## Monthly water situation report: Thames Area

## 1 Summary - March 2024

March was another wet month with $174 \%$ of the monthly long term average (LTA) rainfall being recorded across Thames area. The winter period, comprising the last 6 months, had exceptionally high rainfall and was the second wettest winter since records began in 1871. The soil moisture deficit (SMD) in Thames area was 1 mm at the end of the month, allowing high levels of effective rainfall to occur (222\% LTA). After several months of significantly high rainfall, exceptionally high river flows were recorded at all our indicator sites in March. Groundwater levels remained high across Thames Area and were exceptionally high at the majority of our indicator sites for the time of the year.

### 1.1 Rainfall

March was another wet month in Thames Area, with a total of 102 mm of rain, $174 \%$ of the LTA. $44 \%$ of the month's rain fell in the last week of March, with the highest daily rainfall total ( 26 mm ) recorded on the 28th at Shalbourne in the Berkshire Downs. Notably high and exceptionally high rainfall was recorded right across Thames Area, with higher rainfall totals typically falling on the westernmost areal units. March marked the end of the hydrological winter, which started in October 2023. During the winter period, rainfall was exceptionally high throughout all of Thames Area, ranging from 165\% (Enborne and Chilterns-West) to 186\% (Berkshire Downs and Upper Thames) of the LTA. It was the second wettest winter since records began in 1871.

### 1.2 Soil moisture deficit and recharge

As a result of rainfall in March, soils remained saturated and wetter than expected for the time of the year. The SMD in Thames area was 1 mm at the end of the month and this allowed a high amount of effective rainfall to occur in March (222\% LTA). Effective rainfall for the previous 6 month winter period was $243 \%$ of the LTA.

### 1.3 River flows

Exceptionally high monthly mean river flows were recorded at all our indicator sites in March, as significant rainfall and high groundwater levels combined in many catchments. The Rivers Evenlode at Cassington, Thames at Windsor, Kennet at Marlborough and Wey at Tilford recorded their highest monthly mean flow for March since records began at those sites. Despite the high river flows, 11 out of 15 indicator sites had lower monthly mean flows in March compared to February.

### 1.4 Groundwater levels

Following a wet winter, groundwater levels at all sites reported notably high or higher levels, with the only exception being Jackaments Bottom in the Inferior Oolites which was above normal for the time of year. By the end of the month, groundwater levels of the Chalk were exceptionally high at the Berkshire Downs and South-west Chilterns; and notably high at the North Downs. Lower Greensand sites have remained notably high for the second month in a row.

### 1.5 Reservoir stocks

Reservoir stocks in Farmoor reservoir were 89\% at the end of March, an increase from 85\% at the end of February. Stocks at the Lower Thames reservoir has also increased to $96.4 \%$ at the end of this month from $96 \%$ at the end of February. Reservoir levels remain below the LTA at Farmoor while levels at Lower Thames remain just above the LTA for the time of year.

### 1.6 Environmental impact

During March, there were 74 flood alerts and 3 flood warnings issued on rivers in Thames area. At the end of the month, 1abstraction licences was being constrained in the area to protect water resources and the environment.

Author: Thames Area Groundwater Resources and Hydrology, enquiriesWT@environmentagency.gov.uk

Contact Details: 020302559659

## 2 Rainfall

### 2.1 Rainfall map

Figure 2.1: Total rainfall for hydrological areas for the current month (up to 31 March 2024), classed relative to an analysis of respective historic totals. Table available in the appendices with detailed information.


Rainfall data for 2023, extracted from Environment Agency 1km gridded rainfall dataset derived from Environment Agency intensity rain gauges. (Source: Environment Agency. Crown Copyright, 100024198, 2024). Rainfall data prior to 2023, extracted from Met Office HadUK 1 km gridded rainfall dataset derived from registered rain gauges (Source: Met Office. Crown copyright, 2024).

