

.

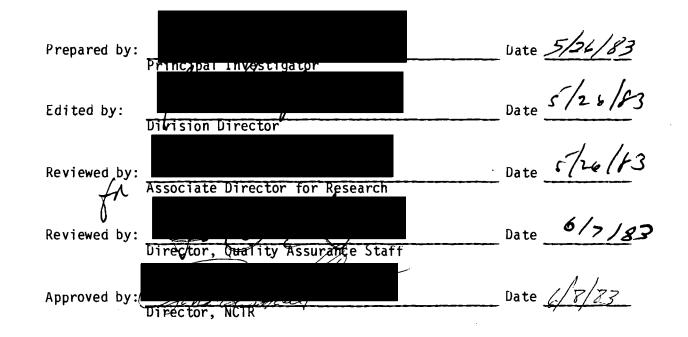
FINAL REPORT

Ί

(

F

 $\mathbf{1}$


September 1982

DOXYLAMINE

90 DAY SUBCHRONIC STUDY IN B6C3F1 MICE

NCTR EXPERIMENT NO. 376

NTP EXPERIMENT NO. 5010-02

90 DAY SUBCHRONIC STUDY REPORT ON

DOXYLAMINE

IN B6C3F1 MICE

NATIONAL TOXICOLOGY PROGRAM

NCTR EXPERIMENT NO. 376 NTP EXPERIMENT NO. 5010-02

.

.

NATIONAL CENTER FOR TOXICOLOGICAL RESEARCH Jefferson, Arkansas 72079 September 1982

TABLE OF CONTENTS

Ĵ

į

.

CONTRIBUTING PERSONNEL	i
ABSTRACT	ii
I. INTRODUCTION	1
 A. Chemistry B. Animals C. Animal Maintenance D. Study Design 	
 B. Food Consumption C. Survival D. Clinical Observations E. Necropsy Data F. Hematology and Clinical Chemistr G. Organ/Body Weight and Organ/Brai 	
IV. DISCUSSION	
Stability Studies	
Pathogenic Organisms Surveyed	
Method for Animal Randomization Start-up Information Operational Schedule Pathology Protocol Method for Determining MTD Terminal Sacrifice Schedule ESS Recap	

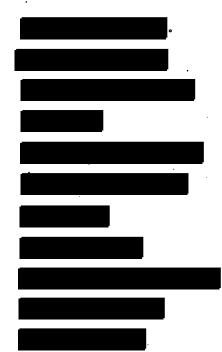
Individual Animal Data	
Histopathology	
Average Daily Dose Concentration	
Statistical Methods	
Individual Body Weight	
Lowest Effective Dose on Organ Weights	
Organ Weight to Brain Weight Ratios	
Organ Weight to Terminal Weight Ratios	
Hematology and Clinical Chemistry Data	
Clinical Observations	
APPENDIX D - LIST OF STANDARD OPERATING PROCEDURES	
APPENDIX E - VERIFICATION MEMO	227
APPENDIX F - QUALITY ASSURANCE REPORTS	

1

LIST OF TABLES AND FIGURES

-

· · ·


	Page
Table 1. Summary of Significant Toxicological Parameters	iii
Figure 1. Average Body Weight by Dose - Male Mice	7
Figure 2. Average Body Weight by Dose - Female Mice	8
Table 2. Average Weekly Food and Chemical Consumption - Male Mice	9
Table 3. Average Weekly Food and Chemical Consumption - Female Mice	10
Figure 3. Average Food Consumption - Male Mice	11
Figure 4. Average Food Consumption - Female Mice	12
Table 4. Final Body Weights	13
Table 5. Hematology/Clinical Chemistry	14

CONTRIBUTING PERSONNEL

ŕ

Principal Investigator: Statistics and Design: Pathology, Necropsy & Histology: Animal Allocation: Heights and Obesrvations: Dose Preparation: Dose Analysis and Chemical Reanalysis: Clinical Pathology: Data Management & Retrieval: Veterinarian:

Quality Assurance:

ABSTRACT

Doxylamine is a drug used as an antihistamine in allergies, rhinitis and skin conditions and has sedative and mild local anesthetic properties. Its use as an antihistamine has been minor but doxylamine has been used extensively as a sleep inducing agent. Doxylamine was selected for testing because of its widespread use and its chemical similarity to methylpyrilene, an antihistamine which has been found to be carcinogenic in rats.

A 14-day repeated-dose subchronic dosed-feed study was conducted on doxylamine. Based on the effects of the chemical on body weight gain and histopathological exams, dose levels of 0, 80, 162, 325, 750 and 1500 ppm were selected for this 90-day subchronic study in mice.

Dosed feed was available to the animals throughout the study. There were no chemical related deaths and all of the mice lived until the terminal sacrifice at the end of the study. Clinical observations during the study were not remarkable. Except for a few scattered instances of scratches and sores, the only significant clinical observations were skinny appearances which correlated with reduced body weight gain. When body weight gain was compared to gain of controls, there was a reduced weight gain in all but the lowest dose level in males and in every dose group in females. Weight gain was reduced up to 44% in males and 40% in females. These values, however, reflect differences due to small weight differences (2-4 grams) and are difficult to interpret with precision. A better determinant of chemical effect may be the comparison of final body weights. In this comparison, the same dose levels were effective but the difference was more modest with the highest dose level (1500 ppm) producing a reduction of 8.0% and 10.3%, in males and females, respectively, compared to controls. Considering the erratic nature of mouse body weight data, there was a minimal effect even at the highest dose level.

There were no significant abnormal observations made at necropsy in either male or female mice. Microscopic lesions which were chemical related were found in the liver only. The lesions consisted of cell cytomegaly or karyomegaly which varied from mild to severe, in low to high dose levels, respectively. Only females in the lowest dose group did not have treatment related lesions. A mild degree of liver necrosis was approximately constant irrespective of dose. It was extensive in only three animals, one in the highest dose group and two in lower dose groups.

Serum levels of the hepatic enzyme ALT was elevated by treatment with doxylamine in both males and females while AST levels were elevated in females only.

Several organ weights appeared to be affected by doxylamine administration including, brain, liver, lung, kidney, testis, and thymus. The only two, however, that appeared consistent when either organ/body weight or organ/brain weight ratios were compared were increased liver weights and decreased kidney.

All the significant observations are summarized in the attached Table 1.

ii

TABLE 1

SUMMARY OF SIGNIFICANT TOXICOLOGICAL PARAMETERS FOR MALE B6C3F1 MICE IN 90-DAY SUBCHRONIC STUDY ON DOXYLAMINE

Dose (% in feed)	Mortality	Weight Gain in Grams (% Difference) from controls)	Significant Clinical Observations	Significant Gross Observations	Significant Pathological Observations (incidence)
Control	0/12	9 ()	Alopecia(2/12)	0/12	Lung-hermorrhage (1/12) Kidney-cytoplasmic vacuolization (1/12) Liver-vacuolated cell foci (1/12) Preputial glands-ectasia (3/6)
0.0080	0/12	8.9 (-1.9)	U/6	0/12	Liver-karyomegaly (1/12) -cytomegaly (4/12) -necrosis (4/12) -cytoplasmic vacuolization (6/12) -acute inflammation (1/12) -chronic inflammation (1/12) -calcification (2/12) -granulomatous inflammation (1/12)
.0162	0/12	4.6 (-48.9)	Sores-anal (1/12) Scratches body (1/12) Scratches anal (1/12)	0/12	Liver-vacuolated cell foci (1/12) -karyomegaly (6/12) -cytomegaly (9/12) -cytoplasmic vacuolization (9/12)
0.0325	0/12	5.6 (-37.8)	Rough hair (4/12) Scratches (3/12)	0/12	Liver-karyomegaly (7/12) -cytomegaly (11/12) -nuclear inclusion (1/12) -necrosis (3/12) -cytoplasmic vacuolization (5/12) -lymphocytic accumualtion (1/12) -pigmentation (1/12)

TABLE 1 (continued)

.

SUMMARY OF	SIGNIFICANT	TOXICOLOGICAL PARAMETERS FOR MALE B6C3F1 MICE	•
	IN 90-DAY	SUBCHRONIC STUDY ON DOXYLAMINE	

Dose (% in feed)	Mortality	Weight Gain in Grams (% Difference from controls)	Significant Clinical Observations	Significant Gross Observations	Significant Pathological Observations (incidence)
0.0750	0/12	7.5 (-17.2)	Alopecia(1/12)	0/12	Liver-karyomegaly (12/12) -cytomegaly (12/12) -nuclear inclusion (3/12) -necrosis (3/12) -cytoplasmic vacuolization(10/12) Preputial gland-ectasia (1/1)
0.1500*	0/12	5.0 (-44.8)	Scratches(1/12)	0/12	Lung-hemorrhage (1/12) Liver-karyomegaly (11/12) -cytoplasmic alteration (1/12) -cytomegaly (9/12) -necrosis (11/12) Kidney-tubular dilatation (1/12) Spleen-lymphoid hyperplasia (1/12) -erythropoiesis (1/12) Parotid gland-necrosis (1/12) Preputial gland-ectasia (4/5)

*Significant Clinial Pathological Observation - ALT & AST elevated at this dose level.

.

iv

TABLE 1 (continued)

ſ

Dose (% in feea)	Mortality	₩eight Gain in Grams (% Difference from controls)	Significant Clinical Observations	Significant Gross Observations	Significant Pathological Observations (incidence)
Control	0/12	6.5 (-)	None	None	Lung-hemorrhage (4/12) Liver-vacuolated cell foci (1/12) -necrosis (2/12) Pancreas-islet cell hyperplasia (1/12)
0.0080*	0/12	6.0 (-8.5)	Skinny (1/12)	None	Liver-necrosis (3/12) -lymphocytic accumulation (1/12) -cytoplasmic vacuolization (1/12)
0.0162	0/12	6.2 (-4.9)	None	None	Liver-karyomegaly (1/12) -cytomegaly (1/12) -necrosis (3/12) -cytoplasmic vacuolization (6/12)
0.0325	0/12	5.3 (-19.4)	Skinny (2/12)	None	Liver-karyomegaly (4/12) -cytomegaly (6/12) -acute inflammation (2/12) -cytoplasmic vacuolization (2/12)
0.750	0/12	5.1 (-21.5)	Skinny (1/12)	None	Liver-karyomegaly (8/12) -cytomegaly (9/12) -necrosis (4/12) -acute inflammation (1/12) -cytoplasmic vacuolization (9/12)

SUMMARY OF SIGNIFICANT TOXICOLOGICAL PARAMETERS FOR FEMALE B6C3F1 MICE IN 90-DAY SUBCHRONIC STUDY ON DOXYLAMINE

Ľ

.

TABLE 1 (continued)

١

SUMMARY OF SIGNIFICANT TOXICOLOGICAL PARAMETERS FOR FEMALE B6C3F1 MICE IN 90-DAY SUBCHRONIC STUDY ON DOXYLAMINE

Dose (% in feed)	Mortality	Weight Gain in Grams (% Difference from controls)	Significant Clinical Observations	Significant Gross Observations	Significant Pathological Observations (incidence)
0.1500	0/12	3.9 (~40.0)	Skinny (3/12)	0/12	Lung-chronic inflammation (1/12) Liver-acidic cell foci (2/12) -karyomegaly (11/12) -cytomegaly (11/12) -cytoplasmic inclusion (1/12) -necrosis (12/12) Spleen-erythropoiesis (3/12) Parotid gland-necrosis (1/12)

*Significant Clinical Pathological Observations - AST elevated at this dose level.

.

I. INTRODUCTION

Results of the doxylamine 14-day subchronic study did not demonstrate significant effects of the chemical at the highest dose level used (2000 ppm). However, since focal hepatic necrosis was observed in mice at the two highest dose levels, and since these were considered to be life threatening, dose levels of 0, 80, 162, 325, 750 and 1500 ppm were selected for this study. The purpose of this study was to determine the maximum tolerated dose (MTD) and to further identify possible target organs.

II. MATERIALS AND METHODS

A. Chemistry

$$\overset{\text{CH}_3}{\underset{C_6H_5}{\overset{\text{CH}_2}{\overset{\text{-}}{\underset{C}}{\overset{\text{CH}_2}{\overset{\text{-}}{\underset{C}}{\overset{\text{-}}{\underset{C}}{\overset{\text{CH}_2}{\overset{\text{-}}{\underset{C}}{\overset{\text{-}}}{\underset{C}}{\overset{\text{CH}_2}{\overset{\text{-}}{\underset{C}}{\overset{\text{CH}_2}{\overset{\text{-}}{\underset{C}}{\overset{\text{CH}_2}{\overset{\text{-}}}{\overset{\text{-}}}{\underset{C}}{\overset{\text{-}}}{\underset{C}}{\overset{\text{CH}_2}{\overset{\text{-}}}{\overset{\text{-}}}{\underset{C}}{\overset{\text{-}}}{\underset{C}}{\overset{\text{CH}_2}{\overset{\text{-}}}{\overset{\text{-}}}{\underset{C}}{\overset{\text{-}}}{\underset{C}}{\overset{\text{CH}_2}{\overset{\text{-}}}{\overset{\text{-}}}{\underset{C}}{\overset{\text{-}}}{\overset{\text{-}}}{\underset{C}}{\overset{\text{-}}}{\underset{C}}{\overset{\text{-}}}{\overset{\text{-}}}{\underset{C}}{\overset{\text{-}}}{\overset{\text{-}}}}{\underset{C}}{\overset{\text{-}}}{\overset{\text{-}}}}{\underset{C}}{\overset{\text{-}}}{\overset{\text{-}}}}{\underset{C}}{\overset{\text{-}}}{\overset{\text{-}}}}{\underset{C}}{\overset{\text{-}}}{\overset{\text{-}}}}{\underset{C}}{\overset{\text{-}}}{\overset{\text{-}}}}{\underset{C}}{\overset{\text{-}}}{\overset{\text{-}}}}{\underset{C}}{\overset{\text{-}}}{\overset{\text{-}}}}{\underset{C}}{\overset{\text{-}}}{\overset{\text{-}}}}{\underset{C}}{\overset{\text{-}}}}{\overset{\text{-}}}}{\underset{C}}{\overset{\text{-}}}{\overset{\text{-}}}}{\underset{C}}{\overset{\text{-}}}{\overset{\text{-}}}}{\underset{C}}{\overset{\text{-}}}{\overset{\text{-}}}}{\underset{C}}{\overset{\text{-}}}{\overset{\text{-}}}}{\underset{C}}{\overset{\text{-}}}{\overset{T}}}{\underset{C}}{\overset{T}}}{\overset{T}}{\overset{T}}}{\underset{C}}{\overset{T}}}{\overset{T}}{\overset{T}}}}{\overset$$

Doxylamine Succinate (N,N-dimethyl-2-[1-phenyl-1-(2-pyridyl)ethoxy]ethane, succinate)

Reference Sample: A reference sample of doxylamine succinate (10g; Lot #001111) was obtained from J.T. Bakter Chemical Co., Vicks Health Care Division. The material obtained was a white solid and contained no detectable impurities. Methods of analysis with purity and chemical characterizations are presented in Appendix A.

Bulk Sample: A bulk sample of doxylamine succinate (12 kg, Lot #L0536-1) was obtained from Richardson-Merrell, Inc., Cincinnati, Ohio. The material received was a white solid and was found to be essentially 100% pure. The methods of analysis with purity and chemical characterizations are presented in Appendix A.

Stability Studies: The stability of doxylamine succinate mixed in animal feed was determined both under conditions of feed utilization (open feeder) and feed storage (sealed in the dark). Both the methods for determining stability as well as the results of the studies are given in Appendix A. Although an analysis was not performed on the highest dose level at the 36 day time point in the short-term study (open feed), it was deduced from the stability of the low dose as well as stability of the high dose for shorter times, that the compound is stable in open containers for up to 36 days. The results also indicated that doxylamine succinate is stable for up to 16 weeks under conditions used for dosed-feed storage. It was concluded that the test chemical is stable in the animal meal for sufficient time to allow administration of the test chemical to test animals in feed.

Storage Conditions: The bulk sample of doxylamine succinate was stored in its shipping container (fiberboard lined with polyethylene) in the dark at ambient temperature $(15^{\circ}-25^{\circ}C)$.

Dosing Preparation and Analysis: A 10% stock solution of doxylamine succinate was prepared in 95% ethanol. Appropriate aliguots were added to 20 kg batches of ground Purina 5010M (meal) in 2-cubic foot Marion Mixer while being mixed. The stock solution was introduced under pressure through a spraying device to insure uniform mixing. After 5 to 15 minutes mixing, a vacuum of 12" Hq was applied and the temperature was maintained at 120° F by means of a hot water jacket. Mixing was continued for 30 minutes after the temperature reached 120°F. The vacuum was then released and the mixer was cooled by circulating tap water. The cooled feed was then mixed an additional 10 minutes. The mixed feed was stored in stainless steel milk cans and labeled Samples were taken from selected batches for appropriately. chemical analysis and dose verification. The feed was then transferred to specially constructed, sterile paper boxes (approximately 150 g feed/box) which fit into the mouse feeders. Each box was labeled with the batch number and dose code. The boxes of feed were sealed in stainless steel containers for transport to and sterilization into the barrier animal room.

After mixing a batch of dosed feed, the mixer was then cleaned and the next higher dose level of feed was mixed. If a lower dose level or a different chemical were to be mixed next, the mixer was thoroughly cleaned with appropriate solvents. Standard Operating Procedures (SOP's) for the mixing, packaging and storage of feed and for the operation and clean-up of equipment are on permanent file in the NCTR Archives.

Dosed feed was prepared using the following dilution chart:

- 1. Stock Solution
 - A. 2000 ml batch -288 g doxylamine succinate* -dilute to 2 l with 95% ethanol
 - B. 4000 ml batch -576 g doxylamine succinate* -dilute to 4 l with 95% ethanol

*Dose level was based on the free anime and not the succinate salt of the amine.

2. Dosed Feed

Target ppm	Stock Conc.	kg Feed	ml Stock	ml Ethanol
80	10%	20	16.0	1984
162	10%	20	32.0	1968
325	10%	20	65.0	1935
750	10%	20	150.0	1850
1500	10%	20	300.0	1700

Vehicle: The doxylamine succinate was added to the feed as a solution in 95% ethanol. No analysis of the ethanol was performed, but USP grade ethanol was used.

Personnel Protection: Doxylamine has been used widely as an antihistamine and mild sedative. The normal therapeutic dose for humans is 100 to 200 mg/kg, usually divided into four doses. Employees were unlikely to be exposed to amounts anywhere approaching therapeutic dose levels, however, instructions given in the NCTR Safety Manual, Section VI.B and VI.E were followed in this study.

Doxylamine was used on the open bench when less than one gram of the chemical was being used. Due to the improbability of personnel receiving toxic doses, it was not necessary to document the open-handling provision for animal caretakers working in animals rooms or in support areas where cages, etc. are cleaned.

When being moved from one place to another, doxylamine was contained as described in the NCTR Safety Manual, Section VI.C.

Employees conducting research with doxylamine were provided protective clothing in compliance with the NCTR Safety Manual, Section VI.D. To prevent skin contact, employees wore impervious gloves and/or face shield where appropriate in compliance with the NCTR Safety Manual. Where dust or vapors and/or odors of doxylamine were present, a respirator providing protection equivalent to 3M8710 or 3M9910 was provided.

Decontamination of laboratories and equipment was by the procedures given in the NCTR Safety Manual, Section VI.G. The workplace was monitored periodically and analyzed by methods similar to those described for feed analysis.

B. Animals

Source: B6C3F1 mice, male and female, 37 days of age were used in this study. Animals within the weight range 14.2g to 25.6g for males and 12.3g to 21.8g for females were allocated. The original breeding stock was obtained from National Institute of Health colonies and were produced and maintained under Specific Pathogen Free (SPF) conditions. Female C56B1/6N and male C3H/HeN MTV- mice were crossed to produce the B6C3F1 hybrid animals.

Quarantine: Since the experimental animals were produced on-site under SPF conditions with continuous microbiological surveillance, no quarantine period was necessary.

Disease and parasite exam: Microbiological surveillance of the production colony was on a continued basis. As of April 1, 1982, 21 female mice of the C57B1/6N strain and 21 male mice of the C3H/HeN MTV- strain were evaluated for primary potential pathogens. Two of the C57B1/6N parents were positive for Reo-3 virus with low titers of 1:20 and 1:40. One parent of the C3H/HeN MTV- strain was positive for Encephalomyelitus virus (GDVII) with a low titer of 1:40. No other potential microbiological pathogens were identified or isolated. Environmental samples from all the breeder rooms were taken on a weekly basis and consisted of feed, cage water, bedding and waste, room air samples, and room and equipment swab samples. All samples were negative for potential pathogenic organisms or did not exceed microbial standards for non-pathogenic organisms. In the experimental animal rooms, composite bedding and waste samples, room air samples, and cage and water samples were sampled from each room on a monthly basis. Approximately two feed samples per experiment were sampled on a weekly basis. Room swab samples were evaluated prior to initiation of the experiment. In this study five feed samples were found to contain excessive bacterial and/or mold contamination and all five were discarded.

Allocation and Randomization: Seventy-two male and 72 female mice were divided into 6 dose groups (5 dose levels plus 1 control group) with 12 mice per group for each sex. The mice were allocated to cages randomly on a weight basis. At the time of allocation, the available mice were weighed and arranged in order from lightest to heaviest. The lightest and heaviest were then discarded in alternating sequence until 72 mice remained. The allocation then proceeded such that the 12 lightest anidmals were assigned at random with two animals going to each dose group. The procedure was then repeated with the next lightest 12 mice, etc., until all 72 had been allocated. Each cage was randomly assigned to one rack for each sex. Details of random allocation of animals are presented in Appendix C.

Animals were identified during the experiment by rack and cage number and by ear clip. Each of the four mice per cage were ear clipped "Both", "None", "Left", or "Right". At the time of death of an animal, each animal was assigned a CID number (Carcass Identification) on the EIS terminal or a manual EIS form was completed. When a mouse was removed for a scheduled sacrifice, the EIS terminal was used and the CID was assigned but no EDCS form was required. CID numbers for the mice of this of this study were preassigned as 37600145 through 37600288.

C. Animal Maintenance

This study was housed in room 151 of Building 5 (A Barrier). Rats, which were also administered doxylamine succinate, were housed in the same room with mice. Mice were housed four per cage in polycarbonate cages that measure $10 \ 1/2" \ x \ 6 \ 1/2" \ x \ 5"$. Hardwood chip bedding was used. Cages were placed on movable stainless steel racks which held 18 cages arranged in 6 columns of 3 cages each. The mice received filtered water from the potable water system which was derived from the well water system. Analysis of the well water is presented in Appendix B. The mice were maintained on control or dosed Purina 5010 M ground meal laboratory chow.

The mice were maintained in a barrier room which was well ventilated and temperature and humidity controlled. Outside air

supplied to the room was passed through a high-efficiency particulate air (HEPA) filter and not recirculated. There were about 17 changes of air per hour with static room air pressure maintained slightly positive to the outside environment. Relative humidity was maintained at set-point of 50% (alarm range: 40-60%) and the set-point for room temperature was 72% (alarm range 70° - 75° F). The room was on a 12 hour light/12 hour dark cycle with fluorescent lighting maintained at 100 foot candles at 3 feet above floor level. All materials entering the room were sterilized. Personnel used clothing and sanitation procedures to meet SPF barrier specifications. Room temperature and humidity were recorded throughout the study. Temperature was recorded 8746 times during the study with 9 recordings exceeding the specifications and none being too low. Humidity readings were made 8711 times with 25 being higher than the specifications. The temperature and humidity readings that were out of the targeted range are presented in Appendix A.

Products used in the maintenance of animals are described in Appendix B.

D. Study Design

The details of the design used in this study are given in the protocol (Appendix C). The operational protocols, designated as Standard Operating Procedures (SOP) are on permanent file in the NCTR Archives. There were no major revisions to the protocol but the minor changes made are presented in Appendix C.

B6C3F1 mice, male and female, were administered doxylamine succinate at dose levels of 0 (control diet) 80, 162, 325, 750 and 1500 ppm. The dose was calculated and prepared on the basis of the free amine and not the succinate. Twelve animals of each sex were treated at each dose level. The chemical was administered in the feed ad libitum for 90 days. All the mice were placed on dosed feed on July 15, 1981 and 36 animals per day were removed from the test diets on October 13-16, 1981. The animals were removed from the diets in the afternoon and fasted overnight until sacrifice the next morning. They were provided water ad libitum at all times.

E. Data Storage

The location of all data and experimental specimens are identified in the Location Directory, Appendix C.

III. RESULTS

A. Body Weights

Individual body weights are presented in Appendix C. Terminal weights are summarized in Appendix C in the table "Group Mean Terminal Weights" and "Organ/Terminal Weight Ratios". Terminal weights also are presented in Results under "E. Necropsy Data" with their difference from controls presented as percentage. Body weights are presented graphically in the following Figures 1 and 2. There was a poor dose-response in effect on weight gain. When terminal weights had been corrected for differences in initial weights, there was a reduction in terminal weights of \mathscr{B} to \mathscr{A} over the dose-range of 162 ppm to 1500 ppm in males. Females exhibited a similar effect with a decreased terminal weight of 5% at 325 ppm to 10% at 1500 ppm. When weight gain was compared, there was a decrease at every treatment level ranging from 2% to 49%, with some intermediate doses having the greatest decrease.

