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About CS N0W 

Commissioned by the UK Department for Energy Security and Net Zero (DESNZ), Climate 

Services for a Net Zero Resilient World (CS-N0W) is a 4-year, £5.5 million research 

programme, that will use the latest scientific knowledge to inform UK climate policy and 

help us meet our global decarbonisation ambitions. 

CS-N0W aims to enhance the scientific understanding of climate impacts, decarbonisation 

and climate action, and improve accessibility to the UK’s climate data. It will contribute to 

evidence-based climate policy in the UK and internationally, and strengthen the climate 

resilience of UK infrastructure, housing and communities. 

The programme is delivered by a consortium of world leading research institutions from 

across the UK, on behalf of DESNZ. The CS-N0W consortium is led by Ricardo and 

includes research partners Tyndall Centre for Climate Change Research, including the 

Universities of East Anglia (UEA), Manchester (UoM) and Newcastle (NU); institutes 

supported by the Natural Environment Research Council (NERC), including the British 

Antarctic Survey (BAS), British Geological Survey (BGS), National Centre for Atmospheric 

Science (NCAS), National Centre for Earth Observation (NCEO), National Oceanography 

Centre (NOC), Plymouth Marine Laboratory (PML) and UK Centre for Ecology & 

Hydrology (UKCEH); and University College London (UCL). 
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Glossary 

Abstraction demand Measurements or scenarios of abstraction demand (m3) from 

surface water and groundwater 

Artificial Influences (AI) Abstractions and Discharges 

Business as usual (BAU) Future AI scenario 

CS-NOW   The Climate services for a Net Zero resilient world project 

Discharge Measurements or scenarios of effluents from sewage 

treatment works and other large direct discharges to the river 

system 

eFLAG   Enhanced Future Flows and Groundwater projections 

Economic Growth (EG) Future AI scenario 

G2G abstracted water Abstraction demand (m3) that could be met in G2G 

simulations 

G2G un-abstracted water Abstraction demand (m3) that couldn’t be met in G2G 

simulations 

Grid-to-Grid (G2G)  A grid-based hydrological model 

Hands-Off-Flow (HoF) Flow condition (m3/s) to protect surface water and 

groundwater resources 

MaRIUS The Managing the risks, impacts and uncertainties of droughts 

and water scarcity project 

MeanAI Temporal mean of Observed Artificial Influences 

NALD National Abstraction Licensing Database 

NATURAL Refers to river flows in catchments with no artificial 

influences 

NRFA National River Flow Archive 

ObsAI Observed Artificial Influences 

Potential Evaporation (PE)  also known as Potential Evapotranspiration (PET) 

Q70/Q90/Q95 Flow (m3/s) which was equalled or exceeded for 70%, 90%, or 

95% of the specified time period (i.e. low flow parameters) 

RCM Regional Climate Model 

RCP Representative Concentration Pathway, a greenhouse gas 

concentration trajectory adopted by the IPCC 

simobs Observation-driven hydrological simulations 

simrcm RCM-driven hydrological simulations 

Sustainability (SUS) Future AI scenario 

UKCP18 UK Climate Projections 2018 

WRGIS Water Resources Geographical Information System 

WRZ Water Resource Zone 
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1. Executive summary 

There have been numerous assessments of potential impacts of climate change on river 

flows and groundwater for the UK. One of the most recent, the eFLaG (enhanced Future 

Flows and Groundwater) project, provides national and spatially consistent hydrological 

projections based on UKCP18 regional projections up to 2080. Although eFLaG and many 

other projects provide scenarios of flow projections, they do not explicitly estimate 

artificially influenced (AI) river flow after the net impact of abstractions and discharges 

has been accounted for'.  For example, eFLaG provides either natural flows or flows 

calibrated to current conditions, including AIs. In both cases, it makes no assessment of 

possible future changes in abstractions/discharges, as well as the need for 

‘environmental flows’ (flows that leave adequate supply for the environment) which will 

constrain future water availability.  

This project, CS-N0W (WPD2), aims to provide future projections of AI-impacted flows 

across England up to 2080, by accounting for possible future changes in 

abstractions/discharges. This report presents the modelling approach and datasets used 

to derive the future flow projections, together with an assessment of how the AI-

impacted hydrological model (Grid-to-Grid or “G2G”) performs for historical periods. A 

comparison of simulated and observed river flows for 626 catchments across England 

between 1999 and 2014 indicates that model simulation of river flows is generally 

improved at gauged locations. The main improvement is in the simulation of low flows, 

for which the median performance is improved by 12.5%, while the improvement in the 

simulation of high flows is a more modest 1.5%. 

A companion report, Tanguy et al. (2023), presents an analysis of these scenarios and 

provides key indicators and statistics of water availability for historical, current and 

future timescales to 2080.  
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2. Introduction 

This report presents the method used to derive England-wide scenarios of Artificial 

Influence (AI)-impacted river flows from 1980 to 2080 to support a national-scale 

assessment of future flow regimes and water availability scenarios.  

The approach uses future scenarios of surface and groundwater abstractions and 

discharges which were recently developed by Baron et al. (2023) to capture the range of 

impacts that artificial influences may have on future flows and groundwater. Three 

scenarios were provided, ranging from ‘Sustainability’ to 'Economic Growth’ demand 

projections together with a ‘Business as Usual’ scenario. These AI scenarios are used as 

input to a hydrological model (Grid-to-Grid, (Bell et al., 2009)) that was recently 

enhanced to take account of recorded discharges and monthly abstractions 

(Rameshwaran et al., 2022).  

This report summarises the future AI scenarios and how they are used in the Grid-to-Grid 

(or “G2G”) hydrological model. The G2G simulations of AI-impacted river flows are 

assessed with respect to observed river flows for 626 English catchments during a 

historical period for which AI data are available. Following the performance assessment, 

the AI-impacted G2G was run for longer historical (1st December 1980 to 31st December 

2020) and projected future (1st January 2020 to 30th November 2080) periods. The G2G-

simulated AI-impacted flows are used to support a separate analysis of projected-future 

flow regimes (Tanguy et al., 2023). In particular they support derivation of historical and 

projected-future Q95, Q90, Q70, mean annual and monthly flows, along with drought 

metrics such as duration, intensity, and severity.  

The CS-N0W G2G hydrological projections developed here are comparable with the 

eFLaG UKCP18-driven climate and hydrological projections (Hannaford et al., 2023), 

since the same G2G model implementation is driven by the same climate data (eFLAG 

bias-corrected UKCP18 regional projections), and results are provided for the eFLAG 

catchments that lie in England (plus other MaRIUS catchments). The difference between 

CS-NOW and eFLAG G2G projections is the use of abstractions and discharges in the CS-

NOW G2G simulations. Note that this analysis focuses primarily on AI-impacted flows, as 



 

Hydrological modelling and artificial influences   | 8 

the eFLaG project already conducted an analysis of natural flows as simulated by G2G 

(Parry et al., 2023).  

In this report, we aim to demonstrate the benefits of using high-quality spatio-temporal 

abstraction and discharge data in distributed hydrological (and potentially land-surface) 

models. By including AI data, we can enhance our understanding of anthropogenic 

influences on hydrological regimes at a national scale and inform decision-making 

processes at regional and national levels. 

 

3. Data used in the modelling analysis. 

This section outlines the climate and artificial influence (AI) data used in the 

hydrological modelling (section 4). The climate data used to drive climate projections 

consist of the eFLaG bias-corrected 12-member UKCP18 regional climate projections 

which are available at 1 km resolution (section 3.6). 

3.1 Study area  

While in practice hydrological modelling has been undertaken for mainland Britain, 

model outputs are only applicable for English catchments, albeit with a modest overlap 

of the Welsh border. This is because, to-date, only English AI data have been obtained 

and processed for model use (section 3.2), and suitable AI data have not been available 

for areas outside England. We requested these data from other UK regions but were not 

able to access them. Thus, gridded G2G hydrological model outputs (e.g. river flows, 

G2G estimates of monthly water volumes abstracted from rivers) are provided on a 1km 

× 1km grid across England and include 5 catchments that cross the border into Wales 

(specifically UK National River Flow Archive (NRFA) catchments 54001, 54032, 54057, 

54029 and 54008). Note that abstractions and discharges for these 5 border-crossing 

catchments are likely to be underestimated as we do not have AI data for Wales. The 

CS-N0W region for which G2G model outputs are provided is shown in Figure 1(a). 

Modelled flows are also provided for individual gauging-station locations downstream of 

626 catchments across England (Figure 1(b)). These catchments comprise all 605 MaRIUS 
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project catchments (Rameshwaran et al., 2022), together with an additional 21 eFLaG 

catchments (Hannaford et al., 2022, Hannaford et al., 2023), that were not used in 

MaRIUS. In the eFLaG catchment selection strategy, both research and industry needs 

were considered whereas in MaRIUS only catchments with areas above 50 km2 are 

considered. The complete list of all 626 catchments, a significant proportion (>60%) of 

the NRFA gauging station network for England, is presented in Appendix A, Table 4.  

3.2  Artificial Influence (AI) data  

The AI data (licence/consents/returns) used here have been sourced from the UK 

Environment Agency (EA) under licence. Specifically, monthly surface- and groundwater 

abstraction data were obtained from the EA’s NALD database for 1999 to 2014, and 

annual discharges (2017) and Hands-off-Flow (HoF) conditions were obtained from the 

EA’s Water Resources GIS (WRGIS) database. The impacts of other AIs such as reservoir 

impoundments and releases are not considered here, and the G2G does not take account 

of abstractions from lakes or reservoirs. 

Although abstraction and discharge data are available from the EA’s WRGIS database, 

these data were not used in CS-NOW as they provide only recent actual annual point-

purpose abstractions, which are also an average over the last 6 years. Instead, NALD 

monthly actual abstraction values at specific geographical locations were considered 

more suitable for distributed hydrological modelling.at a 1km × 1km spatial resolution. 

The benefit of using spatially-distributed NALD abstraction data from 1999 to 2014 was 

that the true monthly distribution and the inter-annual variability of abstractions (shown 

in Figure 3, Rameshwaran et al. (2022)) could be accounted for in our modelling. 

However, the disadvantage of using NALD abstraction data was that the discharge and 

HoF data could only be obtained from WRGIS and were associated with a different 

period (2017). Use of WRGIS abstraction and discharge data for the same historical 

period will be preferred for many applications, but for high-resolution hydrological 

modelling, the monthly data only available from NALD were more suitable.  

Rameshwaran et al. (2022) outlined the methodology used for the conversion of these 

point abstraction and discharge data into monthly 1 km × 1 km grids across England for 
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each of the 57 primary uses (Appendix A, Table 5). Various pragmatic assumptions were 

made to resolve apparent inconsistencies in licence returns or to overcome uncertainties 

associated with missing information. One important factor to consider was that the 

derived monthly grids represent total water abstracted but do not take account of water 

immediately returned to river by the licence holder (e.g. from vegetable washing). 

(a)                                                                     (b) 

 

 

 

 

 

 

 

 

 
 
  

Figure 1 Maps showing the CS-N0W study region: (a) the region for which spatially distributed 1kmx1km G2G outputs 
are available (grey shading), and (b) gauging stations (black dots) and catchment boundaries (grey lines) for which 
daily flow time-series are provided. Regional boundaries with Scotland and Wales are shown in red. 

