Flood Risk Assessment & SuDS Drainage Report December 2023

EAS

Land to the West of Clatterbury Lane Clavering, Essex, CB11 4QS

Baya Group Ltd.

Document History

JOB NUMBER:4641/2023DOCUMENT REF:FRA & SuDS, Land at ClaveringREVISIONS:B – Final

Revision	Comments	Ву	Checked	Authorised	Date
A	Draft	MS	МС	MD	30.11.2023
В	Final	MD	MD	MD	04.12.2023

This document has been prepared for the sole use of Baya Group Ltd. Its content should not be relied upon by others without the written authority of EAS Transport Planning Ltd. If any unauthorised third party makes use of this report they do so at their own risk and EAS Transport Planning Ltd owe them no duty of care or skill.

The content of this report is based on information available as of December 2023, the validity of the statements made may therefore vary over time as planning guidance / policies and the evidence base change.

FRA & SuDS Report | Land at Clavering, CB11 4QS

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbolts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

EAS

Contents

Cont	tents	2
1	Introduction	4
2	Policy Context	6
	Introduction Local Policy The Sustainable Drainage Systems Design Guide for Essex Uttlesford District Adopted Local Plan (2005) Uttlesford District Council Strategic Flood Risk Assessment (May 2016)	6 7 7 7 8
3	Existing Site Assessment	9
	Site Description Local Watercourses Site Levels Geology Sewer Records Existing Drainage Infiltration Testing	9 9 9 9 10 10
4	Potential Sources of Flooding	11
	Fluvial Surface Water Groundwater Reservoir	11 11 12 12
5	Mitigation Measures	13
	Finished Floor Levels Flood Resilient and Resistant Construction Methods Flood Warning Measures Emergency Access and Egress	13 13 15 15
6	Surface Water Drainage Strategy – Option 1: Infiltration	16
	SuDS Surface Water Drainage Strategy Options Relevant SuDS Policy Site-Specific SuDS – Infiltration Strategy Consideration of the SuDS Hierarchy Surface Water Drainage Design Parameters Post Development Runoff Rate Proposed Drainage Strategy – Infiltration Exceedance Event Water Quality	16 16 18 18 19 19 20 20
7	Surface Water Drainage Strategy – Option 2: Attenuation	22
	SuDS Surface Water Drainage Strategy Options Site-Specific SuDS – Attenuation Strategy Surface Water Drainage Design Parameters	22 22 23

2

TRANSPORT PLANNING II HIGHWAYS AND DRAINAGE II FLOOD RISK

1st Floor Millers House, Roydon Road, Stanstead Abbolts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

	Pre-Development Runoff Rates and Discharge Volumes – Greenfield Sites Post Development Runoff Rate Proposed Drainage Strategy – Discharge to Surface Water Body Exceedance Event Water Quality	24 24 24 27 27
8	Maintenance of Development Drainage – Infiltration & Attenuation	28
	Manholes, Sewers and Inspection Chambers Gutters and Downpipes	31 32
9	Summary & Conclusion	33
	SuDS Strategy Summary Conclusion	33 35
Арре	endices	36
Арре	endix: A - Location Plan	37
Арре	endix: B – Proposed Development Plans	38
Арре	endix: C – EA Flood Map	39
Арре	endix: D – Topographical Survey	40
Арре	endix: E – Thames Water Sewer Maps	41
Арре	endix: F – DEFRA Surface Water Flood Risk Maps	42
Арре	endix: G – Surface Water Flood Mitigation Potential	43
Арре	endix: H – Infiltration SuDS Strategy Layout	44
Арре	endix: I – Infiltration Strategy Causeway Flow Outputs	45
Арре	endix: J – Causeway Flow Greenfield Runoff Rates	46
Арре	endix: K – Attenuation SuDS Strategy Layout	47
Appendix: L – Attenuation Strategy Causeway Flow Outputs		

FRA & SuDS Report | Land at Clavering, CB11 4QS

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Road, Stanstead Abbotts, SG12 8HN. Tel. 01920 871 777 et. contact@eastp.co.uk www.eastp.co.uk

3

1 Introduction

- 1.1 This Flood Risk Assessment and SuDS Strategy report has been prepared in support of an Outline Planning Application by BAYA Group on behalf of E&A Securities for the proposed development on land to the west of Clatterbury Lane, Clavering, Essex. The proposals are: "Outline Application with all matters reserved except access for up to 28 dwellings (Class C3) including public open space, sustainable drainage systems, landscaping and associated infrastructure and development."
- The site is located off Stickling Green, Clavering Saffron Walden, CB11 4QS, and is 1.26ha in size. A location plan in enclosed in **Appendix A.** Development proposals are enclosed in **Appendix B**.
- 1.3 The site is shown to be at a low risk of a fluvial (river) flood event, being located within the Flood Zone 1 on the Flood Map for Planning. Flood Zone 1 is defined as having <0.1% annual probability of river flooding.
- 1.4 The western-most side of the site is shown by EA Long Term Flood Risk Mapping to be at risk of surface water flooding, which looks to be mainly attributed to greenfield runoff from the site itself becoming overland in only the very extreme events.
- 1.5 In a high-risk scenario (a 3.3% annual risk) no proposed dwellings are located within the flood extent. In a medium-risk scenario (between 3.3% and 1% annual risk), minor encroachment to 2no. proposed dwellings of the flood extent occurs, though it should be noted that the maximum depth reaches 150mm only. This Flood Risk Assessment includes demonstration that surface water flooding is suitably managed. The properties have therefore been sequentially located outside the highest surface water flood extent, with medium risk surface water flooding suitably mitigated.
- 1.6 The low-risk mapping shows flood water up to the 1:1000yr event and provides a useful exceedance event check and in this case shows low (up to 300mm) depth floodwater along the western boundary of the site. Following development, much of this greenfield runoff from the site will be collected and controlled by the site drainage and all properties will also be set a minimum of 300mm above the surrounding ground level. It is therefore determined that there is no risk to proposed dwellings even in the 1000yr event.
- 1.7 The underlying geology suggests infiltration could be viable at the site, however as this is an Outline Application, the SuDS Drainage Strategy will offer two Options. Option 1 will be based on an Infiltration Strategy, using typical infiltration coefficients from Table 25.1 in CIRIA SuDS Manual and Option 2 will be based on an Attenuation Strategy with outfall directed to watercourse, which would only be implemented should it be proven that infiltration is unviable. It is anticipated that a suitably worded Condition could be attributed to any Decision Notice which requires full BRE 365 Infiltration Testing to be undertaken at a later design stage. For this Outline Application, the two Options demonstrate that surface water runoff from the site can be suitably managed in line with NPPF and Lead Local Flood Authority requirements.
- 1.8 The contents of this report are based on the advice set out in the National Planning Policy Framework (NPPF) published in July 2021 and Annex 3: Flood risk vulnerability classification,

also obtained from the NPPF, and PPG 'Guidance for Flood Risk and Coastal Change', updated August 2022.

1.9 This report is based on a site-specific topographic survey, BGS geological maps, Environment Agency (EA) flood maps, DEFRA flood data, local flood risk policy, and OS mapping.

1.10 This document includes the following sections:

Section 2 - describes the relevant policy;

Section 3 - site description, including site levels, proximity to watercourses etc.;

Section 4 - investigates each flood source and recommends any mitigation measures;

Section 5 - details specific mitigation measures;

Section 6 - details the SuDS policy and proposed infiltration drainage strategy;

Section 7 - details the SuDS policy and proposed attenuation drainage strategy;

Section 8 - describes the maintenance schedule for the proposed drainage strategies; and

Section 9 - concludes the report.

Introduction

- 2.1 This section sets out the policy context. This report is based on the advice set out in the National Planning Policy Framework (NPPF) last updated in September 2023 and the Planning Practical Guidance (PPG) updated in August 2022.
- 2.2 Paragraph 167 footnote 55 of the NPPF states:

"A site-specific flood risk assessment should be provided for all developments in Flood Zones 2 and 3. In Flood Zone 1, an assessment should accompany all proposals involving: sites of 1 hectare or more; land which has been identified by the Environment Agency as having critical drainage problems; land identified in a strategic flood risk assessment as being at increased flood risk in future; or land that may be subject to other sources of flooding, where its development would introduce a more vulnerable use."

2.3 The flood zones are defined as:

FRA & SuDS Report | Land at Clavering, CB11 4QS

- Flood Zone 1 less than a 0.1% (1 in 1000) annual probability of river or tidal flooding.
- Flood Zone 2 between a 0.1% and 1% (1 in 1000 and 1 in 100) annual probability of river flooding; or between a 0.1% and 0.5% (1 in 1000 and 1 in 200) annual probability of flooding from tidal sources.
- Flood Zone 3a- This zone comprises land assessed as having a 1% (1 in 100) or greater annual probability of river flooding; and for tidal flooding at least a 0.5% (1 in 200) annual probability of flooding from tidal sources.
- · Flood Zone 3b This zone comprises land where water has to flow or be stored in times of flood. This classification is usually classified as land which had a 3.33% (1 in 30) annual probability of flooding.
- 2.4 Paragraph 159 discusses the suitability of development location, particularly with regards to future risks induced by climate change:

"Inappropriate development in areas at risk of flooding should be avoided by directing development away from areas at highest risk (whether existing or future). Where development is necessary in such areas, the development should be made safe for its lifetime without increasing flood risk elsewhere".

2.5 Paragraph 160 of the National Planning Policy Framework (NPPF) sets out how:

"Strategic policies should be informed by a strategic flood risk assessment, and should manage flood risk from all sources. They should consider cumulative impacts in, or affecting, local areas susceptible to flooding, and take account of advice from the Environment Agency and other relevant flood risk management authorities, such as lead local flood authorities and internal drainage boards".

2.6 Paragraphs 169 NPPF discusses the application of sustainable drainage systems:

"Major developments should incorporate sustainable drainage systems unless there is clear evidence that this would be inappropriate. The systems used should:

- Take account of advice from the lead local flood authority;
- Have appropriate proposed minimum operational standards;
- Have maintenance arrangements in place to ensure an acceptable standard of operation of the lifetime of the development; and
- Where possible, provide multifunctional benefits."
- 2.7 The Flood Map for Planning shows that other than the River Bank, the site is located entirely in Flood Zone 1, at 'low' risk of flooding from fluvial sources. The EA Flood Map has been enclosed in **Appendix C.** This is considered to be an area with less than 0.1% annual chance of flooding.

Local Policy

The Sustainable Drainage Systems Design Guide for Essex

- 2.8 This guide was prepared by Essex County Council to aid developers, designers and consultants in the design of Sustainable Drainage Systems (SuDS) in Essex. The guidance is intended to advise on the planning, design and delivery of attractive and high-quality SuDS scheme to benefit both the environment and the community. The website contains all the information on the SuDS Design Guide for Essex and can be accessed here: https://www.essexdesignguide.co.uk/suds
- 2.9 This guidance was considered and used to inform the development of the proposed SuDS strategy for the site.

Uttlesford District Adopted Local Plan (2005)

- 2.10 The 'Uttlesford Local Plan 2019' draft was withdrawn in April 2020 and will now commence a new draft.
- 2.11 Once complete the new Local Plan will guide development in the district until 2033. The new local plan will set out areas suitable for new housing and will ensure the necessary infrastructure is put in place to support the growth expected in the district.
- 2.12 In the meantime, the Uttlesford Adopted Local Plan 2005 is the relevant document.
- 2.13 Policy GEN3: Flood Protection of the Adopted Local Plan 2005 states:

"Outside flood risk areas development must not increase the risk of flooding through surface water run-off. A flood risk assessment will be required to demonstrate this. Sustainable Drainage Systems should also be considered as an appropriate flood mitigation measure in the first instance.

For all areas where development will be exposed to or may lead to an increase in the risk of flooding applications will be accompanied by a full Flood Risk Assessment (FRA) which sets

FRA & SuDS Report | Land at Clavering, CB11 4QS

TRANSPORT PLANNING I HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Road, Stanstead Abbolts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

out the level of risk associated with the proposed development. The FRA will show that the proposed development can be provided with the appropriate minimum standard of protection throughout its lifetime and will demonstrate the effectiveness of flood mitigation measures proposed."

2.14 This report demonstrates that the proposed development will use SuDS methods to manage the volume and rate of surface water runoff and the proposals will not increase flood risk to the local area.

Uttlesford District Council Strategic Flood Risk Assessment (May 2016)

- 2.15 The Uttlesford Strategic Flood Risk Assessment (SFRA) was published in May 2016, providing an update to the original report (published in 2008) in response to several legislative changes including the Flood & Water Management Act of 2010 and SuDS guidance published in 2015.
- 2.16 Uttlesford is located within the headwaters of three major river catchments including the Great Ouse, North Essex and Thames. Surface water flooding and flooding sourced from ordinary watercourses is noted as a significant issue across the district.
- 2.17 Map 2 indicates the presence of an EA Main River of the Stickling Green Brook which runs in close proximity to the site before joining with the River Stort.
- 2.18 Map 3 depicts dominant superficial geology deposits sourced from the British Geological Survey (BGS), showing the site to be an area with Diamicton deposits poorly sorted sedimentary rock with varying clast sizes combined via a matrix of mud and sand.
- 2.19 Map 4 shows there is an underlying bedrock geology of White Chalk Subgroup a fine-grained calcium carbonate/calcite rock formation with high porosity.
- 2.20 Map 5 highlights that there are no historic flooding records at or near the site.
- 2.21 Map 6 confirms the site is located within Flood Zone 1, with an area which follows the watercourse, approximately 150m southwest of the site being in Flood Zone 3b.
- 2.22 Map 7 shows that there is a culvert approximately 200m to the west of the site, and two bridges within 300m south of the site.
- 2.23 Map 8 illustrates the site area would be affected by surface water flooding for 1 in 30, 1 in 100 and 1 in 1000 year storm events but depicting to what extent these flooding levels affect the site is unclear due to the low granularity of the map.
- 2.24 Map 9 shows the site is not located within an area which is susceptible to groundwater flooding.
- 2.25 Map 10 indicates that the site is located in an a postcode area with 1-5 properties on the sewer flooding register.

3 Existing Site Assessment

Site Description

- 3.1 The site is located at the land off Stickling Green, Clavering, Saffron Walden, CB11 4QS, a location plan is included in **Appendix A**. At present, the site is entirely greenfield, with a site area of 1.26ha, bound by Stickling Green to the north, Clatterbury Lane to the east, and agricultural land to the south and west.
- 3.2 The proposed development plans are included at **Appendix B** and show the Outline Application site layout for up to 28no. residential dwellings with associated landscaping; car parking and amenity spaces and access to the north of the site via Stickling Green.

Local Watercourses

3.3 An "EA Main River", the Stickling Green Brook, runs approximately 120m southwest of the site flowing in a southerly direction before joining the River Stort in Clavering. A tributary of the Stickling Green Brook forms the western boundary of the site.

Site Levels

3.4 A topographical survey is enclosed in **Appendix D**. The site generally falls to the southwest, with highest levels on site recorded at 97.53m AOD located near the northeast corner of the site, whilst the lowest points are located near the southwest border of the site at around 93.95m AOD. It should be noted that the ground levels become steeper along the western half of the site.

Geology

- 3.5 With reference to the British Geological Survey online mapping **Exercise**, the site is located within an area underlain by a bedrock of Lewes Nodular Chalk Formation with subsidiary calcareous mudstone and flint. While the superficial deposits on site consist of the Lowestoft Formation a chalky till with outwash sands, gravels, silts, and clays.
- 3.6 The underlying geology of chalk with superficial deposits of sands and gravels suggests that infiltration could be a viable option for the disposal of surface water runoff from the site.

Sewer Records

- 3.7 A map by Thames Water detailing the present sewer records and existing drainage is included in **Appendix E**. This map shows that there is one public foul water sewer that runs in close proximity to the east border of the site along Clatterbury Lane. There are not any public surface water sewers noted in close proximity to the site.
- 3.8 Map 10 from the Uttlesford SFRA indicates that the site is located in a postcode area (CB11 4) with 1-5 properties on the sewer flooding register.

Existing Drainage

- 3.9 The existing site at present is greenfield, it is assumed that there are no drainage systems in place and that surface water flows would move west/southwards across and off towards the ditch along the western boundary of the site, with a percentage of said flows entering the ground via infiltration.
- 3.10 There are no levels provided for the ditch located along the western boundary of the site due to dense vegetation present, however, it can be anticipated that the ditch lies approximately 0.5m lower than the surrounding bank levels. It is also noted that the ditch gets wider and therefore is expected to be deeper towards the south of the site. It is expected that this ditch leads into the Stickling Green Brook further south of the site.

Infiltration Testing

3.11 The underlying geology suggests infiltration could be viable at the site, however as this is an Outline Application, the SuDS Drainage Strategy will offer two Options. Option 1 will be based on an Infiltration Strategy, using typical infiltration coefficients from Table 25.1 in CIRIA SuDS Manual and Option 2 will be based on an Attenuation Strategy with outfall directed to watercourse, which would only be implemented should it be proven that infiltration is unviable. It is anticipated that a suitably worded Condition could be attributed to any Decision Notice which requires full BRE 365 Infiltration Testing to be undertaken at a later design stage. For this Outline Application, the two Options demonstrate that surface water runoff from the site can be suitably managed in line with NPPF and Lead Local Flood Authority requirements.

TRANSPORT PLANNING I HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbolts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

Fluvial

4 Potential Sources of Flooding

- 4.1 A copy of the Environment Agency's Flood Map for Planning is enclosed in **Appendix C**. The site is located in Flood Zone 1. Land in Flood Zone 1 is defined as land having less than a 0.1% (1 in 1000) annual probability of river or tidal flooding.
- 4.2 The risk of fluvial flooding to the site is considered to be low.

Surface Water

- 4.3 Surface water flooding refers to flooding caused when the intensity of rainfall, particularly in urban areas, can create runoff which temporarily overwhelms the capacity of the local drainage systems or does not infiltrate into the ground. The water ponds on the ground and flows towards low-lying land. This source of flood risk is also known as 'pluvial'.
- 4.4 DEFRA surface water flooding data for 3.3%, 1.0% and 0.1% AEP scenarios with categorised flood depths, were analysed in QGIS then overlaid with the proposed development plans, as illustrated in **Appendix F**.
- 4.5 High risk scenario: 1 in 30 yr (3.3% AEP) A high-risk scenario, mapping in **Appendix F**, indicates a greater than 3.3% annual exceedance probability (AEP) of surface water flooding, i.e., the most frequently occurring scenario. It can be seen from the overlaid flood depths for the 3.3% AEP event that no proposed dwellings are located within the flood extent.
- 4.6 Medium risk scenario: 1 in 100 yr (1.0% AEP) A medium-risk scenario, mapping in Appendix F, indicates an AEP of surface water flooding between 3.3% and 1. It can be seen that minor encroachment of the flood extent to 2no. proposed dwellings occurs, though it should be noted that the maximum depth reaches 150mm only. It is considered that surface water flood mitigation shall be offered to mitigate this risk accordingly. As this is an Outline Application, site-specific surface water flood modelling would be disproportionate, as such, an assessment of site levels and flood volumes has been undertaken to confirm the viability of suitable mitigation. SK06 in Appendix G shows where surface waters within the 2no. dwelling footprints could be located within open space. The assessment also proves that additional surface water flood volume could be provided, which further demonstrates that should site-specific surface water flood modelling and compensation be undertaken at a later design stage, it is clear that it is achievable.
- 4.7 Low risk scenario (exceedance event): 1 in 1000 yr (0.1% AEP) A low-risk scenario indicates an AEP of surface water flooding between 1% and 0.1%, (i.e. the least frequent but worst-case scenario). The low-risk mapping in **Appendix F** shows flood water up to the 1:1000yr event and provides a useful exceedance event check and in this case shows low (up to 300mm) depth floodwater along the western boundary of the site. Following development, much of this greenfield runoff from the site will be collected and controlled by the site drainage and all properties will also be set a minimum of 300mm above the surrounding ground level. It is therefore determined that there is no risk to proposed dwellings even in the 1000yr event.
- 4.8 Further mitigation measures are discussed in Section 5.