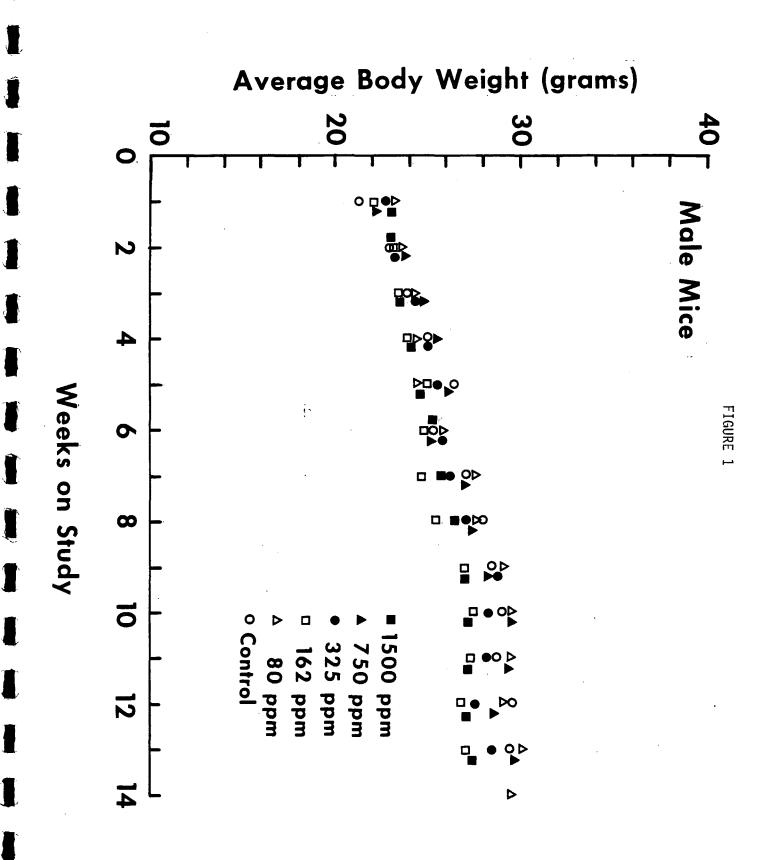
B. Food Consumption

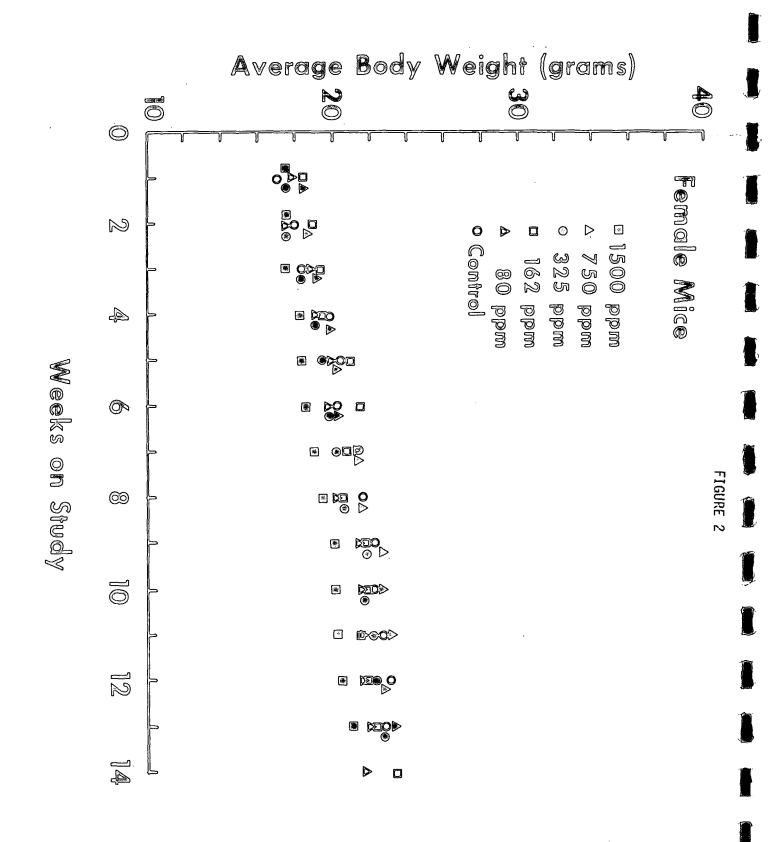
Food consumption and amount of chemical administered data are presented in Tables 2 and 3 and Figures 3 and 4. There was little or no effect of the doxylamine on food consumption at any dose level except the very highest (1500 ppm). The highest dose group appears to have consumed slightly more food than the other doses or controls in nine out of the thirteen weeks. This effect was slight, however, and had little effect on average chemical consumed.

C. Survival

All animals, both male and female, survived until the scheduled terminal sacrifice at the end of the 90 day study.

D. Clinical Observations


There were few treatment-related clinical observations during the course of the study. Several of the male rats were observed to have scratches at 162, 325, and 750 ppm but only 1/12 at the highest dose level of 1500 ppm. The only other sign that appeared to be treatment related was a skinny appearance which was found in females only. Details of the clinical observations including specific animal identification and day of first observation are presented in Appendix C.


E. Necropsy Data

Necropsies were performed on all animals; however, there were no gross lesions observed. Final body weights are shown in Table 4.

F. Hematology and Clinical Chemistry

No hematology data were obtained in this study. Aspartate aminotransferase (AST or SGOT) and alanine aminotransferase (ALT or SGPT) levels were determined. Because animals of different dose groups were sacrificed on different days, the effect of day differences could not be factored from dose effects. Consequently, the results, presented in Appendix C, combine the two variables. The statistical analysis results are presented in Table 5. There was a treatment effect on AST in females and on ALT on both males and females.

-
P.
μ
Ē.
N

ļ

AVERAGE WEEKLY FOOD AND CHEMICAL CONSUMPTION BY GROUP NTP EXPERIMENT 05010 TEST 02

3 CHEM FOOD & CHEM	FCOD CHEM FOOD CHEM FOOD 5	FCOD CHEM FOOD CHEM F	FCOD CHEM FOOD CHEM FOOD 6	FCOD CHEM FOOD CHEM FOOD CHEM FOOD CHEM	FCOD CHEM FOOD CHEM FOOD CHEM FOOD CHEM FOOD 7	FCOD CHEM FOOD CHEM FOOD CHEM FOOD CHEM FOOD 7	FCOD CHEM FOOD CHEM FOOD CHEM FOOD CHEM FOOD THEM F
3 4 FCOD CHEM FOOD CHEM FO 142.8 0.0 142.3 0.0 13 142.3 11.4 129.5 10.4 14 147.3 23.9 143.6 23.3 1 147.3 23.9 143.6 23.3 1 147.3 23.9 143.6 100.9 1 146.3 111.2 134.6 100.9 1 146.5 249.7 153.1 229.6 19 146.5 249.7 153.1 229.6 19	3 CHEM FOOD CHEM FOOD C 6 0.0 142.3 0.0 130.7 C 3 11.4 129.5 10.4 142.7 130.7 3 23.9 143.6 23.3 130.2 130.2 4 50.7 143.2 46.5 145.9 145.9 3 111.2 134.6 100.9 135.8 135.8 5 249.7 153.1 229.6 157.8 5 249.7 153.1 229.6 157.8	3 CHEM FOOD CHEM I 3 11.4 129.5 10.4 142.7 11.4 3 23.9 143.6 23.3 138.2 22.4 1 50.7 143.2 46.5 145.9 47.4 1 3 111.2 134.6 100.9 135.8 101.8 5 249.7 153.1 229.6 157.8 236.7 MEEK	3 CHEM FOOD CHEM FOOD FOOD General FOOD FOOD General FOOD General General <t< td=""><td>3 CHEM FOOD CHEM FOOD CHEM FOOD CHEM 8 0.0 142.3 0.0 130.7 0.0 139.9 0.0 3 11.4 129.5 10.4 142.7 11.4 140.1 11.2 3 23.9 143.6 23.3 138.2 22.4 145.0 23.5 1 50.7 143.2 46.5 145.9 47.4 147.9 48.1 3 111.2 134.6 100.9 135.8 101.8 138.1 103.6 5 249.7 153.1 22.9.6 157.8 236.7 152.3 228.4 WEEK HEK <td< td=""><td>3 4 MCEN 5 6 7 3 CHEM FOOD FOOD CHEM FOOD FOOD FOOD FOOD</td><td>3 CHEM FOOD FOOD CHEM FOOD CHEM FOOD CHEM FOOD FOOD <t< td=""><td>3 4 7 5 6 7 3 CHEM<food< td=""> CHEM<food< td=""> CHEM<food< td=""> CHEM<food< td=""> CHEM<food< td=""> CHEM<food< td=""> 3 11.4 129.5 10.4 142.7 11.4 140.1 11.2 140.8 11.3 127.9 3 23.9 143.6 23.3 139.2 22.4 145.0 23.5 151.6 3 23.9 143.6 23.3 139.2 22.4 145.0 23.5 151.6 3 11.2 143.6 100.9 139.2 22.4 145.0 23.5 151.6 3 11.2 143.6 100.9 139.2 22.4 145.0 23.5 151.6 3 11.2 143.6 100.9 139.2 22.4 145.0 23.5 151.6 3 11.2 143.6 100.9 135.8 101.8 103.6 144.0 108.0 138.0 5 249.7 153.1 228.4 151.0 226.5 149.3 5 249.7 153.1 228.4 <t< td=""></t<></food<></food<></food<></food<></food<></food<></td></t<></td></td<></td></t<>	3 CHEM FOOD CHEM FOOD CHEM FOOD CHEM 8 0.0 142.3 0.0 130.7 0.0 139.9 0.0 3 11.4 129.5 10.4 142.7 11.4 140.1 11.2 3 23.9 143.6 23.3 138.2 22.4 145.0 23.5 1 50.7 143.2 46.5 145.9 47.4 147.9 48.1 3 111.2 134.6 100.9 135.8 101.8 138.1 103.6 5 249.7 153.1 22.9.6 157.8 236.7 152.3 228.4 WEEK HEK HEK <td< td=""><td>3 4 MCEN 5 6 7 3 CHEM FOOD FOOD CHEM FOOD FOOD FOOD FOOD</td><td>3 CHEM FOOD FOOD CHEM FOOD CHEM FOOD CHEM FOOD FOOD <t< td=""><td>3 4 7 5 6 7 3 CHEM<food< td=""> CHEM<food< td=""> CHEM<food< td=""> CHEM<food< td=""> CHEM<food< td=""> CHEM<food< td=""> 3 11.4 129.5 10.4 142.7 11.4 140.1 11.2 140.8 11.3 127.9 3 23.9 143.6 23.3 139.2 22.4 145.0 23.5 151.6 3 23.9 143.6 23.3 139.2 22.4 145.0 23.5 151.6 3 11.2 143.6 100.9 139.2 22.4 145.0 23.5 151.6 3 11.2 143.6 100.9 139.2 22.4 145.0 23.5 151.6 3 11.2 143.6 100.9 139.2 22.4 145.0 23.5 151.6 3 11.2 143.6 100.9 135.8 101.8 103.6 144.0 108.0 138.0 5 249.7 153.1 228.4 151.0 226.5 149.3 5 249.7 153.1 228.4 <t< td=""></t<></food<></food<></food<></food<></food<></food<></td></t<></td></td<>	3 4 MCEN 5 6 7 3 CHEM FOOD FOOD CHEM FOOD FOOD FOOD FOOD	3 CHEM FOOD FOOD CHEM FOOD CHEM FOOD CHEM FOOD FOOD <t< td=""><td>3 4 7 5 6 7 3 CHEM<food< td=""> CHEM<food< td=""> CHEM<food< td=""> CHEM<food< td=""> CHEM<food< td=""> CHEM<food< td=""> 3 11.4 129.5 10.4 142.7 11.4 140.1 11.2 140.8 11.3 127.9 3 23.9 143.6 23.3 139.2 22.4 145.0 23.5 151.6 3 23.9 143.6 23.3 139.2 22.4 145.0 23.5 151.6 3 11.2 143.6 100.9 139.2 22.4 145.0 23.5 151.6 3 11.2 143.6 100.9 139.2 22.4 145.0 23.5 151.6 3 11.2 143.6 100.9 139.2 22.4 145.0 23.5 151.6 3 11.2 143.6 100.9 135.8 101.8 103.6 144.0 108.0 138.0 5 249.7 153.1 228.4 151.0 226.5 149.3 5 249.7 153.1 228.4 <t< td=""></t<></food<></food<></food<></food<></food<></food<></td></t<>	3 4 7 5 6 7 3 CHEM <food< td=""> CHEM<food< td=""> CHEM<food< td=""> CHEM<food< td=""> CHEM<food< td=""> CHEM<food< td=""> 3 11.4 129.5 10.4 142.7 11.4 140.1 11.2 140.8 11.3 127.9 3 23.9 143.6 23.3 139.2 22.4 145.0 23.5 151.6 3 23.9 143.6 23.3 139.2 22.4 145.0 23.5 151.6 3 11.2 143.6 100.9 139.2 22.4 145.0 23.5 151.6 3 11.2 143.6 100.9 139.2 22.4 145.0 23.5 151.6 3 11.2 143.6 100.9 139.2 22.4 145.0 23.5 151.6 3 11.2 143.6 100.9 135.8 101.8 103.6 144.0 108.0 138.0 5 249.7 153.1 228.4 151.0 226.5 149.3 5 249.7 153.1 228.4 <t< td=""></t<></food<></food<></food<></food<></food<></food<>
4 FOOD 4 CHEM F 4 129.5 10.4 1 4 129.5 2.3 1 4 129.5 2.3 1 4 129.5 2.3 1 5 143.2 46.5 1 5 134.6 100.9 1 5 153.1 229.6 1 4 100.9 1 5 100.9 100.9 100.9 100000000000000000000	4 F000 6 6 5 0 142.3 0.0 130.7 1 4 129.5 10.4 142.7 130.7 9 143.6 23.3 138.2 138.2 7 143.2 46.5 145.9 135.8 .7 153.1 229.6 157.8 157.8 .7 153.1 229.6 157.8 MEER	4 F00D CHEM F00D CHEM 0.0 0 142.3 0.0 130.7 0.0 .4 129.5 10.4 142.7 11.4 .9 143.6 23.3 138.2 22.4 .7 153.1 22.9.6 145.9 47.4 .7 153.1 22.9.6 157.8 101.8 .7 153.1 22.9.6 157.8 236.7	4 FOOD CHEM FOOD CHEM FOOD CHEM FOOD 6 0 142.3 0.0 130.7 0.0 139.9 142.1 144.1 149.9 .4 129.5 10.4 142.7 11.4 140.1 149.9 .7 143.2 46.5 145.9 47.4 145.0 .7 153.1 22.9.6 157.8 101.8 138.1 .7 153.1 22.9.6 157.8 236.7 152.3 .11 NEEK 12 138.1 12 138.1	6 FOOD CHEM FOOD CHEM FOOD CHEM FOOD CHEM 0 142.3 0.0 130.7 0.0 139.9 0.0 .4 129.5 10.4 142.7 11.4 140.1 11.2 .9 143.6 23.3 138.2 22.4 145.0 23.5 .7 143.2 46.5 145.9 47.4 147.9 48.1 .2 134.6 100.9 135.8 101.8 138.1 103.6 .7 153.1 229.6 157.8 236.7 152.3 228.4 .4 KEEK 1 236.7 152.3 228.4	4 5 6 7 6 6 7 7 142.3 0.0 130.7 0.0 139.9 0.0 146.0 1 129.5 10.4 142.7 11.4 140.1 11.2 140.8 9 143.6 23.3 138.2 22.4 145.0 23.5 145.2 1 143.2 46.5 145.9 47.4 147.9 48.1 147.2 2 134.6 100.9 135.8 101.8 138.1 103.6 144.0 .7 153.1 229.6 157.8 236.7 152.3 228.4 151.0 .7 153.1 229.6 157.8 236.7 152.3 228.4 151.0 .7 153.1 229.6 157.8 236.7 152.3 228.4 151.0 .7 153.1 229.6 157.8 236.7 152.3 228.4 151.0	4 5 6 7 6 7 6 7 7 142.3 0.0 130.7 0.0 139.9 0.0 146.0 0.0 7 142.3 10.4 142.7 11.4 140.1 11.2 140.8 11.3 7 143.6 23.3 138.2 22.4 145.0 23.5 145.2 23.5 1 143.2 46.5 145.9 47.4 147.9 48.1 147.2 47.8 2 134.6 100.9 135.8 101.8 138.1 103.6 144.0 108.0 .7 153.1 229.6 157.8 236.7 152.3 228.4 151.0 226.5 .7 153.1 229.6 157.8 236.7 152.3 228.4 151.0 226.5 .7 153.1 229.6 157.8 236.7 152.3 228.4 151.0 226.5	4 5 6 7 8 6 7 8 7 8 7 1000 CHEM FOOD CHEM
CHE 22000 2000 200	4 CHEM FOOD 5 3 10.0 130.7 6 23.3 138.2 6 100.9 135.8 1 229.6 157.8 MEEK	4 CHEM FOOD CHEM 0.0 3 0.0 130.7 0.0 4 142.7 11.4 6 23.3 138.2 22.4 4 6.5 145.9 47.4 1 6 100.9 135.8 101.8 1 1 22.9.6 157.8 236.7 WEEK	4 CHEM FOOD CHEM FOOD 6 3 0.0 130.7 0.0 139.9 4 142.7 11.4 140.1 5 10.4 142.7 11.4 140.1 6 23.3 138.2 22.2.4 145.0 2 46.5 145.9 47.4 145.0 6 100.9 135.8 101.8 138.1 1 22.9.6 157.8 236.7 152.3 WEEK WEEK 138.1 147.9	4 CHEM FOOD CHEM FOOD CHEM 3 0.0 130.7 0.0 139.9 0.0 3 10.4 142.7 11.4 140.1 11.2 4 23.3 139.2 22.4 145.0 23.5 2 46.5 145.9 47.4 145.0 23.5 4 100.9 135.8 101.8 138.1 103.6 1 22.9.6 157.8 236.7 152.3 228.4	4 6 7 6 7 7 146.0 7 10.4 142.7 11.4 19.2 142.7 10.4 142.7 142.7 11.4 145.0 130.2 2 46.5 145.7 11.4 145.0 13.5 10.4 145.7 145.7 11.4 145.0 13.5 2 46.5 145.9 47.4 145.0 138.1 100.9 135.8 101.8 138.1 102.4 157.8 236.7 152.3 238.4 151.0 WEEK 144.0	4 CHEM FOOD CHEM FOOD CHEM FOOD CHEM 3 0.0 130.7 0.0 139.9 0.0 146.0 0.0 3 10.4 142.7 11.4 140.1 11.2 140.8 11.3 4 23.3 138.2 22.4 145.0 23.5 145.2 23.5 2 46.5 145.9 47.4 145.0 23.5 145.2 23.5 6 100.9 135.8 101.8 138.1 103.6 144.0 108.0 1 22.9.6 157.8 236.7 152.3 228.4 151.0 226.5 MEEK	4 FODD CHEM FODD COD 130.0 13
	-0 1900 -0 1420-7 -3 1420-7 -5 145-2 -6 157-8 -6 157-8 -6 157-8	5 (HEM) 5 (HEM) 5 (HEM) 5 (150.7) 5 (157.8)	5 CHEM FOOD -0 130.7 0.0 139.9 -4 142.7 11.4 140.1 -3 138.2 22.4 145.0 -5 145.9 47.4 147.9 -9 135.8 101.8 138.1 -6 157.8 236.7 152.3 WEEK	5 6 6 6 FOOD CHEM FOOD CHEM 1 10.7 0.0 139.9 0.0 .4 142.7 11.4 140.1 11.2 .3 138.2 2.2.4 145.0 23.5 .5 145.9 47.4 147.9 48.1 .9 135.8 101.8 138.1 103.6 .6 157.8 236.7 152.3 228.4 WEER 1 1 103.6 1	5 6 7 FODD CHEM FOOD CHEM FOOD .0 130.7 0.0 139.9 0.0 146.0 .4 142.7 11.4 140.1 11.2 140.8 .3 138.2 22.4 145.0 23.5 145.2 .5 145.9 47.4 147.9 48.1 147.2 .9 135.8 101.8 138.1 103.6 144.0 .6 157.8 236.7 152.3 228.4 151.0 WEEK 152.3 228.4 151.0	5 6 7 .0 130.7 0.0 139.9 0.0 146.0 0.0 .4 142.7 11.4 140.1 11.2 140.8 11.3 .3 138.2 22.4 145.0 23.5 145.2 23.5 .5 145.9 47.4 145.0 23.5 145.2 23.5 .9 135.8 101.8 138.1 103.6 144.0 108.0 .6 157.8 236.7 152.3 228.4 151.0 226.5 WEEK	5 6 7 8 F000 CHEM F000 136.0 136.0 136.0 136.1 147.2 47.8 141.9 141.9 141.9 141.9 141.9 148.0 138.0 138.0 138.0 138.0 138.0 138.0 149.3 149.3 149.3 149.3 149.3 149.3 149.3 149.3 149.3 149.3 149.3 149.3 149.3 149.3 149.3 149.3 149.3 149.3
		5 5 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	5 CHEM FOOD 17 0.0 139.9 17 11.4 140.1 22.4 145.0 47.4 147.9 47.4 147.9 101.8 138.1 101.8 138.1 101.8 138.1 152.3 1	5 CHEM FOOD CHEM 0.7 10.0 139.9 0.0 .7 11.4 145.0 11.2 .2 22.4 145.0 23.5 .9 47.4 147.9 48.1 .8 101.8 138.1 103.6 .8 236.7 152.3 228.4	5 6 7 0 CHEM FOOD CHEM FOOD •7 0.0 139.9 0.0 146.0 •7 11.4 140.1 11.2 140.8 •2 22.4 145.0 23.5 145.2 •9 47.4 147.9 48.1 147.2 •8 101.8 138.1 103.6 144.0 •8 236.7 152.3 228.4 151.0	5 6 7 0 CHEM FOOD CHEM FOOD CHEM •7 0.0 139.9 0.0 146.0 0.0 •7 11.4 140.1 11.2 140.8 11.3 •2 22.4 145.0 23.5 145.2 23.5 •9 47.4 147.9 48.1 147.2 47.8 •8 101.8 138.1 103.6 144.0 108.0 •8 236.7 152.3 228.4 151.0 226.5	5 6 7 8 0 CHEM FOOD CHEM FOOD CHEM FCOD •7 0.0 139.9 0.0 146.0 0.0 136.0 •7 11.4 140.1 11.2 140.8 11.3 127.9 •2 22.4 145.0 23.5 145.2 23.5 151.6 •9 47.4 147.9 48.1 147.2 47.8 141.9 •8 101.8 138.1 103.6 144.0 108.0 138.0 •8 236.7 152.3 228.4 151.0 226.5 149.3

:

9

1

J

Ì

I

1

2

.

