

Drainage Strategy 22&24 St.Annes Road, London Colney, AL2 1LJ Reference: 497 - Rev - V1

Date: jun-24

- 1 Introduction
- 2 Site Characteristics
- 3 Discharge Arrangement
- 4 Peak Runoff
- 5 Proposed Sustainable Drainage
- 6 Maintenance and Management Plan

Appendices

- A Distribution Existing and Proposed Areas
- **B** Site Characteristics
- C Drainage Calculations
- **D** Drainage System General Arrangement

London Office 5th Floor, 167, 169 Great Portland St, London W1W 5PF Oxford Office Oxford Innospace, Old Music Hall, 106-108 Cowley Road, Oxford, OX4 1JE

Urban Water is a Trading name of RIDA Reports Ltd registered in England and Wales number 10590566

Purpose of this report

1.1 The purpose of this statement is to accompany the technical drawings and details showing the proposed Surface Water drainage system as part of the planning application for this development.

2

Site Characteristics

^{2.1} The site background is clearly identified through answers to the questions in table 1 below.

Table 1: Site Characteristics . See appendix B for support documentation

TOPIC	QUESTION	ANSWER
Protected species or habitat	Is the site near to designated sites and priority habitats? No	
Flood Plain	Is the site located in the flood plain? Yes	
Soils and Geology	Soil permeability? - See appendix B for results	No
Space constraints	Space for SuDS components?	Yes
	Sited on a flat site?	No
Topography	Sited on a steep slope (5-15%)	Yes
	Sited on a very steep slope (>15%)	No
Groundwater	Is the site at groundwater flood risk?	No
Contaminated land	Are there contaminated soils on site?	Unknown
Source Protection Zone	Is the site within a SPZ 3?	Yes
Runoff characteristics	Is the development in a high risk flooding area?	No

Existing and Proposed Site

2.2 The distribution of catchment areas for existing and proposed site is as per table 2 below. See appendix A for details

Table 2 : Existing and Proposed catchment areas in hectares

Description		Existing Site	Proposed Site
Impermeable Areas		0.030	0.039
Dormophia Aroos	Connected to Drainage	0.000	0.000
Permeable Areas	Self Draining Areas	0.025	0.035
Areas Draining Away from drainage System		0.065	0.046
Total Development Area		0.120	0.120

2.3 It has been assumed that the positively drained areas will have different runoff coefficients depending on the type of surface as follow:

Impermeable Surface	1.0
Permeable Surfaces	0.5
Grass Areas	0.3

3

Evaluation of Discharge Point

- 3,1 The SuDS design takes into account Building Regulations Section H3 and the National Planning Practice Guidance. The aim is to discharge surface water run-off as high up the drainage hierarchy, as reasonably practicable:
 - 1. into the ground (infiltration);
 - 2. to a surface water body;
 - 3. to a surface water sewer, highway drain, or another drainage system;
 - 4. to a combined sewer.
- 3.2 The discharge point has been evaluated following the NPPG and Building regulations. The findings are in table 3 below.

Table 3: Drainage Hierarchy evaluation

Superficial geology classification	The British Geological Society records show that the superficial deposits are River Terrace Deposits (Undifferentiated) - Sand And Gravel.
Bedrock geology classification	The British Geological Society records of the site show that it is located within the Lewes Nodular Chalk Formation And Seaford Chalk Formation (Undifferentiated) - Chalk.
Landis Top Soil Infiltration	The SOILSCAPE's records of the site show that it is located within an area of freely draining soils.
Groundwater	The British Geological Survey's flood risk susceptibility maps show that the development has potential for groundwater flooding below ground level. Groundwater levels would tend to vary seasonally and are influenced by ground and meteorological conditions and proximity to water features.
Is infiltration feasible?	Infiltration is not possible on this site due to the findings on groundwater and soils within the site.
Is a discharge to a watercourse possible?	There are no watercourses in the proximity to the site.
Is a discharge to a surface water sewer possible?	There is no surface water sewer in the proximity to the site.
Is a discharge to a combined sewer possible?	There is a combined water sewer in the proximity to the site. It is possible to connect to the combined water sewer.

Existing and Proposed Peak Run-off Calculations

4.1 The current site is a Brownfield. The peak runoff rate for the existing site was calculated as per table 4 and discharge rates as per table 5.

Table 4: Peak run-off rate calculation method for existing site

Method Used	Calculation Method
	Report 124 Flood Estimation for Small Catchments method has been used to estimate the site peak flow rates
X	This is a brownfield site, runoff rates are calculated in accordance with best practice simulation modelling and using the modified rational method
	This is a brownfield site where the pre-development drainage isn't known. The runoff rates are calculated using the Greenfield model with soil type 5

4.2 The runoff flow produced by the development will be controlled as per table5.

Table 5: Runoff discharge rate control

Run-off flows

4.3 The size of the SuDS has been calculated for all events up to the 1 in 100 including an allowance for climate change of 40%. As per tables above, it is proposed to discharge at a rate of 2.8 l/s. See table 6 for values and appendix C for calculations.

