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Research at the Environment Agency 
Scientific research and analysis underpin everything the Environment Agency does. It 
helps us to understand and manage the environment effectively. Our own experts work 
with leading scientific organisations, universities, and other parts of the Defra group to 
bring the best knowledge to bear on the environmental problems that we face now and in 
the future. Our scientific work is published as summaries and reports, freely available to 
all.   
 
This report is the result of research commissioned by the Environment Agency’s Chief 
Scientist’s Group.   
 
You can find out more about our current science programmes at 
https://www.gov.uk/government/organisations/environment-agency/about/research   
 
If you have any comments or questions about this report or the Environment Agency’s 
other scientific work, please contact research@environment-agency.gov.uk. 
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Chief Scientist 
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Executive summary 
Antimicrobial resistance (AMR) is a significant threat to human and animal health. Though 
AMR has been traditionally considered a clinical problem, adoption of the One Health 
approach has resulted in recognition of the role the environment plays in the emergence, 
evolution, persistence, dissemination, and transmission of AMR.  

Evidence suggests that many of these processes may be driven by contamination of the 
environment with antimicrobials (e.g., Larsson et al., 2018; Larsson & Flach, 2021; Murray 
et al., 2021), via numerous pathways. One approach to understand the risks posed by 
antimicrobials in the environment is to determine their potential to increase AMR at 
measured or predicted environmental concentrations. This approach requires data on ‘safe’ 
threshold concentrations, i.e., concentrations which are unlikely to increase levels of AMR 
in the environment. These data are scarce, with the majority available relating to antibiotics. 
The limited data is partly due to fact that this is an emerging area of science and the lack of 
a standardised, widely accepted method to determine the lowest concentration of an 
antimicrobial that increases AMR. Though a growing body of research in this area exists, 
several different approaches and experimental systems using different focal species/ 
communities, analytical tools, and statistical methods have been employed, rendering 
comparison across studies difficult.  

This project collated information on concentrations, reported in the scientific literature, at 
which selection for resistance may occur on exposure to antimicrobials.  These included 
endpoints such as Minimal Selection Concentrations (MSCs), which is defined as the lowest 
concentration of an antimicrobial that increases AMR, and PNECRs (Predicted No Effect 
Concentrations for Resistance). As the endpoints located had been derived using a range 
of approaches the data was used to derive standardised PNECRs to enable comparison or 
results arising from different methods. 

Consideration of the available data indicated that overall insufficient data was available to 
draw firm conclusions in relation to comparison of different approaches, but the analysis 
highlighted that to date the majority of data is available for antibiotics with limited data for 
other antimicrobials.   

The advantages and disadvantages of the different methods are discussed, and 
recommendations made for future research such as possible improvements to approaches 
in future, and the need to study a broader range of antimicrobials.  

Based on this work, the project team published the peer-reviewed article entitled ‘A critical 
meta-analysis of predicted no effect concentrations for antimicrobial resistance selection in 
the environment’. 

 

 

https://doi.org/10.1016/j.watres.2024.122310
https://doi.org/10.1016/j.watres.2024.122310
https://doi.org/10.1016/j.watres.2024.122310
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1. Background 

1.1 Antimicrobial resistance and the environment 
Antimicrobial resistance (AMR) is the ability of microorganisms (bacteria, fungi, viruses, 
parasites) to resist treatment with, or exposure to, antimicrobial drugs or other antimicrobial 
compounds, e.g. disinfectants. AMR infections are already one of the leading causes of 
death worldwide, with over one million deaths being directly attributable to antibacterial 
resistance in 2019 (Murray et al., 2022). By 2050, AMR infections are predicted to cause an 
estimated 10 million deaths each year, as well as 100 trillion US Dollars loss in Gross 
Domestic Product (GDP) (O'Neill, 2016).  

The One Health approach to AMR recognises that the health of humans, animals, and the 
environment are all interconnected (Government, 2019; WHO, 2015). The environment is of 
concern as it is a reservoir of antimicrobial resistance genes that can contribute to 
emergence of AMR in human pathogens. In addition, the evolution, persistence, and 
dissemination of antimicrobial resistance through the environment, and transmission of 
resistant pathogens to humans via environmental exposure are of concern. Interdisciplinary 
actions in all relevant sectors, e.g. clinical and agricultural are required to maximise the 
chances of curbing the emergence, maintenance, and selection (evolution) of AMR, and of 
reducing the potential for a ‘post-antimicrobial era’. Without effective antimicrobial 
stewardship, society risks reverting back to the ‘dark ages’ of human medicine, where 
previously easy-to-treat infections become fatal. In addition, impacts on both food security, 
through resistance in crop and livestock pathogens, and the global economy are also likely 
to be severe (O'Neill, 2015, 2016).  

The use of antimicrobials in human and veterinary medicine, as well as their use in, for 
example, personal care products, plant protection products and disinfectants, provides a 
multitude of pathways by which they can enter the environment (Figure 1). The amounts of 
antimicrobials reaching the environment depend on how they are manufactured, used, and 
disposed of and the extent to which they are metabolised in the human/ animal treated. In 
addition, factors such as chemical degradation, environmental mobility, and the 
characteristics of the receiving environment such as extent of dilution influence the 
concentrations detected in the environment.  
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Figure 1. Potential pathways for antimicrobials (such as antibiotics) to enter the 
environment. 1. Use in hospitals and the community results in antimicrobials entering the 
wastewater treatment system. As a result, the compounds and associated metabolites may 
enter the environment through discharge of wastewater to the water environment or biosolid 
application to land (which may enter water courses or groundwater through run-off). 2. Use 
of antimicrobials as plant protection products and in livestock production can result in direct 
application to agricultural soils, or indirect application through animal manure, respectively. 
Following rainfall, this can run off into rivers and streams. 3. Antimicrobial production 
facilities can release antimicrobials into the environment. 4. Aquaculture can result in direct 
application of antimicrobials or leaching into surrounding aquatic environments. There are 
other potential sources not included in the diagram, for example leachate from landfill. 
(Created with Biorender) 

As antimicrobial resistant organisms and resistant genes may be present in environments 
contaminated with antimicrobials this provides opportunities for the selective enrichment of 
resistant human, animal and/or plant pathogens due to their exposure to antimicrobials in 
the environment. 

In addition, selective pressures posed by exposure to antimicrobials provide opportunities 
for emergence of resistant microorganisms and/or mobilisation of novel and/or clinically 
relevant resistant genes from the environment into human, plant, or animal pathogens 
(Figure 2). AMR can arise through mutations in the chromosomal DNA of microorganisms, 
and in bacteria, mutations can arise within resistance genes on mobile genetic elements 
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(such as plasmids, which are extrachromosomal circular pieces of DNA). Through a process 
called horizontal gene transfer (HGT), plasmids and other mobile genetic elements can be 
mobilised (shared) across bacterial populations. Where AMR genes are present in these 
mobile genetic elements this can result in the spread of AMR. Evidence suggests that 
frequent HGT events only occur in bacteria and archaea (prokaryotes). Acquisition of 
resistance can occur in the absence of antimicrobials, but presence of antimicrobials can 
exacerbate/accelerate the process. 

 

Figure 2. Potential outcomes from exposure of microorganisms to antimicrobials in 
the environment – using bacteria as an example. The above processes can occur in the 
absence of antimicrobials, but presence of antimicrobials can exacerbate/ accelerate the 
processes. Bacteria can become resistant (represented by change from blue to red) through 
mutations in DNA (represented by blue/green DNA double helix), or acquisition of AMR 
genes through horizontal gene transfer (HGT, example shown with plasmid transfer, 
plasmids = circular blue/green/black pieces of DNA). 1. Previously susceptible 
environmental bacteria mutate or acquire resistance genes through HGT and become 
resistant. 2. Resistance in environmental bacteria is mobilised (i.e., horizontally transferred) 
to previously susceptible human pathogens, which become resistant. 3. Resistant 
pathogens of human and/or animal origin can survive and propagate in the environment and 
could transfer resistance into environmental bacteria, which may be better adapted to 
survival in the environment, thereby expanding the pool of resistance that could be mobilised 
to pathogens in the future. All these outcomes result in increased occurrence of resistant 
organisms/genes (4), which increases the probability of human exposure to resistant 
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genes/organisms, and subsequent infection with resistant pathogens, colonisation with 
resistant pathogens, or transfer of resistance from pathogens or non-pathogens into 
commensal bacteria. (Created with Biorender) 

In the clinical environment antimicrobial resistance is determined when microorganisms 
such as bacteria and fungi no longer respond to antimicrobial medicines which results in the 
drugs being ineffective. This commonly means that an organism displays growth above a 
minimum inhibitory concentration (MIC) of an antimicrobial that would kill or stop susceptible 
organisms growing. However, it has been found that exposure to sub-inhibitory (i.e., sub-
MIC) antimicrobial concentrations can still result in enrichment of AMR because resistant 
organisms can grow faster than susceptible strains that display a reduced growth rate in the 
presence of antimicrobials. Experimental studies using single species of bacteria have 
shown that even very low concentrations of antibiotics (ng/L) can increase the number of 
(‘select for’) resistant strains of bacteria, relative to isogenic susceptible strains (identical 
other than differing susceptibility profiles) (Gullberg et al., 2014; Gullberg et al., 2011). 
Further studies have shown that sub-inhibitory selection by antibiotics can also be observed 
in experiments using complex communities of bacteria (Kraupner et al., 2018; Kraupner et 
al., 2020; Lundstrom et al., 2016; Murray et al., 2020; Stanton et al., 2020). 

These studies and others have raised concerns that contamination of the environment with 
sub-inhibitory concentrations of antibiotics (Gullberg et al., 2011) could increase the rate of 
the evolution, emergence, mobilisation and/or maintenance of AMR.  

As sub-inhibitory antimicrobial concentrations can contribute to the development of AMR, it 
is important to determine the lowest concentration at which this occurs, to better understand 
the role of antimicrobial environmental pollution in the enrichment of AMR. Within the 
research community, different approaches have been used to determine these 
concentrations, including experimental based methods and those that use existing data 
such as MIC data.  

To understand the current state of the science, this report aims to collate available 
information on concentrations at which selection for resistance has been reported along with 
information on the approaches used to determine these concentrations. Further information 
on the relevant endpoints and the processes that can affect selection for resistance are 
outlined in Section 1.2 and 1.3, respectively. 

1.2 Endpoints used to assess effect concentrations for 
resistance selection 
Several terms referring to selective endpoints/ thresholds/ effect concentrations are used in 
this report. These have been used somewhat interchangeably in the scientific and regulatory 
communities, but each have distinct meanings. Within this section, definitions around these 
terms are provided for clarity to the readers.  
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1.2.1. The Minimal Selective Concentration (MSC) 

The Minimal Selective Concentration (MSC) was first introduced by Gullberg et al (2011). It 
was initially determined in experimental studies by direct competition between resistant and 
susceptible strains of the same species (e.g., Gullberg et al., 2014; Gullberg et al., 2011), 
but more recently experimental studies have also determined MSCs of antibiotics in complex 
community experiments (e.g., Murray et al., 2018; Stanton et al., 2020). The MSC is 
determined by calculating selection coefficients for the resistance determinant (y axis) and 
plotting these against antibiotic concentration (x axis) (Gullberg et al., 2011)). Selection 
coefficients represent the change in resistance over time, e.g., a positive selection 
coefficient means resistance will increase in prevalence over time, whereas a negative 
selection coefficient means resistance prevalence will reduce over time. The MSC itself is 
the concentration at which the line crosses the x axis (i.e., selection coefficient (y axis) = 0), 
representing the antibiotic concentration at which resistance will neither increase nor 
decrease over time in studied species or communities (see Section 1.3.). 

1.2.2. Lowest observed effect concentration (LOEC) 

LOECs are endpoints usually considered in ecotoxicity tests. In terms of resistance, the 
LOEC is the lowest concentration tested where a statistically significant change (e.g., 
increase in number of resistant bacteria, or increase in prevalence of resistance genes) 
occurred.  

1.2.3. No observed effect concentration (NOEC) 

NOECs are defined in ecotoxicological experiments as the highest concentration tested 
where no significant effect on an endpoint (e.g. growth) was observed. In terms of 
resistance, they represent the highest concentration tested where no statistically significant 
change is observed (e.g., no significant increase in number of resistant bacteria or no 
significant increase in prevalence of resistance genes). 

