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Executive summary 
The current FEH statistical method as described by Kjeldsen and others (2008) is the UK’s 
standard statistical method for estimating flood peaks of specified annual exceedance 
probabilities. It consists of an index flood, equal to the median annual flood, QMED, and a 
standardised growth curve. In ungauged catchments, the index flood is estimated by a 
regression equation using four catchment properties. This equation has been shown 
previously to have more uncertainty in small catchments than in larger catchments. 

This report develops 3 general options for reducing uncertainty in estimating the index 
flood in small catchments: 

Option 1 - recalibrating the index flood equation using a data set of small catchments only 
to provide a ‘retuned’ equation. 

Option 2 - developing a new index flood regression equation, based on other catchment 
descriptors that are found to explain more variation in the observed QMED in small 
catchments. 

Option 3 - developing a new index flood equation, based on a regression as above, but 
considering using gauged flow statistics in the regression. These flow statistics require 
some gauging but can be estimated using equipment that is accurate at flows much lower 
than QMED. 

This study finds that both the recalibrated index flood equation (option 1) and new small 
catchments equation (option 2) offer improvements in terms of uncertainty in QMED. The 
new regression equation (option 2) is similar in form to option 1, relying on some measure 
of catchment area, rainfall and gridded soil properties. However, the improvement offered 
by option 2 over option 1 is considered too small to justify a complete overhaul of the 
model structure. 

The gauged flow equation (option 3) provides the best model fit to observed median 
annual flows. However, the smaller number of catchments for which flow statistics were 
obtained (46) means that this regression equation cannot be generalised with confidence 
to all small catchments. 

The results presented in this report suggested that option 1, published as Equation 16 in 
this report, can be used to estimate QMED in ungauged catchments smaller than 25 km2. 
However, additional research, carried out on a further screened data set and reported in 
Section 3 of the ‘Small catchments overview report’ (R0) suggests that, while this new 
equation does reduce the spread of errors in QMED estimates, it also introduces a 
consistent bias. It is therefore recommended to continue using the existing (2008) FEH 
statistical QMED equation for estimating QMED in small catchments. 

If reliable daily mean flow statistics are available, it is recommended that the ‘QMED 
linking equation’ included in WINFAP 4 (Wallingford HydroSolutions 2016a) should be 
used. A QMED estimate generated with this equation has less uncertainty than one 
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generated via a catchment descriptor equation, but still contains too much uncertainty to 
be used as the donor value in a donor transfer procedure. 

The potential benefits of donor transfer, whereby the estimated index flood is adjusted 
using a nearby long-term gauged record, has been re-examined for small catchments, 
although no clear conclusions can be drawn. For the existing all-catchment FEH equation 
used with one donor, the spread of errors is reduced compared to applying it with no 
donors, meaning that donor transfer is generally acting to reduce model errors at the sites 
where they are the largest. When used with the existing all-catchment FEH equation, 
donor transfer with two or six donors reduces residuals at more than half of the 
catchments tested but increases the spread of errors. In practice, this means that using 
the existing FEH equation with more than one donor at any arbitrary small catchment is 
slightly more likely to marginally improve the estimate of QMED than it is to make it a lot 
worse. However, the risk of degrading the final estimate is considered to be too high to 
recommend using more than one donor catchment.  

Rejecting potential donors because they are too dissimilar to the catchment of interest in 
terms of AREA and SAAR is actively unhelpful: rejecting dissimilar donors can give small 
improvements for catchments where the QMED equation already performs well, but these 
improvements are more than outweighed by the risk of increasing the error in the estimate 
for catchments where the QMED equation does not perform well.  

Using a single donor catchment is therefore recommended when the existing (2008) FEH 
QMED equation is applied to a small catchment. There is no advantage in this donor being 
similar to the catchment of interest in terms of AREA or SAAR. 

For the retuned small catchment equation, donor transfer worsens the estimate of QMED 
more often than not, regardless of how many donors are used and whether they are 
screened for similarity in catchment descriptors. However, the mean and spread of errors 
given by the retuned small catchments equation without donor transfer is considerably less 
than that given by the original FEH equation with any number of donors, including zero 
(mean and spread of errors with one donor: −0.0210 and 0.3473 for FEH equation, 
−0.0099 and 0.3042 for retuned equation). 

Donor transfer is unnecessary when the QMED linking equation (Equation 20) is used, as 
this method directly incorporates at-site flow data from the site of interest. 

For larger catchments (that is, both target and potential donor > 25 km2), donor selection 
should normally be based on centroid-centroid distance between the catchments. Further 
research is needed to determine whether it is justified to reject certain donors based on 
dissimilarities in any catchment descriptors. 

This report does not consider how to reduce uncertainty or improve accuracy in estimation 
of the growth curve, as this topic is reported separately in SC090031/R5 – ‘Pooling-group 
formation for small catchments’. 
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Important Note: 
Work on Project SC090031 ‘Estimating flood peaks and hydrographs in small catchments 
(Phase 2)’ began in December 2013. Tasks carried out in the early stages of the project 
have already been documented in several project notes and reports, so it is possible that 
there may be inconsistencies, particularly in the various data sets and methods that have 
been applied at different points in time. This report provides a summary of the research 
carried out throughout the project, and we have detailed the data sets and methods used 
in each of the stages and tasks. 
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1. Introduction 
Index flood methods are widely used for estimating flood frequency. These methods link 
the size of a specified flood (usually the median or mean of annual maxima) to a series of 
catchment properties via a regression equation. In the UK, the existing FEH statistical 
method (Kjeldsen and others, 2008) includes a ‘QMED equation’, used to estimate the 
median of annual maximum flows in an ungauged catchment. The equation estimates 
QMED as a function of four FEH catchment descriptors, corresponding to catchment area, 
mean annual rainfall, estimated baseflow index (via soil type), and the size and location of 
online water bodies (Equation 1). 

Equation 1 – QMED equation 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 =  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴0.85100.1536
1000
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3.44510.0460𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵2 

The calibration data set for this equation consisted of 602 rural catchments from 1.63 to 
9,931 km2 in area. Within this range it is unbiased, that is, it does not tend towards over or 
underestimation of QMED. However, the proportion of unexplained variance in QMED is 
higher for small catchments than it is for UK catchments as a whole (Vesuviano and 
others, 2016). 

During this project, a total of 153 small catchments up to 40.9 km2 in area and suitable for 
QMED estimation (according to National River Flow Archive criteria: nrfa.ceh.ac.uk), were 
identified. This is 80% more than the 85 catchments of equivalent size that were used, 
along with larger catchments, in calibrating the existing FEH statistical equation. 
Furthermore, the passage of time and additional data collection means that sampling 
uncertainty in these gauged records is lower than it was when developing the existing FEH 
statistical equation. 

In this report, the feasibility of producing a unique QMED equation, calibrated using only 
small catchments, is explored. The calibration data set is discussed in Section 2 of this 
report. Section 3 outlines the design of a comprehensive regression model, accounting for 
covariance in sampling errors, which originate from the finite record lengths of the 
calibration QMED values, and correlation between modelling errors, which originates from 
spatial factors that cannot be easily related to catchment descriptors. Section 4 applies the 
regression model to re-fit the parameters of the existing FEH statistical QMED equation. In 
Section 5, forward stepwise regression is used to develop an alternative model form that is 
more likely (according to a maximum likelihood procedure) to explain variations in QMED 
in small catchments. Section 6 repeats the work of Section 5, but incorporates flow 
statistics, derived from points on the flow duration curve. These require some at-site 
gauging, though to a very limited degree when compared to gauging QMED directly. 
Section 7 repeats the work of Section 5, using a larger calibration data set that includes 
catchments that have not been assessed for QMED or pooling suitability by the measuring 
authorities. Section 8 lists the conclusions and recommendations of the previous sections. 
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For estimating flood peaks rarer than QMED, the user is directed to report SC090031/R5: 
‘Pooling-group formation for small catchments’. 

It is assumed that the reader has a detailed understanding of FEH methods, hydrological 
terminology, and catchment descriptors. 
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2. Study data 
Developing a regression model for QMED in small catchments requires two types of data: 

• gauged QMED data, to give target values for the regression 

• catchment properties (descriptors) which can be used in the regression 

Full annual maximum records, from which QMED is the median value, and values for 25 
catchment descriptors are available for all 153 small, QMED-suitable catchments identified 
previously during this project. However, one of these 153 catchments (27032, Hebden 
Beck at Hebden), which was included in earlier phases of the project, is now excluded 
from this study, as dye tracing has shown that water entering Mossdale Caverns, which 
are inside the topographic catchment, is transferred out of the catchment (Faulkner, pers. 
comm.). A summary of this study data set compared with previous studies is shown in 
Table 1. Only directly comparable catchments (that is, up to 40.9 km2 and marked as 
suitable for QMED estimation) are counted. The quantity of small-catchment data available 
for this study greatly exceeds that of previous UK index flood studies, both in number of 
catchments and in minimum, mean and maximum record length. Figure 1 shows a map of 
the gauging stations used in this project. 

Table 1 - Summary of AMAX data sets for small catchments (< 40.9 km2) 

Dataset property This study (2017) Existing FEH (2008) FEH (1999) 

No. of gauges 152 85 117 

Shortest record 
length 4 4 3 

Longest record 
length 64 56 56 

Mean record length 30.4 25.6 17.7 

No. AMAX events 4627 2180 2071 
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Figure 1  - Locations, areas, and AMAX record lengths of study catchments 



13 of 85 

 

Figures 2 and 3 show histograms of catchment descriptor values. 

 

Figure 2  - Catchment descriptor histograms for study data set, part 1 

The six histograms in Figure 2 plot the number of catchments (y-axis) by each descriptor 
value: 

• top left histogram: AREA, km2: catchment area derived from the Integrated 
Hydrological Digital Terrain Model (IHDTM) - for catchments over 0.5 km2, IHDTM 
area is used rather than nominal area (estimated from Ordnance Survey mapping) 
as all other FEH methods are intended to be used with IHDTM area - for the four 
catchments under 0.5 km2, including two with IHDTM area over 0.5 km2, nominal 
areas are used instead - in practice, it is very important that practitioners check the 
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accuracy of the IHDTM area using local information. See page 149 of the Flood 
Estimation Guidelines (LIT 11832: Environment Agency, 2022) for further details 

• top right histogram: FARL: flood attenuation due to reservoirs and lakes - 
dependent on the fraction of catchment covered by on-line water bodies and their 
proximity to the catchment outlet 

• middle left histogram: BFIHOST: baseflow index estimated from HOST soil data 
• middle right histogram: SPRHOST: standard percentage runoff estimated from 

HOST soil data 
• bottom left histogram: URBEXT2000: weighted coverage of urban, suburban and 

inland bare ground as a proportion of the catchment, using the Land Cover Map 
2000 

• bottom right histogram: Record length, years: Number of valid AMAX values 
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Figure 3 - Catchment descriptor histograms for study data set, part 2 
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The 8 histograms in Figure 3 plot the number of catchments (y-axis) by each descriptor 
value: 

• top left histogram: DPSBAR, m km-1: mean slope of drainage paths (defined on 
IHDTM) 

• top right histogram: FPEXT: fraction of catchment inundated by 100-year flood. 
• second row left histogram: SAAR, mm: mean annual rainfall depth recorded in 

catchment from 1961 to 1990 
• second row right histogram: PROPWET: proportion of period from January 1961 to 

December 1990 when soil moisture deficit estimated via Met Office Rainfall and 
Evapotranspiration Calculation System (MORECS) is less than 6 mm 

• third row left histogram: RMED13-1H, mm: one-hour, two-year rainfall depth from 
FEH13 rainfall model 

• third row right histogram: RMED13-6H, mm: six-hour, two-year rainfall depth, from 
FEH13 rainfall model 

• bottom row left histogram: RMED13-1D, mm: 24-hour, two-year rainfall depth, from 
FEH13 rainfall model 

• bottom row right histogram: RMED13-2D, mm: 48-hour, two-year rainfall depth, 
from FEH13 rainfall model 

Catchment descriptor histograms show a flat distribution of AREA from 0 to just over 40 
km2, as well as a wide spread of BFIHOST, PROPWET, DPSBAR, FPEXT, SAAR and 
other rainfall descriptors. Few catchments have significant lake or reservoir attenuation 
(FARL < 0.9) although this is also true of monitored UK catchments in general. 
Additionally, the proportion of catchments in this data set that are urbanised (URBEXT2000 
≥ 0.03) is lower than in the data set of monitored UK catchments as a whole. However, this 
data set does contain two extremely heavily urbanised small catchments (URBEXT2000 ≥ 
0.6). While no urbanised catchments were used in developing either the original FEH 
(1999) or current ‘improved’ FEH (2008) statistical QMED equation, gauged QMED values 
obtained from urbanised catchments were used in this study to increase the calibration 
sample size. QMED estimates from urban gauges were deurbanised by applying the FEH 
urban adjustment procedures detailed by Wallingford HydroSolutions (2016b) in reverse. 
To avoid a discontinuity at URBEXT2000 = 0.03, these procedures were applied to all 
catchments, although the impact on gauged QMED in essentially rural catchments was 
very small. Five-number summaries for all catchment descriptors are shown in Tables 2 
and 3. 
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Table 2 - Five-number summary for study data set (0-40.9 km2) 

