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Summary 
Many infectious diseases are climate sensitive. Chapter 7 presents a scoping literature review 
of evidence on the impacts of weather and climate on foodborne, waterborne and respiratory 
infectious pathogens of public health importance in the UK. Vector-borne diseases are 
considered separately in Chapter 8. This chapter was jointly led by scientists at the UK Health 
Security Agency (UKHSA), University of East Anglia, University of Surrey and University of 
Exeter. Authors complement UK-based studies with relevant evidence from other countries 
where UK-specific evidence is limited. 
 
The effect of climatic factors on infectious disease is complex with multiple interactions. Climate 
affects pathogen abundance, survival and virulence and it also impacts human behaviour and 
host susceptibility. Warmer temperatures can alter geographical distribution of infectious 
diseases and extend the transmission periods of some diseases. 
 
The specific impacts that climate change will have on infectious diseases are uncertain and 
dependent on sociodemographic factors, human behaviour, the potential of emerging and re-
emerging diseases, antimicrobial resistance and the adoptions and impacts from mitigation and 
adaptation measures. The authors find that the relationships between weather and incidence of 
disease are well-established for Salmonella, Campylobacter, and Vibrio spp., a group of 
foodborne and waterborne bacteria that lead to acute gastrointestinal illness, and there is 
evidence that risk of disease from these pathogens could increase in future. In contrast, and 
despite influenza incidence demonstrating seasonality, the impact of climate change is 
expected to be relatively minor as factors such as human behaviour and population immunity 
are more dominant drivers of incidence. Finally, there is insufficient evidence to assess UK 
climate impacts for a number of pathogens, including astroviruses, sapoviruses and 
noroviruses. 
 
Although there is strong evidence that climate change can affect the risk of infectious diseases, 
better evidence is needed to quantify the magnitude and impacts of these changes. The chapter 
highlights 4 key insights for public health. First, as many emerging infectious diseases are 
zoonotic (meaning that they are transmitted between animals and people), increased attention 
should be given to the ways in which people interact with wild and domestic animals and animal 
products, and how this can affect changing disease risks. Strong collaborations are needed with 
other national and international public health agencies, cross-governmental agencies and those 
delivering care (such as the NHS), as well as farmers, food manufacturers and the public. 
Second, early detection is important in responding to infectious disease outbreaks, integrating a 
range of surveillance mechanisms such as sentinel and routine surveillance, epidemic 
intelligence and genomic data in a One Health approach. Global surveillance also needs to be 
strengthened so that emerging diseases can be detected rapidly and controlled where possible 
at source. Third, climate change is an important context within which we will need to protect 
ourselves from infectious disease threats. Changing climatic conditions will need to be taken 
into consideration when undertaking risk assessments and developing public health policy and 
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guidelines to prevent and control infectious diseases. Finally, the impact of climate change on 
future pathogen risk should be considered when prioritising development of new vaccines for 
the UK population. 
 
This chapter highlights several research gaps and priorities, including the need to: 
 
• improve our understanding of the magnitude and impacts of climate change on 

infectious diseases including advancing evidence attributing the burden of infectious 
diseases to specific weather and climate factors 

• improve data analytics and platforms to integrate infectious disease and weather data 
at appropriate resolutions 

• improve integration of human case data with that from other organisations, such as 
linking human cases to outbreaks in animals, detection of pathogens in food systems 
and environmental health to strengthen the One Health approach 

• characterise thresholds determining the relationships between infectious disease and 
weather variables, including the interactions and combination of multiple weather 
variables 

• assess the relative individual and compounding effects of climate change and 
weather variability on the emergence, establishment and spread of infectious 
diseases, including land-use, demographic, and socio-economic drivers 

• quantify baseline burdens of infection to understand, predict, track and prevent the 
future impact of climate change 

• project future infectious disease risk where feasible using a combination of different 
warming and adaptation scenarios 

  
UKHSA is working with stakeholders and academic partners as part of the NIHR Health 
Protection Research Unit in Environmental Change and Health to improve the evidence base on 
the connection between weather and infectious diseases in England and Wales.  
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1. Introduction 
The recognition that infectious diseases can potentially increase with changes in the climate 
dates back to the 1990s (1, 2). Climate change is and will continue to affect infectious diseases 
through diverse and often overlapping ecological, biological and social mechanisms. The effect 
of climatic factors on infectious disease is complex. Climate influences ecological factors, such 
as the natural environment in which infectious agents live, grow and multiply. Climatic and 
ecological factors will affect organisms’ biology (for example, survival, proliferation, serotype 
fitness), which may lead to altered pathogen geographical ranges and distributions or the 
seasonality of individual pathogens. For example, there may be longer transmission periods 
associated with warmer conditions, although colder conditions drive people indoors, which can 
also increase the transmission of some respiratory infections during winter. In addition, the 
emergence of novel species may be influenced. Climate change may also affect transmission 
through impacts on key vectors, such as rodents, changes of impacts on farming and food 
production practices or important pathogen transport mechanisms, such as rainfall and wind 
contributing to the dispersal of soil organisms and pathogens. Finally, climate change may 
affect human behaviour and other social determinants of infectious disease risk: for example, 
warmer weather resulting in changed food preparation and consumption patterns, or increasing 
countryside visits, in turn increasing the potential exposure to infectious disease hazards (3). In 
England, the economic burden from infectious diseases (including costs to the health service, 
labour market and to individuals) is estimated at £30 billion annually, dominated by respiratory 
and gastrointestinal infections (4). Hence any changes to disease burdens will not only have 
public health implications, but also economic impacts. 
 
Changing human behaviour and policy will play an important role in infectious disease risk, both 
by mitigating risk or creating new risks. For example, climate change-induced increases in 
foodborne disease outbreaks may lead to the development of new regulations that may in turn 
help to minimise health burden. Alternatively, efforts to decarbonise will have important 
implications for land use and agriculture (see Chapter 14), which could even increase health 
risks if new vector habitats (see Chapter 8 for vector-borne diseases) or transmission pathways 
are created (5). In future, changes to health associated with climate change in the UK will occur 
concurrently with 2 important trends which may influence disease risk. First, the UK population 
is ageing: by 2066, there are likely to be an additional 8.6 million residents aged 65 years and 
over, comprising 26% of the total population, with the over 85 years age group showing the 
fastest increase (6). The rising UK elderly population will make the population more susceptible 
to infections, due to lowered immunity or more frequent interactions with healthcare or living in 
communal settings, where for example, the potential for person-to-person transmission is 
elevated. Second, antimicrobial resistance (AMR) poses a growing threat to human, animal and 
environmental health, implying that future impacts may be greater, with 10 million deaths 
globally predicted to occur annually by 2050 due to AMR (7). There is emerging evidence 
suggesting that AMR may be influenced by climate change: warming temperatures may 
accelerate bacterial growth, increase bacterial infection rates, increase the frequency of 
infections in healthcare settings and expand geographical distributions (8 to 12). These 