4

Table 6: Peak discharge rates for SuDS

Return Period Event		Discharge Rate (I/s)	2	Infiltration Rate
	Existing Greenfield	Existing Brownfield	Proposed	(m/hr)
Qbar	0.20	N/A	N/A	0.0000
1 in 1	0.20	5.50	2.8	0.0000
1 in 2	0.20	7.00	2.8	0.0000
1 in 30	0.50	13.00	2.8	0.0000
1 in 30 + CC	N/A	N/A	2.8	0.0000
1 in 100	0.70	16.60	2.8	0.0000
1 in 100 + CC	N/A	N/A	2.8	0.0000

Proposed Sustainable Drainage System

5.1 The following sustainable drainage systems have been used for this site. The drainage design uses these drainage system through out the site. See table 7 for details.

Table 7: Proposed Drainage System

SuDS Proposed	Feasible	Proposed
Use of green roofs	No	No
Store rainwater for later use	No	No
Use infiltration techniques, for instance soakaways, permeable surfaces	No	No
Attenuate rainwater in ponds or open water features for gradual release	No	No
Attenuate rainwater by storing in tanks or sealed water features for gradual release	Yes	Yes
Discharge Point Proposed		
Discharge rainwater direct to a watercourse	No	No
Discharge rainwater to a surface water sewer/drain	No	No
Discharge rainwater to the combined sewer	Yes	Yes

- 5.2 The location and details of the SuDS can be seen drainage layouts in appendix D. Calculations are in appendix C.
- ^{5.3} The drainage calculations demonstrate:
 - No flooding occurs for the 1 in 30 storm events.
 - Any flooding for the 1 in 100 year + 40% climate change event can be safely contained on site
- 5.4 The proposed drainage strategy presents one possible solution to demonstrate that the development can be sustainably drained, to comply with the requirements of the NPPF. Other solutions may be feasible and may prove to be better suited to the site. These will become apparent during the detailed design stage. The strategy above should not therefore be interpreted as the definitive scheme solution.

5

Management of Exceedance Flows

5.5 The drainage network has been designed to attenuate surface runoff for all events up to and including the 1% AEP + CC(1 in 100 years). However consideration has been given to what may happen when the design capacity of the surface water drainage network is exceeded. Surface water will flow to the lowest points within the site. The flood risk to the buildings would therefore remain low. See appendix D.

6

Maintenance and Management plan responsibility

6.1 The SuDS will be maintained by The Owner the property

Maintenance and Management plan for proposed SuDS

6.2 The maintenance and Management Plan Guidance from the SuDS Manual, CIRIA C753 (CIRIA, 2015) is to be followed for the effective maintenance of the proposed SuDS techniques outlined above. The maintenance for SuDS structures are as follow:

INLETS, OUTLETS, CONTROLS AND INSPECTION CHAMBERS	
Regular Maintenance	Frequency
Inlets, outlets and surface control structures	
Inspect surface structures removing obstructions and silt as necessary. Check there is no physical damage.	Monthly
Strim vegetation 1m min. surround to structures and keep hard aprons free from silt and debris	Monthly
Inspection chambers and below ground control chambers	
Remove cover and inspect ensuring water is flowing freely and that the exit route for water is unobstructed. Remove debris and silt.	Annually
Undertake inspection after leaf fall in autumn	
Occasional Maintenance	
Check topsoil levels are 20mm above edges of baskets and chambers to avoid mower damage	As necessary
Remedial work	Frequency
Unpack stone in basket features and unblock or repair and repack stone as design detail as necessary.	As required
Repair physical damage if necessary.	As required

Maintenance and Management Plan

Maintenance schedule	Required action	Typical frequency	
_	Inspect and identify any areas that are not operating correctly. If required, take remedial action	Monthly for 3 months, then annually	
	Remove debris from the catchment surface (where it may cause risks to performance)	Monthly	
Regular maintenance	For systems where rainfall infiltrates into the tank from above, check surface of filter for blockage by sediment, algae or other matter; remove and replace surface infiltration medium as necessary.	Annually	
	Remove sediment from pre-treatment structures and/ or internal forebays	Annually, or as required	
Remedial actions	Repair/rehabilitate inlets, outlet, overflows and vents	As required	
Monitoring	Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed	Annually	
	Survey inside of tank for sediment build-up and remove if necessary	Every 5 years or as required	

6

Appendix A

EXISTING SITE 1:200

PROPOSED SITE 1:200

Appendix B

SITE GEOLOGY

GEOINDEX ONSHORE GEOLOGY - BEDROCK - LEWES NODULAR CHALK FORMATION AND SEAFORD CHALK FORMATION (UNDIFFERENTIATED) - CHALK

GEOLOGY - SUPERFICIAL DEPOSITS - RIVER TERRACE DEPOSITS (UNDIFFERENTIATED) - SAND AND GRAVEL

SITE HYDROGEOLOGY

SITE SURFACE WATER FLOOD RISK

High risk means a chance of flooding greater than 3.3% (1:30) Medium risk means a chance of flooding of btw 1% (1:100) and 3.3% Low risk means a chance of flooding of btw 0.1% (1:1000) and 1% Flooding from surface water is difficult to predict as rainfall location and volume are difficult to forecast. In addition, local features can greatly affect the chance and severity of flooding