FRA & SuDS Report | Land at Clavering, CB11 4QS

11

Groundwater

- 4.9 In reference to the DEFRA online magic map, the site is identified as being located above a Principal Bedrock Aquifer. Principal aquifers provide significant quantities of drinking water, and water for business needs. They may also support rivers, lakes and wetlands.
- 4.10 Based on the superficial drift, the site is located above a Secondary (undifferentiated) aquifer. These are defined as:

"Aquifers where it is not possible to apply either a Secondary A or B definition because of the variable characteristics of the rock type. These have only a minor value."

- 4.11 The site is located within source protection zone III- Total Catchment. This zone is defined as the total area needed to support the abstraction or discharge from the protected groundwater source. These zones where known local conditions meant that potentially polluting activities could impact on a groundwater source even though the area is outside the normal catchment of that source.
- 4.12 The site is shown to be located in an area with 'medium' groundwater vulnerability with soluble rock risk. This means the aquifer is at increased risk of pollution via dissolution.
- 4.13 Because of these two factors, it is important to be aware of the risk discharge to ground poses to the area and those around it. Infiltration testing as well as a hydrological and hydrogeological assessment would need to be undertaken at a later design stage to confirm that discharge via infiltration is viable. The proposed Option 1 Infiltration Strategy ensures that waters are treated and cleansed in line with CIRIA mitigation indices requirements.
- 4.14 The Uttlesford SFRA identifies that the site is not located in an area with a susceptibility to groundwater flooding.

Reservoir

4.15 The Long Term Flood Map shows the site is not at risk of flooding from reservoirs, and there are no other artificial flood sources nearby. The risk from artificial sources is considered to be low.

FRA & SuDS Report | Land at Clavering, CB11 4QS

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Road, Stanstead Abbotts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

5 Mitigation Measures

- 5.1 As noted in Section 4, the site is at risk of surface water flooding. In a high risk scenario, no dwellings are affected, in a medium risk scenario 2no. dwellings are shown to be in the flood extent, however it is demonstrated that suitable mitigation in the form of relocating flood volumes, is achievable.
- 5.2 In an exceedance event (low risk up to 1:1000yr), surface water flood depths are shown to be up to 300mm deep in the west of the site, broadly following the existing watercourse along the western boundary. The water is shown to develop mainly as a result of greenfield runoff from the development site itself becoming overland in only the very extreme events. Following development, much of this greenfield runoff from the site will be collected and controlled by the site drainage and all properties will also be set a minimum of 300mm above the surrounding ground level. It is therefore concluded that there is no risk of flooding to the proposed dwellings even in the 1000yr event.

Finished Floor Levels

5.3 Indicative proposed ground and FFL's for this Outline Application site are shown on SK06 in Appendix G. Raising of FFL's above the exceedance event (low risk 1:1000yr event) will suitably mitigate the surface water flood risk at the site. Further mitigation measures such as Flood Resilient and Resistance Construction Methods are discussed below.

Flood Resilient and Resistant Construction Methods

5.4 Standing Advice for Vulnerable Developments as per DEFRA's guidance on the gov.uk website states:

"The design should be appropriately flood resistant and resilient by:

- using flood resistant materials that have low permeability to at least 600mm above the estimated flood level
- making sure any doors, windows or other openings are flood resistant to at least 600mm above the estimated flood level
- using flood resilient materials (for example lime plaster) to at least 600mm above the estimated flood level
- by raising all sensitive electrical equipment, wiring and sockets to at least 600mm above the estimated flood level
- making it easy for water to drain away after flooding such as installing a sump and a pump
- making sure there is access to all spaces to enable drying and cleaning
- ensuring that soil pipes are protected from back-flow such as by using non-return valves."

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbolts, SG12 8HN. Tel 01920 871 777 e: contact@eastp.co.uk www.eastp.co.uk

- 5.5 There are many flood resilient/resistant construction methods available, which are detailed in the publication by DEFRA entitled 'Improving the Flood Performance of New Buildings.' It is recommended that the project architect/structural engineer reviews this document for further details. Advice is given on foundations, walls, fitting and fixtures and services, some flood resilience/resistant measures which could potentially be applied are included below.
- 5.6 Any flood resistant measures should be approved by the structural engineer as they may impact upon the building structure.

Floors

- 5.7 Floor insulation should be of the closed-cell type to minimise the impact of flood water. Insulation placed above the floor slab (and underneath the floor finish) rather than below would minimise the effect of floodwater on the insulation properties and be more easily replaced if required.
- 5.8 Floor finishes suited to flood resistant properties include ceramic or concrete based floor tiles, stone and sand/cement screeds. All tiles should be bedded on a cement-based adhesive/bedding compound and water-resistant grout should be used. Ceramic tiles and PVC should be used for skirting boards.

Walls

- 5.9 Raise air vents/bricks to 0.3m above the flood depths.
- 5.10 For masonry walls, ensure mortar joints are thoroughly filled to reduce the risk of water penetration. Bricks manufactured with perforations should not be used for flood resilient design.
- 5.11 Internal cement renders with good bond are effective at reducing leakage into a building and assist rapid drying of the internal surface of the wall.

Doors and Windows

5.12 Windows must be adequately sealed to the fabric of the building. Double glazing is recommended for windows and glass doors.

Fixtures and Fittings

- 5.13 Durable fittings should be used that are not significantly affected by floodwater and can be easily cleaned.
- 5.14 Electrical appliances, gas oven etc should be placed on plinths as high as practicable above the floor while still complying with building regulations, to ensure they are above the flood level.
- 5.15 Ensure adequate sealing of joints between kitchen units and surfaces to prevent penetration of water behind fittings.
- 5.16 Locate all electrical plug sockets at least 0.3m higher than internal floor level.

Services

5.17 Non-return valves are recommended in the drainage system to prevent back-flow.

- 5.18 Water, electricity and gas meters, should be located above predicted flood level.
- 5.19 Electric ring mains should be installed at first floor level with drops to ground floor sockets and switches.
- 5.20 Heating systems: boiler units and ancillary devices should be installed above predicted flood level.
- 5.21 Communications wiring: wiring for telephone, TV, Internet, and other services should be protected by suitable insulation agreed with relevant service.

Flood Warning Measures

5.22 Warnings cannot be given for surface water flooding however surface water flooding is likely to correspond with heavy rainfall. Residents are advised to sign up to MET Office weather warning service which can be found here: <u>https://www.metoffice.gov.uk/weather/warnings-and-advice/uk-warnings#?date=2023-10-16</u>.

Emergency Access and Egress

- 5.23 In a low-risk surface water flood scenario, the flood depths at the proposed site access off Stickling Green is shown to be up to 150mm with some pockets of up to 300mm, which look to be attributed to localised low-spots
- 5.24 The ADEPT / EA document published September 2019 'Flood risk emergency plans for new development A guide for planners: How to consider emergency plans for flooding as part of the planning process', notes that:
 - vehicular routes, including for some emergency services vehicles, should not exceed 30cm (12 inches) – less if water is fast flowing - as vehicles can become buoyant and could be swept away in flood conditions. The public should not be expected to drive vehicles through flood waters as part of an EP;
 - some emergency services vehicles may be able to cope with slightly greater depths, but site-specific advice from the emergency services should be sought to confirm this;
 - routes which are subject to a flood hazard rating of more than 2.0 ('danger for all') would be unsuitable for the emergency services;
- 5.25 Taking the above into consideration, access to and from the site during a low-risk (1:1000yr) exceedance event is viable and in line with the guidelines.

TRANSPORT PLANNING I HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbolts, SG12 8HN. Tel 01920 871 777 et contect@eastp.co.uk www.eastp.co.uk

6 Surface Water Drainage Strategy – Option 1: Infiltration

SuDS Surface Water Drainage Strategy Options

- 6.1 The underlying geology of Lewes Nodular Chalk Formation and superficial deposits of sands, gravels, silts, and clays suggests infiltration could be viable at the site. As this is an Outline Application, the SuDS Drainage Strategy will offer two Options based on the SuDS Heirarchy.
- 6.2 Option 1 will be based on an Infiltration Strategy, most preferred method, using typical infiltration coefficients from Table 25.1 in CIRIA SuDS Manual.
- 6.3 Option 2 will be based on an Attenuation Strategy with outfall directed to watercourse, second most preferred method, which would only be implemented should it be proven that infiltration is unviable. It is anticipated that a suitably worded Condition could be attributed to any Decision Notice which requires full BRE 365 Infiltration Testing to be undertaken at a later design stage. For this Outline Application, the two Options demonstrate that surface water runoff from the site can be suitably managed in line with NPPF and Lead Local Flood Authority requirements.
- 6.4 The following describes **Option 1 Infiltration Strategy.**

Relevant SuDS Policy

- 6.5 SuDS mimic natural drainage patterns and provide a method of surface water drainage which can decrease the quantity of water discharged, and hence reduce the risk of flooding. SuDS design should meet the "four pillars" of SuDS of: water quantity, water quality, amenity and biodiversity, wherever possible.
- 6.6 In decreasing order of preference, the preferred means of disposal of surface water runoff is:
 - Discharge to ground.
 - Discharge to a surface water body.
 - Discharge to a surface water sewer.
 - Discharge to a combined sewer.

Site-Specific SuDS – Infiltration Strategy

6.7 The various SuDS methods need to be considered in relation to site-specific constraints. Several SuDS options are available to reduce or temporarily hold back the discharge of surface water runoff. Table 6.1 outlines the constraints and opportunities to each of the SuDS devices in accordance with the hierarchical approach outlined in The SuDS Manual CIRIA C753. It also indicates what could and could not be incorporated within the development, based upon sitespecific criteria.

FRA & SuDS Report | Land at Clavering, CB11 4QS

TRANSPORT PLANNING I HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbolts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

Device	Description	Constraints / Comments	Appropriate
Living roofs (source control)	Provide soft landscaping at roof level which reduces surface water runoff.	Not possible on main buildings due to pitched roofs.	No
Infiltration devices & Soakaways (source control)	Store runoff and allow water to percolate into the ground via natural infiltration.	Not proposed.	No
Pervious surfaces (source control)	Storm water is allowed to infiltrate through the surface into a storage layer, from which it can either infiltrate and/or slowly release to sewers.	Permeable Paving to be used.	Yes
Rainwater harvesting (source control)	Reduces the annual average rate of runoff from the site by reusing water for non-potable uses e.g. toilet flushing, recycling processes.	Water butts not currently proposed but could be implemented at a later date.	Possibly
Swales (permeable conveyance)	Broad shallow channels that convey / store runoff, and allow infiltration (ground conditions permitting).	A swale has been included for conveyance	Yes
Filter drains & perforated pipes (permeable conveyance)	Trenches filled with granular materials (to take flows from adjacent impermeable areas) that convey runoff while allowing infiltration.	Not proposed.	No
Filter Strips (permeable conveyance)	Wide gently sloping areas of grass or dense vegetation that remove pollutants from run-off from adjacent areas.	Not proposed.	No
Infiltration basins (end of pipe treatment)	Depressions in the surface designed to store runoff and allow infiltration.	Infiltration basin proposed	Yes
Wet ponds & constructed wetlands (end of pipe treatment)	Provide water quality treatment & temporary storage above the permanent water level.	Not proposed.	No
Attenuation Underground (end of pipe treatment)	Oversized pipes or geo-cellular tanks designed to store water below ground level.	Not proposed.	No
Raingardens and Raingarden Planters	Bio-retention Facilities	Raingarden planters could be implemented at a later stage	Possibly

Table 6.1: Site Specific Sustainable Drainage

FRA & SuDS Report | Land at Clavering, CB11 4QS

17

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbotts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

Consideration of the SuDS Hierarchy

- 6.1 As described in paragraphs 6.1 to 6.3, the most preferred method for disposal of surface water runoff it to ground, via soakaway devices with the second most preferred method being disposal to a water-body/watercourse. As there is considered to be high potential for infiltration, the following SuDS Surface Water Drainage Strategy based on infiltration methods has been provided, using typical infiltration coefficients from Table 25.1 in CIRIA SuDS Manual. A conservative infiltration rate of 1 x 10⁻⁵ m/s has been applied.
- 6.2 Option 2, in Section 7 of this report, provides and alternative SuDS Surface Water Drainage Strategy, based on attenuation with outfall to watercourse, and would only be implemented should it be proven that infiltration is unviable via BRE 365 Infiltration Testing.

Surface Water Drainage Design Parameters

- 6.3 The following best practice design parameters have been considered:
 - The local 2070s 'Upper End' Climate Change allowance is 40% and has been applied to the hydraulic drainage network design.
 - The Hydraulic Model has been for a 1:2yr Storm Event, 1:10yr Storm Event, 1:30yr Storm Event, 1:30yr + 40% Climate Change Event, 1:100yr Storm Event and 1:100yr + 40% Climate Change Storm Event.
 - FEH22 rainfall data has been used.
 - The CV Value for Winter and Summer storms has been set to 1.0.
 - A 5min time of entry has been used.
 - In line with Essex LLFA Guidelines, all attenuation features either have 50% capacity available 24 hours after a 1 in 30-year storm event or have the capacity to store a subsequent 1 in 10-year storm event after a 1 in 30-year storm event.
 - 10% urban creep allowance has been applied to roof areas (not to garage and flats roof areas), making the total contributing roof area 1703.83m².
 - Since infiltration testing has not yet been carried out, an average infiltration rate for chalk of 1x10⁻⁵ m/s (0.036 m/hr) has been used and applied in the Causeway Flow modelling process.
 - Non-Statutory Technical Guidance Policy S2 States:

"For greenfield developments, the peak runoff rate from the development to any highway drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event should never exceed the peak greenfield runoff rate for the same event."

• Non-Statutory Technical Guidance Policy S4 States:

"Where reasonably practicable, for greenfield development, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event should never exceed the greenfield runoff volume for the same event."

- As the proposals are to discharge surface water to ground and not to a drain, water body or sewer, the volume check requirement does not apply.
- Attenuation Freeboard for open water features, such as ponds, basins or swales, the maximum water level in the feature shall reach no more than 300mm to the top-of-bank.

Post Development Runoff Rate

6.4 This proposal allows for surface water discharge to ground, as such this does not apply.

Proposed Drainage Strategy – Infiltration

- 6.5 As outlined in Table 6.1 above, a number of SuDS Features shall be utilised to form the Surface Water Drainage Strategy in order to meet the 4 Pillars of SuDS.
 - Water Quantity Infiltration Basin, Permeable Paving, Raingarden Planters;
 - Water Quality Infiltration Basin, Permeable Paving, and Raingarden Planters;
 - Biodiversity Raingarden Planters, Swale, Infiltration Basin a permanent water level in the basin as well as suitable planting around the embankments will provide a new habitat and biodiversity gain;
 - Amenity Raingarden Planters, Swale, Infiltration Basin this feature will enhance the surroundings and provide a focal point.
- 6.6 Note that the Raingarden Planters are not proposed at this stage of application but are expected to be proposed at a later stage for each dwelling at location of downpipes in addition to the other features proposed in order to improve all pillars of SuDS for the development.
- 6.7 The proposed SuDS Layout is included in **Appendix H** and Causeway Flow Hydraulic Model Outputs are contained in **Appendix I**.
- 6.8 As this is an Outline Application, infiltration testing shall be undertaken at a later design stage. The following hydraulic calculations are therefore based on typical infiltration coefficients from Table 25.1 in CIRIA SuDS Manual. As described in para. 1.5 above, it is anticipated that a suitably worded Condition could be attributed to any Decision Notice which requires full BRE 365 Infiltration Testing to be undertaken at a later design stage.
- 6.9 For the management of surface water runoff, the proposed access road is to utilise a permeable paving construction throughout the site to allow surface water runoff to pass through its surface and into its subbase. The access road is to be divided into 3 separate sections of unlined permeable paving (PP1-3), with PP1 having a minimum subbase of 505mm, both PP2 & PP3 both are proposed with minimum subbases of 600mm, all of which are proposed to have a void ratio of 30%. These features manage surface water runoff themselves and from the respective adjacent impermeable footpaths and driveways and all drainage features on site infiltrate to ground at the predetermined rate of 1x10⁻⁵ m/s (0.036 m/hr).

- 6.10 PP1 manages itself and its surrounding impermeable hardstandings, before directing flows to the swale south of PP1 at a restricted rate due to the presence of a 21mm orifice plate. Both the swale and PP1 together function independently of the rest of the drainage system and discharge surface waters to ground via infiltration. The swale is proposed to provide amenity and biodiversity benefits for the development and is proposed as having a total depth of 700mm including a 300mm freeboard, and a surface area of 85.6m².
- 6.11 Both PP2 and PP3 also infiltrate at the aforementioned rate above, but also convey a percentage of surface waters towards the infiltration basin in the southwest of the site. Flows from PP2 are restricted by a 30mm orifice plate and then travel through a pipe network underneath PP3, before PP3 connects to this network at a chamber (MH1) before flowing into the infiltration basin.
- 6.12 The other main feature in this SuDS strategy is an infiltration basin which receives flows from all the roof areas along with a percentage of flow from PP2 and PP3 due to the connecting pipe. The base and top areas of this basin are proposed to be 124.2 and 350.0m² respectively, the infiltration basin is 1.2m in depth including a 300mm freeboard. It is also proposed to infiltrate to ground at a rate of 1x10⁻⁵ m/s (0.036 m/hr). This infiltration basin will also include a section within its area that is lined and not infiltrating, this is to provide a permanent water feature, but this section is not modelled in Causeway Flow, with specifics on size of section to be determined at a later stage in development.
- 6.13 Further details on the surface area and sizes of attenuation features and specific diameters of orifice plates in this system are included in **Appendix H** and **I**.
- 6.14 The hydraulic outputs in **Appendix I** show the half-drain down times for each proposed infiltration feature. The half-drain-times for each section of Permeable Paving and the infiltration basin all remain below the required 1440mins (24hrs) for 1 in 30 year storm events as specified by Essex LLFA.
- 6.15 As the proposal seeks to dispose surface water runoff via infiltration, Long Term Storage is not required.

Exceedance Event

6.16 The proposed surface water drainage infiltration strategy is designed to accommodate a 1:100yr + 40% Climate Change Storm Event. In the unlikely event that an exceedance event occurs, any flood waters would flow in a southwest direction due to the land falling in this direction before eventually entering the ditch along the western boundary of the site which flows into the EA Main River of Stickling Green Brook. The Exceedance Routes are identified in Appendix H.

Water Quality

6.17 The drainage system has been designed in order to meet the water quality requirements set out by Table 26.2 of the CIRIA SuDS Manual C753 which sets out the specific pollution hazard indices for residential roofs, residential car parks and low traffic roads in Table 6.2 below.

FRA & SuDS Report | Land at Clavering, CB11 4QS

TRANSPORT PLANNING I HIGHWAYS AND DRAINAGE FLOOD RISK. 1st Floor Millers House, Roydon Roed, Stanstead Abbotts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

Land Use	Hazard Level	Pollution Hazard Indice	S	
		Suspended Solids	Metals	Hydrocar bons
Residential roofs	Very low	0.2	0.2	0.05
Individual property driveways, residential car parks and low traffic roads	Low	0.5	0.4	0.4

Table 6.2 Land Use Pollution Hazard Ratings. Extracted from the CIRIA SuDS Manual C753 Simple Index Approach Tool

SuDS Component	Pollution Mitigation Indices		
	Suspended Solids	Metals	Hydrocarbons
Permeable Paving	0.7	0.6	0.7
Infiltration Basin	0.7	0.7	0.5
Swale	0.5	0.6	0.6

Table 6.3 SuDS Component Pollution Mitigation for Permeable Paving Extracted and adapted from the CIRIA SuDS Manual C753 Simple Index Approach Tool

6.18 From Table 6.3 above, permeable paving and infiltration basins will meet and exceed the required level of pollution mitigation for removing total suspended solids, metals and hydrocarbons from the surface water runoff from the development site.