### 2.2 Rainfall map (2)

Figure 2.2: Total rainfall for hydrological areas for the current month (up to 31 March 2024), the last 3 months, the last 6 months, and the last 12 months, classed relative to an analysis of respective historic totals. Table available in the appendices with detailed information.


HadUK data based on the Met Office 1km gridded rainfall dataset derived from rain gauges (Source: Met Office. Crown copyright, 2024). Provisional data based on Environment Agency 1 km gridded rainfall dataset derived from Environment Agency intensity rain gauges. Crown copyright. All rights reserved. Environment Agency, 100024198, 2024.

### 2.3 Rainfall charts

Figure 2.3: Monthly rainfall totals for the past 12 months as a percentage of the 1961 to 1990 long term average for each areal unit.
$\square$

## Above average rainfall <br> Below average rainfall

Above average effective rainfall Below average effective rainfall





HadUK rainfall data. (Source: Met Office. Crown copyright, 2024).
EA effective rainfall data (Source: EA Soil Moisture Model)

## 3 Soil moisture deficit

### 3.1 Soil moisture deficit map

Figure 3.1: Soil moisture deficits for the week ending 31 March 2024. Shows the areal SMD estimate in millimetres.

(Source: Met Office. Crown copyright, 2024). All rights reserved. Environment Agency, 100024198, 2024.

## 4 River Flow and Groundwater Status

### 4.1 River flow and groundwater level map

Figure 4.1: Monthly mean river flow for indicator sites and end of month groundwater levels for indicator sites for March 2024, expressed as a percentage of the respective long term average and classed relative to an analysis of historic March means.

(Source: Environment Agency). Crown copyright. All rights reserved. Environment Agency, 100024198, 2024.

### 4.2 River flow charts

Figure 4.2: Daily mean river flows for indicator sites compared to an analysis of historic daily mean flows, and long term maximum and minimum flows.
Exceptionally high
Below normal
Notably high
Notably low

| Above normal |
| :--- |
| Exceptionally low |







Source: Environment Agency.

### 4.3 Groundwater level charts

Figure 4.3: End of month groundwater levels for indicator sites, compared to an analysis of historic end of month levels, and long term maximum and minimum levels.
Exceptionally high
Below normal
Notably high
Notably low

| Above normal |
| :--- |
| Exceptionally low |



AMPNEY CRUCIS - GREAT OOLITE
Ranking derived from data for the period Dec-1958 to Dec-2022


JACKAMENTS BOTTOM - INFERIOR OOLITE
Ranking derived from data for the period Jan-1974 to Dec-2022


GIBBET COTTAGES - CHALK
Ranking derived from data for the period Jul-1973 to Dec-2022


FRINGFORD - GREAT OOLITE
Ranking derived from data for the period Sep-1980 to Dec-2022


MARCHAM - CORALLIAN
Ranking derived from data for the period Jan-1988 to Dec-2022


STONOR ESTATE - CHALK
Ranking derived from data for the period May-1961 to Dec-2022



MODEL FARM - UPPER GREENSAND
Ranking derived from data for the period Feb-1963 to Dec-2022

*Tile Barn Farm data has been estimated from two local sites since April 2022. A replacement is planned

Source: Environment Agency, 2024.

## 5 Reservoir stocks

Figure 5.1: End of month regional reservoir stocks compared to minimum and average stocks.


(Source: water companies).

## 6 Flow Constraints

### 6.1 Figure 6.1: End of month flow constraints in Thames Area.



### 6.2 Summary of flow constraints

| Week ending | $03 / 03 / 2024$ | $10 / 03 / 2024$ | $17 / 03 / 2024$ | $24 / 03 / 2024$ | $31 / 04 / 2024$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 1 | 1 | 1 | 1 |