Descriptor Min 25% Med 75% Max 

AREA 0.04 10.83 21.74 30.66 40.83 

FARL 0.645 0.979 0.997 1.000 1.000 

FPEXT 0.000 0.0183 0.0438 0.0753 0.2498 

FPDBAR 0.000 0.215 0.408 0.630 2.598 

BFIHOST 0.172 0.345 0.438 0.594 0.985 

SPRHOST 3.270 31.475 39.710 46.795 59.900 

PROPWET 0.21 0.32 0.42 0.57 0.79 

URBEXT2000 0.0000 0.0000 0.0069 0.0397 0.8110 

DPLBAR 0.170 3.440 5.230 6.585 11.010 

DPSBAR 8.80 37.50 76.25 117.80 433.30 

ALTBAR 21.0 82.0 148.5 289.0 656.0 

SAAR 555 703 1030 1421 2766 

Record length 4 20 32 42 64 

RMED13-1H 9.5 11.8 12.5 13.5 16.8 

RMED13-6H 22.1 25.1 26.65 30.9 52.7 

RMED13-1D 31.0 37.05 42.5 52.1 101.0 

RMED13-2D 36.6 44.7 53.7 67.1 131.2 

QMED 0.066 2.877 6.448 13.068 69.466 
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Table 3 - Five-number summary for study data set (0-25 km2) 

Descriptor Min 25% Med 75% Max 

AREA 0.04 7.10 12.87 19.50 24.58 

FARL 0.727 0.988 1.000 1.000 1.000 

FPEXT 0.0000 0.0138 0.0375 0.0711 0.2373 

FPDBAR 0.000 0.144 0.300 0.556 1.709 

BFIHOST 0.172 0.320 0.430 0.597 0.985 

SPRHOST 3.27 32.13 40.58 48.58 59.90 

PROPWET 0.21 0.32 0.40 0.56 0.74 

URBEXT2000 0.0000 0.0000 0.0043 0.0369 0.8110 

DPLBAR 0.17 2.63 3.74 5.25 9.28 

DPSBAR 8.8 36.7 79.9 123.4 433.3 

ALTBAR 21 81 161 341 656 

SAAR 555 702 1006 1485 2531 

Record length 4 17 29 38 64 

RMED13-1H 9.6 11.8 12.6 13.4 16.8 

RMED13-6H 22.6 25.3 26.5 31.5 50.4 

RMED13-1D 32.2 37.1 42.4 53.5 97.2 

RMED13-2D 37.4 44.6 53.3 69.2 127.1 

QMED 0.066 1.818 4.852 9.124 38.510 
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The correlation matrices in Figures 4-6 show relationship between pairs of catchment 
descriptors. Each black dot in each sub-plot represents one catchment. A number below 
the diagonal indicates the correlation between the two catchment descriptors shown as a 
scatter plot above the diagonal. In each case, the two descriptors relevant to each scatter 
plot or correlation can be found by reading directly down/up and left/right from the scatter 
plot/correlation. 

Considering pairs of catchment descriptors (Figure 4), different values of SAAR, 
BFIHOST, URBEXT2000, ALTBAR and DPSBAR are distributed evenly across the full 
range of catchment areas. The lower-FARL (<0.9) catchments in this data set are, with 
one exception, larger than 10 km2. There are a few strong correlations: between SAAR, 
ALTBAR and DPSBAR (i.e. wetter catchments have higher altitudes, and higher-altitude 
catchments are steeper). There are moderate negative correlations between URBEXT and 
the inter-related SAAR, ALTBAR and DPSBAR, due to the locations of major urban areas. 
There are also moderate negative correlations between BFIHOST and SAAR (wetter 
catchments tend to be less permeable) and BFIHOST and ALTBAR (due to the 
relationship between SAAR and ALTBAR), but not between BFIHOST and DPSBAR 
(since DPSBAR is not perfectly correlated with either SAAR or ALTBAR). FARL is not 
strongly correlated with any other descriptor, presumably as most catchment have similar 
FARL values near 1. AREA is also not strongly correlated with any other descriptor in this 
dataset, though it is noted that this small catchment dataset does not span a UK-
representative range of areas. 

The small catchments data set contains no catchments with both high SAAR and high 
BFIHOST values, though this is a characteristic of UK climate and soils rather than a 
potential void in the data set (Figure 5). Figure 5 also shows that the lack of more-
urbanised, higher-SAAR catchments is consistent with version 4.1 of the NRFA peak flows 
data set (NRFA 2014), although this is also a consequence of UK climatic and 
topographical factors. However, Figure 5 also shows much smaller correlations between 
SAAR, BFIHOST and URBEXT2000 than shown in Figure 4 for the small catchment data 
set, and a much greater proportion of urbanised catchments built on less permeable soils. 

One objective of this study is to determine if descriptors like RMED13-1H, RMED13-6H, 
RMED13-1D or RMED13-2D have more predictive power over QMED in small catchments 
than SAAR. This is being investigated because the critical durations for small catchments 
are generally short: for example, if the critical duration in one catchment is six hours, then 
there should be an obvious link between the two-year flood and the six-hour, two-year 
storm. Testing this hypothesis, however, is complicated by the strong correlations between 
the two-year storms of different durations (0.67 to 1.00), and between these storms and 
descriptors acting on much longer timescales, namely SAAR and PROPWET (0.36 to 
0.98, Figure 6). 
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Figure 4 - Correlation matrix of catchment characteristics for small catchments data 
set 
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Figure 5 - Correlation matrix of catchment characteristics for NRFA peak flows data 
set v4.1 
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Figure 6 - Correlation matrix of rainfall-related descriptors for small catchments data 
set 

Gauged QMED values at all stations were taken as the median of the annual maximum 
series, regardless of record length. This was either a single gauged value (for series of an 
odd length) or the arithmetic mid-point between two gauged values (for series of an even 
length). There is no lower record length threshold below which POT series are used 
instead of AMAX series; this is consistent with developing the existing ‘improved’ QMED 
equation. The justification given there applies equally here, namely that as the regression 
model accounts for the variance of and covariance between QMED observations, the 
higher uncertainty in QMED estimates made from short AMAX records (relative to 
equivalent POT records) is accounted for by lower weightings of those estimates. Short 
records are not adjusted for climatic variation, as the procedure does not allow the 
sampling variance of the adjusted records to be estimated. This makes it impossible to 
weight QMED observations according to how uncertain the values are. It is strongly 
recommended to use POT data, if available and of sufficient quality, and to perform 
climatic adjustment, if estimating QMED from a short record at a single gauging station, as 
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concerns relating to QMED variance-covariance and overall model structural error are not 
relevant for that type of study. 

In urbanised catchments, the gauged QMED value was reduced to an estimated as-rural 
value by applying the urbanisation relationships published by Wallingford HydroSolutions 
(2016b) in reverse (Equations 2 and 3). Using the existing urbanisation relationships 
means that any new QMED estimation equations developed in this study will be 
compatible with the existing urban adjustment procedures. 

Equation 2 – QMED urbanisation equation 

𝑄𝑄𝑄𝑄𝑄𝑄𝐷𝐷𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑄𝑄𝑄𝑄𝑄𝑄𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(1 + 𝐼𝐼𝐼𝐼 × 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈)1.25𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝐹𝐹1.33 

Equation 3 – PRUAF equation  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 1 + 𝐼𝐼𝐼𝐼 × 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 �
70

69.366 − 65.686𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵
− 1� 

By default, IF = 0.3 and URBAN = 1.567URBEXT2000 as shown in Equation 4: 

Equation 4 – Relationship between IF, URBAN and URBEXT2000 

𝐼𝐼𝐼𝐼 × 𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = 0.4701𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑇𝑇2000 

WINFAP 4 specifies the use of IF in its urbanisation relationships so that, if the fraction of 
urban surfaces that is impermeable is known or suspected to be different from 30% in a 
particular catchment, the user can account for this. 

This deurbanisation relationship presents its own uncertainty issues, including the 
absence of ‘as-rural’ QMED values to pair with gauged QMED values in urban 
catchments. The guidance in Wallingford HydroSolutions (2016b) does not report 
goodness-of-fit metrics such as R2 or fse for the deurbanisation procedure. Moreover, 27 
of the 93 study catchments have URBEXT2000 ≥ 0.03, so any gains to be made from an 
investigation into only essentially rural catchments would be potentially obscured by the 
increased uncertainty resulting from reducing the data set size from 93 to 66 members.  

As such, the urban adjustment procedure is applied unmodified, as fitting new 
relationships for small catchments is beyond the scope of this work, and, as mentioned 
previously, it is a pragmatic decision that preserves compatibility with existing techniques. 

2.1 Uncertainty in QMED 
An expression for the asymptotic sampling uncertainty of the p’th quantile of any 
continuous distribution was published by Mosteller (1946) and is repeated in Equation 5: 
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Equation 5 – Mosteller’s (1946) expression for asymptotic sampling uncertainty 

𝜎𝜎2 =
𝑝𝑝(1 − 𝑝𝑝)

𝑛𝑛𝑓𝑓2�𝐹𝐹−1(𝑝𝑝)�
 

Where n is the length of the sample (in this case, the number of AMAX values), f is the 
probability density function and F-1 is the value of the distribution at the p’th quantile. This 
expression calculates the theoretical variance of any quantile of the distribution, which can 
be used to estimate the theoretical uncertainty in any T-year flood (where p = 1 – 1/T). For 
the logarithm of the median of a generalised logistic (GLO) distribution, the expression 
simplifies greatly to give Equation 6 (Kjeldsen & Jones 2009): 

Equation 6 – variance in QMED as a function of gauged record length and GLO 
distribution parameters 

𝜎𝜎2 =
4𝛽𝛽2

𝑛𝑛
 

Where σ2 is the variance of ln(QMED) and β is equal to the scale parameter, α, of the 
distribution divided by the location parameter, ξ, of the distribution. α can be estimated 
from the AMAX series via L-moment methods (e.g. Hosking and Wallis 1997), while the 
median of the AMAX series is a reasonable estimate of ξ (Robson & Reed 1999, Kjeldsen 
and others, 2008). 
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3. Regression model 
In this study, the regression model for QMED was developed using a maximum likelihood 
(ML) framework, identical to that used to develop the existing FEH statistical QMED 
equation. The key advantages of ML (and generalised least-squares regression) over 
ordinary least-squares regression are that observations can be weighted according to their 
variance and that covariance between observations can be accounted for. However, ML is 
preferred for this study as the relationship fitted to model residuals is less affected by 
sampling variations (Kjeldsen and Jones 2009). The general regression model is of the 
same form as the existing FEH statistical method (see Equation 7): 

Equation 7 – general form of FEH QMED regression model 

𝑦𝑦𝑖𝑖 = 𝒙𝒙𝑖𝑖𝑇𝑇 + 𝜔𝜔𝑖𝑖 = 𝒙𝒙𝑖𝑖𝑇𝑇𝜽𝜽 + 𝜀𝜀𝑖𝑖 + 𝜂𝜂𝑖𝑖 

In Equation 7, yi is a log-transformed QMED estimate, xi is a vector of catchment 
descriptors, θi is a vector of regression model parameters and ωi is total error, comprising 
sampling error, εi, and modelling error, ηi, for i = 1,…,M, where M is the number of gauged 
catchments. Both errors are assumed normally-distributed with zero mean values. 
Sampling and modelling errors at one site are assumed to be independent of each other. 
Diagonal elements of the modelling error covariance are assumed to be identical and 
equal to ση2. Denoting the error covariance matrices by Σω, Σε and Ση respectively, the total 
error covariance matrix is given by Equation 8. 

Equation 8 - The total error covariance matrix 

𝜮𝜮𝜔𝜔 = 𝜮𝜮𝜂𝜂 + 𝜮𝜮𝜀𝜀 = 𝜎𝜎𝜂𝜂2�𝑹𝑹𝜂𝜂 + 𝜮𝜮𝜀𝜀 𝜎𝜎𝜂𝜂2⁄ � = 𝜎𝜎𝜂𝜂2𝑮𝑮 

In Equation 8, Rη is the model error correlation. The non-diagonal elements of Rη 
represent between-catchment model error correlation, which manifests as geographical 
clustering of over and underestimation, and occurs when there is a geographical effect 
unaccounted for by any catchment descriptor. Between-catchment sampling error 
correlation occurs because single rainfall events often fall across several nearby 
catchments, therefore one rainfall event could generate an AMAX flow event in several 
neighbouring catchments. 

3.1 Sampling error covariance 
In common with Equation 6, all elements of the sampling error covariance matrix are 
based on the asymptotic variance of the sample median (see Equation 9): 
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Equation 9 – general form of sampling error covariance between two gauged sites 

𝜮𝜮𝜀𝜀,𝑖𝑖𝑖𝑖 = �
4𝛽𝛽𝑖𝑖2 𝑛𝑛𝑖𝑖⁄ 𝑖𝑖 = 𝑗𝑗

4𝛽𝛽𝑖𝑖𝛽𝛽𝑗𝑗
𝑛𝑛𝑖𝑖𝑖𝑖
𝑛𝑛𝑖𝑖𝑛𝑛𝑗𝑗

𝑟𝑟𝜀𝜀,𝑖𝑖𝑖𝑖 𝑖𝑖 ≠ 𝑗𝑗 

In Equation 9, nij denotes the number of recorded years shared by station i and station j, 
indicating that apparent covariance between flows can only be genuine if both flows relate 
to the same event. The term rε,ij links the correlation between QMED values to the 
geographical distance between catchment centroids. 

