

Monthly water situation report: Kent and South London Area

1 Summary - July 2024

The whole of the Kent and South London (KSL) area received 119% of the longterm average (LTA) rainfall during July. Rainfall received across catchments in the area ranged from normal to above normal. Soil moisture deficits (SMDs) within all rainfall areas in KSL increased slightly throughout the month of July. The key flow sites saw ranged from normal to exceptionally high MMFs during July. Groundwater levels in the Chalk in July 2024 ranged from exceptionally high to above normal for this time of the year. Groundwater levels continue to fall consistently across Kent and South London aquifers. Levels in 4 out of 5 reservoirs in KSL decreased in July.

1.1 Rainfall

The whole of the KSL area received slightly above average rainfall with 119% of the LTA during July. Rainfall received across catchments in the area ranged from normal to above normal. The above normal rainfall was received in the Medway and Upper Mole areas. The percentage of LTA rainfall received across catchments ranged from 81% across Thanet Chalk rainfall area to 163% in the Lower Mole. The highest daily rainfall total of 33.0mm for July was recorded at Hockers Lane PS RG in the North Kent Chalk catchment on the 15 July. The next highest daily rainfall totals were on 5, 7, 9 and 13 July and ranged from 17.8mm to 28.6mm. In July, there was only one day where less than 0.2mm of rainfall fell, this was the 19 July.

1.2 Soil moisture deficit and recharge

Soil moisture deficits (SMDs) continue to fall as expected for this time of year. SMDs within all rainfall areas in KSL increased slightly throughout the month of July compared to June. At the end of the month SMDs were, on average, slightly higher than the end of month LTA. This is in line with the average and higher-than-average rainfall totals observed during July. The whole KSL area received 71% of the LTA effective rainfall in July, which resulted in the only slight increase in soil moisture deficits seen in July.

1.3 River flows

In July the MMFs ranged from normal to exceptionally high. Exceptionally high flows were observed at the River Dour at Crabble in the east, the Teise at Stonebridge and the Darent at Hawley which had the highest percentage LTA of 210%. Above normal flows were seen at the

Stour at Horton, the Medway at Teston, Eden at Vexhour, Wandle at Connollys Mill and the Mole at Dorking. Flows were normal in the Rother at Udiam, East Stour at South Willesborough and the Ravensbourne at Catford which had the lowest percentage LTA of 77%. Many sites experienced exceptionally high peaks in response to rainfall at the beginning of the month, as the daily mean charts show.

1.4 Groundwater levels

Groundwater levels ranged from exceptionally high to above normal across the KSL area. Many of the groundwater sites recorded notably high levels of groundwater for July. While Chipstead in the west of the catchment recorded above normal levels and Wolverton in the east saw exceptionally high levels reaching 40.02 mAOD, which is the highest water level recorded at Wolverton in July since records began in 1971. Although levels in the Chalk remain exceptionally high in the east of the patch, and notably high in most of the west, levels continue to fall consistently across the area. This also applies to groundwater levels in the Greensand aquifer at Riverhead.

1.5 Reservoir stocks

At the end of July, reservoir levels were:

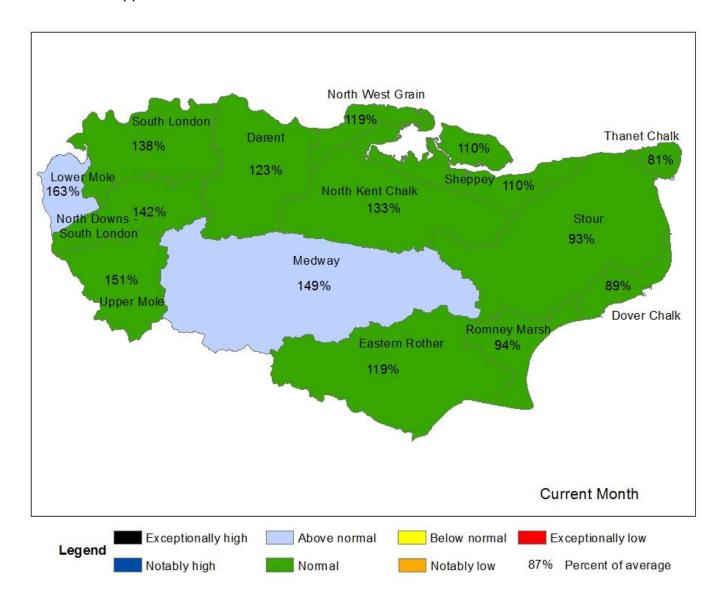
- normal at Bewl at 82%, and Powdermill at 72%
- notably high at Weir Wood at 97%, Darwell at 83% and Bough Beech at 80%

