Monthly water situation report: Solent and South Downs Area

Summary - March 2024

Solent and South Downs (SSD) had above average rainfall in March, receiving 165\% (110mm) of the long term average (LTA) rainfall (67 mm). Monthly mean river flows ranged from above normal to exceptionally high and groundwater levels ranged from notably high to exceptionally high. Soils across SSD ended the month wetter than the average. End of month reservoir stocks were above average at Ardingly Reservoir (Ouse) and below average at Arlington Reservoir (Cuckmere).

1.1 Rainfall

SSD had above average rainfall in March, receiving 165% (110mm) of the LTA rainfall (67 mm). There were four days (1, 4, 27 and 31) when the highest total was greater than 20 mm . The gauge at Chiddingfold (Arun) recorded 26.8 mm on 1 March which was the highest daily total in the month. During March there were no completely dry days.

Over the last year and a half the majority of monthly rainfall totals have been higher than average so there are some significant cumulative rainfall totals across SSD in the rainfall record that dates back to 1871.

Rainfall for the Jan 2024 - Mar 2024 period (3 month Jan-Mar) ranks as $4^{\text {th }}$ wettest for SSD as a whole and the wettest on record for the East Hants Chalk, Test Chalk and West Sussex Chalk areal rainfall units.

For the Oct 2023 - Mar 2024 period (6 month Oct-Mar) SSD received 184\% of the LTA which ranks as $2^{\text {nd }}$ on wettest on record behind the Oct 2000-Mar 2001 total. The totals for the Isle of Wight and Lymington areal units were the wettest on record.

For the Apr 2023 - Mar 2024 (12 month Apr-Mar) the SSD total ranks as $2^{\text {nd }}$ on record (behind the Apr 2000 - Mar 2001 total) with the Lymington areal unit the wettest on record.

The 18 month period from Oct 2022 - Mar 2024 is the wettest on record for SSD and all the Hampshire and West Sussex areal units. For the East Sussex areal units Oct 1999 - Mar 2001 was the wettest 18 month period on record for an 18 month period starting in the month of October.

1.2 Soil moisture deficit and recharge

Soils across SSD ended the month wetter than the average for March, which means catchments are more responsive to run off.

1.3 River flows

Monthly mean river flows across SSD ranged from above normal to exceptionally high.
Flows were above normal:

- River Medina at Blackwater

Flows were notably high:

- River Lymington at Brockenhurst

Flows were exceptionally high:

- River Adur at Sakeham
- River Arun at Alfoldean
- River Cuckmere at Cowbeech
- River Itchen at Allbrook \& Highbridge
- River Meon at Mislingford
- River Ouse at Goldbridge
- River Rother at lping Mill
- River Test at Broadlands
- River Test at Chilbolton
- River Wallington at North Fareham

The monthly mean flows for March for the River Adur at Sakeham and for the River Arun at Alfoldean were the highest on record since 1967 and 1970 respectively. Flows were the second highest on record for the River Cuckmere at Cowbeech, the River Itchen at Allbrook \& Highbridge, the River Test at Broadlands and the River Test at Chilbolton since 1968, 1958, 1957 and 1989 respectively.

1.4 Groundwater levels

End of month groundwater levels ranged from notably high to exceptionally high.
Groundwater levels were notably high at:

- Carisbrooke Castle (Isle of Wight)
- West Meon (East Hampshire Chalk)

Groundwater levels were exceptionally high at:

- Beeding Hill (West Sussex Chalk)
- Catherington (East Hampshire Chalk)
- Chilgrove (West Sussex Chalk)
- Clanville Gate (Test Chalk)
- Cornish Farm (East Sussex Chalk)
- Harting Common (Western Rother Greensand)
- Houndean Bottom (East Sussex Chalk)
- Lopcombe Corner (Test Chalk)
- Preston Candover (East Hampshire Chalk)
- Youngwoods Copse (Isle of Wight)

Groundwater levels for March were the second highest on record at Beeding Hill, Houndean Bottom, Lopcombe Corner and Youngwoods Copse and since 1979, 1977, 1963 and 1978 respectively.