FRA & SuDS Report | Land at Clavering, CB11 4QS

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Road, Stanstead Abbotts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

7 Surface Water Drainage Strategy – Option 2: Attenuation

SuDS Surface Water Drainage Strategy Options

- 7.1 As described in paragraphs 6.1 to 6.4 above, two SuDS Drainage Strategies are offered which follow the most preferred and second most preferred methods for disposal of surface water runoff.
- 7.2 Option 1 in Section 6 of this report is based on an Infiltration Strategy, the most preferred method, using typical infiltration coefficients from Table 25.1 in CIRIA SuDS Manual.
- 7.3 Option 2, described in the paragraphs below, is based on an Attenuation Strategy with outfall directed to watercourse, the second most preferred method, and would only be implemented should it be proven that infiltration is unviable.
- 7.4 It is anticipated that a suitably worded Condition could be attributed to any Decision Notice which requires full BRE 365 Infiltration Testing to be undertaken at a later design stage.
- 7.5 The following describes **Option 2 Attenuation Strategy.**

Site-Specific SuDS – Attenuation Strategy

7.6 The various SuDS methods need to be considered in relation to site-specific constraints. Several SuDS options are available to reduce or temporarily hold back the discharge of surface water runoff. Table 7.1 outlines the constraints and opportunities to each of the SuDS devices in accordance with the hierarchical approach outlined in The SuDS Manual CIRIA C753. It also indicates what could and could not be incorporated within the development, based upon sitespecific criteria.

Device	Description	Constraints / Comments	Appropriate
Living roofs (source control)	Provide soft landscaping at roof level which reduces surface water runoff.	Not possible for residential buildings due to pitched roofs.	No
Infiltration devices & Soakaways (source control)	Store runoff and allow water to percolate into the ground via natural infiltration.	Not proposed.	No
Pervious surfaces (source control)	Storm water is allowed to infiltrate through the surface into a storage layer, from which it can either infiltrate and/or slowly release to sewers.	Lined permeable paving is proposed for this site.	Yes
Rainwater harvesting (source control)	Reduces the annual average rate of runoff from the site by reusing water for non-potable uses e.g. toilet flushing, recycling processes.	Water butts not currently proposed but could be implemented at a later date.	Possibly

Swales (permeable conveyance)	Broad shallow channels that convey / store runoff, and allow infiltration (ground conditions permitting).	Swale proposed for conveyance.	Yes
Filter drains & perforated pipes (permeable conveyance)	Trenches filled with granular materials (to take flows from adjacent impermeable areas) that convey runoff while allowing infiltration.	Not proposed as part of the site.	No
Filter Strips (permeable conveyance)	Wide gently sloping areas of grass or dense vegetation that remove pollutants from run-off from adjacent areas.	Not proposed.	No
Infiltration basins (end of pipe treatment)	Depressions in the surface designed to store runoff and allow infiltration.	Not proposed.	No
Wet ponds & constructed wetlands (end of pipe treatment)	Provide water quality treatment & temporary storage above the permanent water level.	Attenuation Basin proposed at end of system.	Yes
Attenuation Underground (end of pipe treatment)	Oversized pipes or geo-cellular tanks designed to store water below ground level.	Geo-cellular tanks proposed to attenuate flows from permeable paving and roof areas.	Yes
Raingardens and Raingarden Planters	Bio-retention Facilities	Raingarden planters could be implemented at a later stage	Possibly

Table 7.1: Site Specific Sustainable Drainage

Surface Water Drainage Design Parameters

- 7.7 The following best practice design parameters have been considered:
 - The local 2070s 'Upper End' Climate Change allowance is 40% and has been applied to the hydraulic drainage network design.
 - The Hydraulic Model has been set up for a 1:2yr Storm Event, 1:10yr Storm Event, 1:30yr Storm Event, 1:30yr + 40% Climate Change Event, 1:100yr Storm Event and 1:100yr + 40% Climate Change Storm Event.
 - FEH22 rainfall data has been used.
 - The CV Value for Winter and Summer storms has been set to 1.0.
 - A 5min time of entry has been used.
 - In line with Essex LLFA Guidelines, all attenuation features either have 50% capacity available 24 hours after a 1 in 30-year storm event or have the capacity to store a subsequent 1 in 10-year storm event after a 1 in 30-year storm event.

- 10% urban creep allowance has been applied to residential roof areas (not to garage and flats roof areas), making the total contributing roof area 1703.83 m².
- Non-Statutory Technical Guidance Policy S2 States:

"For greenfield developments, the peak runoff rate from the development to any highway drain, sewer or surface water body for the 1 in 1 year rainfall event and the 1 in 100 year rainfall event should never exceed the peak greenfield runoff rate for the same event."

• Non-Statutory Technical Guidance Policy S4 States:

"Where reasonably practicable, for greenfield development, the runoff volume from the development to any highway drain, sewer or surface water body in the 1 in 100 year, 6 hour rainfall event should never exceed the greenfield runoff volume for the same event."

- As the proposed outfall rate matches the QBAR/1:1yr/1:2yr Greenfield Runoff Rate, the volume check requirement does not apply.
- Attenuation Freeboard for open water features, such as ponds, basins or swales, the maximum water level in the feature shall reach no more than 300mm to the top-of-bank.

Pre-Development Runoff Rates and Discharge Volumes – Greenfield Sites

7.8 Greenfield runoff rates were estimated using the ReFH2 method on the Causeway Flow software. The results of which are included in **Appendix J**. The proposed impermeable area of the site is 0.5816ha, the following greenfield runoff rates for a range of storm events have been scaled accordingly:

1 in 2 year - 4.8 l/s/ha - 2.8 l/s

1 in 30 year - 12.8 l/s/ha - 7.4 l/s

1 in 100 year - 16.4 l/s/ha - 9.5 l/s

Post Development Runoff Rate

7.9 The proposals seek to match the 1:2yr Greenfield Runoff Rate (2.8 l/s) for all Storms up to and including the 1:100yr + 40% Climate Change Event.

Proposed Drainage Strategy – Discharge to Surface Water Body

- 7.10 As outlined in Table 7.1 above, a number of SuDS Features shall be utilised to form the Surface Water Drainage Strategy in order to meet the 4 Pillars of SuDS.
 - Water Quantity Attenuation Basin, Lined Permeable Paving, and Cellular Storage Crates;
 - Water Quality Attenuation Basin Lined Permeable Paving, Conveyance Swale, and Raingarden Planters;

- Biodiversity Raingarden Planters; Attenuation Basin a permanent water level in the basin as well as suitable planting around the embankments will provide a new habitat and biodiversity gain;
- Amenity Conveyance Swale, Raingarden Planters; Attenuation Basin this feature will enhance the surroundings and provide a focal point.
- 7.11 Note that the Raingarden Planters are not proposed at this stage of application but are expected to be proposed at a later stage for each dwelling at location of downpipes in addition to the other features proposed in order to improve all pillars of SuDS for the development.
- 7.12 The proposed SuDS Layout is included in **Appendix K** and Causeway Flow Hydraulic Model (FEH22 Method) Outputs are contained in **Appendix L**.
- 7.13 The proposed drainage scheme utilises key SuDS attenuation features to serve the development site: lined permeable paving, a conveyance swale, a geo-cellular storage tank, and an attenuation basin which help manage surface water runoff before outfalling to the ditch located at the southwest of the site at a rate of 2.7 l/s which does not contribute to flood risk on site or elsewhere in the local area in all modelled storm events up to and including the 1:100yr + 40% Climate Change Event.
- 7.14 For the management of surface water runoff, the proposed access road is to utilise a lined permeable paving construction. The access road is to be split into 3 different sections of lined permeable paving located across the site with different purposes within the system in providing the required attenuation and conveyance for storms up to and including the 1 in 100 year + 40% climate change event. These sections of permeable paving manage flows from themselves along with surface water from the respective adjacent sections of impermeable footpaths and driveways, before flowing into other attenuation features on site. Each section of permeable paving varies in function and specification as detailed below:
- 7.15 PP CONVEY1 This section of permeable paving is located in the northwest of the site, with a function of management of surface waters from itself and surrounding roof areas and impermeable driveways via conveyance instead of attenuation. This allows surface waters to be transported from this area southwards through the conveyance swale before entering the attenuation basin in the southwest of the site. This feature is proposed to have a 30% void ratio with a minimum subbase of 500mm and surface area of 434m².
- 7.16 PP CONVEY2 Similar to the previous section, this segment of permeable paving is designed to transport surface water from the paving itself and other surrounding hardstandings towards the end of the drainage system. This 496m² surface area section of permeable paving is located towards the south of the site and is proposed with a 30% void ratio and minimum subbase of 550mm.
- 7.17 PP ATTENUATION This section of permeable paving serves the central area of the site, receiving surface water flows from roof areas and other impermeable hardstandings in the central and eastern areas of the site. This feature has a main function of attenuating surface water received and releasing flows to further down the system to the oversized pipe at a restricted rate via a 25mm orifice plate. This attenuation feature has a proposed surface area of 679m² and is split into two sections: the regular subbase at 30% void ratio and minimum

FRA & SuDS Report | Land at Clavering, CB11 4QS

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbolts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk depth of 450mm; and the second section of subbase replacement below at 95% void ratio and minimum depth of 150mm is designed to store additional surface water flows.

- 7.18 An open water feature of a conveyance swale is proposed for the development, located on the western side of the site, receiving flows from the permeable paving segment in the north of the site (PP CONVEY1), it will act as a natural storage and transport feature, conveying surface water towards the attenuation basin in the south. It has a surface area of 85.6m² and depth of 700mm including 300mm freeboard. It will also have additional amenity and biodiversity benefits for the site.
- 7.19 A geo-cellular storage tank (STORAGE TANK) is also proposed to provide further storage and attenuation for water flows from the permeable paving and roof areas). This storage tank is proposed to be 800mm total) deep and will have a total surface area of 189.2m². As shown in **Appendix L**, the storage tank will be located in the southern side of the site, underneath the southern conveyance permeable paving (PP CONVEY2) and receive flows from the oversized pipe before leading flows into the attenuation basin at a restricted rate by the presence of a 38mm orifice plate.
- 7.20 Across the system, an oversized pipe of 450mm diameter is proposed to provide additional storage benefits for the drainage system. It will transport flows east to west for the site and direct surface water to and through the storage tank before conveying these flows to the attenuation basin.
- 7.21 The attenuation basin located in the southwest corner of the site at the end of the attenuation drainage system, receives all flows from all other SuDS features before storing and attenuating the surface water and restricting the final outfall to the open watercourse ditch at a rate of 2.7 I/s by the presence of a Hydro-Brake. The base and top areas of this basin to be used for attenuation are proposed to be 124.2 and 350.0m² respectively. The basin has been modelled to a depth of 1.2m including a 300mm freeboard. An additional 600mm of depth has been proposed in order for the attenuation basin to have a permanent water level. This feature will also have a 2m maintenance track surrounding it.
- 7.22 It is important to note that the exact extents and levels of the outfall ditch are unknown as this was unable to be surveyed in the topographical survey due to issues with dense vegetation. Therefore, assumptions have been made at this stage for discharge of surface waters on site, these levels will need to be confirmed at a later stage.
- 7.23 All flows between different attenuation and storage features for the proposed development are restricted to different rates (these specific rates for different storm events are included in Appendix L) via orifice plates with different diameters to ensure efficient management of surface water flows in all modelled scenarios.
- 7.24 Further details on the surface area and sizes of attenuation features and specific diameters of orifice plates in this system are included in **Appendix K and L**.
- 7.25 All orifice plates are to be located within chambers with suitable protective filters.
- 7.26 The hydraulic outputs shown in **Appendix L** show the half-drain down times for each proposed attenuation feature. The half-drain-times for all features including: the sections of Permeable Paving, storage tanks and the attenuation basin, all remain below the required 24 hours (1440mins) for 1 in 30 year storm events as specified by Essex LLFA.

7.27 The proposals seek to match the existing 1:2yr Greenfield Runoff Rate for all storms up to and including the 1:100yr + 40% Climate Change Event, as such Long Term Storage is not required.

Exceedance Event

7.28 The proposed surface water drainage attenuation strategy is designed to accommodate a 1:100yr + 40% Climate Change Storm Event. In the unlikely event that an exceedance event occurs, any flood waters would flow in a southwest direction before eventually entering the ditch along the western boundary of the site which flows into the EA Main River of Stickling Green Brook. The Exceedance Routes are shown in **Appendix K**.

Water Quality

7.29 The drainage system has been designed in order to meet the water quality requirements set out by Table 26.2 of the CIRIA SuDS Manual C753 which sets out the specific pollution hazard indices for residential roofs, residential car parks and low traffic roads in Table 7.2 below.

Land Use	Hazard Level	Pollution Hazard Indices		
		Suspended Solids	Metals	Hydrocar bons
Residential roofs	Very low	0.2	0.2	0.05
Individual property driveways, residential car parks and low traffic roads	Low	0.5	0.4	0.4

 Table 7.2 Land Use Pollution Hazard Ratings. Extracted from the CIRIA SuDS Manual C753

 Simple Index Approach Tool

SuDS Component	Pollution Mitigation Indices		
	Suspended Solids	Metals	Hydrocarbons
Permeable Paving	0.7	0.6	0.7
Attenuation Basin	0.7	0.7	0.5
Swale	0.5	0.6	0.6

Table 7.3 SuDS Component Pollution Mitigation for Permeable Paving, Swales & Attenuation Basins, Extracted and adapted from the CIRIA SuDS Manual C753 Simple Index Approach Tool

7.30 From Table 7.3 above, permeable paving, swales and attenuation basins will meet and exceed the required level of pollution mitigation for removing total suspended solids, metals and hydrocarbons from the surface water runoff from the development site.

FRA & SuDS Report | Land at Clavering, CB11 4QS

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbotts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

8 Maintenance of Development Drainage – Infiltration & Attenuation

- 8.1 The maintenance of the SuDS features will remain the responsibility of the site owner or an appointed maintenance company. The site owner/appointed management company will be responsible for maintaining the permeable paving and green roofs.
- 8.2 Regular inspections and maintenance should be carried out for each the following elements, particularly after periods of heavy rainfall. Maintenance tasks and frequencies for permeable paving are detailed in the CIRIA SUDS Manual (C753) and have been summarised below in Table 8.1 8.4.
- 8.3 For the infiltration strategy, see tables 8.1, 8.3 and 8.4. For the attenuation strategy, see tables 8.1, 8.2, 8.3 and 8.4.

Maintenance Schedule	Required Action	Frequency
Regular maintenance	Brushing and vacuuming.	Three times per year at end of winter, mid-summer, after autumn leaf fall, or as required based on site specific observations of clogging or manufacturer's recommendations.
Occasional maintenance	Stabilise and mow contributing and adjacent areas.	As required.
	Removal of weeds.	As required
Remedial actions	Remediate any landscaping which, through vegetation maintenance of soil slip, has been raised to within 50mm of the level of the paving.	As required
	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance of a hazard to the user.	As required
	Rehabilitation of surface and upper sub- surface.	As required (if infiltration performance is reduced as a result of significant clogging.)
Monitoring	Initial inspection	
	Inspect for evidence of poor operation and/or weed growth. If required, take remedial action.	Monthly for 3 months after installation. 3 monthly, 48 hours after large storms.
	Inspect silt accumulation rates and establish appropriate brushing frequencies.	Annually.
	Monitor inspection chambers.	Annually.

Table 8.1: Maintenance tasks for permeable paving (Source: CIRIA C753, The SUDS Manual)

FRA & SuDS Report | Land at Clavering, CB11 4QS

TRANSPORT PLANNING I HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abboits, SG12 8HN. Tel 01920 871 777 et contect@eastp.co.uk www.eastp.co.uk

Maintenance Schedule	Required Action	Frequency
Regular maintenance	Inspect and identify any areas that are not operating correctly. If required, take remedial action.	Monthly for 3 months, then annually.
	Remove debris from the catchment surface (where it may cause risks to performance)	Monthly.
	For systems where rainfall infiltrates into the tank from above, check surface or filter for blockage by sediment, algae or other matter; remove and replace surface infiltration medium as necessary.	Annually.
	Remove sediment from pre-treatment structures and/or internal forebays.	Annually, or as required.
Remedial actions	Repair/rehabilitate inlets, outlet, overflows, and vents.	As required
Monitoring	Initial inspection Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed.	Annually.
Table 0.0 Maintenance last	Survey inside of tank for sediment build- up and remove if necessary.	Every 5 years or as required.

Table 8.2: Maintenance tasks for attenuation storage tanks (Source: CIRIA C753, The SUDS Manual)

Maintenance Schedule	Required Action	Frequency
Regular maintenance	Remove litter and debris.	Monthly (or as required)
	Cut the grass – public areas	Monthly (during growing season)
	Cut the meadow grass	Half yearly (spring, before nesting season and autumn)
	Inspect marginal and bankside vegetation and remove nuisance plants (for first 3 years).	Monthly (at start, then as required)
	Inspect inlets, outlets, banksides, structures, pipework etc for evidence of blockage and or physical damage.	Monthly
	Inspect water body for signs of poor water quality.	Monthly (May – October)
	Inspect silt accumulation rates in any forebay and in main body of the pond and establish appropriate removal frequencies; undertake contamination testing once some build-up has occurred, to inform management and disposal options.	Bi-yearly

	Check any mechanical devices, eg. penstocks.	Bi-yearly
	Hand cut submerged and emergent aquatic plants (at minimum of 0.1m above pond base; include max 25% of pond surface).	Annually
	Remove 25% of bank vegetation from water's edge to a minimum of 1m above water level.	Annually
	Tidy all dead growth (scrub clearance) before start of growing season Note tree maintenance is usually part of overall landscape management contract).	Annually
	Remove sediment from any forebay.	Every 1-5 years, or as required
	Remove sediment and planting from one quadrant of the main body of ponds without sediment forebays.	Every 5 years, or as required
Occasional maintenance	Remove sediment from the main body of big ponds when pool volume is reduced by 20%	With effective pre-treatment, this will only be required rarely, eg every 25–50 years
Remedial actions	Repair erosion or other damage	As required
	Replant where necessary	As required
	Aerate pond when signs of eutrophication are detected	As required
	Realign rip-rap or repair other damage	As required
	Repair/rehabilitate inlets, outlets and overflows	As required
Monitoring	Inspect silt traps and note rate of sediment accumulation	Monthly in the first year and then annually
	Check soakaway to ensure emptying is occurring	Annually.

Table 8.3: Maintenance tasks for ponds and wetlands (Source: CIRIA C753, The SUDS Manual)

Maintenance Schedule	Required Action	Frequency
Regular maintenance	Remove litter and debris	Monthly, or as required
	Cut grass – to retain grass height within specified design range	Monthly (during growing season) or as required
	Manage other vegetation and remove nuisance plants	Monthly at start, then as required

FRA & SuDS Report | Land at Clavering, CB11 4QS

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbotts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

	Inspect inlets, outlets and overflows for blockages, and clear if required	Monthly
	Inspect infiltration surfaces for ponding, compaction, silt accumulation, record areas where water ponding for > 48 hours	Monthly, or when required
	Inspect vegetation coverage	Monthly for 6 months, quarterly for 2 years, then half yearly
	Inspect inlets and facility surface for silt accumulation, establish appropriate silt removal frequencies	Half yearly
Occasional maintenance	Reseed areas of poor vegetation growth, alter plant types to better suit conditions, if required	As required or if bare soil is exposed over 10% or more of the swale treatment area.
Remedial actions	Repair erosion or other damage by re- turfing or reseeding	As required
	Relevel uneven surfaces and reinstate design levels	As required
	Scarify and spike topsoil layer to improve infiltration performance, break up silt deposits and prevent compaction of the soil surface.	As required
	Removal build-up of sediment on upstream gravel trench, flow spreader or a top of filter strip	As required
	Remove and dispose of oils or petrol residues using safe standard practices	As required

Table 8.4: Maintenance tasks for swales (Source: CIRIA C753, The SUDS Manual)

- 8.4 It is recommended that during the first 12 months of operation all SuDS and drainage features are visually inspected on a monthly basis to determine any seasonal patterns this includes all SuDS features, inspection chambers, inlets and outlets. This will determine whether or not the recommended service intervals set out by CIRIA in the figures above will be sufficient for maintenance beyond the first year.
- 8.5 After the first 12 months, the maintenance schedule should be designed to at least meet the requirements set out by CIRIA based on the outcome of the monitoring.