Levels in 4 reservoirs in KSL decreased in July, although levels at Weir Wood slightly increased as this reservoir is currently offline.

1.6 Environmental impact

Hands off flow constraints continue to apply to certain licensed abstractions within the Upper Stour and Medway catchments.

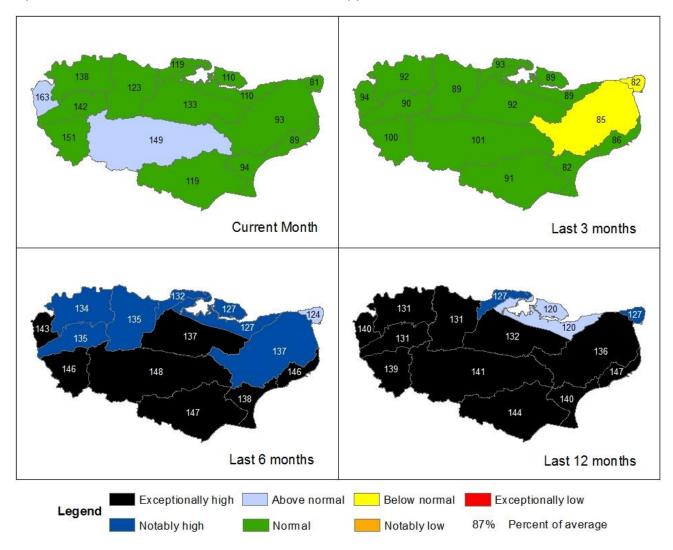
Author: Groundwater and Hydrology Team, ksl.gwh@environment-agency.gov.uk


Contact Details: 03708506506

All data are provisional and may be subject to revision. The views expressed in this document are not necessarily those of the Environment Agency. Its officers, servants or agents accept no liability for any loss or damage arising from the interpretation or use of the information, or reliance upon views contained in this report.