1.5 Reservoir stocks

End of month reservoir stocks were above average at Ardingly Reservoir (Ouse) with 100\% of total capacity (LTA 97\%) and were below average at Arlington Reservoir (Cuckmere) with 86.9\% of total capacity (LTA 99\%).

1.6 Environmental impact

No licence restrictions were in force in March.
There were 29 Flood Alerts issued in SSD during March. 18 fluvial and 2 groundwater Flood Alerts in Hampshire and 9 fluvial Flood Alerts in Sussex.

There were 3 fluvial Flood Warnings issued in Hampshire during March.

Author: HydrologySSD@environment-agency.gov.uk

All data are provisional and may be subject to revision. The views expressed in this document are not necessarily those of the Environment Agency. Its officers, servants or agents accept no liability for any loss or damage arising from the interpretation or use of the information, or reliance upon views contained in this report.

2. Rainfall

2.1 Rainfall map

Figure.1: Total rainfall for hydrological areas for the current month (up to 31 March 2024), the last 3 months, the last 6 months, and the last 12 months, classed relative to an analysis of respective historic totals. Table available in the appendices with detailed information.

Rainfall data for 2024, extracted from Environment Agency 1km gridded rainfall dataset derived from Environment Agency intensity rain gauges. (Source: Environment Agency. Crown Copyright, 100024198, 2024). Rainfall data prior to 2023, extracted from Met Office HadUK 1 km gridded rainfall dataset derived from registered rain gauges (Source: Met Office. Crown copyright, 2024).

3 River flows and Groundwater levels

3.1 River flows and Groundwater level map

Figure 3.1: Monthly mean river flow and groundwater levels at our indicator sites for March 2024, expressed as a percentage of the respective long term average and classed relative to an analysis of historic January monthly means. Table available in the appendices with detailed information.

(Source: Environment Agency). Crown copyright. All rights reserved. Environment Agency, 100024198, 2024. Geological map reproduced with kind permission from UK Groundwater Forum, BGS copyright NERC. Crown copyright. All rights reserved. Environment Agency, 100024198, 2024.

4 West Hampshire

4.1 West Hampshire Rainfall and effective rainfall charts

Figure 4.1: Monthly rainfall and effective rainfall totals for the past 12 months compared to the 1961 to 1990 long term average.

Monthly total rainfall (mm)

HadUK rainfall data. (Source: Met Office. Crown copyright, 2024).

4.2 West Hampshire River flow charts

Figure 4.2: Daily mean river flow for index sites over the past year, compared to an analysis of historic daily mean flows, and long term maximum and minimum flows.

Source: Environment Agency, 2024.

4.3 West Hampshire Groundwater level charts

Figure 4.3: End of month groundwater levels at index groundwater level sites for major aquifers. 34 months compared to an analysis of historic end of month levels and long term maximum and minimum levels.

Exceptionally high	Notably high	Above normal	Normal
Below normal	Notably low	Exceptionally low	-

CLANVILLE GATE GWL - CHALK
Ranking derived from data for the period Mar-1963 to Dec-2022

WEST MEON GWL - CHALK
Ranking derived from data for the period Sep-1986 to Dec-2022

PRESTON CANDOVER GWL - CHALK
Ranking derived from data for the period Jan-1975 to Dec-2022

LOPCOMBE CORNER GWL - CHALK
Ranking derived from data for the period Apr-1963 to Dec-2022

Source: Environment Agency, 2024.

5 East Hampshire and Isle of Wight

5.1 East Hampshire and Isle of Wight Rainfall and Effective rainfall charts

Figure 5.1: Monthly rainfall and effective rainfall totals for the past 12 months compared to the 1961 to 1990 long term average.