Manholes, Sewers and Inspection Chambers

- 8.6 All inspection chambers and manholes should be inspected on a bi-annual basis with further visual checks carried out throughout the year, such as in November after the heaviest leaf-fall has occurred.
- 8.7 Should a blockage occur at any time, it is advised to seek professional help to jet the drainage system to clean and clear the system.

Gutters and Downpipes

8.8 It is good practice to ensure that these are occasionally inspected to ensure they are in good order and free of leaves & debris. Once every 6 months should be sufficient.

FRA & SuDS Report | Land at Clavering, CB11 4QS

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK. 1st Floor Millers House, Roydon Roed, Stanstead Abbotts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

EAS is a trading name of EAS Transport Planning Ltd. Registered in England and Wales No. 5751442.

9 Summary & Conclusion

9.1 This Flood Risk Assessment and SuDS Strategy report has been prepared in support of an Outline Planning Application by BAYA Group on behalf of E&A Securities for the proposed development on land to the west of Clatterbury Lane, Clavering, Essex. The proposals are: "Outline Application with all matters reserved except access for up to 28 dwellings (Class C3) including public open space, sustainable drainage systems, landscaping and associated infrastructure and development."

Flood Risk Summary

- 9.2 The site is shown to be at a low risk of a fluvial (river) flood event, being located within the Flood Zone 1 on the Flood Map for Planning. Flood Zone 1 is defined as having <0.1% annual probability of river flooding.
- 9.3 Surface Water Flood High risk scenario: 1 in 30 yr (3.3% AEP) A high-risk scenario mapping in Appendix F indicates a greater than 3.3% annual exceedance probability (AEP) of surface water flooding, i.e., the most frequently occurring scenario. It can be seen from the overlaid flood depths for the 3.3% AEP event that no proposed dwellings are located within the flood extent.
- 9.4 Surface Water Flood Medium risk scenario: 1 in 100 yr (1.0% AEP) A medium-risk scenario indicates an AEP of surface water flooding between 3.3% and 1. Minor encroachment of the flood extent to 2no. proposed dwellings occurs, though it should be noted that the maximum depth reaches 150mm only. It is considered that surface water flood mitigation shall be offered to mitigate this risk accordingly. As this is an Outline Application, site-specific surface water flood modelling would be disproportionate, as such, an assessment of site levels and flood volumes has been undertaken and confirms the viability of suitable mitigation. The assessment also proves that additional surface water flood volume could be provided, which further demonstrates that should site-specific surface water flood modelling and compensation be undertaken at a later design stage, it is clear that it is achievable.
- 9.5 Suitable mitigation measures are achievable and proposed to manage surface water flood risk at the site.
- 9.6 In line with the ADEPT / EA document published September 2019, Emergency Access and Egress from the site is achievable, with flood depths of 150mm in Stickling Green and localised low-spots showing up to 300mm maximum depth of surface water flooding in an exceedance (1:1000yr) event.

SuDS Strategy Summary

9.7 The underlying geology suggests infiltration could be viable at the site, however as this is an Outline Application, the SuDS Drainage Strategy will offer two Options. Option 1 will be based on an Infiltration Strategy, using typical infiltration coefficients from Table 25.1 in CIRIA SuDS Manual and Option 2 will be based on an Attenuation Strategy with outfall directed to watercourse, which would only be implemented should it be proven that infiltration is unviable. It is anticipated that a suitably worded Condition could be attributed to any Decision Notice which requires full BRE 365 Infiltration Testing to be undertaken at a later design stage. For

this Outline Application, the two Options demonstrate that surface water runoff from the site can be suitably managed in line with NPPF and Lead Local Flood Authority requirements.

Option 1 - Infiltration Strategy (discharge to ground):

- 9.8 This strategy has been modelled on an average infiltration rate of chalk due to the geology of the area, with the rate being 1x10⁻⁵ m/s (0.036 m/hr). Further calculations and modelling will be required at a later stage once data from infiltration tests are acquired to ensure the system will work for the resultant infiltration rates.
- 9.9 The proposed strategy includes 3 independent sections of permeable paving, 2 of which (PP2 & PP3) with a minimum subbase depth of 600mm and 1 (PP1) with a minimum subbase of 505mm. These sections of permeable paving manage themselves along with flows from the path and driveways adjacent to each section. All of these sections of permeable paving will infiltrate direct to ground at the aforementioned rate.
- 9.10 While none of these sections are directly connected as they infiltrate direct to ground, PP1 along the northwest side of the site is proposed to convey flows to the infiltration swale (through a 21mm orifice plate) to allow further storage and infiltration this section of the drainage system will remain separate from other features on site. PP2 and PP3 are proposed to both flow into a connection chamber (MH1) before outfalling to the infiltration basin in the southwest of the site.
- 9.11 The infiltration basin is proposed to be 1.2m deep (including a 300mm freeboard) and will have a surface area at the top of the feature of 350.0m², and a base area of 124.2m².

Option 2 - Attenuation Strategy (discharge to waterbody):

- 9.12 This approach focuses on attenuation of surface water through the presence of various features which attenuate and store surface water flows before outfalling to the ditch in the southwest of the site which is connected to the Stickling Green Brook. The outfall is proposed to improve on the current greenfield 1 in 2 year storm event runoff rate with a proposed rate of 2.7 l/s for all storms up to and including 1 in 100 year + 40% climate change events with the presence of a Hydro-Brake at the end of the system.
- 9.13 The proposed strategy includes 3 separate sections of permeable paving, 2 of which (PP CONVEY1&2) will convey surface waters towards other attenuation features on site, and 1 (PP ATTENUATION) which shall attenuate flows before directing waters to the attenuation basin via an oversized pipe system and storage tank.
- 9.14 PP CONVEY1 in the northwest of the site will transport flows from itself and surrounding hardstandings through to the conveyance swale along the site's western boundary which then in turn conveys surface waters to the attenuation basin in the southwest corner of the site. It is proposed with a minimum subbase of 500mm void ratio of 30%, and surface area of 434m².
- 9.15 PP CONVEY2 functions in a similar manner to the permeable paving in the paragraph above but in the southwest side of the proposed development and immediately directs water flows from itself and surrounding hardstandings to the attenuation basin. It is proposed with a minimum subbase of 550mm, 30% void ratio, and 496m² surface area.
- 9.16 PP ATTENUATION located in the centre of the site is proposed to receive surface water from central and eastern sections of the development, this feature's function of attenuating flows is

assisted by the presence of a subbase replacement tank below it in order to provide additional storage benefits before directing flows to the oversized pipe, storage tank and finally the attenuation basin. It is proposed with a minimum subbase of 450mm, 30% void ratio and 679m² surface area, while the subbase replacement tank below is proposed with 150mm depth, 95% void ratio and 433m² surface area.

- 9.17 The conveyance swale along the western boundary of the site is proposed to be 700mm deep (including 300mm freeboard) and has a surface area of 85.6m².
- 9.18 A geo-cellular storage tank is proposed for this strategy, located underneath PP CONVEY2 but receives flows from the oversized pipe (450mm diameter) and PP ATTENUATION to provide the necessary storage of surface waters on site before directing flows to the attenuation basin in the southwest at a restricted rate due to the presence of an orifice plate. The storage tank is proposed to be 173.6m² in surface area and depth of 800mm.
- 9.19 The attenuation basin is proposed to be 1.2m deep with a 300mm freeboard and will have a surface area at the top of the feature of 350.0m², and a base area of 124.2m². It will store and attenuate surface waters before outfalling to the ditch at the southwest vertex of the site at a consistent rate of 2.7 l/s via a Hydro-Brake. It is important to note that the outfall levels have been approximated due to the topographical survey being unable to obtain levels for the ditch along the site's western boundary because of dense vegetation levels will be required at a later stage in development.
- 9.20 Each section of permeable paving, storage tanks and attenuation are proposed to have restricted outflow of varying rates due to orifice plates being proposed for each feature.
- 9.21 There is an expectation in both strategies for raingarden planters to be based at downpipes for each residential property for biodiversity and amenity purposes.
- 9.22 All features in both strategies are expected to achieve the required half-drain time of under 1440mins (24hrs) under modelled 1 in 30 year storms.

Conclusion

9.23 The proposals of both strategies of discharge to ground and discharge to open waterbody do not increase flood risk onsite or elsewhere and the necessary mitigation measures have been detailed in this report. The proposed development is considered to be suitably and sustainably located and is in line with local and national policies.

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbolts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk
Appendices

Appendix: A - Location Plan	37
Appendix: B – Proposed Development Plans	38
Appendix: C – EA Flood Map	39
Appendix: D – Topographical Survey	40
Appendix: E – Thames Water Sewer Maps	41
Appendix: F – DEFRA Surface Water Flood Risk Maps	42
Appendix: G – Surface Water Flood Mitigation Potential	43
Appendix: H – Infiltration SuDS Strategy Layout	44
Appendix: I – Infiltration Strategy Causeway Flow Outputs	45
Appendix: J – Causeway Flow Greenfield Runoff Rates	46
Appendix: K – Attenuation SuDS Strategy Layout	47
Appendix: L – Attenuation Strategy Causeway Flow Outputs	48

FRA & SuDS Report | Land at Clavering, CB11 4QS

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbotts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

Appendix: A - Location Plan

FRA & SuDS Report | Land at Clavering, CB11 4QS

37

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbotts, SG12 8HN. Tel 01920 871 777 e: contact@eastp.co.uk www.eastp.co.uk

Drawing Key
P1 Issued for Planning MJP 04.12.23 Rev Description By Date N
5m 15m 25m 10m 20m
PLANNING
Site Location Plan
Sickling Green, Clavering Date Drawn Checked
December 2023 MJP XXX Scale
Drawing No: Rev: BH_002_SLP.01 P1
BAYA
General Notes This drawing is the property of BAYA Group Ltd and is issued on the condition that it is not reproduced, discload or copiet to any unauthorised person without written consent. Levels are in AOD unless otherwise stated. Dimensions are in millimetters unless otherwise stated. BAYA Group Ltd must be informed of any drawing errors immediately in writing. This drawing is for planning purposes only.
General Notes Nine Hills Road, Cambridge. 082 102: T: 01223 803852

Appendix: B – Proposed Development Plans

FRA & SuDS Report | Land at Clavering, CB11 4QS

38

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbotts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

Develo Propos 2no. 1 4no. 2 2no. 1 4no. 2 9no. 3 4no. 4 3no. 5 TOTAL:	opment Sumn ed Development Bed Flats (50sq Bed Flats (63sq Bed Bungalows Bed Bed Bed Bed 28no. Units	nary ; m) m)			
Drawin Bi 152 152 153 153 155 505 155 155 155 155 155 155 155 155	ng Key	A HT 31 SP SP SP SP 3B5F 2 Storey 2 Storey 2 Storey 2 Storey 3 Bath 199 sqm	B H Terey 2 h 2 jm 11 APARTM Astronautic Ano. 18 4no. 2 Be	TAA 37P Slorey Bayb Bayb Bayb Bayb Bayb Bayb Bayb Bay	
P1 Rev	Issued for Plannin	ıg	Ву		xx.xx.xx Date
Propo	APPR sed Site Plan	AIS	Gal	_	
Site Land to the Date Nov 202 Scale	9 West of Clatterbury La	nne, Claveri Drav MJP	ng, Essex VN	CI ××	necked x
1:1000 @ Drawii вноог_:	■ A3 / 1:500 @ A1 ng No: sp.01			Re	ev:
P ROJECTS	BA	14	//	1	1
Gener This draw issued or or copiec consent. Dimensic BAYA Gr immediat purposes	al Notes ving is the property in the condition that i I to any unauthorise Levels are in AOD u ons are in millimeter oup Ltd must be info	of BAYA (t is not re d person nless oth s unless o prmed of rawing is	Group L eproduc without erwise s otherwis any dra for plar	td ar ed, c state state se st wing nning	nd is lisclosed ten ed. ated. errors
	s only.				

Appendix: C – EA Flood Map

FRA & SuDS Report | Land at Clavering, CB11 4QS

39

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbotts, SG12 8HN. Tel. 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

Flood map for planning

Your reference <Unspecified>

Location (easting/northing) 548060/232698

Created **23 Oct 2023 14:27**

Your selected location is in flood zone 1, an area with a low probability of flooding.

You will need to do a flood risk assessment if your site is any of the following:

- bigger that 1 hectare (ha)
- In an area with critical drainage problems as notified by the Environment Agency
- identified as being at increased flood risk in future by the local authority's strategic flood risk assessment
- at risk from other sources of flooding (such as surface water or reservoirs) and its development would increase the vulnerability of its use (such as constructing an office on an undeveloped site or converting a shop to a dwelling)

Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

Flood risk data is covered by the Open Government Licence **which** sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2022 OS 100024198. https://flood-map-for-planning.service.gov.uk/os-terms

© Environment Agency copyright and / or database rights 2022. All rights reserved. © Crown Copyright and database right 2022. Ordnance Survey licence number 100024198.

Appendix: D – Topographical Survey

FRA & SuDS Report | Land at Clavering, CB11 4QS

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbotts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

Appendix: E – Thames Water Sewer Maps

FRA & SuDS Report | Land at Clavering, CB11 4QS

41

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbotts, SG12 8HN. Tel. 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

Based on the Ordnance Survey Map with the sanction of the Controller of H.M Stationary Office License Number 10019345

ALS/ALS Standard/2023_4901441

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified before any works are undertaken. Crown copyright Reserved

Scale:	1:2294	Comments:
Width:	454m	
Printed By:	tlove	
Print Date:	25/10/2023	
Map Centre:	548178,232720	
Grid Reference:	TL4832NW	

ALS/ALS Standard/2023_4901441

NB: Level quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates no Survey information is available.

REFERENCE	COVER LEVEL	INVERT LEVEL
1801		
1601		
1803	98.72	96.76
2801	100.59	99.11
2602	101.29	97.09
3701	103.01	97.44
1501	98.23	94.15
171A		
161A		
1701	97.63	95.5

REFERENCE	COVER LEVEL	INVERT LEVEL
1502	98.76	94.67
1802	100.6	99.5
1804	99.63	98.13
2601	100.31	96.76
2603	101.53	97.19
3703	104	97.9
3702	103.66	97.61
151A		
161B		

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified before any works are undertaken. Crown copyright Reserved

Appendix: F – DEFRA Surface Water Flood Risk Maps

FRA & SuDS Report | Land at Clavering, CB11 4QS

42

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbotts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

Appendix: G – Surface Water Flood Mitigation Potential

FRA & SuDS Report | Land at Clavering, CB11 4QS

43

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbotts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

Appendix: H – Infiltration SuDS Strategy Layout

FRA & SuDS Report | Land at Clavering, CB11 4QS

44

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbotts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

Appendix: I – Infiltration Strategy Causeway Flow Outputs

FRA & SuDS Report | Land at Clavering, CB11 4QS

45

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbotts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