1.2.4. Predicted no effect concentrations for resistance (PNECRs) 

Some studies have taken MSCs a step further and applied Assessment Factors (AFs) to 
MSCs, to generate Predicted No Effect Concentrations for Resistance (PNECRs, e.g., 
(Stanton et al., 2020)). PNECRs however have been determined in a variety of ways.  For 
example, PNECRs have been generated from Minimum Inhibitory Concentration (MIC) data 
for individual species of bacteria (e.g., Bengtsson-Palme & Larsson, 2016).  PNECRs have 
also been determined from experimental evolution studies using communities of single 
species of bacteria (e.g., (Kraupner et al., 2020)) and complex communities of bacteria, 
comprising of many different species (e.g., (Murray et al., 2020)). Such studies tend to use 
AFs of 10 to reflect the uncertainty in extrapolating from laboratory to field experiments, but 
use of different AFs to reflect whether the data are from single species or complex 
communities has not been considered. In experimental studies, AFs are usually applied to 
NOECs to generate PNECRs.  
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PNECRs are sometimes are just referred to as Predicted No Effect Concentrations (PNECs, 
e.g., (Kraupner et al., 2020)). Throughout this report however, we will use the PNECR term, 
even if the original study reported the value as a PNEC. We recommend using PNECRs in 
all cases referring to AMR, to distinguish them from ecotoxicological PNECs that are often 
derived from standardised tests.  

There is one thing that all PNECRs have in common – the application of an AF. There has 
been little discussion around use of different AFs in this context, with most studies using 10, 
as recommended by the European Medicines Agency (EMA, 2018) based on ecotoxicity 
data.  

One final important point relating to PNECRs is whether the data used to derive them are 
resistance endpoints that have been directly measured experimentally or if MIC data have 
been used. This is discussed in much greater detail within the Results section, but we define 
experimental PNECRs as using data collected during a controlled experimental approach, 
where changes in resistance determinants are tracked at different antimicrobial 
concentrations. Conversely, MIC-based PNECRs will be used to refer to PNECRs which 
have used MICs to predict what the selective concentration might be, rather than measuring 
it experimentally. MIC data are empirically derived, using standardised methods, but they 
are conducted primarily for informing clinical practice. The relationship between MIC and 
MSC is known to vary significantly, by antibiotic and even resistance mechanism or genetic 
context of that mechanism (Gullberg et al., 2014; Gullberg et al., 2011). Therefore, these 
MIC-based PNECRs make assumptions about the MIC/MSC relationship without measuring 
changes in AMR abundance experimentally. There are a further small number of studies 
using growth rate of bacterial species or communities as a proxy for selection and these are 
not included in the metanalysis but are discussed in more detail in Section 4.3.  

1.3 Key concepts 
Several key concepts are important for understanding the methods used to derive the 
PNECR and MSCs outlined in this report and their interpretation. These mainly relate to 
whether the approaches discussed are considering endpoints for selection for resistance 
(an increase in the number of resistant organisms, or resistance genes) or persistence 
(reduction in rate of decrease) of resistance, or whether this cannot be confirmed with the 
approach taken. Both selection and persistence depend on the relative fitness cost, or 
advantage, of a resistance mechanism within its genetic, host, community, and ecological 
context.  

Resistance here refers to acquisition of a mechanism that reduces antimicrobial 
susceptibility, enabling an organism to outcompete more susceptible organisms on 
exposure to antimicrobials and so increase in relative numbers. This may also allow the 
microorganisms to survive antimicrobial treatment whereas a susceptible organism would 
be killed or would be unable to grow. However, not all resistance mechanisms confer clinical 
resistance, meaning that some “resistant” organisms that have reduced susceptibility at low 
antimicrobial concentrations may still be clinically susceptible. 



14 of 64 

Generally, AMR is associated with a fitness cost (Andersson & Hughes, 2010). This means 
that a resistant bacterium would usually be outcompeted by a susceptible strain of the same 
species. This is because for most organisms the expression of the resistance mechanism 
confers an additional metabolic burden. For example, a resistance mechanism that 
produces more of an enzyme which degrades antibiotics, such as the production of beta-
lactamases, which break down beta-lactam antibiotics, would mean the host cell requires 
more resources to produce these enzymes. By redirecting these resources toward enzyme 
production, this would affect the growth rate of the resistant cell, thereby allowing susceptible 
cells to reproduce more rapidly, and therefore eventually outcompete the resistant cell to 
extinction (Andersson & Hughes, 2012). Essentially, the fitness cost of acquiring and 
maintaining a given resistance mechanism usually means that in the absence of a selective 
pressure, that resistance mechanism will be lost over time (Figure 3).  

Selective pressures in this case would be concentrations of antimicrobials at a level that 
would start to negatively impact the growth of susceptible cells, thereby ameliorating the 
fitness cost of being resistant. In other words, this is the minimal selective concentration 
(MSC), as first defined by Gullberg et al. (2011), “…where the fitness cost of the resistance 
is balanced by the antibiotic-conferred selection for the resistant mutant”. This is where the 
fitness cost of resistance is completely offset, but the resistant cell is not yet benefiting from 
a fitness advantage that would allow it to grow more rapidly than a susceptible cell. In other 
words, at the MSC, neither the resistant nor susceptible strain outcompete each other, their 
proportions in the community remain stable over time. However, an important caveat is that 
although AMR generally does confer a fitness cost, there are instances where AMR has no 
observable fitness cost. These AMR mechanisms are therefore likely to be maintained over 
time, not lost, even in the absence of selective pressure (Andersson & Hughes, 2012). 
Further, compensatory mutations can occur, which overtime reduce the fitness cost of AMR 
(Andersson & Hughes, 2011). Similarly, some AMR is associated with a fitness benefit (e.g., 
(Michon et al., 2011)), which causes practical difficulties in determining the MSC. This is 
because in some cases, the growth rate of resistant strains can be faster than susceptible 
strains, even in the absence of antimicrobials. In this instance, the effect concentration (e.g., 
lowest observed effect concentration (LOEC)) is determined as the lowest concentration 
where a relative increase in relative abundance of AMR is observed compared to a no 
antibiotic control (Murray et al., 2021; Stanton et al., 2020). 

Selection for resistance results in increased AMR prevalence over time, usually due to the 
presence of selective pressure (i.e., AMR increases over time at concentrations above the 
MSC, Figure 3). Generally, this is believed to occur in a dose-dependent manner, where the 
selective pressure increases with antimicrobial concentration. However, this may not always 
be the case, with one study (Murray et al., 2018) demonstrating that the magnitude of 
selection was largely equivalent at clinically relevant antibiotic concentrations as at 
environmentally relevant antibiotic concentrations. Murray et al. (2018) observed that the 
selective pressure (and therefore abundance of AMR) only increased in a dose-dependent 
manner at the lower, environmentally relevant concentrations tested, before plateauing at 
the mid-high (clinically relevant) concentrations. Significant effects on survivability were 
observed at the very highest concentrations tested (Murray et al., 2018). 
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Finally, we use ‘persistence of resistance’ to indicate a middle ground between reduction in 
the prevalence of resistant organisms or genes in the absence of selective pressure, and 
an increase in the presence of selective pressure above the MSC. Persistence occurs below 
the MSC, at concentrations where AMR will still be lost over time. However, the rate at which 
AMR is lost is reduced, due to the presence of low-level selection (Figure 3). In other words, 
the fitness cost of being resistant is only partially offset, so there is still more AMR present 
at any given time point before AMR extinction than there would be if there were no 
antimicrobial present (Murray et al., 2018; Stanton et al., 2020). The significance of this is 
discussed below.  

 

Figure 3. Overview of possible outcomes in terms of levels of AMR over time 
(loss/extinction, persistence, maintenance, and selection), for varying concentrations 
of antimicrobials (i.e., strength of selective pressure).  

It is important to differentiate between persistence and selection, as their different outcomes 
have different implications for assessment and understanding of risks posed by AMR in the 
environment. The obvious risk of selection is that there are cumulatively more resistant 
micro-organisms/genes in the environment over time. AMR persistence also has 
implications for potential human and/or animal exposure to AMR in the environment, as even 
concentrations of antimicrobials below the MSC would result in levels of AMR remaining at 
higher levels of AMR for longer than in pristine environments (where no antimicrobial agents 
are present), providing greater opportunities for exposure and subsequent colonisation 
and/or infection by AMR organisms in the exposed humans or animals (Stanton et al., 2020).  
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As well as levels of antimicrobial contamination, the frequency and length of antimicrobial 
contamination also comes into play when interpreting the relative risk of AMR, particularly 
when considering persistence. Hypothetically, if environments are chronically exposed to 
concentrations of antimicrobials that are not selective, but do result in persistence of AMR, 
this means AMR would be maintained in that environment for much longer than in a pristine 
environment. Then, intermittent spikes in antimicrobial concentrations above the MSC 
resulting from infrequent pollution events (such as those caused by heavy rainfall e.g., runoff 
from agricultural land/combined sewer overflows) could positively select for AMR. Cycling 
of concentrations that result in positive selection and persistence could therefore, 
hypothetically, result in maintenance of AMR in the exposed environment indefinitely. 
Further, selective concentrations may decrease over time due to degradation or changes in 
bioavailability due to sorption. As a result, they may become persistence inducing 
concentrations, resulting in longer maintenance of AMR in the environment. These are all 
important factors to consider, given antimicrobial polluted environments can also be polluted 
with resistant organisms (e.g., wastewater receiving environments, and runoff from 
sewage/animal manure amended agricultural land).  

In a previous study (Murray et al, 2021), it was suggested that persistence of resistance 
should be the endpoint used in human health risk assessments, in environments where 
humans are likely to be exposed to resistant pathogens, whereas the selection for resistance 
could be better suited to environmental risk assessment generally. This is due to the 
aforementioned increases in opportunities for human/animal exposure that would arise from 
persistence, necessitating a more conservative approach. However, any increase in 
resistance compared to an experimental control has been suggested as the endpoint that 
should be used, regardless of whether this represents persistence of, or selection for, AMR 
(Kraupner et al., 2020). This is because persistence and selection are highly dependent on 
factors mentioned above that influence the fitness cost of AMR (the mechanism itself, and 
its genetic, host, community, and ecological context).  

Most interest in the research community and from policy makers has to date focused on 
MSCs. The MSC term has been used even when describing PNECRs, even though MSCs 
can only represent selection whereas PNECRs may be used to describe positive selection 
or persistence. In this study it has been indicated whether the endpoint measured was 
selection or persistence, or whether this cannot be determined from the data reported. This 
may be useful for future discussion regarding suitable endpoints to consider when 
developing suitable thresholds. 

Finally, all the above describes whether resistant strains increase, decrease, or remain 
stable compared to susceptible strains within the same population, i.e., how resistance that 
is already established (either through mutation or HGT) may change in prevalence over 
time. The aspect which has been overlooked in studies conducted thus far is emergence of 
de novo resistance, i.e., when novel mutations arise that confer resistance. There is a large 
body of work on this in a clinical context involving exposing clinical pathogens to clinically 
relevant, or higher, antimicrobial concentrations to evolve resistant mutant strains. However, 
there has been very little study of the lowest concentrations of antimicrobials that induce 
emergence of resistance mutations (Gullberg et al., 2011). Selection for de novo mutations 
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at environmentally relevant concentrations of antimicrobials should be considered in future 
research efforts. 

1.4 Context  
As mentioned above, to understand if the presence of antimicrobials in the environment can 
result in increased AMR, it is necessary to compare the measured or predicted 
environmental concentrations (MECs or PECs, respectively) with a threshold for selection 
for resistance, i.e., a PNECR. Where the environmental concentration is greater than the 
PNEC there is the potential for selection to occur (e.g., Haenni et al., 2022; Hayes et al., 
2022; Murray et al., 2021; Murray et al., 2020; Stanton et al., 2020. ). The availability of both 
types of data (i.e., environmental concentration and selective threshold concentration) are 
lacking for the majority of antimicrobials other than antibiotics.  