MAGIC RESULTS

Site Check Results		×
Site Check Report Repo You selected the loca The following features h	ort generated on Mon Jun 17 2024 tion: Centroid Grid Ref: TL17610351 have been found in your search area:	
Source Protection Zo	nes merged (England)	_
Zone	3	
Zone	2	
Aquifer Designation I	Map (Bedrock) (England)	
Typology	Principal	
Aquifer Designation I	Map (Superficial Drift) (England)	_
Typology	Secondary A	
		-
4		>
	OK Cancel Export to	o CSV Print

SOILSCAPES MAP

GROUND WATER FLOOD RISK

dwaterFlooding_v6 Unknown Area Type Ver formulario del objeto espacial Unknown Area Type B Ciearwater Flooding G'oundwaterFlooding_v6.1 Potential for groundwater flooding o
vaterFlooding_v6 - Atributos del —

Flood map for planning

Your reference <Unspecified>

Location (easting/northing) 0 517612/203517 1

Created 18 Jun 2024 5:15

Your selected location is in flood zone 3, an area with a high probability of flooding.

This means:

- you must complete a flood risk assessment for development in this area
- you should follow the Environment Agency's standing advice for carrying out a flood risk assessment (see www.gov.uk/guidance/flood-risk-assessment-standing-advice)

Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

Flood risk data is covered by the Open Government Licence which sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2022 OS 100024198. https://flood-map-for-planning.service.gov.uk/os-terms

Site Check Report Report generated on Mon Jun 17 2024 You selected the location: Centroid Grid Ref: TL17610351 The following features have been found in your search area: about:blank

SSSI Impact Risk Zones - to assess planning applications for likely impacts on SSSIs/SACs/SPAs & Ramsar sites (England)

1. DOES PLANNING PROPOSAL FALL INTO ONE OR MORE OF THE CATEGORIES BELOW?	2. IF YES, CHECK THE CORRESPONDING DESCRIPTION(S) BELOW. LPA SHOULD CONSULT NATURAL ENGLAND ON LIKELY RISKS FROM THE FOLLOWING:
Infrastructure	Airports, helipads and other aviation proposals.
Minerals, Oil & Gas Rural Non Residential Residential	Oil & gas exploration/extraction.
Rural Residential Air Pollution	Livestock & poultry units with floorspace > 500m ² , slurry lagoons & digestate stores > 750m ² , manure stores > 3500t
Combustion Waste Composting Discharges Water Supply Notes 1 Notes 2	
GUIDANCE - How to use the Impact Risk Zones	/Metadata_for_magic/SSSI IRZ User Guidance MAGIC.pdf
Source Protection Zones merged (England)	
Zone	3
Zone	2
Aquifer Designation Map (Bedrock) (England)	
Туроlоду	Principal
Aquifer Designation Map (Superficial Drift) (England)	
Туроlоду	Secondary A
Soilscape (England)	
Reference Name Main Surface Texture Class Natural Drainage Type Natural Fertility Characteristic Semi-natural Habitats Main Land Cover	6 FREELY DRAINING SLIGHTLY ACID LOAMY SOILS LOAMY FREELY DRAINING LOW NEUTRAL AND ACID PASTURES AND DECIDUOUS WOODLANDS; ACID COMMUNITIES SUCH AS BRACKEN AND GORSE IN THE UPLANDS ARABLE AND GRASSLAND
Hyperlink	/Metadata_for_magic/soilscape_summary.pdf
Areas of Outstanding Natural Beauty (England) No Features found	
Limestone Pavement Orders (England) No Features found	
Local Nature Reserves (England) - points No Features found	
Local Nature Reserves (England) No Features found	
Moorland Line (England) No Features found	
National Nature Reserves (England) - points	

National Nature Reserves (England) No Features found

National Parks (England) No Features found

Ramsar Sites (England) - points No Features found

Ramsar Sites (England) No Features found

Proposed Ramsar Sites (England) - points No Features found

Proposed Ramsar Sites (England) No Features found

Sites of Special Scientific Interest Units (England) - points No Features found

Sites of Special Scientific Interest Units (England) No Features found

Sites of Special Scientific Interest (England) - points No Features found

Sites of Special Scientific Interest (England) No Features found

Special Areas of Conservation (England) - points No Features found

Special Areas of Conservation (England) No Features found

Possible Special Areas of Conservation (England) - points No Features found

Possible Special Areas of Conservation (England) No Features found

Special Protection Areas (England) - points No Features found

Special Protection Areas (England) No Features found

Potential Special Protection Areas (England) - points No Features found

Potential Special Protection Areas (England) No Features found

Biosphere Reserves (England) - points No Features found

Biosphere Reserves (England) No Features found

Less Favoured Areas (England) No Features found

Nitrate Vulnerable Zones 2017 Designations (England) No Features found

Wild Bird General Licence Protected Sites Condition Zone (England) No Features found