In common with the existing QMED equation it is assumed that the correlation between at-
site sampling errors is the same as the correlation between QMED. Therefore, a bootstrap 
experiment was used to determine an expression for rε,ij. However, the expression derived 
here is subject to greater uncertainty as there are only 108 rural catchments (67 under 
25 km2) and just 354 pairs of gauges with a minimum 40-year record overlap (65 pairs 
where both catchments are under 25 km2). Urban catchments were not used in this 
experiment, as each AMAX value would require a different level of adjustment to be 
deurbanised, depending on its estimated return period. The form of the expression for rε,ij 
was copied from the existing FEH statistical method project report and the final equations 
are reported in Equation 10. 

Equation 10 – Final equations for sampling error covariance 

𝑟𝑟𝜀𝜀,𝑖𝑖𝑖𝑖 = �0.6729𝑒𝑒�−0.1352𝑑𝑑𝑖𝑖𝑖𝑖� + (1 − 0.6729)𝑒𝑒�−0.0043𝑑𝑑𝑖𝑖𝑖𝑖� 𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 <  25 𝑘𝑘𝑚𝑚2

0.7505𝑒𝑒�−0.1472𝑑𝑑𝑖𝑖𝑖𝑖� + (1 − 0.7505)𝑒𝑒�−0.0026𝑑𝑑𝑖𝑖𝑖𝑖� 𝑏𝑏𝑏𝑏𝑏𝑏ℎ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 <  40.9 𝑘𝑘𝑚𝑚2
 

The correlations between QMEDs are shown in Figure 7. As in Kjeldsen and others (2008) 
for the existing QMED equation, the correlation is vague but appears to be real. It is 
unclear if the model form re-used here is optimal, as there are few points to the left of the 
‘knee’ in either relationship. The model requires correlation to rise to 1 at a centroid-
centroid distance of exactly zero, and this model form allows that. However, it should be 
noted that it is possible in practice for catchments with centroids that are physically close 
to be very different in hydrological character (for example, catchment area). 
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Figure 7 – Correlation between ln(QMED) values and centroid-centroid distance of 
catchment pairs 

The scatter graph in Figure 7 plots the correlation in pairs of QMED values on the y-axis 
(from 0.2 to 1.0) against the centroid-centroid distance between pairs of catchments on the 
x-axis (from 0 to 750 km). The following elements are plotted: 

• both catchments are <25km2: blue line 
• either catchment is >25km2: orange line 
• improved FEH (2008): black line 

(The fitted equation is only shown for the existing FEH method.) 

Equation 9 references both rε,ij and β terms. In estimating the existing FEH equation for 
QMED, at-site values for β, derived from AMAX data, were not used. Instead, a regression 
model between β and catchment descriptors was formed (Equation 11), with the intention 
of reducing the sampling noise inherent in the data-derived values. Table 4 shows the 
summary statistics for Equation 11. This is able to model 50% of the variance in β with an 
fse of 1.412, comparing favourably with the 28% of variance modelled with an fse of 1.387 
in the improved FEH study (Kjeldsen and others, 2008). A generalised regression equation 
for β would not necessarily be expected to fit the observed values very well, as a small 
spread of errors could indicate over-fitting to the observed sampling noise, particularly if 
achieved through a large number of parameters. However, this equation, which explains 
almost double the variance in β, is considered appropriate as it contains no more 
parameters than the equation used in the improved FEH study.  
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Equation 11 – Regression model for ln(β), used to estimate sampling error 
covariance 

𝑙𝑙𝑙𝑙(𝛽𝛽) = −1.1677 − 0.5769
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
1000

−
0.0387
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

+
0.5237

1 + 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹
 

Table 4 - Summary statistics for regression model describing ln(β) 

Variable Coefficient Std. err. t-value p-value 

Intercept −1.1677 0.1895 −6.164 0.0000 

SAAR/1000 −0.5769 0.0703 −8.211 0.0000 

AREA−1 −0.0387 0.0096 −4.025 0.0001 

(1 + FPDBAR)−1 0.5237 0.2638 1.986 0.5015 

σ2 = 0.1203, df = 89, R2 = 0.513 

3.2 Model error correlation 
Model error correlation is estimated as part of the ML procedure. Kjeldsen and others 
(2008) set the ‘structure’ of the correlation as equal to that for sampling error covariance 
(Equation 12): 

Equation 12 – general form of model error correlation fitted to improved FEH QMED 
equation (Kjeldsen and others, 2008) 

𝑟𝑟𝜂𝜂,𝑗𝑗 = 𝜙𝜙1𝑒𝑒�−𝜙𝜙2𝑑𝑑𝑖𝑖𝑖𝑖� + (1 − 𝜙𝜙1)𝑒𝑒�−𝜙𝜙3𝑑𝑑𝑖𝑖𝑖𝑖� 

The regression constants 𝝋𝝋 = (𝜑𝜑1,𝜑𝜑2,𝜑𝜑3) are unknown until the ML estimation procedure 
is complete. This is because model error cannot be estimated from the data set, as the 
true values of QMED are unknown. In this study, a simplified structure was used (Equation 
13), as preliminary studies found that the term φ1 was always fitted with a value near 1, 
making (1 − φ1) near zero and therefore redundant. 

Equation 13 – general form of model error correlation fitted to small catchment 
QMED equations 

𝑟𝑟𝜂𝜂,𝑗𝑗 = 𝑒𝑒�−𝜙𝜙𝑑𝑑𝑖𝑖𝑖𝑖� 
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Model error correlation describes the tendency of the model to over or underestimate 
QMED relative to gauged data. Therefore, when selecting a donor, it is more important to 
match model error than any other property (for example, catchment or hydrological 
similarity), as catchments with similar model error show similar ratios between gauged and 
estimated QMED values. Furthermore, an appropriate and successful regression model 
should show minimal residual bias against the terms used in that model, making those 
terms poor candidates to use in selecting a donor catchment. 

3.3 Estimating final regression parameters 
Given the error structures specified previously, and a chosen set of catchment descriptors, 
the regression constants are estimated through minimising the negative log-likelihood 
function. This measures the ‘plausibility-of-fit’ of the model, that is, how plausible it is that 
the estimates match the observations. Lower values of negative log-likelihood indicate 
more plausibility, given that values are only directly comparable for models fitted to the 
same data. The negative log-likelihood function is presented in Equation 14: 

Equation 14 – Negative log-likelihood function 

−𝑙𝑙(𝜽𝜽,𝜎𝜎𝑛𝑛,𝝋𝝋|𝑿𝑿,𝒚𝒚) =
1
2
𝑙𝑙𝑙𝑙[det(𝜎𝜎𝑛𝑛2𝑮𝑮)] +

1
2

(𝒚𝒚 − 𝑿𝑿𝑿𝑿)𝑇𝑇(𝜎𝜎𝑛𝑛2𝑮𝑮)−1(𝒚𝒚 − 𝑿𝑿𝑿𝑿) 

Into this, it is noted that the value of θ that minimises the negative log-likelihood function 
can be expressed as shown in Equation 15: 

Equation 15 – Value of θ (QMED model parameter vector) that minimises negative 
log-likelihood function 

𝜽𝜽� = (𝑿𝑿𝑇𝑇𝑮𝑮−1𝑿𝑿)−1𝑿𝑿𝑇𝑇𝑮𝑮−1𝒚𝒚 

Therefore, the objective function can be minimised simply by searching over the model 
error correlation parameter and the model error variance simultaneously. 
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4. Recalibrating existing FEH model 
The existing FEH statistical model for QMED estimation is presented in Equation 1. As this 
model was fitted to catchments up to almost 10,000 km2, it is not expected to be optimal 
for small catchments specifically. Therefore, a quick and easy way to produce a new and 
improved QMED model for small catchments could be simply to re-apply the existing FEH 
statistical modelling framework to the project data set. In this section, the existing FEH 
statistical QMED equation is compared to ‘retuned’ versions of the same equation, with 
new regression constants, developed by applying the steps given in Section 3. 

Equation 16 shows the ‘retuned’ regression equation, developed using 93 catchments – 
only those detailed in Section 2 that are under 25 km2. 

Equation 16 – The ‘retuned’ regression equation (based on 93 catchments) 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 4.7260𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴0.83350.2763�
1000
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿2.62660.0404𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇2 

• 𝜎𝜎𝜂𝜂2 = 0.2823 
• 𝜙𝜙 = 3.0142 

Model error variance is solved as 0.2823 to give a model factorial standard error (fse) of 
1.701, which is considerably higher than the values of 1.431 reported for the existing 
QMED equation and 1.549 reported for the first FEH statistical QMED equation (Robson 
and Reed 1999). However, for any given set of small catchments, the retuned model is 
more likely than either existing FEH equation to offer a sample fse, exp(s), close to the 
model fse, exp(ση). 

Figure 8 shows regression diagnostic plots for the retuned FEH equation. These 
demonstrate that the model residuals are unrelated to the gauged or modelled value of 
QMED. However, most of the negative residuals do not follow a normal distribution. 

 

Figure 8 - Regression diagnostic plots for retuned FEH equation 

The three scatter graphs in Figure 8 present regression diagnostic plots for the retuned 
FEH equation: 
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• left panel: residuals (ln scale) on the y-axis (from -2 to 2) and quantiles of standard 
normal on the x-axis (from -3 to 3) 

• middle panel: residuals (ln scale) on the y-axis (from -2 to 2) and modelled 
ln(QMED) on the x-axis (from -3 to 4) 

• right panel: modelled ln(QMED) on the y-axis (from -3 to 4) and gauged ln(QMED) 
on the x-axis (from -3 to 4) 

Figure 9 shows the influence of each catchment descriptor in Equation 16 over the 
reasonable range of possible values (orange) and compares this with Equation 1 (grey). 

For AREA and particularly FARL, it is shown that the retuned regression constants reduce 
the range of the catchment descriptor’s influence, whereas for SAAR and BFIHOST, the 
range of influence is slightly extended. This does not indicate that FARL is less important 
in small catchments; it is due to the reduced range of FARL values in the new calibration 
data set (Figure 10), that is, it is a sampling issue. The value of BFIHOST has 
approximately the same effect on QMED, whether the calibration catchments range up to 
25 km2 or up to ~10,000 km2. 
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Figure 9 - Influence of catchment descriptors in original QMED equation (grey – 
Equation 1) and QMED equation retuned with catchments up to 25 km2 (orange – 

Equation 16) and 40.9 km2 (blue – Equation 17) 

The four line graphs in Figure 9 show the influence of the four catchment descriptors over 
the reasonable range of possible values, compared with Equation 1: 

• top-left graph: AREAv from 0 to 25 (y-axis) by AREA from 0-40 (x-axis) 
• top-right graph: w(1000/SAAR) from 0.0 to 0.7 (y-axis) by SAAR from 500 to 3500 (x-

axis) 
• bottom-left graph: FARLx from 0.0 to 1.0 (y-axis) by FARL from 0.5 to 1.0 (x-axis) 
• bottom-right graph: yBFIHOST^2 from 0.0 to 1.0 (y-axis) by BFIHOST from 0.0 to 1.0 

(x-axis) 

On each graph the three lines show: 
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• original (grey line) 
• re-tune <25 km2 (orange line) 
• re-tune <40.9 km2 (blue line) 

Equation 17 shows the ‘retuned’ regression equation when all 152 catchments discussed 
in Section 2 are used for calibration. The influence of these catchment descriptors is 
shown in Figure 9 using blue lines. 

Equation 17 – The ‘retuned’ regression equation (based on 152 catchments) 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 5.4800𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴0.86130.2289�
1000
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿2.08830.0385𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇2 

• 𝜎𝜎𝜂𝜂2 = 0.2630   
• 𝜙𝜙 = 3.4107 

 

Figure 10 - Density plot of FARL 

The bar chart in Figure 10 shows that the small catchment data set contains many more 
catchments with almost no reservoir and lake attenuation than the NRFA peak flow data 
set (the rightmost bar), though both are dominated by catchments with little attenuation 
(FARL > 0.9) Small catchments are plotted by blue bars. The white bars plot NRFA 4.1.0. 
The x-axis shows FARL (from 0.6 to 1.0) and the y-axis shows fraction (from 0.0 to 1.0). 

Recalibration with the 152-catchment data set makes the relationship between QMED and 
AREA slightly more linear than in the FEH equation. It is plausible that the relationship 
between QMED and AREA may become more linear for smaller catchments, as rainfall 
and runoff processes become more homogeneous, and shorter flow paths and less flood 
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plain area offer reduced opportunities for attenuation (Faulkner and others, 2012). Indeed, 
the principle of quoting greenfield runoff rates in l/s/ha presupposes a linear relationship 
between flow and area. It is worth noting, however, that all three equations have very 
similar relationships between QMED and AREA – indeed, Equation 16 has a slightly less 
linear relationship than Equation 1. This may be a result of the small range of areas used 
in calibration. 