AVERAGE WEEKLY FOOD AND CHEMICAL CONSUMPTION BY GROUP NTP EXPERIMENT 05010 TEST 02 FEMALE MICE

σ

							MEEX							
DCSE	~2					\$		n U		6		F	8	
(8 IN FEED)	F000		FCB	CHEM	FOOD	CHEM	F000	CHEN	F000	CHEM	FOND	CHEM		CHEM
0	182.7	0.0	167.2	0.0	182.4	0.0	162.8		167.5	••••	6° 64 1	0.0	155.6	0.0
0.008	176.7	14.1	185.3	14.8	165.4	13.2	170.7		170.2	13.6	165.6	13, 2	155.4	12.4
0.0162	186.3	30.2	182.9	29.6	175.9	28,5	169.3		169.6	27.5	167.0	27.1	1 74 .7	28.3
0.0325	193.2	62 .8	197.4	64 .2	187.3	60.9	0° 641		187.0	60.9	174.4	56.7	171 .3	55.7
0.075	173.6	130.2	179.6	134.7	175.0	131.3	158.3	118.7	163.5	122.6	166 .2	124.6	161.9	121.4
0.15	191.3	286.9	218.7	328 .1	196.7	295.0	200.7		198.8	298.2	193 .1	289.7	180.0	270.1
							MEEK							
DCS E	.0	v		lC		11		12		13		18	AVERAGE	E FOR STUDY
(% IN FEED)	FCOD	CHEP	FCCD	CHEM	F000	CHEM	F000	CHEM	FOO	CHEM	F 000	CHEM	FCOD	
0	164.1	, 0.0	1:55, 9	0.0	170.9	0.0	149.9	0.0		0.0			168.1	0.0
0.008	169 °5	13.5	163.6	13.1	157.8	12.6	153.9	12.3		1 . 5 1	8° 80 2	16.7	169 .7	13.6
0.0162	180.0	2 \$ 2	169.2	27 .4	171.7	27.8	161.4	26.1		27.9	219.5	35.6	176.9	28.7
0.0325	176.8	56.8	165.6	53.8	163.8	53°5	152. 4	69° 2		53.4	154 .1	50 ° I	174 . 2	56.6
0.075	166.7	125. I	151.6	113.7	159.7	119.8	152.4	114.3	154.2	115.7			163.6	122.7
0.15	191.0	446	3 5月 5	293.2	192,0	288.0	172.1	258.2		274.1			1 02 J	1 486

FOOD - TCTAL GRAMS CONSUMED/TOTAL HGT KILOGRAMS PER DAY CHEM - MILLIGRAMS CHEM CCNSUPED/RG BN PER DAY AVERAGE FOR STUDY FOOD - MEAN FOOD CONSUMED DURING STUDY CHEM ICAL AMALYSIS INDICA TES PURITY OF 100.03

у 10

Ċ

Average Average Construction Average Construction Construction <th>00</th> <th>0</th> <th>• •</th> <th>っ っ</th> <th>•</th> <th>• •</th> <th>•</th> <th>•</th> <th></th> <th>)</th> <th>•</th> <th>?</th> <th>っつ</th> <th></th> <th>0</th>	00	0	• •	っ っ	•	• •	•	•)	•	?	っ つ		0
AVERAGE FOOD. WITE, WITCHT, AND WITCHT CATAL LOAVEN DY DEPARTMENT GROUP TEST: 02 TEST: 02 TE	NG TE :	0• 02	22. 5	25. 0	27.5	30•0	32.5	35.0	37.5	MN_FEED	OF	* SPECTES=)	• ⁴ 0 • 1 1	N TP EXP EP IME	
AN PRACE FORD, WITTE, WEIGHT AND WEIGHT CAIN IGNAMES BY REAL FORD BOYLATIVE TEST: 0.2 NO POWER TIST: 0.2 NUTE: DEVICE THE DEVICE		+	+	+	+	+		+_~	+		MN_FEE	MICE	• ••	NT: 05	
WEAGE DOD. WITE, WEIGHT, AUD WEIGHT GIN LOBANS) BY REAVEN GROUP Stin on DOPLOW WIND ELTI DE WEAGE FOND CIASUPTINY LOBANS/ANIMUL/WEEK BY DISE SWARL 15 VALUE OF THE_CODE C C A B C A											0*WEE	SE X=	CHR (IN J ACKSI	010 1	
EE BODD, WATER, WEIGHT, AND WEIGHT GAIN GAINS BY INEANWEN GROUP PLOT OF MENAGE FOND CONSUMPTION (DRAMS/ANIMAL/MEENI BY DEGE THE OF THE CODE REL IS WILLE OF THE CODE A A A A A A A A A A A A A A A A A A A		·	c	В А	٩							z	90-04 (IN+ NC	AVE	
ANTER, WEIGHT, AND WEIGHT GAIN (GRAMS) BY REAVENT GROUP PLOT DF WEAGE FOOD CONSUMPTION (GRAMS/ANIWAL/VEEK) BY DOSE LIVE OF TW_CODE LIVE OF TW_CODE C C A A B C B C A B C C C C C C C C C C				. 7 8	ъ C						5 YMB CL			RAGE 1	
DCSE 11 12 13 14 14 B C C C C C C C C C C C C C C C C C C C	ALHES										1 S			FOND,	
DCSE 11 12 13 14 14 11 12 13 14 11 12 14 1			υ	9 7 0	>						ארחב ט	PLO		WATER	
DCSE 11 12 13 14 14 11 12 13 14 11 12 14 1												ÛF		, WEIG	
DCSE 11 12 13 14 14 11 12 11 12 14 11 1	-+ 5				>0						_CODE	AV ER AG		нт, А	
DCSE 11 12 13 14 14 11 12 13 14 11 12 14 1				л ч е	>								ROUTE	VD WE	
DCSE 11 12 13 14 14 11 12 13 14 11 12 14 1												D CUN S		DOXAL DOXAL	
DCSE 11 12 13 14 14 11 12 11 12 14 11 1				و	30 CD ~4							SUMPTI	. Fano	ATN L	
DCSE 11 12 13 14 14 B C C C C C C C C C C C C C C C C C C C												ON (GR		GRA MS1	
DCSE DCSE				3	0 - C							AMS/A		ΒYΤ	
DCSE 11 12 13 14 14 B C C C C C C C C C C C C C C C C C C C	i 2 +	•				ч С						NI MAL,		RE AT ME	
DCSE DCSE	1 											WEEK)		INT GR	
B FPORT: FISIL-12 DATE: 09/32/62 TIME: 14:33:37 CONT: 000469216 CONT: 00046926 CONT: 0004692				r								₽v Di		CUP	
R FPORT: FISIL-12 DATE: 09/72/82 TIMF: 14:33:37 CONT: 000469216 CONT: 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	_											DSE			
B F P D B T : F I S I I - I Z D A T F : 1 4: 3 3: 3 7 T I M F : 1 4: 3 3: 3 7 C D M T : 000469216 C D M T	1				FOG										
REPORT: FISIL-12 DATE: 09/22/82 TIME: 14:33:37 CONT: CONT: CONT: B B B B B B B B B B B B B B B B B B B					n .	7									
B B C C C C C C C C C C C C C C C C C C	1 1 1 1												C ON		
	+ +				න ය ශ	3 J P C							: ICI	JRT: E E: 09/ ≅: 14:	
	_												95F 469211	-11 ST 22/82 33:37	
	ł			ۍ ۲	۵					3			7	12	

	C	C (a 9	9	()	Q	Q	9	Ģ	Q	Ą	q	9	A 7 T	e E		う	୍ କ	Ð	5	1
wrif:		20 •0	22 • 5	0 • •	9 7 0	27.5		30 .0			35 .0		37.5	MN_FEED		*		TEST TYPE:	NT P EXPERINE		
5 30 4	- +		+_	1	+	+ -		• ·	···· ·	••• .			- • -		ר ר			PE: SUBCHRI	NTP EXPERIMENT: 05010		
6 OD S HAD MI SSING	+		9 F 7	р 9												1		SUBCHRON 90-DAY	A VERAGE TEST: 02		
				с н-	> (٦			4					STABUL IS V	-			Ð			
در نبر	4		ب	- میں	7											PL01 0	· .		FOCC. WATER, WEIGHT.) (
0.982 HI 580	: + + تل + ا ا		æ	תייר	C											OF AVERAGE		2			Î
	- +		C.	~ 、	< ک											FOOD CONSUMPTION (GRAMS/ANIMAL/WEEK) BY DOSE		ROUTE: OP AL FOOD	AND KEIGHT GAIN (GRAMS) DCXYLAMINE	FIG	Ĩ
۲. ۲.	+			ر مد	> 0	~										SUMPT I ON		L FOOD	GAIN (GRA) LAMINE	FIGURE 4	
	 		3	~i 00.	٩											(GRAMS/ AN			ΑH		
					7	604										I MAL/WEEK			TR EATHENT - האחנים		Ţ
				7	د ھ	2										HAY DUSE			antis		
1				ھ	C d	7															
	12			۲- C C													27	21	RE T		Ì
					8-19	.											CAS: 009469216 CENT:		REPCRT: FISIL-12 DATE: 09/22/82 TIME: 14:33:37		
	+			S							· თ.		. 0				59216	TT	511 -12 2782 1:37		
(·1	5	۲			۲	Ţ ®	;	B	ଷ	Ø	ଞ	B	,	3	Í	Í	(д	1

TABL	E	4
------	---	---

'n.

Treatment	Concentration	Least Squares Mean	+ Standard Error
Group	(ppm)	Male	Female
7	Control - O	31.2 <u>+</u> 0.3(-)**	24.4 + 0.31()
8	80	33.4 + 0.31(+7.1)	25.5 <u>+</u> 0.31(+4.5)
9	162	$26.8 \pm 0.31(-14.1)$	24.9 <u>+</u> 0.32(+2.1)
10	325	$28.4 \pm 0.31(-9.0)$	23.2 + 0.32(-4.9)
11	750	$29.3 \pm 0.31(-6.1)$	23.3 + 0.32(-4.5)
12	1500	$28.7 \pm 0.13(-8.0)$	21.9 <u>+</u> 0.32(-10.3)

FINAL BODY WEIGHTS*

*Final body weights were corrected for differences in initial weights by analysis of covariance. Details of individual data and statistical methods are given in Appendix C.

**Percent difference from controls.

•

.

TABLE 5

	Rats l	Exp. 376	Mice E	xp. 376
Enzyme	Male	Female	Male	Female
spartate	<u></u>			
Aminotransferase	NS	.0054	NS	.0001
Alanine				
Aminotransferase	.0001	.0162	.0001	.0001
Amylase	N/A	N/A	N/A	N/A

P VALUES FOR SIGNIFICANT DAY-DOSE EFFECT BY ONE-WAY ANALYSIS OF VARIANCE (DOXYLAMINE)

NS=not significant at P=.05

G. Organ/Body and Organ/Brain Weight Ratios

Organ weights and their ratios to body weight and brain weight are presented in Appendix C. A number of organ weights and organ/brain weight ratios were found to be significantly different from controls. However, these were scattered and of questionable meaning. There did, however, appear to be an effect of doxylamine on the liver and possibly the kidney. Kidney weights were decreased in males and females when kidney/brain ratios were compared but only in females when kidney/body ratio was used. These effects on kidney occurred only at the highest dose level. A possible increase in thymus was indicated in males but only occurred at 1500 ppm and was not significant at a p value of 0.01.

H. Histopathology Data and Conclusions

Target Organs: In the highest dose group, treatment-related lesions were identified only in the liver. Hence, the liver was examined microscopically in all the animals. Some tissues not specified for examination were inadvertently submitted to the pathologist. These included lung, kidney, spleen, pancreas, preputial gland and mammary gland. These were examined histologically but only those with positive findings were included in the tables in Appendix C.

Lesions and Degree: The liver lesions varied in nature. The lesions consisted of hepatic cell cytomegaly or karyomegaly which were in varying degree from mild to severe. The lesions were more severe in the higher dose groups and very subtle in the lower dose group. Only the females in the lowest dose group did not have treatment-related lesions. In contrast, the prevalence of a mild degree of hepatic cell necrosis was approximately constant, irrespective of dose. In only three animals was it extensive, one in the highest dose group (1500 ppm) and two in lower dose groups. Hepatic cell cytomegly and/or karyomegaly and hepatic cell necrosis appeared to be dose-related. They were present in approximately equal prevalence and degree in both sexes except that females in the lowest dose group were unaffected. Histopathological findings are presented in Appendix C.

IV. DISCUSSION

Recommendations for the chronic study dosage levels are based on mortality, body weight changes, food consumption, clinical observations, gross observations at necropsy, organ/body weight and organ/ brain weight ratios, histopathologic observations, and the results of clinical chemistry. Significant findings in each of these areas are summarized in Table 1 attached to the Abstract of this report.

Significant findings with regard to determining dose levels for the chronic study were primarily reduced weight gain and histopathology, although other data may have supported the significance of these findings. There was little overt toxicity during the 90-day study other than these. Final body weights exhibited a lot of random variation with 162 ppm producing a 14% decrease while 1300 ppm produced only 8% in males. When weight gain was compared, the effects were more exaggerated, but due to the small weight gains in mice, the significance is doubtful. The maximum tolerated dose (MTD) was determined from the final weights after their correction for differences in initial weights of different treatment groups. The scatter of the data made determination of the MTD difficult but values of 160 ppm in males and 650 ppm in females were estimated. However, in choosing a high dose level for the chronic study, the high degree of variability in the data should be kept in mind and the weight curves in Figures 1 and 2 should be considered. The overall shape of the curves indicate less effect of the chemical than a comparison of individual data points suggests.

Histopathology findings suggested that all treated groups, except the very lowest dosed females, were affected by doxylamine. Hepatic cell cytomegaly and/or karyomegaly and hepatic cell necrosis appeared to be dose related and with the exception mentioned, were present in approximately equal prevalence in males and females. Thus, there are pathological manifestations at dose levels below which overt toxic effects, such as weight loss, are observed.

With these considerations, it is recommended that mice in the chronic study be administered 1500 ppm as the high dose and 750 ppm as the low dose.

NATIONAL CENTER FOR TOXICOLOGICAL RESEARCH

FINAL REPORT

EXPERIMENT NO. 376, DOXYLAMINE, 90-DAY STUDY

IN $B6C3F_1$ mice

APPENDIX A

 \mathbb{P}^{2}

CHEMISTRY DATA

OPTIONAL FORM NO. 10 JULY 1973 EDITION GSA FPMR (41 CFR) 101-11.6

Memorandum

то

Scientific Intelligence/HFT-30

DATE: July 1, 1981

FROM : Chief, Analytical Methods Branch Division of Chemistry/HFT-153

SUBJECT: Purity and Characterization Reports on Doxylamine Succinate, Methapyrilene Hydrochloride, and Tripelennamine Hydrochloride; Stability Reports on Doxylamine Hydrochloride and Methapyrilene Hydrochloride.

Please find enclosed the subject reports.

If you have any questions regarding any of the data, please give me a call.

HCTjr/sh 🔄 Encls.

Buy U.S. Savings Bonds Regularly on the Payroll Savings Plan

CHEMISTRY ANALYSIS - DOXYLAMINE SUCCINATE

1. Purity Analysis of Reference Sample

A. Gas Chromatography

Instrument: Tracor Model 560

Column: 182.9 cm x 2 mm i.d. glass column packed with 5% Dexsil 300 on Chromosorb W 80/100 mesh

Detector: Flame-ionization

Carrier Gas: Helium with a flow rate of 30 ml/min.

Instrument Operating Conditions:

Isothermally - oven temperature 220°C

injector temperature 230° C detector temperature 250° C

Temperature

- programmed-injector and detector temperatures same as isothermally oven temperature programmed from 100-240°C at 10°C/min with a 10 min. hold at final temperature
- Results: One major component for Lot Number 001111 after a ten-fold amplification. Isothermally the retention time for the major component was 6.8 minutes. No impurity peaks were detected.

B. High-Pressure Liquid Chromatography

Instrument: Waters Model 6000A solvent delivery system, Tracor Model 970A variable wavelength UV-visible detector, and a Rheodyne septumless injector.

Columns: Waters Bondapak C_{18} (reverse phase) 30 cm x 4 mm i.d., Altex 10 um Lichrosorb guard column 40 mm x 4.6 mm i.d.

Mobile Phase: 80% methanol-20% buffer (0.01M KH_2PO_4 , pH 7) flowing at a rate of 1.0 ml/min.

Column Conditions: Ambient temperature

Detector: UV at 254 nm

Results: One major component for Lot Number 001111 with a retention time of 7.4 min. No impurity peaks were detected.

C. Melting Point

Instrument: Thomas Hoover Capillary Melting Point Apparatus
Calibration Standards: Fisher #T-418 TherMetric Standards (benzoic
 and adipic acid)

Results: Lot Number 001111, 103.5-105^oC; Merck Index - 100-104^oC

```
D. Spectral Analysis: IR, UV, MR, NMR
```

Infrared Analysis: Instrument-Nicolet IR Spectrometer MX-1

Matrix: KBR Pellet

Type of Measurement: % Transmittance

Wavelength Range: 4800-400 cm⁻¹

Resolution: 2 cm^{-1}

The IR spectra was in agreement with that for title compound in the AOAC compilation of IR and UV spectra of some compounds of pharmaceutical interest.

Absorption Maxima: 2650-2800 (broad) cm⁻¹, 1650 cm⁻¹, 1573 cm⁻¹, 1470 cm⁻¹, 1365 cm⁻¹

Ultraviolet Report:

Instrument: Varian 80

```
Solvent: .01N NaOH; 40 mg/1
```

max: 259 nm

```
259<sup>: 4736</sup>
```

Instrument: Cary 17

Solvent: .01N HC1; 10 mg/ml

max: 262

262: 10689

The UV spectra was in agreement with that published for title compound in the AOAC compilation of IR and UV spectra of some compounds of pharmaceutical interest.

Mass Spectral Analysis

Instrument: Finnigan 4023 Quadrupole

Mode: Electron Impact-70eV

Inlet: Direct Probe

The succinate thermally decomposed to the free amine upon heating in vacuo, therefore, it was converted to the free base by treatment with NH_4OH followed by extraction with CH_2Cl_2 . The mass spectrum was consistent with the library spectra of N,N-Dimethyl-2-/1-phenyl-1-(2-pyridinyl)ethoxylethaneamine. The base peak in the spectrum, m/z 58, represents homolytic cleavage of the ethane 1,2 bond. The molecular ion was observed as the protonated species m/z 271. An ion produced by rupture of the 0-CH₂ bond with a double hydrogen rearrangement to yield m/z 200 was observed. Subsequent loss of H_20 and CH_3 from m/z 200 and 182 were observed. The ion m/z 71 resulted from cleavage about the 0-CH₂ bond with charge retention on the amine moiety.

Structure Analysis by NMR Spectroscopy

Instrument: Bruker WH270 Configuration: 1 H, 13 C

The 13 C chemical shifts of the sample were measured, and compared with the 13 C NMR data of the model compounds 2-pyridinyl carbanol, 1-phenylethanol and 2-(N,N-dimethylamino)-ethanol as well as succinate (" 13 C NMR Satler Index"). The chemical shift data for corresponding nuclei was in good agreement. The 1 H NMR chemical shift and associated coupling patterns, determined from homonuclear decoupling experiments and spectral integrations, were consistent with the doxylamine succinate structure. No impurities were detected.

II. Purity Analysis of Bulk Sample

A. Gas Chromatography

Instrument: Tracor Model 560

Column: 182.9 cm x 2 mm i.d. glass column packed with 5% Dexsil 300 on Chromosorb W 80/100 mesh.

Detector: Flame-ionization

Carrier Gas: Helium with a flow rate of 30 ml/min.

Instrument Operating Conditions:

Isothermally-oven temperature 220°C

-injector temperature 230°C

-detector temperature 250°C

Temperature

programmed -injector and detector temperature same as isothermally -oven temperature programmed from 100-240°C at 10°C/min

with a 10 min. hold at final temperature.

Results: One major component for Lot Number L0536-1 after a ten-fold amplification. Isothermally the retention time for the major component was 6.8 minutes. No impurity peaks were detected.

B. High Pressure Liquid Chromatography

Instrument: Waters Model 6000A solvent delivery system, Tracor Model 970A variable wavelength UV-visible detector, and a Rheodyne

septumless injector

Columns: Waters Bondapack C_{18} (reverse phase) 30 cm x 4 mm i.d., Altex 10 um Lichrosorb guard column 40 mm x 4.6 mm i.d.

Mobile Phase: 80% methanol-20% buffer (0.01 M KH₂PO₄, pH 7) flowing

at a rate of 1.0 ml/min.

Column Conditions: Ambient temperature

Detector: UV at 254 nm

Results: One major component for Lot Number LO 536-1 with a retention time of 7.4 min. No impurity peaks were detected.

C. Melting Point

Instrument: Thomas Hoover Capillary Melting Point Appartus

Calibration Standards: Fischer #T-418 TherMetric Standards (benzoic and adipic acid)

Results: Lot Number L05361, 104-105.5°C; Merck Index 100-104°C

D. <u>Vacuum Volatiles Determination</u>: Vacuum volatiles were determined on Lot Number 536-1. Five grams of the chemical were analytically weighed into an aluminum foil pan and placed in an oven at 60^oC under 18 inches of vacuum for 16 hours. The sample was removed from the oven and cooled in a desiccator. The sample was then weighed to determine the weight loss. Duplicate determinations were performed.

E. Spectral Analysis: IR, UV, MS, NMR

Infrared Analysis

Instrument: Nicolet IR Spectrometer MX-1

Matrix: KBR Pellet

Type of Measurement: % Transmittance

Wavelength Range: $4800-400 \text{ cm}^{-1}$

Resolution: 2 cm^{-1}

The IR spectra was in agreement wit that for the test compound in the AOAC compilation of IR and UV spectra of some compounds of pharmaceutical interest, revised edition.

<u>Absorption Maxima</u>: 1745 cm⁻¹, 1650 cm⁻¹, 1600 cm⁻¹, 1477 cm⁻¹, 1325 cm⁻¹, 2778-2439 (broad cm⁻¹).

Ultraviolet Analysis

```
Instrument: Varian 80
Solvent: .01N NaOH; 40 mg/1
max: 259 nm
259: 4467
Instrument: Cary 17
Solvent: .01N HCl; 10 mg/m1
max: 262
262: 10431
The UV spectra was in agreement with that published for title
```

compound in the AOAC compilation of IR and UV spectra of some compounds of pharmaceutical interest.

Mass Spectral Analysis

Instrument: Finnigan 4023 Quadrupole

Mode: Electron Impact-70eV

Inlet: Direct Probe

The succinate thermally decomposed to the free amine upon heating in vacuo, therefore, it wa converted to the free base by treatment with WH₄ and allowed by extraction with CH₂Cl₂. The mass spectrum was consistent with the library spectra of N,N-Dimethyl-2-/1-phenyl-1-(2-pyridinyl)ethoxylethaneamine. The base peak in the spectrum, m/z 58, represents homolytic cleavage of the ethane 1,2 bond. The molecular ion was observed as the protonated species m/z 271. An ion produced by rupture of the Q-CH₂ bond with a double hydrogen rearrangement to yield m/z 200 was observed. Subsequent loss of H₂O and CH₃ from m/z 200 and 182 were observed. The ion m/z 71 resulted from second about the O-CH₂ bond with charge retention on the amine molety.

Structure Analysis by NMR Spectroscopy

Instrument: Bruker WH270

Configuration: ¹H, ¹³C

The ¹³C chemical shifts of the sample were measured, and compared with the ¹³C NMR data of the model compounds 2-pyridinyl carbanol, 1-phenylethanol and 2-(N,N-dimethylamino)-ethanol as well as succinate ("¹³C NMR Satler Index"). The chemical shift data for corresponding nuclei was in good agreement. The ¹H NMR chemical shift and associated coupling patterns, determined from homonuclear decoupling experiments and spectral integrations, were consistent with the doxylamine succinate structure. No impurities were detected.

III. CONCLUSIONS

Both high-pressure liquid chromatography and gas chromatography using flame-ionization detection indicated one major component for both the reference chemical and the bulk material. The melting points were consistent with the literature value. The nuclear magnetic resonance, infrered, ultraviolet and mass spectra were consistent with the structure of doxylamine succinate. It was concluded that both the reference chemical and the bulk mamerial (lots 001111 and LO 536-1, respectively) were doxylamine succinate. Both lots can be considered essentially pure based on the analyses performed.

23

STABILITY STUDIES

Since the test compound was to be administered as a mixture in animal feed, the stability of doxylamine succinate was determined under conditions simulating the conditions of feed mixing, storage, and administration. Feed was dosed by the SOP (Standard Operating Procedure) with doxylamine succinate (Lot Number LO 536-1) at levels of 0, 100, and 2000 ppm on the basis of the free amine. Both the short- and long-term stability was determined.

The feed used in the short-term study (simulated animal test conditions) was placed in crystallizing dishes and allowed to stand in the open vessel in a fume hood under incandescent lighting at ambient temperature. The feed used in the long-term study (simulated feed storage conditions) was sealed in amber bottles and stored in a light free cabinet at ambient temperatures. Duplicate samples from each level for both the short- and long-term study were assayed at the intervals indicated below:

Assay Method: High Pressure Liquid Chromatography

Instrument:	Waters Model 6000A pump, Tracor Model 970A variable wave-
	length UV-visable detector, Rheodyne Model 7120 septumless
	injector.

Column: Waters uBondapak C_{18} (reverse phase) 30 cm x 4 mm i.d., Altex 10 um lichrosorb guard column 40 mm x 4.6 mm i.d.

Mobile Phase: 90% methanol-10% buffer (0.01M KH_2PO_4 , pH 7) flowing at a rate of 1 ml/min.

Column Conditions: Ambient temperature.

Detector: UV at 254 nm

Results:

	Short-Term Study						
	Dose Leve	ls (ppm)*					
Days	100	2000					
0	100 <u>+</u> 2	2000 <u>+</u> 50					
1	103 <u>+</u> 0	1990 <u>+</u> 40					
2	102 <u>+</u> 1	2020 <u>+</u> 20					
5	102 <u>+</u> 1	2020 + 0					
8	104 <u>+</u> 4	2000 <u>+</u> 30					
36	99 <u>+</u> 3	**					

	Long-Te	Long-Term Study					
	Dose Leve	Dose Levels (ppm)*					
Weeks	100	2000					
0	100 + 2	2000 <u>+</u> 50 ·					
1	101 <u>+</u> 2	1990 <u>+</u> 10					
2	101 <u>+</u> 0	1960 <u>+</u> 40					
4	**	**					
8	98 <u>+</u> 2	1990 <u>+</u> 20					
16	102 + 1	2000 + 20					

*Samples are corrected for background and recovery. **Not determined.

Although an analysis was not performed on the long-term stability study sample (2000 ppm level) after 36 days, it was deduced that the high level is as stable as the low level sample for the 36-day period. After completing the stability tests for doxylamine succinate in animal feed, it was concluded that the chemical is stable in this substrate for a sufficient period of time to allow administration of the chemical to test animals via feed.

DOSE ANALYSIS

A twenty q sample of feed was mixed with 20 ml of 1N HCl and 80 ml of methanol in a 250 ml Erlenmeyer flask fitted with a Teflon-lined screw cap. The sample was mechanically extracted for one hour on a reciprocating shaker at a rate of 2000 excrusions/min. and allowed to stand approximately 10 min. The supernatant was decanted into a 50 ml cultuer tube and centrifuged at 1000 rpm. A 5 ml aliquot of the supernatant (equal to 1 g feed) was transferred to a 30 ml culture tube containing 10 ml of 1 N HCl and 10 ml of dichloromethane. The contents were shaken vigorously and centrifuged for 2 min. at 1000 rpm. The dichloromethane was withdrawn with a syringe filtered with a canula and discarded. The aqueous layer was extracted with two additional 10 ml portions of dichloromethane which were also discarded. (Care was taken not to remove any of the aqueous phase.) Two ml of $1 \, \text{M}$ dibasic potassium phosphate (pH 9.4) and 1.1 m] of 10 N NaOH were added and the aqueous layer was extracted three times with 10 ml portions of dichloromethane which were successively percolated through a plug of anhydrous sodium sulfate(ca. 18 mm diameter x 30 mm thick) into a 50 ml round-bottom flask. The combined extracts were evaporated to dryness at ambient tmeperature with a rotary evaporator and water pump vacuum. The residue was reserved for cleanup on a silica gel column.