 
Although, in reality, abstractions and discharges datasets are related, it was not possible 

to link individual abstraction licences and discharge permits. To minimise the 

uncertainty in net abstraction associated with these immediate water returns, use was 

made of the loss factor term associated with surface water abstractions (Appendix A, 

Table 5). The four loss factor categories (EA, 2020a) are High (100%), Medium (60%), Low 

(3%) and Very Low (0.3%). For three of these categories (high, medium and low 

abstraction losses), an assumption is made here that any water returned to the river is 

accounted for in the discharge dataset. However, for the abstractions associated with 

‘Very Low’ losses (termed ‘Through Flows’, e.g. Fish Pass/Canoe Pass, River 
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Recirculation, Hydroelectric Power Generation) the returns are so high and localised 

that an assumption that returns are included in discharges cannot be made. For these 

‘Very Low’ loss abstractions we have assumed that only 0.3% of the water volume is 

removed mainly due to conveyance losses. The basis of this assumption is described in 

Rameshwaran et al. (2022). 

3.3 Application of Hands-off-Flow conditions  

Surface water abstraction is constrained by a HoF flow value (m3 day-1), requiring 

abstraction to cease (or reduce) if the river flow falls below this threshold. This 

requirement is designed to prevent detrimental impact of excessive abstraction on the 

environment and protect river ecosystems during periods of low flows particularly during 

drier years. This means that during drought periods when the river flow is below the 

local HoF threshold, the licence holder will be temporarily unable to abstract their full 

licensed amount. Here, HoF conditions for surface water abstractions were obtained 

from the EA Water Resources Geographic Information System (WRGIS; provided under 

licence in 2017).  

For this CS-N0W study, the way in which the HoF condition is included in the 

hydrological modelling has been improved. Previously, when the HoF condition was 

implemented in the G2G, river flows at the abstraction site were compared with the HoF 

condition (Rameshwaran et al., 2022). In reality, the HoF condition is often applied with 

reference to river flows at a different location, the “HoF impact location”. HoF impact 

locations are referenced in the EA’s WRGIS system and consist of (sometimes non-local) 

sub-catchments or waterbodies, rather than point locations. To make use of this 

information in the G2G hydrological model, the most downstream 1km grid-cell of each 

HoF impact waterbody was used as the “HoF impact grid-cell”, at which G2G-simulated 

flows are compared with the HoF condition to establish whether an abstraction can take 

place. 

3.4 Future scenarios of AI data 

Estimates of abstraction and discharges for projected future period (2020 to 2080) were 

based on three future AI scenarios introduced by Baron et al. (2023). The derived 
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scenarios were constructed from various published scenario reports and datasets (e.g. 

Water Resources National Framework (EA, 2020b) and Water Resource Management 

Plans (WRMP19: Anglian_Water (2019)). These underlying reports and datasets were 

developed at different times for different purposes and were not expected to be used in 

combination with each other, with the result that there are some inconsistencies when 

they are used together. The result of these inconsistencies is that no AI scenario is 

always higher or lower than another, so it is not possible to identify a high, medium or 

low AI scenario. These scenarios are described in detail in Table 2 of Baron et al. (2023) 

and summarised below: 

• 'Sustainability (SUS)' AI scenario: sustainability is prioritised, high levels of 

water efficiency are achieved, low population growth, innovation and societal 

change to achieve Net Zero energy production ahead of schedule, reduction in 

meat consumption and food waste, additional environmental 

constraints. Typically this scenario results in lower surface-water and 

groundwater abstraction volumes than for the two other scenarios, but the overall 

change relative to the present day depends on individual catchments and the 

future time period.  

• 'Business as Usual (BAU)' AI scenario: current ambitions for water efficiency are 

achieved with no further efficiencies implemented, best-estimate population 

growth, a move to green energy production consistent with current projections, 

and environmental considerations kept at current levels. BAU is typically (but not 

always) a “central” AI scenario, with abstractions higher than for the SUS 

scenario, but the overall change relative to the present day depends on individual 

catchments and the future time period.  

• 'Economic Growth (EG)' AI scenario: economic growth is prioritised over 

sustainability, no water efficiencies, high population growth, continued use of 

fossil fuels and water-intensive agriculture (e.g. high meat consumption and 

increase of irrigated area), and some relaxation of environmental 

considerations. Typically (but not always) this scenario results in higher surface-

water and groundwater abstraction volumes than for the SUS and BAU, but the 
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overall change relative to the present day depends on individual catchments and 

the future time period. Note that the assumption that EG is high-abstraction 

scenario does not always hold, and for some catchments (e.g. 39001) BAU 

abstractions are higher than for EG for some future time-periods. 

For each of the three AI scenarios (above), corresponding future scenarios of discharge 

have been constructed by scaling present day discharges with the same factors used to 

scale abstractions (Baron et al., 2023). For example, discharges related to Public Water 

Supply (PWS), were scaled similarly to PWS abstractions but with adjustments to remove 

the effects of leakage change. 

3.5 Present day (observed) climate data 

The G2G hydrological model performance assessment was undertaken on a 60-year 

historical period (January 1961 – December 2020: Section 4) for which daily observations 

of rainfall, air temperature and monthly potential evaporation (PE) were available. The 

driving datasets were chosen to be exactly the same as those used in the eFLaG project 

(Hannaford et al. 2023), with the addition of a further two years of more-recent data 

(2019 and 2020): 

• Precipitation and temperature: daily HadUK-Grid 1km x 1km dataset (Hollis et al., 

2019), the national standard gridded meteorological dataset and observational 

product associated with UKCP18.   

• Potential Evaporation (PE). monthly MORECS data (Hough and Jones, 1997), an 

established, national gridded PE product on a 40km grid. Other PE datasets such 

as CHESS (Robinson et al., 2020) and more recently Hydro-PE (Robinson et al., 

2022) are available, but the decision to use MORECS here was based on the 

requirement for consistency with the eFLAG hydrological projections (Hannaford 

et al., 2022). 

3.6 Future scenarios of climate data 

Like the previous eFLaG project (Hannaford et al., 2023), CS-N0W modelling of future 

conditions is driven by the UKCP18 dataset, specifically the ‘Regional’ 12km projections. 
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These were created using perturbed-parameter runs of the Hadley Centre Global 

Climate Model (GCM, HadGEM3-GC3.05) and Regional Climate Model (RCM, HadREM3-

GA705) (Murphy et al., 2017). These provide a set of 12 high resolution (12km) spatially 

consistent climate projections over the UK, covering the period Dec 1980-Nov 2080. The 

12-member RCM Perturbed Parameter Ensemble (PPE) is valuable to represent climate 

model parameter uncertainty. RCM ensemble members are numbered 01–15, 

corresponding to GCM PPE members, but exclude 02, 03 and 14 as there are no RCM 

equivalents for these (see Murphy et al. (2018) and Section 4.3); 01 is the standard 

parameterisation. However, it is important to note that, as all ensemble members are 

based on the same high emissions scenario (RCP8.5) and underlying climate model 

structure, they do not represent the full climate uncertainty. The CS-N0W climate 

change simulations used the UKCP18 RCM output as previously processed by the eFLAG 

project (Hannaford et al., 2023) to provide the variables needed for hydrological 

modelling – namely, bias-corrected 1km gridded daily time-series of available 

precipitation (i.e. after the application of a snow module) and Potential 

Evapotranspiration (PET). 

Note that the Hadley Centre climate model uses a simplified 360-day year, consisting of 

twelve 30-day months. The RCM precipitation and temperature time-series similarly are 

only available for a 360-day calendar, and thus the climate-data-driven hydrological 

model outputs are also provided for this 360-day year. 

3.7 Observed river flow data 

Across the UK, flow records for river flow gauging stations are readily available on the 

UK National River Flow Archive (NRFA, https://nrfa.ceh.ac.uk/ and Dixon et al. (2013)). 

For CS-N0W, the NRFA was the source of the validated river flow data used to assess the 

performance of the G2G at 626 gauging stations.  

 

4.  The Hydrological Modelling setup 

The previous eFLaG project used two lumped catchment models, PDM (Moore, 2007) and 

the GR suite (Perrin et al., 2003), and one distributed grid-based hydrological model, 

https://nrfa.ceh.ac.uk/
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Grid-to-Grid (G2G; Bell et al. (2009)) to make projections of river flows from present 

day (1980) to 2080. The use of different model structures and spatial representations in 

eFLaG provided an opportunity to explore how sensitive future river flow projections are 

to hydrological model choice.  However, the requirement to use future projections of AIs 

in CS-N0W reduced opportunities to explore model structural uncertainty, as lumped 

catchment models such as PDM and GR are calibrated to observed river flows including 

artificial influences and thus cannot easily incorporate scenarios of AIs. Thus, only the 

one eFLaG model, G2G, has been taken forward in CS-N0W.  

4.1 The Grid-to-Grid hydrological model 

G2G is a national-scale hydrological model that provides estimates of river flows, runoff 

and soil moisture on a 1 km × 1 km grid across Great Britain (Bell et al., 2009, Moore et 

al., 2006). The G2G model formulation represents the processes of runoff-production 

and flow routing over a wide area and, across Great Britain, is typically run with a time-

step of 15 minutes. G2G has been widely tested and is used operationally for 

countrywide forecasting over England and Wales by the Flood Forecasting Centre (Price 

et al., 2012) and, over Scotland, by the Scottish Flood Forecasting Service (Maxey et al., 

2012, Cranston et al., 2012). G2G has also been used to assess the potential impact of 

climate change on floods (Bell et al., 2012, Bell et al., 2016), low flow frequency (Kay et 

al., 2018) and droughts (Rudd et al., 2017, Rudd et al., 2019). G2G output consists of a 

value of river flow for every 1 km × 1 km grid-cell across Great Britain, including 

ungauged sites. A particular advantage of G2G is that it has one spatially consistent 

configuration for the whole model domain and is able to represent a wide range of 

hydrological regimes due to use of spatial datasets of terrain, soil/geology and land-

cover. 

The G2G model has recently been enhanced to account for gridded monthly values of AI, 

specifically surface- and ground-water abstraction and discharge volumes (Rameshwaran 

et al. 2022). To enable AI data to be included in the G2G, thousands of point source 

abstraction and discharge measurements across England were transformed into 1 × 1 km 

resolution gridded data. These newly-gridded AI data were used as input to an enhanced 

formulation of the Grid-to-Grid (G2G) hydrological model in which the impact of 
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abstractions and discharges on river flows were mathematically represented. A 

comparison of G2G simulated and observed (gauged) river flows catchments across 

England indicated that model simulations were generally improved at gauged locations 

downstream of abstraction/discharge sites, particularly for low flows, for which the 

median performance across >600 catchments was improved by 10.7%, however, the 

impact on simulation of high river flows is more modest (1.5% improvement). Further 

details are provided by Rameshwaran et al. 2022. 

The overall modelling setup is summarised in Figure 2, which highlights how point 

abstraction and discharge data are converted to 1km grids before being used as monthly 

AI input to the G2G hydrological model.  

 

 

Figure 2 Schematic of the modelling chain used in CS-N0W (Rameshwaran et al., 2022) 

 

4.2 Model setup for CS-N0W 

The model setup and evaluation of G2G in CS-N0W aims to emulate the approach used in 

eFLaG as far as possible to enable both sets of future projections to be compared. By its 
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nature, G2G requires no specific calibration; so, none was undertaken in either project. 