Design Settime: Return Period (years) 30 Additional Flow (%) 00 Time of Entry (mins) 5:00 Minimum Backforp Height (m) 0.200 Preferred Cover Depth (m) 1.200 Include intermediate Ground / Maximum Rindfall (mm/hr) 5:00 Nodes Node Diameter formediate Ground / Include intermediate Ground / Enforce best practice design rules Nodes Node Node Diameter formediate Ground / Enforce best practice design rules Notes Name Area Cover Diameter form Notes PP1 O.09 4.500 State PP2 O.172 Soo 44.873 79.150 0.730 PP2 O.172 Soo 5.00 6.100 MP1 Soo 5.00 6.100 6.1730 PP2 O.172 Soo 6.160 9.160 1.010 MP3 Soo <th colspa="</th"><th>CAUSEWAY 🚱</th><th>EAS Trar</th><th>isport Pla</th><th>anning Lt</th><th>id I</th><th>File: Clav Network Stephen 27/11/20</th><th>vering_lı :: Storm Adams 023</th><th>nfiltration_ Network</th><th>_SKO P</th><th>age 1</th><th></th><th></th><th></th></th>	<th>CAUSEWAY 🚱</th> <th>EAS Trar</th> <th>isport Pla</th> <th>anning Lt</th> <th>id I</th> <th>File: Clav Network Stephen 27/11/20</th> <th>vering_lı :: Storm Adams 023</th> <th>nfiltration_ Network</th> <th>_SKO P</th> <th>age 1</th> <th></th> <th></th> <th></th>	CAUSEWAY 🚱	EAS Trar	isport Pla	anning Lt	id I	File: Clav Network Stephen 27/11/20	vering_lı :: Storm Adams 023	nfiltration_ Network	_SKO P	age 1			
Rainfall Methodology Additional Flow (%) O FEH-22 Return Period (years) Additional Flow (%) O Minimum Welocity (m/s) O 1.00 Level Soffts Maximum Time of Concentration (mins) Maximum Rainfall (mm/hr) 5.00 Minimum Backfroght Fleight (m) 1.200 Maximum Time of Concentration (mins) Maximum Rainfall (mm/hr) 5.00 Diameter Easting Northing Depth (m) PP1 0.094 5.00 95.500 44.873 79.150 0.730 PP2 0.172 5.00 94.800 1200 25.28 70.582 0.730 PP2 0.172 5.00 94.800 1200 25.28 70.582 0.730 PP2 0.172 5.00 94.800 1200 25.28 70.582 0.730 PP1 0.944 5.00 94.800 1200 25.27 8.040 1.00 DUMMY OUTFALL 94.700 1202 28.927 58.040 1.63 15.5 5.03 PP1 SWALE DS Length (m) (m) (m) (m) (m) <th< th=""><th></th><th></th><th></th><th><u>D</u></th><th>esign Se</th><th>ettings</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>				<u>D</u>	esign Se	ettings								
Name Area (na) T of E (mins) Cover Level (m) Diameter (mm) Easting (m) Northing (m) Depth (m) PP1 0.094 5.00 95.500 44.873 79.150 0.730 PP2 0.172 5.00 96.100 58.401 60.552 0.800 MH1 94.800 1200 45.811 60.552 0.800 MH1 94.700 38.927 58.040 1.100 DUMMY OUTFALL 94.700 1200 45.811 60.552 0.800 SWALE 95.150 22.126 56.279 0.200 1.63 150 5.01 PP3 Node Node 150.92 0.600 94.770 1300 1.16 150 5.08 PP1 SWALE 5.213 0.600 94.070 1300 11.6 150 5.08 MH1 ATTENUATION BASIN P04 0.600 94.000 93.600 0.400 225 5.52 MP2 MH1 TTENUATION BASIN	Maximum Time of Maxi	Rainfall M Return Pe Additio Time of Concentr mum Rain	lethodol eriod (ye nal Flow Entry (m ation (m fall (mm,	ogy FE ars) 30 (%) 0 CV 1.(ins) 5.(ins) 30 /hr) 50	H-22 000 00 00 0.00	Min In Enforc	Mini imum B Preferr clude In e best p	mum Veloo Connec Backdrop H red Cover D ntermediate practice des	city (m/s tion Typ eight (n Depth (n e Groun sign rule	s) 1.00 e Level \$ n) 0.200 n) 1.200 d √ es x	Soffits			
Name Area (ha) T of E (ha) Cover (mins) Diameter (mm) Easting (m) Northing (m) Depth (m) Depth (m) PP1 0.094 5.00 95.500 44.873 79.150 0.730 PP2 0.172 5.00 96.100 58.401 68.116 0.730 PP3 0.264 5.00 94.800 1200 45.258 70.588 0.730 MH1 94.700 38.927 58.401 665.279 0.481 DUMMY OUTFALL 95.150 28.126 56.279 0.481 SWALE 95.150 40.803 75.892 0.700 PP1 SWALE 5.213 0.600 94.770 94.450 0.320 16.3 150 5.08 PP1 SWALE 5.213 0.600 94.700 94.000 0.200 143.4 225 5.15 PP2 MH1 15.032 0.600 94.700 94.900 0.400 24.9 24.9 25.5 5.22					Node	<u>es</u>								
PP1 0.094 5.00 95.500 44.873 79.150 0.730 PP2 0.172 5.00 96.100 58.401 68.116 0.730 PP3 0.264 5.00 94.800 45.258 70.588 0.730 MH1 94.800 1200 45.411 60.552 0.800 ATTENUATION BASIN 94.700 38.927 58.040 1.100 DUMMY OUTFALL 94.700 1200 28.927 58.040 1.000 SWALE 95.150 40.803 75.892 0.700 76.892 0.700 Links ame US DS Length ks (mm) / US IL DS IL Fail Slope Dia Tof C minsion PP1 SWALE 5.213 0.600 94.770 94.450 0.320 16.3 150 5.08 PP2 MH1 10.037 0.600 94.770 94.000 0.070 143.4 225 5.15 MH1 ATTENUATION BASIN 9.940 0.600 94.000 93.600 <th>Nam</th> <th>ie</th> <th>Area (ha)</th> <th>T of E (mins)</th> <th>Cover Level</th> <th>Dian (m</th> <th>neter m)</th> <th>Easting I (m)</th> <th>Northin (m)</th> <th>g Depth (m)</th> <th></th> <th></th> <th></th>	Nam	ie	Area (ha)	T of E (mins)	Cover Level	Dian (m	neter m)	Easting I (m)	Northin (m)	g Depth (m)				
PP2 0.172 5.00 96.100 58.401 68.116 0.730 PP3 0.264 5.00 94.800 1200 45.258 70.588 0.730 MH1 94.800 1200 45.258 70.588 0.730 MH1 94.800 1200 45.258 70.588 0.730 DUMMY OUTFALL 94.700 38.927 58.040 1.100 DUMMY OUTFALL 95.150 40.803 75.892 0.700 Links ane US DS Length ks (mm) / US IL DS IL Fall Slope Dia T of C Node Node (m) n (m) (m) (m) (1.30) 11.6 150 5.03 PP1 SWALE 5.213 0.600 95.370 94.070 1.300 11.6 150 5.08 PP3 MH1 15.032 0.600 94.000 93.600 0.400 24.9 225 5.15 VY PIPE ATTENUATION BASIN DUMMY OUTFALL 0.0580 0.55	PP1		0.094	5.00	95.500)		44.873	79.150	0.730				
Ame US Node DS Node Length Node ks (mm) / (m) US IL n DS IL (m) Fall (m) Slope (m) Dia (m) T of C (m) mode T of C (m) mode mod	PP2 PP3 MH1 ATTENUATIC DUMMY OU SWALE	ON BASIN ITFALL	0.172 0.264	5.00 5.00	96.100 94.800 94.800 94.700 94.700 95.150)))))	1200 1200	58.401 45.258 45.411 38.927 28.126 40.803	68.110 70.583 60.553 58.040 56.279 75.893	5 0.730 3 0.730 2 0.800 0 1.100 9 0.481 2 0.700				
ame US DS Length ks (mm) / US IL DS IL Fail Slope Dia T of C PP1 SWALE 5.213 0.600 94.770 94.450 0.320 16.3 150 5.03 PP1 SWALE 5.213 0.600 94.770 94.450 0.320 16.3 150 5.03 PP2 MH1 15.032 0.600 94.070 94.000 0.070 14.34 225 5.15 MH1 ATTENUATION BASIN 9.940 0.600 94.000 93.600 0.400 24.9 225 5.22 VY PIPE ATTENUATION BASIN DUMMY OUTFALL 10.944 0.600 94.500 94.219 0.281 38.9 100 5.36 Name Vel Cap Flow US DS Σ Area Σ Add Pro Pro (m/s) (I/s) V(l/s) Depth Depth (ha) Inflow Depth Velocity (m/s)<					<u>Link</u>	<u>s</u>								
PP2 MH1 15.032 0.600 95.370 94.070 1.300 11.6 150 5.08 MY PIPE MH1 ATTENUATION BASIN 9.940 0.600 94.070 94.000 0.070 143.4 225 5.15 MY PIPE ATTENUATION BASIN DUMMY OUTFALL 10.944 Depth Depth Passon	ame US Node	D No Swale	os ode	Len, (n 5.2	gth ks n) 213	(mm) / n 0.600	US IL (m) 94.77	DS IL (m) 0 94.450	Fall (m) 0.320	Slope (1:X) 16.3	Dia (mm) 150	T of C (mins) 5.03	Ra (mn	
NameVel (m/s)Cap (l/s)Flow (l/s)US Depth (m)DS Depth (m)Σ Area (ha)Σ Add Inflow (l/s)Pro Depth Velocity (mm)3.0002.50844.317.00.5800.5500.0940.0642.3411.0002.97952.631.10.5800.5500.1720.0833.0992.0001.09043.347.70.5050.5750.2640.02251.1101.0012.635104.878.80.5750.8750.4360.01462.886DUMMMY PIPE1.2399.778.80.1000.3810.4360.01001.273	PP2 I PP3 I MH1 A MY PIPE ATTENUATION BASIN	MH1 MH1 ATTENUAT DUMMY C	TON BAS	15.0 10.0 IN 9.9)32)37)40)44	0.600 0.600 0.600 0.600	95.37 94.07 94.00 94.50	0 94.070 0 94.000 0 93.600 0 94.219	 1.30 0.07 0.40 0.283 	 11.6 143.4 24.9 38.9 	150 225 225 100	5.08 5.15 5.22 5.36		
3.000 2.508 44.3 17.0 0.580 0.550 0.094 0.0 64 2.341 1.000 2.979 52.6 31.1 0.580 0.580 0.172 0.0 83 3.099 2.000 1.090 43.3 47.7 0.505 0.575 0.264 0.0 225 1.110 1.001 2.635 104.8 78.8 0.575 0.436 0.0 146 2.886 DUMMY PIPE 1.239 9.7 78.8 0.100 0.381 0.436 0.0 100 1.273	Name	Vel (m/s)	Cap (I/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	a ΣAdd Inflow	Pro Depth (mm)	Pro Velocit	y			
1.0002.97952.631.10.5800.5800.1720.0833.0992.0001.09043.347.70.5050.5750.2640.02251.1101.0012.635104.878.80.5750.8750.4360.01462.886DUMMY PIPE1.2399.778.80.1000.3810.4360.01001.273	3.000	2.508	44.3	17.0	0.580	0.550	0.094	(1/3) 1 0.0	(IIIII) 64	2.34	1			
DUMMY PIPE 1.239 9.7 78.8 0.100 0.381 0.436 0.0 100 1.273	1.000 2.000 1.001	2.979 1.090 2.635	52.6 43.3 104.8	31.1 47.7 78.8	0.580 0.505 0.575	0.580 0.575 0.875	0.172 0.264 0.436	2 0.0 4 0.0 5 0.0	83 225 146	3.09 1.11 2.88	9 D 6			
	DOMINIY PIPE	1.239	9.7	78.8	0.100	0.381	0.436	5 0.0	100) 1.27	3			

		r 🚯	EAS Ira	nsport P		td	File: Cl Netwo Stephe 27/11,	averir ork: Sto en Ada /2023	ng_Infiltratio form Networ fims	n_SKU k	Page	2		
					<u>Pi</u>	peline S	Schedul	<u>e</u>						
Lin	k	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US (m	CL L	JS IL (m)	US Depth (m)	DS ((m	CL E)	0S IL (m)	DS De (m	epth)
3.000		5.213	10.5	120	Circular	95.5	500 92	4.770	0.580	95.1	50 92	4.450	0.	.550
1.000		15.032	11.6 143.4	150 225	Circular	96.1	.00 95 800 94	5.370	0.580	94.8 94 8	00 94 00 94	1.070	0. 0	.580 575
1.001		9.940	24.9	225	Circular	94.8	300 94	1.000	0.575	94.7	00 93	3.600	0.	.875
DUMM	Y PIPE	10.944	38.9	100	Circula	94.7	'00 94	1.500	0.100	94.7	00 94	1.219	0.	.381
Link	001	US Node		Dia (mm)	Node Type	ז ד	ИН уре	C14/4	DS Node		Dia (mm)	No Ty	ode /pe	МН Туре
3.000	PPI				JUNCTION			5VV <i>P</i>				June	LION	
L.000 2.000	РР2 РР3 МН1			1200	Junction Junction	a Ado	ntable	MH1 MH1	L L ENUIATION B	Δςινι	1200 1200	Mar Mar	nhole nhole	Adoptabl Adoptabl
DUMMY PIPE	ATTEN	UATION	BASIN	1200	Junction		ptuble	DUN			1200	Mai	nhole	Adoptab
					Ma	anhole	<u>Schedu</u>	<u>le</u>						
Node	2	Easti (m	ing No	rthing	CL (m)	Depth	Dia (mm)		Connections		Link		IL (m)	Dia (mm)
PP1		44.8	73 7	9.150	95.500	0.730	(1111)						(11)	(1111)
									V					
		50.4	01 0	0.446	06 100	0 720		0	_	0 3.	000		94.770) 150
PPZ		58.4	01 6	8.116	96.100	0.730			<u>,</u>					
								0 4		0 1	000		95 370	150
PP3		45.2	58 7	0.588	94.800	0.730				0 1.	000		55.57	150
									Î					
									0	0 2.	000		94.070	225
MH1		45.4	11 6	0.552	94.800	0.800	1200)	2	1 2. 2 1.	000 000		94.000 94.070) 225) 150
								0 4		0	001		04.000	225
ATTENUATIO	N BASII	N 38.9	27 5	8.040	94.700	1.100				1 1.	001		94.000	225 225 225
								0 <	1					
										0 DI	JMMY	PIPE	94.500	0 100
DUMMY OU	TFALL	28.1	26 5	6.279	94.700	0.481	1200)	\bigcirc -1	1 DI	JMMY	PIPE	94.219	9 100
									G					
SWALE		40.8	03 7	5.892	95.150	0.700			1ر	1 3.	000		94.450) 150
									6					

CAUSEWAY 😜	EAS Transp	ort Planning Ltd	File: C Netw Steph 27/11	Clavering_ ork: Storr en Adam ./2023	_Infiltration_SK0 m Network s	Page 3	
		Simula	tion Settin	<u>ıgs</u>			
Rainfall Methodology Summer CV Winter CV	FEH-22 1.000 1.000	Analy: Skip Stea Drain Down Tin	sis Speed ady State ne (mins)	Normal x 1440	Additional S Check Di Check Dis	Storage (m³∕h scharge Rate charge Volur	na) 20.0 (s) x ne x
15 30 60	120	Storn 180 240	n Duration 360	is 480	600 720	960	1440
Re	turn Period (years)	Climate Change (CC %)	e Additio (/	onal Area A %)	Additional Flo (Q %)	w	
	2	()	C)	0	
	10	()	C)	0	
	30	()	()	0	
	30 100	40	ן ר	()	0	
	100	40)	C)	0	
		Node PP2 On	line Orific	e Contro	I		
Flap Valve	x	Replaces Downst	ream Link	\checkmark	Dia	meter (m)	0.030
Downstream Link	1.000	Invert	Level (m)	95.370) Discharge (Coefficient	0.600
		<u>Node PP1 On</u>	line Orific	<u>e Contro</u>	l		
Flap Valve Downstream Link	x 3.000	Replaces Downst Invert	ream Link Level (m)	√ 94.770	Dia Discharge (meter (m) Coefficient	0.021 0.600
		Node PP1 Carp	ark Storag	<u>e Structu</u>	ire_		
Base Inf Coefficient	'm/hr) 0.0	13600	Invert	lovel (m)	94 770	Slone (1·X)	80.0
Side Inf Coefficient	(m/hr) 0.0	03600 Time to	b half emp	ty (mins)	200	Depth (m)	0.600
Safety	Factor 2.0)	v	vidth (m)	20.845 In	f Depth (m)	
Po	prosity 0.3	30	Le	ength (m)	20.845		
		Node PP2 Carp	ark Storag	<u>e Structu</u>	ire_		
Base Inf Coefficient	(m/hr) 0.0	03600	Invert	Level (m)	95.370	Slope (1:X)	250.0
Side Inf Coefficient	(m/hr) 0.0	03600 Time to	o half emp	ty (mins)	220	Depth (m)	0.600
Safety Po	Factor 2.0 prosity 0.3) 30	V Le	Vidth (m) ength (m)	9.996 In 69.808	f Depth (m)	
		Node PP3 Carp	ark Storag	<u>e Structu</u>	<u>ire</u>		
Base Inf Coefficient	/m/hr) 0.0	03600	Invert	level (m)	94.070	Slope (1:X)	100.0
Side Inf Coefficient	(m/hr) 0.0	03600 Time to	b half emp	ty (mins)	9	Depth (m)	0.600
Safety	Factor 2.0)	v	vidth (m)	8.097 In	f Depth (m)	
Po	prosity 0.3	30	Le	ength (m)	91.075		
	<u>Node AT</u>	TENUATION BASI	N Depth/A	Area Stor	age Structure		
Base Inf Coefficient	(m/hr) 0.	03600 Safety	Factor	2.0	Invert	Level (m)	93.500
Side Inf Coefficient	(m/hr) 0.	03600 P	orosity	1.00	Time to half emp	oty (mins)	1170

	S Transpo Depth (m) 0.000	Area (m²) 124.2	hing Ltd Inf Area (m²) 124.2	File: Clav Network Stephen 27/11/20 Depth (m) 1.200	ering_In Storm Adams 023 Area (m ²) 350.0	filtration_SK0 Network Inf Area (m ²) 350.0	Page 4	
	<u>N</u>	ode SW/	ALE Depth/A	rea Storag	<u>e Struc</u>	ture		
Base Inf Coefficient (m Side Inf Coefficient (m	/hr) 0.0 /hr) 0.0	03600 03600	Safety Fa Porc	ctor 2.0 osity 1.00) Ti	Invert me to half emp	Level (m) ty (mins)	94.450 788
	Depth (m) 0.000	Area (m²) 5.6	Inf Area (m²) 5.6	Depth (m) 0.700	Area (m²) 85.6	Inf Area (m²) 85.6		

0.1

		Results for 2 year Critic	ical Storm Duration. Lowest mass balance: 99.96%								
Noo	de Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status		
180 mir	nute summer	PP1	120	94.952	0.182	6.2	8.7733	0.0000	SURCHARGED		
180 mir	nute summer	PP2	120	95.573	0.203	11.4	16.4015	0.0000	SURCHARGED		
15 minu	ite summer	PP3	11	94.232	0.162	43.3	3.2898	0.0000	ОК		
15 minu 480 mir	ite summer nute winter	MH1 ATTENUATION BASIN	11 472	94.100 93.880	0.100 0.280	38.9 6.6	0.1129 60.7594	0.0000 0.0000	ОК ОК		
15 minu 720 mir	ite summer nute winter	DUMMY OUTFALL SWALE	1 615	94.219 94.676	0.000 0.226	0.0 0.3	0.0000 4.1890	0.0000 0.0000	ОК ОК		
Link Event stream Depth)	L	JS Link ode		DS Node	2	Outflow (I/s)	Velocity (m/s)	Flow/	Cap Link Vol (m³)	Disch Vol (irge n³)
minute summe	r PP1	Orifice	SW	ALE		0.4					

180	minute summer	PP1	Orifice	SWALE	0.4				
180	minute summer	PP1	Infiltration		1.6				
180	minute summer	PP2	Orifice	MH1	0.8				
180	minute summer	PP2	Infiltration		2.6				
15 r	ninute summer	PP3	2.000	MH1	38.3	1.597	0.884	0.2390	
15 r	ninute summer	PP3	Infiltration		0.7				
15 r	ninute summer	MH1	1.001	ATTENUATION BASIN	38.8	2.369	0.370	0.1628	
480	minute winter	ATTENUATION BASIN	DUMMY PIPE	DUMMY OUTFALL	0.0	0.000	0.000	0.0000	0.0
480	minute winter	ATTENUATION BASIN	Infiltration		0.9				

720 minute winter

(Upstream

SWALE

Infiltration

Node Event

Page 6

1

27/11/2023 Results for 10 year Critical Storm Duration. Lowest mass balance: 99.96% US Peak Level Depth Inflow Node Flood Status Node (mins) (m) (m) (I/s) Vol (m³) (m³) 180 minute summer PP1 95.036 0.266 11.2 18.3251 0.0000 124 SURCHARGED

180 minute summer	PP2	124	95.667	0.296	20.5	34.2495	0.0000	SURCHARGED
15 minute summer	PP3	12	94.376	0.306	91.3	9.7067	0.0000	SURCHARGED
15 minute summer 600 minute winter	MH1 ATTENUATION BASIN	12 585	94.140 94.098	0.140 0 498	66.3 9 1	0.1582	0.0000	OK OK
15 minute summer		1	94,219	0.000	0.0	0.0000	0.0000	ОК
720 minute winter	SWALE	705	94.735	0.285	0.4	6.2498	0.0000	OK

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
180 minute summer	PP1	Orifice	SWALE	0.5				
180 minute summer	PP1	Infiltration		2.2				
180 minute summer	PP2	Orifice	MH1	1.0				
180 minute summer	PP2	Infiltration		3.6				
15 minute summer	PP3	2.000	MH1	65.5	1.799	1.512	0.3297	
15 minute summer	PP3	Infiltration		1.3				
15 minute summer	MH1	1.001	ATTENUATION BASIN	66.2	2.678	0.632	0.2457	
600 minute winter	ATTENUATION BASIN	DUMMY PIPE	DUMMY OUTFALL	0.0	0.000	0.000	0.0000	0.0
600 minute winter	ATTENUATION BASIN	Infiltration		1.2				
720 minute winter	SWALE	Infiltration		0.2				

720 minute winter

SWALE

0.2

	Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status	
	180 minute summer	PP1	128	95.084	0.314	14.2	24.7977	0.0000	SURCHARGED	
	180 minute summer	PP2	132	95.723	0.353	25.9	46.2442	0.0000	SURCHARGED	
	15 minute summer	PP3	12	94.466	0.396	121.4	15.4282	0.0000	SURCHARGED	
	600 minute winter	MH1	585	94.191	0.191	11.2	0.2156	0.0000	ОК	
	600 minute winter	ATTENUATION BASIN	585	94.191	0.591	11.2	130.6318	0.0000	ОК	
	15 minute summer	DUMMY OUTFALL	1	94.219	0.000	0.0	0.0000	0.0000	ОК	
	720 minute winter	SWALE	720	94.762	0.312	0.4	7.3111	0.0000	ОК	
Link	Event	US Link		DS		Outflow	w Velocity	Flow/0	Cap Link	Dischar
(Upstrea	am Depth) N	lode		Nod	е	(I/s)	(m/s)		Vol (m³)	Vol (m
180 <mark>minu</mark>	ite summer PP1	Orifice	SM	/ALE		0.	5			
180 minu	ite summer PP1	Infiltration	า			2.	2			

180	minute summer	PP2	Orifice	MH1	1.1				
180	minute summer	PP2	Infiltration		3.7				
15 n	ninute summer	PP3	2.000	MH1	77.0	2.044	1.777	0.3485	
15 n	ninute summer	PP3	Infiltration		1.7				
600	minute winter	MH1	1.001	ATTENUATION BASIN	11.2	1.239	0.106	0.3760	
600	minute winter	ATTENUATION BASIN	DUMMY PIPE	DUMMY OUTFALL	0.0	0.000	0.000	0.0000	0.0
600	minute winter	ATTENUATION BASIN	Infiltration		1.2				

720 minute winter

SWALE

Infiltration

Flow+ v10.7 Copyright © 1988-2023 Causeway Technologies Ltd

0.2

Results for 30 year +40% CC Critical Storm Duration. Lowest mass balance: 99.96%								
Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
180 minute summer	PP1	140	95.185	0.415	19.8	38.1712	0.0000	SURCHARGED

180 minute summer	PP2	144	95.838	0.468	36.3	70.9368	0.0000	FLOOD RISK
15 minute summer	PP3	13	94.602	0.532	169.9	26.5551	0.0000	FLOOD RISK
600 minute winter 600 minute winter	MH1 ATTENUATION BASIN	585 585	94.354 94.354	0.354 0.754	15.3 15.3	0.3999 174.5418	0.0000 0.0000	SURCHARGED OK
15 minute summer 720 minute summer	DUMMY OUTFALL SWALE	1 750	94.219 94.807	0.000 0.357	0.0 0.5	0.0000 9.2918	0.0000 0.0000	ОК ОК