The silica gel columns (12 mm i.d., Konter Glass Co., Vineland, NJ) were prepared just prior to using by successively adding a plug of glass wool, 2 g of amhydrous sodium sulfate, 2 g of silica gel (5% water) and 2 g of anhydrous sudium sulfate. The columns were washed with four 5 ml portions of dichloromethane (0.01 M triethylamine, TEA) which were discarded. The residue from the feed extraction was dissolved in 2 ml dichloromethane (0.01 M TEA) transferred to a silica gel (5% water) column and four additional 2 ml portions of dichlorometahen (0.01M TEA) were used to wash the flask and transfer the residue to the column quantitatively. The column eluate was discarded and the column was washed with two 5 ml portions of 5% methanol in dichloromethane (0.01 M TEA). The doxylamine free base was eluted with 15 ml of 5% methanol in dichloromethane (0.01 M TEA) and collected in a 50 ml round-bottom flask. The sample was evaporated to dryness at ambient temperature with a rotary evaporator and water pump vacuum. The residue was discolved in 1 ml or more of the appropriate solvent for analysis by HPLC or N/P-GC.

The HPLC system consisted of a Waters Associates, Inc., Model 6000A solvent delivery system, a Rheodyne, Inc. Model 7120 systemless injector, an Altex 5 uODS ultrasphere column, 25 cm x 4.6 mm i.d., and a Tracor, Inc. Model 970A variable wavelength UV-visible absorbance detector set at 254 nm. The mobile phase was 90% methanol-10% aqueous monobasic potassium phosphate (0.01M, pH 7 adjusted with 10 N NaOH) which flowed at a rate of 1 ml/min. at a pressure of 800 psi. The retention time for doxylamine was 5.0 min. Doxylamine residues in feed at levels of 10, 100, and 11000 ppm, each containing 1g equivalent of animal feed from the silica gel column cleanup were dissolved in 1 ml or more of methanol. Injections of 20 ul of the methanol solutions were made and compared to similar injections of standard solutions of doxylamine succinate.

Results: During the course of the study four standard solutions were made up for the preparation of dosed feed. These were analyzed by the Chemistry Division to confirm the dose levels. The results were as follows:

Sample	Stock Solution	Target	Assay
Identification No.	Batch No.	Concentration	Results
52-231-1287	81-06-27-004	10%	10.20%
52-231-1288	81-97-28-005	10%	9.73%
52-155-184	81-08-25-006	10%	9.52%
52-231-1574	81-08-25-006*	10%	10.20%
52-155-192	81-09-17-007	10%	9.88%

*Batch 81-08-25-006 was reassayed when the first assay indicated a low concentration.

The results confirmed the concentrations of the stock solutions and they were each used to prepare dosed feed. A number of batches of dosed feed were analyzed to confirm dose levels and to serve as a quality control on diet preparations. The batches of diet analyzed in this study and the results are given on page 28.

Minor deviations from the \pm 10% variation standard for dose-levels were noted but were considered acceptable due to the preliminary nature of the study.

Sample Identification Number	Dosed Feed Batch Number	Target <u>Concentration</u> 1	Assay Results
52-231-1070	81-06-30-011	. 80	92.6
52-231-1071	81-06-30-012	162	156
52-231-1072	81-06-30-013	162	144
52-231-1073	81-06-30-014	325	310
52-231-1076	81-06-01-017	750	676
52-231-1076	81-07-01-017	750	676
52-231-1079	81-07-01-020	1500	1380
52-231-1296	81-07-30-026	162	143
52-231-1475	81-08-27-035	162	152
52-231-1501	81-08-31-040	1500	1560
52-231-1503	81-09-92-041	162	163
52-231-1607	81-09-18-043	80	83
52-231-1608	81-09-18-043	80	83
52-231-1609	81-09-18-044	162	170
52-231-1610	81-09-18-043	162	147

DOSED FEED ANALYSIS

1

¹Concentrations are expressed as ppm and refer to the free amine, not the succinate derivative.

NATIONAL CENTER FOR TOXICOLOGICAL RESEARCH

FINAL REPORT

EXPERIMENT NO. 376, DOXYLAMINE, 90-DAY STUDY

 $_{4}$ IN B6C3F₁ MICE

APPENDIX B

ANIMAL DATA

÷* . .

EQ 71126 AND SEQ EQ 00375 NCTR SID CH NUMBER (CONTR ID) EXP LOGIN COMPL TYPE SUBTYPE 1 ************************************
`CH NUMBER (CONTR ID) EXP LOGIN COMPL TYPE SUBTYPE 1 71126000375 022 80317 81022 WATER/SOLNS HEATED, FILTERED #REP 02 02 COLL 801110 SPECIFICATIONS OBSERVED Image: Constant of the second of the seco
*REP 02 02 COLL 801110 SPECIFICATIONS OBSERVED DOSE MIN 07 ARSENIC, PPB 20. 10 CADMIUM, PPB 20. 14 DDT, TOTAL, PPB 50. 29 LEAD, PPM 0.02 33 MERCURY, PPM 0.02 36 OP PESTICIDES, PPB 50.
COLL 801110 SPECIFICATIONS OBSERVED DOSE MIN MAX MDL CONC 07 ARSENIC, PPB 10 CADMIUM, PPB 14 DDT, TOTAL, PPB 29 LEAD, PPM 33 MERCURY, PPM 36 OP PESTICIDES, PPB SPECIFICATIONS OBSERVED MIN MAX MDL CONC 20. <mdl 20. </mdl 20. </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl </mdl
SPECIFICATIONS OBSERVED DOSE MIN MAX MDL CONC 07 ARSENIC, PPB 20. KMDL 10 CADMIUM, PPB 5. KMDL 14 DDT, TOTAL, PPB 50. KMDL 29 LEAD, PPM 0.02 KMDL 33 MERCURY, PPM 0.02 KMDL 36 OP PESTICIDES, PPB 50. KMDL
DOSEMINMAXMDLCONC07 ARSENIC, PPB20. <mdl< td="">10 CADMIUM, PPB5.<mdl< td="">14 DDT, TOTAL, PPB50.<mdl< td="">29 LEAD, PPM0.02<mdl< td="">33 MERCURY, PPM0.02<mdl< td="">36 OP PESTICIDES, PPB50.<mdl< td=""></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<>
07 ARSENIC, PPB20. <mdl< td="">10 CADMIUM, PPB5.<mdl< td="">14 DDT, TOTAL, PPB50.<mdl< td="">29 LEAD, PPM0.02<mdl< td="">33 MERCURY, PPM0.02<mdl< td="">36 OP PESTICIDES, PPB50.<mdl< td=""></mdl<></mdl<></mdl<></mdl<></mdl<></mdl<>
14 DDT, TOTAL, PPB50. <mdl< td="">29 LEAD, PPM0.02<mdl< td="">33 MERCURY, PPM0.02<mdl< td="">36 OP PESTICIDES, PPB50.<mdl< td=""></mdl<></mdl<></mdl<></mdl<>
29 LEAD, PPM0.02 <mdl< td="">33 MERCURY, PPM0.02<mdl< td="">36 DP PESTICIDES, PPB50.<mdl< td=""></mdl<></mdl<></mdl<>
33 MERCURY, PPM 0.02 KMDL 36 OP PESTICIDES, PPB 50. KMDL
36 OP PESTICIDES, PPB 50. <mdl< td=""></mdl<>
37 PCB, PPB
44 SELENIUM, PPM 0.02 <mdl td="" 🛓<=""></mdl>
67 DC PESTICIDES, PPM 0.05 KMDL
68 IRON, PFM 0.02 0.04 🖛
69 NICKEL, PPM 0.02 (MDL
70 BEPYLLIUM, PPM 0.02 KMDL
71 CHROMIUM, PPM 0.02 KMDL
72 COPPER, PPM 0.02 0.046
73 CHLOROFORM, PPM 0.001 <mdl< td=""></mdl<>

30

Î

Ĵ

ł

I

•	· · · · · · · · · · · · · · · · · · ·
50 POUNDS NET WEIGHT AUTOCLAVABLE RODENT LABORATORY CHOW® #5010 Animal Diet GUARANTEED ANALYSIS Crude protein not less than 23.0% Crude fiber not more than 80% Ash not more	FEEDING DIRECTIONS Feed ad tibitum to regents. Plenty of fresh, clean water should buavailable to the minimals it all times. Rats - Mail it rats will eat 12 to 15 grams of Rodent Labora.org (New D animal dictorer day Feeders in rat cage 3 hould be designed to hold two to three days' supply of freed at one time. Mice - Adult mice will eat 4 to 5 grace of duet daily. Some of the lenger strains may eat as much as eight grams der day per anichl. Feed should be available of a free choic dasis in wire feeders above the loor of the cage. Hamsters - Adults will eat 10 - 14 grams per day. Feed is perishable. Spre in a dry, well venti- lated area, free of pelis and insects Do not use moldy or insect-inflated teed MICOLAVING SUGGESTIONS. During the autoclaving process the petiets can be placed on trays, in small user of larger bags as long as the petiets are starther from one were force on adjacent peliets. It Zanteed by a start force on adjacent peliets. It Zanteed by a start force on adjacent peliets. It Zanteed by a sag or container, the pressure cause 3 directed by a gar container, the pressure cause 3 directed by a gar container, the pressure cause 3 directed by a sag or container, the pressure cause 3 directed by a sag or container, the pressure cause 3 directed by a sag or container. The pressure cause 3 directed by a sag or container, the pressure cause 3 directed by a sag or container. The pressure cause 3 directed by a sag or container. The pressure cause 3 directed by a sag or container. The pressure cause 3 directed by a sag or container. The pressure cause 3 directed by a sag or container. The pressure cause 3 directed by a sag or container. The pressure cause 3 directed by a sag or container. The pressure cause 3 directed by a sag or container. The pressure cause 3 directed by a sag or container. The pressure cause 3 directed by a sag or container. The pressure cause 3 directed by a sag or container. The pressure cause 3 directed by a sag or container. The pressure
Raiston Purina Co., Gen. Offices, St. Louis, MO 63188	ASSAY BEFORE AND AFTER AUDICAVING Conditions of sterilization must the symmed for each autoclaving unit. It is bes to popay the diet before and after sterilization do comercise nutrient losses. Microbiological studieEshould be done also to insure the degree of steriliza- tion desires.

NATIONAL CENTER FOR TOXICOLOGICAL RESEARCH CHEMISTRY QUERY REPORT

REPORT NO. CH-026

Jerd For

DATE 04/17/81 TIME 10:04:02 PAGE ·

KMDL

0.05

ARE EQ 74109 AND SEQ GE 00003 AND SEQ LE 00006

128 HEPTACHLOR EPOXIDE, PPB

NCTR SID BATCH NUMBER (CONTR ID) EXP LOGIN COMPL TYPE SUBTYPE 2000000(<mark>31011512</mark>74109100006 145 81022 81107 FEED ¥ MTYP 02 SHIPMENT LOT X MTYP 02

COLL 810122

	· ·	SPEC	IFICATIO	NS	OBSERVED
i	DOSE	MIN	MAX	MDL	CONC
05 AFLATOXIN, PPB	•		5.		<mdl 7<="" td=""></mdl>
07 ARSENIC, PPB			1000.	20.	560
10 CADMIUM, PPB			250.	5.	KMDL
14 DDT, TOTAL, PPB			100.	5.	<mdl .<="" td=""></mdl>
16 DIELDRIN, PPB		ŕ	20.	5.	KMDL
29 LEAD, PPM			1.5		0.56
31 LINDANE, PPB			100.	1.	<mdl< td=""></mdl<>
32 MALATHION, PPB			5000.	50.	70
33 MERCURY, PPM			0.2	0.02	KMBL
43 PROTEIN, TOTAL, %		21.	28.		24.0
44 SELENIUM, PPM		0.05	0.65		0.34
S8 VITAMIN A, IU∕G			75.		33.0
59 VITAMIN B1, MG/G		0.075			0.079
74 TOTAL FAT, %		4.3	6.7		5.0 _A
127 NITROSAMINES, PPB				0.10	13
128 HEPTACHLOR EPOXIDE, PPE				0.05	<mdl <sup="">1</mdl>
2					-
200000181011425 74109100004 145 81	.022 81107	FEED		SHIPM	ENT LOT
MTYP 01					
COLL 810122		00501			
			IFICATIO		DBSERVED
AF OF ATRVIN FRR	DOSE	MIN	MAX [°] 5.	MDL	CENC
05 AFLATOXIN, PPB				20.	<mdl td="" °<=""></mdl>
07 ARSENIC, PPB			1000. OF 0		500
10 CADMIUM, PPB			250.	5.	<mdl< td=""></mdl<>
14 DDT, TOTAL, PPB			100.	5.	<mdl "<="" td=""></mdl>
16 DIELDRIN, PPB 29 LEAD, PPM			20.	5.	KMBL
24 LINDONE DOD			1.5		0.54
31 LINDANE, PPB			100.	1.	KMDL
32 MALATHION, PPB			100.	50.	<mdl 0<br="">70</mdl>
32 MALATHION, PPB 33 MERCURY, PPM			100. 5000. 0.2	50. 0.02	<mdl 70 <mdl< td=""></mdl<></mdl
32 MALATHION, PPB 33 MERCURY, PPM 37 PCB, PPB		21	100. 5000. 0.2 50.	50.	<mdl 70 <mdl <mdl< td=""></mdl<></mdl </mdl
32 MALATHION, PPB 33 MERCURY, PPM 37 PCB, PPB 43 PROTEIN, TOTAL, %		21.	100. 5000. 0.2 50. 28.	50. 0.02	<mdl 70 <mdl <mdl 23.4</mdl </mdl </mdl
32 MALATHION, PPB 33 MERCURY, PPM 37 PCB, PPB 43 PROTEIN, TOTAL, % 44 SELENIUM, PPM		0.05	100. 5000. 0.2 50. 28. 0.65	50. 0.02	<mdl 70 <mdl 23.4 0.36</mdl </mdl
32 MALATHION, PPB 33 MERCURY, PPM 37 PCB, PPB 43 PROTEIN, TOTAL, % 44 SELENIUM, PPM 58 VITAMIN A, IU/G		0.05 15.	100. 5000. 0.2 50. 28. 0.65 75.	50. 0.02	<mdl 70 <mdl <mdl 23.4 0.36 26.0</mdl </mdl </mdl
32 MALATHION, PPB 33 MERCURY, PPM 37 PCB, PPB 43 PROTEIN, TOTAL, % 44 SELENIUM, PPM 58 VITAMIN A, IU/G 59 VITAMIN B1, MG/G		0.05 15. 0.075	100. 5000. 50. 28. 0.65 75. 0.125	50. 0.02	<pre> <mdl 70 <mdl <mdl 23.4 0.36 26.0 0.075</mdl </mdl </mdl </pre>
32 MALATHION, PPB 33 MERCURY, PPM 37 PCB, PPB 43 PROTEIN, TOTAL, % 44 SELENIUM, PPM 58 VITAMIN A, IU/G		0.05 15.	100. 5000. 0.2 50. 28. 0.65 75.	50. 0.02	<mdl 70 <mdl <mdl 23.4 0.36 26.0</mdl </mdl </mdl

NATIONAL CENTER FOR TOXICOLOGICAL RESEARCH CHEMISTRY QUERY REPORT

2PORT NO. CH-026

DATE 06/17/81 TIME 09:27:30 PAGE З

TYP EQ 02 AND AN EQ 74 AND CMP EQ 81168

NOTE SID

(CONTR ID) EXP LOGIN COMPL TYPE SUBTYPE BATCH NUMBER

00000081031716 74109100025 145 81083 81168 FEED 5010-M SHIPMENT LOT MTYP 02 COLL 810324

				2 .	
	-	SPECI	FICATIO	2	DBSERVED
DOS	SE	MIN	MAX	MDL	CONC
05 AFLATOXIN, PPB	*		5.		KMDL
07 ARSENIC, PPB			1000.	20.	270
10 CADMIUM, PPB			250.	5.	<100
14 DDT, TOTAL, PPB			100.	5.	<10
16 DIELDRIN, PPB			20.	5.	< 1.0
29 LEAD, PPM			1.5		0.62
31 LINDANE, PPB			100.	1.	<10
32 MALATHION, PPB	. •		5000.	50.	-90
33 MERCURY, PPM			0.2	0.02	<0.05
37 PCB, PPB			50.	10.	<200
43 PROTEIN, TOTAL, %		21.	28.		23.2
44 SELENIUM, PPM		0.05	0.65 (0.42
′ 58 VITĂMIN A, IU∕G		15.	75.		27.0
59 VITAMIN B1, MG/G		0.075	0.125		0.083
127 NITROSAMINES, PPB				0.10	1.2
128 HEPTACHLOR EPOXIDE, PPB			• •	0.05	<10
74 TOTAL FAT, %		4.3	6.7		5.5
6 <u>*******</u> *****************************	}+++	*******	*******	******	*********
2000000 <mark>(81031717)</mark> 74109100026 145 81083 8	31168	FEED	OP-M	SHIPM	ENT LOT
MTYP 02					

COLL 810324

----SPECIFICATIONS----- OBSERVED MIN , MAX MDL DOSE CONC 5. <MDL 05 AFLATOXIN, PPB 20. -15007 ARSENIC, PPB 1000. 5. 250. 10 CADMIUM, PPB <100 5. 14 DDT, TOTAL, PPB 100. < 105. 20. < 1.016 DIELDRIN, PPB 1.5 0.52 29 LEAD, PPM 1. 100. < 1.031 LINDANE, PPB 50. 5000. 32 MALATHION, PPB -1100.2 0.02 <0.05 33 MERCURY, PPM 43 PROTEIN, TOTAL, % 21. 28. 23.2 44 SELENIUM, PPM 0.050.650.39 75. 27.0 15. 58 VITAMIN A, IU/G 0.12559 VITAMIN B1, MG/G 0.0750.081127 NITROSAMINES, PPB 0.101.7 128 HEPTACHLOR EPOXIDE, PPB 0.05 $<\!10$ 10. 50. <200 37 PCB, PPB 5.3 4.3 6.7 74 TOTAL FAT, %

CHEMISIRY QUERT REPORT

J. CH−026

DATE 07/21/81 TIME 14:22:15 PAGE 2

0 74109 AND SEQ GE 00031 AND SEQ LE 00040

•								
	NCTR SID							
ATCH NUMBER	(CONTR ID)	EXP	LOGIN COM	PL TYPE		SUBTY	PE .	
3 0000000	~~~~~~~~~~~	> \$ \$\$\$\$	• • • • • • • • • • • • • • • • • • •	****	****	~~~	****	\$
.00000081052013 MTYP	74109100034 02	145	81156 812	02 FEED	·	SHIPM	ENT LOT	
COLL	810603	•						
				SPE	CIFICATIO	NS	OBSERVED	
		•	DDSE	MIN	MAX	MDL	CONC	
05 AFL	ATOXIN, PPB				5.		<5	
07 AR:	SENIC, PPB			-	1000.	20.	420	
10 CA1	DMIUM, PPB		•• •		250.	5.	<100	•
14 DD1	TO TOTALS PPB	2			100.	5.	<10	

14 DDT; TOTAL; PPB		100.	5.	<10	
16 DIELDRIN, PPB		20.	5.	<10	
29 LEAD, PPM		1.5		0.28	
31 LINDANE, PPB		100.	1	<10	•
32 MALATHION, PPB		5000.	50.	<50	
33 MERCURY, PPM		0.2	0.02.	<0.05	
37 PCB, PPB		50.	10.	<50	
43 PROTEIN, TOTAL, %	21.	28.		23.5	
44 SELENIUM, PPM	0.05	0.65		0.34	
58 VITAMIN A, IUZG	15.	75.		29.00	
59 VITAMIN B1, MG∕G	0.075	0.125		0.11	
74 TOTAL FAT, %	4.3	6.7		4.8	
127 NIIROSAMINES, PPB			0.10	1.3	
128 HÉPTACHLOR EPOXIDE,PPB			0.05	<1.0	
4	\$\$\$\$\$\$\$	\$\$\$\$\$\$	000000000000	• • • • • • • • • • • • • • • • • • • 	

2000000081052018 74109100033 145 81156 81202 FEED SHIPMENT LOT

MTYP 02

COLL 810603

CULL 810603		SPEC	IFICATIO	NS	DBSERVED
	DOSE	MIN	MAX	MDL	CONC
05 AFLATOXIN, PPB		•	5.		<5
07 ARSENIC, PPB			1000.	20.	430
10 CADMIUM, PPB			250.	5.	<100
14 DDT, TOTAL, PPB			100.	5.	<1.0
16 DIELDRIN, PPB			20.	5.	<1.0
29 LEAD, PPM			1.5		Ú.42
31 LINDANE, PPB			100.	1.	· <1 0
32 MALATHION, PPB			5000.	50.	<50
33 MERCURY, PPM	·;,		0.2	0.02	<0.05
37 PCB, PPB	¢.		50.	10.	<50
IS PROTEIN, TOTAL, %	-	21.	28.		23.5
44 SELENIUM, PPM	3	0.05	0.65		0.22
58 VITAMIN A, IU/G	÷	15.	75.		29.00
59 VITAMIN B1, MG/G		0.075	0.125		Ŭ.11
74 TOTAL FAT, %		4.3	6.7		4.8
L27 NITROSAMINES, PPB				0.10	1.3
128 HEPTACHLOR EPOXIDE,PPB				0.05	<1.0

34

• .

. . .

....

	IO. CH−0	26			SIRT WOERT	REFURI		TI	TE 08∕20/81 ME 13:53:19 GE 3
RE EQ 7	4109 AN			0MA	SEQ LE 000	56			
BATCH N			ID) E		LOGIN COMP ++++++++++		******	SUBTY	PE
		7410910 02		45	81177 8123	1 FEED	OM	SHIPM	ENT LOT
	07 AR: 10 CAN 14 DD 16 DIE 29 LEF 31 LIN 32 MAL 33 MEF 37 PCN 37 PCN 43 PRC 44 SEL 58 VIT 59 VIT 74 TOT 127 NI	LATOXIN, SENIC, P DMIUM, P T, TOTAL ELDRIN, AD, PPM ADANE, P LATHION, RCURY, P S, PPB DTEIN, T ENIUM, A TAMIN B1 TAMIN B1 TROSAMIN FROSAMIN	PB PB PPB PPB PPB PM OTAL, % PPM IU/G , MG/G % NES, PP	в	DOSE	21. 0.05	MAX 5. 1000. 250. 100. 20. 1.5 100. 5000. 0.2 50. 28. 0.65 75.	MDL 20. 5. 5. 1. 50. 0.02 10.	90
a	MÌYP	7410910 02 810624	0047 1	45 :	31177 8123:	•.	OM		ENT LOT
1	MÌYP	02 - 3	0047 1	45 (501 <u>,</u> SPECI	<i>OM</i> IFICATION	48 	OBSERVED
()))))))))))))))))))	MTYP COLL 05 AFL 07 ARS 10 CAD 14 DDT 16 DIE 29 LEA 31 LIN 32 MAL 33 MER 37 PCB 43 PRO 44 SEL 58 VIT 59 VIT 74 TOT 127 NI 128 HE	02 810624 ATOXIN, ENIC, PH MIUM, PH DIDRIN, P DD, PPM DANE, PH ATHION, CURY, PH TEIN, TE ENIUM, P AMIN A, AMIN B1, AMIN B1, AL FAT, TROSAMIN PTACHLOF	PPB PB PPB PPB PPB PPB M IU/G MG/G % HES, PPI 2 EPDXII	3 DE,PF	DOSE	21. 0.05 15. 0.075 4.3	С М (FICATION MAX 5. 1000. 250. 100. 20. 1.5 100. 5000. 0.2 50. 28. 0.65 75. 0.125 6.7	48 	·

CHEMISTRY DUERY REPORT

?+?+?+ OUTSIDE SPECIFICATIONS

MEMORANUM DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE PUBLIC HEALTH SERVICE D AND DRUG ADMINISTRATION . Principal Investigator, E- 376 TO DATE: FROM : Chief, Diet Preparation Branch (HFT-213 SUBJECT: Delivery of Microbiologically uncertified feed to animals. Present circumstances indicate that it is necessary for Diet Prep to deliver uncertified feed to your animals, or place these animals on control feed until certified feed can be prepared. Please note the following, specify your wishes: Reason: Mico anny should 108 bateria 8 ou called, no uply - contractor was watting "Q^l and ar remin. PROD Actions: (1) Use uncertifi is available. Signature

(2) Use control feed until certified feed is available.

Signature

Date

COMICA

MEMORANDUM

DEPARTMENT OF HEALTH AND HUMAN SERVIC PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION

TO:

HFT-30

DATE: 5-3-82

FROM: Director, Division of Microbiological Services HFT-250

SUBJECT: Microbiological Evaluation of Fourteen NTP Studies and Breeder Animals

The SPF breeder mice and rats used for all NTP studies have been microbiologically evaluated since January 1981. In addition, direct environmental samples which include feed, cage water, bedding and waste and room air samples have been microbiologically evaluated since January 1981.

As of April 1, 1982, 21 female mice from strain 1B (C57BL/6N) and 21 male mice from strain 04 (C3H/HeN MTV⁻) were evaluated for primary potential pathogens (see Table I). These two strains were the direct parents of strain 1H (B6C3F1) that were used for NTP experiments. Two 1B strain parents were positive for Reo-3 virus with low titers of 1:20 and 1:40. One strain 04 parent was positive for Encephalomyelitis virus (GDVII) with a low titer of 1:40. No other potential microbial pathogen were identified or isolated.