In terms of environmental concentrations, some monitoring has been undertaken in the UK. 
For example, monitoring to determine concentrations of several antimicrobials in wastewater 
influent, effluent and untreated sludge and biosolids was undertaken through the Chemicals 
Investigation Programme (CIP2 and CIP3), funded by UK Water Industry Research 
(UKWIR) (UKWIR, 2020, 2022). In the European Union, the Water Framework Directive 
(WFD) ‘Watch List’ has included antimicrobials (Carvalho et al., 2015; Gomez Cortes et al., 
2020; Loos et al., 2018). Inclusion of a substance on the Watch List requires EU member 
states to monitor for these substances for a set period. AMR endpoints for selection for 
resistance, e.g., PNECRs have been considered during the prioritisation process for 
identifying substances for inclusion on more recent versions of the Watch List (Gomez 
Cortes et al., 2020).  

Environmental risk assessments for antimicrobials currently use PNECs based on 
ecotoxicity tests that consider endpoints such as growth, survival, etc. in aquatic organisms 
such as fish, invertebrates, and algae. As AMR endpoints are currently not considered, and 
selection for resistance has been found to occur at concentrations below reported effect 
concentrations for microorganisms, i.e. the Minimum Inhibitory Concentration, there are 
concerns that PNECs based on ecotoxicology data may not be low enough to protect against 
selection for AMR (Kraupner et al., 2020; Murray et al., 2020). There has been limited 
progress towards a standardised method that can determine selective threshold 
concentrations for both new antimicrobials coming to market and those already in use. 
Though selective endpoint data are being generated, many different experimental 
approaches are used. This includes using different bacterial species or bacterial 
communities; in different experimental systems (e.g., biofilm or planktonic); where the effect 
endpoint being measured differs (e.g., increases in phenotypic or genotypic resistance 
prevalence). Even the methodology for measuring the same endpoint can differ between 
studies (e.g., the same gene target, but with different qPCR primers, or metagenome studies 
using different bioinformatic pipelines to assign resistance genes). Further, an increasing 
number of approaches generate PNECRs from MIC data, using different sets of MIC data, 
and extrapolating PNECRs from them in different ways.  
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A clear summary and evaluation of these different approaches is needed so that future 
(research) efforts can be guided to produce useful data. This would also facilitate 
discussions around the basis of PNECR data generated thus far to inform future use of these 
values in terms of the assessment of selection for resistance. 

Most of this report will focus on antibiotics, as the available PNECR data are almost entirely 
skewed towards this antimicrobial class. However, it is important to note that PNECR data 
for other antimicrobials will need to be considered as they become available. 
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2. Project aims 
The aims of this project were to: 

• Collect available MSC and PNECR data for antimicrobial agents, for 
microorganisms, derived from both experimental and MIC based approaches. 

• Critically evaluate ‘experimental’ and ‘MIC based’ data and set out the strengths and 
weaknesses of each type of approach. 

• Use the collated dataset to understand: 
o If different types or classes of antimicrobials, or individual antimicrobials, are 

under/overrepresented in the literature. 
o The breadth of different approaches used to generate these data. 
o The approaches in terms of their utility and potential applicability to assessing 

the potential risk of selection for resistance in the environment as well as their 
scientific rigour. 

o If there are any general patterns in relation to available MSC/PNECR data 
according to type of approach. 

o If there are sufficient data for any antimicrobials to have sufficient confidence 
to propose a robust PNECR at this time. 

• Given all the above, highlight knowledge gaps and provide recommendations for 
future research in this area. 
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3. Methods 

3.1. Generating the database 

3.1.1. Literature search 

To obtain an understanding of the current MSC/PNECR data available and the approaches 
used to determine them, a semi-systematic literature search was conducted using the 
PubMed database. Search terms were generated, then tested to verify they captured key 
known publications. Following this, the search terms were refined. They included terms such 
as, “MSC” or “minimal selective concentration”, AND “antimicrobial” OR “antibiotic” OR 
“antifungal” or “biocide”, AND “AMR” OR “antimicrobial resistan*”. The final search terms 
and the list of key known publications used to verify these can be found in Appendix 1. The 
titles and abstracts for papers identified using these search terms were downloaded and 
screened for relevance using the criteria in Table 1 to determine inclusion/exclusion.  
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Table 1. Inclusion and exclusion criteria applied to publications identified in the 
literature search. 

 Inclusion Exclusion 

Compounds Papers which appeared to generate 
novel MSC or PNECR data for any 
antimicrobial, including: antibiotics, 
antifungals, biocides, metals. 
‘Antimicrobials’ was included as an 
umbrella term intended to cover 
antivirals, antiparasitics, antibiotics 
and antibacterials. 

N/A 

Organisms Papers which appeared to generate 
novel MSC or PNECR data using 
any method, in any organism. No 
specific microorganisms were 
excluded. 

Papers investigating 
organisms other than 
microorganisms, as they were 
out of scope for this project 

Study type Papers generating novel 
MSC/PNECR data. 

Papers which only cited 
previously published 
MSC/PNECR data, i.e., no 
new data were generated. 
These original data sources 
were checked to ensure all 
were identified by the search 
terms, and included. 

Resistance type Papers investigating selection for 
resistance including chromosomal or 
mobile (e.g., plasmid-borne) 
resistance 

Papers which only determined 
concentrations at which de 
novo resistance emerged (see 
‘Section 5.1.4). 

3.1.2. Database curation 

After screening of the title and abstract, full texts were downloaded and screened based on 
the same criteria as above (Table 1). In addition, data were excluded at full text if: 

• Data were reported inaccurately (e.g., inconsistencies in reported values in different 
sections of the paper) or unclearly. 

• Papers/data points only included consideration of combinations or mixtures of 
antimicrobials or antimicrobial and adjuvants.  

• LOECs were reported in experimental studies, without NOECs.  



22 of 64 

Data on published MSCs/PNECRs and the methods used to derive them were input into an 
Excel spreadsheet (Appendix 3). Data extracted from the papers located included:  

• Antimicrobial type (e.g., metal, antibiotic, antifungal etc),  
• Antimicrobial class (e.g., tetracycline),  
• The individual antimicrobial (e.g., oxytetracycline),  
• The MSC, LOEC, NOEC endpoint values reported and their respective units, as well 

as any reported PNECs, their units and associated assessment factors. For simplicity 
and to facilitate standardisation of data across approaches, MIC-based effect 
concentrations (i.e., before AF application) were listed as LOECs in the database 
compiled (e.g., the values derived by Bengtsson Palme and Larsson, 2016). 

• Whether selection or persistence was measured or whether this cannot be known 
from the data reported,  

• The genotype i.e., gene or mutation the endpoint values refer to (where known),  
• The genetic context (i.e., chromosomal or plasmid-borne, if known),  
• The phenotype measured (e.g., if cells were cultured on antibiotic plates),  
• The inoculum (e.g., the bacterial strain, or matrix the community was derived from), 
• The experimental system (e.g., liquid microcosm) including the temperature and 

growth media used (if an experimental study),  
• The method used to determine the endpoints (e.g., qPCR),  
• The bioinformatic pipelines and version (if any were used),  
• The paper reference and any additional relevant supporting information was noted in 

‘Notes’ (e.g., to briefly describe the methodology and or any explanations for the data 
entries).  

All MSC, LOEC, NOEC and PNECR data entries were double checked for accuracy at least 
once. 

3.1.3. Generating standardised PNECRs 

Some publications reported MSCs (derived by fitting a line of best fit through selection 
coefficients plotted against test concentrations), whereas others reported LOECs, NOECs, 
and/or PNECRs. In addition, different units were used. Therefore, the data were used to 
generate standardised PNECRs as follows by one team member: 

• MSC and experimental NOEC data had an AF of 10 applied to generate PNECRs. 
Modelled data (listed in the LOEC column of the spreadsheet) had an AF of 10 
applied to generate PNECRs. 

• This AF is in line with current guidelines for environmental toxicity to different 
organisms, including microorganisms (EMA, 2018). Previously, we suggested MSCs 
did not require an AF as this may lead to overestimation of risk (Murray et al., 2021). 
However, for these meta-analyses, it was important that all data were standardised 
the same way, so any differences did not simply reflect different AFs. 

• Experimental LOEC data with no NOECs were removed. This decision was made 
because the lowest tested concentration was therefore the LOEC, with no indication 
where the NOEC may lie. 
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• Where PNECR data were reported in a publication, the assessment factor was noted. 
If a different AF to 10 had been used, the PNECR was multiplied by the assessment 
factor used in the publication before being divided by the assessment factor of 10 
used in this study. This standardisation was done to make data comparable, rather 
than large variation potentially being introduced by use of different assessment 
factors, for which there are no standardised approaches/recommendations at this 
time. 

• All standardised PNECRs were converted to µg/L. 

The standardised column was double checked for accuracy by a second team member.  

Standardised PNECRs were compared across types of approaches and systems, including 
experimental PNECRs vs MIC-based PNECRs, single species vs community experiments, 
and PNECRs generated using phenotypic or genotypic data.  
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4. Results 
Figure 4 summarises the number of publications/data sources identified from the initial 
searches, how many remained after screening, and the number of standardised PNECRs 
that were generated based on the data located (n = 331).  

 

Figure 4. Flow diagram showing the number of publications/data sources identified by semi-
systematic searches, those remaining after title/abstract screening and full text screening, 
and the total number of standardised PNECR data entries generated, based on the data 
located. 

Of the 331 standardised PNECRs collected, 319 were for antibiotics. Given the lack of data 
for other antimicrobials (see Section 4.1), only antibiotics were studied further. The 319 
standardised antibiotic PNECRs were then grouped under different classifications. These 
were: 

• ‘Experimental’ or ‘MIC-based’ PNECRs. Experimental PNECRs were classed as 
PNECRs that had been derived from any type of experiment where changes in 
resistance endpoints were measured directly (e.g., increases in resistance genes as 
determined by qPCR or metagenomic sequencing, or increases in proportion of 
resistant bacteria determined through plating, etc). MIC-based PNECRs were 
classed as any approach which used a dataset of MICs to estimate PNECRs. Note, 
some PNECRs were not covered by either of these definitions, and so were excluded 
from the comparative analyses below (Figures 6 - 8). These PNECRs are still 
recorded in the database, with a note that they were excluded; they are discussed 
further in Section 4.2.2. 

• ‘Community’ or ‘single species’ experiments, where the experimental inoculum 
comprised of a community of bacteria (i.e., more than two strains of bacteria), or only 

Papers identified from 
literature search

n = 128
•See Section 3.1.1 for 
inclusion/exclusion criteria

Papers remaining after 
title and abstract 

screening 
n = 60

•See Section 3.1.1 for 
inclusion/exclusion criteria

Papers remaining 
after full text 
screening

n = 21

•See Section 3.1.1 
for exclusion 
criteria

Total of 331 standardised 
PNECRs generated 
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two strains of the same species, respectively. For example, the study by Kraupner et 
al., (2020) had one experimental system where a wastewater community was used 
to generate a biofilm, and another experimental system used a community of 149 
different E. coli strains. Both of these were classed as ‘community’ PNECRs. 
Conversely, as an example, the study by Gullberg et al., (2011) competed two strains 
of the same species; these types of experiments were classed as ‘single species’. 

As a result, of the 319 antibiotic standardised PNECRs: 

- 143 antibiotic PNECRS were derived classified as ‘experimental’ and 151 PNECRs 
were classified as ‘MIC-based’; 25 PNECRs were not classified as either (see 4.3.2).  

- Of the 143 experimental antibiotic PNECRs, 105 were derived from NOECs, with the 
remaining 38 being MSC-based.  

- Of the 151 antibiotic MIC-based PNECRs, 101 were from a single study i.e., 
(Bengtsson-Palme & Larsson, 2016). 

 

4.1 Antimicrobials for which information was identified 
Antibiotics were the most studied type of antimicrobial, with only 12 of the 331 standardised 
PNECRs generated belonging to a different antimicrobial class (6 for metals, 5 for 
antifungals, and 1 for ionophores, see Appendix 4, Table 1). Similarly, within the antibiotics, 
several had significantly more standardised PNECRs (Appendix 4, Table 2), such as 
azithromycin (n = 32), ciprofloxacin (n = 24), clarithromycin (n = 28), erythromycin (n = 25), 
tetracycline (n = 13) and trimethoprim (n = 29). These five antibiotics represent >45% of all 
available standardised PNECR for antibiotics in this project. Most antibiotics only had one 
standardised PNECR value. These usually arose from a single paper i.e., Bengtsson-Palme 
and Larsson (2016), (see Appendix 4, Table 2). Antibiotics with a minimum of two 
standardised PNECRs are shown in Figure 5.  
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Figure 5. The total number of standardised PNECRs per antibiotic (i.e., includes all 
data). Only antibiotics with more than one standardised PNECR are shown.  