## 7 Summary of rainfall, effective rainfall and soil moisture deficit

### 7.1 Rainfall and effective rainfall

HadUK rainfall data (Source: Met Office Crown copyright 2024)
EA effective rainfall data (Source: EA Soil Moisture Model)

| Area | Rainfall (mm) <br> 31 day Total | Rainfall <br> (mm) <br> March <br> LTA | Rainfall (mm) \% LTA | Effective Rainfall (mm) 31 day total | Effective Rainfall (mm) March LTA | Effective Rainfall (mm) \% LTA |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cotswolds - West | 125 | 66 | 189 | 89 | 38 | 235 |
| Cotswolds - East | 103 | 58 | 179 | 68 | 31 | 216 |
| Berkshire Downs | 129 | 64 | 201 | 94 | 36 | 260 |
| Chilterns - West | 89 | 59 | 151 | 56 | 30 | 185 |
| North Downs - Hampshire | 133 | 71 | 188 | 97 | 43 | 227 |
| Wey - Greensand | 113 | 68 | 166 | 80 | 41 | 196 |
| Upper Thames | 101 | 55 | 183 | 63 | 26 | 248 |
| Cherwell | 98 | 56 | 176 | 63 | 29 | 215 |
| Thame | 83 | 51 | 165 | 48 | 23 | 213 |
| Loddon | 102 | 56 | 181 | 66 | 27 | 246 |
| Lower Wey | 90 | 54 | 167 | 57 | 25 | 229 |
| Ock | 84 | 50 | 168 | 47 | 21 | 221 |
| Enborne | 95 | 61 | 154 | 58 | 32 | 183 |
| Cut | 87 | 53 | 165 | 52 | 22 | 238 |
| Thames Area | 102 | 59 | 174 | 67 | 30 | 222 |

### 7.2 Soil moisture deficit

HadUK rainfall data (Source: Met Office Crown copyright 2024)
EA effective rainfall data (Source: EA Soil Moisture Model)

| Area | SMD <br> (mm) <br> Day 31 | SMD <br> $(\mathrm{mm})$ <br> LTA |
| :--- | :---: | :---: |
| Cotswolds - West | 0 | 7 |
| Cotswolds - East | 0 | 9 |
| Berkshire Downs | 0 | 8 |
| Chilterns - West | 2 | 8 |
| North Downs - Hampshire | 0 | 7 |
| Wey - Greensand | 1 | 7 |
| Upper Thames | 0 | 10 |
| Cherwell | 0 | 8 |
| Thame | 0 | 10 |
| Loddon | 2 | 8 |
| Lower Wey | 3 | 8 |
| Ock | 0 | 12 |
| Enborne | 0 | 7 |
| Cut | 3 | 11 |
| Thames Area | 1 | $\mathbf{8}$ |

### 7.3 Winter rainfall and effective rainfall

HadUK rainfall data (Source: Met Office Crown copyright 2024)
EA effective rainfall data (Source: EA Soil Moisture Model)

| Winter period: 01/10/2023 to 31/03/2024 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Area | $\begin{aligned} & \text { Rainfall } \\ & \text { (mm) } \\ & \text { Total } \end{aligned}$ | Rainfall (mm) LTA | Rainfall (mm) \% LTA | Effective <br> Rainfall (mm) Total | Effective Rainfall (mm) LTA | Effective <br> Rainfall (mm) \% LTA |
| Cotswolds - West | 750 | 425 | 176 | 607 | 268 | 226 |
| Cotswolds - East | 654 | 366 | 179 | 481 | 204 | 237 |
| Berkshire Downs | 768 | 412 | 186 | 598 | 225 | 266 |
| Chilterns - West | 626 | 380 | 165 | 429 | 191 | 225 |
| North Downs - Hampshire | 815 | 476 | 171 | 614 | 290 | 212 |
| Wey - Greensand | 772 | 459 | 168 | 561 | 275 | 204 |
| Upper Thames | 661 | 355 | 186 | 479 | 156 | 306 |
| Cherwell | 607 | 344 | 177 | 410 | 164 | 251 |
| Thame | 562 | 325 | 173 | 371 | 138 | 269 |
| Loddon | 621 | 365 | 170 | 418 | 166 | 252 |
| Lower Wey | 589 | 350 | 168 | 381 | 160 | 238 |
| Ock | 567 | 320 | 177 | 363 | 118 | 307 |
| Enborne | 665 | 404 | 165 | 491 | 214 | 229 |
| Cut | 573 | 335 | 171 | 356 | 131 | 272 |
| Thames Area | 659 | 380 | 174 | 468 | 193 | 243 |

## 8 Glossary

### 8.1 Terminology

## Aquifer

A geological formation able to store and transmit water.