ן (Ups	Link Event tream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
180 n	ninute summer	PP1	Orifice	SWALE	0.6				
180 n	ninute summer	PP1	Infiltration		2.3				
180 n	ninute summer	PP2	Orifice	MH1	1.3				
180 n	ninute summer	PP2	Infiltration		3.7				
15 m/i	nute summer	PP3	2.000	MH1	92.7	2.362	2.139	0.3749	
15 m/i	nute summer	PP3	Infiltration		2.3				
600 n	ninute winter	MH1	1.001	ATTENUATION BASIN	15.3	1.235	0.146	0.3953	
600 n	ninute winter	ATTENUATION BASIN	DUMMY PIPE	DUMMY OUTFALL	0.0	0.000	0.000	0.0000	0.0
600 n	ninute winter	ATTENUATION BASIN	Infiltration		1.4				

720 minute summer SWALE

Infiltration

Results for 100 year Critical Storm Duration. Lowest mass balance: 99.96% **Node Event** US Peak Depth Inflow Level Node Flood Status Vol (m³) Node (mins) (m) (m) (I/s) (m³) PP1 32.4926 120 minute summer 102 95.142 0.372 23.5 0.0000 SURCHARGED 180 minute summer PP2 95.790 0.420 32.1 60.6038 0.0000 SURCHARGED 136 15 minute summer PP3 13 94.557 0.487 153.1 22.5000 0.0000 FLOOD RISK 600 minute winter MH1 585 94.286 0.285 13.6 0.3229 0.0000 **SURCHARGED** 600 minute winter 585 0.685 13.6 155.5928 0.0000 ОК ATTENUATION BASIN 94.285 15 minute summer DUMMY OUTFALL 1 94.219 0.000 0.0 0.0000 0.0000 OK 720 minute summer SWALE 735 94.789 0.339 0.5 8.4433 0.0000 ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
120 minute summer	PP1	Orifice	SWALE	0.6				
120 minute summer	PP1	Infiltration		2.3				
180 minute summer	PP2	Orifice	MH1	1.2				
180 minute summer	PP2	Infiltration		3.7				
15 minute summer	PP3	2.000	MH1	87.8	2.262	2.026	0.3664	
15 minute summer	PP3	Infiltration		2.1				
600 minute winter	MH1	1.001	ATTENUATION BASIN	13.6	1.251	0.130	0.3953	
600 minute winter	ATTENUATION BASIN	DUMMY PIPE	DUMMY OUTFALL	0.0	0.000	0.000	0.0000	0.0
600 minute winter	ATTENUATION BASIN	Infiltration		1.3				
720 minute summer	SWALE	Infiltration		0.2				

720 minute summer SWALE

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 99.96%									
Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status	
180 minute summer	PP1	152	95.272	0.502	24.5	49.7762	0.0000	FLOOD RISK	
180 minute winter	PP2	168	95.940	0.570	30.9	92.7153	0.0000	FLOOD RISK	
15 minute summer	PP3	13	94.715	0.645	214.4	38.0046	0.0000	FLOOD RISK	
600 minute winter 600 minute winter	MH1 ATTENUATION BASIN	585 585	94.466 94.466	0.466 0.866	18.5 18.2	0.5269 207.7078	0.0000 0.0000	SURCHARGED OK	

15 minute summer	DUMMY OUTFALL	1	94.219	0.000	0.0	0.0000	0.0000	ОК
720 minute summer	SWALE	780	94.841	0.391	0.6	10.9385	0.0000	ОК

Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
180 minute summer	PP1	Orifice	SWALE	0.6				
180 minute summer	PP1	Infiltration		2.3				
180 minute winter	PP2	Orifice	MH1	1.4				
180 minute winter	PP2	Infiltration		3.8				
15 minute summer	PP3	2.000	MH1	102.2	2.570	2.359	0.3992	
15 minute summer	PP3	Infiltration		2.9				
600 minute winter	MH1	1.001	ATTENUATION BASIN	18.2	1.240	0.174	0.3953	
600 minute winter	ATTENUATION BASIN	DUMMY PIPE	DUMMY OUTFALL	0.0	0.000	0.000	0.0000	0.0
600 minute winter	ATTENUATION BASIN	Infiltration		1.5				
720 minute summer	SWALE	Infiltration		0.2				

720 minute summer SWALE

CAUSEWAY	rt Planning Ltd	File: Clavering_lr Network: Storm Stephen Adams 27/11/2023	nfiltration_SK0 Network	Page 1						
	Design S	Settings								
Rainfall Meth Return Period Additional I Time of Entr Maximum Time of Concentratio Maximum Rainfall (odology FEH-22 d (years) 30 Flow (%) 0 CV 1.000 y (mins) 5.00 n (mins) 30.00 (mm/hr) 50.0	Minin Minimum B Preferre Include In Enforce best p	mum Velocity (r Connection T ackdrop Height ed Cover Depth termediate Gro ractice design ru	n/s) 1.00 ype Level Soffits (m) 0.200 (m) 1.200 und √ ules x						
Simulation Settings										
Rainfall Methodology FEH-22 Summer CV 1.000 Winter CV 1.000	Analysis S Skip Steady Drain Down Time (peed Normal State x mins) 1440	Additional S Check Dis Check Diso	torage (m³/ha) 20.0 charge Rate(s) x charge Volume x						
15 30 60 120	Storm Di 180 240	urations 360 480	600 720	960 1440						
Return Period Climate Change Additional Area Additional Flow (years) (CC %) (A %) (Q %)										
2 30	0 0	0 0		0 0						
Node PP1 Carpark Storage Structure										
Base Inf Coefficient (m/hr)0.03600Invert Level (m)94.770Slope (1:X)80.0Side Inf Coefficient (m/hr)0.03600Time to half empty (mins)201Depth (m)0.600Safety Factor2.0Width (m)20.845Inf Depth (m)Porosity0.30Length (m)20.845										
	Node PP2 Carpark	Storage Structure	2							
Base Inf Coefficient (m/hr) 0.03 Side Inf Coefficient (m/hr) 0.03 Safety Factor 2.0 Porosity 0.30	3600 3600 Time to ha	Invert Level (m) If empty (mins) Width (m) Length (m)	95.370 88 9.996 Inf 69.808	Slope (1:X) 250.0 Depth (m) 0.600 Depth (m)						
	Node PP3 Carpark	Storage Structure	2							
Base Inf Coefficient (m/hr) 0.03 Side Inf Coefficient (m/hr) 0.03 Safety Factor 2.0 Porosity 0.30	3600 3600 Time to ha	Invert Level (m) If empty (mins) Width (m) Length (m)	94.070 4 8.097 Inf 91.075	Slope (1:X) 100.0 Depth (m) 0.600 Depth (m)						
Node ATT	ENUATION BASIN D	epth/Area Storag	<u>e Structure</u>							
Base Inf Coefficient (m/hr)0.03600Safety Factor2.0Invert Level (m)93.500Side Inf Coefficient (m/hr)0.03600Porosity1.00Time to half empty (mins)645										
Depth (m) 0.000	Area Inf Area (m ²) (m ²) 104.1 104.1	Depth Area (m) (m²) 1.200 317.1	Inf Area (m²) 317.1							
Flow+ v10.7 Convright © 1988-2023 Causeway Technologies Ltd										
Appendix: J – Causeway Flow Greenfield Runoff Rates

FRA & SuDS Report | Land at Clavering, CB11 4QS

46

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbotts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

EAS is a trading name of EAS Transport Planning Ltd. Registered in England and Wales No. 5751442.

Appendix: K – Attenuation SuDS Strategy Layout

FRA & SuDS Report | Land at Clavering, CB11 4QS

47

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Road, Stansfead Abbotts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

EAS is a trading name of EAS Transport Planning Ltd. Registered in England and Wales No. 5751442.

Appendix: L – Attenuation Strategy Causeway Flow Outputs

FRA & SuDS Report | Land at Clavering, CB11 4QS

48

TRANSPORT PLANNING HIGHWAYS AND DRAINAGE FLOOD RISK 1st Floor Millers House, Roydon Roed, Stanstead Abbotts, SG12 8HN. Tel 01920 871 777 et contact@eastp.co.uk www.eastp.co.uk

EAS is a trading name of EAS Transport Planning Ltd. Registered in England and Wales No. 5751442.

EAS Transport Planning Ltd

Rainfall Methodology	FEH-22	Minimum Velocity (m/s)	1.00
Return Period (years)	100	Connection Type	Level Soffits
Additional Flow (%)	0	Minimum Backdrop Height (m)	0.200
CV	1.000	Preferred Cover Depth (m)	1.200
Time of Entry (mins)	5.00	Include Intermediate Ground	\checkmark
Maximum Time of Concentration (mins)	30.00	Enforce best practice design rules	х
Maximum Rainfall (mm/hr)	50.0		

<u>Nodes</u>

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
SW1	0.007	5.00	97.500	1500	108.825	59.661	2.996
SW2	0.007	5.00	96.800	1500	97.074	59.702	2.398
SW3	0.007	5.00	96.640	1500	86.554	59.748	2.357
SW4	0.029	5.00	96.513	1500	86.821	48.567	2.358
SW5	0.006	5.00	96.385	1800	96.356	38.893	2.418
PP ATTENUATION	0.068	5.00	96.385		87.287	27.264	0.600
SW6	0.039	5.00	96.385	1800	87.252	38.831	2.508
SW7	0.024	5.00	95.400	1800	72.219	39.049	1.642
STORAGE TANK	0.018	5.00	95.000		63.228	39.757	1.284
PP CONVEY2	0.050	5.00	94.800		66.878	24.848	0.600
SW9	0.045	5.00	94.800	1350	52.950	31.925	1.143
SW10	0.013	5.00	96.700	1500	74.062	65.685	1.853
SW11	0.013	5.00	96.100	1500	64.565	69.331	1.423
PP CONVEY1	0.043	1.00	95.500		39.995	72.561	0.550
SW12	0.013	5.00	95.400	1500	55.773	59.789	0.835
CONVEY SWALE	0.018	5.00	95.150		48.225	48.267	0.700
ATTENUATION BASIN			94.800		38.450	32.035	1.200
1			94.700	1200	19.714	29.453	1.200

<u>Links</u>

Name	US Node	DS Node	Length (m)	ks (mm) / n	US IL (m)	DS IL (m)	Fall (m)	Slope (1:X)	Dia (mm)	T of C (mins)	Rain (mm/hr)
1.000	SW1	SW2	20.400	0.600	94.504	94.402	0.102	200.0	300	5.31	50.0
1.001	SW2	SW3	23.700	0.600	94.402	94.283	0.119	199.2	300	5.66	50.0
1.002	SW3	SW4	25.000	0.600	94.283	94.155	0.128	195.3	300	6.03	50.0
1.003	SW4	SW6	25.500	0.600	94.155	94.027	0.128	199.2	300	6.42	50.0
2.000	SW5	SW6	27.000	0.600	93.967	93.877	0.090	300.0	450	5.39	50.0
3.000	PP ATTENUATION	SW6	6.000	0.600	95.785	95.377	0.408	14.7	100	5.05	50.0
1.004	SW6	SW7	35.800	0.600	93.877	93.758	0.119	300.8	450	6.93	50.0

Name	Vel (m/s)	Cap (l/s)	Flow (I/s)	US Depth (m)	DS Depth (m)	Σ Area (ha)	Σ Add Inflow (I/s)	Pro Depth (mm)	Pro Velocity (m/s)
1.000	1.108	78.3	1.3	2.696	2.098	0.007	0.0	27	0.416
1.001	1.110	78.5	2.5	2.098	2.057	0.014	0.0	37	0.512
1.002	1.121	79.3	3.8	2.057	2.058	0.021	0.0	44	0.582
1.003	1.110	78.5	9.0	2.058	2.058	0.050	0.0	68	0.745
2.000	1.168	185.8	1.1	1.968	2.058	0.006	0.0	24	0.320
3.000	2.025	15.9	12.3	0.500	0.908	0.068	0.0	66	2.232
1.004	1.167	185.5	29.5	2.058	1.192	0.163	0.0	120	0.860

C	CAUSEWAY	SEWAY 🚯			ing Ltd	File: Netw Stepl 24/1	Clavering_ vork: Stori nen Adam 1/2023	_Attenuat m Networ s	ion_SK rk	Page 2				
							<u>Links</u>							
Name	US		[DS	Le	ngth	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node		No	ode		(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
1.005	SW7	STC	DRAGE	TANK	12	2.700	0.600	93.758	93.716	0.042	302.4	450	7.11	50.0
1.006	STORAGE TANK	SW	'9		17	7.700	0.600	93.716	93.657	0.059	300.0	450	7.36	50.0
1.000	PP CONVEY2	SW	'9		Z	1.000	0.600	94.200	93.957	0.243	16.5	150	5.03	50.0
1.007	SW9	ATT	TENUAT	TION BAS	5IN 11	L.000	0.600	93.657	93.620	0.037	297.3	450	7.52	50.0
5.000	SW10	SW	/11		34	1.000	0.600	94.847	94.677	0.170	200.0	300	5.51	50.0
5.001	SW11	SW	/12		22	2.400	0.600	94.677	94.565	0.112	200.0	300	5.85	50.0
5.000	PP CONVEY1	SW	/12		20	0.300	0.600	94.950	94.640	0.310	65.5	100	1.36	50.0
5.002	SW12	CO	NVEY S	WALE	13	3.774	0.600	94.565	94.450	0.115	119.8	300	6.01	50.0
5.003	CONVEY SWALE	ATT	FENUAT	TION BAS	SIN 10	0.000	0.600	94.450	93.620	0.830	12.0	100	6.08	50.0
1.008	ATTENUATION BASIN	1			10	0.000	0.600	93.600	93.500	0.100	100.0	150	7.69	50.0
	Na	me	Vel	Сар	Flow	US	DS	Σ Area	Σ Add	Pro	Pro			
			(m/s)	(I/s)	(I/s)	Deptl	n Depth	(ha)	Inflow	Depth	Velocity	,		
						(m)	(m)		(I/s)	(mm)	(m/s)			
	1.0)05	1.164	185.1	33.8	1.192	2 0.834	0.187	0.0	130	0.894	ŀ		
	1.0	006	1.168	185.8	37.0	0.834	4 0.693	0.205	0.0	136	0.920)		
	4.0	000	2.495	44.1	9.0	0.450	0.693	0.050	0.0	46	1.968	8		
	1.0)07	1.174	186.7	54.2	0.693	3 0.730	0.300	0.0	166	1.023	5		
	5.0	000	1.108	78.3	2.3	1.553	3 1.123	0.013	0.0	35	0.500)		
	5.0	001	1.108	78.3	4.7	1.123	3 0.535	0.026	0.0	50	0.616	5		
	6.0	000	0.953	7.5	7.8	0.450	0.660	0.043	0.0	86	1.080)		
	5.0	002	1.435	101.5	14.8	0.53	5 0.400	0.082	0.0	77	1.033	5		
	5.0)03	2.238	17.6	18.1	0.600	0 1.080	0.100	0.0	85	2.542	2		
	1.0)08	1.005	17.8	72.3	1.050) 1.050	0.400	0.0	150	1.023	}		

Pipeline Schedule

Link	Length (m)	Slope (1:X)	Dia (mm)	Link Type	US CL (m)	US IL (m)	US Depth (m)	DS CL (m)	DS IL (m)	DS Depth (m)
1.000	20.400	200.0	300	Circular	97.500	94.504	2.696	96.800	94.402	2.098
1.001	23.700	199.2	300	Circular	96.800	94.402	2.098	96.640	94.283	2.057
1.002	25.000	195.3	300	Circular	96.640	94.283	2.057	96.513	94.155	2.058
1.003	25.500	199.2	300	Circular	96.513	94.155	2.058	96.385	94.027	2.058
2.000	27.000	300.0	450	Circular	96.385	93.967	1.968	96.385	93.877	2.058
3.000	6.000	14.7	100	Circular	96.385	95.785	0.500	96.385	95.377	0.908
1.004	35.800	300.8	450	Circular	96.385	93.877	2.058	95.400	93.758	1.192
1.005	12.700	302.4	450	Circular	95.400	93.758	1.192	95.000	93.716	0.834
1.006	17.700	300.0	450	Circular	95.000	93.716	0.834	94.800	93.657	0.693
4.000	4.000	16.5	150	Circular	94.800	94.200	0.450	94.800	93.957	0.693
Link	US Node	e	Dia (mm)	Node Type	МН Туре	2	DS Node	Dia (mm)	Node Type	МН Туре

	Node	(mm)	Туре	Туре	Node	(mm)	Туре	Туре
1.000	SW1	1500	Manhole	Adoptable	SW2	1500	Manhole	Adoptable
1.001	SW2	1500	Manhole	Adoptable	SW3	1500	Manhole	Adoptable
1.002	SW3	1500	Manhole	Adoptable	SW4	1500	Manhole	Adoptable
1.003	SW4	1500	Manhole	Adoptable	SW6	1800	Manhole	Adoptable
2.000	SW5	1800	Manhole	Adoptable	SW6	1800	Manhole	Adoptable
3.000	PP ATTENUATION		Junction		SW6	1800	Manhole	Adoptable
1.004	SW6	1800	Manhole	Adoptable	SW7	1800	Manhole	Adoptable
1.005	SW7	1800	Manhole	Adoptable	STORAGE TANK		Junction	
1.006	STORAGE TANK		Junction		SW9	1350	Manhole	Adoptable
4.000	PP CONVEY2		Junction		SW9	1350	Manhole	Adoptable