However, the period over which flow projections from G2G-with-AI were evaluated in 

CS-N0W is different to eFLaG because observed monthly AI data were only available for 

the period 1999-2014. 

There are two overall sets of model output in CS-N0W, described below. To identify 

types of model run, eFLaG-based terminology (Hannaford et al., 2023) is adopted 

throughout (in eFLAG, simobs = observations-driven simulations, simrcm = RCM-driven 

simulations).  

• simobs: observation-driven simulations (i.e. simulations for the observed period, 

driven by observational climate and AI datasets). Here, the simobs period covers 

the period January 1961 – December 2020 (two years longer than for eFLAG), but 

model runs using limited observed AI data are for a shorter period (1999-2014). 

• simrcm: UKCP18 RCM-driven simulation (12 ensemble members) and future AI 

scenarios (i.e. the 3 future AI ensemble members, SUS, BAU and EG, as described 

in Section 3.4). There are 36 climate-driven realisations, consisting of 12 RCMs 

each with 3 AI scenarios, all available from 1980 to 2080. The simrcm runs from 

the observed period (1980 -2020) can be compared statistically with the simobs 

data, and the impact of future scenarios of AI and climate change can be 

evaluated by comparing baseline (1980-2020) and future (2020-2080) simrcm 

runs.   

In all cases, climate forcing data was the same as that used in eFLAG (Sections 3.5 and 

3.6). 

4.3 G2G simulations using observed AI data 

Here, natural and AI-impacted simulated daily river flow time series are compared 

against gauged flows for 626 catchments, including English eFLaG catchments, to 

demonstrate that flows are realistically simulated. These simobs simulations are all 

driven by observed climate data (Section 3.5) 
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Three model simulations were undertaken for the historical period 1st January 1999 to 

31st December 2014 for which observed AI data are available, to evaluate the impact of 

including abstractions and discharges in G2G model simulations of river flows: 

• Simobs_NATURAL: standard G2G simulated flows with no abstractions or 

discharges (comparable to eFLAG simobs from G2G). 

• Simobs_ObsAI: G2G simulated flows with time series of observed AI 

• Simobs_MeanAI: G2G simulated flows with time series of mean monthly observed 

AI 

The Simobs_MeanAI simulated flows evaluate the sensitivity of the G2G to using mean AI 

(mean monthly abstractions for the period 2010 to 2014) instead of observed AIs. Future 

AI scenarios are based on this 5-year mean of observed monthly AI. The purpose of the 

Simobs_MeanAI evaluation run was to quantify whether the use of mean monthly AI 

adversely affects the performance of the model in simulating observed flows. Table 1 in 

Section 4.4 summarises the naming convention used for different model runs. 

4.4 G2G simulations for historical and projected future periods 

This next step perturbs the current water availability assessment into the future, to 

account for future climate change and potential changes in water 

abstractions/consumptions and returns. Future gridded ‘natural’ water availability is 

already available within eFLaG, as a 12-member ensemble of daily estimates from 1981 

to 2080, on the UKCP RCM projections. The future AI scenarios (see (Baron et al., 2023) 

and Section 3.4 of this report) perturb the current AI ‘net impacts’ layer, according to 3 

possible scenarios of future water consumption, which are themselves based on 

predictions in the National Framework for Water Resources (EA, 2020b) and water 

company and regional WRMPs, as well as assessments of future environmental flow 

requirements. All 3 scenarios are derived from the 1 km gridded baseline mean monthly 

artificial influenced (MeanAI) data. Broadly, the abstraction data are split into sectors 

(PWS, industry, energy, agriculture) and  scaling factors (additive or multiplicative) are 

applied at the finest resolution available. For example, if a sector has a national scaling 

factor then this will be applied to all the grid, if the scaling factor varies by WRZ then 
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the specific scaling factor will be applied only to the grid cells covered by that WRZ. 

Temporally, annual scaling factors are applied to the monthly baseline data, with 

interpolation between specified time slices where necessary. More details are provided 

by (Baron et al., 2023). The resulting 3 scenarios of future demand (SUS, BAU and EG, 

Section 3.4) have been applied to the present-day AI dataset (the 5-year MeanAI data, 

Section 4.3) to produce 3 continuous and transient datasets of projected future monthly 

abstractions and yearly discharges. 

For the UKCP18-driven climate simulations, G2G model runs were undertaken for the 

period 1st December 1980 to 30th November 2080 as follows: 

• Simrcm_NATURAL: driven by the UKCP18 projected climate (no abstractions or 

discharges, comparable with eFLAG, see Parry et al. (2023)). 

• Simrcm_MeanAI: driven by the UKCP18 projected climate and using observed 

mean AI (2000 and 2014) and observed discharges instead of future AI 

scenarios  

• SimrcmAI_SUS: uses the sustainability (SUS) AI scenario. From 1980 to 2020 the 

AI_SUS data for 2020 is used, and from 2020 to 2080 the transient AI_SUS 

scenario is used. 

• SimrcmAI_BAU: uses the Business as usual (BAU) AI scenario. From 1980 to 

2020 the AI_BAU data for 2020 is used, and from 2020 to 2080 the transient 

AI_BAU scenario is used. 

• SimrcmAI_EG: uses the Economic growth (EG) AI scenario. From 1980 to 2020 

the AI_EG data for 2020 is used, and from 2020 to 2080 the transient AI_EG 

scenario is used. 

In each case, the AI_XXX 2020 scenario is used for the baseline RCM period (1980 to 

2020), and for the future RCM period (2020 to 2080) the transient AI_XXX scenario is 

used. For example, for the SUS AI scenario model runs, AI_SUS abstraction and discharge 

data for 2020 are used for the baseline period from 1980 to 2020, then the transient 

AI_SUS scenario data are used from 2020 to 2080 (Figure 3). 
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Figure 3 Schematic showing how future AI scenarios are used in the simrcm G2G model runs from 1980 to 2080. 

 

Table 1 summarises the naming convention used for different model runs. Note that the 

CS-NOW naming convention is based on that used by the previous eFLAG project, but 

with an additional identifier for the type of AI data used (if any).  

 

Table 1 naming convention used for different model runs/outputs 

Model run 
Climate 

data 
Artificial influences (AI) Period 

eFLAG 

simobs Observed none 1961-2018 

simrcm RCM none 1980-2080 

CS-NOW 

simobs_NATURAL (= simobs) Observed none 1961-2020 

simobs_ObsAI Observed Observed monthly AI 1999-2014 

simobs_MeanAI Observed Mean monthly observed AI* 1961-2020 

simrcm_NATURAL (= simrcm) RCM none 1980-2080 

simrcm_MeanAI RCM Mean monthly observed AI* 1980-2080 

simrcm_SUSAI RCM Sustainability (SUS) 1980-2080 

simrcm_BAUAI RCM Business As Usual (BAU)  1980-2080 

simrcm_EGAI RCM Economic Growth (EG)  1980-2080 

*Mean AI = mean monthly abstractions for the period 2010 to 2014  

     AI_SUS scenario for 2020                       Transient AI_SUS scenario 

1980                                         2020                                                                      2080 
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4.5 Performance assessment criteria 

Four performance scores were used to quantify different aspects of the agreement 

between modelled and gauged flows: two based on the daily time series, one based on 

the magnitude of flow errors, and one based on the flow duration curve (FDC) low flow 

percentiles. The same performance scores were used within eFLaG (Hannaford et al. 

(2023) Table 2). They are considered to capture different aspects of the flow regime, 

from high- to low-flows. 

The two time series performance scores are based on the model efficiency criterion of 

Nash and Sutcliffe (1970), defined as: 

𝑁𝑆 = 1 −
∑ (𝑄𝑜,𝑖−𝑄𝑚,𝑖)

2𝑛
𝑖=1

∑ (𝑄𝑜,𝑖−𝑄𝑜)
2𝑛

𝑖=1

         (1) 

where 𝑄𝑜,𝑖 is the gauged flow for time step i, 𝑄𝑚,𝑖 is the modelled flow for time step i, 

𝑄𝑜 is the mean of observed data and n is the number of time steps. The 𝑁𝑆 can range 

between -  and 1 where 𝑁𝑆 = 1 means a perfect match between modelled and observed 

data, 𝑁𝑆 = 0 indicates that the modelled data are as accurate as the mean of the 

observed data and 𝑁𝑆 < 0 indicates that the mean of the observed data is a better 

predictor of the flow than the model. The original formulation of 𝑁𝑆 is more suitable for 

assessing model performance at high flows, so, for assessing low flows, it is adapted by 

taking the natural logarithm of the flow data, to increase sensitivity to low and mid-

range flows; 

𝑁𝑆𝑙𝑜𝑔 = 1 −
∑ (ln(𝑄𝑜,𝑖+𝜀)−ln(𝑄𝑚,𝑖+𝜀))

2𝑛
𝑖=1

∑ (ln(𝑄𝑜,𝑖+𝜀)−ln(𝑄𝑜+𝜖̅̅ ̅̅ ̅̅ ̅̅ ))
2𝑛

𝑖=1

      (2) 

where 𝜀 is a small number usually defined as 𝜀 = 𝑄𝑜 100⁄ . The 𝑁𝑆𝑙𝑜𝑔 can range between -

 and 1, which is interpreted the same as for 𝑁𝑆.  

The 𝐵𝐼𝐴𝑆 indicates the magnitude of errors in modelled daily flows relative to gauged 

daily flows: 

𝐵𝐼𝐴𝑆 = 100 ×
∑ (𝑄𝑚,𝑖 −𝑄𝑜,𝑖 )𝑛

𝑖=1

∑ 𝑄𝑜,𝑖 𝑛
𝑖=1

 .        (3) 
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The BIAS can range from -∞ to +∞. A value > 0 indicates model overestimation, while a 

value < 0 indicates model underestimation. 

The 𝐹𝐷𝐶 performance score, the percentage bias in low flow volume 𝑙𝑓𝑣, compares the 

statistical characteristics of the flows rather than the time-step equivalence. It is 

calculated from the low flow end of the 𝐹𝐷𝐶, which is obtained by ranking the flows 

from a (daily) time series and selecting the flow corresponding to the percentile point p 

(between 1 and 100); 𝑄𝑚,𝑝 and 𝑄𝑜,𝑝 are thus the flow equalled or exceeded p% of the 

time. Following Kay et al. (2015): 

𝑙𝑓𝑣 = 100 ×
∑ (𝑓(𝑄𝑚,𝑝)−𝑓(𝑄𝑜,𝑝))95

𝑝=70

∑ 𝑓(𝑄𝑜,𝑝) 95
𝑝=70

        (4) 

where the function 𝑓 is taken as the square root. 𝑙𝑓𝑣 only compares up to the 95th 

percentile flow (from the 70th) so as not to include extreme low flow values, which can 

be more severely affected by errors in flow measurements due to instrument 

inaccuracies in shallow flows or low velocities, changes in channel shape and/or weed 

growth and sedimentation (Petersen-Øverleir et al., 2009, Coxon et al., 2015). For a 

perfect model simulation the lfv value would be zero.  A positive 𝑙𝑓𝑣 value indicates 

that the modelled flow is generally higher than gauged flow, with typical values of lfv 

for individual catchments varying from -20 to 20%, indicating that the error in low flow 

volume is typically up to 20% of the flow observation. 