4.2 PNECR ranges  
Standardised antibiotic PNECRs ranged from 0.00087 µg/L (for ciprofloxacin 
(Koutsoumanis et al., 2021)) to 2000 µg/L (for carbenicillin (Frost et al., 2018)). The 1st 
percentile of all standardised PNECR data was 0.01 µg/L (rounded to 2 decimal places), 
meaning that 99% of all PNECRs collated were greater than 0.01 µg/L. The top six 
antibiotics with the most standardised PNECRs were azithromycin, clarithromycin, 
trimethoprim, erythromycin, ciprofloxacin, and tetracycline, all with >10 standardised 
PNECRs (Figure 5). Although azithromycin, clarithromycin and erythromycin had a high 
number of standardised PNECRs available, these were primarily from a single study 
(Stanton et al., 2020) with total number of studies for these antibiotics being three, four and 
five, respectively. Conversely ciprofloxacin, trimethoprim, and tetracycline had higher 
numbers of PNECRs, but these were also from several different studies (Table 2). 
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Table 2. PNECR ranges (all µg/L) for three of the most studied antibiotics. Number 
of data entries and the number of different publications reporting these values also 
shown. All PNECR data (i.e., across all approaches) are included. Note, lowest 
PNECRs reported may represent persistence rather than positive selection of 
resistance. 

Antibiotic Minimum 
PNECR 

Maximum 
PNECR 

Median 
PNECR 

Number of 
data points 

Number of 
publications 
reporting 

Ciprofloxacin 0.00087 1.077 0.1 24 9 

Tetracycline 0.01 100 1 13 9 

Trimethoprim 0.016 6.25 1 29 9 

4.3 Approaches used to determine MSCs/PNECRs 
As well as understanding the availability of MSC and PNECR data across the different 
antimicrobials and any bias towards certain antimicrobials in the literature, we also 
considered the different approaches used to generate the data.  

4.3.1 Overview of approaches used  

A variety of approaches were used to generate the data, and these are discussed in this 
section, according to the different variables below.  

Culturing conditions: Most used nutrient rich media, which are not environmentally 
representative, but are standard for most microbial experiments. Interestingly, one study 
conducted experiments in zebrafish embryos (McVicker et al., 2014), presumably to mimic 
in vivo dynamics. Most experiments used liquid microcosms with different growth media 
(e.g., Iso-Sensitest or R2 media), with the exception of one study that compared MSCs in 
liquid and biofilm microcosms and found the MSCs were largely unaffected (Hjort et al., 
2022). Most complex community studies used liquid microcosms at high temperatures in 
rich nutrient media (e.g., (Kraupner et al., 2020; Murray et al., 2020; Murray et al., 2018; 
Stanton et al., 2020), however, some also used lower temperatures (e.g., (Murray et al., 
2020)) and/or minimal nutrient media, and established biofilms that were exposed to 
antibiotics (e.g., (Kraupner et al., 2018; Lundstrom et al., 2016)). 

Inoculum: Some experimental studies used single species of bacteria (Frost et al., 2018; 
Gullberg et al., 2014; Gullberg et al., 2011; Hjort et al., 2022; Klümper et al., 2019; Kraupner 
et al., 2020; McVicker et al., 2014; Vos et al., 2020; Wang et al., 2022a). The species used 
most frequently was Escherichia coli (Arya et al., 2021; Gullberg et al., 2014; Gullberg et al., 
2011; Hjort et al., 2022; Klümper et al., 2019; Kraupner et al., 2020; Vos et al., 2020), 
although other Gram-negative bacteria, such as Pseudomonas aeruginosa (Frost et al., 
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2018), Comomonas testosterone (Wang et al., 2022a) and Salmonella enterica (Gullberg et 
al., 2011) were also used, as well as one study which used the Gram-positive bacterium 
Staphylococcus aureus (McVicker et al., 2014). Individual resistant strains studied 
harboured a variety of chromosomal mutations, chromosomal resistance genes, or 
resistance genes carried on plasmids. Some experimental studies used complex 
communities of bacteria derived from wastewater influent or effluent. These were mostly 
comprised of different species, but one study investigated resistance in E. coli strains that 
had been collected from wastewater and then evolved under antibiotic exposure (Kraupner 
et al., 2020). 

Analytical method: Selection for resistance in single species assays was measured by 
tracking increases in the numbers of the resistant strain compared to a susceptible strain, 
e.g., cell counts via fluorescence-activated cell sorting (e.g. (Gullberg et al., 2011)), or colony 
forming unit counts, via plating (e.g., (McVicker et al., 2014)). Sometimes, MSCs were 
estimated from growth rate data (e.g., (Klümper et al., 2019)). In complex community 
studies, a variety of different resistance genes and mutations were quantified, using qPCR 
and/or metagenomics (e.g., (Lundstrom et al., 2016; Stanton et al., 2020)), although some 
also used phenotypic methods (e.g., (Kraupner et al., 2020; Murray et al., 2020; Stanton et 
al., 2020)). A variety of different qPCR gene targets and different bioinformatic pipelines 
were used across these studies. 

MIC-based approaches: There were five papers that used this approach. As mentioned 
above, the majority of MIC-based PNECRs were from the study by Bengtsson-Palme and 
Larsson (2016). This study derived PNECRs from clinical MIC data by taking the size-
adjusted lowest 1% MICs recorded in the EUCAST database for susceptible organisms (i.e., 
those below the wildtype/resistance cut off), and applying an assessment-like factor of 10 
to account for the difference between MIC and MSC. 

4.3.2 Experimental studies – comparison of standardised PNECRs 

The following section compares standardised PNECRs for antibiotics that were classed as 
‘experimental’, i.e., where changes in resistance endpoints were directly measured to 
determine a PNECR. Therefore, the following analyses have excluded several PNECRs 
identified in the main search (Appendix 2) which did not fit this classification, nor that of MIC-
based PNECRs (see Section 4). The PNECRs excluded from these analyses either 
modelled MSCs from growth rate data for individual species (e.g., Frost et al., 2018; Klumper 
et al., 2019; Vos et al., 2020) or used reduction in overall growth of a community as a proxy 
for resistance selection (Murray et al., 2020). Though growth rate has been shown to be the 
most important experimental parameter for determining the MSC (Greenfield et al., 2018) 
and reduction in community growth has been shown occur at very similar concentrations to 
selection for resistance marker genes (Murray et al., 2020), changes in resistance endpoints 
were not directly measured when generating these PNECRs, and so they were not included 
under the ‘experimental’ classification.  

In experimental studies, a key question is whether assays using single species are 
representative of selection that might occur in the complex communities that exist in the 
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environment. For example, one study showed that the MSC for a test species increased in 
the presence of the community, compared to when the test species was used in a single 
species competition experiment (Klümper et al., 2019). Therefore, there is a difficult balance 
between potentially generating more environmentally representative data and generating 
fewer protective endpoints using complex communities (as the inherent complexity 
inevitably increases variance and reduces sensitivity and reproducibility, as well as greater 
costs and time commitments). Understanding whether community experiments result in 
higher PNECRs is therefore important for balancing these two different issues.  

We compared all single species and community standardised PNECRs across all antibiotics 
that had at least one standardised PNECR for each inoculum type (trimethoprim, 
erythromycin, ciprofloxacin and tetracycline, Figure 6). When comparing inoculum types by 
each individual antibiotic, there were no significant differences between inoculum types for 
trimethoprim, ciprofloxacin, and erythromycin. Conversely, for tetracycline, standardised 
community PNECRs were significantly lower than standardised single species PNECRs 
(Wilcoxon Rank Sum, p = 0.019). However, as noted in the database (Appendix 2), all of 
the single species tetracycline PNECRs (n= 5) represented positive selection, whereas none 
of the community PNECRs (n=4) represented confirmed positive selection, with one of the 
standardised PNECRs actually being confirmed as persistence of resistance. Therefore, the 
reason the tetracycline community PNECRs were significantly lower than the tetracycline 
single species PNECRs may simply reflect that the community PNECRs represent 
persistence rather than positive selection, though this cannot be known from the data 
collected.  It was not possible to split the overall dataset by persistence or positive selection 
as there were insufficient data points, with in total, only six data entries recorded as 
persistence, 83 confirmed as selection, and the remainder (n = 242) were classed as 
‘unknown’.  

We also compared single species and community standardised PNECRs across all 
antibiotics and found, overall, there was no significant difference between the two inoculum 
types across antibiotics (Wilcoxon Rank Sum, p = 0.066). This could be due to the scarcity 
of data or within-group variation. Overall, there are insufficient data to determine whether 
single species or community PNECRs are likely to be more protective, but these results 
suggest it could be compound specific. 
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Figure 6. A comparison of experimentally derived PNECRs (standardised) using a 
single species inoculum or a complex community inoculum. Note, only antimicrobials 
which have single species and complex community datapoints available are included, 
and those PNECRs derived using both MSC and NOEC based approaches are shown. 
Number of PNECRs per antibiotic (community, single species): trimethoprim n=3, 
n=18; erythromycin n=19, n=2; ciprofloxacin n=13, n=4; tetracycline n=4, n=5. 
Wilcoxon Rank Sum test used to derive p values. NS = Not significant. 

Within the experimental data, phenotypic (i.e., culture based) or genotypic (e.g., qPCR, 
metagenomics) methods were used to measure resistance endpoints. Generally, it is 
accepted that phenotypic methods are preferable in that they confirm the resistance 
phenotype and are cost-effective. However, they can lack sensitivity and specificity 
compared to molecular, genotypic methods such as qPCR. When examining the 
standardised PNECRs of antibiotic classes and individual antibiotics (Figure 7), most of the 
antibiotics only had a single standardised PNECR for either approach, which precluded 
further exploration. Across all antibiotics with at least one genotypic and one phenotypic 
PNECR, there was a significant difference between the two datasets (p = 0.01734, Wilcoxon 
Rank Sum test). Antibiotics with at least two genotypic and two phenotypic PNECRs were 
tested individually for significant differences. Only tetracycline had significantly higher 
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PNECRs using phenotypic methods (p = 0.028, Wilcoxon Rank Sum test). There were no 
significant differences in PNECRs derived using genotypic or phenotypic methods for the 
remaining antibiotics tested (erythromycin, and ciprofloxacin; note trimethoprim was not 
tested as there was only a single genotypic PNECR).  

 

Figure 7. A comparison of standardised experimental PNECRs by the endpoint type 
(i.e., genotypic, such as qPCR or sequencing; or phenotypic, such as colony forming 
units/ml), split by antimicrobial compound and class. Note, this shows data from 
experiments using both types of inoculum (i.e., single species and complex 
community). Only antimicrobials and their respective classes with at least one 
genotypic and one phenotypic based standardised PNECR are included. Wilcoxon 
Rank Sum test used to derive p values. NS = Not significant, InD = Insufficient data, 
as in, only one standardised PNECR available for one or both methods. 

In summary, there are many uncertainties surrounding some of the conclusions represented 
here, primarily due to lack of data and scientific understanding/consensus. However, these 
analyses have highlighted these research gaps which can be addressed in future research 
(see Section 7). 
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4.3.3 Experimental vs MIC-based PNECRs 

A key question regarding PNECRs relates to whether MIC-based PNECRs should be 
adopted considering the emergence of experimental PNECRs, or if they are both suitable 
but perhaps in different phases of assessment. Previous comparisons have suggested that 
PNECRs estimated from MIC data for single species of bacteria are generally more 
conservative than experimentally derived PNECRs in complex communities of bacteria 
(Murray et al., 2020). However, there have been several publications not included in this 
previous analysis (Murray et al, 2020) that have generated MIC-based PNECR data, and 
many more that have generated experimental data that have not yet been subject to 
comparison. Indeed, though one of the major benefits of MIC-based approaches is that they 
can generate significant amounts of data rapidly with a single approach, we have found that 
the amounts of MIC-based and experimental PNECR data available are almost equal (143 
vs 151 standardised PNECRs, respectively). However, experimental studies have tended to 
focus on a smaller subset of antibiotics and generating several PNECRs for the same 
antibiotic, whereas MIC-based approaches have generated single PNECR values for a 
wider range of antimicrobials.  