Calibration with 152 catchments up to 40.9 km2 also reduces the influence of SAAR to a 
point midway between the two lines shown in Figure 9, but has little effect on the influence 
of either FARL or BFIHOST. Model error variance for this equation is 0.2630, giving a 
model fse of 1.670, the smaller value reflecting the increased quantity of calibration data. 

Table 5 compares the performance statistics of the existing FEH statistical QMED 
equation in original and both retuned forms when applied to model the 93 catchments 
under 25 km2.  

Table 5 - Performance of existing FEH statistical QMED equation in three forms 

Model variant 
model fse 
exp(ση) 

R2 RMSE* sample fse 
exp(s) 

Existing (‘improved’) 1.431 0.8356 0.6116 1.843 

Retuned, <25 km2 1.701 0.8530 0.5596 1.744 

Retuned, <40 km2 1.670 0.8489 0.5671 1.757 

Note: Sum of squares of residuals divided by number of degrees of freedom (93 – 4 
parameters – 1 = 88). 

Figure 11 plots QMED as estimated by the three parameterisations of the existing FEH 
statistical QMED equation. The positions of the crosses in the top-right of the plot suggest 
that the retuned models tend to underestimate the largest values of QMED. A similar 
observation was made by MacDonald and Fraser (2013) for their QMED equation, 
containing the same descriptors in the same form, minus FARL. The positions of the 
circles towards the left of the plot also suggest some overestimation in catchments with 
QMED values under 1 m3/s. However, the retuned equations offer similar or smaller 
residuals than the original equation for these catchments, apart from catchments 29013 
(Moor Beck at Clapgate Farm) and 33048 (Larling Brook at Stonebridge). Both of these 
catchments are exceptionally flat (DPSBAR = 25 and 8.8 respectively) and contain large 
floodplains (FPEXT = 0.0863 and 0.2331 respectively), so their flood peaks are likely to be 
influenced by factors other than the four descriptors contained in either the original or 
retuned FEH equations. Additionally, there is one catchment (39832, Wandle at 
Carshalton) for which all equations underestimate by a factor of five or more. As this 
catchment is more heavily urbanised than any of those used to estimate the relationship 
between urbanisation and QMED it is possible that the deurbanisation relationship, 
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derived using mostly moderately-urbanised catchments, is too strong when applied to 
more heavily-urbanised small catchments. This is supported by the trend towards 
underestimating QMED in extremely-urbanised catchments shown by Vesuviano and 
others (2016). 

 

Figure 11 - Comparison of original and retuned FEH statistical models for QMED 

The scatter graph in Figure 11 plots QMED (modelled) on the y-axis (from 0.01 to 100) 
against QMED (gauged) on the x-axis (from 0.01 to 100) for catchments up to 25km2 
(marked with circles) and catchments from 25km2 to 40.9km2 (marked with crosses) for the 
three parameterisations of the existing FEH statistical QMED equation: 

• original (marked in black) 
• re-tune <25km2 (marked in orange) 
• re-tune <40.9km2 (marked in green) 
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Figure 12 compares estimates of QMED given by the FEH equation retuned on 
catchments under 25 km2 (Equation 16) against model outputs from ReFH 2 (version 2.2). 
Good agreement is shown for most catchments, with QMED ranging from approximately 1 
to 15 m3/s. However, the retuned FEH equation shows smaller errors relative to gauged 
QMED for the very smallest values of QMED and ReFH 2.2 shows smaller errors for the 
very largest values of QMED. 

 

Figure 12 - Comparison of QMED estimated using retuned FEH equation and 
ReFH2.2 

The scatter graph in Figure 12 plots QMED (modelled) on the y-axis (from 0.01 to 100) against 
QMED (gauged) on the x-axis (from 0.01 to 100) for catchments up to 25km2 (marked with circles) 
and catchments from 25km2 to 40.9km2 (marked with crosses) for: 

• re-tuned catchments <25km2 (marked in orange) 
• model outputs from ReFH 2 2.2 (marked in red) 
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Finally, Figure 13 shows the variation in retuned parameter values for each of the 93 
cases where one catchment is excluded from the optimisation procedure on catchments 
under 25 km2, as well as the corresponding sample fse. This shows that parameter values 
and sample fse are largely insensitive to the catchments selected – the largest bin in each 
sub-plot always corresponds to the parameter value given in Equation 16, and there is 
very little variation in values that do not fall into that bin. However, there are three outliers 
for the FARL parameter value: the two ‘upper’ outliers corresponding to excluding the 
catchment with the lowest and second-lowest FARL value (0.727 and 0.780) and the 
‘lower’ outlier corresponding to excluding the catchment with the fifth-lowest FARL value 
(0.907). Therefore, in common with the existing FEH equation, it is recommended that the 
retuned FEH equation is not used as a main QMED estimation method in catchments with 
FARL < 0.9. Similarly, the three lowest and three highest outliers on the BFIHOST 
histogram correspond to excluding six of the nine most permeable catchments. While this 
does show that care should be taken in very permeable catchments (BFIHOST > 0.8), it 
does not indicate a bias in Equation 16 relative to BFIHOST, as the changes to the 
recalibrated BFIHOST parameter are evenly split between increasing and decreasing. 
Therefore, if a high-BFIHOST catchment is deliberately chosen as a donor for another, 
there is a risk that one showing a large positive residual is used to modify one with a large 
negative residual, or vice versa. This is discussed in more detail in Section 7. 
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Figure 13 - Retuned (< 25 km2) FEH parameter values when excluding each 
catchment in turn 

 
The six bar charts in Figure 13 show the variation in retuned parameter values when one 
catchment is excluded:  

 
• Top-left bar chart: Constant Multiplier on the x-axis (from 4.4 to 5.0). The y-axis 

shows the number of models with that value of constant initial multiplier, from 0 to 
50, when the FEH QMED model is retuned in 93 cases, where each case excludes 
one of the 93 catchments from the calibration data set. 

• Top-right bar chart: AREA on the on the x-axis (from 0.81 to 0.86). The y-axis 
shows the number of models with that value of exponent applied to AREA, from 0 to 
60, when the FEH QMED model is retuned in 93 cases, where each case excludes 
one of the 93 catchments from the calibration data set. 
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• Middle-left bar chart: SAAR on the x-axis (from 0.26 to 0.29). The y-axis shows the 
number of models with that value applied to SAAR,from 0 to 40, when the FEH 
QMED model is retuned in 93 cases, where each case excludes one of the 93 
catchments from the calibration data set. 

• Middle-right bar chart: FARL on the x-axis (from 2.0 to 3.5). The y-axis shows the 
number of model with that value of exponent applied to FARL,from 0 to 50, when 
the FEH QMED model is retuned in 93 cases, where each case excludes one of the 
93 catchments from the calibration data set. 

• Bottom-left bar chart: BFIHOST on the x-axis (from 4.4 to 5.0). The y-axis shows 
the number of model with that value applied to BFIHOST,from 0 to 40, when the 
FEH QMED model is retuned in 93 cases, where each case excludes one of the 93 
catchments from the calibration data set. 

• Bottom-right bar chart: fse on the x-axis (from 1.69 to 1.75). The y-axis shows the 
number of model with that value of fse,from 0 to 70, when the FEH QMED model is 
retuned in 93 cases, where each case excludes one of the 93 catchments from the 
calibration data set. 
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5. New QMED model for small catchments 
Although retuning the FEH equation has improved QMED estimation in small catchments, 
it is possible that a model structure with different catchment descriptors may offer further 
benefits. Here, the procedure of building a new model is described, using the 93 
catchments up to 25 km2 for calibration. This new regression model for ln(QMED) was built 
up using forward stepwise regression, one catchment descriptor at a time, until adding any 
new catchment descriptors could not improve the model further. 

5.1 Catchment descriptors 
The existing FEH statistical model for QMED tested only a limited selection of catchment 
descriptors during model development. In this study, all 25 standard catchment 
descriptors, plus one derived specifically for this study (RMED13-6H, six-hour median 
annual rainfall from FEH13 rainfall model), were considered initially. From these, FPLOC 
was excluded, as it is incalculable for catchments with limited floodplain cover. Catchment 
descriptors related to urbanisation were excluded, as these are incalculable for rural 
catchments. In addition, all RMED descriptors were updated to their FEH13 values for this 
model building procedure. To avoid confusion with the existing catchment descriptors, 
these are referred to as RMED13 descriptors. 

Certain variables in the FEH model were transformed in order to reduce patterns in the 
model residuals against that variable. In this study, all catchment descriptors were made 
available in six forms: x, ln(x), ex, 1/x, x2 and √x. Before being transformed, some 
catchment descriptors were scaled, specifically: 

• all SAAR and DPSBAR values were divided by 1,000 to allow exponentials to be 
taken (necessitated by data limitations) 

• all SPRHOST values were divided by 100, that is, scaled to the same [0,1] range as 
BFIHOST, FPEXT and other common catchment descriptors 

• all FPEXT and FPDBAR values were increased by 1 to allow logarithms to be taken 
• all ASPBAR values were divided by 360, that is, scaled to the range [0,1], and then 

increased by one to allow logarithms to be taken 
• all ALTBAR values were divided by 100, positioning all values in the approximate 

range 0.2 to 6.6, to allow exponentials to be taken 
• RMED13-1H, RMED13-6H, RMED13-1D and RMED13-2D were divided by 10, 50, 

100 and 100 respectively, positioning all values in the range 0.3 to 1.7, to allow 
exponentials to be taken 

5.2 Model structure exploration 
As stated, the regression model for ln(QMED) was built in stages, with stage 0 being just a 
constant. At each subsequent stage n, the ML estimation was run with the models from 
the previous stage, adding each catchment descriptor in turn to those models. The 
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catchment descriptors that minimised the log-likelihood function by the most over the 
stage n – 1 model were then added to that model to give stage n models. This process 
continued until adding a new model stage either had negligible effect on the log-likelihood 
function, resulted in an increase in model structural error or resulted in collinearity between 
a transformed parameter and either another transformed parameter or a constant value. 

Table 6 summarises model development, where the column ℓ reports the negative log-
likelihood function. The branch notation is used to relate models with more parameters to 
the models with fewer parameters on which they were built. For example, branches AA, 
AB and AC are built by adding a second parameter to the one-parameter branch A; for 
each branch, the last letter is assigned alphabetically in order of negative log-likelihood 
function.  
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Table 6 - Development of small-catchment QMED regression model form 

Stage Branch Variable(s) ℓ fse 

1 A ln(AREA) 50.32 3.474 

1 B √(SPRHOST/100) 57.20 3.096 

1 C BFIHOST2 58.04 3.121 

2 AA ln(AREA), √(SPRHOST/100) 8.64 1.923 

2 AB ln(AREA), BFIHOST2 13.59 2.026 

2 AC ln(AREA), 1/RMED13-1D 24.58 2.431 

2 BA √(SPRHOST/100), ln(AREA) 8.64 1.923 

2 BB √(SPRHOST/100), ln(LDP) 27.01 2.242 

2 BC √(SPRHOST/100), ln(DPLBAR) 27.92 2.258 

2 CA BFIHOST2, ln(AREA) 13.59 2.026 

2 CB BFIHOST2, ln(DPLBAR) 31.54 2.365 

2 CC BFIHOST2, ln(LDP) 32.34 2.380 

3 AAA ln(AREA), √(SPRHOST/100), (1000/SAAR) −7.41 1.731 

3 AAB ln(AREA), √(SPRHOST/100), 
(100/RMED13-2D) −6.56 1.722 

3 AAC ln(AREA), √(SPRHOST/100), 
(100/RMED13-1D) −6.47 1.732 

3 ABA ln(AREA), BFIHOST2, (100/RMED13-2D) −11.06 1.685 

3 ABB ln(AREA), BFIHOST2, (100/RMED13-1D) −9.94 1.696 

3 ABC ln(AREA), BFIHOST2, (1000/SAAR) −8.54 1.711 
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Stage Branch Variable(s) ℓ fse 

4 ABAA ln(AREA), BFIHOST2, (100/RMED13-2D), 
(1+ASPBAR/360)2 −14.56 1.651 

4 ABAB ln(AREA), BFIHOST2, (100/RMED13-2D)), 
FARL2 −13.97 1.657 

4 ABAC ln(AREA), BFIHOST2, (100/RMED13-2D), 
(1/DPLBAR) −12.54 1.656 

4 ABBA ln(AREA), BFIHOST2, (100/RMED13-1D), 
(1+ASPBAR/360)2 −14.11 1.669 

4 ABBB ln(AREA), BFIHOST2, (100/RMED13-1D), 
FARL2 −12.61 1.683 

4 ABBC ln(AREA), BFIHOST2, (100/RMED13-1D), 
(1000/DPSBAR) −11.68 1.658 

4 ABCA ln(AREA), BFIHOST2, (1000/SAAR), FARL2 −11.24 1.683 

4 ABCB ln(AREA), BFIHOST2, (1000/SAAR), 
(100/RMED13-2D) −11.10 1.685 

4 ABCC ln(AREA), BFIHOST2, (1000/SAAR), 
(1+ASPBAR/360)2 −10.58 1.703 

Note: although SAAR and all four RMED descriptors are all correlated (Figure 5) and 
arguably ‘similar’, one key question for this research is to discover if rainfall descriptors 
based on shorter timescales have more influence on QMED in small catchments than 
SAAR does. Therefore, branches differing only in the selected rainfall descriptor were not 
immediately discontinued, as was the case with branches containing DPLBAR (mean 
drainage path length) or LDP (longest drainage path length). 