The performance of the G2G simulations of daily mean river flow are assessed by 

comparing with gauged daily river flow data for 626 catchments (Figure 1b). Flow data for 

as many catchments as possible were used in the performance assessment. Catchments in 

England were only excluded from the analysis if no observations were available for the 

assessment period (1999 to 2014), and only 20 catchments out of 626 had <50% 

observations over the assessment period. The large number of catchments provides good 

spatial coverage across England but, as many smaller catchments are nested within larger 

catchments, there is some overlap. 
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5. Results  

This section summarises the analysis of the CS-N0W model predictions, beginning with 

the G2G performance assessment (1999 to 2014) and then summarising the scenario runs 

(1980 to 2080).  

5.1 Abstraction and Discharge Impact on River Flows 

As expected, model simulations show that significant abstractions in a catchment reduce 

river flows while discharges increase flows. The net effect varies, depending on whether 

catchment AIs are dominated by abstractions or discharges. The maps in Figure 4 show 

the locations of the 626 catchment outlets, and whether the observed AIs for those 

catchments are dominated by abstraction (259 catchments: red shading) or river 

discharges (359 catchments: blue shading). For 8 catchments there were no abstractions 

or discharges and they are shown with yellow shading. Gradations of colour in Figure 4 

a&b denote overlapping sub-catchments. 
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Figure 4. Maps showing a) gauging station locations within England (Abstraction-dominated in red, discharge-
dominated in blue and neither dominated in yellow) and the main river network, catchment boundaries for b) the 259 
abstraction-dominated catchments, c) the 359 discharge-dominated catchments and d) the 8 catchments with no AI, 
used in the model performance analysis. 

 

For example, the Thames at Kingston (catchment area 9,948 km2) is abstraction-

dominated, but subject to both abstractions and discharges. The May to June 2012 

hydrographs in Figure 5 demonstrate the influence of individual anthropogenic 

interventions in turn: ObsAI flows with abstraction (A) only are much lower than G2G-

estimated natural flows. When discharges (D) are added ObsAI (A&D) river flows are 

much higher, but still less than G2G natural flows. In the Thames to Kingston, there is 

very little difference between using observed AI and a 5-year mean AI, but use of 5-year 

MeanAI with A&D leads to slightly lower flows in 2012. Many SW abstractions in the 

Thames Basin are subject to HoF conditions which will limit SW abstraction during 

periods of low flows with the aim of maintaining sufficient river flow to support a 

healthy freshwater environment. Across England, the net influence of abstractions, HoF 

conditions and discharges varies between catchments, and because monthly abstraction 

data are used, the net AI influence can also vary through the year.  
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Figure 5 Example flow hydrographs for the Thames to Kingston (39001) for the period 1 May to 30 June 2012 showing 
observed flows and G2G model simulations using different combinations of abstractions and discharges 

 

 

Figure 6 compares gauged and G2G-simulated daily river flows for three catchments 

from 1st May 2012 to 31st August 2012. For the heavily abstracted Thames at Kingston 

catchment, the G2G flow simulations with AI are lower than the “Natural” model 

simulation as expected, but in the discharge-dominated Trent at Drakelow Park, where 

there are no “Very Low” loss abstractions, the influence of discharge dominates. In this 

catchment, the G2G-simulated “Natural” flows are low in May and August but when AI 

are included, G2G-simulated flows are higher and much closer to observed (gauged) 

flows.  
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Figure 6 Example flow hydrographs for 3 catchments (Thames at Kingston (39001), Trent at Drakelow Park (28019) 
and Darwen at Blue Bridge (71014)) for the period 1 May to 30 June 2012 showing observed flows and the G2G 
simulation using MeanAI. 
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5.2 Model Performance Assessment 

G2G model simulated flows (Simobs) are compared to gauged daily flows across all the 

CS-N0W catchments as boxplots of performance skill scores in Figure 7. Results are 

presented for three sets of catchments: all 626 catchments, 259 abstraction-dominated, 

and 359 discharge-dominated. The boxplots compare the skill scores (NS, NSlog, BIAS, and 

lfv) from standard G2G model for “Natural” flows, G2G with “Observed AI” and G2G 

with “Observed Mean AI”. 

Generally, use of AI data in the G2G hydrological model improves model performance 

during low flow periods, but has less of an impact when flows are higher. As shown in 

Table 2, the median value of NSlog (a measure of model performance at low flows) 

increases from 0.56 for the “Natural” G2G simulation to 0.63 for the ObsAI and MeanAI 

(12.5% improvement). The spatial maps of the G2G model skill scores (NS and NSlog) 

shown in Figure 8 highlight the spatial performance of G2G when driven by ObsAI. 

Across all the catchments, the median model BIAS is better (1.9%) for the Natural 

simulation than for the ObsAI and MeanAI simulations (3.9%) indicating the G2G slightly 

overestimates flow. However, median lfv is improved when AI are used (lfv is −5.61% for 

the Natural run, rising to −0.94% and −1.20% for the ObsAI and MeanAI runs respectively). 

Overall, the median performance across all 626 study catchments is improved through 

the use of AI data in the G2G hydrological model; such improvements are most apparent 

in discharge dominated catchments for low flows. In abstraction-dominated catchments, 

the improvements in model performance through the use of AI data are more modest. 
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Figure 7 Boxplots of flow-simulation performance scores (NS, NSlog, BIAS, and lfv) for SW-abstraction-dominated and 
discharge-dominated catchments with three different G2G model simulations: ‘Natural’, ‘ObsAI’ and ‘MeanAI’. 

 
  



 

Hydrological modelling and artificial influences   | 29 

Table 2 Median model performance scores (NS, NSlog, BIAS, and lfv) 

AI used in the model run NS NSlog BIAS (%) Ifv (%) 

All catchments (626) 

NATURAL 0.67 0.56 1.9 -5.61 

ObsAI 0.68 0.63 3.9 -0.94 

MeanAI 0.68 0.63 3.9 -1.20 

Abstraction-dominated catchments (259) 

NATURAL 0.70 0.59 4.6 -10.92 

ObsAI 0.70 0.60 2.8 -11.81 

MeanAI 0.70 0.59 2.1 -11.60 

Discharge-dominated catchments (359) 

NATURAL 0.65 0.54 -1.8 -1.33 

ObsAI 0.66 0.64 6.9 9.21 

MeanAI 0.66 0.65 7.1 9.62 
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(a) NS      (b) NSlog 

 

 

 

 

 

 

 

Figure 8 Maps of the G2G model performance skill scores NS and NSlog (ObsAI), when comparing simulated and 
observed river flows. 

 

5.3 Temporal and Mean Variation in Abstraction Data Use 

The work presented here shows how records of “monthly” and “mean monthly” (2000 to 

2014) abstraction and discharge data can be incorporated in process-based hydrological 

models, leading to improvements in model performance in anthropogenically influenced 

catchments. The G2G model performance statistics in Table 2 are provided for model 

runs using monthly (ObsAI) and mean-monthly (MeanAI), and they suggest that accuracy 

of high flow simulations is identical in both cases (NS criteria identical to 2 decimal 

places), but there is a small difference in the accuracy of low flow simulations (a 

difference in NSlog of 1%), and a 4% difference in lfv. Intriguingly, in abstraction-

dominated catchments the use of MeanAI leads to improvements in some skill scores: 

~25% improvement in %BIAS and 1% improvement in lfv (which would generally be 

expected to occur during summer periods). 

The simulation performance results in Table 2 and Figure 7 show the median and range 

in the ObsAI and MeanAI impacts on G2G performance, but don’t indicate how many 

catchments are particularly affected by this choice of AI data. To understand this, 

Figure 9 presents scatterplots of G2G simulation performance for all 626 catchments 

using MeanAI (from 2010 to 2014) and ObsAI. In general, model performance across the 
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15-year assessment period is very similar and there are ~7 catchments where the NS, 

NSlog, BIAS, and lfv values are substantially different between the ObsAI and MeanAI runs 

(Colne at Colne Bridge (27031), Roch at Rochdale (69803), Don at Sheffield Hadfields 

(27006), Exe at Pixton (45009), Lark at Temple (33014), Ouse at Gold Bridge(41005), and 

Eye Brook at Eye Brook Reservoir (31001)). Further investigation indicates that for these 

catchments, abstractions during the 5-year period over which MeanAI abstractions were 

calculated differ substantially from recorded abstractions over the 16-year assessment 

period, often because of changes in abstraction licences. For most other catchments, 

abstraction changes over this period were more modest, which was why observations of 

abstractions could be replaced by a monthly mean with greater success.  

Overall, these analyses suggest that use of mean-monthly abstraction totals for a 

relatively recent period (2000 to 2014) provides a reasonable baseline for developing 

future AI scenarios, though investigation into the use of derived relationships between 

observed AI and monthly rainfall might be beneficial in the derivation of future scenarios 

of monthly abstractions. 

 

Figure 9. Scatter plots of the NS, NSlog, BIAS, and lfv for the actual (ObsAI) and mean abstraction (MeanAI) runs. 
Outlier catchments are labelled using their catchment ID.  

 

5.4 G2G-simulated future scenarios of AI-impacted river flows 

For the 12-member ensemble of UKCP18-driven climate simulations (Section 3.6), G2G 

model runs were undertaken for the period 1st December 1980 to 30th November 2080 

for the 3 future AI scenarios (Section 3.4). The output consists of 36 UKCP18-driven 

 

31001 
41005 

33014 
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climate-simulations in total, which are analysed in a separate report (Tanguy et al., 

2023).  

By way of example, Figure 10 presents a 12-member ensemble of daily mean river flows 

(m3s-1) for the Thames at Kingston (39001) corresponding to 12 UKCP18 RCMs (the BAU 

demand scenario) for a 1-year period from 1st January to 30th December 2050. Monthly 

hydrographs for all 12 RCM members are plotted together to highlight the variability in 

projected future flows. 

 

Figure 10. Example plots of daily mean river flows for the Thames at Kingston (Station No. 39001) from 12 RCM 
ensemble members according to the BAU AI scenario (BAUAI) 

 

For the 3 AI scenarios (Baron et al., 2023), which are summarised in Section 3.4, it has 

not been possible to identify a consistently low, central or high AI scenario, and for 

some catchments the scenarios even cross. For example, in the Thames to Kingston, the 

surface water abstraction scenarios for BAU and EG intersect around 2040, as shown in 

Figure 11. Thus from 2040 onwards the BAU SW abstraction scenario results in higher SW 

abstraction demand than for EG. The scenario graphs also highlight that, at the starting 

point of the scenarios (2020), there are small differences between the 3 scenarios, 

because the underlying reports on which they are based initialise their “future” 

scenarios at different times leading to different demand projections for the year 2020. 
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In a follow-on report (Tanguy et al., 2023), the future AI-impacted flows are analysed 

for water resource applications and drought analyses at different climate warming 

thresholds. The scenarios can also be explored to understand the impact of projected 

climate and AI scenarios on low flows and environmental flows. 