We compared PNECRs for all antibiotic classes and individual antibiotics which had both 
sufficient MIC-based and experimental data available (i.e., had a minimum of one of each 
PNECR available, Figure 8). For statistical testing of individual antibiotics, data were filtered 
further to only include antibiotics with a minimum of two MIC-based and two experimental 
PNECRs available (which applied to ciprofloxacin, clarithromycin, erythromycin, rifampicin, 
streptomycin, tetracycline, and trimethoprim). MIC-based PNECRs were significantly lower 
than experimental PNECRs across these antibiotics (Wilcoxon Rank Sum, p < 0.001). When 
testing each individual antibiotic, MIC-based PNECRs were significantly lower than 
experimental PNECRs for trimethoprim (p = 0.006), clarithromycin (p = 0.016), erythromycin 
(p = 0.022), and ciprofloxacin (p = 0.003). MIC-based and experimental PNECRs did not 
significantly differ for rifampicin, streptomycin, or tetracycline (all p > 0.05, all Wilcoxon Rank 
Sum).  

The reason the MIC-based PNECRs were more conservative in several cases may relate 
to the fact that most experimental studies have used Gram-negative species, or 
communities dominated by Gram-negative bacteria, whereas MIC-based PNECRs may 
include MICs for Gram-positive species, including the most susceptible pathogen species in 
MIC databases (e.g., Bengtsson-Palme and Larsson (2016)). However, all of the antibiotics 
where MIC-based PNECRs were significantly lower than experimental PNECRs do have 
some effects on Gram-negative species (i.e., trimethoprim (Gleckman et al., 1981), 
clarithromycin (Hardy, 1993), erythromycin (Washington and Wilson, 1985), and 
ciprofloxacin (Campoli-Richards et al., 1988)). It may be that more susceptible organisms 
(as found in MIC databases) have simply not been tested in the experimental studies. 
However, this should be balanced against whether these susceptible organisms are likely 
to be found in the environments where these PNECRs are intended to be used. In addition, 
acquired resistance in Gram-negative opportunist pathogens is a primary concern, with 9 of 
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the 12 priority pathogens designated by WHO being Gram-negatives, including all three 
classed as ‘critical’ priority (WHO, 2017). Experimental systems including Gram-negative 
organisms gives important insights into risk of AMR evolution in these organisms in 
environmental settings. However, again, it is not possible to draw any firm conclusions at 
this time due to insufficient data. 

 

Figure 8. A comparison of experimentally derived standardised PNECRs (i.e., 
including single species or complex community inoculum, MSC or NOEC based 
standardised PNECRs, and all genotypic and phenotypic endpoints) and MIC-based 
PNECRs. Note, only antibiotics and their respective classes with both experimental 
and MIC based PNECR available are shown. Wilcoxon Rank Sum test used to derive 
p values for antibiotics with a minimum of two standardised PNECRs for each 
approach (MIC-based or Experimental). NS = Not significant, InD = Insufficient data, 
as in, only one standardised PNECR available for one or both methods. 

Further issues to consider when interpreting MIC-based and experimental PNECRs are 
discussed in the following section. The purpose of this section was to interrogate the data 
in different ways, to see if any conclusions can be drawn based on the available data. We 
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suggest at this time, there are still insufficient data available to draw firm conclusions on the 
following:  

• If experimental or MIC-based PNECRs are generally more conservative.  
• If genotypic or phenotypic PNECRs/MSCs are generally more conservative 
• If community or single species PNECRs/MSCs are generally more conservative.  

This lack of data pertains to number of antibiotics tested, as well as the number of times 
they have been studied and then analysed, in all the various permutations (see next section).  

4.4 Considerations when interpreting PNECR 
data 
As noted in Section 1.1, the MIC-based PNECRs generated in the study by Bengtsson-
Palme and Larsson (2016) have gained traction as proposed thresholds for a range of 
antimicrobials. However, during this project, several other studies (Arya et al., 2021; 
Koutsoumanis et al., 2021; Menz et al., 2019; Rico et al., 2017; Zhang et al., 2022) were 
identified that generated MSCs/PNECRs using similar approaches. To evaluate and aid the 
interpretation of the available data, advantages and disadvantages of each type of approach 
have been listed below and some of these have been discussed previously in (Murray et al., 
2021).  

4.5 MIC-based approaches – advantages and 
disadvantages 
The advantages of MIC-based approaches are clear in terms of practicality, as they make 
use of pre-existing MIC data and thus are comparatively much more cost-effective and rapid. 
In addition, values for a wide range of compounds can potentially be derived with a single 
approach, which is particularly attractive, as it makes comparisons across antimicrobials 
simpler when a single method has been applied. This is further enhanced by using data that 
have been collected according to standardised guidelines, for example MIC data generated 
through adherence to EUCAST guidelines. In the absence of experimental data, the ability 
to rapidly generate PNECRs for a variety of compounds, can be used to inform concentration 
ranges for experiments that aim to determine PNECRs. Studies which also adequately 
report their methods also facilitate testing the reproducibility of the method, or adaptation of 
the method as more empirical data emerge. Finally, as the data in this report currently 
suggest, generally, MIC-based PNECRs may be more conservative and therefore, will offer 
the greatest protection against selection for AMR in the environment.  

However, there are also several disadvantages to MIC-based approaches. Most of these 
relate to the use of MIC data to derive MSCs/PNECRs, as this does not directly measure 
competition between resistant and susceptible strains. Some studies make sole use of MIC 
data from clinical databases, such as EUCAST. This bias towards clinical strains may 
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generate more or less conservative PNECRs, depending on the MIC distributions. For 
example, it may be that clinically relevant strains may not survive in the environment, which 
could skew PNECRs to be more or less conservative depending on whether these strains 
have lower or higher MICs. To overcome this, some studies have only included data for 
species that have evidence they can survive in the environment (Tello et al., 2012). 
Secondly, there is a concern that clinical resistance is on the increase, and therefore over 
time, MICs would increase, thereby generating less protective PNECRs over time (which is 
counterintuitive, as more conservative PNECRs should be adopted as the problem 
exacerbates). This hypothesis could be tested if PNECRs were estimated using archived 
databases of MICs from previous points in time. 

Though it is an advantage to utilise MIC data collected according to published guidelines 
such as EUCAST, this is also a disadvantage as these recommend high nutrient and high 
temperature conditions (this is also a common critique against experimental methods as 
they may not generate environmentally representative data). Furthermore, MIC-based 
approaches use single species and single antimicrobials, which limits understanding the 
effect of community on selection (that has been shown to be significant e.g., (Klümper et al., 
2019)) and in terms of understanding the effects of complex mixtures of antimicrobials that 
exist in the environment. Differing AFs could be used in these cases, but there is no 
discussion/consensus on what these would be. MIC-based approaches also tend to apply a 
single value to MIC data to derive PNECRs, for example, Bengtsson-Palme & Larsson, 2016 
apply a blanket assessment factor-like value of 10 to all antimicrobials. Though AFs may be 
based on experimental data in some cases (e.g., (Koutsoumanis et al., 2021)), it is clear 
from experimental evidence that the relationship between MIC and MSC can vary 
significantly across different antimicrobial classes and compounds, and even according to 
the resistance mechanism and its genetic context, e.g., from 4-fold to 230-fold difference 
(Gullberg et al., 2014; Gullberg et al., 2011). Though application of a single value to 
represent the MIC/PNECR ratio is likely to be inaccurate, this could be modified in future 
iterations as more experimental data emerge. Other potential issues to consider when 
interpreting MIC-based PNECRs is the relevance of MSCs and persistence inducing 
concentrations, and there is no way to quantify which of these outcomes MIC-based 
PNECRs represent.  

Whilst discussing these disadvantages, we also considered which (if any) were intractable, 
and which could be improved in future studies. The bias of using only clinical species data 
could be addressed in future through generation and inclusion of more MIC data for 
environmentally relevant species. Similarly, through the generation of more experimental 
data on the relationship between MIC and MSC, the value used to represent this in models 
could be fine-tuned in future, e.g., according to antimicrobial class or even individual 
compound. The rest of the issues discussed above we considered to not be easily improved 
in future studies.  
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4.6 Experimental approaches – advantages and 
disadvantages 
For experimental approaches, the main disadvantages relate to their practicality. 
Experimental PNECRs are more expensive and slower to generate than MIC-based 
PNECRs. Although there were approximately equal numbers of experimental and MIC-
based PNECRs available, for experimental PNECRs, these are skewed towards a handful 
of antibiotics, limiting the breadth of PNECR data available. These seem to have been 
biased towards antibiotics which have been highlighted as ‘of potential concern’ for example 
those included on EU Water Framework Directive Watch Lists (Carvalho et al., 2015; Gomez 
Cortes et al., 2020; Loos et al., 2018).  

Several different approaches employed to determine experimental PNECRs, but no effort 
has been made to standardise these yet (as is also the case with MIC-based approaches). 
This, alongside the ability to incorporate complexity, for example by using communities 
(which is also an advantage), means that experimental assays may have higher variability 
and lower reproducibility. However, as no standardisation efforts have been made, there is 
little understanding of the extent of these two concerns. 

Other disadvantages associated with experimental approaches were identified and these 
are discussed below, however, the majority of these could be improved in future studies, 
with none being intractable. However, this would require significant funds to run not only 
more studies, but more expensive studies that may measure more effects on more genes 
or species in more environmentally relevant conditions. For example, most studies to date 
have used high temperature and high nutrient experimental conditions, which like MIC-
based PNECRs, may not generate environmentally representative PNECRs. However, this 
can be modified through experimental design, and this could also be a criticism of many 
standardised ecotoxicological assays which are already in use.  

Another issue is that some studies have only utilised single species (e.g., (Gullberg et al., 
2014; Gullberg et al., 2011)), when community context has been shown to influence the 
MSC (Klümper et al., 2019). However, many studies determined PNECRs of antibiotics 
using environmentally relevant communities of bacteria (e.g., (Kraupner et al., 2020; Murray 
et al., 2020; Stanton et al., 2020)). Community experiments are associated with their own 
specific disadvantages as well, such as population founder effects in daily transfer 
experiments (though this can be counteracted with pre-enrichment of the culture at the cost 
of biasing the community), the composition of the community (e.g., predominately Gram-
negative communities may be ill-suited to studying antibiotics active against Gram-positive 
bacteria) and the depth of data generated available (e.g., in some cases, metagenomics 
has been used to identify PNECRs for every antibiotic resistance gene that is selected for 
(Stanton et al., 2020)). This raises a concern of data saturation – there are so many different 
genes and mutations which could be positively selected, complicating decisions regarding 
endpoints used to generate PNECRs. However, this resolution and amount of data can be 
used to generate PNECR ranges, or to define PNECRs based on resistance genes of 
‘greater concern’ (as discussed above); or, simply, to lend further confidence in any definitive 
PNECR that was chosen. An important caveat with regards to metagenomics/molecular 



37 of 64 

methods like qPCR is that detection of a given genotype (e.g., presence of a resistance 
gene) does not necessarily translate into detection of a resistance phenotype (e.g., the gene 
may be present, but not expressed). Using both culture based and culture independent 
approaches moving forward would provide confirmation of phenotype, whilst also providing 
greater depth and sensitivity of data.  

In general, for experimental studies, the main advantages we defined were as follows. 
Experimental studies that aim to determine MSCs/PNECRs are specifically designed to that 
end, rather than repurposing data collected for another use. This means that they are 
bespoke, but also flexible, with the experimental design evolving in line with available 
technologies/techniques and crucially, in line with current scientific understanding. In 
addition, another significant advantage of experimental studies is that their ability to further 
understanding can, in turn, inform and improve MIC-based approaches. Experimental 
approaches have also given insights into the effects of community context on the MSC, 
social interactions between bacteria with enzymes excreted by resistant strains protecting 
susceptible cells, and critically they also produce data on the magnitude of selective effects 
on multiple resistance endpoints in addition to the threshold at which selection occurs.  

Many of the intractable issues associated with MIC-based approaches are not found in 
experimental assays. For example, introducing complexity (such as community effects and 
mixture effects), tailoring experimental conditions to be more environmentally realistic, 
confirming whether selection or persistence is observed and providing high resolution data 
that can be used to interpret relative risk of AMR, can all be incorporated into the 
experimental design. Finally, unlike MIC-based PNECRs which may become less 
conservative over time, experimental PNECRs may become more conservative and 
accurate as science progresses and as technologies and expertise become more accurate 
and expansive. 