As of April 1, 1982, two hundred fifty-seven strain Fisher 344(IA) rats, which were obtained from the same cages as the animals which were used for the NTP studies, were microbiologically evaluated. Only one rat was positive for Reo-3 virus with a low titer of 1:20. No other potential microbial pathogens were identified or isolated.

Environmental samples from all breeder rooms were taken on a weekly basis and consisted of feed, cage water, bedding and waste, room air samples and room and equipment swab samples. All samples were negative for potential pathogenic organisms or did not exceed microbial standards for non-pathogenic organisms.

As of April 1, 1982, environmental samples have been obtained and assayed from Experiments 357, 358, 359, 369, 373, 375, 376, 379, 382, 383, 396, 397, 399 and 400. Composite bedding and waste samples, room air samples and cage water samples (one rack) were sampled from each room on a monthly basis. Approximately two feed samples per compound/per experiment were sampled on a weekly basis. Room swab samples were evaluated prior to initiation of experiments and on a quarterly basis if the experiment lasted that long. Samples from the following experiments were considered unacceptable and final disposition is indicated.

Experiment No. 359 - One feed sample contained excessive mold concentration. The feed batch was discarded.

POTENTIAL PATHOGENIC MICROORGANISMS OF PRIMARY CONCERN IN SURVEILLANCE ANIMAL AND NON-ANIMAL SAMPLES

BACTERIA	MYCOPLASMA	PARASITES
Salmonella spp.	M. pulmonis	All Ectoparasites
<u>S. pneumoniae</u>	<u>M</u> . <u>arthritidis</u>	:
<u>S. moniliformia</u>	<u>M</u> . <u>neurolyticum</u>	<u>Endoparasites</u> :
<u>S. pyogenes</u> (Gp. A)		Syphacia obvelata
<u>B. piliformis</u>	VIRUSES	<u>Aspicul.</u> tetraptera
<u>C. kutscheri</u>	Reo-3	<u>Hexamita</u> muris
<u>C.</u> freundii	LCM	Hymenolepsis sp.
<u>B</u> . <u>bronchiseptica</u>	Sendai	:
<u>P. aeruginosa</u>	ЬАМ	Protozoa :
<u>Pasteurella</u> <u>spp</u> .	мна	Encephalitozoon sp.
<u>K. pneumoniae</u>	Polyoma	🥱 <u>Toxoplasma</u> gondii
	Ectromelia	•
	LDV .	
FUNGI	cdai i	
<u>B</u> . d <u>ermatitidis</u>		Rickettsia:

H. capaulatum

C. neoformis

Other microbial agents were included as deemed necessary dependent upon the test chemical and stress situation.

Eperythrozoon sp.

Maemobartonella sp.

Experiment No. 369 - One feed sample contained excessive bacterial concentration. The feed batch was discarded.

Experiment No. 376 - Four feed samples contained excessive bacterial concentration. One feed sample contained excessive bacterial and mold concentration. All five feed batches were discarded. One hundred thirty-one cage water samples were cultured for <u>Pseudomonas (Ps.)</u> aeruginosa only. One cage was positive. It was recommended that the animals in that cage be destroyed.

2

Experiment No. 382 - Ninety-six cage water samples were cultured for Ps. aeruginosa only. Six cages were positive. It was recommended that the animals in those cages be destroyed. One environmental bedding and waste sample from one of the above positive water samples was also positive for Ps. aeruginosa.

Environmental samples taken from all other experiments were considered acceptable. No animals were removed from any of the experiments for microbiological evaluation.

cc:

MEMORANDUM

ΓL

DEPARTMENT OF HEALTH AND HUMAN SERVICES PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION

DATE: FEB04 1982

FROM: Director, Division of Microbiology HFT-160

SUBJECT: Microbiological Survey - Weekly Report

EXPERIMENT NO. 376

Deoxylamine Sub-Chronic--Mice & Rats

FOR THE WEEK STARTING:

JAN 2 4 1982

The attached report contains laboratory determinations made on animal and nonanimal specimens and biological indicators from the experiment listed above. Pending data (incomplete laboratory results), when available, will be included in subsequent weekly reports. Any questions, comments, etc., should be directed to this office.

Bldg. 71-Room 151

cc:

_				A A	0 0	~	ò •
	8 6 0 •	() (• •	• • •	0 6	<u> </u>	0
					*		
					71 1	÷.	70
• .					SIC 151 200001	EXPERIMENT	02/03/82 RepCRT NO.
					200	IME	
					1001		•
						10.	CS003
					DATE Receivec C1/25/82	376	ε0(
					IVE IVE	6	
				SUF	TYPE/		
				T BC			
				n v	TYPE/SUBTYPE		
	· •			ע איז ע ע	BTY		
				Ü	ים ש		7
							ATI
					I D I		<u> </u>
					-IDENTIFICATION She =06		NATICNAL CENTER FCR MICROBIOLCGICAL
					IFI	Ĩ	CEN
					CAT		DEC
					ION	- AN	GIC
						NCN-ANIMAL K starting	
							TOXICOLOGICAL Services branch
				SW		REPCRT 01/24/	VIC XIC
				# 1 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ł	REPCRT 01/24/82	es 0L0
						N	GIC
				eac.			NCH
				.TER 1 A C 2 2 2 2 2 2			PE
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1		RESEARCH
					ESU		RCH
				T	RESULTS-		
							•
					1		
							PACE
							C E
					CCM	•	-
					CCMMENTS		
					TS		

l tem	Manufacturer or Supplier	City, State Address	Specifications	Frequency of Cleaning ur Change
Cages	Lab Products, Inc., or Hazelton Systems, Inc.	Maywood, NJ Aberdeen, MU	Polycarbonate, 10 1/2" x 6 1/4" x 5"	1 X /week
Kacks	Research Equipment	₿ryan, 1X	Stainless steel, 5 shelves, 69" high x 60 3/16" x 27 3/16"	1 X /week
Bedding	- P.J. Murphy Forest Products Corp.	Rochelle Park, NJ	Hardwood chips, heat-treated	l X /week
Cage Filters	Lab Products, Inc.	Maywood, NJ	Spun polyester	1 X /3 weeks
Koom Air Filter	Flanders Filters, Inc. or American Air Filter	Washington, NC Louisville, KY	lndustrial Grade HEPA Filter, 99.97% efficient at 0.3 µm (	As required by air flow (about 1 X /year)
Feed	Kalston Purina Co.	St. Louis, MU	Autoclavable Meal 5010M	ł
Feeders	Lab Products, Inc.	Maywood, NJ	Stainless steel wire grid, depression in cage cover	I X /week
Watering System	Lab Products, Inc.	Maywood, NJ	Glass bottles, stainless steel sipper tubes, rubber stoppers	1 X /week
Rack Washer	Girton Mfg. Co.	Millville, PA	180°F wash & rinse (3 cycles)	
Cage Washer	Girton Mfg. Co.	Millville, PA	180°F [unnel Washer (4 cycles)	ъ.   
Cage & Kack Washing Compound	Dubois Chemicals	Cincinnati, OH	Mir-a-saf	1

ł

2

MAINTÉNANCE INFURMATION FUR MICE

-

;

:

Ī

•	τ	ı	ı		÷		,		,		,		7			÷			,	4		,	J.
				÷								· .						. •			EXPERIMENT: 05010 TEST: 02	NTP /NC TR	
			-		·		22 S E F8 1	19 SEP 81	1956781	195 EP8 1	195E P81	19SEP81	19 SEÞ 81	181NC 60	18 JUL 60	V • A •	CATE						
						z	1115	1216	1203	. 1146	1133	1118	1103	2133	2118		TIME	H = HIGH L = LOW	TEMPERATURES OUT OF RANGE	DOXYLANINE SEI	TEST FROM 07/C6/81 10 10/15/81	RELATIVE TEMPERATURE AND HUMIDITY REPORT	NATIONAL CENTER FOR TOXICOLOGICAL RESE
			:				76.2	76 .1	77.2	76.8	76 .4	75.9	75 .1	77.4	. 78.4	76.4	TE MPE RA TURE	LOW	F RANGE	SENSOR_ID: 5Å 151	10/15/81	UMIDITY REPORT	ARCH
		•					I	Ŧ	T	I	т	I	I	I	Ξ	r	INDICATOR						
			·												<b>.</b> .						14 14	REPERT: THRSUMOI	

,

43

.

MTP/NCTR EXPERIMENT: 05010 TEST: 02 :

NATIONAL CENTER FOR TOXICOLOGICAL RESEARCH

RELATIVE TEMPERATURE AND HUMIDITY REPORT TEST FROM 07/06/81 TC 10/15/81

. •

Į

DCXYLAPINE SENSOR_IC: 5A 151

HUMIDITIES OUT OF RANGE

r	67		0853	14ALG81
Ŧ	<b>60</b>		. 0838	14 AUGA 1
I	61		1936	24JUL 81
I	£ 9		1522	10JLL81
I	61		1507	10 JUL 81
r	63		221 8	09 JL L E I
X	65		2 20 3	09 JL L8 I
Ŧ	73		2148	09J LL 81
I	79		2133	09 JLL81
I	64		2118	09 JUL 8 1
Ŧ	79		2103	181 JL 60
I	68		2048	09 JULA 1
I	79			ΜυΑν
¥	74		2018	181NF 60
I	63		1416	18 JUL 81
г	68		1 30 1	1871 <b>r</b> 60
I	63		1246	18 JUL 60
Ŧ	60		9 200	18 J L C O
I	63		0014	. 181 NC 60
INDICATOR	HUMIDITY		TI ME	DA TE
		l = LOH	H = HIGH	

j

P E PORT: THRSUMCI Date: Cr/20/82 TIME: 14/51/14 Page: 2

	*	-				· .							EXPERIMENT: 05010 TEST: 02	NTP /NC IB	
-	•		30 SEP e 1	30 S E P8 1	30 S E P 8 I	225 EP 8 1 3 0 5 E P 8 1	22SEP81	225EF81	DA TE						
			, ,	1214	1159	1115 1144	1100	1045	TI ME	H = HIGH L	HUMIDITIES OUT OF RANGE	DCXYLAMINE	TEST FROM 07/06/81 TO 10/15/81	RELATIVE TEMPERATURE AND HUMIDITY REPORT	NATIENAL CENTER FOR FOXICOLOGICAL RESEARCH
			63	68	73	<b>6</b> 3	71	E4	HUMIDITY	L = L04	OF RANGE	SENSOR_10: 5A 151	TO 10/15/81	D HUMIDITY REPORT	ICOLOGÌCAL RESEARCH
			T	Ŧ	I	I I	Ŧ	Ŧ	INDICATOR						
													103	REPORT: THR SUM OI	

.

ATP/NCTR EXPERIMENT: 05010 TEST: 02

> NAT IONAL CENTER FOR TOXICOLOGICAL RESEARCH Relative temperature and humidity repcrt test from 07/06/81 to 10/15/81

> > . •

DCXYLAMINE SENSOR_ID: 5A 151

TOTAL NORMAL TEMPERATURE TRANSACTIONS:8746 TOTAL HIGH TEMPERATURE TRANSACTIONS: 0010 TOTAL LOW TEMPERATURE TRANSACTIONS: 0000 AVERAGE TEMPERATURE: 71.2 TOTAL NCRMAL HUMICITY TRANSACTIONS: 8711 TOTAL HIGH HUMIDITY TRANSACTIONS: 0026

TOTAL LCH

HUMIDITY TRANSACT IONS: 0000

REDORT: THRSUPCI Dat F: 0A/20/82 T1PF: 14/51/14 PACE: 4

46

•

NTP/NCTR EXPERIMENT: 05010 TEST: 02

ı

NATIONAL CENTER FOR TOXICOLOGICAL RESEARCH

RELATIVE TEMPERATURE AND HUMIDITY REPORT

. -

TEST FROM 07/06/81 TO 10/15/81

DOXYLAM INE SEN SOR_ID: 5A 151

MISSING TRANSACTIONS

T = TEMPERATURE H = HUMIDITY

Ŧ	<b>-1</b>	I	٦	Ţ	I	-1	I	<b>1</b>	Ŧ	4	T	4	Ŧ	-	Ŧ	F	I	<b>1</b>	TRANSACTION TYPE	Т #
0446	0446	1619	1619	0758	1650	1650	0955	0955	1246	1246	1020	10 20	1137	1137	0516	0516	1559	1559	Т	TEMPERATURE
105EP81	10SEP 81	25 AUG81	25 AUG8 1	13AUG 81	06 AU G8 1	C6A UG 81	05 AUG81	0 SAUG BI	29 JUL8 1	29 J UL 8 1	20JUL 81	20 JUL 8 1	19JUL 81	19 JUL8 1	17JUL 81	17 JUL8 [	15JUL 8 1	15JUL 81	FROM	
0646	0646	1906	1906	0944	2311	2311	1110	1110	1417	1417	1743	1743	1424	1424	1900	1 900	1752	1752	10	H = HUMIDITY
105EP81	1 0 SE PA1	2 5 AU G8 1	2 5A UG 8 1	1 3 AUGR 1	06A UG 8 1	06 AUGRI	05 ÅUG 8 1	05A UG 81	29JUL81	29JUL 8 1	20 JUL8 1	20 J UL 8 1	19JUL81	19 JUL 8 1	18JUL81	18 JUL8 1	15JUL 81	1 5 JUL8 1	•	

PEPCRT: THRSLMOI DATE: 09/20/82 TIME: 14/51/14 PAGE: 5

15 C C T 8 1	21 03	1 50C T 81	1913	* *	
1 50 C T 8 1	E012	150CT 8 1	1913		
06 00 781	1258	0600 181	1009	I	
0600781	1258	06 0 0 7 8 1	1009	<b>T</b>	
06 CC 181	C843	06DC ¥81	0603	Ŷ	
06 O C T 8 1	6 4 8 0	06 OC T81	0603	T	
255EP81	0626	25 S EP 8 1	0347	r	
25SEP81	0626	25 SE P81	0347	4	
255EP 81	0247	255 EP8 1	0011	T	•
25SEP81	0247	25 SE P 8 1	0011	Ŧ	
125EP81	1558	12 SEP81	1347	I	
12 SE P81	1558	12SEP 81	1347	. <b>Т</b>	
Ϋ́O	Ţ	FR02		TRANSACTION TYPE	
	HUM ID I TY	X N	T = TEMPERATURE		
	S	MISSING TRANSACTIONS	MI SSI N		
F	SENSOR_1D: 5A 151	SENSO	DCXYL AM INE	סכא	
	/15/81	TEST FRCM 07/06/81 TO 10/15/81	TEST FROM O		NVP/NCTR EXPERIMENT: 05010 TEST: C2
. •	DITY REPORT	TEMPERATURE AND HUMIDITY REPERT	RELATIVE TEMPERA	RE	
-	CAL RESEARCH	OR TOXICOLOGI	NAT IONAL CENTER FOR TOXICOLOGICAL RESEARCH	NAT	

.

REPOPT: THR SUM C] DATT: 08/20/82 TIMF: 14/51/14 PAGE: 6

NATIONAL CENTER FOR TOXICOLOGICAL RESEARCH

# FINAL REPORT

EXPERIMENT NO. 376, DOXYLAMINE, 90-DAY STUDY

IN  $B6C3F_1$  MICE

APPENDIX C

TOXICOLOGICAL DATA

MEALTH AND HUMAN SERVICES • PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION

NATIONAL CENTER FOR TOXICOLOGICAL RESEARCH JEFFERSON, ARKANSAS 72079

OUTLINE OF THE NCTR PROTOCOL FOR THE NTP CARCINOGENESIS BIOASSAY OF

100% Sund DOXYLAMINE PHASE III 90-DAY SUBCHRONIC STUDY 7/1/8/ Date: Jul 44 H Approved: Approved: Date: 6-36' 81 Concur: Date: 6/24/81. Concur:



## OUTLINE OF THE NCTR PROTOCOL FOR THE • NTP CARCINOGENESIS BIOASSAY OF

#### DOXYLAMINE

#### 90-DAY SUBCHRONIC STUDY

2-[a-(2-dimethylaminoethoxy)-a-methylbenzyl]pyridine

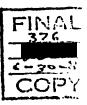
CAS No. 46-92-16	NTP #195	NCTR ∦ E−376
		NTP #5010-02

Summary

(.)

Objective: To determine the potential pathological endpoints and estimate the maximum tolerated dose (MTD) in Fischer 344 rats and B6C3F1 mice when doxylamine is mixed into the diet. Results will be used to establish dose levels for a chronic study.

Route of Administration: Dosed feed


23

<u>Rationale</u>: This drug is taken orally as an antihistamine and as an over-the-counter sleep aid.

Chemical: Doxylamine succinate (dose calculated as base)

Animals: NCTR Fischer 344 rats and B6C3F1 mice, male and female, randomized by weight, ear marked and placed into treatment and control groups.

Absorption studies on test chemical not deemed necessary for this subchronic study.



#### PRECHRONIC STUDIES

NCTR #E-376 NTP #5010-02

#### Subchronic Test:

Purpose: This test provides the basis for setting dose levels for the chronic study. An indication of the type of pathological effects produced by the chemical will be obtained.

Treatment: At each of five (5) dose levels, twelve (12) animals per sex per species will be given doses of the chemical continuously in the feed until day 90 when dosed feed will be replaced by pelletized control feed until sacrifice on the following day. A fresh supply of dosed feed will be made available to the animals weekly when cages and bedding are changed. Twice daily checks will be performed and dead and moribund observations will be recorded. Clinical observations will be performed once a week.

Observations: (1) Activity-irritability; (2) lethargy-ataxia; (3) muscular twitching-spasms; (4) cyanosis; (5) apnea-hyperpnea (respiratory distress); (6) other clinical signs; (7) body weight and (8) death.

```
Test Groups:
```

12

Animals		Sex		Species		Dose levels		<u>Total</u>	
12	X	2	X	2	X	5	8	240	
Control:									
Animals		Sex		Species				Total	

2

Housing: Not more than three (3) rats and four (4) mice per cage; random assigned by weight and individual animals marked. Animals will be housed separately by sex, by species and by dose level.

48

Feed: Purina 5010 M

X

2

¥

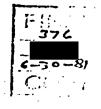
Water: Barrier water

Test Dosage: Rats (ppm, as doxylamine) 0, 162, 405, 1012, 2530, 6325 Mice (ppm, as doxylamine) 0, 80, 162, 325, 750, 1500 (Variance is + 10%)



#### EXPERIMENTAL PROTOCOL

CAS No. 46-92-16	NTP #195	NCTR #E-376
		NTP #5010-02


Title: Subchronic Toxicty Study on Doxylamine in Fischer 344 Rats and B6C3F1 Mice.

Principal Investigators:		NCTR, Jefferson, AR (541-4553)
Co-Principal Investigators:	<b>(541-4401)</b>	, NCTR, Jefferson, AR
		NCTR, Jefferson, AR (541-4519)



This study will be performed as the basic experimental protocol outlined in: Technical Protocol for the Bioassay of Doxylamine.

Approval for study to begin: MIP Program Director for NCTR Proposed start date of allocation: NA Proposed start of test: 7/6/81 (Rats on 7/6/81; mice on 7713781) Proposed end of test: Week of 10/12/81 Proposed submission date of report: Week of 12/14/81 Internal study ID(s): NCTR #E-376 Test Substance: Doxylamine succinate Manufacturer: Richardson-Merrell, Inc. Control substance: NA Manfacturer: NA Chemical reanalysis date(s) (study period only): July 1981



#### test system

Source: NCTR

Species/Strain/Substrain (if applicable): Rat Fischer 344, Mouse B6C3F1 Sex: Male and Female

Age: 31 - 40 days

Acceptable range in body weights at start of test:

Species	Sex	Weight Range
Rat	Male	70 - 150 grams
Rat	Female	60 - 130 grams
Mouse	Male	13 - 26 grams
Mouse	Female	12 - 24 grams

Quarantine room #s: NA

Animal treatment room #: Bldg. 5A - 151

Procedure for individual animal identification: All animals will be identified by an ear clip system and by cage cards which will include experiment number, cage number, room number, dose code, rack number, start date and treatment number.

Randomization table used:

memo (attached)



#### EXPERIMENTAL DESIGN

Route of administration: Dosed feed Frequency of administration: Ad libitum Dose levels: Rats (ppm, as doxylamine) 0, 162, 405, 1012, 2530, 6325 Mice (ppm, as doxylamine) 0, 80, 162, 325, 750, 1500 (Variance is + 10%) Protocol No.: NCTR #E-376 No. treated animals required/dose level: 12/sex/species No. vehicle control animals required: No. untreated control animals required: 12/sex/species Feed: Purina 5010 M Frequency: Ad Libitum Contaminants in feed expected to interfere with study: none known, however analysis performed at NCTR¹. Water: Barrier water Frequency: Ad libitum; from bottles Contaminants in water expected to interfere with study: none known, periodic water analysis performed at NCTR Weighing Schedule: Animals will be weighed individually at the initiation, after each week, and at the termination of the test. Feed will be weighed initially, after each week, and at the termination of the test. Date(s) of and number of animals required for collection of plasma samples for the animal disease screening program: none required Statistical analysis to be performed: Determination of maximum tolerated dose (see attachment). Comments: Rats (3/cage) material of cage: Polycarbonate Mice (3/cage) material of cage: Polycarbonate Rat cage measure: 17" x 8 1/4" x 8" Mice cage measure: 10 1/2" x 6 1/4" x 5" Animal bedding: Hardwood chips-P. J. Murphy Forest Products Corp. 114 Essex St. Rochelle Park, NJ 07662

Policies and Procedures for Murine Rodent Diets-January, 1981, Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR



#### DOSAGE MIXING, HANDLING AND STORAGE

Chemical name: Doxylamine

Date of first mixing: Week of 6/29/81

Frequency of mixing: Twice

Decontamination and/or cleanup procedure: As per NCTR Safety Guideline

(attached)

The following information must be provided below: materials required, area of performance, safety requirements, mixing procedure, storage and use of the mixed chemical.

Material required:

- 1. Dosage preparation information form
- 2. Balance
- 3. Stock solutions of doxylamine
- 4. Gloves
- 5. Mask

Area of performance and safety requirements: All mixing procedures will be handled in diet preparation facility, the technician will be protected by gloves and mask.

Mixing procedures:

1. During all procedures, protect the chemical from light and air as much as possible.

2. Details of the mixing procedure are attached.

3. Doxylamine succinate will be weighed and dissolved in ethanol in a volumetric flask. Concentrations of stock solutions will be guaranteed by weight (QA Inspector).

3. Chemistry will certify the stock solutions concentration of doxylamine in each initial batch of feed prior to its use in the study, will determine the concentration of one other batch at each dose level during the course of the study and will determine stability of the compound mixed with the feed at the highest and lowest dose levels.

Handling, storage and use: Doxylamine is stable in feed for at least eight weeks.



Pathology:

1. A routine necropsy will be done as indicated in the Pathology Services Standard Operating Procedures. This will include weighing the animal.

2. Weigh liver.

3. Fix and process the following organs and any gross lesions for microscopic evaluation: liver, lung, right kidney, heart, thymus, brain, stomach and target organs as requested by PI. Other organs will be discarded.

4. All fixed tissues will be examined histologically.

5. Special sections of the liver will be stained for lipid.

6. Gross and microscopic pathology reports will be submitted to the Division of TDMS for entering on the data base.

Records to be maintained/Reports to be generated:

- 1. Automated:
  - a. Animal weights and observations
  - b. Animal removal reports for dead or scheduled sacrifices
  - c. Gross pathology
  - d. Microscopic pathology
  - e. Environmental condition and control data, JC-80
  - f. Weight anomalies
  - g. Missed cages
  - h. First observation for animals on experiment.
  - Liver weight summaries, including absolute liver weight and liver/body weight ratios.

2. Manual:

- a. Chemical purity and stability
- b. Chemical certification of concentration
- c. Allocation of animals and animal allocation weights
- d. Feed/water mixing sheets

If automated system breaks down, manual system will be substituted for each category.



# ATTACHMENTS

- 1. Suggested Randomization and Rack Configuration for NTP Fourteen Day Repeated Dose Study.
- 2. Start-up Information for NCTR Experiment #E-376

3. Safety Guidelines

4. Pathology Protocol

• · · &3

5. Determination of Maximum Tolerated Dose (MTD)



#### SAFETY GUIDELINES

. QAS 12/29/80

•		SAFETY GUI	DELINES		•	
Test Artic	:le(s):	Antihistamines		•	•	
Test Artic	lc(s):	Doxylamine Mol. Wt. 270.38		•	•	
		ethyl-2-[1-phenyl-1- -(2-dimethylaminoeth				
Characteri		Liquid at room temp .5 mm Hg.	perature, l	boiling 	point 13	7-141 ⁰
Test Artic	le(s):	Doxylamine Succinat Mol. Wt. 388.46 CAS No. 526-10-7	e NF			
	డి	NIOSH No. US 92750	· · ·	• •		•
• •	butaned 2(alpha succina (Dimeth	ethyl-2-[1-phenyl-1( ioate(1:1); -(2-dimethylamino)et te (1:1) (NIOSH list ylamino)ethoxy]-α-m Decapryn Succinate.	hoxy-alpha ing); 2-[c	amethylt 4-[2-	oenzyl)-p	yridine
Characteri	odor; m	White or creamy whi elts with 3 range b r, alcohol and chlor zene.	etween 10	3° and 1	08° C.;	soluble
Test Artic	ele(s):	Methapyrilene Nol. wt. 261.38 CAS No. 91-80-5 NIOSH No. UT 14000				
Synonyms:	listin	methyl-N'-2-pyridiny				•
Characteri		Liquid at room temp 0.45 mm Hg, 173-175 or 1.5842.	erature; 1 C. at 3 m	ooiling nm Hg.	point 12 Specific	5-135 ⁰ gravity
Test Artic	le(s):	Methapyrilene Fumma Mol. wt. 870.99 CAS No. 33032-12-1	rate NF			
Synonyme:	(2:3); N-dime	(dimethylamino)ethyl 1,2-ethandiame, N, thyl-N'-2-pyridinyl- dioute (2:3)				

NTP Experiment

Characteristics: White, crystallino powder, usually having a faint odor; melting point between 133° and 137° C.; soluble in water and in alcohol; a solution of 1 gm in 20 ml has pH of 3-4.