Appendix C

GREENFIELD			
CAUSEWAY 🚱	File Net Alej 18/0	22 24 St Annes Rd.pfd work: Storm Network andro Gonzalez 06/2024	Page 1
5	Simulation Set	tings	
Rainfall Methodology FSR FSR Region England M5-60 (mm) 20.000 Ratio-R 0.400 Summer CV 1.000 Winter CV 1.000 Analysis Speed Normal Skip Steady State x	d and Wales	Drain Down Time (min Additional Storage (m³/f Check Discharge Rate 1 year (l 2 year (l 30 year (l 100 year (l Check Discharge Volur	ns) 240 na) 0.0 (s) √ /s) 0.2 /s) 0.2 /s) 0.5 /s) 0.7 me x
	Storm Duratio	ons	
15 30 60 120 180	240 360	480 600 720	960 1440
Return Period Climate C (vears) (CC S	Change Addi %)	tional Area Additional F (A %) (O %)	low
(years) (CC s 1 2 30 30 100 100 100 Pre-dev Site Makeup Greenfield Method Positively Drained Area (ha) SAAR (mm) Soil Index SPR Region Growth Factor 1 year Growth Factor 2 year	%) 0 0 40 0 40 7 60 7 8 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	(A %) (Q %) 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 2.40 3.19 0 0.2 0.2 0.2 0.2 0.5 0.7

BROWNFIELD						
CAUSEWAY 🛟	Urban Water	F N A 1	ile: 22 24 St Annes letwork: Storm Ne lejandro Gonzalez 8/06/2024	Rd.pfd twork	Page 1	
		Simulation S	Settings			
Rainfall A Ski	Methodology F. FSR Region E M5-60 (mm) 2 Ratio-R 0 Summer CV 1 Winter CV 1 Analysis Speed N o Steady State X	5R ngland and Wales 0.000 .400 .000 .000 ormal	Drain Dowr Additional Sto Check Disc	n Time (mins) prage (m³/ha) harge Rate(s) 1 year (l/s) 2 year (l/s) 30 year (l/s) 100 year (l/s)	240 0.0 √ 5.5 7.0 13.0 16.6	
JKI	p Steady State x				^	
15 30 6	0 120 18	Storm Dura 0 240 36	ations 0 480 60	0 720	960 1440	
R	eturn Period Cli	nate Change Ac	ditional Area A	dditional Flov	N	
ĸ	(years)	(CC %)	(A %)	(Q %)		
	1	0	0		0	
	30	0	0		0	
	30	40	0		0	
	100	0	0		0	
	100	40	0		0	
	<u>P</u>	re-development D	Discharge Rate			
	City	Makaup Drown	fold	ant(9/) = 0		
	Site	Mathod MRM	nneid Betterm	ent (%) 0 aar (1/s) 55		
	Contributing	Area (ha) 0.030	Q 2 ye	ear (l/s) 7.0		
	0	PIMP (%) 100	Q 30 ye	ear (l/s) 13.	0	
	_	CV 1.000	Q 100 ye	ear (l/s) 16.	6	
Ti	me of Concentrati	on (mins) 6.00				

					Alejand 22/08/2	ro Gonzal 2024	ez			
				Design S	ettings					
Rainfall N Return P Additic Time of	Aethodology eriod (years) nal Flow (%) FSR Region M5-60 (mm) Ratio-R CV Entry (mins)	FSR 2 0 England a 20.000 0.400 1.000 6.00	nd Wales	Ma	ximum T Mir Ir Enfore	ime of Co Maximur Minin nimum Ba Preferre nclude Int ce best pr	ncentratio m Rainfall (num Veloci Connecti ackdrop He d Cover De ermediate actice desi	n (mins) mm/hr) ty (m/s) on Type ight (m) epth (m) Ground gn rules	30.00 50.0 1.00 Level Sof 0.200 1.200 √	fits
			<u>c</u>	ircular L	<u>ink Type</u>					
		Shape Barrels	Circulaı 1	Au	to Increr Follo	nent (mm ow Groun	n) 75 d x			
			Availa	a ble Dia 100	neters (r 150	nm)				
				Noc	<u>les</u>					
	Name	Area (ha)	T of E (mins)	Cover Level	Diamet (mm)	er Easti (m	ng North) (m	ning Dep) (m	th)	
	Development Tank Outfall	0.043	6.00	66.100 66.000 66.000	120 120	00 0.0 26.6 00 50.3	47 50. 20 50. 96 50.	000 0.70 000 1.10 350 1.50)0)0)0	
				<u>Links (I</u>	nput)					
Name US Nod 1.000 Develop 1.001 Tank	DS Node Ment Tank Outfal	Length (m) 20.000 1 20.000	ks (mm n 0.6 0.6)/ US (r 00 65. 00 64.	6 IL D n) (400 64 900 64	SIL F m) (.900 0. .500 0.	Fall Slop m) (1:X 500 40. 400 50.	e Dia) (mm) 0 150 0 150	T of C (mins) 6.21 6.44	Rain (mm/hr) 50.0 50.0
			<u>P</u>	ipeline S	chedule					
Link Le 1.000 20 1.001 20	engthSlope(m)(1:X)0.00040.00.00050.0	Dia (mm) 150 (150 (Link Type Circular Circular	US CL (m) 66.100 66.000	US IL (m) 65.400 64.900	US Dep (m) 0.5 0.9	DS C (m) 50 66.00 50 66.00	L DS IL (m) 00 64.900 00 64.500	DS De (m) 0.	epth I) .950 .350
Link 1.000 1.001	US Node Developmer Tank	Dia (mm) nt 1200	Node Type Manhol Junctior	N Ty e Ador	1H vpe otable	DS Node Tank Outfall	Dia 1 (mm) ⁻ Jui 1200 Ma	Node Type nction anhole A	MH Type doptable	1
			<u>N</u>	lanhole	Schedule	2				
Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Conn	ections	Link	IL (m)	Dia (mm)
Developme	nt 0.047	50.000	66.100	0.700	1200		<u>}</u> →0			