103	SEM	AY 🤇	EAS	Transpo	ort Planniı	ng Ltd	File: Net Step 24/2	: Clave work: S ohen A 11/202	ring_Atten Storm Netv dams 23	uation_S vork	ik P	age 3		
						<u>Pipeline</u>	Schec	<u>dule</u>						
	Link	Length	Slope	Dia	Link	US CL	US	5 IL	US Depth	DS CL	D	S IL	DS De	epth
		(m)	(1:X)	(mm)	Туре	(m)	(n	n)	(m)	(m)	(m)	(m	ı)
	1.007	11.000	297.3	450	Circula	94.800) 93.	657	0.693	94.800	93	.620	0	.730
	5.000	34.000	200.0	300	Circula	r 96.700	94.	847	1.553	96.100	94	.677	1	.123
	5.001	22.400	200.0	300	Circula	r 96.100	94.	677	1.123	95.400	94	.565	0	.535
	6.000	20.300	65.5	100	Circula	r 95.500	94.9	950	0.450	95.400	94	.640	0	.660
	5.002	13.774	119.8	300	Circula	r 95.400	94.	565	0.535	95.150	94	.450	0	.400
	5.003	10.000	12.0	100	Circula	r 95.150) 94.4	450	0.600	94.800	93	.620	1	.080
	1.008	10.000	100.0	150	Circula	94.800) 93.	600	1.050	94.700	93	.500	1	.050
Link		US		Dia	Node	M	4		DS		Dia	No	de	мн
		Node		(mm)	Type	Түр	e		Node	(nm)	Tvi	be	Type
1.007	SW9			1350	Manhole	Adopt	able	ATTEN	IUATION BA	ASIN .		Junct	ion	
5.000	SW10)		1500	Manhole	Adopt	able	SW11			500	Man	hole	Adoptable
5.001	SW11			1500	Manhole	Adopt	able	SW12			500	Man	hole	Adoptable
6 000	PPCC)NVFY1		2000	lunction			SW12		-	500	Man	hole	Adoptable
5 002	SW/12			1500	Manhole	Adont	ahle	CONV	FY S\W/ΔΙ F	-		lunct	ion	παορτασιτ
5 002		/FV S\\/AT	F	1300	lunction	Adopt	ubic					lunct	ion	
1 008			L R∆SIN		Junction			1		-311	200	Man	hole	Adoptable
1.000	711121		Briant		Junction			-			200	ivian	lioic	//dop/doi/c
						<u>Manhol</u>	e Sche	<u>dule</u>						
	Nod	e	Easting	Nort	hing	CL De	pth	Dia	Conne	ctions	Lin	ık	IL	Dia
<u></u>	11		(m)	(m	1) (CC1 07	m) (I	m)	(mm)					(m)	(mm)
50	V I		108.825	59.	.661 97	.500 2.	996	1500						
									0 ←					
										0	1.0	00 0	4 5 0 4	200
SV	V2		97.074	59.	.702 96	.800 2.	398	1500		1	1.0	00 9	4.504	300
										—1				
										~	1 1 0	01 9	4.402	300
										0	1.0			
SV	V3		86.554	59.	.748 96	.640 2.	357	1500		1	1.0	01 9	4.283	300
SV	V3		86.554	59.	.748 96	.640 2.	357	1500	\frown	1	1.0	01 9	4.283	300
SV	V3		86.554	59.	.748 96	.640 2.	357	1500	P	1	1.0	01 9	4.283	300
SM	V3		86.554	59.	.748 96	.640 2.	357	1500	↓ •	1 0	1.0	01 9 02 9	4.283	300 300
sv sv	V3 V4		86.554 86.821	59. . 48.	.748 96 .567 96	.640 2.	357 358	1500		1 	1.0 1.0	01 9 02 9 02 9	4.283 4.283 4.155	300 <u>300</u> 300
SV SV	V3 V4		86.554 86.821	59. . 48.	.748 96 .567 96	.640 2. .513 2.	357 358	1500 1500	0	1 	1.00 1.00 1.00	01 9 02 9 02 9	4.283 4.283 4.155	300 <u>300</u> 300
SW SW	V3 V4		86.554 86.821	59. . 48.	.748 96 .567 96	.640 2.	357 358	1500 1500		1 1 1	1.0 1.0 1.0	01 9 02 9 02 9	4.283 4.283 4.155	300 <u>300</u> 300
SW SW	V3 V4		86.554	. 48.	748 96 567 96	.640 2.	357 358	1500		0 1 1 1 0 0	1.00 1.00 1.00 1.00	01 9 02 9 02 9 03 9	4.283 4.283 4.155 4.155	300 <u>300</u> 300 300
SW SW	V3 V4 V5		86.554 86.821 96.356	48.	748 96 567 96 893 96	.640 2. .513 2. .385 2	357 358 418	1500 1500 1800		0 1 1 1 0	1.00 1.00 1.00 1.00 1.00 1.00	01 9 02 9 02 9 03 9	4.283 4.283 4.155 4.155	300 <u>300</u> 300 <u>300</u>
SW SW SW	V3 V4 V5		86.554 86.821 96.356	. 48. 5 38.	748 96 567 96 893 96	.640 2. .513 2. .385 2.	357 358 418	1500 1500 1800		0 1 -1 1 0	1.00 1.00 1.00 1.00	01 9 02 9 02 9 03 9	4.283 4.283 4.155 4.155	300 <u>300</u> 300 <u>300</u>
sw sw	V3 V4 V5		86.554 86.821 96.356	. 48. . 38.	748 96 567 96 893 96	.640 2. .513 2. .385 2.	357 358 418	1500 1500 1800		0 1 -1 0	1.00 1.00 1.00 1.00	01 9 02 9 02 9 03 9	4.283 4.283 4.155 4.155	300 <u>300</u> 300 <u>300</u>
SW SW	V3 V4 V5		86.554 86.821 96.356	59. 48. 38.	748 96 567 96 893 96	.640 2. .513 2. .385 2.	357 358 418	1500 1500 1800		0 1 -1 0 0	1.00 1.00 1.00 1.00 1.00 2.00	01 9 02 9 02 9 03 9	4.283 4.283 4.155 4.155 3.967	300 <u>300</u> 300 <u>300</u>
SW SW SW	V3 V4 V5	ΙΑΤΙΟΝ	86.554 86.821 96.356	. 48. 59. 38.	748 96 567 96 893 96 264 96	.640 2. .513 2. .385 2.	357 358 418 600	1500 1500 1800		0 1 -1 0 0	1.00 1.00 1.00 1.00 1.00 2.00	01 9 02 9 02 9 03 9 03 9	4.283 4.283 4.155 4.155 3.967	300 300 300 300
SW SW PP	V3 V4 V5	JATION	86.554 86.821 96.356 87.287	. 48. 5 38. 7 27.	748 96 567 96 .893 96 .264 96	.640 2. .513 2. .385 2. .385 0.	357 358 418 600	1500 1500 1800		0 1 -1 0 0	1.00 1.00 1.00 1.00 1.00 2.00	01 9 02 9 02 9 03 9 00 9	4.283 4.283 4.155 4.155 3.967	300 300 300 300 450
SW SW PP	V3 V4 V5	JATION	86.554 86.821 96.356 87.287	59. . 48. . 38. . 27.	748 96 567 96 893 96 264 96	.640 2. .513 2. .385 2. .385 0.	357 358 418 600	1500 1500 1800		0 1 -1 0 0	1.00 1.00 1.00 1.00 2.00	01 9 02 9 02 9 03 9 00 9	4.283 4.283 4.155 4.155 3.967	300 300 300 450

100

450

300

450

1

-2

3.000 95.377 2 2.000 93.877

3 1.003 94.027

0 1.004 93.877

38.831 96.385 2.508 1800

SW6

87.252

			Manh	nole Sche	<u>dule</u>					
Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections		Link	IL (m)	Dia (mm)
SW7	72.219	39.049	95.400	1.642	1800		1	1.004	93.758	450
						0 ←1				
							0	1.005	93.758	450
STORAGE TANK	63.228	39.757	95.000	1.284			1	1.005	93.716	450
						<u>_</u> 1				
						04	^	1.000	02 71 6	450
	66 878	2/ 8/8	94 800	0 600			0	1.006	93.716	450
	00.070	24.040	54.000	0.000		0 5 0				
							0	4.000	94.200	150
SW9	52.950	31.925	94.800	1.143	1350	2	1	4.000	93.957	150
						0	2	1.006	93.657	450
							_			
C) 1/1 O	74.000		06 700	1 052	1500		0	1.007	93.657	450
50010	74.062	05.085	96.700	1.853	1500	0 < _				
							0	5.000	94.847	300
SW11	64.565	69.331	96.100	1.423	1500		1	5.000	94.677	300
							0	5.001	94.677	300
PP CONVEY1	39.995	72.561	95.500	0.550						
						٩				
						0	0	6.000	94.950	100
SW12	55.773	59.789	95.400	0.835	1500		1	6.000	94.640	100
							2	5.001	94.565	300
						\sum				
						0	0	5.002	94.565	300
CONVEY SWALE	48.225	48.267	95.150	0.700		1	1	5.002	94.450	300
						ø				
						or	0	5 003	94 450	100
ATTENUATION BASIN	38.450	32.035	94.800	1.200		1	1	5.003	93.620	100
							2	1.007	93.620	450
						0 ←				
							0	1.008	93.600	150
1	19.714	29.453	94.700	1.200	1200		1	1.008	93.500	150
			<u>Simul</u>	ation Set	<u>tings</u>					
Rainfall Methodolog	gy FEH-22	2	Anal	ysis Spee	d Norr	mal Addition	al	Storage	(m³⁄ha)	20.0
Summer C	CV 1.000		Skip Ste	eady Stat	e x	Check	Di	scharge	, Rate(s)	х
Winter 0	CV 1.000	Draii	n Down Ti	me (mins	5) 1440	D Check	Dis	scharge \	/olume	х
			Stor	m Durati	ons	1 I				_
15 30	60 12	0 180	240	360	480	600 72	20	960	1440)

	ansport Plan	ning Ltd	File: Clavering_A Network: Storm Stephen Adams 24/11/2023	Attenuation_SK Network	Page 5	
Return Pe (vears	riod Clima)	ate Change	Additional Area (A %)	Additional Fl (Q %)	low	
()	2	0	0		0	
	10	0	0		0	
	30	0	0		0	
	30	40	0		0	
	100	0	0		0	
	100	40	U		U	
	Node PP /	ATTENUATION	<u>Online Orifice C</u>	<u>ontrol</u>		
Flap Valve x Downstream Link 3.000	Replac	es Downstrear Invert Lev	n Link √ el (m) 95.605	Di Discharge	ameter (m) Coefficient	0.025 0.600
No	de ATTENUA	TION BASIN O	nline Hydro-Bra	ke [®] Control		
Flap Valv	e x		Objective	(HE) Minimis	e upstream s	torage
Downstream Lin Replaces Downstream Lin	k 1.008 k ./	D	Sump Available		0_2700_0000	2700
Invert Level (m) 93.600	Min Outle	et Diameter (m)	0.100	0-2700-0900	-2700
Design Depth (m Design Flow (I/s) 0.900) 2.7	Min Node	Diameter (mm)	1200		
	Node ST	ORAGE TANK C	Online Orifice Co	<u>ntrol</u>		
Flap Valve x	Replac	es Downstrear	n Link 🗸	Di	ameter (m)	0.038
Downstream Link 1.006		Invert Lev	el (m) 93.716	Discharge	Coefficient	0.600
	<u>Node P</u>	P CONVEY2 Or	<u>nline Orifice Con</u>	<u>trol</u>		
Flap Valve x Downstream Link 4.000	Replac	es Downstrear Invert Lev	n Link √ el (m) 94.200	Di Discharge	ameter (m) Coefficient	0.130 0.600
	Node PP AT	TENUATION Ca	arpark Storage St	<u>tructure</u>		
Base Inf Coefficient (m/hr)	0.00000		nvert Level (m)	95.935	Slope (1:X)	300.0
Side Inf Coefficient (m/hr)	0.00000	Time to hal	f empty (mins)		Depth (m)	
	20		\ A (! = + - ()		nf Donth (m)	
Safety Factor	2.0		width (m)	8.562 l	ni Depth (m)	
Safety Factor Porosity	0.30		Length (m)	8.562 li 79.311	ni Deptri (m)	
Safety Factor Porosity	0.30	CONVEY2 Carp	Length (m) Length (m) Park Storage Stru	8.562 79.311 I <u>cture</u>	ni Deptn (m)	
Safety Factor Porosity Base Inf Coefficient (m/hr)	0.30 <u>Node PP (</u> 0.00000	CONVEY2 Carp	Length (m) Length (m) Park Storage Stru	8.562 II 79.311 I <u>icture</u> 94.200	Slope (1:X)	40.0
Safety Factor Porosity Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr)	0.30 Node PP (0.00000 0.00000	CONVEY2 Carp Time to ha	Length (m) Length (m) Park Storage Stru Invert Level (m) If empty (mins)	8.562 In 79.311 Icture 94.200 25	Slope (1:X) Depth (m)	40.0
Safety Factor Porosity Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor	0.30 Node PP (0.00000 0.00000 2.0	CONVEY2 Carp Time to ha	Length (m) Length (m) Dark Storage Strue Invert Level (m) If empty (mins) Width (m)	8.562 II 79.311 <u>Icture</u> 94.200 25 5.480	Slope (1:X) Depth (m) Inf Depth (m)	40.0
Safety Factor Porosity Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.30 Node PP (0.00000 0.00000 2.0 0.30	CONVEY2 Carp Time to ha	Length (m) Length (m) Park Storage Strue Invert Level (m) If empty (mins) Width (m) Length (m)	8.562 In 79.311 Icture 94.200 25 5.480 62.000	Slope (1:X) Depth (m) Inf Depth (m)	40.0
Safety Factor Porosity Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.30 Node PP (0.00000 0.00000 2.0 0.30 Node PP (CONVEY2 Carp Time to ha	Length (m) Length (m) Dark Storage Strue Invert Level (m) If empty (mins) Width (m) Length (m)	8.562 In 79.311 94.200 25 5.480 62.000	Slope (1:X) Depth (m) Inf Depth (m)	40.0
Safety Factor Porosity Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity Base Inf Coefficient (m/hr)	0.30 Node PP (0.00000 0.00000 2.0 0.30 Node PP (0.00000	CONVEY2 Carp Time to ha	Length (m) Length (m) Dark Storage Strue Invert Level (m) If empty (mins) Width (m) Length (m) Dark Storage Strue Invert Level (m)	8.562 In 79.311 icture 94.200 25 5.480 62.000 icture 94.950	Slope (1:X) Depth (m) Inf Depth (m) Slope (1:X)	40.0
Safety Factor Porosity Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr)	0.30 Node PP (0.00000 0.00000 2.0 0.30 Node PP (0.00000 0.00000 0.00000	CONVEY2 Carp Time to ha CONVEY1 Carp Time to ha	Length (m) Length (m) Dark Storage Strue Invert Level (m) If empty (mins) Width (m) Length (m) Dark Storage Strue Invert Level (m)	8.562 In 79.311 icture 94.200 25 5.480 62.000 icture 94.950 27	Slope (1:X) Depth (m) Inf Depth (m) Slope (1:X) Depth (m)	40.0
Safety Factor Porosity Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor	2.0 0.30 Node PP (0.00000 2.0 0.30 Node PP (0.00000 0.00000 2.0	CONVEY2 Carp Time to ha CONVEY1 Carp Time to ha	Length (m) Length (m) Mark Storage Strue Invert Level (m) If empty (mins) Width (m) Length (m) Mark Storage Strue Invert Level (m) If empty (mins) Width (m)	8.562 In 79.311 94.200 25 5.480 62.000 Icture 94.950 27 5.640	Slope (1:X) Depth (m) Inf Depth (m) Slope (1:X) Depth (m) Inf Depth (m)	40.0

CAUSEWAY 😜		5	Network: Stor Stephen Adan 24/11/2023	rm Network ns	
<u>N</u>	ode STORAGE T	ANK Dept	n/Area Storag	<u>e Structure</u>	
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr)	0.00000	Safety Fac Poros	tor 2.0 ity 0.95	Invert I Time to half emp	Level (m) 93.716 ty (mins)
Depth Area I (m) (m²) 0.000 173.6	nf Area Deg (m²) (n 0.0 0.8	pth Area n) (m² 800 173.	a Inf Area (m²) 6 0.0	DepthArea(m)(m²)0.8010.0	Inf Area (m²) 0.0
<u>N</u>	ode CONVEY SV	VALE Dept	h/Area Storag	<u>ge Structure</u>	
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr)	0.00000 0.00000	Safety Fac Poros	tor 2.0 ity 1.00	Invert I Time to half emp	Level (m) 94.450 ty (mins) 26
De (0	epth Area In m) (m²) .000 5.6	nf Area (m²) 0.0	Depth Are (m) (m² 0.700 85.	ea Inf Area ²) (m²) .6 0.0	
	Node PP ATTENI	UATION Ca	rpark Storage	<u>e Structure</u>	
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity Nod	0.00000 0.00000 T 2.0 0.95	I Fime to hal	nvert Level (m f empty (mins Width (m Length (m	a) 95.785 5) a) 6.179 Inf a) 74.906	Slope (1:X) 300.0 Depth (m) 0.150 Depth (m)
Pasa Inf Coofficient (m/br)		Safaty Fac	for 2.0	Invort	lovol (m) 92 600
Side Inf Coefficient (m/hr)	0.00000	Poros	ity 1.00	Time to half emp	ty (mins)
De (r 0.0	pth Area In n) (m²) 000 124.2	of Area (m²) 0.0	Depth Are (m) (m 1.200 350	ea Inf Area ²) (m²) 0.0 0.0	

Results for 2 year Critical Storm Duration. Lowest mass balance: 99.92%

Node Event	US Nodo	Peak	Level	Depth	Inflow	Node	Flood	Status
15 minuto summor	NUUE	(11115)	(11)	0.025	(1/5)	vor (m)	(111)	OK
15 minute summer	3001	11	94.529	0.025	1.1	0.0446	0.0000	UK
15 minute summer	SW2	11	94.436	0.034	2.2	0.0619	0.0000	ОК
15 minute summer	SW3	12	94.323	0.040	3.2	0.0733	0.0000	ОК
15 minute summer	SW4	11	94.218	0.063	7.6	0.1268	0.0000	ОК
15 minute summer	SW5	11	93.989	0.022	1.0	0.0583	0.0000	ОК
360 minute winter	PP ATTENUATION	344	96.006	0.221	5.0	29.0708	0.0000	SURCHARGED
15 minute summer	SW6	11	93.963	0.086	14.9	0.2443	0.0000	ОК
600 minute summer	SW7	600	93.939	0.181	4.1	0.5144	0.0000	ОК
600 minute summer	STORAGE TANK	600	93.939	0.223	4.4	36.8914	0.0000	ОК
15 minute summer	PP CONVEY2	12	94.331	0.131	10.4	1.0644	0.0000	ОК
360 minute summer	SW9	264	93.872	0.215	7.2	0.4766	0.0000	ОК
15 minute summer	SW10	11	94.880	0.033	2.1	0.0631	0.0000	ОК
15 minute summer	SW11	11	94.722	0.045	4.1	0.0887	0.0000	ОК
15 minute summer	PP CONVEY1	9	95.053	0.103	12.3	0.5769	0.0000	SURCHARGED
15 minute summer	SW12	10	94.640	0.075	13.6	0.1559	0.0000	ОК
15 minute summer	CONVEY SWALE	11	94.524	0.074	16.2	0.7630	0.0000	ОК
360 minute summer	ATTENUATION BASIN	264	93.872	0.272	11.7	40.7032	0.0000	SURCHARGED
15 minute summer	1	1	93.500	0.000	2.4	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	SW1	1.000	SW2	1.1	0.315	0.014	0.0723	
15 minute summer	SW2	1.001	SW3	2.1	0.431	0.027	0.1174	
15 minute summer	SW3	1.002	SW4	3.1	0.388	0.039	0.2036	
15 minute summer	SW4	1.003	SW6	7.3	0.697	0.093	0.2678	
15 minute summer	SW5	2.000	SW6	0.9	0.084	0.005	0.3218	
360 minute winter	PP ATTENUATION	Orifice	SW6	0.8				
15 minute summer	SW6	1.004	SW7	14.5	0.662	0.078	0.7851	
600 minute summer	SW7	1.005	STORAGE TANK	3.9	0.600	0.021	0.8777	
600 minute summer	STORAGE TANK	Orifice	SW9	1.3				
15 minute summer	PP CONVEY2	Orifice	SW9	9.0				
360 minute summer	SW9	1.007	ATTENUATION BASIN	6.9	0.354	0.037	0.9122	
15 minute summer	SW10	5.000	SW11	2.0	0.380	0.026	0.1852	
15 minute summer	SW11	5.001	SW12	4.0	0.438	0.051	0.2249	
15 minute summer	PP CONVEY1	6.000	SW12	7.8	1.070	1.048	0.1535	
15 minute summer	SW12	5.002	CONVEY SWALE	13.3	1.038	0.131	0.1835	
15 minute summer	CONVEY SWALE	5.003	ATTENUATION BASIN	15.6	2.522	0.888	0.0619	
360 minute summer	ATTENUATION BASIN	Hydro-Brake [®]	1	2.7				141.7