Monthly total rainfall (mm)

East Hampshire Chalk - Effective Rainfall

Long term average rainfall (mm)

HadUK rainfall data. (Source: Met Office. Crown copyright, 2024).

5.2 East Hampshire and Isle of Wight River flow charts

Figure 5.2 Daily mean river flow for index sites over the past year, compared to an analysis of historic daily mean flows, and long term maximum and minimum flows.

Source: Environment Agency, 2024.

5.3 East Hampshire and Isle of Wight Groundwater level charts

Figure 5.3: End of month groundwater levels at index groundwater level sites for major aquifers. 34 months compared to an analysis of historic end of month levels and long term maximum and minimum levels.

Exceptionally high	Notably high	Above normal	Normal
Below normal	Notably low	Exceptionally low	-

CATHERINGTON GWL - CHALK
Ranking derived from data for the period Jan-1969 to Dec-2022

YOUNGSWOOD COPSE GWL - LGS
Ranking derived from data for the period Feb-1978 to Dec-2022

CARISBROOKE CASTLE GWL - CHALK
Ranking derived from data for the period Aug-1977 to Dec-2022

Source: Environment Agency, 2024.

6 West Sussex

6.1 West Sussex Rainfall and Effective Rainfall charts

Figure 6.1: Monthly rainfall and effective rainfall totals for the past 12 months as a percentage of the 1961 to 1990 long term average.

Monthly total rainfall (mm)

Arun - Effective Rainfall

Long term average rainfall (mm)

West Sussex Chalk - Effective Rainfall

HadUK rainfall data. (Source: Met Office. Crown copyright, 2024).

6.2 West Sussex River flow charts

Figure 6.2: Daily mean river flow for index sites over the past year, compared to an analysis of historic daily mean flows, and long term maximum and minimum flows.

Source: Environment Agency, 2024.

6.3 West Sussex Groundwater level charts

Figure 6.3: End of month groundwater levels at index groundwater level sites for major aquifers. 34 months compared to an analysis of historic end of month levels and long term maximum and minimum levels.

Exceptionally high	Notably high	Above normal	Normal
Below normal	Notably low	Exceptionally low	-

CHILGROVE HOUSE GWL - CHALK
Ranking derived from data for the period Feb-1836 to Dec-2022

HARTING COMMON (DOWN) GWL - LGS
Ranking derived from data for the period Jan-1984 to Dec-2022

Source: Environment Agency, 2024.

7 East Sussex

7.1 East Sussex Rainfall and Effective Rainfall charts

Figure 7.1: Monthly rainfall and effective rainfall totals for the past 12 months compared to the 1961 to 1990 long term average.

Long term average rainfall (mm)

Pevensey Levels - Effective Rainfall

Pevensey Levels - Rainfall

HadUK rainfall data. (Source: Met Office. Crown copyright, 2024).

7.2 East Sussex River flow charts

Figure 7.2: Daily mean river flow for index sites over the past year, compared to an analysis of historic daily mean flows, and long term maximum and minimum flows.

Exceptionally high	Notably high	Above normal	
Below normal	Notably low	Exceptionally low	Normal
	Latest data		

Source: Environment Agency, 2024.

7.3 East Sussex Groundwater level charts

Figure 7.3: End of month groundwater levels at index groundwater level sites for major aquifers. 34 months compared to an analysis of historic end of month levels and long term maximum and minimum levels.

Exceptionally high	Notably high	Above normal	Normal
Below normal	Notably low	Exceptionally low	-

BEEDING HILL GWL - CHALK
Ranking derived from data for the period Sep-1979 to Dec-2022

CORNISH FARM WIGDENS GWL - CHALK
Ranking derived from data for the period Mar-1981 to Dec-2022

HOUNDEAN BOTTOM GWL - CHALK
Ranking derived from data for the period Jan-1977 to Dec-2022

8 Reservoir stocks

Figure 8.2: End of month reservoir stocks compared to long term maximum, minimum and average stocks. Note: Historic records of individual reservoirs and reservoir groups making up the regional values vary in length.