 

Figure 11. Graphs of the three future SW abstraction scenarios (m3/month) for the Thames to Kingston (39001) for the 
period 2020 to 2080:  

 

For example, Figure 12 presents transient moving windows from 1980 to 2080 of Q95 

(the flow exceeded 95% of the time) for three catchments 39001, 28019, 71014, 

assuming the BAU AI scenario. For catchment 39001, an abstraction-dominated 

catchment, median Q95 decreases by 23.6% until the 2020-centred time period, then 

decreases further by 48.5% to the final 2065-centred moving window; similarly, for 

catchment 71014 median Q95 decreases are 3.8% and 17.6% over the same periods. By 

comparison, for the example discharge-dominated catchment 28019, median Q95 

decreases by just 5.3% and 2.5% over the same periods. Analyses such as these could be 

used to support investigations into the use of flow exceedance thresholds as a suitable 

means of determining minimum environmental flow requirements which are defined by 

flow exceedance thresholds such as Q70 and Q95 (Environment Agency (2020), Appendix 

4). 

It has not been possible to present results for all catchments, scenario and time periods 

in report form, but these information are being made available in a CS-NOW project 

web-tool, which will allow the user to explore future simulations for individual 

catchments and English regions. Parallel work is exploring options for open publication 
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of CS-NOW datasets and model simulations on the EIDC or CEDA data centres, following 

the approach of Hannaford et al., 2022 who published the eFLAG future flow and 

groundwater simulations. 
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Figure 12.  30-year transient moving windows from 1980 to 2080 of Q95 (the flow exceeded 95% of the time) for three 
catchments 39001, 28019, 71014, for the BAU AI scenario and UKCP18 regional climate projections. Orange shading 
shows the spread of the 12 UKCP18-driven derived Q95 values, the black line shows the median, and the dashed 
vertical line indicates the start of the 30-year period after which future AIs are included.  
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5.5 Summary of G2G model output 

The output from both the observation-driven and UKCP18-driven G2G simulations 

consists of .csv files of daily flows at 626 English gauging stations, 1km resolution grids 

of AI-impacted river flows, and 1km grids of total monthly abstracted water, total 

monthly un-abstracted water (water that could not be abstracted from surface or 

groundwater), and number of days per month abstraction demand could not be met. The 

outputs are summarised in Table 3, and a full list is provided in Appendix A, Table 6. The 

project team are exploring options for open publication of CS-NOW datasets and model 

following the approach of Hannaford et al., 2022 who published the eFLAG simulations 

on the EIDC. 

Table 3 Summary of AI-impacted G2G model output for present-day and UKCP18 scenarios 

Frequency  G2G output  unit  
File 

format 

Daily  Time-series of G2G flows at 626 gauged locations  m3/s

  

csv  

Daily  Gridded G2G flows on a 1km across England  m3/s

  

netcdf  

Monthly  Gridded volume of surface water abstracted by G2G m3  netcdf  

Monthly  Gridded volume of groundwater abstracted by G2G m3  netcdf  

Monthly  Gridded volume of surface water NOT abstracted by G2G m3  netcdf  

Monthly  Gridded volume of groundwater NOT abstracted by G2G m3  netcdf  

Monthly  Gridded number of days/month not all surface water can 

be abstracted by G2G 

days

  

netcdf  

Monthly  Gridded number of days/month not all groundwater can 

be abstracted by G2G 

days

  

netcdf  
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Together, the monthly datasets of G2G-simulated abstracted water, water demand that 

couldn’t be met in the G2G (“unabstracted water”), and number of days per month 

when abstraction demand cannot be met, can be used to provide an estimate of when 

and where future demand exceeds water availability, and how it changes over time. 

Figure 13 presents an example map of G2G-simulated abstracted surface water for 

August 2014, highlighting the spatial variation in the volume of water (m3) that could be 

abstracted during the model run. The water volume that is available for abstraction will 

always be less than or equal to the abstraction demand. Maps similar to Figure 13 can be 

produced for future periods showing where surface water and groundwater abstraction 

demand can/cannot be met, and for different AI scenarios. 

 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.  Map of G2G-estimated abstracted surface water (m3) for August 2014 

 

A comparison of (observed) SW abstraction demand (yellow line) and G2G-simulated 

abstracted surface water (green line) is presented in Figure 14 for two years, 2011 and 

2012. The difference in the two graphs illustrates the difference between recorded 

abstraction demand (m3), and the volume of water (m3) the G2G model was able to 

abstract from this catchment (39001, the Thames to Kingston). The difference in the 

two time-series highlights that the volume of river water available for abstraction (green 

line) may not always be enough to satisfy the local abstraction demand (yellow line). 
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Further work will be needed to understand why this is the case, but reasons might 

include abstraction limited locally by a HoF condition, an abstraction demand that 

cannot be fulfilled by the current G2G model configuration, such as reservoir 

abstraction, estuary/tidal abstraction, groundwater abstraction from an aquifer not 

simulated by the G2G, or even just a large abstraction incorrectly attributed to a minor 

river channel during discretisation to a 1km grid. Figure 14 also illustrates the monthly 

and interannual variability in observed SW abstraction, highlighting the importance of 

using actual monthly abstraction data where possible rather than an annual mean. 

 

Figure 14.  Observed SW abstraction and G2G-simulated abstracted surface water (January 2011 to December 2012) 
for the Thames to Kingston 

 

6. Discussion 

 

A grid-based hydrological model (G2G) has been modified to account for artificial 

influences (AIs: abstractions and discharges) and used to simulate historical and 

projected future river flows and water demand comparable with the recently-published 

eFLaG dataset (Hannaford et al., 2023). The relative success with which actual 

abstraction values for most catchments can be replaced by 5-year mean values (section 

5.3) supports the use of mean monthly abstraction values as a basis for the 3 future 

scenarios of water demand developed by Baron et al. (2023) and used here for the 

future AI scenarios.  
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However, it is important to acknowledge the wider uncertainties in the model 

simulations developed here. These uncertainties, which include the observed AI data 

(specifically the use of NALD rather than WRGIS data), how the AI data are discretised to 

a 1km grid in the G2G, how AI data are incorporated in the G2G national-scale model are 

discussed in detail in (Rameshwaran et al., 2022). Use of future scenarios, for both AIs 

and UKCP18-projected climate, adds another level of uncertainty. In many ways, 

uncertainty is explored through the use of ensembles of AI and UKCP18 RCM scenarios, 

although it’s important to note that the UKCP18 RCM data used here are for RCP8.5, a 

high emissions scenario representing a rather pessimistic view of the UK’s climate 

future. The median projected impact of this (UKCP18 RCM/RCP8.5) scenario on mean 

river flows across Britain is ~9% higher flows in winter and 45% lower flows in summer 

(Kay, 2021), with similar projected impacts on extreme flows (Lane and Kay, 2021) 

found >10% increase in 10 year return period high flows and -90 to -27% decrease in 10 

year return period low flows). (Hannaford et al., 2023) discuss other uncertainties 

associated with eFLaG (around observational data and bias correction choices, e.g. 

choice of observational PE, choice of bias correction). It must also be considered that 

only one hydrological model is used in CS-N0W, thus AI-impacted model structural 

uncertainty cannot be quantified here.  

It is also worth noting that with the current G2G formulation, the true abstraction 

demand may not always be met as G2G does not include all freshwater anthropogenic 

influences, such as impounding reservoirs and releases, canals and lakes. For example, 

in dry summer months, simulated river flows falling below the HoF condition will 

prevent the surface water abstraction from taking place. There is currently no 

functionality in the G2G model to enable an unmet abstraction demand to be satisfied 

by compensation flows from reservoirs, which happen in reality. Similarly, some 

groundwater abstraction demands will not be met because of the simple approach to 

groundwater and the way in which groundwater abstraction is implemented in the G2G 

(no account has been taken of the groundwater abstraction impact zone which can 

extend some distance from the actual abstraction location).  . In such situations the G2G 
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model typically will underestimate the true water consumption leading to downstream 

river flows being slightly higher than they would be. 
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7.  Summary 

 

This report was produced for the CS-N0W project (WPD2) which aims to provide future 

projections of AI-impacted flows across England up to 2080, taking account of possible 

future changes in abstractions/discharges. The report summarises the modelling 

approach and datasets used to derive the future flow projections, together with an 

assessment of how the AI-impacted hydrological model (Grid-to-Grid or “G2G”) performs 

for historical periods. A second report, Tanguy et al. (2023), presents an analysis of 

these scenarios and provides key indicators and statistics of water availability for 

historical, current and future timescales to 2080. 
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Appendix A 

Table 4 Gauging stations for which daily flows are estimated by the G2G Model 

Site Gauging station 
Catchment 
area (km2) 

