Monthly water situation report: South-east England

1 Summary - April 2024

April was the seventh consecutive month of above average rainfall with 146% of the long term average (LTA) for April. Most of the south east of England received above normal rainfall.
The highest daily total was 43.8 mm recorded at Duncton raingauge (SSD) during 18 hours of nonstop rain on 27 April. This was also the wettest day of the month. The soil moisture deficits began to rise in the second week of April and continued to rise until the rainfall at the end of the month. They then declined rapidly to single figures and were well below the LTA for the end of April across the south east of England. The heavy rainfall at the end of the month allowed recharge to reach almost twice the LTA for April for the south east of England.
Overall, river flows fell during April, but responded to the rainfall at the beginning and end of the month. Half of the key indicator sites remained at exceptionally high flows for April, a quarter of the sites were at notably high levels and the remaining sites were at above normal flows. There were 37 fluvial flood alerts and 2 fluvial flood warnings issued during the month. Groundwater levels remained high reflecting the high rainfall and recharge over the month and preceding months. Most of the key indicator sites ended April at exceptionally high levels with a few exceptions that ranged from notably high to normal. There were a total of 21
groundwater flood alerts in force during April.

1.1 Rainfall

April was the seventh consecutive month of above average rainfall with 146% of the LTA for April. Most of the south east of England received above normal rainfall. There were a few exceptions in the Cotswold west areal unit (Thames, THM), West Sussex Chalk, Western Rother Greensand, the Arun and Adur areal units all in Solent and South Downs (SSD) and the Stour, Dover Chalk and Romney Marsh areal units in Kent and South London (KSL) which all received notably high rainfall.
The highest daily total was 43.8 mm recorded at Duncton raingauge (SSD) during 18 hours of nonstop rain on 27 April. This was also the wettest day of the month when, on average, 32% of the monthly total rainfall was recorded. April began quite wet and for the first four days, on average, 34% of the monthly total was recorded. During the middle of the month there were on average 13 'dry' days when less than 0.2 mm of rainfall was recorded.
For the 7 months ending in April most of the areal units were the third wettest or higher, on record. The wettest units included Cotswolds West, Berkshire Downs (all THM) and the Isle of Wight and Lymington (SSD).

1.2 Soil moisture deficit and recharge

The soil moisture deficits began to rise in the second week of April and continued to rise until the rainfall at the end of the month. They then declined rapidly to single figures and well below the LTA for the end of April across the south east of England. Similarly, recharge was above the monthly average within the first week due to the heavy rainfall. It remained reasonably static through the middle of the month until the heavy rainfall at the end of the month. This allowed recharge to reach almost twice the LTA for April for the south east of England.

1.3 River flows

Overall, river flows fell during the month, but responded to the rainfall at the beginning and end of the month. Half of the key indicator sites remained at exceptionally high flows for April, a quarter of the sites were at notably high levels and the remaining sites were at above normal flows. These latter sites were generally in and around the Wealden clay area of KSL. The sites with the higher flows were generally those fed by groundwater reflecting the continuing high groundwater levels. Flows in the Kennet at Marlborough and the Wey at Tilford (both THM) were the highest on record for April. Flows in the Itchen at Allbrook and Highbridge (SSD) were the joint highest on record with 2001. Many other sites were the highest since 2001 including the Ver at Colney Street, Mimram at Panshanger (both HNL), the Test at Broadlands (SSD), the Great Stour at Horton and Dour at Crabble Mill (both KSL). There were 37 fluvial flood alerts and 2 fluvial flood warnings issued during the month.