The following branches were selected for further investigation:  

• Stage 1 (A, B, C). 
• Stage 2 (AA, AB). 
• Stage 3 (ABA, ABB and ABC). 

As would be expected, AREA is shown here to be the most likely single descriptor 
controlling QMED, followed by HOST descriptors. By stage 3, all models are of a form 



44 of 85 

containing ln(AREA), one HOST descriptor and one rainfall descriptor. By stage 4, all 
models contain the exact terms ln(AREA) and BFIHOST2, as used in the existing FEH 
model, as well as the inverse of a rainfall descriptor and, in three cases, FARL. The fact 
that different rainfall descriptors can be selected to result in almost equally good equations 
demonstrates that all of them are strongly correlated and suggests that there is no clear 
‘best’ among them. As will be demonstrated in Section 5.5, it also suggests that the order 
in which rainfall descriptors are selected, from most to least likely, may be influenced by 
the selection of calibration catchments. 

SPRHOST is shown here to be more likely than BFIHOST to describe variations in QMED, 
unless used together with a rainfall descriptor. However, SPRHOST was deliberately 
excluded when developing the existing FEH model because BFIHOST was found to be a 
more efficient descriptor of hydrological soil properties in earlier work (Kjeldsen and 
others, 2005). More specifically, the regression equation between BFI and HOST class is 
based on 575 catchments, while the regression between SPR and HOST class is based 
on 170 catchments. However, even BFIHOST is matched inconsistently to gauged BFI 
values, and both BFIHOST and SPRHOST are based on coarse mapped grids that 
distribute HOST class fractions uniformly over 1 km grid cells – comparable in size to the 
smallest catchments in the calibration data set. 

5.3 Proposed model 
Model development was stopped at stage 4, where the improvement in fse over the best 
stage 3 model was marginal, and the transformed fourth descriptor acted over only a small 
range of values in the calibration data set.  

 Model 3ABA (black line). 

The six line graphs in Figure 14 evaluate potential new QMED models for small 
catchments: 

• Model 3ABA (dark grey line) 
• Model 3ABB (dark green line). 
• Model 4ABAB (light grey line). 
• Model 4ABBC (light green line). 

Each graph represents how the QMED value generated by each potential QMED model 
varies with: 

• Top-left graph: AREA. 
• Top-right graph: BFIHOST. 
• Middle-left graph: RMED13-2D. 
• Middle-right graph: RMED13-1D. 
• Bottom-left graph: FARL. 
• Bottom-right graph: DPSBAR. 
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Each grey vertical line on each graph indicates one calibration catchment. 

Figure 14 shows that AREA and BFIHOST have similar influence over QMED in each 
model, therefore suggesting that these contribute the most information on estimated 
QMED. RMED13-2D has similar influence in models 3ABA and 4ABAB, and the presence 
or absence of FARL2 does not change any of the other fitted coefficients, showing that 
FARL is not collinear with AREA, BFIHOST or RMED13-2D. However, the influence of 
RMED13-1D changes from model 3ABB to 4 ABBC, suggesting some collinearity between 
RMED13-1D and DPSBAR. 
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Figure 14 - Influence of catchment descriptors in proposed QMED models 
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The eight scatter graphs in Figure 15 show the residual plots of the four models against 
two catchment descriptors: FARL and DPSBAR. Only Model 4ABAB includes FARL, and it 
is the only model whose residuals are unbiased with respect to FARL. This suggests that 
the descriptor FARL is required to model QMED properly in small catchments. However, 
this conclusion is complicated by the compressed range of FARL values in the calibration 
data set and the resulting high leverage of the few calibration catchments with lower FARL 
values. Nevertheless, based on the evidence available, FARL is shown to exert influence 
over QMED – this conclusion is also physically sensible. As FARL is not strongly 
correlated with other descriptors, incorporating it in the QMED model should help in QMED 
modelling in catchments with FARL up to ~0.9 without having a negative effect in 
catchments with FARL above 0.9.However, all model residuals are unbiased with respect 
to DPSBAR, despite only Model 4ABBC including DPSBAR, suggesting that DPSBAR is 
not a necessary descriptor to include in a small-catchment QMED model. 

 

Figure 15 - Residual (ln(QMEDOBS) – ln(QMEDMOD)) plots for candidate QMED models 

Equation 18 shows model 4ABAB, which is selected for modelling QMED in small 
catchments. As reported in Table 6, model negative log-likelihood is –13.97 and model 
factorial standard error is 1.657, which is lower than that found for either retuned FEH 
QMED equation developed in Section 4. 

Equation 18 – Model 4ABAB 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 1.3274𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴0.83710.3516
100

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅13−2𝐷𝐷6.0604𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿20.0436𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇2   

• 𝜎𝜎𝜂𝜂2 = 0.2549 
• 𝜙𝜙 = 3.0930 

Equation 18 is notable for containing three of the four descriptors used in the existing FEH 
statistical equation (AREA, BFIHOST and FARL), two in exactly the same form. The 
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dissimilar descriptor (RMED13-2D) is highly correlated with SAAR, and is used with the 
same transformation. The structure of both this new model and MacDonald and Fraser’s 
(2013) model implies that the processes governing floods in catchments of ~10 km2 are 
not too different from those governing floods in larger catchments. Regression diagnostic 
plots for model 4ABAB are shown in Figure 16. 

• Left graph: ordered model residuals against normally distributed values (Q-Q plot) 
• Middle graph: model residuals against modelled ln(QMED) 
• Right graph: modelled ln(QMED) against observed ln(QMED) 

These demonstrate that the model residuals are approximately normally distributed, when 
the limited sample size is considered, and that the model residuals are unrelated to either 
the gauged or modelled value of ln(QMED). 

 

Figure 16 - Regression diagnostic plots for QMED model 4ABAB 

A larger set of model residual plots is shown in Figure 17 for model 4ABAB only, plotting 
the residuals from model 4ABAB against nine catchment descriptors. Figure 17 
demonstrates that the model residuals are neither strongly correlated with any of the 
catchment descriptors in the model (AREA, RMED13-2D, BFIHOST, FARL), nor with 
several other descriptors (DPSBAR, FPEXT, SPRHOST, PROPWET, SAAR). Although 
the limited number of permeable catchments (17) meant that they could not be considered 
separately, Figure 17 shows that model 4ABAB is unbiased with respect to BFIHOST. 
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Figure 17 - Residual (ln(QMEDOBS) – ln(QMEDMOD)) plots for QMED model 4ABAB 

5.4 Verification on intermediate-size catchments 
The proposed model (4ABAB) was calibrated to 93 catchments under 25 km2. As the data 
set described in Section 2 actually contains 152 catchments up to 40.9 km2, there are 59 
additional catchments available to check how Equation 18 performs on catchments slightly 
above the intended upper limit on area. Figure 18 demonstrates that the model selected 
for small catchments is also valid for those up to 40.9 km2. 

In the left panel of Figure 18, the mean residual and 95% confidence interval is plotted in 
eight bins, where each bin contains one-eighth of the 152 study catchments after sorting 
by AREA. This shows that the model tends to slightly underestimate QMED on average in 
catchments between 25 and 40.9 km2: the three highest bins show positive residuals 
(model underestimation), while the five lowest bins show mixed over and underestimation. 
The right panel of Figure 18 compares ln(QMED) as modelled by the existing FEH 
equation and model 4ABAB against the observed value of ln(QMED) in the 152 
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catchments. This does not appear to show that either one model is more accurate than the 
other in terms of residual. Table 7 compares the performance statistics of model 4ABAB, 
the existing FEH statistical QMED equation and the FEH statistical equation retuned to 
catchments under 25 km2, on the extended data set of catchments up to 40.9 km2. While 
this shows model 4ABAB to be slightly better at fitting the data, the difference is 
considered too marginal to justify a new model structure, particularly one that includes a 
model output (RMED13-1D). The range of FARL values included in the small catchments 
data set is also considered too compressed to justify a change to the transformation 
applied to FARL, especially as that transformation was found suitable for a larger data set 
with many more low-FARL catchments. 

 

Figure 18 - Verification plots for model 4ABAB on catchments up to 40.9 km2 

Table 7 - Performance of new and existing models for QMED, tested on 152 
catchments up to 40.9 km2 

Model 
model fse 
exp(ση) 

R2 RMSE* sample fse 
exp(s) 

4ABAB 1.657 0.8604 0.5401 1.716 

Existing FEH 1.431 0.8480 0.5635 1.757 

Existing FEH 

Retuned, <25 km2 
1.701 0.8574 0.5457 1.726 

Note: Sum of squares of residuals divided by number of degrees of freedom (152 – 4 
parameters – 1 = 147). 
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Evidence from Table 7 and Figure 18 suggests that the performance of model 4ABAB 
reduces as catchment size increases, and that the model is unlikely to be suitable for 
much larger catchments. 

Based on the trade-off between model performance and model structure, it is 
recommended using the retuned FEH equation for small catchments under 25 km2 and the 
existing FEH equation for catchments over 40.9 km2. For estimating QMED in catchments 
25 and 40.9 km2, a linear interpolation method, detailed in Appendix A, is intended to 
provide a smooth transition from the retuned FEH equation for small catchments to the 
existing FEH equation for larger catchments. 
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Figure 19 - Model residuals (ln(QMEDOBS) – ln(QMEDMOD)) across UK for existing 
FEH model, retuned (25 km2) FEH model and model 4ABAB 
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The three maps in Figure 19 show the spatial distribution of model residuals (ln(QMEDOBS) 
– ln(QMEDMOD)) across the UK: 

• Top-left map: improved FEH. 
• Top-right map: re-tuned FEH. 
• Bottom map: model 4ABAB. 

The legend shows: 

• <-1.5 (very large blue triangles). 
• -1.5 to -1.0 (large blue triangles). 
• -1.0 to -0.5 (medium blue triangles).  
• -0.5 to 0.0 (small blue triangles). 
• 0.0 to 0.5 (small red triangles). 
• 0.5 to 1.0 (medium red triangles). 
• 1.0 to 1.5 (large red triangles). 
• >1.5 (very large red triangles). 

5.5 Verification on ‘extended’ data set 
MacDonald and Fraser (2013), when developing an ordinary least-squares regression 
model for QMED, used a total of 135 catchments up to 25 km2. 63 of these catchments are 
shared with the calibration data set of 93 that was used to develop the new small-
catchment QMED model presented in Equation 18. These have been formally classified as 
suitable for estimating QMED. The remaining 72 have either not been classified by the 
measuring authority or have been classified as unsuitable for estimating QMED. Lack of a 
rating, however, does not necessarily indicate low data quality. In this subsection, model 
development is explored for a data set of 132 catchments up to 25 km2: the 93 used in 
developing Equation 18 plus a further 39 used by MacDonald and Fraser. Not all of 
MacDonald and Fraser’s data set can be used, as not all of their calibration catchments 
have associated AMAX records available, which are necessary to estimate sampling error. 
In addition, eight of MacDonald and Fraser’s catchments were explicitly rejected from this 
study. Table 8 summarises model development with these catchments, similarly to Table 
6. Identical procedures and model selection criteria were used. 
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Table 8 - Development of small-catchment QMED regression model form using 
‘extended’ data set 

Stage Branch Variable(s) ℓ fse 

1 A ln(AREA) 60.11 3.501 

1 B √(SPRHOST/100) 78.26 2.995 

1 C BFIHOST2 78.69 3.004 

2 AA ln(AREA), √(SPRHOST/100) 7.73 1.899 

2 AB ln(AREA), BFIHOST2 11.98 1.983 

2 AC ln(AREA), (100/RMED13-2D) 34.64 2.293 

2 BA √(SPRHOST/100), ln(AREA) 7.73 1.899 

2 BB √(SPRHOST/100), ln(DPLBAR) 34.83 2.190 

2 BC √(SPRHOST/100) ln(LDP) 35.23 2.183 

2 CA BFIHOST2, ln(AREA) 11.98 1.983 

2 CB BFIHOST2, ln(DPLBAR) 40.63 2.026 

2 CC BFIHOST2, ln(LDP) 41.86 1.969 

3 AAA ln(AREA), √(SPRHOST/100), 
1000/SAAR −14.63 1.695 

3 AAB ln(AREA), √(SPRHOST/100), 
100/RMED13-2D −14.59 1.696 

3 AAC ln(AREA), √(SPRHOST/100), 
100/RMED13-1D −13.57 1.703 

3 ABA ln(AREA), BFIHOST2, 100/RMED13-2D −23.00 1.640 

3 ABB ln(AREA), BFIHOST2, 100/RMED13-1D −22.06 1.645 
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Stage Branch Variable(s) ℓ fse 

3 ABC ln(AREA), BFIHOST2, ln(SAAR/1000) −21.22 1.649 

4 ABAA ln(AREA), BFIHOST2, 100/RMED13-
2D, exp(ASPBAR) −26.04 1.620 

4 ABAB ln(AREA), BFIHOST2, 100/RMED13-
2D, ASPVAR2 −25.42 1.622 

4 ABAC ln(AREA), BFIHOST2, 100/RMED13-
2D, FARL2 −24.83 1.628 

4 ABBA ln(AREA), BFIHOST2, 100/RMED13-
1D, ASPBAR2 −25.41 1.623 

4 ABBB ln(AREA), BFIHOST2, 100/RMED13-
1D, ASPVAR2 −24.27 1.629 

4 ABBC ln(AREA), BFIHOST2, 100/RMED13-
1D, FARL2 −23.68 1.635 

4 ABCA ln(AREA), BFIHOST2, ln(SAAR/1000), 
(1000/DPSBAR) −23.69 1.634 

4 ABCB ln(AREA), BFIHOST2, ln(SAAR/1000), 
ASPVAR2 −23.51 1.633 

4 ABCC ln(AREA), BFIHOST2, ln(SAAR/1000), 
ASPBAR2 −23.46 1.634 

The following branches were selected for further investigation:  

• Stage 1 (A, B, C). 
• Stage 2 (AA, AB). 
• Stage 3 (ABA, ABB and ABC). 