0 1.000 65.400 150

Water	File: 22 24 St Annes Rd.pfd	Page 2
	Network: Storm Network	
	Alejandro Gonzalez	
	22/08/2024	

Manhole Schedule

Tank	26.620		· · ·	(111)	(mm)				(m)	(mm)
		50.000	66.000	1.100			1	1.000	64.900	150
						1>0				
							0	1.001	64.900	150
Outfall	50.396	50.350	66.000	1.500	1200		1	1.001	64.500	150
						1				
				<u>Simulat</u>	ion Sett	<u>ings</u>				
	Rainfall N	Aethodology	/ FSR			Drain Dov	wn Tim	ne (mins)	240	
		FSR Regior	n Englar	nd and W	/ales	Additional S	Storage	e (m³⁄ha)	0.0	
		M5-60 (mm) 20.00	0		Check Di	scharg	e Rate(s)	\checkmark	
		Ratio-F	R 0.400				1	year (l/s)	5.5	
		Summer C	/ 1.000				20	year (I/s)	7.0 12.0	
	Δr	nalysis Sneer	1.000 Norm	al			100	year (1/s) vear (1/s)	16.6	
	Skip	Steady State	e x			Check Dis	charge	volume	x	
				Storm	Duratio	nc.				
15	30 60	120	180	240	360	480 6	500	720	960	1440
	Ret	turn Period	Climate	e Change	Addit	ional Area	Additi	onal Flov	N	
		(years)	(CC	2 %)		(A %)	(Q %)		
		1		0		0			0	
		2		0		0			0	
		30		40		0			0	
		100		0		0			0	
		100		40		0			0	
			<u>Pre-de</u>	evelopm	ent Disc	<u>harge Rate</u>				
		Site Mak	eup Bro	ownfield	Tim	ne of Concent	ration	(mins)	6.00	
	Brow	wnfield Met	hod MF	RM		Be	tterme	ent (%)	0	
	Contril	outing Area	(ha) 0.0	30			Q 1 ye	ar (l/s)		
		PIMP	(%) 100 CV 1.0	0 100		C Q	l 30 ye 100 ye	ar (I/s) ar (I/s)		
			<u>Node</u>	Tank On	line Orif	<u>ice Control</u>				
	Fla	an Valve y		Invert	level (m) 64 900		Dian	neter (m)	0 035
	Downstre	am Link 1	.001	Design D	epth (m	n) 1.100	Dise	charge Co	pefficient	0.600
Replaces	Downstre	am Link √		Design	Flow (I/s	5) 2.8		0- 5		
		<u>1</u>	Node Tanl	k Depth/	Area Sto	orage Structu	<u>re</u>			
ase Inf (Coefficient	(m/hr) 0.0	00000	Safety	Factor	2.0	ne to k	Invert L	evel (m)	64.900 192