22001 Coquet at Morwick 570 

22006 Blyth at Hartford Bridge 269 

22007 Wansbeck at Mitford 287 

22009 Coquet at Rothbury 346 

23001 Tyne at Bywell 2176 

23002 Derwent at Eddys Bridge 118 

23003 North Tyne at Reaverhill 1008 

23004 South Tyne at Haydon Bridge 751 

23006 South Tyne at Featherstone 322 

23007 Derwent at Rowlands Gill 242 

23008 Rede at Rede Bridge 344 

23009 South Tyne at Alston 119 

23011 Kielder Burn at Kielder 59 

23016 Ouse Burn at Crag Hall 55 

23017 Team at Team Valley 62 

23022 North Tyne at Uglydub 242 

24001 Wear at Sunderland Bridge 658 

24002 Gaunless at Bishop Auckland 93 

24003 Wear at Stanhope 172 

24004 Bedburn Beck at Bedburn 75 

24005 Browney at Burnhall 179 

24008 Wear at Witton Park 455 

24009 Wear at Chester le Street 1008 

25001 Tees at Darlington Broken Scar 818 

25004 Skerne at Darlington South Park 250 

25005 Leven at Leven Bridge 196 

25006 Greta at Rutherford Bridge 86 

25008 Tees at Barnard Castle 509 

25009 Tees at Low Moor 1264 

25018 Tees at Middleton in Teesdale 242 

25020 Skerne at Preston le Skerne 147 

25021 Skerne at Bradbury 70 

25023 Tees at Cow Green Reservoir 58 

25029 Leven at Foxton Bridge 184 

26002 Hull at Hempholme Lock 378 

26005 Gypsey Race at Boynton 240 

26012 Foulness at Holme House Farm 70 

26013 Driffield Trout Stream at Driffield 53 

27001 Nidd at Hunsingore Weir 484 

27002 Wharfe at Wetherby Flint Mill 759 

27003 Aire at Beal 1932 

27005 Nidd at Gouthwaite Reservoir 114 

27006 Don at Sheffield Hadfields 373 

27007 Ure at Westwick 915 

27009 Ouse at Skelton 3315 

27021 Don at Doncaster 1256 

27022 Don at Rotherham Weir 826 

27023 Dearne at Barnsley Weir 119 

27025 Rother at Woodhouse Mill 352 

27026 Rother at Whittington 165 

27028 Aire at Armley 692 

27029 Calder at Elland 342 

27030 Dearne at Adwick 311 

27031 Colne at Colne Bridge 245 

27034 Ure at Kilgram Bridge 510 

27035 Aire at Kildwick Bridge 282 

27040 Doe Lea at Staveley 68 

27041 Derwent at Buttercrambe 1586 

27042 Dove at Kirkby Mills 59 

27043 Wharfe at Addingham 427 

27048 Derwent at West Ayton 127 

27049 Rye at Ness 239 

27052 Whitting at Sheepbridge 50 

27053 Nidd at Birstwith 218 

27055 Rye at Broadway Foot 132 

27056 Pickering Beck at Ings Bridge 69 

27057 Seven at Normanby 122 

27059 Laver at Ripon Laver Weir 88 

27060 Kyle at Newton On Ouse 168 

27061 Colne at Longroyd Bridge 72 

27062 Nidd at Skip Bridge 516 

27064 Went at Walden Stubbs 84 

27065 Holme at Huddersfield Queens Mill 97 

27069 Wiske at Kirby Wiske 216 

27071 Swale at Crakehill 1363 

27072 Worth at Keighley 72 

27075 Bedale Beck at Leeming 160 

27076 Bielby Beck at Thornton Lock 103 

27077 Bradford Beck at Shipley 58 

27079 Calder at Methley 930 

27080 Aire at Oulton Lemonroyd 865 

27083 Foss at Huntington 118 

27085 Cod Beck at Dalton Bridge 209 

27086 Skell at Ripon Alma Weir 120 

27087 Derwent at Low Marishes 458 

27088 Calder at Mytholmroyd 142 

27089 Wharfe at Tadcaster 818 

27090 Swale at Catterick Bridge 499 

27091 Crimple at Blackstones 77 

27092 Esk at Briggswath 325 

27096 Wharfe at Netherside Hall 215 

28001 Derwent at Yorkshire Bridge 126 

28002 Blithe at Hamstall Ridware 163 

28003 Tame at Water Orton 408 

28007 Trent at Shardlow 4400 

28008 Dove at Rocester Weir 399 

28009 Trent at Colwick 7486 

28011 Derwent at Matlock Bath 690 

28012 Trent at Yoxall 1229 

28014 Sow at Milford 591 

28015 Idle at Mattersey 529 

28018 Dove at Marston on Dove 883 

28019 Trent at Drakelow Park 3072 

28022 Trent at North Muskham 8231 

28023 Wye at Ashford 154 

28024 Wreake at Syston Mill 414 

28026 Anker at Polesworth 368 

28027 Erewash at Sandiacre 182 

28031 Manifold at Ilam 149 

28032 Meden at Church Warsop 63 

28035 Leen at Triumph Road Nottingham 111 

28036 Poulter at Twyford Bridge 128 

28039 Rea at Calthorpe Park 74 

28040 Trent at Stoke-On-Trent 53 

28043 Derwent at Chatsworth 335 

28046 Dove at Izaak Walton 83 

28047 Oldcotes Dyke at Blyth 85 

28048 Amber at Wingfield Park 139 

28049 Ryton at Worksop 77 

28050 Torne at Auckley 136 

28052 Sow at Great Bridgeford 163 

28053 Penk at Penkridge 272 

28055 Ecclesbourne at Duffield 50 

28056 Rothley Brook at Rothley 94 

28060 Dover Beck at Lowdham 69 

28061 Churnet at Basford Bridge 139 

28066 Cole at Coleshill 130 

28067 Derwent at Church Wilne 1178 

28068 Lathkill at Pickering Wood 90 
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28072 Greet at Southwell 46 

28074 Soar at Kegworth 1292 

28079 Meece Brook at Shallowford 86 

28080 Tame at Lea Marston Lakes 799 

28082 Soar at Littlethorpe 184 

28083 Trent at Darlaston 195 

28085 Derwent at St Mary's Bridge 1054 

28086 Sence at South Wigston 113 

28091 Ryton at Blyth 231 

28093 Soar at Pillings Lock 1108 

28095 Tame at Hopwas Bridge 1422 

28112 Churnet at Quixhill 213 

28116 Maun at Whitewater Bridge 157 

28117 Derwent at Whatstandwell 755 

28118 Meden at Perlethorpe 97 

29001 Waithe Beck at Brigsley 108 

29002 Great Eau at Claythorpe Mill 77 

29003 Lud at Louth 55 

29005 Rase at Bishopbridge 67 

30001 Witham at Claypole Mill 298 

30002 Barlings Eau at Langworth Bridge 210 

30003 Bain at Fulsby Lock 197 

30004 Lymn at Partney Mill 62 

30005 Witham at Saltersford Total 126 

30011 Bain at Goulceby Bridge 63 

30033 Brant at Brant Broughton 66 

31001 Eye Brook at Eye Brook Reservoir 60 

31004 Welland at Tallington Total 717 

31006 Gwash at Belmesthorpe 150 

31007 Welland at Barrowden 412 

31008 East Glen at Manthorpe 136 

31009 West Glen at Shillingthorpe 173 

31010 Chater at Fosters Bridge 69 

31013 East Glen at Irnham 72 

31021 Welland at Ashley 251 

31028 Gwash at Church Bridge 77 

32003 Harpers Brook at Old Mill Bridge 74 

32004 Ise Brook at Harrowden 194 

32006 Nene/Kislingbury at Upton Total 223 

32007 Nene/Brampton at St Andrews Total 233 

32008 Nene/Kislingbury at Dodford 107 

32010 Nene at Wansford 1530 

32012 Wootton Brook at Lady Bridge 53 

32019 Slade Brook at Kettering 58 

32031 Wootton Brook at Wootton Park 74 

33002 Bedford Ouse at Bedford 1460 

33006 Wissey at Northwold Total 275 

33007 Nar at Marham 153 

33011 Little Ouse at County Bridge Euston 129 

33012 Kym at Meagre Farm 138 

33013 Sapiston at Rectory Bridge 206 

33014 Lark at Temple 272 

33015 Ouzel at Willen 277 

33018 Tove at Cappenham Bridge 138 

33019 Thet at Melford Bridge 316 

33020 Alconbury Brook at Brampton 202 

33021 Rhee at Burnt Mill 303 

33022 Ivel at Blunham 541 

33024 Cam at Dernford 198 

33026 Bedford Ouse at Offord 2570 

33027 Rhee at Wimpole 119 

33028 Flit at Shefford 120 

33029 Stringside at Whitebridge 99 

33031 Broughton Brook at Broughton 67 

33032 Heacham at Heacham 59 

33033 Hiz at Arlesey 108 

33034 Little Ouse at Abbey Heath 689 

33035 Ely Ouse at Denver Complex 3430 

33037 Bedford Ouse at Newport Pagnell Total 800 

33039 Bedford Ouse at Roxton 1660 

33044 Thet at Bridgham 278 

33046 Thet at Redbridge 145 

33050 Snail at Fordham 61 

33051 Cam at Chesterford 141 

33053 Granta at Stapleford 114 

33055 Granta at Babraham 99 

33056 Quy Water at Lode 76 

33057 Ouzel at Leighton Buzzard 119 

33058 Ouzel at Bletchley 215 

33063 Little Ouse at Knettishall 101 

33066 Granta at Linton 60 

33070 Lark at Fornham St Martin 110 

34001 Yare at Colney 232 

34002 Tas at Shotesham 147 

34003 Bure at Ingworth 165 

34004 Wensum at Costessey Mill 571 

34005 Tud at Costessey Park 73 

34006 Waveney at Needham Mill 370 

34007 Dove at Oakley Park 134 

34010 Waveney at Billingford Bridge 149 

34011 Wensum at Fakenham 162 

34012 Burn at Burnham Overy 80 

34014 Wensum at Swanton Morley Total 398 

34018 Stiffkey at Warham 88 

34019 Bure at Horstead Mill 313 

35002 Deben at Naunton Hall 163 

35003 Alde at Farnham 64 

35004 Ore at Beversham 55 

35010 Gipping at Bramford 298 

35013 Blyth at Holton 93 

36002 Glem at Glemsford 87 

36003 Box at Polstead 54 

36005 Brett at Hadleigh 156 

36006 Stour at Langham 578 

36007 Belchamp Brook at Bardfield Bridge 59 

36008 Stour at Westmill 225 

36010 Bumpstead Brook at Broad Green 28 

36012 Stour at Kedington 76 

36013 Brett at Higham 195 

36015 Stour at Lamarsh 481 

37001 Roding at Redbridge 303 

37002 Chelmer at Rushes Lock 534 

37003 Ter at Crabbs Bridge 78 

37005 Colne at Lexden 238 

37006 Can at Beach's Mill 228 

37007 Wid at Writtle 136 

37008 Chelmer at Springfield 190 

37009 Brain at Guithavon Valley 61 

37010 Blackwater at Appleford Bridge 247 

37011 Chelmer at Churchend 73 

37012 Colne at Poolstreet 65 

37013 Sandon Brook at Sandon Bridge 75 

37014 Roding at High Ongar 95 

37015 Cripsey Brook at Chipping Ongar 62 

37016 Pant at Copford Hall 63 

37017 Blackwater at Stisted 139 

37019 Beam at Bretons Farm 50 

37020 Chelmer at Felsted 132 

37022 Holland Brook at Thorpe le Soken 55 

37023 Roding at Loughton 269 

37024 Colne at Earls Colne 154 

37031 Crouch at Wickford 72 

37034 Mar Dyke at Stifford 91 

38001 Lee at Feildes Weir 1036 

38002 Ash at Mardock 79 

38003 Mimram at Panshanger Park 134 

38004 Rib at Wadesmill 137 

38011 Mimram at Fulling Mill 99 

38013 Upper Lee at Luton Hoo 71 

38014 Salmon Brook at Edmonton 21 

38017 Mimram at Whitwell 39 

38018 Upper Lee at Water Hall 150 
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38023 Lee flood relief at Low Hall 1243 