To summarise, both MIC-based and experimental approaches have advantages and 
disadvantages. Most of the disadvantages associated with MIC-based approaches are 
inherent to the method, yet these PNECRs are invaluable when faced with a lack of 
experimental data. In addition, MIC-based PNECRs rely on having (e.g., MIC) data 
available; these are lacking for antimicrobials other than antibiotics and tend to be biased 
towards MICs in clinical strains of bacteria. Experimental approaches have the potential to 
be fully optimised, but this is yet to be fully realised in practice and the breadth of 
experimental PNECR data available remains comparatively limited.  Positive feedback 
should be an objective, where MIC-based PNECRs inform experimental data when they are 
lacking, and experimental data are used to fine-tune MIC-based PNECRs in the future. 
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Table 3. Pros and cons of PNECRs generated using an experimental or MIC-based approach. Some of these are raised in 
(Murray et al., 2021). *(Klümper et al., 2019). 

Approach Pros Cons 

Experimental 
evolution 
studies, that 
measure 
changes in 
resistance levels 

• Flexibility with experimental design, to design 
experiments fit for purpose (e.g., directly measuring 
increases in resistance).  

• Several studies use complex communities, therefore 
more environmentally representative and capture 
important ecological interactions which influence the 
MSC*. 

• Can use more environmentally representative test 
conditions. 

• Can be used to test mixture effects in future. 
• Experimental data are needed to generate better 

MIC-based approaches. 
• Differences are determined using statistical tests, 

more in line with current environmental risk 
assessment approaches. 

• Can measure persistence vs selection. 
• As scientific methods/technologies improve, PNECRs 

should only be come more protective as techniques 
become more sensitive. 

• Significantly more costly and time-consuming. 
• Lack of standardisation across assays. 
• Higher variation and potentially lower reproducibility, 

particularly when using communities due to the 
complexity and potential founder population issues. 

• Often use high temperature and high nutrient 
conditions, which are not environmentally 
representative. 

• Often only genotypic endpoints are measured, which 
may not translate into a change in phenotype. 

• Single species experiments lack community and 
ecological effects known to influence the MSC*. 

• Few compounds have been studied thus far. 
• Lack of consensus on the best endpoint to measure 

(e.g., which gene/host?) and effect of most interest 
(e.g., persistence or selection?). 

MIC-based 
•  Use previously generated data, so quicker and more 

cost-effective. 
• Use data generated using standardised approaches, 

so MIC data are directly comparable. 
• Related to above, can incorporate large amounts of 

data. 
• Reproducible and can be easily repeated when more 

data become available. 

• Usually biased towards clinical strains which may not 
survive in the environment. 

• Tend to use a single factor to represent MIC:MSC 
ratio, which can vary even for the same compound 
for different resistance mechanisms. 

• Use of single strains grown in isolation precludes any 
community/ecological interactions, which are known 
to impact MSCs *. 
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Approach Pros Cons 

• Can be improved as more experimental data are 
generated (e.g., to inform MIC/MSC relationship). 

• Only option when there are no experimental data 
available. 

• Results can be used to inform experiments, e.g., 
indicative concentration ranges. 

• Lots of PNECR data generated using a single 
approach. 

• MIC data collected under high nutrient and 
temperature conditions, which are not 
environmentally realistic. 

• Inability to test selective effects of mixtures in current 
approaches. 

• Unable to distinguish/measure persistence vs 
selection. 

• Using data on susceptibility to infer selection potential 
– MIC data are not collected for this purpose. 

• Concerns that in future, if AMR increases, MICs will 
increase, therefore future iterations may generate 
higher PNECRs over time. 



5. Discussion  

5.1 Knowledge gaps 
This report has identified several knowledge gaps which should be explored with further 
research. These are discussed below. 

5.1.1. Antimicrobials other than antibiotics 

The semi-systematic search identified a total of 331 MSC/PNECR data points, 319 of which 
were for antibiotics. The 11 non-antibiotic data points were for metals, antifungals and one 
ionophore. Metals can co-select for AMR (Baker-Austin et al., 2006), and antifungals may 
select for antifungal resistance at environmentally relevant concentrations (Jeanvoine et al., 
2020; Snelders et al., 2009; Verweij et al., 2009). Further studies should aim to generate 
data on selection for resistance for other antimicrobials.  

In two Environment Agency research projects, concentrations of antifungals which may 
influence selection for resistance have been considered. One project (Environment Agency, 
2024a) generated PNECRs for a number of clinical antifungals, based on the method 
developed by Bengtsson-Palme and Larsson (2016), using MIC data collected from 
literature searches. Although agricultural fungicides were also considered, PNECRs could 
not be determined as the MIC data were lacking. Another project explored the development 
of a simple single (yeast) species competition assay to MSCs for a clinical and an 
agricultural antifungal (Environment Agency, 2024b).  

Generating effects data, and subsequently PNECRs, for antifungals is important and should 
not be overlooked when considering the role of the environment in the selection of AMR. A 
large proportion of antifungal substances used are applied directly to soils as plant protection 
products (Garthwaite et al., 2018), and, as a result, antifungal resistance has been found in 
crop pathogens, which poses risks to both food security and the economy (Fisher et al., 
2018). In addition, there is evidence to suggest that clinically-relevant antifungal resistant 
strains associated with high mortality rates originated in the environment (Rhodes et al., 
2022).  

As well as minimal amounts of data being available for antifungals and metals, data for entire 
antimicrobial classes are missing. For example, there is a significant body of evidence 
indicating that biocides can co-select for antimicrobial resistance, yet no PNECRs for these 
exist. Evidence is emerging that other classes of compounds, for example, non-antibiotic 
pharmaceuticals (Maier et al., 2018; Y. Wang et al., 2022; Wang et al., 2023) and plant 
protection products may also play a role in AMR selection and dissemination (Kurenbach et 
al., 2015; Liao et al., 2021). Therefore, it is likely the range of compounds that will need to 
be considered will continue to expand as research progresses. 
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5.1.2. Complex mixtures of antimicrobials 

Further to the lack of PNECR data for individual antimicrobials and potentially co-selective 
compounds, there is also very limited understanding of how these compounds may interact 
in complex mixtures. This is an issue relating to the assessment of the impact of chemicals 
on the environment more generally, and not just in relation to the assessment of the impact 
of selection for resistance. 

In this report, we excluded the few MSC/PNECR data available for combinations of 
antibiotics with metals or antibiotic adjuvants, as the data were too few to draw any 
conclusions, and this was not in scope of this analysis. Though some antibiotic-adjuvant 
combination PNECRs have been estimated previously (Bengtsson-Palme & Larsson, 2016), 
it is a limitation of current approaches that use MIC data, as the latter measure effects of 
individual antimicrobials in isolation. Furthermore, extrapolating PNECRs that reflect 
complex mixture interactions will be challenging given the scarcity of MIC data for 
antimicrobial compounds such as biocides and metals. Experimental studies are required to 
understand mixture effects of antimicrobials, as current mixture modelling approaches are 
most likely to assume additivity due to lack of experimental data to indicate a different effect 
(Rodea-Palomares et al., 2015). However, one study showed that presence of zinc 
increased the MSC of ciprofloxacin (Vos et al., 2020), demonstrating that interactions 
between different antimicrobial classes may be more complex. Environmental context and 
conditions, alongside the chemical properties of individual compounds, are all likely to 
influence mixture effects, an important nuance that remains understudied.  

One approach that could be used in the interim is the application of mixture-specific 
assessment factors (MAFs). MAFs can be applied when data on the exact concentrations 
of mixture constituents are unknown (Backhaus, 2016). The MAF is defined by the number 
of mixture constituents, their PNEC, and their proportion in the mixture. For example, the 
MAF can range from 1 for mixtures which are dominated by a single constituent, to 
potentially any value, depending on the number of compounds present. Though this lack of 
a defined upper boundary is a barrier to implementing MAFs through an aversion to being 
too conservative, a recent report suggested that a MAF of 10 was suitable for >70% of 
mixtures that were measured in monitoring studies in the aquatic environment. For mixtures 
with over 30 constituents, it was also suggested that the MAF could be the number of 
constituents divided by two (Backhaus, 2021). A recent Environment Agency/UKHSA report 
also considered this for REACH and noted a potential MAF of 5 (EA, 2022).  All these 
recommendations have been developed in relation to consideration of impact of chemicals 
in general and therefore their relevance for use in relation to assessment of selection for 
resistance would need to be considered.  

In summary, understanding of mixture effects of antimicrobials and co-selective compounds 
remains limited by lack of experimental studies on mixture effects; lack of PNECR and MIC 
data for individual antimicrobials generally; and incomplete understanding of compounds 
that could co-select for AMR, which could require PNECR data. Consideration of 
approaches being developed to consider mixtures, e.g., MAFs would be needed applicability 
to different environments. 
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As discussed, both MIC-based and experimental PNECRs tend to be generated using 
artificial, laboratory conditions (either by using MIC data collected under these conditions, 
or in selection/evolution experiments using these conditions). None of the studies captured 
in this report directly studied MSCs in soil environments, with most experimental study 
designs being more applicable to aquatic environments (e.g., liquid microcosms). However, 
some studies have exposed soil communities in experimental plots to antibiotics over 
prolonged periods and observed increases in antibiotic resistance genes (Brown et al., 
2022; Cleary et al., 2016).  

Though the PNECR data reported here are more applicable to aquatic environments, it 
would be possible to model sediment and soil PNECRs from these by considering how these 
chemicals behave in soil environments. This was performed recently for antifungal PNECRs 
that were generated using a modified version of the Bengtsson-Palme and Larsson (2016) 
approach (Environment Agency, 2024a), but was beyond the scope of this project.  

There is also a debate over whether experimental PNECRs are relevant to the environment, 
given they were generated under laboratory conditions. Experiments could be refined in the 
future to emulate more environmentally realistic conditions, as well as conducting in situ 
experiments. Though, for the latter, there is a trade-off between environmental realism and 
cost, time, replicability, variability, and ability to distinguish causation from correlation. These 
issues relate to all ecotoxicity tests and are not specific to AMR.   

Furthermore, there is some evidence that different experimental conditions may have limited 
impacts on the PNECR. For example, one study (Murray et al., 2020) used artificial sewage 
growth media (as recommended in the OECD approved activated sludge respiration 
inhibition test (OECD, 2009)), and reduced the temperature to ambient (21°C ± 2°C), which 
is more representative of environmental conditions. Effects of altering these two parameters 
on PNECR were inconsistent across the four antibiotics tested, but the PNECR reduced by 
a maximum of 8 test concentrations (16-fold difference) in a single case, with most test 
iterations not differing at all, or only by a single test concentration (n=8 from total of 12) 
(Murray et al., 2020).. A further study by Kraupner et al. (2020) compared liquid microcosms 
of a community of mixed strains of E. coli exposed to antibiotics in high nutrient media and 
at high temperature, and a more environmentally realistic biofilm derived from sewage 
effluent maintained in minimal media at room temperature. Both approaches generated the 
same PNECR (Kraupner et al., 2020).  

5.1.3. Limitations 

In this study we have compared PNECR data across multiple systems, approaches, and 
publications to guide future research efforts, but it is important to note the limitations of these 
analyses. Namely, we have not appraised the quality of data/studies, and our searches were 
not systematic. Further, we have grouped PNECRs together in broad categories and not 
distinguished between e.g., PNECRs and PNECPs (predicted no effect concentrations for 
persistence, as suggested previously (Murray et al., 2021)). In part, this reflects the scarcity 
of data available, although we have still been able to recommend several avenues for future 
research. 
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6. Recommendations 

6.1 Standardisation within studies – challenges and 
opportunities 
Many different approaches have been used to generate PNECRs, creating difficulties when 
trying to compare PNECR data for individual antibiotics across studies. Experimental studies 
rarely use the same system to study  large numbers of antibiotics, or directly compare 
PNECRs for a single compound generated with different approaches – though there are 
some exceptions (e.g., (Kraupner et al., 2020; Murray et al., 2020; Stanton et al., 2020)).  

There are significant obstacles that would need to be overcome to generate a standardised 
assay. These extend beyond the requirement of ring trials and confirming intra- and inter-
laboratory reproducibility. Decisions need to be made on the following aspects of PNECR 
determination.  