Results for 10 year Critical Storm Duration. Lowest mass balance: 99.92%

Node Event	US Node	Peak	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute summer	SW1	10	94 539	0.035	24	0 0641	0 0000	ОК
15 minute summer	SW2	11	94 451	0.049	47	0.0897	0.0000	OK
15 minute summer	SW3	11	94.342	0.059	7.0	0.1081	0.0000	ОК
15 minute summer	SW4	11	94.251	0.096	16.5	0.1925	0.0000	ОК
720 minute summer	SW5	735	94.099	0.132	0.2	0.3422	0.0000	ОК
360 minute winter	PP ATTENUATION	360	96.088	0.303	8.5	57.8942	0.0000	FLOOD RISK
720 minute summer	SW6	735	94.099	0.222	4.7	0.6337	0.0000	ОК
720 minute summer	SW7	735	94.099	0.341	5.7	0.9671	0.0000	ОК
720 minute summer	STORAGE TANK	735	94.099	0.383	6.0	63.2534	0.0000	ОК
15 minute summer	PP CONVEY2	13	94.449	0.249	22.0	3.0030	0.0000	SURCHARGED
360 minute summer	SW9	312	94.048	0.391	11.3	0.8681	0.0000	ОК
15 minute summer	SW10	11	94.895	0.048	4.5	0.0909	0.0000	ОК
15 minute summer	SW11	11	94.744	0.067	8.8	0.1303	0.0000	ОК
15 minute summer	PP CONVEY1	10	95.187	0.237	25.8	2.4104	0.0000	SURCHARGED
15 minute summer	SW12	11	94.664	0.099	21.8	0.2056	0.0000	ОК
15 minute summer	CONVEY SWALE	14	94.631	0.181	28.1	2.9717	0.0000	SURCHARGED
360 minute summer	ATTENUATION BASIN	312	94.048	0.448	19.1	74.5718	0.0000	SURCHARGED
15 minute summer	1	1	93.500	0.000	2.7	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	SW1	1.000	SW2	2.3	0.393	0.030	0.1238	
15 minute summer	SW2	1.001	SW3	4.7	0.544	0.059	0.2050	
15 minute summer	SW3	1.002	SW4	6.9	0.479	0.087	0.3639	
15 minute summer	SW4	1.003	SW6	16.3	0.868	0.207	0.4784	
720 minute summer	SW5	2.000	SW6	0.2	0.050	0.001	1.5729	
360 minute winter	PP ATTENUATION	Orifice	SW6	0.9				
720 minute summer	SW6	1.004	SW7	4.7	0.361	0.025	3.6994	
720 minute summer	SW7	1.005	STORAGE TANK	5.3	0.602	0.029	1.7308	
720 minute summer	STORAGE TANK	Orifice	SW9	1.6				
15 minute summer	PP CONVEY2	Orifice	SW9	15.1				
360 minute summer	SW9	1.007	ATTENUATION BASIN	10.8	0.399	0.058	1.6609	
15 minute summer	SW10	5.000	SW11	4.4	0.474	0.056	0.3202	
15 minute summer	SW11	5.001	SW12	8.7	0.555	0.111	0.3571	
15 minute summer	PP CONVEY1	6.000	SW12	8.8	1.130	1.181	0.1559	
15 minute summer	SW12	5.002	CONVEY SWALE	22.2	1.059	0.219	0.4111	
15 minute summer	CONVEY SWALE	5.003	ATTENUATION BASIN	18.7	2.505	1.065	0.0782	
360 minute summer	ATTENUATION BASIN	Hydro-Brake [®]	1	2.7				223.5

Results for 30 year Critical Storm Duration. Lowest mass balance: 99.92%

Node Event	US Nodo	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(1/5)	voi (m²)	(m ⁻)	
15 minute summer	SW1	10	94.545	0.041	3.2	0.0739	0.0000	ОК
15 minute summer	SW2	11	94.459	0.057	6.3	0.1038	0.0000	ОК
15 minute summer	SW3	11	94.352	0.069	9.4	0.1258	0.0000	ОК
15 minute summer	SW4	11	94.267	0.112	22.0	0.2264	0.0000	ОК
600 minute winter	SW5	690	94.201	0.234	0.2	0.6077	0.0000	ОК
360 minute winter	PP ATTENUATION	360	96.131	0.346	10.5	75.1799	0.0000	FLOOD RISK
600 minute winter	SW6	675	94.201	0.324	4.7	0.9261	0.0000	ОК
600 minute winter	SW7	675	94.201	0.443	5.3	1.2574	0.0000	ОК
600 minute winter	STORAGE TANK	690	94.201	0.485	5.6	80.1561	0.0000	SURCHARGED
30 minute summer	PP CONVEY2	21	94.524	0.324	27.4	4.7034	0.0000	FLOOD RISK
360 minute summer	SW9	360	94.157	0.500	13.6	1.1095	0.0000	SURCHARGED
15 minute summer	SW10	10	94.902	0.055	6.0	0.1047	0.0000	ОК
15 minute summer	SW11	11	94.754	0.077	11.8	0.1506	0.0000	ОК
15 minute summer	PP CONVEY1	11	95.255	0.305	34.4	3.8001	0.0000	FLOOD RISK
15 minute summer	SW12	15	94.696	0.131	26.7	0.2718	0.0000	ОК
15 minute summer	CONVEY SWALE	14	94.692	0.242	35.5	4.8211	0.0000	SURCHARGED
360 minute summer	ATTENUATION BASIN	360	94.157	0.557	23.2	98.3656	0.0000	SURCHARGED
15 minute summer	1	1	93.500	0.000	2.7	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	SW1	1.000	SW2	3.1	0.426	0.040	0.1524	
15 minute summer	SW2	1.001	SW3	6.3	0.590	0.080	0.2540	
15 minute summer	SW3	1.002	SW4	9.3	0.521	0.118	0.4536	
15 minute summer	SW4	1.003	SW6	22.0	0.941	0.280	0.5956	
600 minute winter	SW5	2.000	SW6	0.2	0.051	0.001	2.7769	
360 minute winter	PP ATTENUATION	Orifice	SW6	0.9				
600 minute winter	SW6	1.004	SW7	4.4	0.371	0.024	5.0165	
600 minute winter	SW7	1.005	STORAGE TANK	4.9	0.606	0.027	2.0091	
600 minute winter	STORAGE TANK	Orifice	SW9	1.7				
30 minute summer	PP CONVEY2	Orifice	SW9	18.0				
360 minute summer	SW9	1.007	ATTENUATION BASIN	13.1	0.416	0.070	1.7429	
15 minute summer	SW10	5.000	SW11	5.8	0.514	0.074	0.3927	
15 minute summer	SW11	5.001	SW12	11.6	0.635	0.148	0.4211	
15 minute summer	PP CONVEY1	6.000	SW12	9.4	1.205	1.260	0.1565	
15 minute summer	SW12	5.002	CONVEY SWALE	27.6	1.070	0.272	0.6181	
15 minute summer	CONVEY SWALE	5.003	ATTENUATION BASIN	18.2	2.457	1.036	0.0782	
360 minute summer	ATTENUATION BASIN	Hydro-Brake [®]	1	2.7				253.5

Results for 30 year +40% CC Critical Storm Duration. Lowest mass balance: 99.92%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m ³)	Flood (m³)	Status
15 minute summer	SW1	10	94.552	0.048	4.5	0.0870	0.0000	ОК
15 minute summer	SW2	11	94.470	0.068	8.9	0.1234	0.0000	ОК
720 minute winter	SW3	810	94.419	0.136	0.9	0.2491	0.0000	OK
720 minute winter	SW4	810	94.419	0.264	2.3	0.5323	0.0000	ОК
720 minute winter	SW5	825	94.419	0.452	0.3	1.1737	0.0000	SURCHARGED
480 minute winter	PP ATTENUATION	480	96.213	0.428	11.8	112.1418	0.0000	FLOOD RISK
720 minute winter	SW6	810	94.419	0.542	5.1	1.5493	0.0000	SURCHARGED
720 minute winter	SW7	810	94.420	0.662	5.7	1.8767	0.0000	SURCHARGED
720 minute winter	STORAGE TANK	810	94.420	0.704	6.4	116.2232	0.0000	SURCHARGED
30 minute summer	PP CONVEY2	22	94.641	0.441	38.3	8.0883	0.0000	FLOOD RISK
360 minute winter	SW9	352	94.352	0.695	13.3	1.5417	0.0000	SURCHARGED
15 minute summer	SW10	10	94.912	0.065	8.4	0.1239	0.0000	ОК
15 minute summer	SW11	15	94.776	0.099	16.6	0.1933	0.0000	ОК
15 minute summer	PP CONVEY1	11	95.351	0.401	47.8	6.3025	0.0000	FLOOD RISK
30 minute summer	SW12	24	94.775	0.210	32.1	0.4357	0.0000	ОК
30 minute summer	CONVEY SWALE	24	94.774	0.324	41.1	7.9688	0.0000	SURCHARGED
360 minute winter	ATTENUATION BASIN	352	94.352	0.752	21.9	146.5386	0.0000	SURCHARGED
15 minute summer	1	1	93.500	0.000	2.7	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	SW1	1.000	SW2	4.4	0.466	0.056	0.1947	
15 minute summer	SW2	1.001	SW3	8.8	0.647	0.113	0.3244	
720 minute winter	SW3	1.002	SW4	0.9	0.273	0.011	1.2112	
720 minute winter	SW4	1.003	SW6	2.3	0.497	0.030	1.7362	
720 minute winter	SW5	2.000	SW6	0.3	0.050	0.002	4.2771	
480 minute winter	PP ATTENUATION	Orifice	SW6	1.0				
720 minute winter	SW6	1.004	SW7	4.6	0.364	0.025	5.6723	
720 minute winter	SW7	1.005	STORAGE TANK	5.2	0.617	0.028	2.0122	
720 minute winter	STORAGE TANK	Orifice	SW9	1.6				
30 minute summer	PP CONVEY2	Orifice	SW9	21.6				
360 minute winter	SW9	1.007	ATTENUATION BASIN	12.4	0.456	0.066	1.7429	
15 minute summer	SW10	5.000	SW11	8.2	0.565	0.105	0.5000	
15 minute summer	SW11	5.001	SW12	16.4	0.692	0.209	0.7939	
15 minute summer	PP CONVEY1	6.000	SW12	10.2	1.308	1.367	0.1588	
30 minute summer	SW12	5.002	CONVEY SWALE	30.9	1.033	0.305	0.8470	
30 minute summer	CONVEY SWALE	5.003	ATTENUATION BASIN	18.5	2.524	1.050	0.0782	
360 minute winter	ATTENUATION BASIN	Hvdro-Brake®	1	2.7				2\$6.6

Results for 100 year Critical Storm Duration. Lowest mass balance: 99.92%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
4 5	Node	(mins)	(m)	(m)	(1/5)	VOI (m²)	(m ²)	01/
15 minute summer	SVVI	10	94.550	0.046	4.1	0.0831	0.0000	UK
15 minute summer	SW2	11	94.466	0.064	8.1	0.1173	0.0000	ОК
15 minute summer	SW3	11	94.361	0.078	11.9	0.1423	0.0000	ОК
720 minute winter	SW4	795	94.325	0.170	2.1	0.3418	0.0000	ОК
720 minute winter	SW5	795	94.325	0.358	0.3	0.9281	0.0000	ОК
480 minute winter	PP ATTENUATION	472	96.178	0.393	10.3	95.7555	0.0000	FLOOD RISK
720 minute winter	SW6	795	94.325	0.448	4.7	1.2788	0.0000	ОК
720 minute winter	SW7	795	94.325	0.567	5.3	1.6078	0.0000	SURCHARGED
720 minute winter	STORAGE TANK	810	94.325	0.609	5.6	100.5643	0.0000	SURCHARGED
30 minute summer	PP CONVEY2	22	94.605	0.405	34.9	6.9635	0.0000	FLOOD RISK
360 minute winter	SW9	352	94.272	0.615	11.6	1.3640	0.0000	SURCHARGED
15 minute summer	SW10	10	94.908	0.061	7.5	0.1172	0.0000	ОК
15 minute summer	SW11	11	94.764	0.087	14.8	0.1693	0.0000	ОК
15 minute summer	PP CONVEY1	11	95.320	0.370	43.3	5.4163	0.0000	FLOOD RISK
30 minute summer	SW12	24	94.749	0.184	29.7	0.3820	0.0000	ОК
30 minute summer	CONVEY SWALE	25	94.749	0.299	38.9	6.9404	0.0000	SURCHARGED
360 minute winter	ATTENUATION BASIN	352	94.272	0.672	19.3	125.8754	0.0000	SURCHARGED
15 minute summer	1	1	93.500	0.000	2.7	0.0000	0.0000	ОК

	Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Up	stream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 I	ninute summer	SW1	1.000	SW2	4.0	0.455	0.051	0.1813	
15 I	ninute summer	SW2	1.001	SW3	8.0	0.631	0.102	0.3025	
15 I	ninute summer	SW3	1.002	SW4	11.9	0.555	0.151	0.5433	
720	minute winter	SW4	1.003	SW6	2.1	0.485	0.027	1.4210	
720	minute winter	SW5	2.000	SW6	0.2	0.051	0.001	3.9613	
480	minute winter	PP ATTENUATION	Orifice	SW6	1.0				
720	minute winter	SW6	1.004	SW7	4.3	0.364	0.023	5.6693	
720	minute winter	SW7	1.005	STORAGE TANK	4.9	0.606	0.026	2.0122	
720	minute winter	STORAGE TANK	Orifice	SW9	1.7				
30 I	ninute summer	PP CONVEY2	Orifice	SW9	20.6				
360	minute winter	SW9	1.007	ATTENUATION BASIN	10.8	0.447	0.058	1.7429	
15 I	ninute summer	SW10	5.000	SW11	7.3	0.548	0.094	0.4622	
15 I	ninute summer	SW11	5.001	SW12	14.6	0.680	0.187	0.6366	
15 I	ninute summer	PP CONVEY1	6.000	SW12	10.0	1.275	1.333	0.1588	
30 I	ninute summer	SW12	5.002	CONVEY SWALE	29.7	1.033	0.292	0.7959	
30 I	ninute summer	CONVEY SWALE	5.003	ATTENUATION BASIN	18.2	2.504	1.034	0.0782	
360	minute winter	ATTENUATION BASIN	Hydro-Brake [®]	1	2.7				261.4

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 99.92%

Node Event	US Node	Peak (mins)	Level (m)	Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
960 minute winter	SW1	930	94.806	0.302	0.3	0.5479	0.0000	SURCHARGED
960 minute winter	SW2	930	94.806	0.404	0.9	0.7372	0.0000	SURCHARGED
960 minute winter	SW3	930	94.806	0.523	1.1	0.9547	0.0000	SURCHARGED
960 minute winter	SW4	930	94.805	0.650	2.2	1.3094	0.0000	SURCHARGED
960 minute winter	SW5	930	94.806	0.839	0.4	2.1757	0.0000	SURCHARGED
480 minute winter	PP ATTENUATION	480	96.275	0.490	14.4	141.7617	0.0000	FLOOD RISK
960 minute winter	SW6	930	94.806	0.929	4.9	2.6518	0.0000	SURCHARGED
960 minute winter	SW7	930	94.805	1.047	5.4	2.9711	0.0000	SURCHARGED
960 minute winter	STORAGE TANK	930	94.805	1.089	6.2	132.3234	0.0000	FLOOD RISK
30 minute summer	PP CONVEY2	24	94.746	0.546	48.7	11.9100	0.0000	FLOOD RISK
600 minute winter	SW9	600	94.492	0.835	10.9	1.8527	0.0000	SURCHARGED
15 minute summer	SW10	10	94.920	0.073	10.6	0.1394	0.0000	ОК
30 minute summer	SW11	26	94.844	0.167	18.8	0.3261	0.0000	ОК
30 minute summer	PP CONVEY1	22	95.444	0.494	40.1	9.3007	0.0000	FLOOD RISK
30 minute summer	SW12	26	94.844	0.279	38.7	0.5793	0.0000	ОК
30 minute summer	CONVEY SWALE	25	94.841	0.391	48.0	11.1192	0.0000	SURCHARGED
600 minute winter	ATTENUATION BASIN	600	94.492	0.892	17.7	185.6726	0.0000	SURCHARGED
15 minute summer	1	1	93.500	0.000	2.7	0.0000	0.0000	ОК

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
960 minute winter	SW1	1.000	SW2	0.3	0.206	0.004	1.4363	
960 minute winter	SW2	1.001	SW3	-0.8	0.289	-0.010	1.6689	
960 minute winter	SW3	1.002	SW4	-1.0	0.276	-0.013	1.7605	
960 minute winter	SW4	1.003	SW6	2.2	0.490	0.028	1.7957	
960 minute winter	SW5	2.000	SW6	0.3	0.049	0.001	4.2780	
480 minute winter	PP ATTENUATION	Orifice	SW6	1.1				
960 minute winter	SW6	1.004	SW7	4.3	0.347	0.023	5.6723	
960 minute winter	SW7	1.005	STORAGE TANK	5.0	0.598	0.027	2.0122	
960 minute winter	STORAGE TANK	Orifice	SW9	1.7				
30 minute summer	PP CONVEY2	Orifice	SW9	24.5				
600 minute winter	SW9	1.007	ATTENUATION BASIN	10.1	0.428	0.054	1.7429	
15 minute summer	SW10	5.000	SW11	10.4	0.595	0.133	0.7046	
30 minute summer	SW11	5.001	SW12	18.6	0.704	0.238	1.2161	
30 minute summer	PP CONVEY1	6.000	SW12	10.7	1.367	1.429	0.1588	
30 minute summer	SW12	5.002	CONVEY SWALE	35.1	1.024	0.346	0.9548	
30 minute summer	CONVEY SWALE	5.003	ATTENUATION BASIN	18.3	2.529	1.043	0.0782	
600 minute winter	ATTENUATION BASIN	Hydro-Brake [®]	1	2.7				289.9

	EAS Transport Planning Ltd	File: Clavering_Attenuation_SK	Page 1
CAUSEWAY		Network: Storm Network	
		Stephen Adams	
		21/11/2023	

Rainfall N Return P Additic Time of Maximum Time of Concent Maximum Rair	FEH-22 100 0 1.000 5.00 30.00 50.0	Minimur Pref Include Enforce bes	linimum Velo Connec m Backdrop H Ferred Cover I e Intermediat st practice de	city (m/s) 1.00 tion Type Leve leight (m) 0.20 Depth (m) 1.20 e Ground √ sign rules x) 2 Soffits)0)0							
Node PP ATTENUATION Carpark Storage Structure												
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	ا Time to ha	nvert Level (m lf empty (mins Width (m Length (m	n) 95.935 s) 664 n) 8.562 n) 79.311	Slope (1:X Depth (m Inf Depth (m) 300.0))						
Node PP CONVEY2 Carpark Storage Structure												
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Time to ha	Invert Level (r alf empty (min Width (r Length (r	m) 94.200 is) 12 m) 5.480 m) 62.000	Slope (1:> Depth (m Inf Depth (m	() 40.0 1) 1)						
Node PP CONVEY1 Carpark Storage Structure												
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.30	Time to ha	Invert Level (r alf empty (min Width (r Length (r	n) 94.950 is) 8 n) 5.640 n) 55.000	Slope (1:> Depth (m Inf Depth (m	() 40.0 1) 1)						
No	ode STORAG	E TANK Dept	h/Area Storag	<u>ge Structure</u>								
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr)	0.00000 0.00000	Safety Fac Poros	tor 2.0 sity 0.95	lı Time to hal	nvert Level (m) f empty (mins)	93.716 600						
Depth Area Ir (m) (m²) 0.000 189.2	of Area I (m²) 0.0	Depth Are (m) (m ² 0.800 189.	a Inf Area) (m²) .2 0.0	Depth (m) 0.801	Area Inf Area (m ²) (m ²) 0.0 0.0							
Node CONVEY SWALE Depth/Area Storage Structure												
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr)	0.00000 0.00000	Safety Fac Poros	tor 2.0 sity 1.00	ا Time to hal	nvert Level (m) f empty (mins)	94.450 0						
De (r 0.0	pth Area n) (m²) 000 5.6	Inf Area (m ²) 0.0	Depth Are (m) (m 0.700 85	ea Inf Area ²) (m ²) .0 0.0								
Node PP ATTENUATION Carpark Storage Structure												
Base Inf Coefficient (m/hr) Side Inf Coefficient (m/hr) Safety Factor Porosity	0.00000 0.00000 2.0 0.95	ا Time to ha	nvert Level (m If empty (mins Width (m Length (m	n) 95.785 s) 960 n) 6.179 n) 74.906	Slope (1:X Depth (m Inf Depth (m) 300.0) 0.150)						

Node ATTENUATION BASIN Depth/Area Storage Structure

Base Inf Coefficient (m/hr)	0.00000	Safety Fac	ctor 2.0) Ti	Invert Level (m)	93.600
Side Inf Coefficient (m/hr)	0.00000	Poro	sity 1.00		me to half empty (mins)	20
Dept	h Area	Inf Area	Depth	Area	Inf Area	
(m)	(m²)	(m²)	(m)	(m²)	(m²)	
0.00	0 124.2	0.0	1.200	350.0	0.0	