## Monthly water situation report: Thames Area

## 1 Summary - June 2024

Thames area received 18 mm of rainfall in June, $34 \%$ of the long term average (LTA). All of our areal rainfall units were notably low, except for the Cotswolds West and Cotswolds East units, which were below normal for the time of the year. Soil moisture deficits (SMDs) increased from last month to 76 mm across the area and was higher than expected for the time of the year ( 61 mm ). Monthly mean river flows at all of our indicator sites decreased in June with all sites recording a normal or higher flows for the time of the year. At the end of the month, groundwater levels at nearly all of our indicator sites continued their seasonal decline, with the majority of the groundwater indicator sites recording higher than normal levels for the time of the year.

### 1.1 Rainfall

It was a dry month in June, with Thames Area receiving 18mm of rainfall, $34 \%$ of the LTA for the month. This month has been the first month since June 2023 that the rainfall is below $100 \%$ of the LTA. All of our areal rainfall units were notably low, except the Cotswolds West and Cotswolds East units, which were below normal for the time of the year. Over the last 3 months, rainfall was normal across Thames Area, with the exception of Cotswolds West (above normal). Rainfall over the past 12 months was exceptionally high across the Area, and this 12 month period to June has been the wettest on record.

### 1.2 Soil moisture deficit and recharge

SMDs for in Thames Area increased to 76 mm by the end of June. This meant that soils were drier than expected for the time of the year ( 61 mm LTA). As a result of notably low rainfall across majority of the Thames area, the effective rainfall was below average for the time of the year.

### 1.3 River flows

Due to dry conditions in June, all of our indicator sites had decreasing monthly mean flow compared to May. Despite this, all our indicator sites recorded normal or higher flows for the time of the year. This is due to high rainfall over the past 6 months and 12 months leading to aquifer recharge and higher than normal groundwater levels at majority of the sites. Being supported by the strong base flow, the River Kennet at Marlborough was notably high, and the River Wye at Bourne End remained exceptionally high for the time of the year.

### 1.4 Groundwater levels

Groundwater levels at all our indicator sites continued their seasonal decline in June, except for Frith Cottage in the Lower Greensand. Nearly all the groundwater indicator sites recorded higher than normal levels, with the exception of Jackaments Bottom (Inferior Oolite) and Ampney Crucis (Great Oolites) whose groundwater levels were normal. Despite the decline, groundwater levels of the Chalk at Stonor Estate and Gibbet Cottages remained exceptionally high for the time of the year.

### 1.5 Reservoir stocks

Reservoir capacity at Farmoor remained at $98 \%$ and was above the LTA at the end of the month. Capacity at the Lower Thames reservoirs decreased from 98\% in May to 95\% at the end of June but remained above the LTA for the time of the year.

### 1.6 Environmental impact

There were no flood alerts or warnings issued across Thames Area during June due to the dry conditions. At the end of June 19 abstraction licences were being constrained in Thames Area in order to protect water resources and the environment.

Author: Thames Area Groundwater Resources and Hydrology, enquiriesWT@environmentagency.gov.uk

Contact Details: 02030259659

## 2 Rainfall

### 2.1 Rainfall map

Figure 2.1: Total rainfall for hydrological areas for the current month (up to 30 June 2024), classed relative to an analysis of respective historic totals. Table available in the appendices with detailed information.


Rainfall data for 2023, extracted from Environment Agency 1km gridded rainfall dataset derived from Environment Agency intensity rain gauges. (Source: Environment Agency. Crown Copyright, 100024198, 2024). Rainfall data prior to 2023, extracted from Met Office HadUK 1 km gridded rainfall dataset derived from registered rain gauges (Source: Met Office. Crown copyright, 2024).

### 2.2 Rainfall map (2)

Figure 2.2: Total rainfall for hydrological areas for the current month (up to 30 June 2024), the last 3 months, the last 6 months, and the last 12 months, classed relative to an analysis of respective historic totals. Table available in the appendices with detailed information.


HadUK data based on the Met Office 1km gridded rainfall dataset derived from rain gauges (Source: Met Office. Crown copyright, 2024). Provisional data based on Environment Agency 1 km gridded rainfall dataset derived from Environment Agency intensity rain gauges. Crown copyright. All rights reserved. Environment Agency, 100024198, 2024.