Chapter 7. Effect of climate change on infectious diseases in the UK 

8 
 

processes increase the likelihood of horizontal gene transfer and thus the emergence of drug-
resistant infections. However, the incidence of respiratory infections is higher during winter, 
resulting in greater antimicrobial use for treatment, and increasing the risk of drug-resistant 
infections developing as a result. In addition, wastewater is a well-known reservoir for antibiotic-
resistance genes, as bacteria can encounter antimicrobial effluent and develop antimicrobial 
resistance genes (13, 14). More frequent and intense precipitation and flooding events in future 
will likely lead to increased agricultural runoff and pollutants in water, causing bacterial blooms 
and further opportunities for antibiotic resistant gene transfer (14, 15). Though details on AMR 
and effects on specific pathogenic species are out of the scope of this chapter, they are 
important to note as an emerging climate related health risk. 
 
Infectious diseases have been considered in the ‘Health Effects of Climate Change in the UK 
(HECC)’ reports since 2002 (16), when infectious disease was mostly covered within the ‘Food 
poisoning and climate change’ chapter. This chapter highlighted parts of food chains where 
weather may affect the risk of food poisoning (an umbrella term which includes different 
foodborne illnesses). In another chapter, the potential for changing ultraviolet light (UV-B) levels 
to affect immune suppression and virus activation were discussed, and the report briefly 
considered adaptation, highlighting the largely unknown capacity of the population to adapt to a 
changing climate. Indirect influences of climate on infectious disease, such as dietary choice 
and human behaviour, were briefly mentioned. Integrated assessment models were highlighted 
as suitable for modelling the impacts of climate change on infectious diseases. In the 2008 
report, ‘food poisoning’ was separated into constituent illnesses, predominantly Salmonella and 
Campylobacter (17). The flooding chapter included infectious disease risks, and UK 
consequences of climate change impacts on global food prices was also discussed. 
 
By 2012, a wider range of infectious diseases and transmission routes were considered (18). 
The water and food chapters were merged, and there was greater emphasis on food as a global 
commodity. The impact of the built environment upon the airborne transmission of infectious 
diseases was explicitly addressed for the first time, and concerns about UV-B levels affecting 
immune suppression remained. The scarcity of data on how climate change may influence 
human behaviour, and hence impact disease incidence, was noted. Adaptation and resilience of 
the food sector to changing diseases were explicitly considered. The importance of food as a 
contributor to greenhouse gas (GHG) emissions was included, alongside the imperative of 
ensuring that food associated GHG mitigation measures do not adversely affect food safety. It 
highlighted the importance of dietary choice for GHG emissions and noted win-wins from dietary 
changes (for instance, lower animal product consumption reduces both GHG emissions and 
saturated fat intake). The report recommended that all climate change mitigation policies be 
subject to health impact assessment. 
 

1.1 Chapter scope and methodology 
This chapter focuses on health impacts affecting the UK population (excluding vector-borne 
diseases, which are covered in Chapter 8), focusing specifically upon infectious diseases 
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acquired within the UK. This chapter focuses on the direct impacts of climate change, such as 
the influence of increasing temperatures upon Salmonella infections, as opposed to indirect 
consequences. It should be noted that some potentially important consequences of climate 
change, for instance infections derived from the influence of climate change upon economic 
growth, changes to diseases acquired abroad, or infections from migrating populations are not 
considered within this chapter. There are likely to be significant impacts of climate change upon 
non-UK populations which will have spill-over effects on the UK population, but these are 
outside of the scope of this chapter. The impact of climate change on pandemics has also not 
been considered in the chapter: whilst there is historical evidence of climate influences on major 
epidemics (19), systematic assessments of pandemic risks associated with climate change are 
lacking. 
 
This chapter was informed by an extensive scoping review of publications on climate change 
(78,690 PubMed papers screened to the end of 2022). From this, 6,874 references focussed on 
infectious diseases were identified, and those publications relevant to the specific individual 
pathogens included within this chapter were reviewed. Focus was given to studies conducted in 
the UK; findings from research conducted in other high-income countries (such as those in 
Western Europe, as well as the USA, Canada and Australia) are also described in the absence 
of UK studies. Analytical studies and mathematical models relevant to climate and infection 
were the focus, but descriptive studies were also examined. Pathogen-specific searches were 
also conducted to account for inconsistency in vocabulary and indexing, with many relevant 
papers not using the term ‘climate change’. Snowballing of references was also carried out on 
relevant articles.  
 
Table 1 comprises of a range of climate-sensitive infectious diseases assessed to be currently 
or likely to become of public health concern in the UK and are the focus of this chapter. The 
assessment was informed by previous HECC reports, a recent EEA report on climate change 
and infectious diseases (20), the ‘Sixth Assessment Report from the Intergovernmental Panel 
on Climate Change (IPCC)’ (21), the ‘Third UK Climate Risk Independent Assessment 
(CCRA3)’ (22), the most up-to-date study on infectious intestinal diseases in the community in 
the UK (23) and expert opinion in Europe (24, 25). In Table 1, infectious diseases are classified 
into those that are viral, bacterial or parasitic. The table also presents the main symptoms, the 
modes of transmission, as well as an estimate of the economic costs of each infectious disease 
to the UK. Studies of COVID-19 were not included in this chapter. Although there have been a 
number of papers published since 2020 investigating the impact between weather and COVID-
19, the evidence remains nascent regarding the impact of climate change on COVID-19, and 
COVID-19 transmission patterns have not sufficiently stabilised post-pandemic to allow robust 
assessment. Organisms with similar pathways to other waterborne infections that pose a public 
health threat and are not covered elsewhere in the report, including for example biotoxins from 
harmful algal blooms are also included here. As the COVID-19 pandemic impacted on the 
ascertainment of some infections in the UK, pre-pandemic data detailing infection rates are 
reported in the chapter. 
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Table 1. Transmission mode, total cost and symptoms and severity of infectious diseases in the UK (excluding vector-borne 
diseases) considered in this chapter. Definitions of terms used in column 3 are given below the table. 