Ur	ban Water		File: 22 24 St Anr	nes Rd.pfd	Page 3	
			Network: Storm	Network		
			Alejandro Gonza	ez		
			22/08/2024			
Donth Area InfArea	Donth	Aroa Inf Ar	aa Danth Araa	Inf Area	Donth Aroa	Inf Area
Depth Area Inf Area (m^2) (m^2)	Deptn (m)	Area Inf Area (m^2) (m^2)	ea Depth Area	(m ²)	(m) (m ²)	(m ²)
	0.200	(iii) (iii) 54.0 0		(111)		(,,,,)
0.000 34.0 0.0	0.200	54.0 0	0.400 54.0	0.0	0.401 0.0	0.0
		<u>App</u>	roval Settings			
Node Size x	Coordinat	es x	Full Bore Velocity x	Time to	Half Empty	/
Node Losses x	Crossin	gs x Pr	roportional Velocity x	Return Pe	eriod (years) 1	LO
Link Size x	Cover Dep	th x	Surcharged Depth x	Disc	harge Rates	(
Link Length x	Backdro	ps x	Flooding x	Discha	arge Volume	(
			<u>Rainfall</u>			
French	Deel	A	Ē		Deels	A
Event	Реак	Average	Ever	IT	Реак	Average
	Intensity	Intensity			Intensity	Intensity
1 year 15 minute cummer	(mm/nr)	(mm/nr)	2 year 600 minute y	lintor	(mm/nr)	(mm/nr)
1 year 15 minute summer	109.521	30.991	2 year 600 minute w	inter	7.570	3.033
1 year 15 minute winter	70.857	30.991	2 year 720 minute s	linter	9.878	2.047
1 year 30 minute summer	71.459	20.215	2 year 720 minute w	inter	0.059	2.047
1 year 60 minute summer	10.135	12 800	2 year 960 minute s	vinter	5 274	2.130
1 year 60 minute summer	40.455	12.800	2 year 500 minute w	summor	5.374	2.150
1 year 120 minute summer	20.052	7 942	2 year 1440 minute	winter	2 050	1.579
1 year 120 minute winter	19 966	7.942	2 year 1440 minute si	ummer	268 706	76.035
1 year 180 minute summer	22 222	5 979	30 year 15 minute w	vinter	188 566	76.035
1 year 180 minute winter	15 102	5 979	30 year 30 minute si	ummer	174 929	49 499
1 year 240 minute summer	18 475	4 882	30 year 30 minute w	vinter	122 757	49 499
1 year 240 minute winter	12 274	4 882	30 year 60 minute s	ummer	116.589	30 811
1 year 360 minute summer	14.169	3.646	30 year 60 minute w	vinter	77.459	30.811
1 year 360 minute winter	9.210	3.646	30 year 120 minute	summer	70.438	18.615
, 1 year 480 minute summer	11.185	2.956	, 30 year 120 minute	winter	46.797	18.615
1 year 480 minute winter	7.431	2.956	30 year 180 minute	summer	53.298	13.715
1 year 600 minute summer	9.182	2.511	30 year 180 minute	winter	34.645	13.715
1 year 600 minute winter	6.274	2.511	30 year 240 minute	summer	41.604	10.995
1 year 720 minute summer	8.203	2.199	30 year 240 minute	winter	27.641	10.995
1 year 720 minute winter	5.513	2.199	30 year 360 minute	summer	31.221	8.034
1 year 960 minute summer	6.768	1.782	30 year 360 minute	winter	20.295	8.034
1 year 960 minute winter	4.483	1.782	30 year 480 minute	summer	24.324	6.428
1 year 1440 minute summer	4.949	1.326	30 year 480 minute	winter	16.160	6.428
1 year 1440 minute winter	3.326	1.326	30 year 600 minute	summer	19.756	5.404
2 year 15 minute summer	141.566	40.058	30 year 600 minute	winter	13.498	5.404
2 year 15 minute winter	99.345	40.058	30 year 720 minute	summer	17.490	4.687
2 year 30 minute summer	91.753	25.963	30 year 720 minute	winter	11.754	4.687
2 year 30 minute winter	64.388	25.963	30 year 960 minute	summer	14.215	3.743
2 year 60 minute summer	61.301	16.200	30 year 960 minute	winter	9.416	3.743
2 year 60 minute winter	40.727	16.200	30 year 1440 minute	e summer	10.161	2.723
2 year 120 minute summer	37.449	9.897	30 year 1440 minute	e winter	0.829	2.723
2 year 120 minute winter	24.880	9.897	30 year +40% CC 15	minute summe	er 376.189	106.449
2 year 180 minute summer	20.072	7.378 970 T	30 year +40% CC 13	minute winter	203.992 or 244.000	60 209
2 year 240 minute summer	70.02/ 10.02/	7.570 5 QQ7	30 year +40% CC 30	minute winter	171 260	69.230
2 year 240 minute summer	22.030 15 N20	2.202 5 022	30 year +40% CC 50	minute summe	er 162.000	09.290 13 136
2 year 360 minute summer	17 225	2.502 2 235	30 year +40% CC 60	minute winter	103.223	43 136
2 year 360 minute winter	11 202	4.435 4.425	30 year +40% CC 12) minute sum	ner 98.613	26 061
2 year 480 minute summer	13 550	3 581	30 year +40% CC 120) minute winte	or 65 516	26.001
2 year 480 minute winter	9 002	3 581	30 year +40% CC 18) minute sum	ner 74.617	19 202
2 year 600 minute summer	11.088	3.033	30 year +40% CC 18) minute winte	er 48.503	19.202
,						