Test Article(s): Methapyrilene hydrochloride NF Mol. wt. 297.85 CAS No. 135-23-9 NIOSH no. UT 17500

Synonyms: 2-[[2-diethylamino)ethyl]-2-thenylamino]pyrldine monohydrochloride (NIOSH listing); 1,2-ethanediamine, N, N-dimethyl-N'-2 pyridinyl-2'-(2-thienyl-methyl)monohydrochloride; Histadyl

Characteristics: White, crystalline powder, usually having a faint odor, has bitter taste; melting point 161-165°C. One gram dissolves in about 0.5 ml water, about 5 ml alcohol, and about 3 ml chloroform. Practically insoluble in benzene and ether. Water solutions have a pH of about 5.5

Test Article(s): Pyrilamine Mol. wt. 285.38 CAS No. 91-84-9 NIOSH No. UT 08750

'Synonyms: 2-((2-dimethylamino)ethyl)(p-methoxybenzyl)amino)-pyridine (NIOSH listing); 1,2-ethanediqmine, N-[(4-methoxypheny)methyl]-N', N'-dimethyl-N-2-pyridine; Wait's Green Mountain Antihistamine.

Characteristics: Oily liquid at room temperature; boiling point 168-172°C. at 0.06 mm Hg, 201°C. at 5 mm Hq.

Test Article(s): Pyrilandae bydrochloride Mol. wt. 321-89 CAS No. 6036-95-9 NIOSH No. UT 10500

Synonyms: 2-((2-dimethyamino)ethyl)(p-methoxybenzyl)amino)-pyridine hydrochloride (NIOSH listing); Mepyramine hydrochloride.

Characteristics: Crystals; melting point 143-143.5° C.; very soluble in water.

Test Article(s): Pyrilamine maleate NF Mol. vt. 401.46 CAS No. 59-33-6 NIOSH No. UT 12250

Synonyms: 2-((2-(dimethylamino)ethyl)(p-methoxybenzyl)amino)-pyridine maleate (1:1) (NIOSH listing); 1,2-ethanediamine, N-[(4-methoxyphenyl)methyl]-N', N'-dimethyl-N-2-pyridinyl-(Z)-2-butenedioate (1:1); Antallergan Malcate.

Characteristics: White, crystalline powder, usually having a faint odor; bitter saline taste; melting point 99-103° C. One gram is soluble in about 0.5 ml water, 15 ml absolute alcohol, about 2 ml chloroform. Slightly soluble in benzene and ether. A 10% solution has a pH of about 5.1. Raising the pH of aqueous solutions to 7.5-8.0 allows release of the oily freebase which is heavier than water. The dry powder is stable in air.

Test Article(s): Tripelennamine Mol. wt. 255.35 CAS No. 91-81-6 NIOSH No. US 28000

Synonyms: 2(benzyl(2-(dimethylamino)ethyl)amino)-pyridine (NIOSH listing); N,-N-dimethyl-N'-(phenylmethyl)-N'-2-pyridinyl-1,2ethanediamine; tripelenamine.

Characteristics: Oily liquid with amine odor; boiling point 167-172° C. at 0.1 mm Hg, 185-190°C. at 1.7 mm Hg. Miscible with water.

Test Article(s): Tripelennamine hydrochloride USP Mol. wt. 291.82 CAS No. 154-69-8 N10SH No. US 31500

Synonyms: 2-(benzyl(2-(dimethylamino)ethyl) pyridine hydrochloride (NIOSH listing); Pyribenzamine; Resistamine.

Characteristics: White, crystalline powder, with bitter taste, producing temporary numbness of the tongue; melting range 188-193.5° C.; one gram dissolves in about 1 ml water, about 6 ml alcohol, about 6 ml chloroform, about 350 ml acctone. Practically insoluble in benzene, ether and ethyl acctate. The powder darkens slowly on exposure to light. Aqueous solutions have pli as follows: 25 mg/ml, 6.71; 50 mg/ml, 6.67; 100 mg/ml 5.56.

Test Article(s): Tripelennamine citrate USP Mol. wt. 447.49 CAS No. 6138-56-3

Synonyms: 1,2-ethanediamine, N, N,-dimethyl-N'-(phenylmethyl)-N'-2-pyridinyl-2-hydroxy-1,2,3-propanetricarboxylate (1:1); 2-[benzyl[2-(dimethylamino)ethyl]amino]-pyridine citrate (1:1).

White, crystalline powder; melting range 106-110° C. Characteristics: One gram dissolves in about 1 ml water; freely soluble in alcohol; very slightly soluble in ether; practically Insouble in benzene or chloroform. A 1% aqueous solution has a pH of 4.25. Taste less bitter, more palatable, than hydrochloride. Test Article(s): Thenyldiamine Mol. wt. 261.36 CAS No. 91-79-2 NIOSH No. UT 15750 2-((2-(dimethylamino)ethyl)-3-thenylamino)-pyridine (NIOSH Synonyms: listing); N, N-dimethyl-N'-2-pyridinyl-N'-(3-thienylmethyl)-1, 2-ethanediamine; Thendadil Characteristics: Liquid at room temperature; boiling point 169-172° C. at 1.0 mm Hg. Thenyldiamine hydrochloride (mono) Test Article(s): Mol. wt. 297.88 CAS No. 958-93-0 NIOSH No. UT 19250 2-((2-(dimethylamino)ethyl)-3-thenylamino)-pyridine mono Synonyms: hvdrochloride (NIOSH listing); N-N-dimethyl-N'-(3-thenyl)-N'-(2-pyridyl) ethylene diamine hydrochloride. Characteristics: Crystalline solid at room temperature; melting point 169.5-170° C.; bitter taste; soluble in water to 20%; slightly soluble in alcohol; pH of 1% aqueous solution 6.5. Chlorothen Test Article(s): Mol. wt. 295.85, 295.86 CAS No. 148-65-2 NIOSH No. US 73500 2-((5 chloro-2-thenyl)(2-Synonyms: (dimethylamino)ethyl)amino)pyridine (NIOSH Listing); N-((5chloro-2-thienyl)methyl)-N', N'-dimethyl-chloro-2-pyridinyl-1,2-ethanediamine. Characteristics: Liquid at room temperature. Bolling point 155 -156° C. at 1.0 mm mercury. Strong base. Tost Article(s): Chlorothon citrate NF XIII Mol. wt. 487.95 CAS No. 148-64-1

Synonyms: (2-((5-chloro-2 thenyl)[2-dimethylamino)-ethyl)amino) pyridine citrate (1:1); Chloromethapyrilene citrate; Tagathen.

Characteristics: White, crystalline powder, with faint odor. Melting point 112 - 116°C. On further heating, gradually solidifies and remeits at 125 - 140°C., with decomposition. One gram dissolves in 35 ml water, 65 ml EtOH. Practically insoluble in benzene, chloroform, diethyl ether. Aqueous solutions are acid to litmus, pH of 1% solution, 3.9 - 4.1.

Test Article(s): Chlorothen hydrochloride Mol. wt. 332.32 CAS No. 135-35-2 NIOSH No. US 74000

Synonym: Tagathen

Characteristics: Crystal at room temperature. Melting point 106 - 108° C. Freely soluble in water.

- Assay Methodology: Chemistry Division at NCTR is currently validating a method for the quantitative and qualitative determination of the antihistamines, using gas chromatography with a nitrogen-phosphorus detector.
- Human Health Effects: Each of these test articles may be classified as an antihistaminic, or an antihistaminic drug. The indications for the use of the various antihistaminic drugs vary considerably. The majority of these drugs are effective in perennial and seasonal allergic rhinitis, vasomotor rhinitis, allergic conjunctivitis, uticaria, and angioedema, allergic reactions to blood and plasma, dermographism, and as adjuncts to conventional therapy in anaphylactic reactions. Some of these antihistamines are effective in the active and prophylactic management of motion sickness. The more sedative agents are sometimes used as substitutes for the barbituates in insomnia, and insomnia predominant in certain medical disorders. Certain of the antihistaminics are used in propietary medications widely promoted for insomnia.

It is generally agreed that most antihistamine drugs are ineffective in migraine and histamine headache prevention, or regulation of the sequela of pain, edema, and hemorrhage in oral surgery, potentiation of narcotic analgesic drugs, as antiemetic agents in post-operative patients, as antitussive agents, or for treatment of nocturnal log cramps, leg cramps of pregnancy and functional dysmenorrhea. The usefulness of antihistaminic drugs in various other clinical conditions such as bronchial asthma, atopic dermatitis, neurodermatitis, allergic eczema, various contact and chemotoxic dermatities, generalized prunitis, use in cardiac arrhythmias, spasmotysis In gastrointestinal allergies, prophylaxis of drug reactions, etc. must await further clinical investigation before a final assessment can be made.

The antihistamines produce a variety of undesirable side effects. Although their incidence varies considerably, ranging from less than 7% to as high as 80%, they are similar for all the available agents. The drugs may even produce sensitivity reactions of the type which they usually inhibit. Sensitivity to one antihistamine is ordinarily not an indication that the patient is sensitive to others.

Sedation is the most common untoward reaction and is directly related to the dosage employed. The reaction is particularly serious when the drug is taken without adequate medical supervision. In some cases, this response may disappear after several days of medication. Other side reactions elicited by these drugs include nausea, headache, vertigo, xerostomia, restiveness, and gastrointestinal distress. Dermatological complications and skin eruptions have followed the local application or oral administration of antihistamines. In a few individuals, certain antihistaminics produce signs of central excitation, such as insomnia and nervousness. Normal dose for humans is 100 to 200 mg/day, usually divided into four doses.

Employees conducting research with antihistamines at NCTR are unlikely to be exposed to amounts anywhere approaching therapeutic doses. Therefore, the effects that have been noted in patients receiving the drugs for therapeutic purposes are unlikely to be experienced among employees. However, since evidence is present in the literature that antihistaminics can produce local sensitivity, care to avoid skin contact is mandatory when research is conducted at NCTR with these drugs.

Antihistamizes are effective in preventing histamine shock Toxicity: In guinea pigs, bronchospasm induced in guinea pigs by nebulized histamine solutions, whealing on the skin, and many other responses to histamine. The hypotension induced by histamine is more difficult to block, and the increased salivation and gastric secretion are not inhibited. The antihistamines also have antianaphylactic properties in large doses, and are antipruritic and analgesic. Some have bowel or bladder smooth muscle antispasmodic action, and some produce sedation and other central nervous system stimulation. Strong evidence is present in the literature that methapyrilimine produces tumors in laboratory test animals. There is no evidence in the literature that other antihistamines produce a similar effect in laboratory animals.

The antihistaminus are not particularly toxic to taboratory test animals, the LD by the oral route for mice ranging from about 182 mg/kg body weight to about 470 mg/kg body weight. Emergency Treatment and Medical Surveillance: Because of the characteristics of these antihistamines, it is likely that the organic acid esters will be used in research at NCTR. Alkaline pH's may cause the esters to separate, releasing the free oily amine base. If the substance comes into contact with unprotected skin, immediately wash the affected area with clean, flowing water for 10 minutes. If there is evidence of an oily residue on the skin following this emergency treatment, continue to wash the skin area, using soap and water. Soap and water should help remove the oily amine base; however, using soap (with its alkaline pH) may cause the ester form of the antihistamines to break down, which would make the removal problem worse. Therefore, it is recommended that water alone first be used to flush skin areas before using soap.

For eye exposure, the eyes should be flushed with clean, flowing water for 10 minutes, as one would following any eye exposure to chemicals.

In case of ingestion, no special action is indicated, because the amount likely to be ingested during research at NCTR is far less than therapeutic doses.

In cases of any exposure to antihistamines the employee should notify the supervisor of the exposure and then report to the NCTR Occupational Health Unit for any followup care or treatment which might be indicated, depending upon the symptoms produced.

Protective Measures: Research with pure antihistamines should be conducted in compliance with the NCTR Safety Manual, Section VI.B., Identification and Control of Hazardous Substances Use Areas, page VI-2; and VI.E., Hazardous Substances Control and Containment, page VI-21.

Employees who have demonstrated that they can safely handle antihistamines may conduct research on the open bench, when the quantity of the substance is less than 1 gram. The employees' supervisors and the Principal Investigator should agree to any deviations from this open-bench provision, and this agreement will be documented.

When the research being conducted involves treating laboratory animals with antihistamines, and when the substance is administered via the feed or water, it will not be necessary to document the open-handling provision for animal caretakers working in animal rooms or in support areas where cages, etc. are cleaned.

When moved from one place to another, antihistamines should be contained as described in the NCTR Safety Manual, Section VI.C., Facilities Operation, page VI-G. Employees must wash their hands before leaving rooms where antihistamines are used and before eating, smoking, etc.

Protective Clothing: Employees conducting research using antihistamines must be provided protective clothing in compliance with the NCTR Safety Manual, Section VI.D., <u>Protective Clothing, Protective Devices, Showers and Change</u> <u>Room Practices</u>, page VI-11. Deviations from this procedure must be authorized by the lab supervisor and the justification documented.

Occupational exposure to antihistamines may result in sensitization to the specific antihistamine. Should sensitization develop, the employee may not be able to use over-the-counter preparations which are useful in treating a variety of common illnesses.

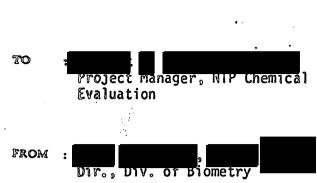
To prevent skin contact with antihistamines, employees will wear impervious gloves, such as rubber surgical gloves, plastic examination gloves, etc. If the work involves heavy articles, or If there are sharp edges which might puncture or tear thinner gloves, supervisors should consider providing employees with heavy-duty rubber or plastic gloves.

Supervisors are responsible for training employees to properly wear protective clothing.

To prevent inhaling antihistamines, a respirator providing protection equivalent to the 3M 8710 or the 3M 9910 will be provided. Some of the antihistamines may have a mild characteristic odor, which does not reflect a hazard to individual health. However, if employees find this odor objectionable, the 3M 8712 or 3M 8713, or respirators providing equivalent protection may be used. Equivalent protection is demonstrated by NIOSH certification. To prevent the vapor removing capacity from being exhausted, the respirator should be sealed from the environment until ready to be used.

Supervisors are responsible for training employees to properly fit and to correctly wear respiratory protective equipment. Correct use of a respirator will effectively prevent exposure by ingestion.

Employees performing tasks where there is a chance that liquids containing antihistamines may splash on their faces will be provided with a face shield which affords full-face protection.


Employees will wash their hands after removing protective clothing.

Decontamination: Laboratory glassware, and other equipment used during the conduct of research with antihistamines, will be decontaminated following procedures described in the NCTR Safety Manual, Section VI.G. (Detoxification and Decontamination, page VI-35). Water may be used as the preliminary rinse solvent for the ester forms of the antihistamines. Acetone should be used to rinse glassware contaminated with the free base amine form of the antihistamines. Water used as a preliminary rinse solvent may be dumped down the drain. Acetone used as a preliminary rinse solvent must be collected and disposed of as waste solvent.

- Waste Disposal: The procedures for handling waste products found in the NCTR Safety Manual, Section VI.H. (<u>Handling of Hazardous</u> <u>Laboratory and Animal Waste</u>, page VI-41) are adequate for waste material containing antihistamines.
- **Spill** Decontamination: Spill cleanup involves physical removal of the antihistamine, together with the carrier or vehicle used to administer the substance. Antihistamines in the ester form are quite water soluble, so that washing with water will be quite effective. Using a surfactant (with its alkaline pH) when the antihistamine is present in the form of the ester may cause the release of the oily free amine base. For this reason, it is Important to know the composition of the antihistamine being used in a specific experiment, so that one may anticipate the proper spill cleanup procedure. In the event the antihistamine Is In the free base form, the use of a good surfactant (such as Microquat or Hyamine) will make cleanup more effective. When using water or water with surfactants, the material used for spill cleanup may be flushed down the nearest floor drain. In the event no floor drain is available, the spill cleanup materials must be collected and disposed of in accordance with the NCTR Safety Manual, Section VI.H., Handling of Hazardous Laboratory and Animal Waste, page VI-41.

A report of the event, containing the data outlined in the NCTR Safety Manual, Section IV.B. (<u>Accidental Exposure to Hazardous</u> <u>Substances</u>, page IV-1) will be prepared by the supervisor, with copies sent to the NCTR Occupational Health Unit, the Principal Investigator, the QAS office and the Safety Officer.

Workplace Monitoring: Workplace monitoring is accomplished by wiping cotton-tipped swabs over the surface. The cotton-tipped swabs usually are molstened using a suitable solvent before use. The selection of solvent must await the validation of analytical methods for antihistamines by the Chemistry Division, NCTR.



MEMORANDUM

DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION

DATE: May 5, 1981

SUBJECT: Randomized Allocation and Rack Configuration for NTP Subchronic Studies

11

#### INTRODUCTION

The 13-week NTP subchronic experiment is conducted in both sexes of Fischer 344 rats and B6C3 mice. Six dosage levels (including controls) with 12 animals per dosage level are used. Rats are housed 3 per cage and mice are housed 4 per cage. The total number of animals is:

72 male rats
72 female rats
72 male mice
72 female mice
288

The 13-week pathology, mortality, and animal weight are used to estimate the maximum tolerated dose (MTD) for the two year chronic studies. Because of the pathology workload capacity, not all animals will be necropsied after exactly 13 weeks. Thus, the 13-week animal room body weight of an animal will be used rather than the body weight obtained at necropsy.

#### RANDOM ALLOCATION

The random allocation of animals to cages on a weight basis is accomplished as follows for any particular species and sex. Weigh the animals and arrange in order from lightest to heaviest. The allocation begins with the lighter animals and proceeds through the heavier animals. The automated allocation scheme based on computer generated randomized cage assignments may be used. This will provide a range of lighter to heavier animals in each cage.

23

# MALE RATS RACK CONFIGURATION

The rack configuration for male rats is given in Figure 1 showing cage numbers and dosage levels. The top shelf is not used. The six dosage levels are designated by 1-6 with 1 being the controls up to 6 being the heaviest dosage level. Two rat racks per sex are utilized in order to provide 6 columns of cages. All of the 4 cages in a column receive the same dosage level. The dosage levels have been assigned to columns at random.

}

FIGURE 1. Male Rats Rack Configuration (Cage # - Dose Level #)

-	<b>6</b> 2	-	<i>a</i>
1 - 3	5 - 1	9 ~ 5	
2 - 3	6 - 1	10 - 5	- ·
3 - 3	7 - 1	11 - 5	53
4 - 3	8 - 1	12 - 5	a

£s

	ſ	Ĵ	··
13 - 2	17 - 6	21 - 4	
14 - 2	18 - 6	22 - 4	
15 - 2	19 - 6	23 - 4	
	20 - 6	24 - 4	

70

- 3-

# FEMALE RATS RACK CONFIGURATION

The rack configuration for female rats is given in Figure 2 showing cage numbers and dosage levels. The six dosage levels are designated by 1 for the controls and 7 - 11 for the chemical. The chemical dosage levels may or may not be the same as those used for the male rats.

FIGURE 2. Female Rats Rack Configuration (Cage # - Dose Level #)

	•••••••	· · · · · · ·	• •
-		· · · · · ·	
25 - 9	29 - 11	33 - 7	· · · <u>·</u> ·
26 - 9	30 - 11	<u>34 - 7</u>	· · · · ·
27 - 9	31 - 11	35 - 7	··· <u>·</u> ·
28 - 9	32 - 11	36 - 7	-

-	-	-	-
37 - 8	41 - 1	45 - 10	-
38 - 8	42 - 1	46 - 10	-
39 - 8	43 - 1	47 - 10	-
40 - 8	44 - 1	48 - 10	-

-4.

# MALE MICE RACK CONFIGURATION

-5-

The rack configuration for male mice is given in Figure 3 showing cage numbers and dosage levels. Animals are housed 4 per cage with 3 cages per dosage level on one side of a mouse rack. The 3 cages in a column receive the same dosage level. The dosage levels have been assigned to columns at random. The six dosage levels are designated by 1 for the controls and 12 - 16 for the chemical dosages.

# FIGURE 3. Male Mice Rack Configuration: Side A (Cage # ~ Dosage Level #)

n

	<b>e</b>	a .		· · · · · · · ·	5
49 - 13	52 - 15	55 - 1	58 - 16	61 - 12	64 - 14
50 - 13	53 - 15	56 - 1	59 - 16	62 - 12	65 - 14
51 - 13	54 - 15	57 - 1	60 - 16	63 - 12	66 - 14
Ð	e	-	. ~	ą	-
1	a	8	Ģ	ę.	-

### FEMALE MICE RACK CONFIGURATION

The rack configuration for female mice is shown in Figure 4 giving cage numbers and dosage levels. The females are housed on the opposite side of the rack from the males. The six dosage levels are designated by 1 for the controls and 17-21 for the chemical. The chemical dosages for the females may or may not be the same as for the males.

# FIGURE 4: Female Mice Rack Configuration: Side B (Cage # - Dosage Level #)

-		-	<b></b>	_ ·	-
67 - 18	70 - 20	73 - 21	76 - 1	79 - 19	82 - 17
68 - 18	71 - 20	74 - 21	77 - 1	80 - 19	83 - 17
69 - 18	72 - 20	75 - 21_	78 - 1	81 - 19	84 - 17
-	-	-	· •	f	
-	-	-	•	6	

#### START-UP INFORMATION FOR NCTR EXPERIMENT 376

#### NTP EXPERIMENT 5010-02

#### ROOM 151 A-BARRIER

"90 DAY - SUBCHRONIC-DOXYLAMINE"

ANIMALS:	Fischer 344 Rats	72 males	and 72 females
C	<b>B6C3F1</b> Hybrid Mice	72 males	and 72 females

ALLOCATION: Rats are to be allocated 3 per cage and ear marked N, L, and R on July 2, 1981. Mice are to be allocated 4per cage and ear marked B, N, L, and R on July 8, 1981.

The rats and mice are to be given AW feed at time of allocation in order to get adjusted to the feeder.

All animals are to receive water from the A-Barrier water supply.

#### WEIGHTS, OBSERVATIONS, AND CAGE CHANGE SCHEDULE:

See attached schedule.

The technicians are to utilize the Clinical Observation Table provided for clarification of abbreviations.

#### FOOD AND FOOD CONSUMPTION:

The animals are to be fed AW control feed until put on dose.

See attached schedule.

Meekly food consumption is to be measured.

#### DATA COLLECTION:

All data entries are to be collected via:

- 1) EIS Terminal
- 2) Manual Form See form attached.
- Removal of Animals See animal removals.

ANIMAL REMOVALS:

Unscheduled - Dead and Moribund animals are to be removed as follows:

1. Remove as "DEAD" and "MORIBUND" utilizing the EIS terminal or the EIS manual form provided.

Scheduled - Remove as "terminal":

- 1. Use EIS terminal for the animal removal.
- 2. Assign CID's in the following order: N,L, and R.
- 3. Write earclip on back of CID cards and wrap them to cage card.
- 4. Take to Pathology.
- 5. No EDCS single animal removal form is needed.

**CID CARDS:** 

The CID cards for this experiment have been issued in two blocks.

**#'s 1-144** have been designated for RATS and have RATS marked **the c**ards.

**#'s** 145-288 have been designated for MICE.

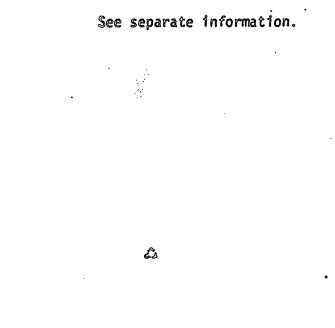
All animals are to be taken to Pathology.

**DIAGNOSTIC ANIMALS:** 

None.

É

#### ENVIRONMENTAL MONITORING:


1. Environmental Test 1 Bedding & Waste Water Air Specie Date Day Rac 5 cages at random All bottles 7-8-81 Wednesday X X X 7-9-81 Thursday X X Rats 1 - 48-5-81 Wednesday X Mice 5 X 9-2-81 Wednesday 9-3-81 Thursday X X Rats 1-4 X X X 10-7-81 Wednesday Mice 5

2.

#### Chemistry Feed Samples

QA samples are to be collected from spares during the study when scheduled by the Chemistry Department.

^{2.} Fill out an EDCS "Single Animal Removal" form as well.