1. The effect endpoint, and how it should be measured, is still undecided. As 
mentioned above, metagenomic studies can generate multiple PNECRs for all 
resistance genes detected that increase in relative abundance. High-throughput 
qPCR assays can also generate large amounts of data, without a decision being 
made on the optimal gene to base the PNECR on. Both are relatively costly, 
compared to qPCR of single targets, but quantifying single targets risks 
overestimating PNECRs if the most conservative gene target(s) are not chosen. One 
approach is to use the class 1 integrase gene as a measure of selection for genetic 
platforms (integrons) that are associated with a wide range of resistance genes 
(Partridge et al., 2009), this allows a single measure of “gross selection” for AMR to 
be compared with the same target across antibiotic classes (Murray et al., 2020; 
Stanton et al., 2020). Even for qPCR assays, there would ideally be some 
standardisation of reagents, reactions, programmes, and primers across studies, 
which is yet to be realised. Conversely, phenotypic studies usually quantify 
prevalence of resistance within a single test species (usually E. coli). Given the ability 
of AMR to be transferred horizontally between bacterial species, focus on a single 
model organism could underestimate risk. Studies only using phenotypic data 
overlook the reservoir of AMR that exists in unculturable bacteria, which may be 
better represented by culture independent approaches. Some suggestions on prime 
candidates have been suggested, depending on their relative risk to human health 
(Martinez et al., 2014; Zhang et al., 2021), but these rankings are yet to be fully 
developed. There is also no consensus on which endpoint (e.g., MSC, LOEC, NOEC, 
or others) is preferred, and why. 
 

2. The relative importance of reproducibility/practicality vs environmental 
realism. This applies to both MIC-based and experimental approaches. The worst-
case scenario is that PNECRs generated using conditions that poorly mimic the 
natural environment are not conservative enough. Until sufficient data are generated 
that confirm this, at best, this risk can be accounted for through application of 
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increased assessment factors (AFs) to PNECR data. What these AFs may be (both 
for individual compounds and in terms of MAFs) requires further discussion.  
 

3. Experimental studies use different species, or mixtures of species 
(communities), isolated from the clinic, laboratory or different environments. 
Within these, there are close to infinite possibilities of the resistance 
mechanisms/genes which could be studied, with genetic contexts and hosts that can 
also widely vary. All of these can impact the value of the effect endpoint and it is not 
feasible to explore all options to find the most conservative approach in each 
scenario. Therefore, decisions need to be made on whether single species, or a 
standardised microbial community, are required as part of a standardisation process, 
with the caveat that these are likely to result in less conservative PNECRs than MIC-
based approaches. However, if the objective is to understand selection for AMR in 
wastewater or environmental microbiomes, MIC-based approaches have their own 
limitations. A refined assessment factor that accounts for the uncertainty arising from 
using communities could also be used, but how this assessment factor would be 
determined is beyond the scope of this review. 
 

4. Consideration of the outcome that should be measured is required. We have 
already discussed this in terms of measuring selection or persistence in the 
Introduction (Section 1.3). In addition, there is a question over whether regulatory 
endpoints should be based solely on concentrations where resistant strains are 
enriched over susceptible strains; or whether they should also consider the lowest 
concentration at which resistant strains are created (i.e., where selection for de novo 
mutation occurs). We did not include any studies that only determined concentrations 
at which novel resistance mutations emerge, as this was beyond the scope of the 
project. Though not reported here, most studies in this space define concentrations 
which select for novel resistance mutations, without defining the lowest concentration 
that selected for that novel resistance. These studies also tend to be conducted in 
clinically relevant species only. Future research could start to determine the lowest 
concentrations that select for de novo resistance and apply these to environmental 
settings.  

Though lack of standardisation is in some ways, a hinderance, it also offers a significant 
benefit. Given all the factors that vary between studies that could impact PNECRs, it is quite 
remarkable that PNECRs across studies can be so similar in some cases (e.g., for 
ciprofloxacin, Figure 6 & Figure 7). Due to the diversity of approaches applied, it can be 
argued that there should be greater confidence in similar PNECRs generated with different 
approaches, rather than identical PNECRs generated with a single approach which may not 
be fully optimised.  
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6.2 Refining existing approaches to further 
understanding 
During our exploration of the PNECR data, we identified several opportunities for furthering 
our understanding by using existing approaches with different datasets.  

1. Application of different cut-off values. Some models have taken the 1% or 5% 
MIC values (or HC5% value, in some cases) and used these to generate MIC-based 
PNECRs. The reasoning behind these decisions is not always clear, though 5% has 
been suggested as the maximum percentage of species within a community that can 
be affected before ecosystem functioning is compromised (Singer et al., 2011). We 
suggest that calculations are rerun using these different values, to determine whether 
they make any material difference to PNECRs. Clearly, if 5% MIC values are used 
instead of 1% MIC values, PNECRs will be higher, but it is not known how significant 
this difference may be. It would confirm whether a standardised value for these types 
of models should be recommended.  
 

2. Assessment of relative contribution of Gram-positive and Gram-negative 
species. We suggested that the differences between MIC-based and experimental 
PNECRs may be in part due to the predominant focus on Gram-negative organisms 
in experimental studies, whereas MIC-based approaches include MIC data for Gram-
positive organisms, that may be more susceptible and have lower MICs. We therefore 
propose that MIC-based approaches could be repeated using only MICs for Gram-
negative bacteria and only MICs for Gram-positive bacteria, to see if PNECRs 
generated substantially differ, and if PNECRs for Gram-positive bacteria are lower. 
This could inform future experimental studies and debate around relative risk of 
resistant Gram-positive and Gram-negative bacteria in the environment. A different 
assessment factor for each group could also be applied, though how this would be 
defined is beyond the scope of this review. 
 

3. Exploration of temporal effects of datasets. We suggested in Section 4.5 that one 
of the issues with MIC-based approaches is that the PNECRs could become less 
protective overtime if resistance continues to increase, as this would mean the MICs 
used to generate the PNECRs would also increase. This hypothesis could be rejected 
if calculations were repeated using archived datasets e.g., from 10, 20 years ago, 
and PNECRs were not reduced compared to when more recent data were used. 
However, this would need to be considered carefully. It would be necessary to 
analyse a subset of current data, as archived datasets may have less data available 
(e.g., number of species with MIC data), so it would be important to compare like for 
like, or to control for differences in dataset size.  
 

4. Expansion of MIC datasets. Finally, a more long-term recommendation is to focus 
efforts on generating more MIC data for different antimicrobials, with different usages, 
against different types of organisms (e.g., environmental species as well as clinical 
pathogens). This would provide a richer MIC dataset that would generate PNECRs 
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that are more representative of the environment, and for a wider range of co-selective 
antimicrobials which may have different uses. For example, a recent study that 
determined PNECRs for antifungals using an approach based on the Bengtsson-
Palme and Larsson (2016) methodology was limited to determining PNECRs for a 
small range of clinical antifungals, as there were limited MICs found in the literature 
(unable to satisfy the data requirements for the modelling) for all agricultural 
antifungals and for some of the clinical antifungals of interest (in some cases, no MIC 
data was found) (Environment Agency, 2024a). These values are not included in our 
PNECR database, as this was not published when the search was undertaken.6.3 
Establishment of definitive PNECRs 

6.3 Establishment of definitive PNECRs 
As discussed previously, there are inherent difficulties in assigning ‘definitive’ PNECRs, 
relating to the complexity of AMR in microbiomes. For antibiotic resistance, which most of 
the available PNECR data pertain to, this results from the fact that resistance can exist in, 
and be transferred between, many different species and communities which vary 
significantly at the genetic (e.g., type of resistance, genetic context of resistance) organism, 
community, and environmental scale. The diversity of potential selection endpoints that 
could be measured in experimental studies is vast and vary in terms of AMR risk (e.g., if the 
genes are mobile and can easily spread between species and/or confer resistance to 
critically important antibiotics).  

We believe it is not currently feasible to suggest a definitive PNECR for any antimicrobial, 
given data availability, and the complexity of AMR. However, three of the most studied 
antibiotics (ciprofloxacin, trimethoprim, and tetracycline) have relatively close agreement 
across different approaches and different studies. We therefore presented PNECR ranges 
for these antibiotics (Table 2). Importantly, these ranges should be continually reviewed, 
evaluated, and adjusted as necessary, particularly as more relevant data emerge.  

Another approach could be to set a blanket value for all antibiotics at 0.01 µg/L and then 
amend this only if evidence emerges this is not sufficiently conservative. We suggest 0.01 
µg/L for several reasons. If this value were adopted, it means that persistence/selection for 
AMR should be protected against in 99% of cases (being the 1st percentile for all PNECRs), 
based on the available data collated in this study and irrespective of the applied approach 
or endpoint measured. However, it would not be protective in 100% of cases, e.g., based 
on the lowest PNECR for ciprofloxacin reported, which was 0.00087 µg/L. The value of 0.01 
µg/L is also in close agreement with the blanket threshold value of 0.05 µg/L derived by the 
AMR Industry Alliance, based on resistance and ecotoxicological data (Vestel et al., 2021). 
However, it is important to note that this is an incomplete, and in many cases, a ‘shallow’ 
dataset – i.e., many antibiotics only have a single PNECR available. We cannot make 
specific recommendations for other antimicrobials as there are insufficient data at this time. 
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7. Summary of recommendations for future 
work 

The main aim of this project was to collate available data relating to the approaches that 
have been used to determine concentrations at which selection for resistance occurs, the 
values derived and present current understanding. Considering the data collected and our 
interpretation of them, we suggest the following recommendations for future (research) 
work: 

• The PNECR data reported should be used in combination with predicted or measured 
environmental concentration data at high temporal and spatial resolution to generate 
a clear picture of the extent and severity of AMR selection risk in the environment.  

• Research should move beyond the study of selection for antibiotic resistance, to 
encompass antifungal resistance and AMR more holistically (i.e., through study of 
selection by metals, biocides, and other co-selective compounds).  

• A value of 0.01 µg/L could be applied for all antibiotics until evidence emerges that 
this is not conservative enough. This is similar to, but slightly lower than, the default 
PNEC of 0.05µg/L recommended by the AMR Industry Alliance (Vestel et al., 2021).  

• Understanding of complex mixture effects is crucial and should be considered (and 
is not reflected in the blanket value suggested above).  

• The database of endpoints reported, eg MSCs/PNECRs will not be exhaustive as a 
fully systematic approach was not adopted. This could be performed in future to 
generate a more comprehensive database. Appraisal of data quality could also be 
performed in future. 

• Existing data and approaches can be further explored and repurposed to gain further 
understanding of differences in and reliability of PNECRs already generated, e.g., 
rerunning MIC-based calculations as and when more data become available (See 
Section 4.5).  

• The database provided here can be used to prioritise research on compounds where 
data are currently lacking, in combination with data on those which are mostly widely 
used, at the highest volumes, and those which are most persistent in the 
environment.  

• Sediment and soil PNECRs could be modelled using the PNECRs described here 
and used to understand potential risk of AMR in different environments.  

• Regulators, policy makers and other relevant stakeholders should engage in 
discussions around data requirements (i.e., around standardisation requirements, 
endpoints, appropriate assessment factors and outcomes such as 
selection/persistence and de novo selection) to help direct future study.  
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8. Conclusions 
In this report, we collated MSC and PNECR data for antimicrobials with corresponding 
metadata regarding the approaches used to derive them. Using this data, we were able to 
identify compounds for which no MSCs or PNECRs exist, as well as compounds for which 
PNECR/threshold concentration ranges could be indicated. This database could be 
expanded with a fully systematic search and added to over time as new data emerge. In 
addition, it could be used as a resource to direct future research efforts that focus on 
addressing the most pressing data gaps. We highlighted several of these, and suggested 
how these might be addressed in the immediate and long term. 

In addition, we discussed the relative advantages and disadvantages associated with MIC-
based and experimental approaches that generate PNECRs. At this time, both approaches 
have their merits, particularly as data continue to emerge in this area. We also highlighted 
several issues unique to risk assessment of AMR that require discussion, such as problems 
with standardisation, trade-offs between approaches, and the preferred outcomes for 
environmental regulation.  