38026 Pincey Brook at Sheering Hall 55 

38029 Quin at Griggs Bridge 50 

38030 Beane at Hartham 175 

38031 Lee at Rye Bridge 758 

38032 Lee at Lea Bridge 1364 

38033 Upper Lee at Luton East Hyde 71 

39001 Thames at Kingston 9948 

39002 Thames at Days Weir 3445 

39003 Wandle at South Wimbledon 176 

39004 Wandle at Beddington Park 122 

39006 Windrush at Newbridge 363 

39007 Blackwater at Swallowfield 355 

39008 Thames at Eynsham 1616 

39010 Colne at Denham 743 

39011 Wey at Tilford 396 

39012 Hogsmill at Kingston upon Thames 69 

39013 Colne at Berrygrove 352 

39014 Ver at Hansteads 132 

39016 Kennet at Theale 1033 

39019 Lambourn at Shaw 234 

39020 Coln at Bibury 107 

39021 Cherwell at Enslow Mill 552 

39022 Loddon at Sheepbridge 165 

39023 Wye at Bourne End Hedsor 137 

39025 Enborne at Brimpton 148 

39026 Cherwell at Banbury 199 

39027 Pang at Pangbourne 171 

39028 Dun at Hungerford 101 

39029 Tilling Bourne at Shalford 59 

39030 Gade at Croxley Green 184 

39031 Lambourn at Welford 176 

39032 Lambourn at East Shefford 154 

39034 Evenlode at Cassington Mill 430 

39035 Churn at Cerney Wick 124 

39037 Kennet at Marlborough 142 

39039 Wye at High Wycombe 68 

39040 Thames at West Mill Cricklade 185 

39042 Leach at Priory Mill Lechlade 77 

39043 Kennet at Knighton 295 

39044 Hart at Bramshill House 84 

39046 Thames at Sutton Courtenay 3414 

39049 Silk Stream at Colindeep Lane 29 

39053 Mole at Horley 90 

39056 Ravensbourne at Catford Hill 120 

39057 Crane at Cranford Park 62 

39068 Mole at Castle Mill 316 

39069 Mole at Kinnersley Manor 142 

39071 Thames at Ewen 64 

39072 Thames at Royal Windsor Park 7046 

39073 Churn at Cirencester 84 

39074 Ampney Brook at Sheepen Bridge 74 

39076 Windrush at Worsham 296 

39077 Og at Marlborough Poulton Fm 59 

39078 Wey (North) at Farnham 191 

39079 Wey at Weybridge 1008 

39081 Ock at Abingdon 234 

39087 Ray at Water Eaton 84 

39088 Chess at Rickmansworth 105 

39089 Gade at Bury Mill 48 

39090 Cole at Inglesham 140 

39093 Brent at Monks Park 118 

39094 Crane at Marsh Farm 81 

39101 Aldbourne at Ramsbury 53 

39102 Misbourne at Denham Lodge 95 

39103 Kennet at Newbury 548 

39104 Mole at Esher 470 

39105 Thame at Wheatley 534 

39106 Mole at Leatherhead 371 

39109 Coln at Fossebridge 82 

39110 Coln at Fairford 130 

39111 Thames at Staines 8120 

39114 Pang at Frilsham 90 

39115 Pang at Bucklebury 109 

39117 Colne Brook at Hythe End 930 

39120 Caker Stream at Alton 88 

39121 Thames at Walton 9292 

39122 Cranleigh Waters at Bramley 110 

39125 Ver at Redbourn 63 

39127 Misbourne at Little Missenden 47 

39128 Bourne (South) at Addlestone 90 

39129 Thames at Farmoor 1609 

39130 Thames at Reading 4634 

39131 Brent at Costons Lane Greenford 146 

39138 Loddon at Twyford 690 

39140 Ray at Islip 290 

39141 Wey at Guildford 690 

39142 Windrush at Bourton on the Water 66 

39143 Dikler at Bourton on the Water 91 

39144 Sor at Bodicote 88 

39148 Thames at Maidenhead 6910 

40003 Medway at Teston / East Farleigh 1256 

40004 Rother at Udiam 206 

40005 Beult at Stilebridge 277 

40007 Medway at Chafford / Colliers Land 
Bridge 

255 

40008 Great Stour at Wye 230 

40009 Teise at Stonebridge 136 

40010 Eden at Penshurst / Vexour Bridge 224 

40011 Great Stour at Horton 345 

40012 Darent at Hawley 191 

40013 Darent at Otford 101 

40016 Cray at Crayford 120 

40018 Darent at Lullingstone 118 

40020 Eridge Stream at Hendal Bridge 54 

40022 Great Stour at Chart Leacon 73 

40023 East Stour at South Willesborough 59 

40029 Len at Lenside 70 

41003 Cuckmere at Sherman Bridge 135 

41004 Ouse at Barcombe Mills 396 

41005 Ouse at Gold Bridge 181 

41006 Uck at Isfield 88 

41009 Rother at Hardham 346 

41010 Adur W Branch at Hatterell Bridge 109 

41011 Rother at Iping Mill 154 

41012 Adur E Branch at Sakeham 93 

41014 Arun at Pallingham 379 

41015 Ems at Westbourne 58 

41018 Kird at Tanyards 67 

41019 Arun at Alfoldean 139 

41022 Lod at Halfway Bridge 52 

41023 Lavant at Graylingwell 87 

41025 Loxwood Stream at Drungewick 92 

41029 Bull at Lealands 41 

41035 North at Brookhurst 54 

42001 Wallington at North Fareham 111 

42003 Lymington at Brockenhurst 99 

42004 Test at Broadlands 1040 

42005 Wallop Brook at Broughton 54 

42006 Meon at Mislingford 73 

42007 Alre at Drove Lane Alresford 57 

42008 Cheriton Stream at Sewards Bridge 75 

42009 Candover Stream at Borough Bridge 71 

42011 Hamble at Frogmill 57 

42012 Anton at Fullerton 185 

42014 Blackwater at Ower 105 

42016 Itchen at Easton 237 

42023 Itchen at Riverside Park 415 

42024 Test at Chilbolton Total 453 

42025 Lavant Stream at Leigh Park 55 

42026 Wallop Brook at Bossington 61 

42027 Dever at Bransbury 122 
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43003 Avon at East Mills Total 1478 

43004 Bourne at Laverstock 164 

43005 Avon at Amesbury 324 

43006 Nadder at Wilton 221 

43007 Stour at Throop 1073 

43008 Wylye at South Newton 445 

43009 Stour at Hammoon 523 

43010 Allen at Loverley Farm 94 

43012 Wylye at Norton Bavant 112 

43014 East Avon at Upavon East 86 

43018 Allen at Walford Mill 177 

43021 Avon at Knapp Mill 1706 

43022 Moors River at Hurn Court 143 

43023 Ebble at Nunton Bridge 107 

43024 Wylye at Stockton Park 255 

44001 Frome at East Stoke Total 414 

44002 Piddle at Baggs Mill 183 

44004 Frome at Dorchester Total 206 

44014 Piddle at Briantspuddle 112 

45001 Exe at Thorverton 601 

45002 Exe at Stoodleigh 422 

45003 Culm at Woodmill 226 

45004 Axe at Whitford 289 

45005 Otter at Dotton 203 

45007 Exe at Trews Weir 1191 

45008 Otter at Fenny Bridges 104 

45009 Exe at Pixton 160 

45011 Barle at Brushford 128 

45012 Creedy at Cowley 262 

46002 Teign at Preston 381 

46003 Dart at Austins Bridge 248 

46005 East Dart at Bellever 22 

46008 Avon at Loddiswell 102 

46013 Bovey at Bovey Parke 87 

46014 Teign at Chudleigh 232 

47001 Tamar at Gunnislake 917 

47004 Lynher at Pillaton Mill 136 

47005 Ottery at Werrington Park 121 

47006 Lyd at Lifton Park 223 

47007 Yealm at Puslinch 55 

47008 Thrushel at Tinhay 113 

47009 Tiddy at Tideford 37 

47010 Tamar at Crowford Bridge 77 

47011 Plym at Carn Wood 79 

47015 Tavy at Ludbrook 197 

47018 Thrushel at Hayne Bridge 58 

47019 Tamar at Polson Bridge 470 

47020 Inny at Bealsmill 105 

47024 Tavy at Tavistock Abbey Bridge 96 

48003 Fal at Tregony 87 

48004 Warleggan at Trengoffe 25 

48005 Kenwyn at Truro 19 

48011 Fowey at Restormel 169 

49001 Camel at Denby 209 

50001 Taw at Umberleigh 826 

50002 Torridge at Torrington 663 

50006 Mole at Woodleigh 328 

50007 Taw at Taw Bridge 71 

50008 Lew at Gribbleford Bridge 71 

50010 Torridge at Rockhay Bridge 258 

50011 Okement at Jacobstowe 82 

50012 Yeo at Veraby 54 

50014 Yeo at Collard Bridge 80 

51001 Doniford Stream at Swill Bridge 76 

52003 Halsewater at Halsewater 88 

52004 Isle at Ashford Mill 90 

52005 Tone at Bishops Hull 202 

52006 Yeo at Pen Mill 213 

52007 Parrett at Chiselborough 75 

52009 Sheppey at Fenny Castle 60 

52010 Brue at Lovington 135 

52011 Cary at Somerton 82 

52014 Tone at Greenham 57 

52017 Congresbury Yeo at Iwood 67 

53002 Semington Brook at Semington 158 

53004 Chew at Compton Dando 130 

53005 Midford Brook at Midford 147 

53006 Frome (Bristol) at Frenchay 149 

53007 Frome (Somerset) at Tellisford 262 

53008 Avon at Great Somerford 303 

53009 Wellow Brook at Wellow 73 

53013 Marden at Stanley 99 

53017 Boyd at Bitton 48 

53018 Avon at Bathford 1552 

53022 Avon at Bath ultrasonic 1605 

53023 Sherston Avon at Fosseway 90 

53024 Tetbury Avon at Brokenborough 74 

53025 Mells at Vallis 119 

53026 Frome (Bristol) at Frampton Cotterell 79 

53028 By Brook at Middlehill 102 

53029 Biss at Trowbridge 78 

54001 Severn at Bewdley 4325 

54002 Avon at Evesham 2210 

54004 Sowe at Stoneleigh 262 

54006 Stour (Worcs) at Kidderminster Callows 
Lane 

324 

54007 Arrow at Broom 319 

54008 Teme at Tenbury 1134 

54010 Stour (Warks) at Alscot Park 319 

54011 Salwarpe at Harford Hill 184 

54015 Bow Brook at Besford Bridge 156 

54017 Leadon at Wedderburn Bridge 293 

54018 Rea Brook at Hookagate 178 

54019 Avon at Stareton 347 

54020 Perry at Yeaton 181 

54023 Badsey Brook at Offenham 96 

54024 Worfe at Burcote 258 

54027 Frome at Ebley Mill 198 

54029 Teme at Knightsford Bridge 1480 

54032 Severn at Saxons Lode 6850 

54036 Isbourne at Hinton on the Green 91 

54040 Meese at Tibberton 168 

54041 Tern at Eaton upon Tern 192 

54044 Tern at Ternhill 93 

54046 Worfe at Cosford 55 

54048 Dene at Wellesbourne 102 

54049 Leam at Princes Drive Weir 362 

54050 Leam at Eathorpe 300 

54057 Severn at Haw Bridge 9895 

54063 Stour (Worcs) at Prestwood Hospital 90 

54088 Little Avon at Berkeley Kennels 134 

54089 Avon at Bredon 2674 

54094 Strine at Crudgington 96 

54096 Hadley Brook at Wards Bridge 53 

54102 Avon at Lilbourne 109 

54106 Stour (Warks) at Shipston 185 

54107 Arrow at Studley 93 

54112 Leam at Kites Hardwick 100 

54113 Itchen at Southam 106 

54114 Avon at Warwick 1012 

54115 Piddle Brook at Wyre Piddle 105 

68001 Weaver at Ashbrook 622 

68003 Dane at Rudheath 407 

68004 Wistaston Brook at Marshfield Bridge 93 

68005 Weaver at Audlem 207 

68007 Wincham Brook at Lostock Gralam 148 

68018 Dane at Congleton Park 145 

68020 Gowy at Bridge Trafford 156 

68044 Dane at Hug Bridge 73 

69002 Irwell at Adelphi Weir 559 

69003 Irk at Scotland Weir 73 

69005 Glaze Brook at Little Woolden Hall 152 
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69006 Bollin at Dunham Massey 258 

69007 Mersey at Ashton Weir 660 

69008 Dean at Stanneylands 59 

69012 Bollin at Wilmslow 73 

69015 Etherow at Compstall 156 

69017 Goyt at Marple Bridge 183 

69020 Medlock at London Road 58 

69022 Irwell at Irwell Vale 101 

69023 Roch at Blackford Bridge 186 

69024 Croal at Farnworth Weir 145 

69027 Tame at Portwood 150 

69028 Mersey at Brinksway 517 

69030 Sankey Brook at Causey Bridges 154 

69032 Alt at Kirkby 90 

69037 Mersey at Westy 2030 

69041 Tame at Broomstairs 113 

69043 Irk at Collyhurst Weir 72 

69044 Irwell at Bury Ground 140 

69045 Bollin at Bollington Mill Total 257 

69803 Roch at Rochdale 111 

70002 Douglas at Wanes Blades Bridge 198 

70003 Douglas at Wigan 55 

70004 Yarrow at Croston Mill 74 

70005 Lostock at Littlewood Bridge 56 

71001 Ribble at Samlesbury 1145 

71004 Calder at Whalley Weir 316 

71006 Ribble at Henthorn 456 

71008 Hodder at Hodder Place 261 

71009 Ribble at New Jumbles Rock 1053 

71010 Pendle Water at Barden Lane 108 

71011 Ribble at Arnford 204 

71014 Darwen at Blue Bridge 128 

72002 Wyre at St Michaels 275 

72003 Hindburn at Wray 84 

72004 Lune at Caton 983 

72005 Lune at Killington 219 

72008 Wyre at Garstang 114 

72009 Wenning at Wennington 142 

72011 Rawthey at Brigflatts 200 

72014 Conder at Galgate 29 

72015 Lune at Lunes Bridge 142 

72016 Wyre at Scorton Weir 89 

73002 Crake at Low Nibthwaite 73 

73003 Kent at Burneside 74 

73005 Kent at Sedgwick 209 

73008 Bela at Beetham 131 

73010 Leven at Newby Bridge 247 

73011 Mint at Mint Bridge 66 

73012 Kent at Victoria Bridge 183 

73013 Rothay at Miller Bridge House 64 

73014 Brathay at Jeffy Knotts 57 

73017 Kent at Bowston 71 

74001 Duddon at Duddon Hall 86 

74005 Ehen at Braystones 126 

74007 Esk at Cropple How 70 

75002 Derwent at Camerton 663 

75003 Derwent at Ouse Bridge 363 

75004 Cocker at Southwaite Bridge 117 

75005 Derwent at Portinscale 235 

75007 Glenderamackin at Threlkeld 65 

75016 Cocker at Scalehill 64 

75017 Ellen at Bullgill 96 

76003 Eamont at Udford 396 

76004 Lowther at Eamont Bridge 159 

76005 Eden at Temple Sowerby 616 

76007 Eden at Sheepmount 2287 

76008 Irthing at Greenholme 335 

76009 Caldew at Holm Hill 147 

76010 Petteril at Harraby Green 160 

76014 Eden at Kirkby Stephen 69 

76015 Eamont at Pooley Bridge 145 

76017 Eden at Great Corby 1373 

76019 Roe Beck at Stockdalewath 63 
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Table 5 EA abstraction uses and associated loss factors 

Use Description Code Loss Factor 

Animal Watering & General 
Use in Non Farming 
Situations 

10 Medium 

Boiler Feed 20 Medium 

Conveying Materials 30 Medium 

Drinking, Cooking, Sanitary, 
Washing, (Small Garden) - 
Commercial/Industrial/Public 
Services 

40 Medium 

Drinking, Cooking, Sanitary, 
Washing, (Small Garden) - 
Household 

50 Medium 

Dust Suppression 60 High 

Effluent/Slurry Dilution 70 Very Low 

Evaporative Cooling 80 High 

Fish Farm/Cress Pond 
Through flow 

90 Very Low 

Fish Pass/Canoe Pass 100 Very Low 

Gas Suppression/Scrubbing 110 Medium 

General Cooling (Existing 
Licences Only) (High Loss) 

120 High 

General Cooling (Existing 
Licences Only) (Low Loss) 

130 Low 

General Farming & Domestic 140 Medium 

General Use Relating to 
Secondary Category (High 
Loss) 

150 High 

General Use Relating to 

Secondary Category (Medium 
Loss) 

160 Medium 

General Use Relating to 
Secondary Category (Low 
Loss) 

170 Low 

General Washing/Process 
Washing 

190 Medium 

Heat Pump 200 Very Low 

Horticultural Watering 210 Medium 

Hydraulic Rams 220 Very Low 

Hydraulic Testing 230 Very Low 

Hydroelectric Power 
Generation 

240 Very Low 

Lake & Pond Through flow 250 Very Low 

Large Garden Watering 260 Medium 

Laundry Use 270 Medium 

Make-Up or Top Up Water 280 High 

Milling & Water Power other 
than Electricity Generation 

290 Very Low 

Mineral Washing 300 Low 

Non-Evaporative Cooling 310 Low 

Pollution Remediation 320 Very Low 

Potable Water Supply - 
Direct 

330 Medium 

Potable Water Supply - 
Storage 

340 Medium 

Process Water 350 Medium 

Raw Water Supply 360 Medium 

River Recirculation 370 Very Low 

Spray Irrigation - Anti Frost 380 Medium 

Spray Irrigation - Anti Frost 

Storage 

390 Medium 

Spray Irrigation - Direct 400 High 

Spray Irrigation - Spray 
Irrigation Definition Order 

410 High 

Spray Irrigation - Storage 420 High 

Supply to a Canal for Through 
flow 

430 Very Low 
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Supply to a Leat for Through 
flow 

440 Very Low 

Transfer Between Sources 
(Pre Water Act 2003) 

450 Very Low 

Vegetable Washing 460 Low 

Water Bottling 470 Medium 

Water Wheels not used for 
Power 

480 Very Low 

Impounding (for any purpose 
excluding impounding for 
HEP) 

490 Non-
Chargeable 

Trickle Irrigation - Direct 600 High 

Trickle Irrigation - Under 
Cover/Containers 

610 High 

Trickle Irrigation - Storage 620 High 

Flood Irrigation, Including 
Water Meadows, Warping and 
Pest Control 

630 Very Low 

Wet Fencing and Nature 
Conservation 

640 Very Low 

Transfer Between Sources 

(Post Water Act 2003) 

650 Very Low 

Dewatering 660 Very Low 

Hydraulic Fracturing 670 High 
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Table 6 Full list and naming convention for observed- and UKCP18-driven G2G model simulations 

Data 

Driving 

Climate 

Data 

Name of Ascii or NetCDF file 

Daily River 

Flows for 

Gauging 

Stations 

Observe

d (OBS) 

G2G_DailyRiverFlow_NATURAL_OBS_19610101_20201231.dat 

G2G_DailyRiverFlow_MeanAI_OBS_19610101_20201231.dat 

G2G_DailyRiverFlow_ObsAI_OBS_19990101_20141231.dat 

Daily River 

Flows - Gridded 

Observe

d (OBS) 

G2G_DailyRiverFlow_NATURAL_OBS_19610101_20201231.nc 

G2G_DailyRiverFlow_MeanAI_OBS_19610101_20201231.nc 

G2G_DailyRiverFlow_ObsAI_OBS_19990101_20141231.nc 

Daily River 
Flows for 
Gauging 
Stations 

UKCP18 
RCMs 

G2G_DailyRiverFlow_NATURAL_RCMXX_19801201_20801130.dat 

G2G_DailyRiverFlow_MeanAI_RCMXX_19801201_20801130.dat 

G2G_DailyRiverFlow_FutureSUSAI_RCMXX_19801201_20801130.dat 

G2G_DailyRiverFlow_FutureBAUAI_RCMXX_19801201_20801130.dat 

G2G_DailyRiverFlow_FutureEGAI_RCMXX_19801201_20801130.dat 

Daily River 
Flows - Gridded 

UKCP18 
RCMs 

G2G_DailyRiverFlow_NATURAL_RCMXX_19801201_20801130.nc 

G2G_DailyRiverFlow_MeanAI_RCMXX_19801201_20801130.nc 

G2G_DailyRiverFlow_FutureSUSAI_RCMXX_19801201_20801130.nc 

G2G_DailyRiverFlow_FutureBAUAI_RCMXX_19801201_20801130.nc 

G2G_DailyRiverFlow_FutureEGAI_RCMXX_19801201_20801130.nc 

Monthly 

Abstracted 

Surface Water 

(SW) - Gridded 

UKCP18 

RCMs 

G2G_MonthlyAbstractedSW_MeanAI_RCMXX_198012_208011.nc 

G2G_MonthlyAbstractedSW_FutureSUSAI_RCMXX_198012_208011.nc 

G2G_MonthlyAbstractedSW_FutureBAUAI_RCMXX_198012_208011.nc 

G2G_MonthlyAbstractedSW_FutureEGAI_RCMXX_198012_208011.nc 

Monthly 

Abstracted 

Ground Water 

(GW) - Gridded 

UKCP18 

RCMs 

G2G_MonthlyAbstractedGW_MeanAI_RCMXX_198012_208011.nc 

G2G_MonthlyAbstractedGW_FutureSUSAI_RCMXX_198012_208011.nc 

G2G_MonthlyAbstractedGW_FutureBAUAI_RCMXX_198012_208011.nc 

G2G_MonthlyAbstractedGW_FutureEGAI_RCMXX_198012_208011.nc 

Monthly Non-

Abstracted 

Surface Water 

(SW) - Gridded 

UKCP18 

RCMs 

G2G_MonthlyNonAbstractedSW_MeanAI_RCMXX_198012_208011.nc 

G2G_MonthlyNonAbstractedSW_FutureSUSAI_RCMXX_198012_208011.nc 

G2G_MonthlyNonAbstractedSW_FutureBAUAI_RCMXX_198012_208011.nc 

G2G_MonthlyNonAbstractedSW_FutureEGAI_RCMXX_198012_208011.nc 

Monthly Non-

Abstracted 

Ground Water 

(GW) - Gridded 

UKCP18 

RCMs 

G2G_MonthlyNonAbstractedGW_MeanAI_RCMXX_198012_208011.nc 

G2G_MonthlyNonAbstractedGW_FutureSUSAI_RCMXX_198012_208011.nc 

G2G_MonthlyNonAbstractedGW_FutureBAUAI_RCMXX_198012_208011.nc 

G2G_MonthlyNonAbstractedGW_FutureEGAI_RCMXX_198012_208011.nc 

Number of Days 

Not Abstracted 

Surface Water 

(SW) - Gridded 

UKCP18 

RCMs 

G2G_NdaysNotAbstractedSW_MeanAI_RCMXX_198012_208011.nc 

G2G_NdaysNotAbstractedSW_FutureSUSAI_RCMXX_198012_208011.nc 

G2G_NdaysNotAbstractedSW_FutureBAUAI_RCMXX_198012_208011.nc 

G2G_NdaysNotAbstractedSW_FutureEGAI_RCMXX_198012_208011.nc 

Number of Days 

Not Abstracted 

Ground Water 

(GW) - Gridded 

UKCP18 

RCMs 

G2G_NdaysNotAbstractedGW_MeanAI_RCMXX_198012_208011.nc 

G2G_NdaysNotAbstractedGW_FutureSUSAI_RCMXX_198012_208011.nc 

G2G_NdaysNotAbstractedGW_FutureBAUAI_RCMXX_198012_208011.nc 

G2G_NdaysNotAbstractedGW_FutureEGAI_RCMXX_198012_208011.nc 

 

 



 

 

Appendix A 

 

 

 

 


	Structure Bookmarks
	258259 