----AVE ----MIN -- 2022 - 2023 - 2024
South East Water - Arlington Reservoir - Cuckmere

(Source: water companies).

9 Glossary

9.1 Terminology

Aquifer

A geological formation able to store and transmit water.

Areal average rainfall

The estimated average depth of rainfall over a defined area. Expressed in depth of water (mm).

Artesian

The condition where the groundwater level is above ground surface but is prevented from rising to this level by an overlying continuous low permeability layer, such as clay.

Artesian borehole

Borehole where the level of groundwater is above the top of the borehole and groundwater flows out of the borehole when unsealed.

Cumess

Cubic metres per second ($\mathrm{m}^{3 s-1}$).

Effective rainfall

The rainfall available to percolate into the soil or produce river flow. Expressed in depth of water (mm).

Flood alert and flood warning

Three levels of warnings may be issued by the Environment Agency. Flood alerts indicate flooding is possible. Flood warnings indicate flooding is expected. Severe flood warnings indicate severe flooding.

Groundwater

The water found in an aquifer.

Long term average (LTA)

The arithmetic mean calculated from the historic record, usually based on the period 1961 to 1990. However, the period used may vary by parameter being reported on (see figure captions for details).

mAOD

Metres above ordnance datum (mean sea level at Newlyn Cornwall).

MORECS

Met Office Rainfall and Evaporation Calculation System. Met Office service providing real time calculation of evapotranspiration, soil moisture deficit and effective rainfall on a 40 by 40 km grid.

Naturalised flow

River flow with the impacts of artificial influences removed. Artificial influences may include abstractions, discharges, transfers, augmentation and impoundments.

NCIC

National Climate Information Centre. NCIC area monthly rainfall totals are derived using the Met Office 5 km gridded dataset, which uses rain gauge observations.

Recharge

The process of increasing the water stored in the saturated zone of an aquifer. Expressed in depth of water (mm).

Reservoir gross capacity

The total capacity of a reservoir.

Reservoir live capacity

The capacity of the reservoir that is normally usable for storage to meet established reservoir operating requirements. This excludes any capacity not available for use (for example, storage held back for emergency services, operating agreements or physical restrictions). May also be referred to as 'net' or 'deployable’ capacity.

Soil moisture deficit (SMD)

The difference between the amount of water actually in the soil and the amount of water the soil can hold. Expressed in depth of water (mm).

9.2 Categories

Exceptionally high

Value likely to fall within this band 5% of the time.

Notably high

Value likely to fall within this band 8% of the time.

Above normal

Value likely to fall within this band 15% of the time.

Normal

Value likely to fall within this band 44% of the time.

Below normal

Value likely to fall within this band 15% of the time.

Notably low

Value likely to fall within this band 8% of the time.

Exceptionally low

Value likely to fall within this band 5% of the time.

10 Appendices

10.1 Rainfall, effective rainfall and soil moisture deficit table

(Source: Met Office. Crown copyright, 2024). All rights reserved. Environment Agency, 100024198, 2024

Figure 10.1: This is areal rainfall, effective rainfall (percolation or runoff) and soil moisture deficit for the hydrological areas across the SSD. There may be significant variation within each area which must be considered when interpreting these data. When additional meteorological data is available estimates are revised which will affect the period totals in section 10.2