Type of 
infection 

Disease or  
pathogen 

Transmission 
mode 

Total cost (median 
£million, 95% CIs) in 
2018 (26) 

Symptoms and severity  

Virus Adenovirus Contact, 
bathing, 
airborne, surface 

£48.7  
(£12.0 to £138.2) 

Causes fever, upper respiratory infections, conjunctivitis, 
swollen glands and sore throat; species F causes 
gastroenteritis 

Virus Astrovirus Contact, food, 
surface, water 

£10  
(£2.2 to £31.6) 

Associated with acute diarrhoea in young children. Symptoms 
include diarrhoea, vomiting, and stomach cramps 

Virus Influenza Airborne, 
surface 

Not included in (26) Sudden onset of fever, headache, cough, muscle and joint 
pain, severe unwell feeling, sore throat and runny nose. Most 
people recover within 7 days, but severe illness or death occurs 
in high-risk groups 

Virus Norovirus  Contact, water, 
food, airborne, 
surface 

£1,678.2  
(£238.6 to £1,943.6) 

Highly infectious. Rapid onset of nausea, vomiting, diarrhoea, 
fever, headache, dehydration and aches. Most people recover 
within 1 to 3 days 

Virus Respiratory 
syncytical virus 
(RSV) 

Airborne, 
surface 

Not included in (26) Nasal congestion, sneezing, cough and sometimes fever. Small 
numbers develop more severe illness 

Virus Rotavirus Contact, water, 
food, surface 

£8.5  
(£2.1 to £23.5) 

Highly infectious in children, with symptoms include vomiting, 
watery diarrhoea, and fever which last 1 to 2 days. Incidence 
has reduced since introduction of vaccination in 2013 

Bacteria Sapovirus Contact £169.5  
(£112.4 to £251.7) 

Similar to norovirus 
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Type of 
infection 

Disease or  
pathogen 

Transmission 
mode 

Total cost (median 
£million, 95% CIs) in 
2018 (26) 

Symptoms and severity  

Bacteria Campylobacter Zoonotic, food, 
bathing, water 

£712.6 (£298.4 to 
£1,355.8) 

Diarrhoea (sometimes bloody), abdominal pain, fever, 
headache, nausea and vomiting. Most cases are sporadic and 
self-limiting. One in 1,000 may develop Guillain-Barré 
syndrome 

Bacteria Clostridium 
perfringens 

Contact, food  £101.5  
(£25.3 to £385.0) 

Watery diarrhoea (sometimes bloody), stomach cramps, 
dehydration, fever and loss of appetite and weight loss  

Bacteria Clostridium 
difficile 

Contact, surface Not included in (26) Diarrhoea (sometimes bloody), abdominal pain, dehydration, 
fever 

Bacteria Legionella Airborne, water Not included in (26) Fever, chills, headache, muscle pain, dry cough, diarrhoea and 
later pneumonia. High hospitalisation and fatality rate (5% to 
15%) 

Bacteria Leptospirosis Zoonotic, water, 
bathing 

Not included in (26) Flu-like symptoms including fever, chills, severe headache, 
muscle aches, vomiting and diarrhoea. In severe cases kidney, 
liver failure or meningitis may occur. High fatality rate of 6% to 
17% (increasing to 40% when there is hepatic involvement) 

Bacteria Listeria Food  £37.4  
(£34.4 to £40.8) 

Usually mild causing flu-like symptoms or gastroenteritis. 
Listeriosis is dangerous to pregnant women, the elderly and 
people with weakened immune systems. Mortality can be as 
high as 30% in vulnerable populations 

Bacteria Salmonellosis Zoonotic, food, 
water, 
environment 

£212.0  
(£45.6 to £954.8) 

Fever, stomach cramps, diarrhoea, vomiting and nausea and 
may last 4 to 7 days. Hospitalisation may be required for the 
young and old or those with weakened immune systems 
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Type of 
infection 

Disease or  
pathogen 

Transmission 
mode 

Total cost (median 
£million, 95% CIs) in 
2018 (26) 

Symptoms and severity  

Bacteria Shigellosis Food, water, 
contact 

£12.3  
(£0.8 to £38.3) 

Diarrhoea (sometimes bloody), fever, nausea and stomach 
cramps which may last for around 7 days. Severity depends on 
serotype 

Bacteria STEC/VTEC Food, water, 
zoonotic, 
surface, contact 

£3.9  
(£3.0 to £4.6) 

Mild to severe diarrhoea (often bloody) stomach cramps and 
vomiting. In England 5% to 14% of O157 cases develop 
haemolytic uremic syndrome with kidney damage  

Bacteria Vibriosis Food, bathing Not included in (26) Non-cholera vibrios cause a self-limiting diarrhoea. Eye, ear, 
and wound infection and blood poisoning are also possible 

Bacteria Yersinia 
enterocolitica  

Food, water Not included in (26) Symptoms vary with age and include fever, abdominal pain, 
and diarrhoea are common. Symptoms may last 1 to 3 weeks 
but complications are rare 

Parasite Cyclospora Food, water Not included in (26) Diarrhoea, loss of appetite and weight loss, stomach cramps 
and muscle aches. Self-limiting in individuals with healthy 
immune systems 

Parasite Cryptosporidiosis Food, water, 
zoonotic, 
bathing 

£2.1  
(£0.3 to £15.3) 

Diarrhoea, abdominal pain and less frequently fever, nausea 
and vomiting. Self-limiting but more severe illness occurs in 
individuals with impaired immunity 

Parasite Giardiasis Food, water, 
zoonotic, 
contact, bathing, 
surface 

£75.0  
(£11.6 to £406.0) 

Diarrhoea with bloating, pain or stomach cramps 
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Type of 
infection 

Disease or  
pathogen 

Transmission 
mode 

Total cost (median 
£million, 95% CIs) in 
2018 (26) 

Symptoms and severity  

Harmful 
algal bloom 

Dinoflagellates 
and 
cyanobacteria 

Food, water, 
bathing 

Not included in (26) Neurological and other toxic symptoms with diarrhoea. May be 
sporadic or an outbreak 

Definitions 
Airborne: via inhalation of respiratory droplets from an infected individual or aerosolised particles.  
Bathing: water activities in coastal or inland water or swimming pools. 
Contact: via direct contact from one infected human to another. 
Environment: environmental contamination 
Food: via consumption of contaminated food and drink. 
Surface: via contact with contaminated surfaces 
Water: via consumption of drinking water or inhalation of water droplets.  
Zoonotic: via direct contact with infected animals and their faeces.  
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2. Transmission pathways  

2.1 Water-associated infections  
Water-related diseases include those that are waterborne, water-based, water-washed, 
diseases attributed to wastewater and diseases related to damp (27). Waterborne infections are 
acquired through drinking water, recreational water, inhalation, contact, contamination of 
wounds, growth in equipment and water systems, growth in soil or water, growth in coastal 
waters, food contamination with water or soil, water contamination of food, through near-
drowning and through injection of non-sterile water. Biotoxins can be transmitted or ingested 
through inhalation, seafood, drinking, dialysis or through recreational exposure. Water-based 
diseases are where parasite lifecycles require water and are transmitted by water or food. 
Water-washed diseases (where there is poor access to water) can be hygiene-related or result 
from flooding or drought. Climate change has the potential to impact on most of these diseases 
(28, 29). Infectious diseases can be strongly influenced by flooding, drought and disaster, and 
the impact that climate can have on water, sanitation and hygiene (WASH) pathogens has been 
previously reviewed (27). 
 