File: 22 24 St Annes Rd.pfd Network: Storm Network Alejandro Gonzalez 22/08/2024

<u>Rainfall</u>

Event	Peak Intensity (mm/br)	Average Intensity (mm/br)	Event	Peak Intensity (mm/br)	Average Intensity (mm/br)
30 year +40% CC 240 minute summer	58 2/15	15 393	100 year 600 minute winter	17 376	6 956
30 year +40% CC 240 minute summer	38 697	15 393	100 year 720 minute summer	22 452	6 017
30 year +40% CC 360 minute summer	43 710	11 248	100 year 720 minute winter	15 089	6 017
30 year +40% CC 360 minute winter	28 413	11.240	100 year 960 minute summer	18 166	4 784
30 year +40% CC 480 minute summer	34 053	8 999	100 year 960 minute winter	12 033	4.784
30 year +40% CC 480 minute winter	22 624	8 999	100 year 1440 minute summer	12.000	3 456
30 year +40% CC 600 minute summer	27 658	7 565	100 year 1440 minute winter	8 667	3 456
30 year +40% CC 600 minute winter	18.898	7.565	100 year +40% CC 15 minute summer	488.233	138,153
30 year +40% CC 720 minute summer	24.485	6.562	100 year +40% CC 15 minute winter	342.620	138.153
30 year +40% CC 720 minute winter	16.456	6.562	100 year +40% CC 30 minute summer	320.551	90.705
30 year +40% CC 960 minute summer	19.901	5.240	100 year +40% CC 30 minute winter	224.948	90.705
30 year +40% CC 960 minute winter	13.183	5.240	100 year +40% CC 60 minute summer	214.603	56.713
30 year +40% CC 1440 minute summer	14.225	3.812	100 year +40% CC 60 minute winter	142.577	56.713
30 year +40% CC 1440 minute winter	9.560	3.812	100 year +40% CC 120 minute summer	129.587	34.246
100 year 15 minute summer	348.738	98.681	100 year +40% CC 120 minute winter	86.094	34.246
100 year 15 minute winter	244.728	98.681	100 year +40% CC 180 minute summer	97.729	25.149
100 year 30 minute summer	228.965	64.789	100 year +40% CC 180 minute winter	63.526	25.149
100 year 30 minute winter	160.677	64.789	100 year +40% CC 240 minute summer	75.977	20.078
100 year 60 minute summer	153.288	40.510	100 year +40% CC 240 minute winter	50.477	20.078
100 year 60 minute winter	101.841	40.510	100 year +40% CC 360 minute summer	56.677	14.585
100 year 120 minute summer	92.562	24.461	100 year +40% CC 360 minute winter	36.841	14.585
100 year 120 minute winter	61.496	24.461	100 year +40% CC 480 minute summer	43.979	11.622
100 year 180 minute summer	69.806	17.964	100 year +40% CC 480 minute winter	29.219	11.622
100 year 180 minute winter	45.376	17.964	100 year +40% CC 600 minute summer	35.604	9.738
100 year 240 minute summer	54.269	14.342	100 year +40% CC 600 minute winter	24.327	9.738
100 year 240 minute winter	36.055	14.342	100 year +40% CC 720 minute summer	31.433	8.424
100 year 360 minute summer	40.484	10.418	100 year +40% CC 720 minute winter	21.125	8.424
100 year 360 minute winter	26.315	10.418	100 year +40% CC 960 minute summer	25.432	6.697
100 year 480 minute summer	31.414	8.302	100 year +40% CC 960 minute winter	16.847	6.697
100 year 480 minute winter	20.871	8.302	100 year +40% CC 1440 minute summer	18.055	4.839
100 year 600 minute summer	25.431	6.956	100 year +40% CC 1440 minute winter	12.134	4.839

Results for 1 year Critical Storm Duration. Lowest mass balance: 99.54%

Node Event	US Node	ו (ו	Peak mins)	Level (m)	Depti (m)	h Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summ	er Developm	nent	10	65.456	0.056	6.8	0.0635	0.0000	ОК
180 minute sumr	mer Tank		120	64.989	0.089	9 2.6	4.5598	0.0000	ОК
15 minute summ	er Outfall		1	64.500	0.000	0.5	0.0000	0.0000	ОК
Link Event (Upstream Depth)	US Node	Link	DS Noc	5 Ou de (tflow /s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute summer	Development	1.000	Tank	< C	6.9	1.883	0.244	0.0910	
180 minute summer	Tank	Orifice	e Outf	fall	0.7				7.2

Results for 2 year Critical Storm Duration. Lowest mass balance: 99.54%

Node Event	US Node	F (r	Peak nins)	Level (m)	Dept (m)	h Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summ	er Developm	nent	10	65.463	0.06	3 8.8	0.0718	0.0000	ОК
120 minute sum	mer Tank		88	65.010	0.11	0 4.3	5.6649	0.0000	ОК
15 minute summ	er Outfall		1	64.500	0.00	0 0.6	0.0000	0.0000	OK
Link Event (Upstream Depth)	US Node	Link	D: No	S Ou de (i	tflow /s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute summer	Development	1.000	Tanl	、 ·	8.9	1.955	0.315	0.1186	
120 minute summer	Tank	Orifice	Out	fall	0.8				7.9

Results for 30 year Critical Storm Duration. Lowest mass balance: 99.54%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)		Status
15 minute summer	Development	10	65.489	0.089	16.7	0.1004	0.0000	ОК	
180 minute summer	Tank	128	65.118	0.218	5.9	11.1877	0.0000	SUR	CHARGED
15 minute summer	Outfall	1	64.500	0.000	0.9	0.0000	0.0000	OK	
Link Event	US Node	Link	DS Node	Outflow	Velocity	/ Flow/C	ap Lii Volu	nk (m³)	Discharge
15 minute summer	Development	1 000	Tank	16.8	2 1 2	0 0 5		0201	vor (m)
180 minute summer	Tank	Orifice	Outfall	10.8	2.12.	, U.J	0.2	291	16 5

Results for 30 year +40% CC Critical Storm Duration. Lowest mass balance: 99.54%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	:	Status
15 minute summer	Development	10	65.511	0.110	23.4	0.1250	0.0000	OK	
120 minute winter	Tank	110	65.215	0.315	7.8	16.1809	0.0000	SUR	CHARGED
15 minute summer	Outfall	1	64.500	0.000	1.1	0.0000	0.0000	OK	
Link Event	US	Link	DS	Outflow	Velocity	Flow/C	ap Li	nk (3)	Discharge
(Opstream Depth)	Node		Node	(I/S)	(m/s)		VOI	(m°)	voi (m²)
15 minute summer	Development	1.000	Tank	23.5	2.173	8 0.8	34 0.2	2957	
120 minute winter	Tank	Orifice	Outfall	1.4					19.6

Results for 100	year Critical Storm	Duration. Lowes	t mass balance: 99.54%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)		Status
15 minute summer	Development	10	65.505	0.105	21.7	0.1183	0.0000	ОК	
180 minute summer	Tank	132	65.194	0.294	7.8	15.0971	0.0000	SUR	CHARGED
15 minute summer	Outfall	1	64.500	0.000	1.1	0.0000	0.0000	OK	
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	/ Flow/C	ap Lii Vol	nk (m³)	Discharge Vol (m³)
15 minute summer	Development	1.000	Tank	21.8	2.166	6 0.7	74 0.2	791	,
180 minute summer	Tank	Orifice	Outfall	1.3					20.9