With this ‘extended’ data set of small catchments, the best performing equations 
describing QMED are largely identical to those found using the 93-catchment ‘high-quality’ 
data set. Equations containing exact terms in common with the existing FEH equation, that 
is, ln(AREA) and BFIHOST2, very quickly establish themselves as highly successful 
descriptive forms. By stage 3, all equations comprise ln(AREA), one HOST term and one 
rainfall term. In common with the earlier analysis in Section 5.2, performance of the stage 
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3 models is only slightly affected by the choice of rainfall descriptor. This reinforces the 
suggestion that there is no clear ‘best’ among the rainfall descriptors and that, given 
another different set of calibration catchments, the ranking of the five rainfall descriptors, 
from most to least likely, could be different.  



57 of 85 

6. Using gauged baseflow index and flow 
statistics in estimating QMED  

It is stated in Section 5 that BFIHOST and SPRHOST are based on coarse mapped grids. 
These are the HOST (Hydrology of soil types) grids, which have a cell size of 1 km2. 
Within each cell, the percentage of soil matching each of 29 different classes is stored to 
the nearest integer. Each soil class is assigned one BFIHOST and one SPRHOST value, 
and the cell-average BFIHOST and SPRHOST values are calculated, based on the 
percentage cover of each class in each 1 km grid cell. As a result, the BFIHOST and 
SPRHOST values are assumed uniform over each square kilometre. While this 
approximation has limited effect in large catchments, problems may arise in small 
catchments, particularly if their shapes do not align neatly with the grids. 

Gauged estimates of BFI can be derived from daily mean streamflow records using the 
method of Gustard and others (1992), as can estimates of the flow duration curve. 
Although gauged BFI values derived from less than five years of flow are regarded as 
provisional, gauged BFI is more stable than other low flow metrics and, by definition, gives 
a more accurate indication of a river’s baseflow than the BFIHOST value. 

The National River Flow Archive (NRFA) holds gauged values of BFI and flow duration 
curve points Q95, Q70, Q50 and Q10 (daily mean flow exceeded on 95%, 70%, 50% and 
10% of days) for 61 of the 93 catchments that were used for model calibration in Section 
5. These were last updated on 30 September 2015, for stations that were still open then. A 
total of 46 catchments have URBEXT2000 < 0.03 and are therefore essentially rural. 

It is therefore suggested that some of these statistics may be useful in estimating QMED. 
It should be noted that these statistics were deliberately neglected in Section 5 because 
they are only available for approximately two-thirds of the catchments in this study data set 
– requiring these statistics would considerably reduce the quantity of calibration data. 
Additionally, there is no FEH procedure for deurbanising the flow duration curve equivalent 
to that for deurbanising gauged QMED, so the influence of urbanisation is inseparable 
from the flow duration curve. Furthermore, gauged daily flows are required to be natural or 
naturalised, so that catchment-specific abstractions and discharges are excluded from 
general models. The naturalness of the gauged flows obtained for this study was not 
checked. Therefore, this section and any results should be regarded as a preliminary 
proof-of-concept rather than a concrete recommendation. 

Table 9 shows the first three stages of model development for 46 essentially rural small 
catchments when gauged BFI, Q95, Q70, Q50 and Q10 are made available for selection 
in addition to all previous catchment descriptors. As some values of Q95 and Q70 are 
zero, a constant offset of 1 was added to all values of Q95 and Q70 before starting model 
development, to allow logarithms to be taken if necessary. 
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Equation 19 presents model 3AAA, which has the lowest model structural error. It is noted, 
however, that three stage 3 models are almost identical in both negative log-likelihood 
function and model structural error. 

Equation 19 – Model 3AAA 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = 9.9812𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑅𝑅0.3196𝑄𝑄100.67250.0503𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑇𝑇2  

• 𝜎𝜎𝜂𝜂 = 0.0693 
• 𝜙𝜙 = 0.6577 

Despite its low model structural error, Equation 19 is not recommended for using in small 
catchments due to the small size of the calibration data set. 
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Table 9 - Development of small-catchment QMED regression model form with 
additional gauged flow descriptors available 

Stage Branch Variable(s) ℓ fse 

1 A ln(Q10) −8.97 1.866 

1 B ln(Q50) 7.73 2.463 

1 C ln(SPRHOST/100) 9.76 2.100 

2 AA ln(Q10), BFIHOST2 −28.76 1.388 

2 AB ln(Q10), BFI2 −25.47 1.437 

2 AC ln(Q10), ln(SPRHOST/100) −20.98 1.488 

2 BA ln(Q50), BFI2 −18.65 1.493 

2 BB ln(Q50), BFIHOST2 −17.19 1.509 

2 BC ln(Q50), ln(Q10) −12.04 1.725 

2 CA ln(SPRHOST/100), −19.95 1.488 

2 CB ln(SPRHOST/100), −14.62 1.560 

2 CC ln(SPRHOST/100), −12.69 1.577 

3 AAA ln(Q10), BFIHOST2, ln(DPLBAR) −35.97 1.301 

3 AAB ln(Q10), BFIHOST2, √AREA −35.94 1.306 

3 AAC ln(Q10), BFIHOST2, ln(LDP) −35.41 1.304 

3 ABA ln(Q10), BFI2, PROPWET2 −36.04 1.304 

3 ABB ln(Q10), BFI2, 1/(1+Q95) −33.60 1.332 

3 ABC ln(Q10), BFI2, DPLBAR −32.16 1.339 
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Stage Branch Variable(s) ℓ fse 

3 ACA ln(Q10), ln(SPRHOST/100), √AREA −29.86 1.361 

3 ACB ln(Q10), ln(SPRHOST/100), BFIHOST2 −29.16 1.384 

3 ACC ln(Q10), ln(SPRHOST/100), 
ln(DPLBAR) 

−27.79 1.379 

The following branches were selected for further investigation:  

• Stage 1 (A, B, C). 
• Stage 2 (AA, AB, AC). 

Table 9 shows that, for the 46 essentially rural catchments with gauged flow statistics, the 
most effective predictors of QMED are descriptors corresponding to points on the flow 
duration curve – highest first. This is not surprising, as QMED corresponds to one of the 
very highest instants on the flow duration curve; the FEH (volume 3, page 8) states that 
QMED might be only the 10th or 11th highest flow ever reached in a 13-year record. While 
AREA is the catchment descriptor that explains the most variation in QMED in the 
absence of gauged data, it is somewhat correlated with both QMED and Q10 (Figure 20). 
However, high flow levels, such as Q10, are directly related to the flow regime, whereas 
AREA isn’t. Nevertheless, many stage 3 models feature AREA, DPLBAR or LDP as well 
as ln(Q10), thereby incorporating further, explicit information on catchment size or flow 
path length, in order to identify and model differences in QMED that cannot be explained 
through Q10 alone. 

 

Figure 20 - Relationship between AREA, QMED and Q10 
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The two scatter graphs in Figure 20 show the relationship between AREA, QMED and 
Q10: 

• Left-hand graph: this plots ln(AREA) (from 0.0 to 3.0 on the x-axis) against ln(Q10) 
(from -3 to 1 on the y-axis). 

• Right-hand graph: this plots ln(AREA (from 0.0 to 3.0 on the x-axis) against 
ln(QMED) on the y-axis (from -2 to 3). 

These show moderate correlations between ln(AREA) and either Q10 (cor = 0.39) or 
ln(QMED) (cor = 0.24). This demonstrates that both Q10 and ln(AREA) provide somewhat 
useful and independent information for estimating QMED: each is useful separately, but 
use of both together is advantageous over either one. 

 

Figure 21 - Relationship between QMED and two different baseflow indices 

The scatter graph in Figure 21 shows the relationship between QMED and two different 
baseflow indices: 

• BFI2 (green circles). 
• BFIHOST2 (orange crosses). 

The x-axis plots the baseflow index2 from 0.0 to 1.0. The y-axis plots ln(QMED) from -2 to 
3. 

After gauged flow statistics, gauged BFI and coarse-mapped SPRHOST and BFIHOST 
are the next most effective predictors of QMED. Perhaps unexpectedly, a model with √Q10 
and BFIHOST2 has a lower negative log-likelihood function than one with √Q10 and BFI2 – 
the gauged baseflow index is less effective for estimating QMED than one estimated from 
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soil type. However, Figure 21 does show that there is apparently more correlation between 
ln(QMED) and BFIHOST2 (cor = −0.76) than there is between ln(QMED) and gauged BFI2 
(cor = −0.62).One possible reason for the stronger correlation is that the interpretation of 
the HOST classification system, used to generate HOST-based catchment descriptors, is 
measuring one or more other characteristics as well as baseflow. This is possible, as the 
standard error of the BFIHOST equation is 0.089 (Boorman and others, 1995). Candidates 
for the other measured characteristics may include catchment slope, as certain soil 
classes correlate with either steep slopes or flat lands, and soil permeability, which would 
relate to the fraction of a large rainfall event (like RMED) typically becoming runoff – which 
is what SPRHOST is intended to estimate (Robson and Reed 1999). While there is 
generally a good correlation between SPRHOST and BFIHOST, the requirement for and 
existence of the descriptor RESHOST demonstrates that there are certain situations 
where the value of one is a poor guide to the value of the other. As the standard error of 
the SPRHOST equation is 10 (Boorman and others, 1995), the BFIHOST descriptor may 
also hold some information on gauged SPR that gauged BFI does not. 

Stage 2 models, combining one flow measure with one baseflow or soils measure, 
effectively combine information on soil permeability and catchment slope with direct 
information on parts of the flow regime above baseflow, typically caused by the types of 
rainfall events that cause flood peaks in those catchments, and indirect information on 
catchment area. It is therefore expected that these models have highly negative log-
likelihood and low model structural error (ση). 

Table 9 also shows that points on the flow duration curve, especially higher ones like Q10, 
are very effective predictors of QMED. Although gauged flow quantiles are clearly very 
effective in estimating QMED, some gauging is evidently required to obtain them. 
However, Q10 (for example) can be gauged in far less time than QMED to the same level 
of uncertainty. Furthermore, the accuracy with which Q10 is estimated does not depend on 
the measurement accuracy with which flows higher than Q10 are gauged. Although this is 
technically also true of QMED, it can be seen on Figure 20 that the magnitude of Q10 is 
typically around one-tenth of the magnitude of QMED and therefore considerably easier to 
gauge to a lower uncertainty. If gauging is impossible, it becomes necessary to use an 
estimated Q10 value, which can be derived from a pooling procedure based directly on 
HOST classes and average annual runoff (Holmes and others, 2005), noting that the Q10 
estimation procedure has its own uncertainty. It is currently unknown which QMED 
estimation method would have higher uncertainty: one based entirely on catchment 
descriptors, or one based on catchment descriptors and estimated flows (in place of 
gauged flows). 

It is unfortunate that the QMED-from-Q10 estimation method developed here is based on 
so few small catchments, as it has a far smaller model error than the QMED-from-
descriptors approach. However, a similar estimation method, called the ‘QMED linking 
equation’ already exists and is implemented in WINFAP 4 (Wallingford HydroSolutions 
2016a). The QMED linking equation is reproduced in Equation 20. 
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Equation 20 – QMED linking equation 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 =  1.762𝑄𝑄50.866(1 +  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺5)−0.775𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷0.2650.2388𝐵𝐵𝐵𝐵𝐵𝐵2   

In Equation 20, GRADQ5 is the gradient of the flow duration curve between Q5 and Q10 
under the assumption of a log-normal approximation. The QMED linking equation is based 
on Q5 and Q10, the daily mean flows exceeded on 5% and 10% of days on average, 
along with DPSBAR and gauged BFI, and is calibrated to a data set of 336 catchments 
from 139 to 4,400 km2. As it incorporates information about the flow regime directly, there 
is no obvious reason why it would apply less to smaller catchments. Further work should 
review the performance of the QMED linking equation as applied to the project data set, 
including the proportion of unexplained variance in QMED in small catchments relative to 
larger catchments. Given that it was developed using a more diverse set of catchments 
and its factorial standard error (1.31) is larger than that of many two- and three-parameter 
models in Table 9, it is almost certain that a more developed QMED linking-type equation 
specific to small catchments would reduce QMED estimation uncertainty in small 
catchments further. 