2.2 Foodborne infections 
The climatic conditions and surrounding ecosystems in which food is produced potentially 
influence food safety. Methods of animal husbandry may influence the potential for animal-to-
animal and animal-to-human transmission of zoonotic pathogens, and the surrounding 
environment may alter the propensity for transmission from the environment (for example, 
flooding). In addition to agriculture, pathogens can be introduced through cross-contamination 
across the food system, from manufacturing to human consumption. Environmental conditions 
such as temperature can also influence food risks through more rapid bacterial replication at 
warmer ambient temperatures. Sub-optimal food preparation, for example during cooking, may 
lead to further cross contamination or incomplete pathogen die off. 
 

2.3 Airborne infections 
Whilst a lot of attention has been paid to understanding the links between climate change and 
vector-borne, foodborne and waterborne infections, there has been less focus on airborne 
infections. There are a number of airborne infections with distinct seasonal cycles which are 
impacted by weather, but the effect of climate change on these pathogens remains unclear. 
One reason for this is that there are routine vaccination programmes for many airborne 
infections. In addition, as seen with the COVID-19 pandemic, immunity and the behaviour of 
people may have an overwhelming influence on the transmission of infections. Similarly, 
seasonality of transmission may reflect seasonal shifts in human behaviour (such as more time 
spent indoors in the winter) rather than ecological mechanisms, with indirect and unclear 
implications for how climate change might influence transmission. Two of the most important 
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airborne infections in terms of number of people infected per year in the UK are influenza and 
respiratory syncytial virus and are reviewed below. 
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3. Viruses 

3.1 Adenovirus (waterborne) 
Adenoviruses are usually spread from close contact with an infected person, exposure to 
contaminated aerosol and droplets, contact with contaminated objects, via the faecal route and 
through contaminated water, such as swimming pools. Infection with waterborne adenoviruses 
occurs via the mouth, nasopharynx and the ocular conjunctiva (30). It is thought that 
adenoviruses are second only to rotaviruses as causative agents of gastroenteritis in young 
children (30). Adenoviruses were detected in respiratory samples throughout the year in 
Scotland, with a peak in infection detected during March and April (31). Similarly, detection 
rates of adenovirus in children in Japan were highest between December and March (32). 
Adenoviruses can be transmitted through person-to-person transmission routes, and outbreaks 
have been associated with swimming pools and natural water bodies (30).  
 
Adenovirus levels in natural waters in Taiwan (which has a temperate climate) were affected by 
rainfall (33), although no significant relationship between adenoviruses or temperature and 
humidity was found in samples from Turkey (34). In Scotland, temperature and dew point were 
significantly lower on days when adenoviruses were present in respiratory samples (31). There 
is little evidence that human disease in the UK will be significantly increased by climate change. 
Swimming in UK inland waters may pose additional risks to health, but these are particularly 
associated with water contamination following heavy rains. Whilst there may be future health 
risks associated with new adenoviruses originating from wild animal sources (35), the 
emergence risks are difficult to predict, and emergence risk in the UK because of climate 
change appears low. 
 

3.2 Astrovirus 
Astroviruses are gastrointestinal agents largely associated with young children. Infection 
prevalence can vary: in most areas the reported prevalence is about 10% (range in temperate 
climates 2% to 9%), but higher rates of up to 30% have been reported in some low- and middle-
income countries (see 36). Astrovirus outbreaks are combined with other enteric virus outbreaks 
in surveillance reports in England (for example, (37)), so UK seasonality is unclear, although 
they are considered to only make up a small proportion of the overall number reported. A study 
of astrovirus cases in children in Japan during 2009 to 2015 found that 72.5% of infections were 
detected from March to May, with no cases detected in winter months (38), with similar results 
also reported in USA (39). However, according to other studies in temperate climates, infection 
rates are higher in winter months, although cases have been reported in the spring and summer 
seasons as well (36). 
 
There is very little research or evidence on the effect of weather on astroviruses. One study 
examined associations between 8 hydrometeorological variables and enteric viruses including 
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astrovirus (40), but as the study compared tropical and sub-tropical locations, it is not 
comparable to the temperate UK climate. As such, the effect that climate change may have on 
UK cases of astroviruses is currently unclear and requires further research. 
 

3.3 Influenza 
Worldwide, annual epidemics of seasonal influenza are estimated to result in 3 to 5 million 
cases of severe illness, and up to 650,000 deaths per year (41). Seasonal influenza outbreaks 
most often occur during winter in temperate climates, such as the UK. Surveillance from across 
the UK suggests that influenza cases start to increase around October and November, with the 
peak in cases usually between December and January (42). 
 
Several experimental and observational studies suggest that influenza transmission in 
temperate climates increases when humidity (particularly absolute humidity) is low (for example, 
(43 to 49)). Low temperature has been identified as an important driver of outbreaks (46, 50, 
51), but it is likely that such associations will be driven by the strong correlation between 
temperature and absolute humidity (48). Analysis of influenza season in the USA suggests that 
fewer people are infected with influenza during warm winters, which leads to high numbers of 
susceptible people the following winter, resulting in early and severe outbreaks (52). There is 
therefore an interaction between weather and population immunity, with seasonal epidemics in 
winter months being directly and indirectly impacted by weather parameters. It is likely, 
however, that factors such as human behaviour (for example, crowding indoors during the 
winter), uptake of annual vaccination campaigns and population immunity (specifically the 
number of susceptible individuals) will be a greater driver of influenza burden in the UK in 
future, with climate change playing a relatively minor comparative role. 
 