Hydrological	Rainfall (mm) 31 day Total	Rainfall March as \%LTA	Effective Rainfall (mm) 31 day Total	Effective Rainfall March as \%LTA	Soil Moisture Deficit (SMD) Day 31	SMD End of March LTA
Test Chalk	125	182%	90	222%	0	7
East Hampshire Chalk	130	176%	95	209%	0	6
West Sussex Chalk	135	182%	101	216%	0	6
East Sussex Chalk	96	148%	64	174%	2	7
Isle of Wight	103	154%	66	172%	0	8
Western Rother Greensand	133	177%	99	209%	0	6
Hampshire Tertiaries	126	188%	88	243%	0	7
Lymington	119	174%	83	211%	0	7
Sussex Coast	109	179%	71	223%	0	8
Arun	109	166%	76	204%	2	6
Adur	100	157%	68	190%	2	6
Ouse	96	150%	65	182%	3	6
Cuckmere	86	139%	56	163%	3	6
Pevensey Levels	73	121%	42	130%	4	7
SSD Average	$\mathbf{1 1 0}$	165%	76	198%	$\mathbf{1}$	7

10.2 Seasonal summary table of rainfall and effective rainfall

Winter season: 01/10/2023 to 31/03/2024

Hydrological	Seasonal Rainfall (mm)	Seasonal Rainfall as \% LTA	Seasonal Effective Rainfall $(m m)$	Seasonal Effective Rainfall as \% LTA
Test Chalk	799	175%	625	234%
East Hampshire Chalk	910	181%	719	222%

10.3 Rainfall banding table

Hydrological area	March 2024 band	Jan 2024 to Mar 2024 cumulative band	Oct 2023 to Mar 2024 cumulative band	Apr 2023 to Mar 2024 cumulative band
Test Chalk	Exceptionally high	Exceptionally high	Exceptionally high	Exceptionally high
East Hampshire Chalk	Notably high	Exceptionally high	Exceptionally high	Exceptionally high
West Sussex Chalk	Exceptionally high	Exceptionally high	Exceptionally high	Exceptionally high
East Sussex Chalk	Notably high	Exceptionally high	Exceptionally high	Exceptionally high
Isle of Wight	Notably high	Exceptionally high	Exceptionally high	Exceptionally high
Western Rother Greensand	Exceptionally high	Exceptionally high	Exceptionally high	Exceptionally high
Hampshire Tertiaries	Exceptionally high	Exceptionally high	Exceptionally high	Exceptionally high
Lymington	Notably high	Exceptionally high	Exceptionally high	Exceptionally high
Sussex Coast	Notably high	Exceptionally high	Exceptionally high	Exceptionally high
Arun	Notably high	Exceptionally high	Exceptionally high	Exceptionally high
Adur	Notably high	Exceptionally high	Exceptionally high	Exceptionally high
Ouse	Notably high	Exceptionally high	Exceptionally high	Exceptionally high
Cuckmere	Above normal	Exceptionally high	Exceptionally high	Exceptionally high
Pevensey Levels	Above normal	Exceptionally high	Exceptionally high	Exceptionally high

10.4 River flows table

Site name	River	Catchment	Mar 2024 band	Feb 2024 band
Alfoldean Gs	Arun	Arun	Exceptionally high	Notably high
Allbrook Gs+ Highbridge	Itchen (so)	Itchen	Exceptionally high	Notably high
Blackwater	Medina	Isle of Wight	Above normal	Notably high
Broadlands	Test	Test Lower	Exceptionally high	Above normal
Brockenhurst GS	Lymington	New Forest	Notably high	Exceptionally high
Chilbolton GS	Test	Test Upper	Exceptionally high	Above normal
Cowbeech Gs	Cuckmere	Cuckmere	Exceptionally high	Exceptionally high
Goldbridge Gs	Ouse [so]	Ouse Sussex	Exceptionally high	Exceptionally high
Iping Mill Gs	Rother	West Rother	Exceptionally high	Notably high
Mislingford GS	Meon	Meon	Exceptionally high	Notably high
North Fareham GS	Wallington	Wallington	Exceptionally high	Notably high
Sakeham GS	Adur	Adur	Exceptionally high	Exceptionally high