Principal Investigator

<u>~ 29,198/</u> Date

Program Resources, Inc. •

<u>Fune 29, 81</u> Date

BASIC PROGRAM NTP SUB-CHRONIC STUDIES

"Doxylamine"

Tr	DAV	ALLOC	ATION	ON	<b>VOSE</b>	W/0	+ CC	LOG DATC	WK. ON L	DOSED F
JTE	DAY	RATS	MICE	PATS		RATS	MICE	CC RATS	RATS	MICE
-2-81	Th	X					· ·			
-6-81	М			X		X				
-8-81	W		X		1				•	
-9-81	Th							X		
-13-81	М			_		X			1	
-15-81	W				X		X			
-16-81	Th							X		
-20-81	M					X			2	
-22-81	W					I	X			1
-23-81	Th							X		
-27-81	M					X			3.	
-29-81	W						X			2
-30-81	Th							X		
-3-81	М					X			4	
-5-81	W						· X			3
-6-81	Th							X		
-10-81	Μ					<u> </u>			5	
-12-81	W						X			4
-13-81	Th	•						X		
-17-81	M					X			6	
-19-81	W						· X	l		5
-20-81	Th							X		L
-24-81	М					X				
-81	W						X			6
-2/-81	Th							X		ļ
-31-81	М					X			8	
-2-81	W	·					X			·
-3-81	Th							X		
-7-81		Holiday				X			9	
-9-81	W						X			8
-10-81	Th							X		
-14-81	<u>M</u>					Χ			10	
<u>-16-81</u>	W Th						X			9
-17-81 -21-81						V		^		
-23-81	<u>M</u>					X	<u>x</u>		11	
-24-81	W Th						·	x		10
-28-81	M					X			12	<b> </b> -
-30-81	W					^	<u> </u>	<u>}</u>	16	
0-1-81	Th						<u> </u>	×		11
0-5-81	M					X		<u> </u>	13	
-7-81						^	X	· [ ]	1.5	12
-8-81	Th						·			16
-12-81 -14-81	M							╁╼┄┈╼╌╴┨		
	- <u></u> W						X	·		13

Rats and mice are to be put on pelleted feed twenty-four (24) hours before removal and fastovernight before removal to Pathology. Principal Investigator is to provide separate removal

*M-Th may be substituted with T-Fri. schedule.

	PATHOLOGY	PROTOCOL		2 and	Cath.	rage 1 or 3
· .	Date Propared		1981	Reparent	P	Page 1 of <u>s</u> Rection ,
Signed:(Prino/pal_inv		Signed:		gned Patho		
xperiment No. 376 Title: Do.	ylamine Subchro	onic				<u></u>
ompound Used Doxylamine		<u>مەرىپە تەرىپە تەرىپە تەرىپە</u>	_Total	Animals	288	_Sex_ <u>M_&amp;_F</u> _
train Fisher 344 (Rats); B6C3F CID's 376-00001 thru 00144; 00	(Mice) 145 thru 00288	Loa	d Date	<u>July 1981</u>	_Comple	tion
Estimated Pathology Tech	nician Man Years				<b>6</b> :11.4	
Estimated Pathology Prof	essional Man Yea	rs			1111ea	in by PSP
	RECEI	VING				
23	Data Te	rminal	•			
, l	<u>x</u> Üsed	Not Use	d			
	CLINICAL	PATHOLOGY	T.B.A.	-		
lood Smear: Collection Neth	od: Orbital	Other (de	scribe	)		
;						
lin. Chem. Test Required:	-					·
		· .		· · ·		
		,				
rinalysis:						
ematology:					· · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	HISTOPA					
rg ns to be Weighed						
X iver <u>X</u> Brain <u>X</u> Heart	X tungs	Suj	600	X R.Kidn	οv	1 Kidney
X ihymusUterusPitui						
· · ·				-		-
is to be shared (List organs						
	والمتركبين ومعاول والاروم والمراجع					
t Organs (List)			•	<del></del>		
						·
v sed March 17, 1980	· •					

 $\mathbf{f}$ 

Refer to P	Page 3			EXP.	<u>376 Pag</u>	
Routine	Spec	cific Orga	nsCoil Ureter	Vaginal Smear	Bladder Infl	lat.
Tra/Tyd/E	sogk	(dy/Adrl	Tongue	Sple/Pan	Lymp Node	
Hrt/Tym/Ac	ort	Sternun	Stomach	Subdib	Penis	
Ovary/Utr:	sE	Eye/Hrdan	Duodenum	Subl in	Mamnary	
Vag/Cervx	2	Zymb <mark>al(</mark> Rat	)Jejum	Parotid	Nasal Septum	n
Testis/Fp:	i!	Muscle	Ileum	Lacrml	Ext. Ear Car	na1
Preputial	l	Jreter	Colon	Crebrum	Mamnary VIM*	
Sem.V/Coag	gt	Jrethra_	Liv/GB	Crebellum	Intes. Exam*	•
Bldr/Prost	t[	81 adder	Lung	Spinal Cord		
Other (Specif	fy)					
,	23		•	•		
Trimming: Ro		······.	e fixative & tissue			
Trimming: Ro	outine X (	)ther	HISTOTECHN			······································
Trimming: Ro	outine X (	)ther rs) _X_0	HISTOTECHN ther_Rats 16 hrs	DLOGY		(16 b
Trimming: Ro	outine <u>X</u> Mice (4 hr	Other rs) <u>X</u> O	HISTOTECHN ther Rats 16 hrs			(16 h
Trimming: Ro Processing: Embedding:	Dutine X ( Mice (4 hr Routine	Other rs) _X_0 0	HISTOTECHN ther_Rats 16 hrs ther	DLOGY		
Trimming: Ro Processing: Embedding: Sectioning:	Dutine X C Mice (4 hr Routine Routine	Other rs) <u>X</u> OT <u>X</u> OT	HISTOTECHN ther_Rats 16 hrs ther	DLOGY		
Trimming: Ro Processing: Embedding: Sectioning: Stain:	Dutine X (0 Mice (4 hr Routine Routine Routine	Other	HISTOTECHN ther_Rats 16 hrs ther ther pecial	DLOGY		
Trimming: Ro Processing: Embedding: Sectioning: Stain:	Dutine X (C Mice (4 hr Routine Routine Routine	Other	HISTOTECHN ther_Rats 16 hrs ther ther pecial	DLOGY		

NTP NECROPSY

#### (From BOA Draft Feb. 5, 1981, pp. 35.5 and 41.3)

Complete necropsy and fixation of following organs:

Inflate bladder and lungs of all animals 1 Gall Bladder (Mouse Only) 1 Gross Lesions l Spleen (LX) 2 Skin (CX) 1 Mandibular Lymph Node (LX) 1 Pancreas (LX) 1 Mammary Glands (LX) 1 Kidneys (LX) 1 Adreanals (CX) 1 Salivary Glands (LX) 2 Thigh Muscle 1 Urinary Bladder (LX) 2 Seminal Vesicles 2 Sciatic Nerve (CX) 1 Sternum (LX) 1 Prostate (CX). 2 Costochondal Rib Junction (LX) 1 Testes (CX) 2 Tunica Vaginalis Testis 2 Oral Cavity 2 Larynx 2 Scrotal Sac 1 Ovaries (CX) 2 Pharynx (CX) 1 Trachea (CX) 1 Uterus (CX) 1 Esophagus (CX) 1 Nasal Cavity & Trubinates (CX) 1 Thyroid/Parathyroids (CX) 1 Brain (Frontal Cortex Basal Ganylia 1 Lungs/Bronchi(LX) Parietal Cortex/Thalamus 1 Heart/Aorta (LX) Cerebellum/Pons) (CX) 1 Thymus (LX) 1 Pituitary (CX) 1 Stomach/Duodenum (LX) 2 Spinal Cord (CX) l Jejum (CX) 2 Eyes (CX) 1 Ileum (CX) 1 Preputial or Clitoral (rats only) (LX) 2 Cecum (CX) 2 Zymbals Glands 1 Colon (CX) 2 Rectum (CX) 2 Tonyue (CX) 2 Mesenteric Lymph Node 1 Liver (Median, Left and Right)

Process for microscopic evaluation
 Process for microscopic evaluation if grossly abnormal

CX = cross section

LX = longitudinal section

#### DETERMINATION OF MAXIMUM TOLERATED DOSE (MTD)

The MTD is defined as the dose which does not produce mortality or overt toxicity or no more than a 10% body weight decrement from control animals in a 90 day study.

PROC (procedure) PROBIT may be used from the SAS (Statistical Analysis System) to describe the proportion of animals exhibiting death or other toxic effects expressed in probits versus the dose. If an adequate range of proportions is obtained, which provides a satisfactory fit of the probit model, PROC PROBIT gives estimates of the doses, with confidence limits, which are predicted to produce toxic effects in 1%, 2%, etc. of the animals.

For 90 day animal body weights, a regression analysis may be used to predict average body weights with confidence limits as a function of dose. If the differences in body weights among doses are changing with time, it may be necessary to use the procedure described by Johnson (<u>J. Tox. Envir. Hlth.</u> 7: 307-316, 1981) to predict adult body weights.

# MEMORANDUM

£O:

DEPARTMENT OF HEALTH AND HUMAN SERVIC PUBLIC HEALTH SERVICE FOOD AND DRUG ADMINISTRATION

DATE: October 1, 1981

PROM: Principal Investigator, Experiment No. 376

SUBJECT: Animal Sacrifice Schedule, Experiment No. 376

Animals of Experiment No. 376 shall be removed from their feed and delivered to the Pathology Necropsy room in the PM prior to their scheduled sacrifice date as outlined on the attached animal sacrifice schedule. The animals will be fasted from the time of food removal until sacrifice but will be maintained on water <u>ad</u> libitum at all times.

Selected animals will be bled by oribital puncture and serum samples shall be prepared for SGOT and SGPT determinations. Serum samples shall be refrigerated until the analysis is performed, but not held more than four days. Because of the several hours required to collect and prepare the samples, the order of bleeding will be randomized among the different treatment groups and sexes sacrificed on a given day. Animals to be selected for these determinations are indicated on the attached sacrifice schedule by "cc" for clinical chemistry.

All animals shall be necropsied and tissues prepared for histopathological examination as outlined in the protocol. Histological examination shall begin with control animals and progress from the highest dose groups through decreasing dose groups until a "no effect" level is reached. The remaining dose levels shall be omitted from examination.



ANIMAL	SACRIFICE	SCHEDULE
--------	-----------	----------

•	Frn	

С

I.

. No. 376

NTP No: 05010-02

Sacrifice Date*	Day	Room	Rack	Cage Numbers	Pathology Code*	Total Cages
Oct. 6, 1981	Tuesday	151	01	5,6,7,8	· _ cc • ·	
· · ·	•		04	41,42,43,44	сс	.4
	•		02	17,18,19,20	· cc	4
Oct. 7, 1981	Wednesday	151	03	.29,30,31,32	CC	4
· · ·	- 10 ⁻		01	9,10,11,12		. 4
			04	45,46,47,48		4
<b>Oct.</b> 8, 1981	Thursday	151	02	21,22,23,24	ĊC	4-
		•	03	25,26,27,28	cç	4
		. ,	01	1,2,3,4		. 4
Oct. 9, 1981	Friday	151	04	37,38,39,40		4
•			02	13,14,15,16	сс .	4
	······		03	33,34,35,36	CC	4
· ·					·	
Oct. 13, 198	Tuesday	151	05	55,56,57	cc .	3
			05	76,77,78	CC	3
			05	58,59,60 ·	cc	3
Oct. 14, 198	Wednesday	151	05	73,74,75 .	· cc ·	3
			05	52,53,54		3.
			05	70,71,72		3

Indicate in cover memo Date and Time of animal removal and any specific pathology requirements.

· · · · · · · · · · · · · · · · · · ·	••	 57 <i>P</i>	RIFICE SCHEDULE	-02 .	· · · ·
۰ .			0	°	
Sacrifice Date ^o Day	Room	. Rack	Cage Humbers	Pathology Code∻	Total Cages
Oct. 15,1981 Thursday	151	05	64,65,66	·	•••••3 •
0		05	79,80,81	• • CC	· 3 ·
		05	49,50,51	•	3
Oct. 16,1981 Friday	151	. 05	• 67,68,69		3
	•	05	·61,62,63	cc	• 3
		05	82,83,84	<mark>رد ،</mark>	3
• •			:	•	• •
			•	·	
		· .	•	•	
			÷	•	
•				•	
					• • • •
				•	•
•					
			·		0
			•	- <u>-</u>	
			·	o	o

a 

° Indicate in cover memo Date and Time of animal removal and any specific pathology requirements.

Program Resources, Inc.

National Center for Toxicological Research Jefferson, Arkansas 72079 (501) 541-4554 July 21, 1981 DATE: Date \$51 TO: Approved Date Disapproved / Principal nvestigator: 13 teO Reviewed Ouality A irector FROM:

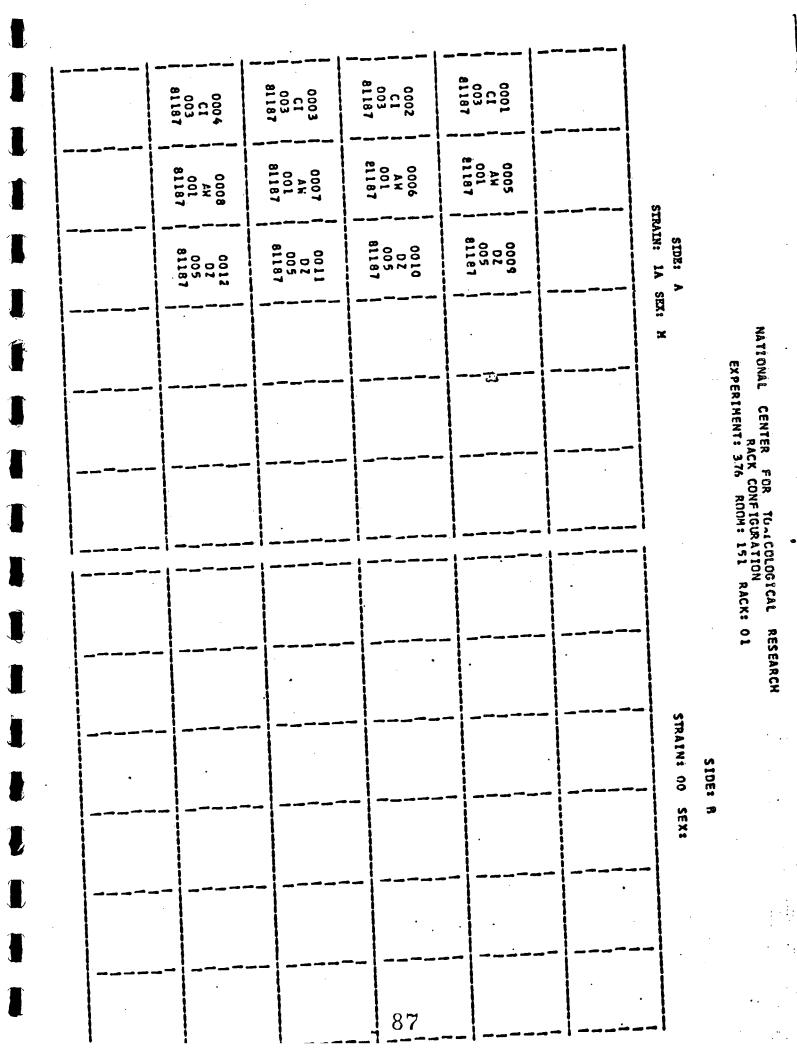
SUBJECT: ESS Recap for Experiment 376 90 day Subchronic-Doxylamine Study - NTP 5013-02

Experiment 376 is being conducted in room 151, building 5. A total of 288 animals of two species (lA-strain rats and lH-strain mice) of males and females were automatically allocated. The rats were allocated Thursday July 02, 1981 and dosing started Monday July 06, 1981. The mice were allocated Wednesday July 08, 1981 and dosing started Wednesday July 15, 1981. Feed consumption will be recorded once a week for 13 weeks.

The dead or moribund animals will be removed with disposition Pathology (Histology). The animals living until the 90 day sacrifice will be removed as terminal with disposition Pathology (Histology).

ATTACHMENT A: RACK CONFIGURATION

ATTACHMENT B: TREATMENT TABLE DEFINITION


ATTACHMENT C: ANIMAL ROOM SCHEDULE

# ATTACHMENT A

. ...

# NOTE: THE INDIVIDUAL CAGE BLOCK INCLUDES START DATE

Î



	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0028   0032 CX   CF 004   004 81187   01187	1 0027 1 0031 1 00 6 CX 1 0051 1 00 1 81187 1 811 1 81187 1 811	0026 1 0030 CX 1 65 81187 1 81187	0025   0029 Cx   66 C1187   21187   21187	STRAIN:	•
000000000000000000000000000000000000000	,			60 8 60 60 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1 0 N 7 U 1 2 U 1 .	SIDE: A 1A SEX: P	R
				_`~~~~			na tional cen Érperiren
× -							ONAL CENTER FOR AICOLOGICAL RACK CONFIGURATION EXPERIMENT: 376 ROOM: 151 RACK
	, , , , , , , , , , , , , , , , , , ,						AICOLOGICAL SURATION 48 151 RACK8
							. Research
						Sides Sides	
	, – – – ^{– –} – – – – – – – – – – – – – –					್ ಕ ಸ ಜ ಜ	
) == == == == == == == == == == == == ==						
X				88		•	

•

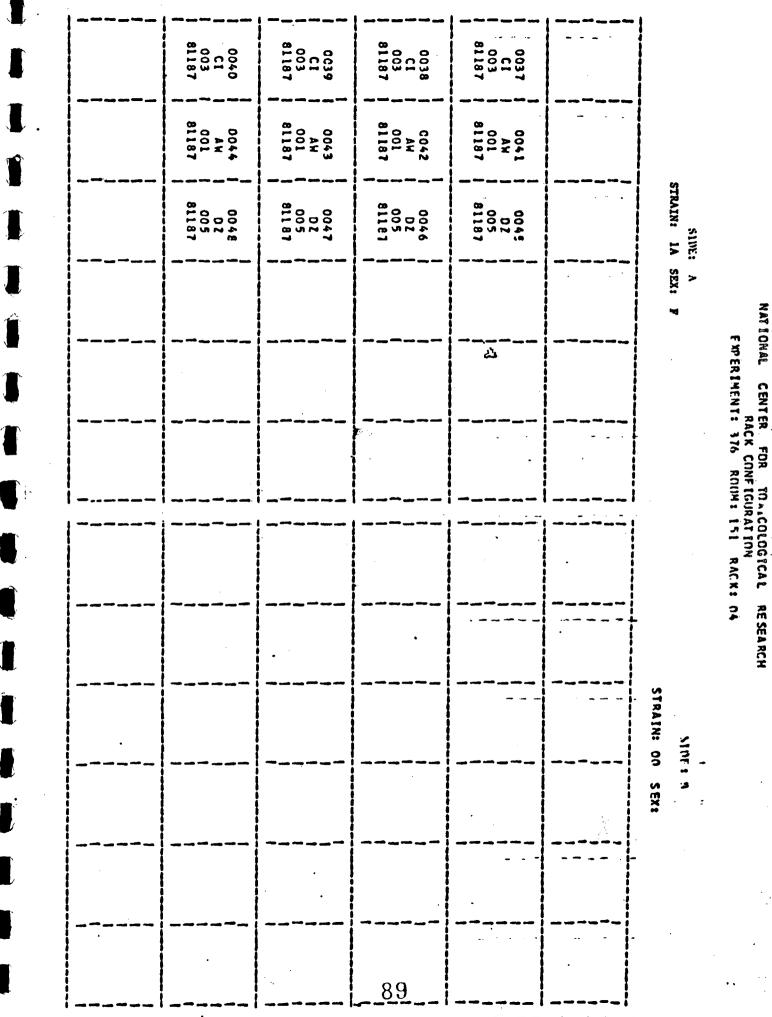
l

Ì

Į

· 휡

ĺ


J

Ĵ

٠

•

Ţ

Í

Ī

NAT IONAL CENTER FOR

		0				· ·	
			9000 1910 1910 196	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 200 11 2 200 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
			000 000 000 000 000 00 00 00 00 00 00 0	0 0 10 10 10 10 10 10 10 10 10 10 10 10	80000000000000000000000000000000000000		strain: in
	***			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		122: A 122: A 222: H
	×-		44 1900 1900 1900 1900 1900 1900 1900 19	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	00001 00001 00001 00001 00001 00001 00001 00001 00001 00001 00001 00001 00001 00001 000001 000001 000001 000000		
	ی میں سے میں میں میں			96118 0100 8200 8200 8200	800 110 100 100 100 100 100 100 100 100		
(
			0000 0000 0000 0000 0000 0000	0000 0000 0000 0000 000 0000 0000 0000 0000			
			811 96	96118 110 00 1400 1	8 1 1 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 7 0 0 0 7 0		
			80075 8118 81195	8118 8118 8100 8100 8100 8100 8100 8100	0119 0119 012 012 012 012 012 012 012 012 012 012		STRAIN: 1H
			0070 0070 007 007	00000000000000000000000000000000000000	0074 0074 0074 0074 0074		ne sex s
			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	96 96 98 98 99 99 99 99 99 99 99 99 99 99 99	0011 0011 0011 0011 0010 0010 0010 001		-
			80000 2000000	900 800 800 800 800 800 800 800 800 800	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
Î							

National Center For T. Cological Research Rack Configuration Experiment: 376 Room: 151 Rack: 05 ĥ

Í

۰.

1

••

•

ATTACHMENT B

. .

TREATMENT TABLE FOR EXPERIMENT 376

Ţ

••

٩

TREATMENT	DOSE CODE	Compound	units PPM	SEX/SPECIES	NO. OF CAGES	NO. OF ANIMALS/ CAGE-TOTAL CAGE
001	AW	Control meal + Ethanol	0	M & F/Rats	8	3-24
002	GR	Doxylamine	162	M & F/Rats	8	3-24
003	CI	Doxylamine	405	M & F/Rats	8	3-24
004	CX	Doxylamine	1012	M & F/Rats	8	3-24
005	DŻ	Doxylamine	2530	M & F/Rats	8	3-24
006	fg	Doxylamine	6325.	M & F/Rats	8	3-24
					48	144 TOTAL
007	AW	Control meal + Ethanol	0	M & F/Mice	6	સ-24
. 18	GG	Doxylamine	80	16 F/Mice	6	-å-2 I
009	GR	Doxylamine	162	M & F/Mice	ଟ	&- 24
010	DN	Doxylamine	325	M & F/Mice	6	4-24
011	00	Doxyl amine	750	M & F/Mice	6	<i>4</i> ∫−2 <i>4</i>
012	DU	Doxylamine	1500	M & F/Mice	6	4-24
	 .	5	?		36	144 TOTAL
					84	288 GRAND TOTAL

•

ATTACHMENT C

₿

. .

ANIMAL REMOVALS:

.

ß

ؠ

·

	=>			o
· (<u>Unscheduled</u> -	Dead and Moribund an	imals are to be	removed as follows:
o		l. Remove as "DEAD" a terminal or the E	and "MORIBUND" IS manual form	utilizing the EIS provided.
م		2。F{]] out an EDCS ' As well.	"Single Animal	Removal" form .°
	Scheduled ~ Re	move as " <u>terminal</u> ":	· 	. · ·
3		 Use EIS terminal Assign CID's in th Write earclip on t to cage card. Take to Pathology. Mo EDCS single and 	ne following or back of CID car	der: N,L, and R. ds and wrap them
CID CARDS:			· · · · ·	
	The CID cards	for this experiment l	nave been issue	d in two blocks.
	f's 1~144 have the cards.	been designated for	RATS and have	RATS marked
1	8°s 145-288 ha	ve been designated fo	or MICE."	•
	All unimals ar	e to be taken to Patl	nology.	· · · · · · · · · · · ·
DIAGNOSTIC ANI	MALS:	· ·.	•	•
· [Hone.		• • • • • • • •	· • • • • · · · · · · · · · · · · · · ·
ENVI RONMENTAL	MONITORING:	•	٥	•
J.	1	Environmental Test	<u></u>	•
<u>Date</u> · <u>D</u>	Be 5	dding & Waste cages at random	Mater All bottles	<u>Air Species</u>
7-9-81 Thur 8-5-81 Wedn 9-2-81 Wedn 9-3-81 Thur	esday sday esday esday sday esday	X X X	 X X X	X Rats I X Mice X Rats I X Mice S
20 20		Chemistry Feed Samp		v 100 <i>66</i>

QA samples are to be collected from spares during the study when scheduled by the Chemistry Department.

• • •

94

٠.

۰。•

DOSING OF ANIMALS:

See separate information.

£i

Principal Investigator

29,198/ Date

Program Resources, Inc.

<u>Fune 29. 81</u> Date

LOCATION DIRECTORY

Location of Specimens, Data, and Supporting Documents:

The final repository for the original copy of the final report and microfiche copies of the protocol, its amendments and support documents, plus copies of animal husbandry logs, diet preparation records, and memoranda or other records related to the conduct of the experiment and preparation of the final report will be in the Quality Assurance Staff area, presently Building 15, Room 104. Analytical chemistry records and laboratory notebooks are stored in the Analytical Methods Branch area, currently Building 51, Rooms 113 and 122. Diagnostic records are stored in the Division of Microbiological Services, Building 60. Animal room temperatures and humidity records are in the Division of Facilities and Engineering and Maintenance storage area in the basement of Building 85. Pathology blocks and slides are stored in Building 5B, Room 130. Gross and microscopic opscan forms are stored within the Building 5 Computer Center adjacent to the data verification area. Computer storage of data is within the TDMS data base. Experimental files, including copies of reports requested in the protocol, are filed under the NTP or NCTR experiment number specified in the protocol and are located in the Office of Scientific Intelligence, Building 13. This is also the location of SOPs and direction for procedures used to support this and other similar NTP studies.