3.4 Norovirus  
Human noroviruses are responsible for around a fifth of all acute gastroenteritis worldwide (53). 
Transmission is predominantly person-to-person, with foodborne, waterborne and surface 
contamination also possible. Noroviruses are important pathogens that trigger food safety 
incidents (particularly seafood and cross-contamination from infected food-handlers), 
waterborne outbreaks (particularly non-chlorinated drinking water supplies and bathing waters) 
and disruption in health and social care sectors. In England, mean laboratory-confirmed 
infections are at their peak between November and March, with the lowest number of infections 
confirmed during the summer period (37). Most norovirus infections are short-lived and resolve 
before medical attention or laboratory-confirmed diagnosis are necessary. As a result, 
surveillance catches only a small percentage of cases and focuses on outbreaks, particularly in 
hospital settings. In the UK, this under-ascertainment has been estimated as 288 unreported 
community cases (95% confidence intervals (CI): 239 to 346) for each norovirus case reported 
to national surveillance (53). 
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Norovirus incidence was higher when temperatures were colder in England and Wales (54) and 
Taiwan (55), and there were higher hospitalisations in children under 5 due to norovirus when 
temperatures were colder in Hong Kong (56). In England and Wales, norovirus cases were 
lower when relative humidity over the previous 5 weeks was high (54), yet hospitalizations in 
children under 5 in Hong Kong were positively correlated with higher relative humidity (56). It 
should be noted, however, that Hong Kong has a humid, subtropical climate, which might 
explain the contrasting results between the 2 studies. Rainfall has also been shown to affect 
norovirus cases. There was an increased hospitalization risk due to norovirus infection during 
extreme precipitation in Hong Kong (56), whilst positive correlations between rainfall and 
norovirus incidence were reported in Australia, with a 3-month lag between peak average 
rainfall and the incidence of norovirus outbreaks (57).  
 
As norovirus incidence appears to be higher when temperatures are colder (54 to 56), it might 
be assumed that with warmer conditions in the UK as a result of climate change could lead to 
fewer cases, which could be a beneficial impact of climate change. It is unlikely, however, that 
weather factors alone are likely to drive infection seasonality. Norovirus is highly infectious; 
increasing population densities in future could result in increased norovirus reports irrespective 
of the climate. The role that climate change will play in changing norovirus risk remains unclear, 
but it is likely to be mixed and complex given the other drivers of transmission. 
 

3.5 Respiratory syncytial virus (RSV) 
Respiratory syncytial virus (RSV) is one of the most important viral respiratory infections and is 
transmitted by large droplets and secretions from an infected person. By 2 years of age, most 
children will have been infected by the virus. During 2019, it is thought that there were 33 million 
(uncertainty range: 25.4 million to 44.6 million) RSV-associated infection episodes occurring 
globally in children aged 0 to 60 months, with almost 1.7 million infection episodes (UR: 943,000 
to 2.9 million) occurring in high income countries (58). Epidemics in the UK demonstrate distinct 
seasonal cycles: transmission usually begins in October and last for between 4 and 5 months, 
with the peak of infection generally occurring during November and December (31, 59).  
 
A study of RSV climate drivers in the USA and Mexico identified precipitation and humidity to be 
important, similar to influenza studies: increased humidity driven by higher temperatures led to 
reduced transmission (60). Detection rates of RSV in respiratory samples from Scotland were 
lower when temperature and dew points were higher, with a 1°C mean temperature increase 
reducing the odds of detecting RSV by 17.3% (31). Analysis of laboratory isolations of RSV and 
emergency department admissions related to RSV in England and Wales showed that the RSV 
season ended approximately 3.1 weeks earlier per 1°C increase in mean daily temperature, 
although there was no effect of temperature on the start of the season (61). As a result, it was 
suggested that under warmer temperatures, there could be a shortening of the RSV season in 
future (61), but whether climate change will affect the burden of disease remains unclear, and 
weather correlations remain an imperfect proxy for climate impacts on transmission over longer 
periods of time. 
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3.6 Rotavirus 
Rotaviruses are a leading cause of diarrhoeal diseases in children globally. Rotaviruses are 
shed in large quantities in faeces; transmission is through close person-to-person contact, 
primarily through the faecal-oral route (62). Infants and young children are at particular risk as 
they can easily become severely dehydrated and require hospitalisation (63). Adults can also be 
infected with rotavirus, but it is generally less severe than during childhood (63). Global deaths 
from rotavirus in children under the age of 5 have reduced in multiple countries following the 
introduction of a vaccine (64). The vaccine was added to the national vaccination schedule for 
babies in the UK in 2013, and following the addition, in England and Wales there was a 77% 
decline in laboratory-confirmed rotavirus infections and 26% decline in all-cause acute 
gastroenteritis-associated hospitalisations during 2013 and 2014, resulting in approximately 
10,884 laboratory-confirmed infections and 50,427 hospitalisations averted (65). In England and 
Wales, laboratory-confirmed cases of rotavirus start to increase at the beginning of the year; 
since the introduction of the vaccine, the annual peak in reporting has dropped from over 1,000 
cases per week to around 150 (66). In the USA, introduction of the vaccine resulted in a change 
in the peak of rotavirus cases from occurring annually to biennially (67).  
 
In Spain, rotavirus incidence was associated with cold temperatures (68). Similarly in Australia, 
rotavirus hospital admissions of children under 5 years of age peaked in winter and spring, and 
were lowest in summer; higher temperature and relative humidity the previous week resulted in 
reduced hospital admissions (69). A systematic review of the effect of rainfall on diarrheal 
illness found that overall, incidence of bacterial and parasitic diarrhoeal infections was more 
common during rainy seasons, but the opposite was found for rotavirus: there was increased 
incidence during dry seasons (70). Similarly, a systematic review found a negative relationship 
between ambient temperature and incidence of diarrhoea (the majority of pathogens were 
rotavirus) (29). In the USA, a strong El Niño followed by a La Niña event had no impact on the 
seasonality of rotavirus infections (71), suggesting that climate may not be a significant driver of 
rotavirus. Similarly, another study found that only a low proportion (less than 10%) of the 
variability of rotavirus cases could be explained by hydrometeorological variables (72). It has 
been suggested instead that births of susceptible babies drive the annual cycle of rotavirus 
infections (73). The evidence for the role that weather conditions may have on rotavirus cases 
remains mixed; further analysis of the relationship between the climate and cases in the UK 
following the introduction of vaccination is required to determine how incidence may be affected 
in future. 
 