Despite the strong performance of both the QMED linking equation and the best equations 
developed in this section compared to purely catchment-descriptor based QMED 
estimation methods, it is important to note that a value of QMED estimated by any method 
incorporating gauged data cannot be used as a substitute ‘gauged’ QMED value for donor 
transfer, due to the uncertainty that still remains in the estimate: a factorial standard error 
of 1.3 still corresponds to a 95% confidence interval of 60 to 167% of the calculated value. 
For a hypothetical donor typical of those available in the NRFA peak flow data set, version 
4.1 (record length = 40, β = 0.2), the 95% confidence interval of QMED is just 88 to 113% 
of the gauged value. 
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7. Donor transfer in small catchments 

7.1 Revisiting donor transfer procedures 
The existing FEH statistical method recommends using donor transfer in all cases and 
recommends geographical proximity between the donor and target catchment centroids as 
the main factor for donor selection. Donor transfer gives an adjusted QMED value as 
shown in Equations 21 and 22. 

Equation 21 – FEH statistical QMED adjustment by donor transfer: general form 

𝑄𝑄𝑄𝑄𝑄𝑄𝐷𝐷𝑠𝑠,𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑄𝑄𝑄𝑄𝑄𝑄𝐷𝐷𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐 �
𝑄𝑄𝑄𝑄𝑄𝑄𝐷𝐷𝑔𝑔,𝑜𝑜𝑜𝑜𝑜𝑜

𝑄𝑄𝑄𝑄𝑄𝑄𝐷𝐷𝑔𝑔,𝑐𝑐𝑐𝑐𝑐𝑐
�
𝛼𝛼

 

Equation 22 – FEH statistical QMED model error correlation, used for donor transfer
   

𝛼𝛼 =  0.4598𝑒𝑒−0.0200𝑑𝑑𝑖𝑖𝑖𝑖 + (1 − 0.4598)𝑒𝑒−0.4785𝑑𝑑𝑖𝑖𝑖𝑖  

In Equations 21 and 22, subscripts s and g refer to the target site and a nearby gauged 
site respectively, subscripts adj, cds and obs refer to adjusted, estimated (from catchment 
descriptors) and observed (gauged) QMED respectively, and dsg in Equation 22 refers to 
the geographical distance between the target and gauged catchment centroids, in 
kilometres. 

Kjeldsen and others (2008) imply that location of the donor and target on the same river 
network may be advantageous, but also that gains will be marginal and that geographically 
close catchments are more likely to be on the same network anyway. The form of 
Equation 22 implicitly requires that the donor should have low sampling error in ln(QMED), 
as derived on pages 42 to 43 of Kjeldsen and others (2008), which in practice means a 
long AMAX record. More recent work (Kjeldsen and others, 2014) has presented a 
framework for weighted donor transfer from multiple donor catchments and suggests six 
donors as the typical optimal trade-off between increasing the amount of gauged 
information contributing to an estimate and the decreasing relevance of each additional 
piece of information relative to the last. 

In practice in small catchments, donor transfer is often ignored or factors other than 
proximity are prioritised. This overlooks a key feature of the method used to fit the FEH 
statistical equation: that it accepts that four catchment descriptors are not enough to 
capture all variations in ln(QMED) and, accepting this, that it attempts to give local 
consistency of estimates at the cost of imposing long-range spatial patterns in residuals. In 
other words, the method is designed to cluster positive and negative model residuals, and 
the optimisation procedure sets the distance over which the clusters form and recede. This 
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is shown most obviously in Figure 2.3 of ‘Making better use of local data in flood frequency 
estimation’ (Environment Agency and others 2017), while the effect of donor transfer on 
negating these patterns is shown in Figures 2.4 and 2.5. 

Because the overarching pattern in residuals is coerced to relate to geographical location 
over any other factor, hydrological similarity is, on average, less important than proximity 
when selecting a donor. Indeed, if a donor is selected according to similarity in catchment 
descriptors, then it is implied that model residuals are correlated with those descriptors. 
Selecting a donor because of similarity in AREA, for instance, implies an overall 
correlation between model residuals and AREA, which has not been observed (Vesuviano 
and others, 2016). Furthermore, the structure of equation 20 shows that the best donors 
are those that show similar levels of over or underestimation to the catchment of interest 
(model error correlation, discussed in Section 3.2 of this report). 

However, it is noted that spatial correlation in residuals is a general pattern, not a fixed 
rule, so donor transfer in practice only acts to reduce the spatial correlations between 
residuals – it doesn’t necessarily reduce every residual across the whole UK. Furthermore, 
not every residual can map perfectly onto the overarching pattern of positive and negative 
values. Small catchments are more heterogeneous as a group (i.e. they are more varied, 
as uncommon small-scale hydrological features have the potential to occupy more of the 
catchment’s area and dominate the hydrological response), and potentially more spatially 
homogeneous when considered individually (i.e. they are often too small to include areas 
with vastly differing hydrological properties). Therefore, they are not typical of the majority 
of larger catchments used in developing the existing FEH statistical model and may be 
less likely to fit the typical pattern of residuals. 

Table 10 demonstrates the results of applying automated donor transfer procedures to the 
93 small catchments used to calibrate the new small catchments QMED model. QMED is 
always estimated using the existing FEH statistical equation and selection is based 
entirely on the proximity of donor and target catchment centroids. 

Table 10 - Residuals in ln(QMED) estimates in relation to distance-only donor 
transfer (existing FEH model, 93 small catchments) 

No. donors No. residuals 
reduced 

(vs 0 donors) 

No. residuals 
increased 

(vs 0 donors) 

Mean 
ln-residual 

Mean 
(ln-residual2) 

0 N/A N/A −0.0085 0.3482 

1 43 40 −0.0210 0.3473 

2 50 43 −0.0245 0.3667 

6 51 42 −0.0211 0.3651 
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Table 10 shows that the smallest mean residual is achieved without donor transfer, and 
that the spread of residuals is larger for two or six donors than for zero or one. Though this 
result may be taken to imply that donor transfer is unnecessary or actively unhelpful in 
small catchments, it could also indicate that it is the automated selection procedure that is 
unhelpful. This supports the premise that QMED residuals for small catchments may not 
follow the overarching spatial pattern of the residuals in general. 

The effectiveness of the donor transfer procedure in small catchments is tested here using 
the existing FEH statistical method, as the larger number of catchments included in 
calibration of that method was enough to allow residuals to be coerced to a consistent 
spatial pattern across the UK. Observation of the blue circles on Figure 1 suggests that the 
spatial correlation fitted to either the retuned FEH equation or the new small catchment 
equation residuals could be compromised by the sparseness of catchments. In any case, 
the residuals for either equation are fitted in such a way that spatial correlation between 
them reduces below 0.01 at a centroid-centroid distance of less than 2 km (as shown by 
the fitted φ values in equations 15 and 17) – effectively, no spatial correlation was fitted 
between residuals for either the retuned FEH equation or the new small catchment 
equation. Consequently, the donor transfer relationship for the existing FEH statistical 
method, reproduced in Equations 21 and 22, is not suitable for either the retuned equation 
or new small catchment equation (model 4ABAB). 
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Figure 22 - Correlations between residuals in ln(QMED) and catchment descriptors 
for the existing FEH QMED equation 
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Given that no spatial correlation between residuals is evident when only this sparse data 
set of small catchments is considered, potential correlations were investigated between 
residuals and catchment properties. The eighteen scatter graphs in Figure 22 show 
several apparent correlations between residuals in ln(QMED) estimated by the existing 
FEH equation and eighteen catchment descriptors. There appear to be negative 
associations with wetter catchments (as measured by SAAR, PROPWET or any RMED13 
descriptor), and steeper and higher catchments (although these may also be wetter 
catchments). Indeed, this is to be expected somewhat, as the coefficients fitted to the 
(1000/SAAR) term are very different between the existing FEH statistical equation and the 
retuned FEH equation. Therefore, the relationship between the raw SAAR value and the 
fitted term is noticeably different (Figure 9). 

In addition, there appear to be mildly positive associations with flood plain descriptors 
FPEXT and FPDBAR. Therefore, selecting suitable donors could beneficially consider 
catchment wetness and rainfall, and potentially flood plain characteristics. It is noted that 
there is no serious correlation between residuals in ln(QMED) and AREA. This reinforces 
the findings of SC090031/R2 (‘Performance of FEH peak flow estimation methods in small 
catchments) and Vesuviano and others (2016) and is further confirmed by the similarity in 
the coefficients given to AREA in the FEH statistical equation and the retuned FEH 
equation (Figure 9). 
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Figure 23 - Correlations between residuals in ln(QMED) and ratios of catchment 
descriptors (donor:target) for the existing FEH statistical equation (note: NRFA Peak 

Flows dataset v4.1 did not include FPDBAR) 
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The eighteen scatter graphs in Figure 23 plot model residuals against the ratio of 
catchment descriptor values between a donor and the catchment of interest, for seventeen 
different descriptors (note that ratios of FPDBAR values are not plotted as these are not 
made generally available with the NRFA’s peak flow data set). Figure 23 shows that 
underestimation becomes more prevalent if SAAR at the donor is more than 1.2× SAAR at 
the target. Similarly, overestimation of QMED tends to become more prevalent if SAAR at 
the donor is less than 0.8× SAAR at the target. This is consistent with Figure 22, which 
shows increasing overestimation with increasing SAAR. A similar consistency between 
FPEXT value at the target, FPEXT value at the donor, and over- or underestimation is also 
visible. 

Given that hydrologists will tend to use judgement in selecting donors, two modified 
versions of the automated donor selection procedure are tested on the 93-catchment data 
set of catchments up to 25 km2. The first places bounds on the maximum permitted 
dissimilarity between donor and target in terms SAAR. Specifically, the donor catchment 
SAAR must be within ±20% of the target catchment SAAR. The second places the same 
bounds on SAAR but also specifies that the donor catchment AREA must not be more 
than five times or less than one-fifth of the target catchment AREA. For target catchments 
under 5 km2, this rule is relaxed to allow donors up to 25 km2. The existing FEH (2008) 
equation is used to estimate QMED, and all other aspects of the automated donor 
selection procedure are unchanged – potential donors are first filtered by similarity, then 
selected in order of centroid-centroid distance.The results of the first modified donor 
transfer procedure are shown in Table 11 and the results of the second in Table 12. 

Table 11 - Residuals in ln(QMED) estimates in relation to distance and SAAR-based 
donor transfer (existing FEH model, 93 small catchments) 

No. donors No. residuals 
reduced 

(vs 0 donors) 

No. residuals 
increased 

(vs 0 donors) 

Mean 
ln-residual 

Mean 
(ln-residual2) 

0 N/A N/A −0.0085 0.3482 

1 40 53 0.0212 0.3536 

2 50 43 −0.0268 0.3703 

6 50 42 0.0224 0.3791 
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Table 32 - Residuals in ln(QMED) estimates in relation to distance, AREA and SAAR-
based donor transfer (existing FEH model, 93 small catchments) 

No. donors No. residuals 
reduced 

(vs 0 donors) 

No. residuals 
increased 

(vs 0 donors) 

Mean 
ln-residual 

Mean 
(ln-residual2) 

0 N/A N/A −0.0085 0.3482 

1 46 46 0.0014 0.3711 

2 54 37 −0.0056 0.3813 

6 52 39 0.0215 0.3690 

Perhaps, surprisingly, a donor transfer procedure in which SAAR is filtered (Table 11) 
offers lower performance than one that is not filtered at all (Table 10) in terms of the 
number of residuals reduced, mean residual and spread of residuals, despite the observed 
trend relating SAAR and model error. However, this finding is considered less surprising 
once the amount of variation in model error at any particular subset of similar SAAR 
values is considered (Figure 22). This finding is consistent with page 68 of the 
Environment Agency’s Flood Estimation Guidelines (LIT 11832: Environment Agency, 
2022), which state that “It is not essential for donor and subject sites to be similar in 
catchment area, BFIHOST and other catchment descriptors included in the QMED 
regression equation”. 

Despite the observed lack of correlation between model error and AREA, a donor transfer 
procedure in which potential donors are first filtered by SAAR and AREA appears at first to 
show promising results. However, there are both advantages and disadvantages to 
filtering potential donors. The first advantage is that the number of residuals reduced is 
greater when donors are filtered, meaning that there is a slightly better chance of reducing 
the model residual at an arbitrary site. The second advantage is that the mean residual is 
closer to zero when either one or two donors are used. However, the spread of residuals is 
greater when donors are first filtered by SAAR and AREA, meaning that the lower mean 
residual is caused by a more even balance between total over and underestimation across 
all sites, not necessarily by existing estimates. In fact, viewed in the context that filtered 
donor transfer reduces the model error at slightly more sites, the only way that the spread 
of errors could be increased while the majority of errors are made smaller is by making the 
model errors much larger at a minority of sites. The main criticism of filtered donor transfer 
is that, unlike distance-only donor transfer, there is no number of donors that gives a lower 
spread of residuals than is achieved with zero donors. 

Figure 24 plots absolute model residuals after SAAR and AREA-filtered donor transfer 
against absolute model residuals after distance-only donor transfer. As implied by the 
statistics shown in Table 12, filtered donor transfer offers marginal improvements over 
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distance-only donor transfer mainly when the model residual is already small. When the 
model residual is larger, that is, when the existing FEH statistical method performs less 
well, filtered donor transfer is generally less helpful than distance-only donor transfer in 
reducing model residuals. Another disadvantage of filtering potential donors by similarity in 
catchment descriptors is that the pool of suitable donors is reduced. In this study, applying 
rigid bounds on the permissible AREA and SAAR of potential donors only allowed donor 
transfer for 92 catchments and multiple donors for 91 catchments. Both catchments where 
multiple donor transfer was made impossible were in Northern Ireland, which has only 39 
potential donors in total. 