PRI Program Resources, Inc. National Center for Toxicological Research Jefferson, Arkansas 72079

DATE. January 7. 1982

TO:

Principal Investigator

FROM:

SUBJECT: Pathology Summary Report on Doxylamine and Tripelennamine

A. Doxylamine - Repeated Dose Study - Experiment 359

The study was terminated in mid April 1981. 36 each male and female rats and 36 each male and female mice were used in this study. Dose levels were from 0 to 2,000 ppm. All of the animals survived the entire study period. Treatment related lesions were identified on liver in both species. Rat livers exhibited various degrees of hepatic vacuolization where as the mouse livers exhibited small necrotic lesions. No other lesions related to the treatment were recognized.

Subchronic Study - Experiment 376

The study was terminated in mid October, 1981. 72 each male and female rats and 72 each male and female mice were used. Dose levels were from 0 to 6.325 ppm in rats and 0 to 1,500 ppm in mice.

All of the animals survived the entire study period. In rats, treatment related lesions were identified in livers and parotid salivary glands. Rat livers exhibited various severe degrees of hepatic vacuolization and/or fatty changes. The lesions were more severe in males than females.

Rat parotid salivary glands showed marked cytomegaly with basophilic and coarsely granulated or vacuolated cytoplasm. The glands were severely diffusely affected in the high doses but less severely affected in the lower dose.

In mice, treatment related lesions were identified only in liver as hepatic cytomegaly and karyomegaly. No obvious difference was noted between the males and females.

B. Tripelennamine - Repeated Dose Study - Experiment 369

The study was terminated in mid May, 1981. Dose levels were from 0 to 6,000 ppm in rats and 0 to 2,400 ppm in mice.

<u>Rats</u> - All 12 rats in the highest dose died between 7 to 13 days of treatment. Treatment related lesions were identified as thymic cortical atrophy and hepatocellular atrophy in the highest dose group and hepatic vacuolization in the lower dose groups.

Animal Care/Diet Preparation 501-541-4554 T.D.M.S. 501-541-4595 Pathology 501-541-4401 97 Occupational Health Unit 501-541-4333 A.D.P. 501-541-4393

January /. 1982 Page two

(

(

Mice - All of the animals survived the entire study period. The only treatment related lesions were identified in the liver as small foci of hepatic necrosis.

Subchronic Study - Experiment 379

The study was terminated in November, 1981. Dose levels were from 0 to 2,400 ppm in rats and 0 to 4,800 ppm in mice.

2 rats of the high dose levels did not survive until the termination of the study.

Histopathologic examinations have not been completed for the study. However, treatment related lesions have been identified in the liver, parotid salivary glands and bronchial mucosa in the highest dose level group of rats, and liver and parotid salivary glands in the highest dose level group of mice. They are summarized as follows:

<u>Rats</u> - Livers exhibited moderate degree of hepatic vacuolization and/or fatty change. However, the liver atrophy nor thymic cortical as observed in 6,000 ppm dose level of repeated dose study were not observed in this study.

Parotid salivary glands exhibited mild to severe cytomegaly with basophilic and coarsely granulated or vacuolated cytoplasm as seen in Doxylamine Repeated Dose Study.

Bronchial epithelia exhibited severe degree of vacuolar degeneration of the mucosa.

<u>Mice</u> - The liver was affected by mild to moderate cytomegaly and karyomegaly in the highest dose.

The parotid salivary glands were affected by increasing incidence of individual cell necrosis which appeared to be more severe than the regular individual cell necrosis due to normal cell turnover in the glands of this strain of mice.

Pathology Services Project

/ar

PATHOLOGY REPORT

-1-

90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE

The following represents a tabulation of gross and microscopic findings from 144 Fischer 344 rats and 144 $B_6C_3F_1$ mice. In each species 72 males and 72 females were given various doses of Doxylamine in the feed for 90 days. Dose levels for each group of 12 males and 12 females were: control, 162, 405, 1012, 2530 and 6325 ppm in rats, and control, 80, 162, 325, 750 and 1500 ppm in mice.

Complete necropsies were performed on all animals. Microscopic examination was performed on control animals and those in the highest dose group in accordance with the Basic Ordering Agreement.

Tissues were fixed in Bouin's solution for 18-24 hours, processed in an Autotechnicon and embedded in paraffin. Sections were cut at 6 µm and stained with hematoxylin and eosin. An occasional tissue or organ is missing for technical reasons.

In the highest dose group, treatment-related lesions were identified in the liver and parotid salivary gland in rats and only the liver in mice. Hence the liver was examined microscopically in all animals of each species. The parotid salivary gland had treatment-related lesions in the second highest dose group (2,530 ppm) and no treatment-related lesions showed in the third highest dose group. The 2 lowest doses were not examined histologically. Some tissues not specified for examination were inadvertently submitted to the pathologist. These included lung, kidney, spleen, pancreas, preputial gland and mammary gland in the lower dose group. They also received histopathologic examination. Only those with positive findings were included in the tables.

99

Pathology Report - 90-day Subchronic Toxicity Study - Doxylamine

RESULTS.

Gross lesions and day of sacrifice are tabulated in Table 1 for rats and Table 3 for mice. Microscopic lesions are presented in Table 2 for rats and Table 4 for mice.

RATS

All rats survived until the termination of the study. Microscopic lesions which appeared to be compound-related were:

1. Liver

:

The liver lesions consisted of severe fatty change in the two highest dose groups. The fatty change in this study was characterized by many medium-sized vacuoles in the cytoplasm around the nucleus which severely distended the cytoplasm. The lesions occupied all except the periphery of the hepatic lobule. The nature of the lesions was suggestive of severe progressive change. The lower dose groups or milder fatty change and hepatic cytoplasmic vacuolization was characterized by slightly enlarged hepatocytes with either granular amphophilic or regular eosinophilic cytoplasm containing numerous small vacuoles dispersed throughout the cytoplasm. The hepatic lesions were more severe in males than in females. Only the two lowest dose groups in males and 3 lowest dose groups in females did not contain lesions.

100

-2-

2. Parotid Salivary Gland

Marked cytomegaly with basophilic and coarsely granular or vacuolated cytoplasm occurred in rat parotid salivary glands. The glands were severely affected diffusely in the high dose group but less severely affected diffusely in the lower dose groups.

MICE

Treatment-related lesions were identified in the liver. They varied in nature. The lesions consisted of hepatic cell cytomegaly or karyomegaly which were in varying degree from mild to severe. The lesions were more severe in the higher dose group and very subtle in the lower dose group. Only the females in the lowest dose group did not have treatment-related lesions. In contrast, the prevalence of a mild degree of hepatic cell necrosis was approximately constant the highest dose. In only three animals was it extensive, one of them in the highest dose group and two in lower dose groups.

Hepatic cell cytomegaly and/or karyomegaly and hepatic cell necrosis appeared to be dose-related. They were present in approximately equal prevalence and degree in both sexes except females in the lowest dose group were unaffected.

101

-3-

Pathology Report - 90-day Subchronic Toxicity Study - Doxylamine

SUMMARY

Lesions attributable to Doxylamine were found in the liver and parotid salivary glands in male and female rats. The lesions consisted of fatty change or hepatic cell vacuolization in the males of the 3 highest dose groups and in females of the 2 highest dose groups. Marked cytomegaly of the acinar cells of the parotid salivary gland was found in both sexes of the 2 highest dose groups.

Compound related lesions were also observed in mice. The lesions consisted of hepatic cell cytomegaly or karyomegaly and hepatic cell necrosis.

The microscopic change in salivary glands is unusual. In seeking an interpretation of it, Dr. Bernard Tandler, School of Dentistry, Case Western Reserve University, was consulted on June 28 and 29, 1982 (see attached summary of consultants comments).

From that consultation it is clear that normal rat parotids contain occasional small patches of acinar cells of increased size and contain basophilic, cytoplasmic granularity which was recorded as "cytomegaly, focal" in our control and low dose groups. However, interpretation of the diffuse, apparently treatment-related lesions in our high dose group is also presumptive since many factors such as chemical, time since eating, fixation, processing artifact, can be contributed to the morphological changes.

> Pathologist Pathology Services Project

102

-4-

LEGEND FOR TABLES

•

.

NGL	. = no gross lesions observed
X	= organ present
0	= required organ not observed
-	= organ not present
+	= lesions present but not graded
1	= minimal
2	= mild
20) = mild & diffuse
2F	= mild and focal
3	= moderate
30) = moderate & diffuse
4	= severe
40) = severe & diffuse

-5-

TABLE 1

•

•

OBSERVATIONS AT NECROPSY OF F344 RATS IN 90-DAY SUBCHRONIC TOXICITY STUDY OF DOXYLAMINE

.

DOSAGE	SEX	IDENTITY OF ANIMAL	GROSS OBSERVATIONS	DAYS ON EXPERIMENT
0 ppm 102 ppm 405 ppm	M M M	1-12 109-120 73-74 75	NGL NGL NGL There was an 8mm reddish hard mass protruding above the	92 95 94 94
1,012 ppm 2,530 ppm 6,325 ppm	M M M	76-84 85-96 37 38-48 13 14-15 16-20 21	capsular surface NGL NGL The liver is yellow NGL The liver is yellow NGL There was an 8mm soft	94 93 93 92 92 92 92 92
		21 (* 22-24	reddish mass protruding above the capsular surface NGL	
0 ppm	F	25-30 31	NGL There was a 12mm yellow mass in the peritoneum	92 92
162 ррт 405 ррт	F F	121-132 133-141 142	NGL NGL There was a 12mm grey subcutaneous mass at the left side of the neck area	95 95 95
1,012 2,530 6,325	F F	143-144 97-108 61-72 49-56 57	NGL NGL The liver was yellowish The liver was	95 94 93 93 93
		58-60	enlarged and yellowish The liver was yellow	93

-6-

104

.-

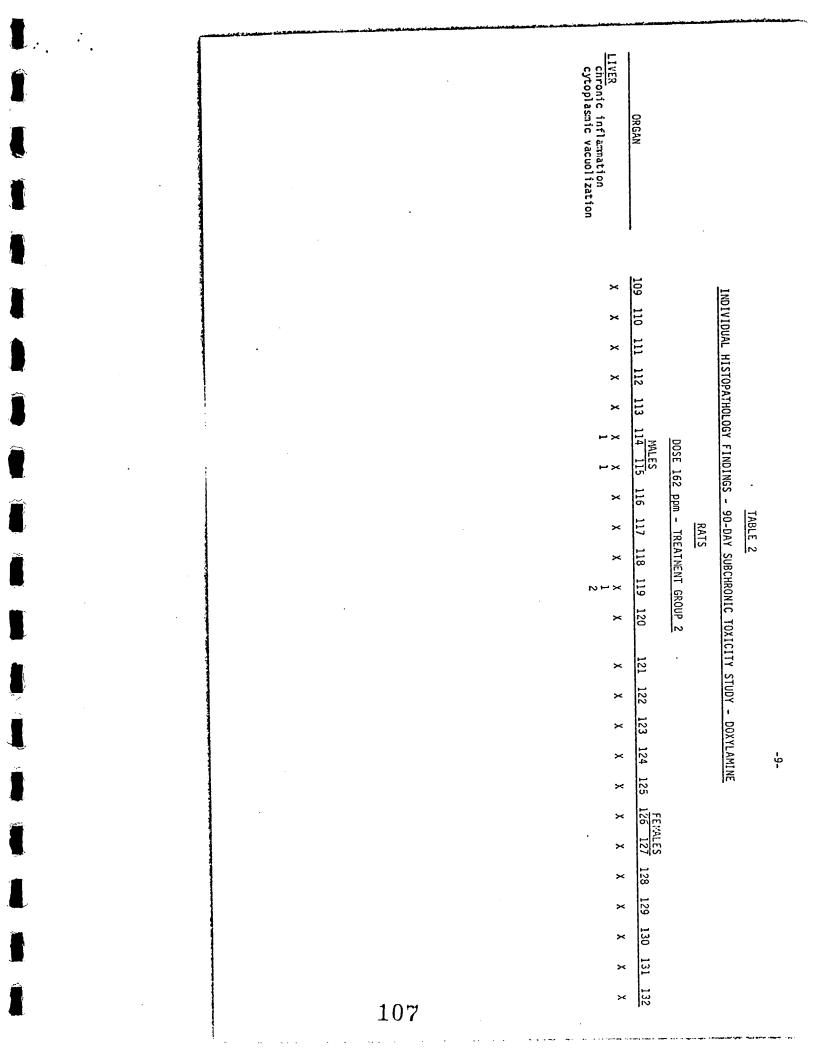
	<u>INTESTINE</u> granulonatous inflemnation of Peyer's Patch	PANCREAS atrophy, acinar cell islet cell hyperplasia	SPLEE: Istaphoid hyperplasia erythropoiesis pigmentation congestion	LIVER cytoplashic vacuolization congestion	<u>KID:EY</u> proteinaceous casts pigmentation fibrosis chronic inflammation tubular cyst focal mephropathy	HEART nyocardial damage chronic inflammation	LUNG congestion lymphocytic accunulation	ORGAN	`	
	×	×	×	×	×	×	×	-		
	· ×	×	×	×	×	×	×	2		
	. ×	×	+ ×	×	×	+ ×	+ ×	ω		
	×	×	×	×	×	×	+ ×	4		•
	×	×	×	×	×	+ + ×	×	თ		
	×	×	×	×	`×	×	+ ×	6	CON	
۱.	×	×	+ ,×	×	×	+ ×	+ ×	MALES 7	CONTROL	
•	+ ×	×	×	×	×	×	+ ×	0	- =	
*	×	×	+ ×	×	· ×	+ + ×	+ ×	9	TREATMENT GROUP	RATS
	+ ×	×	×	∾× .	×	+ ×	o	10	TENT	
	×	×	×	×	×	×	+ ×	11	GROU	·
	×	×	+ ×	×	×	+ + ×	+ ×	12	JP 1	
	×	×	×	×	×	×	+ ×	25		
	×	×	×	×	×	×	+ ×	26		
	×	×	×	×	×	×	×	27		
	×	×	×	× 1	×	×	×	28		
	×	×	+ ×	×	×	+ ×	+ ×	29		
	×	×	×	×	×	×	×	FEMALES		
	×	×	+ ×	×	×	×	+ + ×	ω ES		
	×	×	×	×	×	×	+ ×	32		
	×	×	×	×	×	×	×	33		
	×	×	×	+ ×	~	×	×	34		
	×	ててメ	×	×	×	×	+ ×	ა 5		
	×	хч	×	×	+ + + + + + ×	×	×	36		

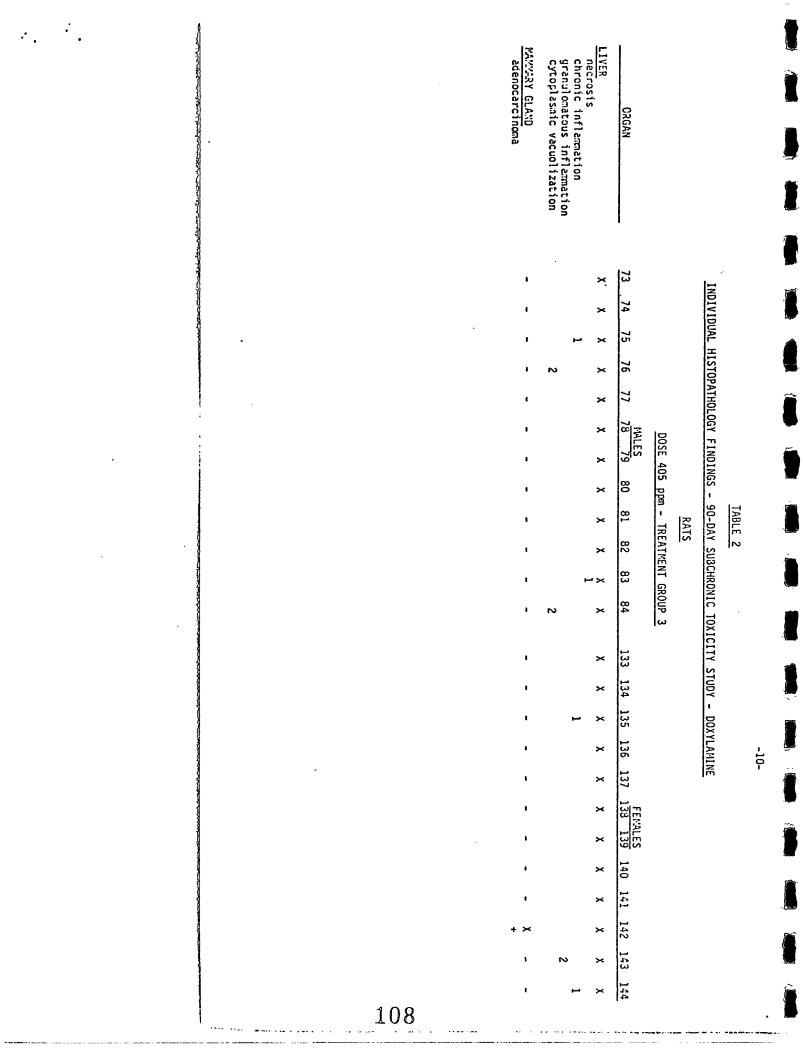
ļ

Ĩ

I

105


TABLE 2


· · ·		<u>NESENTERY</u> fat necrosis	<u>BLADDER</u> refractile spherules	PITUITARY Cyst	<u>UTERUS</u> squamous metaplasia	MARROW hyperplasia	PAROTID GLAND Cytomegaly	LYHPH NODES congestion	ORGAN	Table 2 - continued
		ı	×	×		×	×	×		
		a	×	×	t	×	×	×	2	
		ı	×	×		×	×	×	ω	4
	•		×	×		×	×	×	A	1
		1	×	×		×	2F X	×	ഗ	
			×	×		×	۳ ×	×	6	
		ı	÷ ×	` ×	ı	×	×	+ ×	MALES	
		1	0	×	ı	×	×	×	20 20	
		ı	0	0	ı	×	×	×	9	
		ι	×	×	ı	×	×	×	10	i
		r .	×	0		×	کل کل	×	E	,
		ı	×	×	ı	×	×	×	12	ñ
		ſ	×	0	×	×	×	×	25	14
		I	×	+ ×	×	×	×	×	26	ļ
		1	×	×	×	×	×	×	27	
		,	×	×	×	×	×	×	28	
		i	×	×	×	×	×	×	29 F	• •
		•	×	×	×	×	×	×	FEMALES	L
		* ×	×	×	×	чх	2F ZF	×		
		ı	×	×	×	×	×	×	32	
		ł	0	×	×	×	×	×	33	
		t	×	×	×	×	×	×	ω 4	
		ł	×	×	+ ×	×	×	×	ω 5	-
		1	×	×	×	×	×	×	36	

ĺ

ľ

ļ

cytomegaly	LIVER fatty change necrosis inflammation, chronic granulomatous inflammation cytoplasmic vacuolization	QRGAN			
× × × × × × × × × × × × × × × × × × ×	x x x x <tr td=""> <td>-11- <u>TABLE 2</u> <u>INDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE</u> <u>RATS</u> <u>DOSE 1,012 ppm - TREATMENT GROUP 4</u> <u>MALES</u> <u>85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10</u></td></tr> <tr><td>* * * * * * * * * * *</td><td>2 X X X X X 2 2</td><td>-11- AMINE FEMALES 100 101 102 103 104 105 106 107 103</td></tr>	-11- <u>TABLE 2</u> <u>INDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE</u> <u>RATS</u> <u>DOSE 1,012 ppm - TREATMENT GROUP 4</u> <u>MALES</u> <u>85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10</u>	* * * * * * * * * * *	2 X X X X X 2 2	-11- AMINE FEMALES 100 101 102 103 104 105 106 107 103
-11- <u>TABLE 2</u> <u>INDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE</u> <u>RATS</u> <u>DOSE 1,012 ppm - TREATMENT GROUP 4</u> <u>MALES</u> <u>85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 10</u>					
* * * * * * * * * * *	2 X X X X X 2 2	-11- AMINE FEMALES 100 101 102 103 104 105 106 107 103			

	ORGAN LIVER fatty change necrosis chronic inflammation cytoplesmic vacuolization PAROTID GLAND cytomegaly
	$\begin{array}{c} -12 - \frac{TABLE 2}{INDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE} \\ \hline NDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE \\ \hline RATS \\ \hline NDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE \\ \hline RATS \\ \hline NDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE \\ \hline RATS \\ \hline NDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE \\ \hline RATS \\ \hline NDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE \\ \hline RATS \\ \hline NDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE \\ \hline NDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE \\ \hline NDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE \\ \hline NDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE \\ \hline NDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE \\ \hline NDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE \\ \hline NDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE \\ \hline NDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE \\ \hline NDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE \\ \hline NDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE \\ \hline NDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE \\ \hline NDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE \\ \hline NDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE \\ \hline NDIVIDUAL HISTOPATHOLOGY FINDINGS - 90-DAY SUBCHRONIC TOXICITY STUDY - DOXYLAMINE \\ \hline NDIVIDUAL HISTOPATHOLOGY FINDING - 90-DAY SUBCHRONIC TOXICITY STUDY - 90-DAY SUB$
110	$- \frac{12}{12}$

Į

· · · ·

	and a second statement of the				والمراجع المراجع المراجع							
	pigmentation	STOWACH edema LYIPH NOSES	PANCREAS atrophy	SPLEEN perifollicular hyperplasia pigmentation congestion	LIVER fatty change necrosis	KIDNEY nephrosis pigmentation	<u>HEART</u> myscardial damage chronic inflammation	LUNG lymphocytic accumulation	ORGAN			
				· .					1. <i>.</i>			
		× ×	×	×	чωх	+ + ×	+ + ×	×	13			IND
		××	×	×	× 4	×	×	×	14			INDIVIDUAL HISTOPATHOLOGY FINDINGS
	-	××	×	×	X 4	×	×	+ ×	15			AL HI
		× ×	×	×	4 X	×	×	×	16			STOPA
		××	×	+ 🛩	×4	×	×	×	17			ATHOLO
		××	×	+ ×	4 X	×	×	+ ×	MALES	DOSI		DGY F
×	·	××	×	+ ×	×4	×	×	×	1 <u>9</u>	DOSE 6,325		INDIN
:	:	××	×	×	4 ×	×	×	×	20			GS 1
		××	×	×	4 X	×	×	×	21	ppm - T	RATS	- 90-DAY SUBCHRONIC
	ते में में जुष	× ×	×	+ ×	× 4	×	×	×	22	REATA	S.	Y SUE
•	• • •	× ×	×.	+ ×	X 4	×	×	×	23	ENT C		CHRON
-		×. ×	×	+ ×	4 ×	×	×	×	24	TREATMENT GROUP 6		1.
: :										σ		TOXICITY STUDY - DOXYLAMINE
-		××	ч×	×	N X	×	×	×	49			TY ST
	:	××	×	×	ω×	×	×	×	50			UDY -
	:	××	×	×	ω×	×	×	×	51			DOX
•	:	××	×	×	ω×	×	×	+ ×	52			LAMI1
i	:	××	×	×	NX	×	×	×	52			ĥ
		× ×	×	×	NX	×	×	×	FEMALES			
	:	× ×	×	×	ω×	×	. ×	×	ALES			
	:	× +×	×	×	ω×	×	×	×	56			
	:	× ×	×	+ ×	ω×	×	×	×	57			
	:	××	ч×	×	ω×	×	×	+ ×	58 20			
	;	× ×	×	×	ωχ	×	×	×	59			
		××	×	×	ω×	×	×	+ ×	60			
м		1	11									

÷ ,

4

٠,

· .

TABLE 2

•

·						
	• •	PITUITARY cyst	<u>MARROW</u> hyperplasia	PAROTID GLAND cytomegaly		Table 2
		RY	plasia	GLAN egaly	ORGAN	1 .
			τυ.	10	SAN	continued
					•	
	· ·	×	×	40 ×	13	
		+ ×	×	0 40 X	14	
		٥	×	6 40 ×	15	
		×	×	40 ×	16	
	·	×	×	40 X	17	ê
		×	×	40 ×	MALES	
		×	×	₽×	19 ES	
		+ ×	0	4D X	20	-
		×	×	4D ×	21	
		×	×	45 ×	22	
		×	×	45 ×	23	
	·	×	×	40 7	24	
		0	×	45 ×	49	
		×		45 ×	50	
		×		40 ×	51	
		×	×	40 ×	52	-14-
		×	×	₽×	53	
		×	ч×	45×	FEMALES	
		×	×	8 ×	1	
		×		U	50	
		0		U	57 5	
		0		0	58 5	
		0		0	59 6	~
	· • • • •	C	×	40 ×	10	
	112	. 9 8 8-44 p. 44				

TABLE 3

OBSERVATIONS AT NECROPSY OF B₆C₃F₁ MICE IN 90-DAY SUBCHRONIC TOXICITY STUDY OF DOXYLAMINE

DOSAGE	<u>SEX</u>	IDENTITY OF ANIMAL	GROSS OBSERVATIONS	DAYS ON EXPERIMENT
0 ppm 80 ppm 162 ppm 325 ppm 750 ppm 1,500 ppm	M M M M M	145-156 253-264 217-228 229-240 181-192 157-168	NGL NGL NGL NGL NGL	90 93 92 92 92 91 90
0 ppm 80 ppm 162 ppm -325 ppm 750 ppm 1,500 ppm	F F F F	169-180 227-288 265-276 241-252 193-204 205-216	NGL NGL NGL NGL NGL	90 93 93 92 91 91