3.7 Sapovirus 
Sapovirus has been increasingly reported as the etiologic agent in outbreaks and sporadic 
acute gastroenteritis cases, which may in part be due to increased testing in recent years. The 
reporting of sapovirus infection is greatest in children under 5 years of age, although all ages 
can be affected (74). A systematic review of published studies in high-income countries that 
used molecular diagnostics found sapovirus prevalence was 3.4%, with high prevalence among 



Chapter 7. Effect of climate change on infectious diseases in the UK 

20 
 

children under 5 years of age (75). Sapovirus outbreaks are combined with other enteric virus 
outbreaks in surveillance reports in England (for example, (37)), so the seasonality in the UK is 
unclear, although they are considered to only make up a small proportion of the overall number 
reported. In studies conducted in Spain and Japan, the peak of infection in children and adults 
occurred during November to March (76, 77). There is very little research into the effect of 
weather on sapoviruses. As such, the effect that climate change may have on UK cases of 
sapoviruses is currently unclear and requires further research.  
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4. Bacteria 

4.1 Campylobacteriosis 
Campylobacter species are prevalent in food, animals (poultry, cattle, pigs, sheep and 
ostriches) and also in pets. There is a consensus that foodborne infection is the main route of 
transmission; in 2020, and similarly to previous years, the most common food vehicles for 11 
campylobacteriosis outbreaks reported to the European Food Safety Authority (EFSA) with 
strong evidence were broiler meat and raw milk (78). Consuming contaminated water (or ice) 
and contact with contaminated water during recreational activities is an additional mode of 
transmission (79). From 2010 to 2019, the highest annual number of Campylobacter cases 
laboratory diagnosed in England was 61,146 (114.31 per 100,000 population) in 2012, and the 
lowest number of annual cases was 51,817 (94.56 per 100,000 population) in 2015 (80). Cases 
in the UK are considered underestimated; for every case of campylobacteriosis reported to 
national surveillance there were an estimated 9.3 cases (95% confidence intervals (CI): 6.0 to 
14.4) in the community (53). 
 
Campylobacteriosis incidence exhibits pronounced seasonality with infection peaks occurring in 
mid- to late summer (weeks 29 to 32) for Nordic countries, but earlier in the year for other 
European countries (81): in England, infections peak between May and August (80, 82). This 
remains unexplained, however, since the organism is unable to replicate outside the intestines 
of warm-blooded animals and the pathogen is thus presumed to have minimal environmental 
sensitivity. Potential explanations for such patterns include (82): a combination of fluctuating 
infection rates in poultry (caused either by a direct impact of temperature on Campylobacter 
growth rates or indirect effects such as changes in contamination sources) and changes in 
exposure due to human behaviour, such as frequency of barbecues (83); and seasonality in the 
abundance of flies which might act as mechanical vectors of infection, although the evidence is 
still debated (84 to 86). Environmental measurements of Campylobacter in raw sewage display 
a seasonal pattern related to campylobacteriosis incidence, with a peak in occurrences during 
summer (24, 87).  
 
Heatwaves are associated with reduced Campylobacter incidence (82, 88), and increasing 
drought frequency is expected to decrease exposure risk to rapidly inactivating Campylobacter 
(89). Increasing annual precipitation and heavy rainfall events lead to higher infection risks (89). 
In Europe, campylobacteriosis cases were positively associated with temperature and, to a 
lesser degree, precipitation (81). This is in line with a previously published study showing that 
the increase of campylobacteriosis in the late spring in England and Wales was significantly 
linked to temperature 2 weeks before (90). Following on from this, and using a 14-day lag, the 
daily incidence of campylobacteriosis in England and Wales was associated with maximum air 
temperature: it is constant for temperatures below 8°C, with an increase in 1 case per million for 
every 5°C temperature rise between 8°C and 15°C, but no further rise in cases at temperatures 
over 15°C (91), which are broadly in line with a previous study (92). Furthermore, the 
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prevalence of campylobacteriosis cases increased when relative humidity was in the region of 
75% to 80% and with a strong association with day-length, while rainfall and wind-speed 
associations were weaker (91). It is worth noting however, that in South Korea, 
campylobacteriosis was not significantly associated with any combination of climatic factors (93, 
94). These conflicting findings might be explained by the biology of the organism responding to 
climatic factors differently depending on the mode of transmission and host, as well as different 
food production approaches between countries. Survival of Campylobacter in animal effluents, 
soils, and surface waters decreases at higher temperatures, whilst in contrast, the detection 
frequency of Campylobacter in poultry and oysters increases at higher temperatures (84). 
Detection of Campylobacter in surface water, however, show less clear patterns (84). 
 
Despite these challenges, the impact of climate change on campylobacteriosis has been 
assessed. Campylobacter cases in Denmark, Finland, Norway and Sweden could increase by 
25% by the end of the 2040s, and 196% by the end of the 2080s compared to the predicted 
baseline of 2000 to 2015 (82). The models also predict a change in case seasonality, with an 
extension of the high season until November (82). In contrast, climate change is considered to 
have little overall impact on the runoff of Campylobacter from land to surface waters when 
considering the risk of infection with Campylobacter during bathing downstream of sewage 
emissions. 
 
Based on the findings of the aforementioned study (82), it is possible that Campylobacter cases 
in the UK will increase due to climate change, with the seasonality of cases possibly extending 
into the autumn. This assessment, however, requires some caution since the study is based on 
Scandinavian countries, where incidence exhibits a statistically significant association with 
precipitation and temperature (82), which is not the case in the UK. On the other hand, the 
expected higher frequencies of heatwaves might result in a decrease in Campylobacter 
incidence. Understanding the mechanism of transmission is crucial for a robust assessment of 
the impact of climate change on the epidemiology of campylobacteriosis. 
 

4.2 Clostridium perfringens  
Clostridial food poisoning is caused by the spore-forming bacteria Clostridium perfringens, 
which causes illness in humans via toxins produced through its growth within foods, particularly 
meat or poultry products which are cooked in large batches and kept at unsafe temperatures 
(95). It occurs naturally in the environment, soil, water and in the gut flora of humans and 
animals, which makes laboratory detection problematic because quantitative counts are 
required (96). There are approximately 90,000 cases (1.5 cases per 1,000 person-years) of Cl. 
perfringens in the UK each year, with around 15,000 cases (0.2 cases per 1,000 person-years) 
presenting to general practitioners and 0.001 cases per 1,000 person years reported to national 
surveillance (53).  
 