### 2.3 Rainfall charts

Figure 2.3: Monthly rainfall totals for the past 12 months as a percentage of the 1961 to 1990 long term average for each areal unit.
$\square$

Above average rainfall
Below average rainfall

Above average effective rainfall
Below average effective rainfall





HadUK rainfall data. (Source: Met Office. Crown copyright, 2024).
EA effective rainfall data (Source: EA Soil Moisture Model)

## 3 Soil moisture deficit

### 3.1 Soil moisture deficit map

Figure 3.1: Soil moisture deficits for the week ending 30 June 2024. Shows the areal SMD estimate in millimetres.

(Source: Met Office. Crown copyright, 2024). All rights reserved. Environment Agency, 100024198, 2024.

## 4 River Flow and Groundwater Status

### 4.1 River flow and groundwater level map

Figure 4.1: Monthly mean river flow for indicator sites and end of month groundwater levels for indicator sites for June 2024, expressed as a percentage of the respective long term average and classed relative to an analysis of historic June means.

(Source: Environment Agency). Crown copyright. All rights reserved. Environment Agency, 100024198, 2024.

## 5 River flows

### 5.1 River flow charts

Figure 5.1: Daily mean river flows for indicator sites compared to an analysis of historic daily mean flows, and long term maximum and minimum flows.
Exceptionally high
Below normal
Notably high
Notably low

| Above normal |
| :--- |
| Exceptionally low |











Source: Environment Agency.

## 6 Groundwater levels

### 6.1 Groundwater level charts

Figure 6.1: End of month groundwater levels for indicator sites, compared to an analysis of historic end of month levels, and long term maximum and minimum levels.

## Exceptionally high <br> Below normal

Notably high
Notably low
Above normal
Exceptionally low


AMPNEY CRUCIS - GREAT OOLITE
Ranking derived from data for the period Dec-1958 to Dec-2022


Ranking derived from data for the period Sep-1980 to Dec-2022



GIBBET COTTAGES - CHALK
Ranking derived from data for the period Jul-1973 to Dec-2022


STONOR ESTATE - CHALK
Ranking derived from data for the period May-1961 to Dec-2022



MODEL FARM - UPPER GREENSAND
Ranking derived from data for the period Feb-1963 to Dec-2022

*Tile Barn Farm data has been estimated from two local sites since April 2022. A replacement is planned

Source: Environment Agency, 2024.

## 7 Reservoir stocks

Figure 7.1: End of month regional reservoir stocks compared to minimum and average stocks.

(Source: water companies).

## 8 Flow Constraints

### 8.1 Figure 8.1: End of month flow constraints in Thames Area.



### 8.2 Summary of flow constraints

| Week ending | $02 / 06 / 24$ | $09 / 06 / 24$ | $16 / 06 / 24$ | $23 / 06 / 24$ | $13 / 06 / 24$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of flow constraints in force | 2 | 3 | 3 | 2 | 19 |

## 9 Summary of rainfall, effective rainfall and soil moisture deficit

### 9.1 Rainfall and effective rainfall

| Area | Rainfall (mm) 30 day Total | Rainfall (mm) June LTA | Rainfall (mm) \% LTA | Effective <br> Rainfall (mm) <br> 30 day total | Effective Rainfall (mm) June LTA | Effective Rainfall (mm) \% LTA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cotswolds - West | 26 | 56 | 45 | 1 | 9 | 16 |
| Cotswolds - East | 23 | 55 | 42 | 1 | 7 | 15 |
| Berkshire Downs | 19 | 57 | 33 | 1 | 7 | 9 |
| Chilterns - West | 19 | 58 | 32 | 0 | 7 | 5 |
| North Downs - Hampshire | 19 | 56 | 33 | 1 | 7 | 12 |
| Wey - Greensand | 17 | 55 | 32 | 1 | 8 | 9 |
| Upper Thames | 21 | 53 | 38 | 0 | 1 | 0 |
| Cherwell | 21 | 56 | 37 | 0 | 2 | 0 |
| Thame | 21 | 53 | 39 | 0 | 1 | 0 |
| Loddon | 14 | 52 | 27 | 0 | 2 | 0 |
| Lower Wey | 14 | 51 | 27 | 0 | 3 | 0 |
| Ock | 17 | 51 | 34 | 0 | 2 | 0 |
| Enborne | 15 | 56 | 26 | 0 | 2 | 0 |
| Cut | 13 | 53 | 25 | 0 | 2 | 0 |
| Thames Area | 18 | 55 | 34 | 0 | 4 | 8 |

HadUK rainfall data (Source: Met Office Crown copyright 2024)
EA effective rainfall data (Source: EA Soil Moisture Model)

### 9.2 Soil moisture deficit

| Area | $\begin{array}{c}\text { SMD } \\ (\mathrm{mm})\end{array}$ |  |
| :--- | :---: | :---: |
| Day 30 |  |  | \(\left.\begin{array}{c}SMD <br>

(\mathrm{mm}) <br>
LTA\end{array}\right]\)

HadUK rainfall data (Source: Met Office Crown copyright 2024) EA effective rainfall data (Source: EA Soil Moisture Model)

### 9.3 Winter rainfall and effective rainfall

| Summer period: <br> 01/04/2024 to 30/06/2024 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Area | $\begin{aligned} & \text { Rainfall } \\ & \text { (mm) } \\ & \text { Total } \end{aligned}$ | Rainfall (mm) LTA | $\begin{aligned} & \text { Rainfall } \\ & \text { (mm) } \\ & \text { \% LTA } \end{aligned}$ | Effective Rainfall (mm) Total | Effective Rainfall (mm) LTA | Effective Rainfall (mm) \% LTA |
| Cotswolds - West | 205 | 177 | 116 | 56 | 40 | 141 |
| Cotswolds - East | 179 | 163 | 110 | 35 | 30 | 116 |
| Berkshire Downs | 174 | 170 | 103 | 37 | 30 | 121 |
| Chilterns - West | 162 | 168 | 97 | 27 | 30 | 88 |
| North Downs - Hampshire | 166 | 175 | 95 | 42 | 35 | 119 |
| Wey - Greensand | 169 | 175 | 97 | 51 | 38 | 134 |
| Upper Thames | 162 | 158 | 103 | 18 | 12 | 146 |
| Cherwell | 173 | 160 | 108 | 31 | 18 | 172 |
| Thame | 169 | 156 | 108 | 25 | 15 | 163 |
| Loddon | 148 | 155 | 95 | 24 | 15 | 157 |
| Lower Wey | 141 | 153 | 92 | 26 | 17 | 152 |
| Ock | 150 | 150 | 100 | 11 | 11 | 97 |
| Enborne | 158 | 164 | 96 | 25 | 18 | 138 |
| Cut | 136 | 155 | 88 | 14 | 15 | 96 |
| Thames Area | 164 | 163 | 101 | 30 | 23 | 129 |

HadUK rainfall data (Source: Met Office Crown copyright 2024)
EA effective rainfall data (Source: EA Soil Moisture Model)

## 10 Glossary

### 10.1 Terminology

## Aquifer

A geological formation able to store and transmit water.

## Areal average rainfall

The estimated average depth of rainfall over a defined area. Expressed in depth of water (mm).

## Artesian

The condition where the groundwater level is above ground surface but is prevented from rising to this level by an overlying continuous low permeability layer, such as clay.

## Artesian borehole

Borehole where the level of groundwater is above the top of the borehole and groundwater flows out of the borehole when unsealed.

## Cumecs

Cubic metres per second $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$.

## Effective rainfall

The rainfall available to percolate into the soil or produce river flow. Expressed in depth of water (mm).

## Flood alert and flood warning

Three levels of warnings may be issued by the Environment Agency. Flood alerts indicate flooding is possible. Flood warnings indicate flooding is expected. Severe flood warnings indicate severe flooding.

## Groundwater

The water found in an aquifer.

## Long term average (LTA)

The arithmetic mean calculated from the historic record, usually based on the period 1961 to 1990. However, the period used may vary by parameter being reported on (see figure captions for details).

## mAOD

Metres above ordnance datum (mean sea level at Newlyn Cornwall).

## MORECS

Met Office Rainfall and Evaporation Calculation System. Met Office service providing real time calculation of evapotranspiration, soil moisture deficit and effective rainfall on a 40 by 40 km grid.

## Naturalised flow

River flow with the impacts of artificial influences removed. Artificial influences may include abstractions, discharges, transfers, augmentation and impoundments.

## NCIC

National Climate Information Centre. NCIC area monthly rainfall totals are derived using the Met Office 5 km gridded dataset, which uses rain gauge observations.

## Recharge

The process of increasing the water stored in the saturated zone of an aquifer. Expressed in depth of water (mm).

## Reservoir gross capacity

The total capacity of a reservoir.

## Reservoir live capacity

The capacity of the reservoir that is normally usable for storage to meet established reservoir operating requirements. This excludes any capacity not available for use (for example, storage held back for emergency services, operating agreements or physical restrictions). May also be referred to as 'net' or 'deployable' capacity.

## Soil moisture deficit (SMD)

The difference between the amount of water actually in the soil and the amount of water the soil can hold. Expressed in depth of water (mm).

### 10.2 Categories

## Exceptionally high

Value likely to fall within this band $5 \%$ of the time.

## Notably high

Value likely to fall within this band $8 \%$ of the time.

## Above normal

Value likely to fall within this band $15 \%$ of the time.

## Normal

Value likely to fall within this band $44 \%$ of the time.

## Below normal

Value likely to fall within this band $15 \%$ of the time.

## Notably low

Value likely to fall within this band $8 \%$ of the time.

## Exceptionally Iow

Value likely to fall within this band $5 \%$ of the time.

## 11 Appendices

### 11.1 Rainfall table

| Hydrological <br> area | Jun 2024 <br> rainfall \% of <br> long term <br> average 1961 <br> to 1990 | Jun 2024 <br> band | Apr 2024 to <br> June <br> cumulative <br> band | Jan 2024 to <br> June <br> cumulative <br> band | Jul 2023 to <br> June <br> cumulative <br> band |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Berkshire <br> Downs | 33 | Notably Low | Normal | Exceptionally <br> high | Exceptionally <br> high |
| Chilterns <br> West | 32 | Notably Low | Normal | Exceptionally <br> high | Exceptionally <br> high |
| Cotswold <br> East | 42 | Below <br> Normal | Normal | Exceptionally <br> high | Exceptionally <br> high |
| Cotswold <br> West | 45 | Nolow | Above normal | Exceptionally <br> high | Exceptionally <br> high |
| Cut | 25 | Notably Low | Normal | Notably high | Exceptionally <br> high |
| Enborne | 27 | Notably Low | Normal | Notably high | Exceptionally <br> high |
| Loddon | 27 | Notably Low | Normal | Now | Normal |
| Exceptionally |  |  |  |  |  |
| high |  |  |  |  |  |


| Ock | 34 | Notably Low | Normal | Exceptionally <br> high | Exceptionally <br> high |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Thame | 38 | Notably Low | Normal | Exceptionally <br> high | Exceptionally <br> high |
| Upper <br> Cherwell | 37 | Notably Low | Normal | Exceptionally <br> high | Exceptionally <br> high |
| Upper <br> Thames | 38 | Notably Low | Normal | Exceptionally <br> high | Exceptionally <br> high |
| Wey - <br> Greensand | 32 | Notably Low | Normal | Exceptionally <br> high | Exceptionally <br> high |

### 11.2 River flows table

| Site name |  | Catchment |  | Jun 2024 <br> band |
| :--- | :--- | :--- | :--- | :--- |
| Abingdon | River Ock | Ock | May 2024 |  |
| band |  |  |  |  |


| Wheatley | River Thame | Thame | Above normal | Exceptionally <br> high |
| :--- | :--- | :--- | :--- | :--- |
| Windsor | River Thames | Thames | Normal | Notably high |
| Kingston <br> (naturalised) | River Thames | Thames North <br> Bank | Normal | Notably high |

### 11.3 Groundwater table

| Site name | Aquifer | End of Jun 2024 band | End of May 2024 band |
| :---: | :---: | :---: | :---: |
| Ampney <br> Crucis Obh | Burford Oolitic Limestone (great) | Normal | Above normal |
| Frith Cottage | Godalming Lower Greensand | Notably high | Notably high |
| Gibbet <br> Cottages Obh | Berkshire Downs Chalk | Exceptionally high | Exceptionally high |
| Jackaments Bottom Obh | Burford Oolitic Limestone (inferior) | Normal | Normal |
| Marcham Obh | Shrivenham Corallian | Notably high | Exceptionally high |
| Model Farm | Chiltern Upper Greensand | Above normal | Above normal |
| Rockley Obh | Berkshire Downs Chalk | Above normal | Exceptionally high |
| Stonor Estate | South-west Chilterns Chalk | Exceptionally high | Exceptionally high |
| The Flashes Obh | Godalming Lower Greensand | Notably high | Notably high |
| Tile Barn Farm | Basingstoke Chalk | Notably high | Exceptionally high |


| Fringford P.s. | Upper Bedford <br> Ouse Oolitic <br> Limestone (great) | Above normal | Notably high |
| :--- | :--- | :--- | :--- |