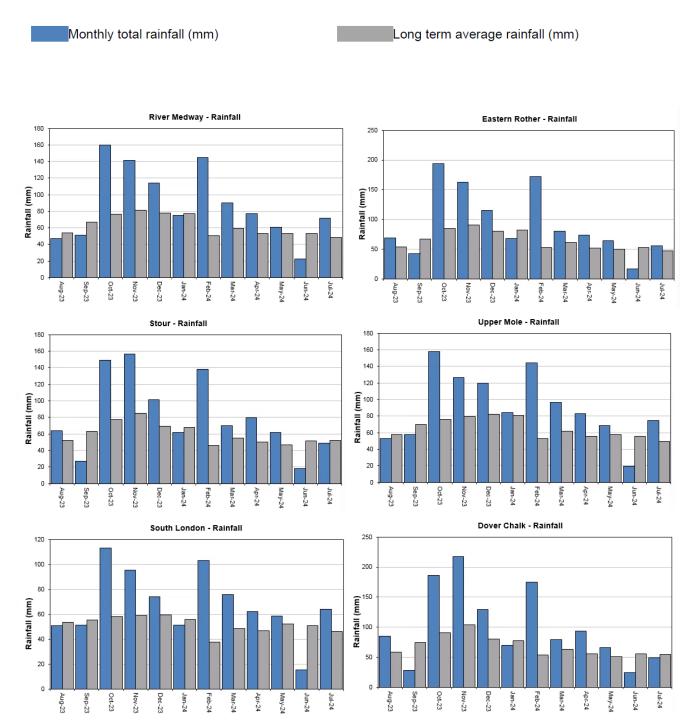
2 Rainfall

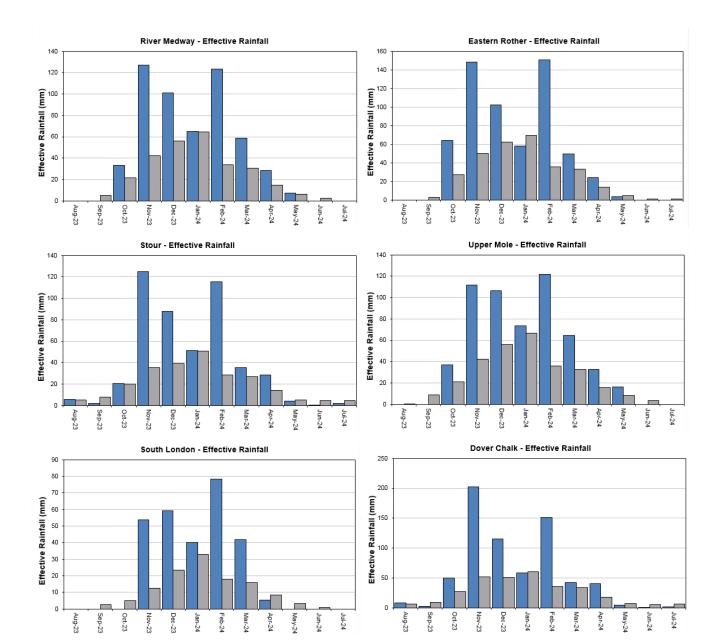
2.1 Rainfall map one


Figure 2.1: Total rainfall for hydrological areas across Kent and South London for the current month (up to 31 July 2024), classed relative to an analysis of respective historic totals. Table available in the appendices with more detailed information.

HadUK data based on the Met Office 1km gridded rainfall dataset derived from rain gauges (Source: Met Office. Crown copyright, 2024). Provisional data based on Environment Agency 1km gridded rainfall dataset derived from Environment Agency intensity rain gauges. Includes material based on Ordnance Survey 1:50 000 maps with the permission of the controller of His Majesty's Stationery Office © Crown copyright. All rights reserved. Environment Agency, 100026380, 2024.

2.2 Rainfall map two


Figure 2.2: Total rainfall for hydrological areas for the current month (up to 31 July 2024), the last 3 months, the last 6 months, and the last 12 months, classed relative to an analysis of respective historic totals. Table available in the appendices with detailed information.



HadUK data based on the Met Office 1km gridded rainfall dataset derived from rain gauges (Source: Met Office. Crown copyright, 2024). Provisional data based on Environment Agency 1km gridded rainfall dataset derived from Environment Agency intensity rain gauges. Includes material based on Ordnance Survey 1:50 000 maps with the permission of the controller of His Majesty's Stationery Office © Crown copyright. All rights reserved. Environment Agency, 100026380, 2024.

2.3 Rainfall and effective rainfall charts

Figure 2.3: Monthly rainfall and effective rainfall totals for the past 12 months as a percentage of the 1961 to 1990 long term average (LTA) for a selection of areal units. HadUK rainfall data. (Source: Met Office. Crown copyright, 2024). EA effective rainfall data (Source EA Soil Moisture Model).

2.4 Rainfall and effective rainfall table

Figure 2.4: This is a second estimate of areal rainfall and effective rainfall (percolation or runoff) for a selection of the hydrological areas across the Kent and South London area. There may be significant variation within each area which must be considered when interpreting these data. When additional meteorological data is available estimates are revised which will affect the period totals in section 2.5.

Number	Hydrological Area	Rainfall (mm) 31 day Total	July% LTA	Effective Rainfall (mm) 31 day Total	July % LTA
6230TH	North Downs - South London (W)	73	142%	7	145%
6505TH	Upper Mole	74	151%	0	0%
6508TH	South London	64	139%	0	0%
6706So	Darent	61	124%	5	120%
6707So	North Kent Chalk	67	134%	5	115%
6708So	Stour	49	94%	2	38%
6709So	Dover Chalk	49	90%	2	29%
6710So	Thanet Chalk	39	81%	0	11%
6809So	Medway	72	149%	0	0%
6810So	Eastern Rother	56	118%	0	0%

6811So	Romney Marsh	46	95%	0	0%
6812So	North West Grain	52	119%	0	0%
6813So	Sheppey	52	110%	0	0%
	Kent & South London Average	58	119%	2	71%

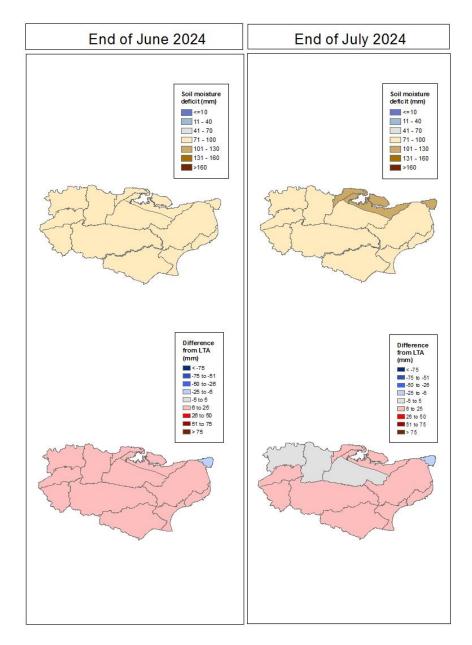
HadUK rainfall data. (Source: Met Office. Crown copyright, 2024).

EA effective rainfall data (Source EA Soil Moisture Model)

2.5 Seasonal summary table of rainfall and effective rainfall

Figure 2.5: This is a seasonal estimate of areal rainfall and effective rainfall (percolation or runoff) for a selection of the hydrological areas across the Kent and South London area, expressed as totals and as a percentage of the LTA. There may be significant variation within each area which must be considered when interpreting these data. When additional meteorological data is available estimates are revised which will affect the period totals.

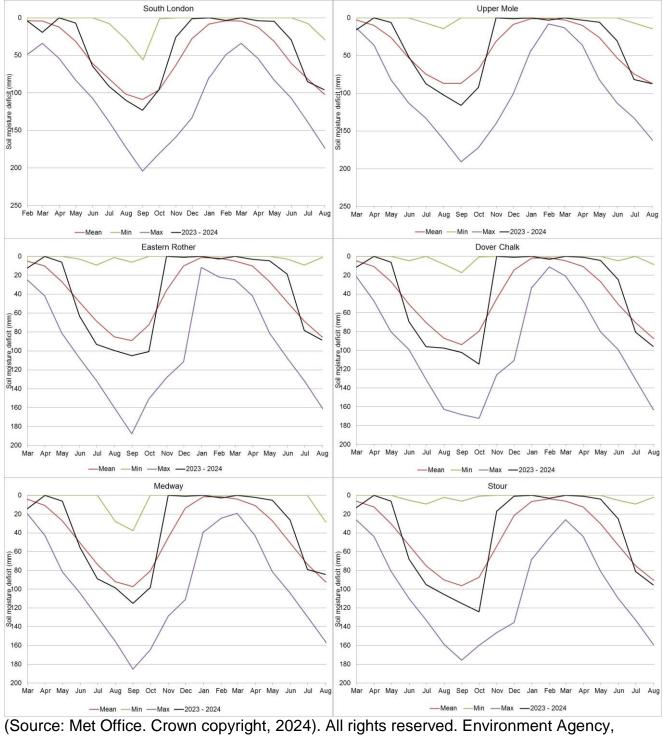
Number	Hydrological Area	Seasonal Rainfall (mm) Total	% LTA	Seasonal Effective Rainfall (mm) Total	% LTA
6230TH	North Downs - South London (W)	230	102%	43	102%
6505TH	Upper Mole	246	113%	49	180%
6508TH	South London	199	102%	5	41%
6706So	Darent	212	103%	33	102%
6707So	North Kent Chalk	210	102%	29	85%
6708So	Stour	208	103%	34	119%
6709So	Dover Chalk	232	108%	47	129%
6710So	Thanet Chalk	175	98%	11	62%
6809So	Medway	232	112%	36	154%
6810So	Eastern Rother	211	105%	28	135%


Summer period 01/04/2024 to 31/07/2024

6811So	Romney Marsh	186	98%	21	166%
6812So	North West Grain	174	99%	6	66%
6813So	Sheppey	179	100%	6	81%
	Kent & South London Average	207	104%	27	115%

3 Soil moisture deficit

3.1 Soil moisture deficit map


Figure 3.1: Soil moisture deficits for weeks ending 30 June (left panel) and 31 July 2024 (right panel). Top row shows actual soil moisture deficits (mm) and bottom row shows the difference (mm) of the actual from the 1961 to 90 long term average soil moisture deficits. EA Soil Moisture Deficit data (Source EA Soil Moisture Model).

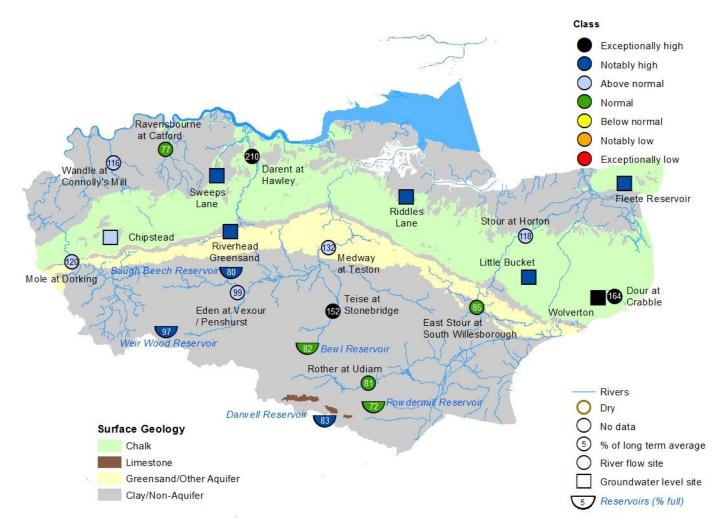
(Source: Met Office. Crown copyright, 2024). All rights reserved. Environment Agency, 100024198, 2024.

3.2 Soil moisture deficit charts

Figure 3.2: Latest soil moisture deficit compared to maximum, minimum, and 1961 to 1990 long term average. EA soil moisture deficit data (Source EA Soil Moisture Model).

100024198, 2024

3.3 Soil moisture deficit table

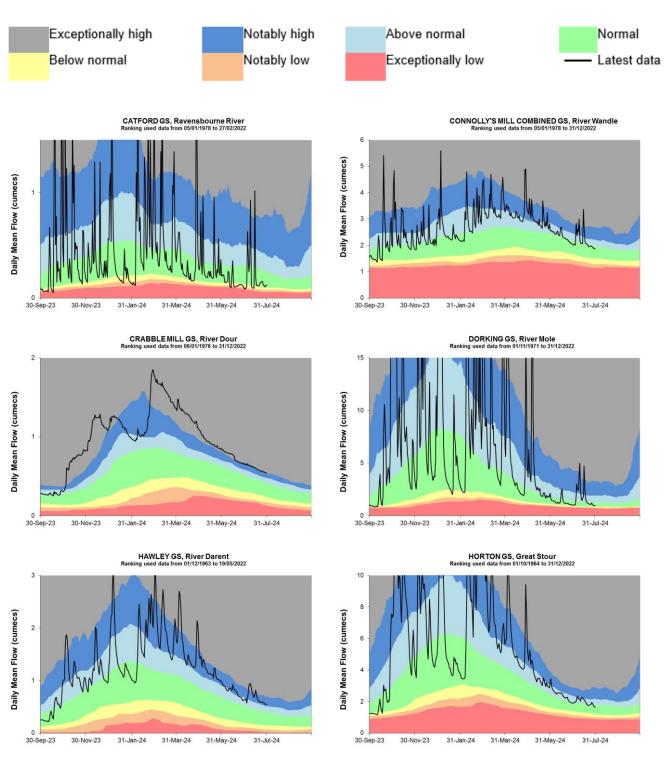

Figure 3.3: This is a second estimate of soil moisture deficit for the hydrological areas across the Kent and South London area. There may be significant variation within each area which must be considered when interpreting these data. EA soil moisture deficit data (Source EA Soil Moisture Model).

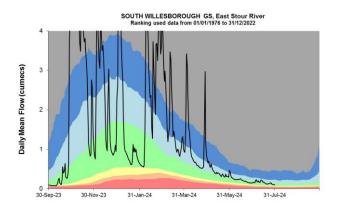
Number	Hydrological Area SMD (mm) Day 31		End July LTA
6230TH	North Downs - South London (W)	89	80
6505TH	Upper Mole	87	78
6508TH	South London	96	93
6706So	Darent	93	88
6707So	North Kent Chalk	91	86
6708So	Stour	95	86
6709So	Dover Chalk	96	83
6710So	Thanet Chalk	114	126
6809So	Medway	84	78
6810So	Eastern Rother	89	78
6811So	Romney Marsh	97	84
6812So	North West Grain	102	96
6813So	6813So Sheppey		95
	Kent & South London Average	95	89

4 River flows, groundwater levels and reservoir stocks

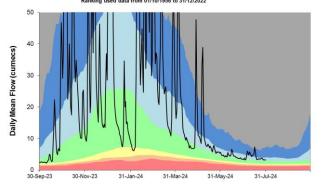
4.1 River flows, groundwater levels and reservoir stocks map

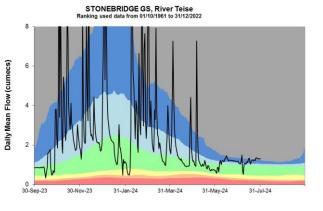
Figure 4.1: Monthly mean river flows^{*} ** *** for indicator sites for July 2024, expressed as a percentage of the respective long term average and classed relative to an analysis of historic July monthly means. End of month groundwater levels for indicator sites for July 2024, expressed as a percentage of the respective long term average and classed relative to an analysis of historic July levels. Tables available in the appendices with detailed information. End of month levels for reservoirs for July 2024, expressed as percent full. (Source: Water Companies).

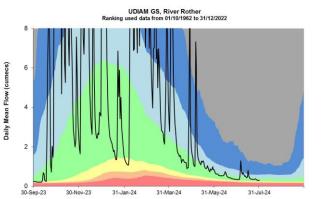


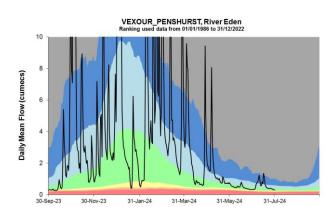

*Flows at some sites might be affected by overestimation due to weed growth at this time of year **Weir Wood Reservoir is currently offline

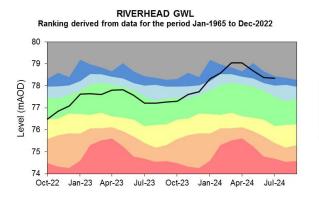
***Flows at gauging stations in the Medway catchment might be affected by upstream reservoir releases Some features of this map are based on digital spatial data licensed from the UK Centre for Ecology and Hydrology, © UKCEH. Includes material based on Ordnance Survey 1:50 000 maps with the permission of the controller of His Majesty's Stationery Office © Crown copyright. Geological map reproduced with kind permission from UK Groundwater Forum, BGS © NERC. All rights reserved. Environment Agency, 100026380, 2024.


4.2 River flow charts


Figure 4.1: Daily mean river flow for index sites over the past year, compared to an analysis of historic daily mean flows, and long term maximum and minimum flows.






Source: Environment Agency.

5 Groundwater levels

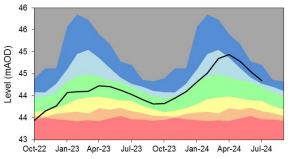
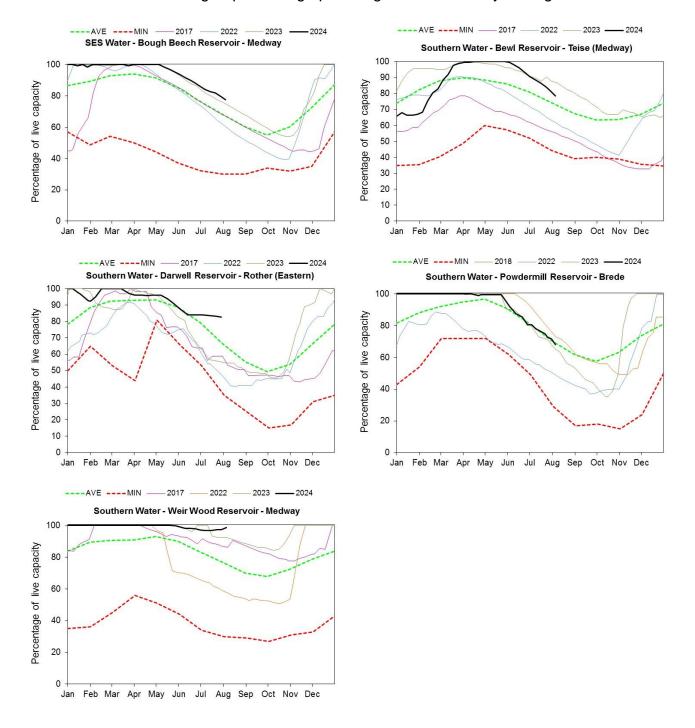

5.1 Groundwater level charts

Figure 5.1: End of month groundwater levels at index groundwater level sites for major aquifers. 22 months compared to an analysis of historic end of month levels and long term maximum and minimum levels.

SWEEPS LANE GWL Ranking derived from data for the period Jan-1984 to Dec-2022


Proceeding the second s

Source: Environment Agency, 2024.

6 Reservoir stocks

6.1 Reservoir stocks charts

Figure 7.1: End of month regional reservoir stocks compared to long term maximum, minimum and average stocks. (Source: Water Companies). Note: Historic records of individual reservoirs and reservoir groups making up the regional values vary in length.

7 Glossary

7.1 Terminology

Aquifer

A geological formation able to store and transmit water.

Areal average rainfall

The estimated average depth of rainfall over a defined area. Expressed in depth of water (mm).

Artesian

The condition where the groundwater level is above ground surface but is prevented from rising to this level by an overlying continuous low permeability layer, such as clay.

Artesian borehole

Borehole where the level of groundwater is above the top of the borehole and groundwater flows out of the borehole when unsealed.

Cumecs

Cubic metres per second (m^{3s-1}).

Effective rainfall

The rainfall available to percolate into the soil or produce river flow. Expressed in depth of water (mm).

Flood alert and flood warning

Three levels of warnings may be issued by the Environment Agency. Flood alerts indicate flooding is possible. Flood warnings indicate flooding is expected. Severe flood warnings indicate severe flooding.

Groundwater

The water found in an aquifer.

Long term average (LTA)

The arithmetic mean calculated from the historic record, usually based on the period 1961 to 1990. However, the period used may vary by parameter being reported on (see figure captions for details).

mAOD

Metres above ordnance datum (mean sea level at Newlyn Cornwall).

MORECS

Met Office Rainfall and Evaporation Calculation System. Met Office service providing real time calculation of evapotranspiration, soil moisture deficit and effective rainfall on a 40 by 40 km grid.

Naturalised flow

River flow with the impacts of artificial influences removed. Artificial influences may include abstractions, discharges, transfers, augmentation and impoundments.

NCIC

National Climate Information Centre. NCIC area monthly rainfall totals are derived using the Met Office 5 km gridded dataset, which uses rain gauge observations.

Recharge

The process of increasing the water stored in the saturated zone of an aquifer. Expressed in depth of water (mm).

Reservoir gross capacity

The total capacity of a reservoir.

Reservoir live capacity

The capacity of the reservoir that is normally usable for storage to meet established reservoir operating requirements. This excludes any capacity not available for use (for example, storage held back for emergency services, operating agreements or physical restrictions). May also be referred to as 'net' or 'deployable' capacity.

Soil moisture deficit (SMD)

The difference between the amount of water actually in the soil and the amount of water the soil can hold. Expressed in depth of water (mm).

7.2 Categories

Exceptionally high

Value likely to fall within this band 5% of the time.

Notably high

Value likely to fall within this band 8% of the time.

Above normal

Value likely to fall within this band 15% of the time.

Normal

Value likely to fall within this band 44% of the time.

Below normal

Value likely to fall within this band 15% of the time.

Notably low

Value likely to fall within this band 8% of the time.

Exceptionally low

Value likely to fall within this band 5% of the time.

8 Appendices

8.1 Rainfall table

Hydrological area	Jul 2024 rainfall % of long term average 1961 to 1990	Jul 2024 band	May 2024 to July cumulative band	Feb 2024 to July cumulative band	Aug 2023 to July cumulative band
North Downs - South London	142	Normal	Normal	Notably high	Exceptionally high
Upper Mole	151	Normal	Normal	Exceptionally high	Exceptionally high
South London	138	Normal	Normal	Notably high	Exceptionally high
River Darent	123	Normal	Normal	Notably high	Exceptionally high
North Kent Chalk	133	Normal	Normal	Exceptionally high	Exceptionally high
Stour	93	Normal	Below normal	Notably high	Exceptionally high
Dover Chalk	89	Normal	Normal	Exceptionally high	Exceptionally high
Thanet Chalk	81	Normal	Below normal	Above normal	Notably high
River Medway	149	Above Normal	Normal	Exceptionally high	Exceptionally high

Eastern Rother	119	Normal	Normal	Exceptionally high	Exceptionally high
Romney Marsh	94	Normal	Normal	Exceptionally high	Exceptionally high
North West Grain	119	Normal	Normal	Notably high	Notably high
Sheppey	110	Normal	Normal	Notably high	Above normal

8.2 River flows table

Site name	River	Catchment	Jul 2024 band	Jun 2024 band
Catford Gs	River Ravensbourne	Ravensbourne	Normal	Notably low
Connolly's Mill Combined Gs	River Wandle	Wandle	Above normal	Above normal
Crabble Mill Gs	River Dour	Dour	Exceptionally high	Exceptionally high
Dorking Gs	River Mole	Mole Surrey	Above normal	Normal
Hawley Gs	River Darent and Cray	Darent and Cray	Exceptionally high	Above normal
Horton Gs	Great Stour River	Great Stour	Above normal	Above normal
South Willesborough Gs	East Stour River	East Stour	Normal	Normal
Stonebridge Gs	River Teise	Teise	Exceptionally high	Above normal
Teston Farleigh Combined	River Medway	Medway (Middle)	Above normal	Normal
Udiam Gs	River Rother	Rother (Kent)	Normal	Normal
Vexour_penshurst	River Eden	Eden (Kent)	Above normal	Normal

8.3 Groundwater table

Site name	Aquifer	End of Jul 2024 band	End of Jun 2024 band
Fleete Reservoir Gwl	Isle Of Thanet Chalk	Notably high	Notably high
Chipstead Gwl	Epsom North Downs Chalk	Above normal	Above normal
Little Bucket Fm	East Kent Chalk - Stour	Notably high	Exceptionally high
Riddles Lane	North Kent Swale Chalk	Notably high	Notably high
Riverhead Gwl	Kent Greensand	Notably high	Notably high
Sweeps Lane Gwl	West Kent Chalk	Notably high	Notably high
Wolverton New	East Kent Chalk - Stour	Exceptionally high	Exceptionally high