There was a seasonal occurrence of food poisoning caused by Cl. perfringens in South Korea, 
with more outbreaks in summer months and fewer during the winter period (97). Specifically, 
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cases were very high during June and August, and although infection rates peaked at high 
temperature and relative humidity, there was no significant correlation with either variable (97). 
Another study in South Korea found that increased insolation (defined as the incident solar 
radiation received on a surface) and sunny weather could result in Cl. perfringens cases 
increasing (98). A study of Cl. perfringens outbreaks in north-east England, however, found the 
highest number of outbreaks occurring during November, followed by October and then 
February, April, July and August (99). Further studies are required to understand how the 
incidence of Cl. perfringens may be affected by weather conditions in the UK. 
 

4.3 Clostridium difficile 
Clostridium difficile is a bacterium found in the intestines. In healthy people, it causes no 
symptoms, but when normal gut bacteria are disadvantaged, such as when someone is taking 
antibiotics, Cl. difficile can grow to unusually high levels (100). In England during 2018 and 
2019, there were over 12,000 cases of Cl. difficile, equating to 21.9 cases per 100,000 
population (101). 
 
Clostridium difficile is present both in the natural environment and in healthcare environments 
and varies seasonally (102). According to a systematic review, Cl. difficile rates peaked during 
March and April and declined from June onwards in the Northern Hemisphere (5 European and 
13 American studies) (103). The occurrence of Cl. difficile was linked to flooding, where 
emergency room and outpatient visits in USA were elevated during a period of 7 to 13 days 
following a flood (104). In South Korea, intensity of sunshine was positively associated with 
infection rates of Cl. difficile (97), whilst a study in Queensland, Australia found that the odds of 
Cl. difficile incidence was positively associated with monthly rainfall (105). However, seasonality 
of infection might be confounded by antibiotic use, which also follows a seasonal pattern, with 
increased use during winter months proposed to be associated with higher incidence of 
respiratory infections: in Europe, antibiotic use peaks during January and February, and 
patients remain at risk for up to 3 months following antibiotic use (see (103).  
 
Climate change could impact on Cl. difficile indirectly, by affecting exposure to antibiotics 
following seasonal respiratory diseases. Further work to determine associations and drivers in 
the UK are therefore required. 
 

4.4 Legionellosis 
Legionnaires’ disease (termed ‘legionellosis’ from hereon) is a severe pneumonia, caused by 
the gram-negative bacteria Legionella pneumophila. The bacteria are found naturally in water 
bodies such as lakes and rivers, as well as in rainwater puddles and in natural soils (106). 
Under favourable conditions in human-made water systems operating between 20°C and 45°C 
such as showerheads or cooling towers (107, 108), the bacteria are able to multiply, and can be 
transmitted by aerosols: infection occurs following inhalation of aerosols containing Legionella 
(109).  
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In temperate regions, the majority of legionellosis cases occur during the summer: in England 
and Wales, the highest number of cases are reported during June to October (110). A similar 
trend has also been reported across EU/EEA, the USA and Japan (111 to 113). A study of 800 
legionellosis cases in the Netherlands during 2008 to 2011 found that 4-week mean 
temperature, 2-week rainfall duration and 2-week rainfall intensity were the best predictors of 
high case incidence (114). Warm temperatures were suggested to promote Legionella growth 
and the wet weather assisted with spreading aerosols (114). A study of cases in Philadelphia, 
USA found that whilst legionellosis cases occurred predominantly during summer months, rainy 
and humid periods during the summer were a better predictor of cases than temperature (112). 
Increased rainfall was also associated with increased infection risk in Spain (115) and in 
patients from 5 states in the USA (116). Analysis of legionellosis cases from 77 regions across 
4 European countries (Denmark, Germany, Italy and the Netherlands) with weather variables 
found that simultaneous increases in rainfall and temperature were associated with a higher risk 
for cases, although temperatures above 20°C were not associated with a higher infection risk 
(117). 
 
It is possible that with climate change, warmer temperatures could lead to more legionellosis 
cases being reported in many temperate countries during the spring and the autumn (118). In 
the UK, longer and hotter summers could result in extended use of evaporative cooling 
systems, such as cooling towers, which are known to be a source of large legionellosis 
outbreaks (108, 118). Control of microbial growth in surface waters and human-made water 
systems may be required to mitigate potential increased risk of legionellosis under warming 
conditions in the UK (118). 
 

4.5 Leptospirosis 
Leptospirosis is an important bacterial zoonosis and is considered the most geographically 
widespread zoonosis in the world (119). The brown rat (Rattus norvegicus) is the most 
important transmission source of human infections, although other wild and domestic animals 
act as reservoir hosts. Infection results from direct exposure to the urine of infected reservoir 
host animals or, more commonly, via indirect contact with water or soil contaminated with 
leptospires. It is usually associated with occupational (such as military personnel, mine workers, 
sewer workers, slaughterhouse workers) or recreational activities including swimming in 
freshwater bodies  (119, 120). 
 
Although 73% of the world’s leptospirosis cases and deaths occur in tropical regions, the 
estimated annual leptospirosis morbidity and mortality in Western Europe are 3.90 (95% CI: 
1.45 to 6.49) and 0.18 (0.07 to 0.29) per 100,000 population, respectively, resulting in 800 (300 
to 1,200) deaths (121). In the EU/EEA, cases are most common during July to October (peak in 
cases during August and September (112)). Leptospirosis is rare in the UK: there were 55 
confirmed and 115 probable cases in England and Wales during 2022, compared with 91 
confirmed cases in 2019 and 72 in 2018, with many linked to travel overseas (123, 124). 
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Whilst traditionally considered a disease of tropical climates, leptospirosis has emerged as a 
health threat in temperate settings due to the influence of globalization and climate change 
(121). Extreme weather conditions, such as heavy rainfall, flooding, hurricanes, and typhoons 
(as well as disasters such as tornadoes, tsunamis and earthquakes) can result in large 
epidemics (119, 125 to 129). Above-normal temperature conditions may also result in greater 
risk of infection. For example, an increase in leptospirosis cases in the Netherlands during 2014 
was linked to mild conditions during winter of 2013 and 2014, followed by the warmest year in 
30 years (130). It is thought that warmer-than-average conditions could have improved survival 
of rodents and excreted virus particles, coupled with increased outdoor recreational activities 
earlier in the year might have led to more exposure and an earlier rise in cases (130). 
 
The specific impact that climate change will have on leptospirosis cases in the UK is unclear. 
Survival of leptospires in the environment is likely to increase at higher temperatures, and as 
was suggested in the Netherlands (130), increases in recreational activities in response to 
higher temperatures may increase exposure to infection. Importantly, climate change might 
result in an expansion of the habitats of reservoir hosts into higher elevations and latitudes 
(131). More frequent and severe flooding events due to climate change are also expected to 
increase the transmission risk of leptospirosis (132). 
 