## Areal average rainfall

The estimated average depth of rainfall over a defined area. Expressed in depth of water (mm).

## Artesian

The condition where the groundwater level is above ground surface but is prevented from rising to this level by an overlying continuous low permeability layer, such as clay.

## Artesian borehole

Borehole where the level of groundwater is above the top of the borehole and groundwater flows out of the borehole when unsealed.

## Cumecs

Cubic metres per second $\left(\mathrm{m}^{3} \mathrm{~s}^{-1}\right)$.

## Effective rainfall

The rainfall available to percolate into the soil or produce river flow. Expressed in depth of water (mm).

## Flood alert and flood warning

Three levels of warnings may be issued by the Environment Agency. Flood alerts indicate flooding is possible. Flood warnings indicate flooding is expected. Severe flood warnings indicate severe flooding.

## Groundwater

The water found in an aquifer.

## Long term average (LTA)

The arithmetic mean calculated from the historic record, usually based on the period 1961 to 1990. However, the period used may vary by parameter being reported on (see figure captions for details).

## mAOD

Metres above ordnance datum (mean sea level at Newlyn Cornwall).

## MORECS

Met Office Rainfall and Evaporation Calculation System. Met Office service providing real time calculation of evapotranspiration, soil moisture deficit and effective rainfall on a 40 by 40 km grid.

## Naturalised flow

River flow with the impacts of artificial influences removed. Artificial influences may include abstractions, discharges, transfers, augmentation and impoundments.

## NCIC

National Climate Information Centre. NCIC area monthly rainfall totals are derived using the Met Office 5 km gridded dataset, which uses rain gauge observations.

## Recharge

The process of increasing the water stored in the saturated zone of an aquifer. Expressed in depth of water (mm).

## Reservoir gross capacity

The total capacity of a reservoir.

## Reservoir live capacity

The capacity of the reservoir that is normally usable for storage to meet established reservoir operating requirements. This excludes any capacity not available for use (for example, storage held back for emergency services, operating agreements or physical restrictions). May also be referred to as 'net' or 'deployable' capacity.

## Soil moisture deficit (SMD)

The difference between the amount of water actually in the soil and the amount of water the soil can hold. Expressed in depth of water (mm).

### 8.2 Categories

## Exceptionally high

Value likely to fall within this band $5 \%$ of the time.

## Notably high

Value likely to fall within this band 8\% of the time.

## Above normal

Value likely to fall within this band $15 \%$ of the time.

## Normal

Value likely to fall within this band $44 \%$ of the time.

## Below normal

Value likely to fall within this band $15 \%$ of the time.

## Notably low

Value likely to fall within this band $8 \%$ of the time.

## Exceptionally low

Value likely to fall within this band $5 \%$ of the time.

## 9 Appendices

### 9.1 Rainfall table

$\left.$| Hydrological <br> area | Mar 2024 <br> rainfall \% of <br> long term <br> average 1961 <br> to 1990 | Mar 2024 <br> band | Jan 2024 to <br> March <br> cumulative <br> band | Oct 2023 to <br> March <br> cumulative <br> band | Apr 2023 to <br> March <br> cumulative <br> band |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Berkshire <br> Downs | 201 | Exceptionally <br> High | Exceptionally <br> high | Exceptionally <br> high | Exceptionally <br> high |
| Chilterns <br> West | 151 | Notably High | Exceptionally <br> high | Exceptionally <br> high | Exceptionally <br> high |
| Cotswold <br> East | 179 | Exceptionally <br> High | Exceptionally <br> high | Exceptionally <br> high | Exceptionally <br> high |
| Cotswold <br> West | 189 | 165 | Notably High | Exceptionally <br> high | Exceptionally <br> high | | Exceptionally |
| :--- |
| high | \right\rvert\, | Exceptionally |
| :--- |
| high |