HNL		THM	KSL	Total	
Flood alerts	7	15	12	3	37
Flood warnings	0	0	2	0	2
Severe flood warnings	0	0	0	0	0
Groundwater flood alerts	0	0	19	2	21
Total	7	15	33	5	60

1.4 Groundwater levels

Groundwater levels remained high reflecting the rainfall and recharge over the month and preceding months. Most of the key indicator sites ended April at exceptionally high levels with a few exceptions, mainly in KSL where groundwater levels in and around the Weald ended the month at notably high levels. In THM, Jackaments was normal for the time of year. It is a responsive site and clearly reacted to the dry weather in the middle of April. Despite the high levels, the groundwater at most of the key indicator sites fell during the month as is expected at this time of year. There were 3 exceptions where levels continued to rise, albeit more slowly than over the past months. They were Lilley Bottom (HNL), Sweeps Lane and Riddles Lane (KSL). In addition, groundwater at Stonor (THM) levelled off but remained exceptionally high for April. Twelve of the key indicator sites were all the third highest or higher on record,
often since 2001. These included Ashley Green (HNL), Rockley (THM), Little Bucket (KSL) and West Meon (SSD). There were a total of 21 groundwater flood alerts in force during April.

1.5 Reservoir stocks

The continuing high rainfall has ensured that reservoir stocks remain above the LTA for April at all of the reservoirs across the south east of England with only Farmoor (THM) and Arlington (SSD) at their LTA.

Author: groundwaterhydrology@environment-agency.gov.uk

All data are provisional and may be subject to revision. The views expressed in this document are not necessarily those of the Environment Agency. Its officers, servants or agents accept no liability for any loss or damage arising from the interpretation or use of the information, or reliance upon views contained in this report.

2 Maps

2.1 Rainfall map

Figure 2.1: Total rainfall for hydrological areas for the current month (up to 30 April 2024), the last 3 months, the last 6 months, and the last 12 months, classed relative to an analysis of respective historic totals. Table available in the annendices with detailed information.

Rainfall data for 2024, extracted from Environment Agency 1km gridded rainfall dataset derived from Environment Agency intensity rain gauges. (Source: Environment Agency. Crown Copyright, 100024198, 2024). Rainfall data prior to 2024, extracted from Met Office HadUK 1 km gridded rainfall dataset derived from registered rain gauges. (Source: Met Office. Crown copyright, 2024).

2.2 River flows and groundwater levels map

Figure 2.2: Monthly mean river flow for indicator sites for April 2024, expressed as a percentage of the respective long term average and classed relative to an analysis of historic April monthly means Table available in the appendices with detailed information. Groundwater levels for indicator sites at the end of April 2024, classed relative to an analysis of respective historic April levels. Table available in the appendices with detailed information.

Flows at gauging stations in the Medway catchment (KSL) might be affected by upstream reservoir releases.

(Source: Environment Agency). Crown copyright. All rights reserved. Environment Agency, 100024198, 2024. Geological map reproduced with kind permission from UK Groundwater Forum, BGS copyright NERC. Crown copyright. All rights reserved. Environment Agency, 100024198, 2024.

3 Rainfall, effective rainfall and soil moisture deficit tables

3.1 Rainfall, effective rainfall and soil moisture deficit table

Figure 3.1: This is a second estimate of areal rainfall, effective rainfall (percolation or runoff) and SMDs for a selection of the hydrological areas across the South-east of England. There may be significant variation within each area which must be considered when interpreting these data. When additional meteorological data is available estimates are revised which will affect the period totals in Figure 3.2.

Number	Hydrological Area	Rainfall (mm) 30 day Total	$\begin{aligned} & \text { April } \\ & \text { \% LTA } \end{aligned}$	Effective Rainfall (mm) 30 day total	$\begin{aligned} & \text { April \% } \\ & \text { LTA } \end{aligned}$		End Apr LTA
6010TH	Cotswolds West (A)	87	154\%	37	219\%	5	15
6070TH	Berkshire Downs (G)	77	146\%	28	194\%	6	19
6130TH	Chilterns West (M)	70	133\%	19	128\%	5	19
6162TH	North Downs - Hampshire (P)	81	145\%	32	191\%	6	17
6190TH	Wey Greensand (S)	88	154\%	39	216\%	5	17
	Thames Average	74	146\%	23	196\%	6	20
	Thames Catchment Average	75	145\%	24	190\%	5	19
6140TH	Chilterns - East - Colne (N)	77	142\%	26	155\%	4	19
6600TH	Lee Chalk	72	145\%	21	170\%	5	24
6507 TH	North London	64	133\%	9	99\%	6	23
6509TH	Roding	63	137\%	10	121\%	5	22
	Herts and North London	69	139\%	16	141\%	5	22
6230TH	$\begin{aligned} & \text { North Downs } \\ & \text { - South } \\ & \text { London (W) } \\ & \hline \end{aligned}$	78	139\%	29	152\%	5	17
6706So	Darent	73	144\%	23	156\%	5	19

6707 So	North Kent Chalk	68	129%	19	118%	6	18
6708So	Stour	79	157%	28	200%	4	18
6809 So	Medway	77	146%	29	198%	5	16
	Kent \& South London Average	71	143%	21	167%	7	22
6701So	Test Chalk	79	153%	30	203%	6	19
6702 So	East Hampshire Chalk	85	152%	37	211%	5	18
6703So	West Sussex Chalk	92	153%	46	206%	6	16
6804 So	Arun	88	155%	38	234%	6	16
6805 So	Adur	87	158%	39	241%	6	16
	 South Downs Average	82	151%	33	216%	6	18
	South East Average	75	146%	25	190%	6	20

HadUK rainfall data. (Source: Met Office. Crown copyright, 2024).
EA effective rainfall and soil moisture deficit data (Source EA Soil Moisture Model 2024.)

3.2 Seasonal summary table of rainfall and effective rainfall

Figure 3.2 This is a seasonal estimate of areal rainfall and effective rainfall (percolation or runoff) for a selection of the hydrological areas across the South-east of England, expressed as totals and as a percentage of the LTA. There may be significant variation within each area which must be considered when interpreting these data. When additional meteorological data is available estimates are revised which will affect the period totals.

Summer period 01/04/2024 to 30/04/2024

Number	Hydrological Area	Seasonal Rainfall (mm) Total	Seasonal Rainfall as \% LTA	Seasonal Effective Rainfall (mm) Total	Seasonal Effective Rainfall as \% LTA
6010TH	Cotswolds West (A)	87	154\%	37	219\%
6070TH	Berkshire Downs (G)	77	146\%	28	194\%
6130TH	Chilterns West (M)	70	133\%	19	128\%
6162TH	North Downs - Hampshire (P)	81	145\%	32	191\%
6190TH	Wey - Greensand (S)	88	154\%	39	216\%
	Thames Average	74	146\%	23	196\%
	Thames Catchment Average	75	145\%	24	190\%
6140TH	Chilterns - East - Colne (N)	77	142\%	26	155\%
6600TH	Lee Chalk	72	145\%	21	170\%
6507 TH	North London	64	133\%	9	99\%
6509TH	Roding	63	137\%	10	121\%
	Herts and North London	69	139\%	16	141\%
6230TH	North Downs - South London (W)	78	139\%	29	151\%

6706So	Darent	73	144%	23	156%
6707So	North Kent Chalk	68	129%	19	117%
6708So	Stour	79	157%	28	200%
6809So	Medway	77	146%	29	198%
	Kent \& South London Average	71	143%	21	167%
6701So	Test Chalk	79	153%	30	203%
6702So	East Hampshire Chalk	85	152%	37	211%
6703So	West Sussex Chalk	92	153%	46	206%
6804So	Arun	88	155%	38	234%
6805So	Adur	87	158%	39	240%
	 South Downs Average	75	146%	33	216%
	South East Average	829	25	190%	

HadUK rainfall data. (Source: Met Office. Crown copyright, 2024).
EA effective rainfall data (Source EA Soil Moisture Model 2024.)

4 Thames

4.1 Thames Rainfall and effective rainfall charts

Figure 4.1: Monthly rainfall and effective rainfall totals for the past 24 months compared to the 1961 to 1990 long term average for a selection of areal units.

Monthly total rainfall (mm)

Berkshire Downs - Rainfall

Long term average rainfall (mm)

Berkshire Downs - Effective Rainfall

HadUK rainfall data. (Source: Met Office. Crown copyright, 2024).
EA effective rainfall data (Source EA Soil Moisture Model, 2024).

4.2 Thames River flow charts

Figure 4.2: Daily mean river flow for index sites over the past year, compared to an analysis of historic daily mean flows, and long term maximum and minimum flows.

Source: Environment Agency. 2024

4.3 Thames Groundwater level charts

Figure 4.3: End of month groundwater levels at index groundwater level sites for major aquifers. 22 months compared to an analysis of historic end of month levels and long term maximum and minimum levels. Tile Barn Farm data has been estimated from 2 local sites since April 2022. A replacement is planned.

Exceptionally high
Below normal
\square Notably high Notably low

Above normal Exceptionally low

Normal
Latest data

JACKAMENTS BOTTOM
Ranking derived from data for the period Jan-1974 to Dec-2022

ROCKLEY OBH
Ranking derived from data for the period Mar-1933 to Dec-2022

STONOR PARK
Ranking derived from data for the period May-1961 to Dec-2022

TILE BARN FARM
Ranking derived from data for the period Oct-1971 to Dec-2022

Source: Environment Agency, 2024.

4.4 Thames Reservoir stocks

Figure 4.4: End of month regional reservoir stocks compared to long term maximum, minimum and average stocks. Note: Historic records of individual reservoirs and reservoir groups making up the regional values vary in length.

----AVE ----MIN - 2003 -_ 2017 -_ 2022 -_ $2023-2024$
Thames Water - Farmoor Reservoir - Upper Thames

(Source: water companies).

5 Hertfordshire and North London (HNL)

5.1 HNL Rainfall and Effective rainfall charts

Figure 5.1: Monthly rainfall and effective rainfall totals for the past 24 months compared to the 1961 to 1990 long term average for a selection of areal units.
\square Monthly total rainfall (mm)

Lee Chalk - Rainfall

Long term average rainfall (mm)

Lee Chalk - Effective Rainfall

HadUK rainfall data. (Source: Met Office. Crown copyright, 2024).
EA effective rainfall data (Source EA Soil Moisture Model, 2024).

5.2 HNL River flow charts

Figure 5.2 Daily mean river flow for index sites over the past year, compared to an analysis of historic daily mean flows, and long term maximum and minimum flows.

Source: Environment Agency. 2024

5.3 HNL Groundwater level charts

Figure 5.3: End of month groundwater levels at index groundwater level sites for major aquifers. 22 months compared to an analysis of historic end of month levels and long term maximum and minimum levels.

Source: Environment Agency, 2024.

5.4 HNL Reservoir stocks

Figure 5.4: End of month regional reservoir stocks compared to long term maximum, minimum and average stocks. Note: Historic records of individual reservoirs and reservoir groups making up the regional values vary in length.

(Source: water companies).

6 Solent and South Downs (SSD)

6.1 SSD Rainfall and Effective Rainfall charts

Figure 6.1: Monthly rainfall and effective rainfall totals for the past 24 months as a percentage of the 1961 to 1990 long term average for a selection of areal units.

Monthly total rainfall (mm)
Test Chalk - Rainfall

Lymington - Rainfall

Long term average rainfall (mm)

Lymington - Effective Rainfall

HadUK rainfall data. (Source: Met Office. Crown copyright, 2024).
EA effective rainfall data (Source EA Soil Moisture Model, 2024).

6.2 SSD River flow charts

Figure 6.2: Daily mean river flow for index sites over the past year, compared to an analysis of historic daily mean flows, and long term maximum and minimum flows.

Source: Environment Agency. 2024

6.3 SSD Groundwater levels

Figure 6.3: End of month groundwater levels at index groundwater level sites for major aquifers. 22 months compared to an analysis of historic end of month levels and long term maximum and minimum levels.

| Exceptionally high | Notably high |
| :--- | :--- | :--- |
| Below normal | Notably low |

CLANVILLE GATE GWL
Ranking derived from data for the period Mar-1963 to Dec-2022

CARISBROOKE CASTLE
Ranking derived from data for the period Aug-1977 to Dec-2022

HOUNDEAN BOTTOM GWL
Ranking derived from data for the period Jan-1977 to Dec-2022

Above normal
Exceptionally low

LOPCOMBE CORNER GWL
Ranking derived from data for the period Apr-1963 to Dec-2022

WEST MEON HUT GWL
Ranking derived from data for the period Sep-1986 to Dec-2022

CHILGROVE HOUSE GWL
Ranking derived from data for the period Feb-1836 to Dec-2022

Source: Environment Agency, 2024.

6.4 SSD Reservoir stocks

Figure 6.4: End of month regional reservoir stocks compared to long term maximum, minimum and average stocks. Note: Historic records of individual reservoirs and reservoir groups making up the regional values vary in length.
----AVE ----MIN -_ 2020 - 2022 - 2023 - 2024
South East Water - Ardingly Reservoir - Ouse

----AVE ----MIN - 2020 - 2022 - $2023-2024$
South East Water - Arlington Reservoir - Cuckmere

(Source: water companies).

7 Kent and South London (KSL)

7.1 KSL Rainfall and Effective Rainfall charts

Figure 7.1: Monthly rainfall and effective rainfall totals for the past 24 months compared to the 1961 to 1990 long term average for a selection of areal units.

Monthly total rainfall (mm)

Eastern Rother - Rainfall

Long term average rainfall (mm)

Eastern Rother - Effective Rainfall

HadUK rainfall data. (Source: Met Office. Crown copyright, 2024).
EA effective rainfall data (Source EA Soil Moisture Model, 2024).

7.2 KSL River flow charts

Figure 7.2: Daily mean river flow for index sites over the past year, compared to an analysis of historic daily mean flows, and long term maximum and minimum flows.

Exceptionally high	Notably high	Above normal	Normal
Below normal	Notably low	Exceptionally low	- Latest data

Source: Environment Agency. 2024

7.3 KSL Groundwater levels

Figure 7.3: End of month groundwater levels at index groundwater level sites for major aquifers. 22 months compared to an analysis of historic end of month levels and long term maximum and minimum levels.

| Exceptionally high | Notably high |
| :--- | :--- | :--- |
| Below normal | Notably low |

CHIPSTEAD GWL
Ranking derived from data for the period Oct-1942 to Dec-2022

LITTLE BUCKET FM
Ranking derived from data for the period Jan-1971 to Dec-2022

SWEEPS LANE
Ranking derived from data for the period Jan-1984 to Dec-2022

RIDDLES LANE
Ranking derived from data for the period Apr-1982 to Dec-2022

Source: Environment Agency. 2024

7.4 KSL Reservoir stocks

Figure 7.4: End of month regional reservoir stocks compared to long term maximum, minimum and average stocks. Note: Historic records of individual reservoirs and reservoir groups making up the regional values vary in length.

(Source: water companies).

8 Glossary

8.1 Terminology

Aquifer

A geological formation able to store and transmit water.

Areal average rainfall

The estimated average depth of rainfall over a defined area. Expressed in depth of water (mm).

Artesian

The condition where the groundwater level is above ground surface but is prevented from rising to this level by an overlying continuous low permeability layer, such as clay.

Artesian borehole

Borehole where the level of groundwater is above the top of the borehole and groundwater flows out of the borehole when unsealed.

Cumecs

Cubic metres per second $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$.

Effective rainfall

The rainfall available to percolate into the soil or produce river flow. Expressed in depth of water (mm).

Flood alert and flood warning

Three levels of warnings may be issued by the Environment Agency. Flood alerts indicate flooding is possible. Flood warnings indicate flooding is expected. Severe flood warnings indicate severe flooding.

Groundwater

The water found in an aquifer.

Long term average (LTA)

The arithmetic mean calculated from the historic record, usually based on the period 1961 to 1990. However, the period used may vary by parameter being reported on (see figure captions for details).

mAOD

Metres above ordnance datum (mean sea level at Newlyn Cornwall).

MORECS

Met Office Rainfall and Evaporation Calculation System. Met Office service providing real time calculation of evapotranspiration, soil moisture deficit and effective rainfall on a 40 by 40 km grid.

Naturalised flow

River flow with the impacts of artificial influences removed. Artificial influences may include abstractions, discharges, transfers, augmentation and impoundments.

NCIC

National Climate Information Centre. NCIC area monthly rainfall totals are derived using the Met Office 5 km gridded dataset, which uses rain gauge observations.

Recharge

The process of increasing the water stored in the saturated zone of an aquifer. Expressed in depth of water (mm).

Reservoir gross capacity

The total capacity of a reservoir.

Reservoir live capacity

The capacity of the reservoir that is normally usable for storage to meet established reservoir operating requirements. This excludes any capacity not available for use (for example, storage held back for emergency services, operating agreements or physical restrictions). May also be referred to as 'net' or 'deployable' capacity.

Soil moisture deficit (SMD)

The difference between the amount of water actually in the soil and the amount of water the soil can hold. Expressed in depth of water (mm).

8.2 Categories

Exceptionally high

Value likely to fall within this band 5% of the time.

Notably high

Value likely to fall within this band 8% of the time.

Above normal

Value likely to fall within this band 15% of the time.

Normal

Value likely to fall within this band 44% of the time.

Below normal

Value likely to fall within this band 15% of the time.

Notably low

Value likely to fall within this band 8% of the time.

Exceptionally low

Value likely to fall within this band 5% of the time.

9 Appendices

9.1 Rainfall table

Hydrological area	Apr 2024 rainfall \% of long term average 1961 to 1990	Apr 2024 band	Feb 2024 to April cumulative band	Nov 2023 to April cumulative band	May 2023 to April cumulative band
Cotswold West	154	Notably High	Exceptionally high	Exceptionally high	Exceptionally high
Cotswold East	144	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
Berkshire Downs	146	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
Chilterns West	134	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
Chilterns East Colne	142	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
North Downs - Hampshire	145	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
North Downs - South London	139	Above Normal	Exceptionally high	Exceptionally high	Notably high
Upper Thames	145	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
Upper Cherwell	152	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
Thame	150	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
Loddon	149	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
Lower Wey	152	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
Upper Mole	149	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
Lower Lee	137	Above Normal	Exceptionally high	Exceptionally high	Notably high
North London	133	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
South London	132	Above Normal	Exceptionally high	Exceptionally high	Notably high

Roding	137	Above Normal	Exceptionally high	Exceptionally high	Notably high
Ock	134	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
Enborne	146	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
Cut	139	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
Lee Chalk	145	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
River Test	153	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
East Hampshire Chalk	152	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
West Sussex Chalk	153	Notably High	Exceptionally high	Exceptionally high	Exceptionally high
East Sussex Chalk	141	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
Sw Isle Of Wight	182	Notably High	Exceptionally high	Exceptionally high	Exceptionally high
River Darent	144	Above Normal	Exceptionally high	Exceptionally high	Notably high
North Kent Chalk	129	Above Normal	Exceptionally high	Exceptionally high	Notably high
Stour	158	Notably High	Exceptionally high	Exceptionally high	Notably high
Dover Chalk	168	Notably High	Exceptionally high	Exceptionally high	Exceptionally high
Thanet Chalk	150	Notably High	Exceptionally high	Exceptionally high	Notably high
Western Rother Greensand	168	Notably High	Exceptionally high	Exceptionally high	Exceptionally high
Hampshire Tertiaries	163	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
Lymington River Avon Water And O	157	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
Sussex Coast	144	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
River Arun	155	Notably High	Exceptionally high	Exceptionally high	Exceptionally high
River Adur	159	Notably High	Exceptionally high	Exceptionally high	Exceptionally high
River Ouse	150	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high