For catchments larger than 25 km2, limiting the range of donors could be detrimental as 
the existing FEH statistical method fits spatial correlations to model residuals, so excluding 
some donors from consideration means that the ones selected will generally be further 
away from the target. Tables 13 and 14 repeat the studies shown in Tables 10 and 11, but 
consider all 847 QMED-suitable catchments in the NRFA database. Urban target 
catchments are considered deurbanised, but donors must be rural. Figure 25 plots 
absolute model residuals after SAAR and AREA-filtered donor transfer against absolute 
model residuals after distance-only donor transfer. 

  



73 of 85 

 

Figure 24 - Comparison of absolute model errors achieved by distance-only and 
filtered donor transfer (existing FEH statistical model, small catchments) 

The x-axes and y-axes both plot the magnitude of the existing FEH statistical QMED 
model residual from 0.0 to 2.0. The x-axis plot absolute residual when donors are selected 
by distance only, while the y-axis plots absolute residual when donors are filtered by 
SAAR and AREA, then selected by distance. The four graphs compare different numbers 
of donors: 

• Top-left graph: 0 donors. 
• Top-right graph: 1 donor. 
• Bottom-left graph: 2 donors. 
• Bottom-right graph: 6 donors. 

Tables 13 and 14 show almost the opposite to Tables 10 and 12. Mean residual is lower 
when donors are not filtered by AREA and SAAR. However, the numbers of residuals 
reduced and the spread of residuals may point towards the benefits of a modified donor 
transfer method for larger catchments, although Figure 25 shows this effect to be very 
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inconsistent, with both distance-only and filtered donor transfer outperforming each other 
at different sites, and much smaller model residuals (therefore much smaller 
improvements due to donor transfer) at the vast majority of sites. It is crucial to note that 
calculation of α is still based on Equation 22, so if a more similar but more distant 
catchment is used, rather than a less similar but closer one, α is still reduced. 

 

Figure 25 - Comparison of absolute model errors achieved by distance-only and 
filtered donor transfer (existing FEH statistical model, full NRFA database version 

4.1, suitable for pooling) 

Figure 25 is analogous to Figure 24, but considers the full NRFA Peak Flows v4.1 data 
set. 

The x-axes and y-axes both plot the magnitude of the existing FEH statistical QMED 
model residual from 0.0 to 3.5. The x-axis plot absolute residual when donors are selected 
by distance only, while the y-axis plots absolute residual when donors are filtered by 
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SAAR and AREA, then selected by distance. The four graphs compare different numbers 
of donors: 

• Top-left graph: 0 donors. 
• Top-right graph: 1 donor. 
• Bottom-left graph: 2 donors. 
• Bottom-right graph: 6 donors. 

Table 43 - Residuals in ln(QMED) estimates in relation to distance-only donor 
transfer (QMED-suitable catchments, full NRFA database version 4.1) 

No. donors No. residuals 
reduced 

(vs 0 donors) 

No. residuals 
increased 

(vs 0 donors) 

Mean 
ln-residual 

Mean 
(ln-residual2) 

0 N/A N/A 0.0096 0.1685 

1 483 364 −0.0084 0.1532 

2 487 360 −0.0187 0.1535 

6 497 350 −0.0228 0.1472 

Table 54 - Residuals in ln(QMED) estimates in relation to distance, SAAR and AREA-
based donor transfer (QMED-suitable catchments, full NRFA database version 4.1) 

No. donors No. residuals 
reduced 

(vs 0 donors) 

No. residuals 
increased 

(vs 0 donors) 

Mean 
ln-residual 

Mean 
(ln-residual2) 

0 N/A N/A 0.0096 0.1685 

1 510 336 −0.0036 0.1463 

2 502 341 −0.0117 0.1347 

6 494 346 −0.0146 0.1264 

The eighteen scatter graphs in Figure 26 show the model residual of the retuned 
(< 25 km2) FEH statistical QMED equation against the values of eighteen different 
catchment descriptors. For the retuned FEH equation, there are no strong relationships 
between model residual and any catchment descriptor. While this does reinforce how this 
equation applies particularly well to small catchments (or at least the 93 catchments used 
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in its calibration), it does not help identify what catchment properties may be useful for 
identifying suitable donors. Tables 15 and 16 test distance-only donor transfer against that 
filtered by AREA and SAAR for the retuned FEH equation. These show that, while any 
type of donor transfer has an overwhelmingly negative effect on the estimates given by 
retuned FEH equation, the mean and spread of the retuned FEH equation residuals with 
zero donors is already smaller than that of the existing FEH equation with any donor 
selection scheme and any number of donors. 
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Figure 26 - Correlations between residuals in ln(QMED) and catchment descriptors 
for the retuned FEH statistical QMED equation 
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Table 6 - Residuals in ln(QMED) estimates in relation to distance-only donor transfer 
(retuned FEH equation, 93 small catchments) 

No. donors No. residuals 
reduced 

(vs 0 donors) 

No. residuals 
increased 

(vs 0 donors) 

Mean 
ln-residual 

Mean 
(ln-residual2) 

0 N/A N/A 0.0025 0.2963 

1 41 52 −0.0099 0.3042 

2 42 51 −0.0134 0.3252 

6 44 49 −0.0100 0.3250 

 

Table 76 - Residuals in ln(QMED) estimates in relation to distance, AREA and SAAR-
based donor transfer (retuned FEH equation, 93 small catchments) 

No. donors No. residuals 
reduced 

(vs 0 donors) 

No. residuals 
increased 

(vs 0 donors) 

Mean 
ln-residual 

Mean 
(ln-residual2) 

0 N/A N/A 0.0025 0.2963 

1 41 51 0.0097 0.3347 

2 42 49 0.0031 0.3495 

6 38 53 0.0302 0.3428 

 

7.2 Recommendations for donor transfer 
The standard procedure for donor transfer in the existing ‘improved’ FEH QMED equation 
has been revisited specifically for small catchments and tested with the existing FEH 
model and new small catchments model (model 4ABAB). As there is little spatial 
correlation between residuals in ln(QMED) for this data set of small catchments, the main 
motivation for always selecting the closest donor is weakened. By comparing residuals to 
catchment descriptors, a procedure whereby potential donors were ‘filtered out’ based on 
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how dissimilar they were to the target catchment, in terms of SAAR and AREA, was 
tested. 

For the existing FEH model, this was found to result in slightly lower mean ln-residuals and 
in reduced magnitudes of ln-residual at slightly more sites, with the use of two donors 
being better than one in terms of number of residuals reduced. However, further 
investigation found that the ‘filtered’ donor selection method offered the most improvement 
over distance-only donor transfer at sites where the model residual was already small 
before donor transfer. At sites where the model residual was larger, that is, where the 
existing FEH statistical method performed less well, filtered donor transfer was generally 
less helpful than distance only donor transfer in reducing model residuals. 

For model 4ABAB, neither distance-only nor ‘filtered’ donor transfer, with any number of 
donors, was found to reduce either the mean or spread of model residuals or reduce the 
model residual at more than half of the test sites. This means that, according to any 
assessment metric, donor transfer is actively unhelpful for model 4ABAB. However, even 
without donor transfer, the mean residual for model 4ABAB is near-zero and the spread of 
residuals is considerably lower than can be achieved with any number of donors using the 
existing FEH model. 

In situations where both the target catchment and potential donors are larger (above 
25 km2), it is recommended that a close donor catchment, based on the distance between 
catchment centroids, is selected. This is because the existing FEH statistical method was 
designed to constrain any variance not explained by the catchment descriptors into a 
consistent spatial pattern. Spatially consistent variation in residuals is clear when viewed 
across the UK as a whole (Environment Agency, 2017; Figure 2.3). However, evidence 
from Table 14 suggests that some judgement based on hydrological similarity is justified, 
that is, that the most suitable donor will be nearby and hydrologically similar. However, as 
Figure 19 shows strong correlation between error in estimated ln(QMED) and less-
commonly-used catchment descriptors (for example, FPEXT, DPSBAR), it is likely that 
further research into trade-offs between proximity and hydrological similarity will reveal the 
importance of catchment descriptors other than those most commonly used for assessing 
hydrological similarity. 
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8. Conclusions and recommendations 

8.1 Conclusions 
• The best performing catchment descriptor-based models for ln(QMED) in small 

catchments all contain ln(AREA), one HOST descriptor and one rainfall descriptor. 
These are the same for both the existing FEH model and MacDonald and Fraser’s 
small catchment QMED model, suggesting that the same high-level descriptive 
statistics still capture whatever the different rare event flood-generating processes 
may be between small and larger catchments. 

• The selection of rainfall descriptor is complicated by the strong correlations 
between all rainfall descriptors. The ranking of rainfall descriptors in terms of their 
effect on model log-likelihood can almost certainly be influenced by the choice of 
calibration catchments. Therefore, while a larger calibration data set might result in 
a QMED model with a different rainfall descriptor, the value of QMED predicted by 
that model is unlikely to be very different. 

• Incorporation of gauged flow statistics, specifically Q10 and BFI in this study, 
greatly reduces model structure error in the predicted QMED equation. 

8.2 Recommendations 

QMED estimation 

• Additional research carried out on a further screened data set and reported in 
Section 3 of the ‘Small catchments overview report’ (R0), leads to the 
recommendation to continue using the existing (2008) FEH statistical QMED 
equation to estimate QMED in small ungauged catchments. To avoid any doubt, 
this equation is repeated below (Equation 23). 

Equation 23 - QMED equation  

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 =  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴0.85100.1536
1000
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹3.44510.0460𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵2 

• If gauged flow statistics are available, the QMED linking equation, included in 
WINFAP 4, is recommended over all purely catchment-descriptor based methods 
for estimating QMED. This equation is repeated below for convenience (Equation 
24). 

Equation 24 – QMED linking equation 

𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 =  1.762𝑄𝑄50.866(1 +  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺5)−0.775𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷0.2650.2388𝐵𝐵𝐵𝐵𝐵𝐵2 
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Donor transfer 

• Donor transfer is not recommended for use with the retuned FEH equation, as both 
the distance-only and ‘filtered’ methods of donor selection increased the mean and 
spread of residuals in ln(QMED) estimates and increased the magnitude of 
residuals at more than half of the 93 test small catchments. 

• Donor transfer is recommended if the existing FEH statistical method is used to 
estimate QMED in small catchments. Although there are some advantages to 
filtering potential donors by AREA and SAAR, they are outweighed by 
disadvantages, particularly if the estimate of QMED given before donor transfer is 
poor (which will not be known if the catchment of interest is ungauged). 

• Donor transfer is unnecessary when the QMED linking equation is used, as it 
incorporates gauged at-site flow data from the site of interest directly. 

• For larger catchments (that is, both target and potential donor > 25 km2), donor 
selection should normally be based on centroid-centroid distance between the 
catchments. However, there may be some potential benefits in considering 
hydrological similarity when selecting donors. These are more difficult to assess, as 
model residuals are smaller, both before and after donor transfer. 

Further work 

• Further work is required to identify which catchment descriptors are most strongly 
linked to residuals in estimated ln(QMED) for larger catchments, and over what 
ranges, as it is similarity between these descriptors that will be most important in 
determining suitable donors to counteract modelling error in the QMED equation. 

• Given the importance of gauged flow statistics, further work should evaluate the 
performance of the QMED linking equation in small catchments specifically, and 
whether a similar, small catchment-specific equation incorporating gauged flow 
statistics can further reduce uncertainty in small catchments. 
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List of abbreviations 
AMAX  Peak instantaneous annual maximum flow 

BFI  Baseflow index 

FEH  Flood Estimation Handbook 

GLO  Generalised logistic distribution 

HOST  Hydrology of soil types 

IHDTM Integrated Hydrological Digital Terrain Model 

ML  Maximum likelihood 

MORECS Met Office Rainfall and Evapotranspiration Calculation System 

NRFA  National River Flow Archive 

POT  Peaks-over-threshold 

PRUAF Percentage runoff urban adjustment factor 

QMED Median annual flood, normally estimated as median of AMAX series 

RMED  Median annual rainfall, normally estimated from a rainfall model 

SPR  Standard percentage runoff 
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Would you like to find out more about us or 
your environment? 
Then call us on 

03708 506 506 (Monday to Friday, 8am to 6pm) 

Email: enquiries@environment-agency.gov.uk 

Or visit our website 

www.gov.uk/environment-agency 

incident hotline  
0800 807060 (24 hours) 

floodline  
0345 988 1188 (24 hours) 

Find out about call charges (https://www.gov.uk/call-charges) 

Environment first 
Are you viewing this onscreen? Please consider the environment and only print if 
absolutely necessary. If you are reading a paper copy, please don’t forget to reuse and 
recycle. 

mailto:enquiries@environment-agency.gov.uk
https://www.gov.uk/environment-agency
https://www.gov.uk/environment-agency
https://www.gov.uk/call-charges
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