| Ock | 167 | Notably High | Exceptionally <br> high | Exceptionally <br> high | Exceptionally <br> high |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Thame | 165 | Notably High | Exceptionally <br> high | Exceptionally <br> high | Exceptionally <br> high |
| Upper <br> Cherwell | 176 | 182 | Notably High | Exceptionally <br> high | Exceptionally <br> high |
| Upper <br> Thames | 167 | Notably High | Exceptionally <br> high |  |  |
| Wey - <br> Greensand | Exceptionally <br> high | Exceptionally <br> high | Exceptionally <br> high |  |  |

### 9.2 River flows table

| Site name | River | Catchment | Mar 2024 band | Feb 2024 band |
| :---: | :---: | :---: | :---: | :---: |
| Abingdon | River Ock | Ock | Exceptionally high | Exceptionally high |
| Banbury | River Cherwell | Cherwell Upper | Exceptionally high | Exceptionally high |
| Bibury | River Coln | Cotswolds West | Exceptionally high | Notably high |
| Bourne End (hedsor) | River Wye | Wye Bucks | Exceptionally high | Notably high |
| Cassington | River Evenlode | Evenlode | Exceptionally high | Notably high |
| Farmoor (naturalised) | River Thames | Thames | Exceptionally high | Notably high |
| Kingston | River Thames | Thames North Bank | Exceptionally high | Notably high |
| Marlborough | River Kennet | Kennet | Exceptionally high | Exceptionally high |
| Sheepbridge | River Loddon | Loddon | Exceptionally high | Notably high |
| Swallowfield | River Blackwater | Loddon | Exceptionally high | Notably high |
| Tilford | River Wey | Wey Addleston Bourne | Exceptionally high | Exceptionally high |


| Weybridge | River Wey | Wey Addleston <br> Bourne | Exceptionally <br> high | Notably high |
| :--- | :--- | :--- | :--- | :--- |
| Wheatley | River Thame | Thame | Exceptionally <br> high | Notably high |
| Windsor | River Thames | Thames | Exceptionally <br> high | Notably high |
| Kingston <br> (naturalised) | River Thames | Thames North <br> Bank | Exceptionally <br> high | Notably high |

### 9.3 Groundwater table

| Site name | Aquifer | End of Mar 2024 band | End of Feb 2024 band |
| :---: | :---: | :---: | :---: |
| Ampney <br> Crucis Obh | Burford Oolitic Limestone (great) | Exceptionally high | Notably high |
| Frith Cottage | Godalming Lower Greensand | Notably high | Notably high |
| Gibbet <br> Cottages Obh | Berkshire Downs Chalk | Exceptionally high | Exceptionally high |
| Jackaments Bottom Obh | Burford Oolitic Limestone (inferior) | Above normal | Above normal |
| Marcham Obh | Shrivenham Corallian | Exceptionally high | Exceptionally high |
| Model Farm | Chiltern Upper Greensand | Exceptionally high | Exceptionally high |
| Rockley Obh | Berkshire Downs Chalk | Exceptionally high | Exceptionally high |
| Stonor Estate | South-west Chilterns Chalk | Exceptionally high | Exceptionally high |
| The Flashes Obh | Godalming Lower Greensand | Notably high | Notably high |
| Tile Barn Farm | Basingstoke Chalk | Notably high | Notably high |


| Fringford P.s. | Upper Bedford <br> Ouse Oolitic <br> Limestone (great) | Exceptionally <br> high | Exceptionally <br> high |
| :--- | :--- | :--- | :--- |