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 99.54%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)		Status
15 minute summer	Development	12	65.670	0.270	30.4	0.3054	0.0000	SUR	CHARGED
180 minute summer	Tank	128	65.665	0.765	10.9	20.5457	0.0000	SUR	CHARGED
15 minute summer	Outfall	1	64.500	0.000	1.3	0.0000	0.0000	ОК	
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/C	ap L Vol	ink (m³)	Discharge Vol (m³)
15 minute summer	Development	1.000	Tank	29.6	2.181	. 1.0	51 0.	3521	
180 minute summer	Tank	Orifice	Outfall	2.2					27.9

Appendix D

	England and Wales No. 10590566. This drawing is copyright of RIDA Reports Ltd. Drawing Scale Bar Drawing Line Drawing Line scale length scale length 1:5 = 0.25 metres 1:200 = 10.0 metres 1:10 = 0.5 metres 1:250 = 12.5 metres 1:20 = 1.0 metres 1:500 = 25.0 metres 1:25 = 1.25 metres 1:1000 = 50.0 metres 1:50 = 2.5 metres 1:1250 = 62.5 metres 1:100 = 5.0 metres 1:2500 = 125 metres Measure length of line above for checking of scale
	 GENERAL NOTES All dimensions are in millimetres and levels in m AOD unless stated otherwise. Do not scale. If in any doubt, consult Engineer. Read in conjunction with the architects and engineers achedule drawings. Check inverts and sizes of existing pipes prior to the commencement of any work. Report any discrepancies o the engineer and await instructions. The location of services is shown as indicative. This lrawing should be read in conjunction with the utilities lrawings. No warranty to their accuracy can be given. The contractor shall take all necessary measures to satisfy simself as to the location of the existing services and connection points. Excavation should be undertaken in compliance with HSG47.
	KEY Proposed Surface Water Sewer Pipe Exceedance Flows Permeable Surface as per architect's details Sub-base 350mm Type 3 Silt Trap -cw Existing Combined Water Sewer Pipe
F R	22 Updated Design 22.08.24 AGC ARD ev Details Date By Chid rawing Status: PRELIMINARY
	ÖRBAN WATER
с Р 2 Д	^{roject:} 22&24 St.Annes Road, London Colney, AL2 1LJ ^{rawing:} Proposed Drainage Strategy
Pri	nt Size: Scale: Project No: Drawing No: Revision: A1 1:100 0497 003 P2

Sited in private garden - No loading

Notes: 1. Refer to drawing 8193 for base layouts.

Silt Trap Plastic

Chamber Type 3 Base Layouts

8251 - External Rainwater Pipe Connection Detail

NOTES:

Permeable modular storage cell with 95% minimum void ratio. Ul imate compressive strength of 400kN/m² minimum. Resistant to chemicals likely to be found in rain water and durability of a minimum of 40 years.

2. Dimensions as applicable to he manufacturers recommendations for given storage requirement UNO.

3. Air Vents should be provided as per suppliers recommendations 4. See GA drgs for pipe sizes and layout and IL, ILoS, ToS, GL levels.

External Rodding Eye Detail

Joints for concrete encased pipes Movement joint of 15mm thick compressib board complying with clause 1015, provide at each socket or sleeve joint. - · · · o . · 0 · p . 0.0

Pipe Bedding Detail Type Z

150mm Concrete slab with 1 layer A393 mesh. 300 B B C C Compressible materia 300 min bearing on original ground Pipe

Pipe Bedding Detail Type S

PLAN VIEW

NOTES:

Invert Leve

1. The vertical angle between the connecting pipe and the horizontal should be greater than 0° and not more han 60°. 2. Where the connection is being made to a sewer with a nominal internal diameter of 300 mm or less, connec ions should be made using 45° angle, or 90° angle, curved square junctions.

3. Connections made with junction fittings should be made by cutting the existing pipe, inserting the junction fit ing and jointing with flexible repair couplings or slip couplers.

Lateral Connection to private sewer

Plastic chambers and rings shall comply with BS EN 13598-2 and BS EN 13598-2 or have equivalent independent approval

movement.

Mortar bedding and haunching		
to cover and frame to clause E6.7		
Precast concrete slab or insitu concrete slab to support cover ——— and frame		
Temporary cap manhole during construction.		
Joints between base and shaft and between shaft components to be — fitted with watertight seals.	500mm Ø	
Joint to be as close as possible to face of chamber to permitt		

Typical Section in areas subject to vehicle loading

Mortar bedding and baunching		
to cover and frame to clause E6.7	2222	
150mm deep concrete collar		
Temporary cap manhole during	500mm Ø	
construction.		

Sited in soft landscaped areas

NOTES: 1. Refer to GA drg for pipe layout. 2. Chamber can be fabricated by Selel Environmental UK.

Flow Control -Orifice Plate - Plastic - Type 3

Print Size:

Scale:

Project No:

A1 NTS 0497 006 P1

Drawing No: Revision: