearance	None visible							

Monitoring Methods

The selection of standard reference / alternative methods employed by SOCOTEC is determined, wherever possible by the hierarchy of method selection outlined in Environment Agency technical Guidance 'Monitoring stack emissions: techniques and standards for periodic monitoring'.

	MONITORING METHODS									
Species	Method Standard Reference Method / Alternative Method	SOCOTEC Technical Procedure	UKAS Lab Number	Method Accreditation	Limit of Detection (LOD)	Calculated MU +/- % Result	Calculated MU +/- % ELV			
Heavy Metals	SRM - BS EN 14385	AE 108	1015	MCERTS	0 mg/m³	6.1%	N/A - No ELV			
Moisture	SRM - BS EN 14790	AE 105	1015	MCERTS	0.003%	2.9%	N/A - No ELV			
Velocity	SRM - EN ISO 16911-1	AE 154	1015	MCERTS	5 Pa	2.1%	N/A - No ELV			
Volumetric Flow Rate	SRM - EN ISO 16911-1	AE 154	1015	MCERTS	-	5.0%	N/A - No ELV			

BS EN 14790 has been validated over a range of 4 - 40%. It is however the prefered method of the Environment Agency for concentrations below 4%

Analytical Methods

The following tables list the analytical methods employed together with the custody details. Unless otherwise stated the samples are archived at the analysis lab location.

	SAMPLING METHODS WITH SUBSEQUENT ANALYSIS								
Species	Analytical Technique	Analytical Procedure	UKAS Lab Number	Analysis Accreditation	Analysis Lab	Analysis Report No. Date of Analyis	Archive Period		
Heavy Metals	Inductively coupled Plasma - Mass Spectrometry	M31	0605	None	RPS	24-03841-1 24 May 2024	8 Weeks		

Please note, at least one of the metals analysed fall outside of the labs UKAS accreditation. For an individual breakdown please refer to the metals summary in appendix 2

ON-SITE TESTING									
Species	Analytical Technique	Analytical Procedure	UKAS Lab Number	Accreditation	Laboratory	Data Archive Location	Archive Period		
Moisture	Gravimetric	AE 105	1015	MCERTS	SOCOTEC (Cirencester)	-	-		

SAMPLING LOCATION							
Sampling Plane Validation Criteria	Value	Units	Requirement	Compliant	Method		
Lowest Differential Pressure	27	Pa	>= 5 Pa	Yes	BS EN 15259		
Lowest Gas Velocity	7.1	m/s	-	-	-		
Highest Gas Velocity	7.8	m/s	-	-	-		
Ratio of Gas Velocities	1.1	:1	< 3 : 1	Yes	BS EN 15259		
Mean Velocity	7.4	m/s	-	-	-		
Maximum angle of flow with regard to duct axis	<15	0	< 15°	Yes	BS EN 15259		
No local negative flow	Yes	-	-	Yes	BS EN 15259		

DUCT CHARACTERISTICS						
Value Units						
Shape	Circular	-				
Depth	0.56	m				
Width		m				
Area	0.25	m ²				
Port Depth	0	mm				

SAMPLING LINES & POINTS						
	Isokinetic	Non-Iso & Gases				
Sample port size	4" hole					
Number of lines used	1					
Number of points / line	1					
Duct orientation	Horizontal					
Filtration	Out Stack					

SAMPLING PLATFORM

General Platform Information	
Permanent / Temporary Platform / Ground level / Floor Level / Roof	Temporary
Inside / Outside	Inside
M1 Platform requirements	
Is there a sufficient working area so work can be performed in a compliant manner	Yes
Platform has 2 levels of handrails (approximately 0.5 m & 1.0 m high)	Yes
Platform has vertical base boards (approximately 0.25 m high)	Yes
Platform has removable chains / self closing gates at the top of ladders	Yes
Handrail / obstructions do not hamper insertion of sampling equipment	Yes

Depth of Platform = >Stack depth / diameter + wall and port thickness + 1.5m

Sampling Platform Improvement Recommendations (if applicable)

The sampling location meets all the requirements as specified in current EA Guidance.

Yes

Sampling & Analytical Method Deviations

In this instance there were no deviations from the sampling and analytical methods employed.

APPENDICES

CONTENTS

- APPENDIX 1 Monitoring Schedule, Calibration Checklist & Monitoring Team
- APPENDIX 2 Summaries, Calculations, Raw Data and Charts
- APPENDIX 3 Measurement Uncertainty Budget Calculations

APPENDIX 1 - Monitoring Schedule, Calibration Checklist & Monitoring Team

MONITORING SCHEDULE								
Species	Method Standard Reference Method / Alternative Method	SOCOTEC Technical Procedure	UKAS Lab Number	MCERTS Accredited Method	Number of Samples			
Heavy Metals	SRM - BS EN 14385	AE 108	1015	MCERTS	1			
Moisture	SRM - BS EN 14790	AE 105	1015	MCERTS	1			
Velocity	SRM - EN ISO 16911-1	AE 154	1015	MCERTS	1			

APPENDIX 1 - Monitoring Schedule, Calibration Checklist & Monitoring Team

CALIBRATEABLE EQUIPMENT CHECKLIST								
Extractive Sampling		Instrumental Analyser/	's	Miscellaneous				
				•				
Equipment	Equipment I.D.	Equipment	Equipment I.D.	Equipment	Equipment I.D.			
Control Box DGM	P3338	Horiba PG - 250 Analyser	-	Laboratory Balance	P3225			
Box Thermocouples	P3338	FT-IR	-	Tape Measure	P582			
Meter In Thermocouple	P3338	FT-IR Oven Box	-	Stopwatch	-			
Meter Out Thermocouple	P3338	Bernath 3006 FID	-	Protractor	-			
Control Box Timer	P3338	Signal 3030 FID	-	Barometer	P341			
Oven Box	P3074	Servomex	-	Digital Micromanometer	P1940			
Probe	-	JCT Heated Head Filter	-	Digital Temperature Meter	P824			
Probe Thermocouple	P3415	Thermo FID	-	Stack Thermocouple	P3242			
Probe	-	Stackmaster	-	Mass Flow Controller	-			
Probe Thermocouple	-	FTIR Heater Box for Heated Line	-	MFC Display module	-			
S-Pitot	P2109	Anemometer	-	1m Heated Line (1)	-			
L-Pitot	-	Ecophysics NOx Analyser	-	1m Heated Line (2)	-			
Site Balance	P3336	Chiller (JCT/MAK 10)	-	1m Heated Line (3)	-			
Last Impinger Arm	P1715	Heated Line Controller (1)	-	5m Heated Line (1)	-			
Dioxins Cond. Thermocouple	-	Heated Line Controller (2)	-	10m Heated Line (1)	-			
Callipers	-	Site temperature Logger	-	10m Heated Line (2)	-			
Small DGM	-			15m Heated Line (1)	-			
Heater Controller	-			20m Heated Line (1)	-			
Inclinometer (Swirl Device)	P2372			20m Heated Line (2)	-			

NOTE: If the equipment I.D is represented by a dash (-), then this piece of equipment has not been used for this test.

CALIBRATION GASES						
Gas (traceable to ISO 17025)	Cylinder I.D Number	Supplier	ppm	%	Analytical Tolerance +/- %	
-	-	-	-	-	-	

STACK EMISSIONS MONITORING TEAM

MONITORING TEAM									
Personnel	MCERTS	MCERTS			TE / H&S Qualifications and Expiry Date				
	Number	Level	Expiry	TE1	TE2	TE3	TE4	H&S	
Mike Davies	MM 02 087	MCERTS Level 2	Sep-27	Mar-28	Jun-28	Jun-28	Aug-28	Sep-27	
Catherine Elsey	MM 08 996	MCERTS Level 2	Dec-25	Dec-25	Dec-25	Feb-29	Mar-27	Nov-28	
Warren Clark	MM 02 086	MCERTS Level 1	Sep-27	-	-	-	-	Sep-27	
Athul Athul	MM 24 1828	MCERTS Trainee	Dec-28	-	-	-	_	Dec-28	

HEAVY METALS SOLID & VAPOUR PHASES COMBINED

TOTAL HEAVY METALS COMBINED								
Test	Sampling Times	Concentration	LOD	ELV	Emission			
		mg/m³	mg/m³	mg/m³	Rate g/hr			
Run 1	12:55 - 01:14 01 May 2024	0.05	0.0002	-	0.27			
Field Blank	-	0.01	-	-	-			

Reference conditions are 273K, 101.3kPa without correction for water vapour

INDIVIDUAL METALS SUMMARY - SOLID & VAPOUR PHASES COMBINED

Metals	LOD mg/m³	Concentration mg/m ³	Emission Rate g/hr	Uncertainty %	UKAS Accredited
Tungsten	0.00011	0.04965	0.271	8%	×
Niobium	0.00011	0.00044	0.002	38%	×
Sum of Heavy Metals	0.00021	0.05009	0.274	6.1%	-

Reference conditions are 273K, 101.3kPa without correction for water vapour

HEAVY METALS - RUN 1 SUMMARY

Metals	PA	PARTICULATE PHASE			VAPOUR PHASE		
	Stack LOD mg/m ³	Laboratory Result	Concentration	Stack LOD mg/m ³	Laboratory Result	Concentration	
		ug	mg/m³		ug	mg/m³	
Tungsten	0.00003	856	0.02434	0.00008	890	0.02531	
Niobium	0.00003	10.10	0.00029	0.00008	5.51	0.00016	
Sum of Heavy Metals	0.00006	866	0.02462	0.00016	896	0.02547	
Volume Sampled m ³		35.	1748		35.1748		

Reference conditions are 273K, 101.3kPa without correction for water vapour

HEAVY METALS - BLANK SUMMARY

Metals	PA	RTICULATE PH	HASE VAPOUR PHAS			SE	
	Stack LOD mg/m ³	Laboratory Result	Concentration	Stack LOD mg/m ³	Laboratory Result	Concentration	
		ug	mg/m³		ug	mg/m³	
Tungsten	0.00003	137	0.00389	0.00008	337	0.00959	
Niobium	0.00003	1.00	0.00003	0.00008	2.81	0.00008	
Sum of Heavy Metals	0.00006	138	0.00392	0.00016	340	0.00967	
Volume Sampled m ³		35.	1748		35.1748		

Reference conditions are 273K, 101.3kPa without correction for water vapour

ISOKINETIC SAMPLING EQUATIONS R	UN 1			leavy Metals
Abashuta messawa of stock was. D		Meleculer weight of dry yes. M		
Absolute pressure of stack gas, Ps	00.50		0/	0.02
Barometric pressure, P_b RP	99.50 E 00		/o 0/	0.02
Stack static pressure, P_{static} P	-5.00		/o 0/	20.50
$P_{s} - P_{b} + (P_{static})$ KP	99.50	N (100 Tetel)	/o 0/	20.32
		N_2 (100-10(a))	70	79.48
Vol. of water vanour collected V		$M_d = 0.44(\% CO_2) + 0.52(\% O_2) + 0.26(\% N_2)$		20.02
Moisture tran weight increase VIc	H ₂ 0 by Non Iso	M = M (1 - B) + 18(B)	a/amol	28.61
$V_{max} = (0.001246)(V_{1})$	³ -	Velocity of stack das V	g/ gillor	20.01
Volume of gas metered dry V		Velocity pressure coefficient C		0.84
volume of gus metered dry, v _{mstd}		Mean of velocity heads DP	Pa	40.47
Volume of gas sample through gas meter V m	39.60	Mean stack gas temperature T	ĸ	315 17
Gas meter correction factor V_{μ}	0.97	Gas density (mention) n	I.	010.11
Mean dry gas meter temperature T	298.86	n=(Ms*Ps)/(8.314*Ts)	ka/m ³	1 086
Mean pressure drop across orifice DH mmH ₂ O	29 77	Stack Velocity Vs $\sum_{i=1}^{n} V_i$	Kg/III	1.000
	25.11	$V_{s=}$ $\frac{1}{n}$	m/s	7 24
$V_{metd} = (0.3592)(V_m)(P_b + (DH/13.6))(Y_d)$ m ³	34.49	Actual flow of stack gas, Qa	, .	
$T_m + 273$		Area of stack, As	m ²	0.25
Volume of gas metered wet, V _{mstw}		$Q_{a} = (60)(A_{s})(V_{s})$	m³/min	107.0
-		Total flow of stack gas, Q		
$V_{mstw} = V_{mstd} + V_{wstd}$ m	³ 35.1748	Conversion factor (K/mm.Hg)		
		$Q_{std} = (Q_a)P_s(0.3592)(1-B_{wo})$	Dry	89.3
vol. of gas metered at O_2 Ref. Cond., $v_{mstd@X\%02}$		(Ts)	-	
Is the process burning hazardous waste? (If yes,	No	$Q_{std02} = (Q_a)P_s(0.3592)(1-B_{wo})(O_2REF)$	@02ref	No O2 Ref
no favourable oxygen correction)		(Ts)		
% oxygen measured in gas stream, act%O ₂	20.50	$Q_{stw} = (Q_a)P_s(0.3592)$	Wet	91
% oxygen reference condition	21	(Ts)		
O_2 Reference O_2 Ref = 21.0 - act%O2	No O2 Ref	Percent isokinetic, %I		
Factor 21.0 - ref%O2		Nozzle diameter, D _n	mm	7.6
$V_{mstd@X\%oxygen} = (V_{mstd}) (O_{2 Ref})$ m	³ No O2 Ref	Nozzle area, A _n	mm ²	45.7
Moisture content, B _{wo}		Total sampling time, q	min	2160.0
		$%I = (4.6398E6)(T_s)(V_{mstd})$	%	96.4
B _{wo} =V _{wstd}	0.0194	$(P_{s})(V_{s})(A_{n})(q)(1-B_{wo})$		
V _{mstd} + V _{wstd}	6 1.94			
Moisture by FTIR	6 -	Acceptable isokinetic range 95% to 1159	%	Yes

HEAVY METALS QA CHECKLIST

Leak Test Results	Mean Sampling Rate	Pre-sampling Leak Rate	Post-sampling Leak Rate	Maximum Vacuum	Acceptable Leak Rate	Leak Tests Acceptable
	litre/min	litre/min	litre/min	mm Hg	litre/min	litre/min
Run 1	17.8	0.18	-	-381	0.36	Yes

Isokinetic Criterion Compliance	Isokinetic Variation %	Acceptable Isokineticity
Run 1	96.4	Yes

Filtration / Temp	Filter Material	Filter Size mm	Maximum Filtration Temperature °C	Temperature during storage / transit <25°C
Run 1	Quartz Fibre	90	126	Yes

Metals	Type of Absorbers - Metals	Absorption Solutions - Metals
Run 1	Glass	3.3% Nitric Acid, 1.5% Hydrogen Peroxide

HEAVY METALS ABSORBTION EFFICIENCY

Parameter		Total	3rd Absorber	Absorption	Required	Pass / Fail
		ug	ug	Efficiency (%)	%	
Tungsten	Run 1	1746	393	77	90	N/A No ELV
Niobium	Run 1	16	ND	100	90	N/A No ELV

MOISTURE CALCULATIONS

Moisture Determination - Non Isokinetic								
Test Number	Sampling Time and Date	Start Weight	End Weight	Total gain	Concentration	LOD	Uncertainty	
		kg	kg	kg	%	%	%	
Run 1	12:28 - 16:28 30 April 2024	4.0123	4.0876	0.0753	1.9	0.00	2.9	

Moisture Quality Assurance								
Test Number	Sampling Duration	Total Volume Sampled	Sampling Rate	Start Leak Rate	End Leak Rate	Acceptable Leak Rate	Leak Tests Acceptable?	
	mins	1.00	l/min	l/min	l/min	l/min		
Run 1	240	4740	19.8	0.23	0.23	0.40	Yes	

PRELIMINARY STACK SURVEY

Stack Characteristics		
Stack Diameter / Depth, D	0.56	m
Stack Width, W		m
Stack Area, A	0.25	m²
Average stack gas temperature	37	°C
Stack static pressure	-0.005	kPa
Barometric Pressure	99.8	kPa

Stack Gas Composition & Molecular Weights									
Component	Molar	Density	Conc	Dry Volume	Dry Conc	Conc	Wet Volume	Wet Conc	
	Mass	kg/m ³	Dry	Fraction	kg/m³	Wet	Fraction	kg/m ³	
	М	р	% Vol	r	рі	% Vol	r	рі	
CO ₂	44	1.963059	0.021048	0.000210	0.000413	0.020639	0.000206	0.000405	
02	32	1.427679	20.500000	0.205000	0.292674	20.102103	0.201021	0.286994	
N ₂	28	1.249219	79.478952	0.794790	0.992866	77.936296	0.779363	0.973595	
H ₂ O	18	0.803070	-	-	-	1.940962	0.019410	0.015587	

Where:

p = M / 22.41 pi = r x p

Calculation of Stack Gas Densities						
Determinand	Result	Units				
Dry Density (STP), P _{STD}	1.2860	kg/m ³				
Wet Density (STP), P _{STW}	1.2766	kg/m ³				
Dry Density (Actual), P _{Actual}	1.1156	kg/m ³				
Average Wet Density (Actual), P _{ActualW}	1.108	kg/m ³				

Where:

 P_{STD} = sum of component concentrations, kg/m³ (not including water vapour) P_{STW} = (P_{STD} + p*i* of H₂O) / (1 + (p*i* of H₂O / 0.8036)) $P_{Actual} = P_{STD} x (Ts / Ps) x (Pa / Ta)$ $P_{ActualW} = P_{STW} x (Ts / Ps) x (Pa / Ta)$

PRELIMINARY STACK SURVEY

TRAVERSE 1

Date of Survey	30 April 2024
Time of Survey	11:20
Velocity Measurement Device:	S-Type Pitot

Sampling Line A									
Traverse	Distance	DP pt	DP pt	Temp	Velocity	Volumetric	0 ₂	Angle	
Point	into	Ра	mmH ₂ O	°C	m/s	Flow Rate (actual)	%	of Swirl	
	duct (m)	(average of 3 readings)	(average of 3 readings)			m³/s	Vol	o	
1	0.05	27.7	2.8	37	7.1	1.7	-	<15	
2	0.14	33.2	3.4	37	7.7	1.9	-	<15	
3	0.42	33.8	3.5	37	7.8	1.9	-	<15	
4	0.51	28.3	2.9	37	7.2	1.8	-	<15	
Mean	-	30.8	3.1	37	7.4	1.8	-	-	

PRELIMINARY STACK SURVEY QUALITY ASSURANCE CHECKLIST

PITOT LEAK CHECK									
	Pre Traverse Leak Rate Post Traverse Leak Rate								
Run	Start Value	End Value	Difference	Outcome	Start Value	End Value	Difference	Outcome	
	Pa	Pa	%		Pa	Pa	%		
Run 1	110	111	-0.9	Pass	108	109	-0.9	Pass	

To complete a compliant pitot leak check a pressure of over 80 mmH₂O (or 800 Pa) is applied and the pressure drop monitored over 5 mins. A drop of less than 5% must be observed.

S-Type Pitot Stagnation Check							
Run	Stagnation (Pa)	Reference (Pa)	Difference (Pa)	Outcome (Permitted +/- 10 Pa)			
Run 1	98	95	3.0	Pass			

PRELIMINARY STACK SURVEY (CONTINUED)

Sampling Plane Validation Criteria							
EA Technical Guidance Note (Monitoring) M1	Result	Units	Requirement	Compliant			
Lowest Average Differential Pressure	28	Pa	>= 5 Pa	Yes			
Lowest Gas Velocity	7.1	m/s	-	-			
Highest Gas Velocity	7.8	m/s	-	-			
Ratio of Gas Velocities	1.1	-	< 3 : 1	Yes			
Maximum angle of flow with regard to duct axis	<15	0	< 15°	Yes			
No local negative flow	Yes	-	-	Yes			

m/s

Calculation of Stack Gas Velocity, V

Velocity at Traverse Point, V = $K_{pt} \times (1-e) \times O(2 \times DP_{pt} / P_{ActualW})$

Where:

 K_{pt} = Pitot tube calibration coefficient

(1-e) = Compressibility correction factor, assumed at a constant 0.998

Average Stack Gas Velocity, Va

Calculation of Stack Gas Volumetric Flowrate, Q							
Duct gas flow conditions	Actual	Reference	Units				
Temperature	37	0	°C				
Total Pressure	99.795	101.3	kPa				
Oxygen	20.5	21	%				
Moisture	1.94	1.94	%				
Pitot tube calibration coefficient, K _{pt}	1.00						

7.4

Gas Volumetric Flowrate	Result	Units
Average Stack Gas Velocity (Va)	7.44	m/s
Stack Area (A)	0.25	m ²
Gas Volumetric Flowrate (Actual), Q _{Actual}	6600.36	m³/hr
Gas Volumetric Flowrate (STP, Wet), Q _{STP}	5726.22	m³/hr
Gas Volumetric Flowrate (STP, Dry), Q _{STP,Dry}	5615.08	m³/hr
Gas Volumetric Flowrate (REF), Q _{Ref}	5726.22	m³/hr

Where:

 $\begin{aligned} & Q_{Actual} = Va \; x \; A \; x \; 3600 \\ & Q_{STP} = Q \; (Actual) \; x \; (Ts \; / \; Ta) \; x \; (Pa \; / \; Ps) \; x \; 3600 \\ & Q_{STP,Dry} = Q \; (STP) \; / \; (100 \; - \; (100 \; / \; Ma)) \; x \; 3600 \\ & Q_{Ref} = Q \; (STP) \; x \; ((100 \; - \; Ma) \; / \; (100 \; - \; Ms)) \; x \; ((21 \; - \; O_2a) \; / \; (21 \; - \; O_2s)) \end{aligned}$

Nomenclature:

Ts = Absolute Temperature, Standard Conditions, 273 K

Ps = Absolute Pressure, Standard Conditions, 101.3 kPa

Ta = Absolute Temperature, Actual Conditions, K

Pa = Absolute Pressure, Actual Conditions, kPa

Ma = Water vapour, Actual Conditions, % Vol Ms = Water vapour, Reference Conditions, % Vol

 $O_2a = Oxygen, Actual Conditions, % Vol$

 $O_2s = Oxygen, Reference Conditions, % Vol$

Nyobolt Limited Haverhill Heat Treatment Exhaust

Units

m

Swirl

< 15

APPENDIX 2 - Summaries, Calculations, Raw Data and Charts

STACK DIAGRAM

	Value	Units
Stack Depth	0.56	m
Stack Width		m
Area	0.25	m ²

25.0 0.14 2 < 15 3 75.0 0.42 < 15 4 91.1 0.51 < 15 --_ _ _ -_ -----_ --------_ -_ _ _ _ _ _ _ . -_ _ -_ . _ _ -_ _

Non-Isokinetic/Gases Sampling

Isokinetic Sampling

Distance into

Stack

-

Distance into

Stack (m)

0.05

Distance

(% of Depth)

Distance

(% of Depth)

8.9

Sampling

Point A

Sampling

Point

1

Isokinetic sampling point
Isokinetic sampling points not used
Non Isokinetic/Gases sampling point

SAMPLING LOCATION

APPENDIX 3 - Measurement Uncertainty Budget Calculations

MEASUREMENT UNCERTAINTY BUDGET - HEAVY METALS

Run	Sampled Volume	Sampled Gas Temp	Sampled Gas Pressure	Sampled Gas Humidity	Oxygen Content	Concentration in impinger	Leak
	m³	К	kPa	% by volume	% by volume	mg	%
MU required	<=2%	<2.5 k	<=1%	<=1%	<=10%	<5%	<=2%
Run 1	0.070	2.0	0.50	1.0	0.10	0.05	-
as a %	0.20	0.73	0.50	1.0	-	3.00	1.01
compliant?	Yes	Yes	Yes	Yes	N/A	Yes	Yes

Run	Volume (STP)	O2 Correction	Mass of Heavy	Leak	Lab	Combined
			Metals		Uncertainty	uncertainty
	m³	-	mg	mg/m³	mg	
Run 1	34.5497	-	1762.0	0.0003	-	-
MU as mg/m ³	0.00068	-	0.0002	0.0003	0.00131	0.0015
MU as %	1.3530	-	0.4262	0.5854	2.62500	-

(k is a coverage factor which gives a 95% confidence in the quoted figures)

Reference - SOCOTEC Technical Procedure AE150 Estimation of Uncertainty of Measurement

APPENDIX 3 - Measurement Uncertainty Budget Calculations

MEASUREMENT UNCERTAINTY BUDGET - MOISTURE

Run	Sampled Volume	Sampled Gas Temp	Sampled Gas Pressure	Sampled Gas Humidity	Oxygen Content	Leak
	m³	К	kPa	% by volume	% by volume	%
MU required	× 2%	- 2%	- 1%	a 1%	< 10%	. 0%
	~ 2 /0	<u><u> </u></u>	<u><u> </u></u>	<u>< 1</u> /0	<u>< 10</u> %	<u><</u> Z %
Run 1	0.000395	2.0	<u> </u>	<u> </u>	<u>× 10%</u> N/A	<u><</u> 2%
Run 1 as a %	0.000395	2.0 0.65	0.50	1.0 1.0	N/A N/A	<u><</u> 2% - 1.16

Run	Volume (STP)	Mass Gained	O2 Correction	Leak	Uncollected Mass	Combined uncertainty
	m³	mg	-	mg/m³	mg	
Run 1	4.1	75300	1.0	106.8	58	-
MU as % v/v	0.026	0.0027	-	0.013	0.0015	0.029
MU as %	1.29	0.13	-	0.67	0.077	-

R1 - Uncertainty expressed at a 95% confidence level (where k = 2)	0.059	% v/v	2.93	%
Reference – SOCOTEC Technical Procedure AE150 Estimation of Uncertainty of Mea	surement			

APPENDIX 3 - Measurement Uncertainty Budget Calculations

MEASUREMENT UNCERTAINTY BUDGET - VELOCITY & VOLUMETRIC FLOW RATE

Measured Velocity at Actual Conditions	7.4	m/s
Measured Volumetric Flow rate at Actual Conditions	6600	m³/hr

Performance Characteristics & Source of Value	Units	Values	Requirement	Compliant
Uncertainty of Local Gas Velocity Determination				
Uncertainty of pitot tube coefficient	-	0.010		
Uncertainty of mean local dynamic pressures	-	0.45		
Factor loading, function of the number of measurements.	3 readings	0.591	minimum 3	Yes
Range of measurment device	ра	1000		
Resolution	ра	1.00		
			<1% of Value or 20	
Calibration uncertainty	ра	6.39	Pa whichever is greater	Yes
Drift	% range	0.10	5	
Linearity	% range	0.06	<2% of value	Yes
Uncertainty of gas density determination				
Uncertainty of molar mass determination	kg/mol	0.00002		
Uncertainty of temperature measurement	к	1.58	<1% of value	Yes
Uncertainty of absolute pressure in the duct	ра	509		
Uncertainty associated with the calculation of density	kg/m3	0.007		
Uncertainty associated with the measurement of local velocity	-	0.0001		
Uncertainty associated with the measurement of mean velocity	-	0.0001		

Measurement Uncertainty - Velocity	m/s
Combined uncertainty	0.08
Expanded uncertainty at a 95% Confidence Interval	0.16
Note - The expanded uncertainty uses a coverage factor of k = 2.	

Expanded Measurement Uncertainty of Velocity at a 95% Confidence Interval	%
Expressed as a % of the Measured Velocity	1.1
Expanded uncertainty at a 95% Confidence Interval	2.1
Maagurament Ungartaintu Valumetuis Eleve Data	
measurement oncertainty volumetric riow hate	m³/hr
Combined uncertainty	168
Expanded uncertainty at a 95% Confidence Interval	330
Note - The expanded uncertainty uses a coverage factor of $k = 2$.	

Expanded Measurement Uncertainty of Volumetric Flow Rate at a 95% Confidence Interval	%
Expressed as a % of the Measured Volumetric Flow Rate	2.5
Expanded uncertainty at a 95% Confidence Interval	5.0

Reference - SOCOTEC Technical Procedure AE150 Estimation of Uncertainty of Measurement

END OF REPORT

Thank you for choosing SOCOTEC for your environmental monitoring needs. We hope our services have met your requirements and that you are fully satisfied with your experience of working with us, we really do value your custom and would welcome your feedback. We would appreciate it if you could take a moment to complete a short online questionnaire so that we can improve our operations and address any areas that have not met with your expectations, by clicking on the following

https://www.surveymonkey.co.uk/r/CAE_customer_feedback_weblink

APPENDIX 3

Furnace Specification