10.5 Groundwater table

Site name	Aquifer	End of Mar 2024 band	End of Feb 2024 band
Houndean Bottom Gwl	Brighton Chalk Block	Exceptionally high	Exceptionally high
Chilgrove House Gwl	Chichester-WorthingPortsdown Chalk	Exceptionally high	Exceptionally high
Carisbrooke Castle	Isle Of Wight Central Downs Chalk	Notably high	Exceptionally high
West Meon Hut Gwl	River Itchen Chalk	Notably high	Notably high
Clanville Gate Gwl	River Test Chalk	Exceptionally high	Notably high
Lopcombe Corner Gwl	River Test Chalk	Exceptionally high	Notably high
Beeding Hill Gwl	Brighton Chalk Block	Exceptionally high	Exceptionally high
Catherington	River Meon Chalk	Exceptionally high	Notably high
Cornish Wigdens Gwtr	Eastbourne Chalk Block	Exceptionally high	Above normal
Harting Common Down	Western Rother Lower Greensand	Exceptionally high	Exceptionally high
Preston Candover	River Itchen Chalk	Exceptionally high	Notably high
Youngwoods Copse	Isle of Wight Lower Greensand	Exceptionally high	Exceptionally high

10.6 Abstraction licence flow constraints

Number of flow constraints in force between 1 to 8 March 2024	Number of flow constraints in force between 9 to 15 March 2024	Number of flow constraints in force between 16 to 22 March 2024	Number of flow constraints in force between 23 to 31 March 2024
0	0	0	0

10.7 Solent and South Downs Areal Rainfall Units Map

10.8 SSD Areal Rainfall Monthly Long Term Averages

Hydrological Area	Jan LTA mm	Feb LTA mm	Mar LTA mm	Apr LTA mm	May LTA mm	Jun LTA mm	Jul LTA mm	Aug LTA mm	Sep LTA mm	Oct LTA mm	Nov LTA mm	Dec LTA mm
Test Chalk	84.8	57.9	68.7	51.7	59.0	57.3	47.9	62.5	67.9	75.4	79.9	89.1
East Hampshire Chalk	93.8	62.5	73.9	56.2	61.9	58.7	51.7	64.6	77.0	86.2	90.5	94.8
West Sussex Chalk	93.5	62.5	73.9	60.2	59.5	57.6	50.7	64.8	78.5	92.0	97.0	95.5
East Sussex Chalk	87.1	56.9	65.1	53.5	51.5	57.4	48.9	60.3	72.7	92.9	97.9	88.7
Isle of Wight	88.2	60.4	67.0	52.3	53.2	50.2	44.1	57.4	70.2	84.3	91.2	88.1
Western Rother Greensand	99.5	64.5	75.5	60.6	62.6	57.3	50.4	65.6	78.8	90.8	94.7	99.7
Hampshire Tertiaries	86.1	59.2	67.0	50.4	56.8	52.8	44.5	58.7	69.6	78.8	83.4	88.7
Lymington	88.5	61.2	68.5	51.5	57.9	54.3	43.4	59.3	71.0	83.0	86.8	91.8
Sussex Coast	76.6	51.3	60.7	50.2	50.2	47.7	41.9	53.0	63.7	77.2	80.8	78.9
Arun	85.5	55.1	65.5	56.5	58.5	55.6	47.2	59.4	72.4	80.5	83.9	86.9
Adur	84.8	55.1	63.8	55.3	56.2	55.6	46.0	59.6	71.5	85.7	88.8	86.0
Ouse	86.6	56.4	64.0	54.4	54.0	58.6	48.7	60.0	72.5	89.1	92.9	87.6
Cuckmere	84.8	55.2	61.8	51.2	50.1	57.5	48.5	59.8	71.5	90.8	93.7	85.0
Pevensey Levels	82.2	54.0	60.9	50.6	47.5	52.2	47.3	55.6	68.5	88.1	93.6	82.0
SSD Average	87.3	58.0	66.9	53.9	55.6	55.2	47.2	60.0	71.8	85.3	89.6	88.8