Cuckmere River	124	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
Pevensey Levels	119	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
River Medway	146	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
Eastern Rother	142	Above Normal	Exceptionally high	Exceptionally high	Exceptionally high
Romney Marsh	147	Notably High	Exceptionally high	Exceptionally high	Exceptionally high
North West Grain	119	Above Normal	Exceptionally high	Exceptionally high	Above normal
Sheppy	136	Above Normal	Exceptionally high	Notably high	Above normal

9.2 River flows table

Site name	River	Catchment	Apr 2024 band	Mar 2024 band
Colney Street hansteads		Colne		Exceptionally high
Feildes Weir (nat)	Lee (middle)	Lee		Notably high
Panshanger	Mimram	Lee		Exceptionally high
Crabble Mill Gs	Dour	Little Stour		Exceptionally high
Hawley Gs	Darent	Darent and Cray		Exceptionally high
Horton Gs	Great Stour	Stour Kent		Exceptionally high
Stonebridge Gs	Teise	Teise		Notably high
Teston Farleigh Combined	Medway100	Medway Estuary		Exceptionally high
Udiam Gs	Rother	Rother Kent Lower		Exceptionally high
Alfoldean Gs	Arun	Arun		Exceptionally high
Allbrook Gs And Highbridge	Itchen (so)	Itchen		Exceptionally high
Broadlands	Test	Test Lower		Exceptionally high
Brockenhurst Gs	Lymington	New Forest		Notably high
Goldbridge Gs	Ouse (so)	Ouse Sussex		Exceptionally high
Iping Mill Gs	Rother	West Rother		Exceptionally high
Farmoor (naturalised)	River Thames	Thames		Exceptionally high
Kingston (naturalised)	River Thames	Thames North Bank		Exceptionally high
Marlborough	River Kennet	Kennet		Exceptionally high
Sheepbridge	River Loddon	Loddon		Exceptionally high
Tilford	River Wey	Wey Addleston Bourne		Exceptionally high

9.3 Groundwater table

Aquifer name			End of Apr 2024 band		End of Mar 2024 band
Ashley Green Stw	Mid-chilterns Chalk	Exceptionally high	Exceptionally high		
Lilley Bottom	Upper Lee Chalk	Exceptionally high	Exceptionally high		
Little Bucket Fm	East Kent Chalk - Stour	Exceptionally high	Exceptionally high		
Chipstead Gwl	Epsom North Downs Chalk	Notably high	Exceptionally high		
Riddles Lane	North Kent Swale Chalk	Notably high	Notably high		
Sweeps Lane Gwl	West Kent Chalk	Notably high	Above normal		
Houndean Bottom Gwl	Brighton Chalk Block	Notably high	Exceptionally high		
Chilgrove House Gwl	Chichester- worthing- portsdown Chalk	Exceptionally high	Exceptionally high		
Carisbrooke Castle	Isle Of Wight Central Downs Chalk	Above normal	Notably high		
West Meon Hut Gwl	River Itchen Chalk	Exceptionally high	Notably high		
Clanville Gate Gwl	River Test Chalk	Exceptionally high	Exceptionally high		
Lopcombe Corner Gwl	River Test Chalk	Exceptionally high	Exceptionally high		
Tile Barn Farm	Basingstoke Chalk	Exceptionally high	Notably high		
Rockley Obh	Berkshire Downs Chalk	Exceptionally high	Exceptionally high		
Jackaments Bottom Obh Burford Oolitic Limestone (inferior)	Normal	Above normal Chilterns Chalk	Exceptionally high		
Exceptionally high					
Stonor Estate	South-west				

9.4 South-east England areal units for reference

Some features of this map are based on digital spatial data licensed from the Centre for Ecology and Hydrology, © CEH. Includes material based on Ordnance Survey 1:50 000 maps with the permission of the controller of His Majesty's Stationery Office © Crown copyright. All rights reserved. Environment Agency, 100026380, 2024.