In conclusion, this report is a comprehensive summary and discussion of PNECR data for 
(predominately) antibiotics, that can be used to inform decision making around thresholds 
for compounds that risk selecting for AMR in the environment. The complexities surrounding 
the generation of PNECRs, and their interpretation have also been outlined and discussed. 
Currently, there are insufficient data to draw firm conclusions around which approach(es) 
produce the most accurate or informative estimates. 
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10. List of abbreviations 
Abbreviation Explanation 

AMR Antimicrobial resistance 

EQS Environmental quality standard 

LOEC (s) Lowest observed effect concentration 

MEC (s) Measured environmental concentration 

MIC (s) Minimum inhibitory concentration 

MSC (s) Minimal selective concentration 

NOEC (s) No observed effect concentration 

PEC (s) Predicted environmental concentration 

PNEC (s) Predicted no effect concentration 

PNECR (s) Predicted no effect concentration for [antimicrobial] resistance 

qPCR Quantitative real-time polymerase chain reaction 
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Appendix 1 - Search strategy 

Known includes 

Publications that were known to be relevant to this report by the team prior to the searches 
being undertaken were: 

1. Bengtsson-Palme J, Larsson DG. Concentrations of antibiotics predicted to select 
for resistant bacteria: Proposed limits for environmental regulation. Environ Int. 
2016 Jan;86:140-9. doi: 10.1016/j.envint.2015.10.015. Epub 2015 Nov 17. PMID: 
26590482. 

2. Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L, Hughes D, Andersson DI. 
Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 
2011 Jul;7(7):e1002158. doi: 10.1371/journal.ppat.1002158. Epub 2011 Jul 21. 
PMID: 21811410; PMCID: PMC3141051. 

3. Gullberg E, Albrecht LM, Karlsson C, Sandegren L, Andersson DI. Selection of a 
multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. 
mBio. 2014 Oct 7;5(5):e01918-14. doi: 10.1128/mBio.01918-14. PMID: 25293762; 
PMCID: PMC4196238. 

4. Hjort K, Fermér E, Tang PC, Andersson DI. Antibiotic Minimal Selective 
Concentrations and Fitness Costs during Biofilm and Planktonic Growth. mBio. 
2022 Jun 28;13(3):e0144722. doi: 10.1128/mbio.01447-22. Epub 2022 Jun 13. 
PMID: 35695458; PMCID: PMC9239065. 

5. Klümper U, Recker M, Zhang L, Yin X, Zhang T, Buckling A, Gaze WH. Selection 
for antimicrobial resistance is reduced when embedded in a natural microbial 
community. ISME J. 2019 Dec;13(12):2927-2937. doi: 10.1038/s41396-019-0483-z. 
Epub 2019 Aug 5. PMID: 31384011; PMCID: PMC6864104. 

6. Kraupner N, Ebmeyer S, Bengtsson-Palme J, Fick J, Kristiansson E, Flach CF, 
Larsson DGJ. Selective concentration for ciprofloxacin resistance in Escherichia coli 
grown in complex aquatic bacterial biofilms. Environ Int. 2018 Jul;116:255-268. doi: 
10.1016/j.envint.2018.04.029. Epub 2018 Apr 25. PMID: 29704804. 

7. Kraupner N, Ebmeyer S, Hutinel M, Fick J, Flach CF, Larsson DGJ. Selective 
concentrations for trimethoprim resistance in aquatic environments. Environ Int. 
2020 Nov;144:106083. doi: 10.1016/j.envint.2020.106083. Epub 2020 Sep 2. PMID: 
32890888. 

8. Lundström SV, Östman M, Bengtsson-Palme J, Rutgersson C, Thoudal M, Sircar T, 
Blanck H, Eriksson KM, Tysklind M, Flach CF, Larsson DGJ. Minimal selective 
concentrations of tetracycline in complex aquatic bacterial biofilms. Sci Total 
Environ. 2016 May 15;553:587-595. doi: 10.1016/j.scitotenv.2016.02.103. Epub 
2016 Mar 22. PMID: 26938321. 

9. Murray AK, Zhang L, Yin X, Zhang T, Buckling A, Snape J, Gaze WH. Novel 
Insights into Selection for Antibiotic Resistance in Complex Microbial Communities. 
mBio. 2018 Jul 24;9(4):e00969-18. doi: 10.1128/mBio.00969-18. PMID: 30042197; 
PMCID: PMC6058293. 
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10. Murray AK, Stanton IC, Wright J, Zhang L, Snape J, Gaze WH. The 'SELection End 
points in Communities of bacTeria' (SELECT) Method: A Novel Experimental Assay 
to Facilitate Risk Assessment of Selection for Antimicrobial Resistance in the 
Environment. Environ Health Perspect. 2020 Oct;128(10):107007. doi: 
10.1289/EHP6635. Epub 2020 Oct 21. PMID: 33084388; PMCID: PMC7577113. 

11. Stanton IC, Murray AK, Zhang L, Snape J, Gaze WH. Evolution of antibiotic 
resistance at low antibiotic concentrations including selection below the minimal 
selective concentration. Commun Biol. 2020 Sep 3;3(1):467. doi: 10.1038/s42003-
020-01176-w. PMID: 32884065; PMCID: PMC7471295. 

12. Vos M, Sibleyras L, Lo LK, Hesse E, Gaze W, Klümper U. Zinc can counteract 
selection for ciprofloxacin resistance. FEMS Microbiol Lett. 2020 Feb 
1;367(3):fnaa038. doi: 10.1093/femsle/fnaa038. PMID: 32105320; PMCID: 
PMC7082703. 

These known includable publications were used to test search terms to ensure search terms 
designed were identifying these relevant publications. 

Search terms 

After testing multiple search term iterations, it was decided to use two sets of search terms 
to ensure all known includable publications were captured. These terms, along with the 
known includes identified and the number of search hits found in PubMed can be found in 
Appendix 1 Table 1. The searches were de-duplicated against each other using EndNote 
X8 to remove multiple copies of the same publication. 
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Appendix 1 Table 1. The two search strategies used in PubMed. Search terms are split 
by category and where multiple search categories were used in one search string (search 
number 1), an “AND” term was used between different categories. The numbers listed in the 
“Known includes found” column relate to the number of the publication in “Known includes” 
section above.” “Hits” refers to the number of publications found for both searches in 
PubMed. 

Search 
number 

Search term 
category 

Search terms Known 
includes found 

Hits 

1. Selection "MSC" OR "minimal selective 
concentration*" OR "minimum 
selective concentration*" OR 

"minimum selection 
concentration*" OR "PNEC*" 

OR "predicted no effect 
concentration*" OR "selective 
concentration*" OR "selection 
concentration" OR "minimal 

selection concentration" 

1, 3, 4, 5, 6, 7, 
8, 10, 11, 12 

95 

Antimicrobials "antimicrobial*" OR 
"antibiotic*" OR "antifungal*" 

OR "biocide*" 

Resistance "AMR" OR "antimicrobial 
resistan*" OR "antibiotic 
resistan*" OR "biocide 

resistan*" OR "antifungal 
resistan*" 

2. Selection low antibiotic* AND selection 2, 4, 5, 9, 11 40 

Antimicrobials N/A 

Resistance N/A 

 

Appendix 2 – PNECR dataset 
See accompanying Excel spreadsheet, “SC220007_PNECR dataset”. 



60 of 64 

Appendix 3 – Data entries by antimicrobial 
class and per antimicrobial substance 
Appendix 4 Table 1. Number of standarised PNECRs (n) by antimicrobial class.  
Class n 
Aminoglycoside 27 
Ansamycin 4 
Anti-TB 3 
Azole 3 
Beta-lactam 53 
Carbapenem 4 
Carboxylic acid 1 
Cyclic lipopeptide 1 
Dihydropyrimidine 30 
Echinocandin 1 
Fusidane 1 
Glycopeptide 2 
Ionophore 1 
Ketolide 1 
Lincosamide 3 
Macrolide 91 
Metals 6 
Nitrofuran 2 
Nitroimidazole 1 
Orthosomycin 1 
Oxazolidinone 1 
Peptide 1 
Phenicol 8 
Phosphonic 3 
Pleuromutilin 2 
Polyene 1 
Polymyxin 1 
Polypeptide 1 
Quinolone 46 
Streptogramin 2 
Sulphonamide 7 
Tetracycline 22 
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Appendix 4 Table 2. Number of data entries (n) per antimicrobial. 
Antimicrobial n 
Amikacin 1 
Amoxicillin 4 
Amphotericin B 1 
Ampicillin 2 
Anidulafungin 1 
Avilamycin 1 
Azithromycin 32 
Aztreonam 1 
Bacitracin 1 
Benzylpenicillin 1 
Capreomycin 1 
Carbenicillin 2 
Cefaclor 1 
Cefadroxil 1 
Cefalexin 1 
Cefaloridine 1 
Cefalothin 1 
Cefazolin 1 
Cefdinir 1 
Cefepime 4 
Cefixime 1 
Cefoperazone 1 
Cefotaxime 8 
Cefoxitin 1 
Cefpirome 1 
Cefpodoxime 1 
Ceftaroline 1 
Ceftazidime 1 
Ceftibuten 1 
Ceftiofur 1 
Ceftobiprole 1 
Ceftriaxone 1 
Cefuroxime 1 
Cephalexin 2 
Chloramphenicol 4 
Chlortetracycline 1 
Ciprofloxacin 24 
Clarithromycin 28 
Clinafloxacin 1 
Clindamycin 1 
Cloxacillin 1 
Colistin 2 
Copper 1 
Copper (II) sulfate 1 
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Antimicrobial n 
Daptomycin 1 
Difloxacin 1 
Doripenem 1 
Doxycycline 3 
Enrofloxacin 3 
Ertapenem 1 
Erythromycin 25 
Ethambutol 1 
Faropenem 1 
Fidaxomicin 1 
Fleroxacin 1 
Florfenicol 3 
Fluconazole 1 
Flumequine 1 
Fosfomycin 3 
Fusidic acid 1 
Gatifloxacin 1 
Gemifloxacin 1 
Gentamicin 5 
Imipenem 1 
Isoniazid 1 
Itraconazole 1 
Kanamycin 6 
Lead 1 
Levofloxacin 2 
Lincomycin 2 
Linezolid 1 
Lomefloxacin 1 
Loracarbef 1 
Mecillinam 1 
Mercury 1 
Meropenem 1 
Methacycline 1 
Metronidazole 1 
Minocycline 1 
Moxifloxacin 1 
Mupirocin 1 
Nalidixic acid 1 
Narasin 1 
Neomycin 1 
Netilmicin 1 
Nitrofurantoin 2 
Norfloxacin 2 
Ofloxacin 2 
Ormetoprim 1 
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Antimicrobial n 
Oxacillin 2 
Oxytetracycline 2 
Pefloxacin 2 
Penicillin 1 
Phenoxymethylpenicillin 1 
Piperacillin 1 
Quinupristin–
dalfopristin 

1 

Retapamulin 1 
Rifampicin 4 
Roxithromycin 2 
Secnidazole 1 
Silver 1 
Sparfloxacin 1 
Spectinomycin 1 
Spiramycin 1 
Streptomycin 9 
Sulfadiazine 2 
Sulfamethoxazole 4 
Sulfathiazole 1 
Teicoplanin 1 
Telithromycin 1 
Tetracycline 13 
Thiamphenicol 1 
Tiamulin 1 
Ticarcillin 1 
Tigecycline 1 
Tilmicosin 1 
Tobramycin 1 
Trimethoprim 29 
Trovafloxacin 1 
Tylosin 2 
Vancomycin 1 
Viomycin 1 
Virginiamycin 1 
Zinc 1 
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Would you like to find out more about us or 
your environment? 
Then call us on 

03708 506 506 (Monday to Friday, 8am to 6pm) 

Email: enquiries@environment-agency.gov.uk 

Or visit our website 

www.gov.uk/environment-agency 

incident hotline 
0800 807060 (24 hours) 

floodline 
0345 988 1188 (24 hours) 

Find out about call charges (https://www.gov.uk/call-charges) 

Environment first 
Are you viewing this onscreen? Please consider the environment and only print if 
absolutely necessary. If you are reading a paper copy, please don’t forget to reuse and 
recycle. 

mailto:enquiries@environment-agency.gov.uk
https://www.gov.uk/environment-agency
https://www.gov.uk/environment-agency
https://www.gov.uk/call-charges
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