4.6 Listeriosis 
Human listeriosis is caused by the bacterium Listeria monocytogenes which is widely distributed 
in the environment, and is detected globally (24). Listeriosis is primarily associated with ready-
to-eat foods, milk products, cheeses, as well as meat, poultry and seafood (84). Routine 
surveillance is for cases of invasive disease, which is relatively rare so results in lower numbers 
of reported cases compared with other foodborne pathogens, but it is a public health concern 
due to severity of infections and high case fatality ratio (26, 133). During 2011 to 2019, there 
were between 133 and 180 confirmed cases of listeriosis reported in England and Wales, with 
an incidence rate per 100,00 of between 0.23 and 0.31 (133). Seasonality of confirmed cases in 
the EU suggests slightly greater reporting in the second half of the year (78), but data for 
England and Wales during 2018 and 2019 suggests a rise in cases during April and May, but no 
clear pattern for the later part of the year (133). 
 
A previous review found a weak association between meteorological variables and Listeria spp. 
(24), which was likely driven by a lack of scientific literature, which in turn has not significantly 
increased since the review was published. As Listeria bacteria grow in a wide temperature 
range, it is unlikely that climate change will directly impact listeriosis incidence in the UK (24), 
although further research on extreme weather events such as floods or droughts is needed to 
adequately assess the risk. 
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4.7 Salmonellosis  
Non-typhoidal Salmonella spp. are one of the most widely distributed foodborne agents of 
infectious intestinal disease in humans, causing significant morbidity and mortality worldwide 
(134). In the EU, non-typhoidal Salmonella is the most common bacterial agent in foodborne 
outbreaks and, after Campylobacter, the second most common by number of affected people. 
In the EU during 2019, there were 926 foodborne outbreaks and 87,923 human cases of 
salmonellosis reported, corresponding to a notification rate of 20.0 per 100,000 population 
(135). 
 
Salmonellosis occurrence has been associated with ambient air temperature (see (3). Infection 
risk of salmonellosis was positively associated with relatively high temperatures in Auckland and 
Christchurch, New Zealand; however the same study found no significant association between 
temperature and salmonellosis risk in Wellington (136). Because of this localised health impact, 
the authors advocate the need for region-specific preventative measures (136). A systematic 
review on Salmonella and the environment focusing on New York, USA found mixed results or 
no associations between occurrence of Salmonella and climatic variables (precipitation and 
humidity) other than ambient temperature (3). A study in Maryland, USA, showed that there was 
a 4.1% increase in salmonellosis risk per one unit increase in extreme temperature events, and 
a 5.6% increase in risk per one unit increase in extreme precipitation events, with the risks 
greater in coastal versus non-coastal communities (137). In contrast, there were strong positive 
correlations between high temperature and Salmonella infections in Mississippi, USA, with a 
1°F rise in temperature leading to an increase of 4 Salmonella cases, but there was no 
correlation between monthly mean precipitation and infections (138). 
 
The inconsistencies of findings, especially for the relationship between Salmonella and 
precipitation, is not surprising considering that the direct impact of climate on the biology of 
Salmonella is not trivial. High temperatures affect the survival and proliferation of salmonellosis 
in the environment and in food (139). However, survival of Salmonella in animal effluents, soils, 
and surface waters decreases at higher temperatures and in fluctuating ambient temperature or 
freeze-thaw events (see (84). In contrast, detection of Salmonella in poultry and oysters 
increases at higher temperatures (84). The survival of Salmonella in soil increases in moist 
conditions, and rainfall promotes its dispersal. Rainfall is also thought to increase the ability of 
lettuce to internalise bacteria through stoma in the leaves, and to allow bacteria to enter seeds 
(84, 140). Zoonotic spillover of Salmonella from rodents could increase with rainfall due to an 
increased population of animal hosts (141). Detection of Salmonella in surface water shows less 
clear patterns (84). Drought might enhance Salmonella internalization in lettuce (84), and wind 
and dust might increase airborne dispersal of Salmonella, although the strength of evidence is 
weak (84). Furthermore, some studies suggest that certain phage types and serovars are more 
sensitive to the effects of temperature which might explain the differences in patterns and lag 
effects found across a variety of studies (142). This is particularly important as certain serovars 
are associated with more severe disease (3) and potentially more exposed to environmental 
factors according to the main route of transmission (environment to human rather than 
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foodborne). There may also be variations in Salmonella prevention between countries, which 
could also explain differences in patterns. For instance, most chickens in the UK are vaccinated 
for Salmonella, whilst there currently are not similar vaccination programmes in the USA. 
 
Predicting how patterns of salmonellosis will change in response to climate change is difficult 
because of the intrinsic complexity and uncertainty of how climate change will affect the host–
agent–environment components and their interactions (3, 143, 144). Furthermore, technical 
methodological challenges, such as highly correlated climatic variables, makes the task of 
identifying the true explanatory variables, and thus predicting risk, more difficult (145). 
Nevertheless, climatic changes could increase the future incidence of salmonellosis in selected 
areas (24, 137, 138). Based on the arguments above about the response of different serovars 
and the mode of transmission to ambient temperature, future predictions on the impact of 
climate change on salmonellosis, should distinguish between the specific serovars and 
mechanism of transmission involved. 
 
Despite the differences highlighted above, the studies indicate that it is reasonable to expect 
that increased ambient temperature will result in an increase of salmonellosis in the UK, 
although England and Wales are successfully reducing the pathogen levels in major food 
groups and improving food hygiene at the domestic and institutional level thus adapting to the 
threat of increased foodborne illnesses posed by climate change (146). Currently, there is not 
enough compelling evidence to assess the impact of precipitation, drought and wind. Other 
climatic variables, like vapour pressure, soil temperature, global radiation, temperature 
threshold, UV light, and so on, might have an effect but the potential impact of these variables 
has not been extensively studied (24, 145). Human behaviour and land use is also expected to 
influence the cases reported (for instance, increased outdoor food preparation, and reduced 
food safety measures in hot days) (147). Similar to the US, extreme weather events might alter 
the risk of Salmonellosis in the UK, with some communities disproportionately affected than 
others (for example, coastal versus non-coastal as described above). It is also possible that 
there will be populations that will be more at risk than others, such as older age groups; more 
research in the UK is required to determine risk for different populations. 
 

4.8 Shigellosis 
Shigellosis is a diarrhoeal disease caused by Shigella bacillus and there are 4 serogroups: 
subgroup A, Shigella dysenteriae; subgroup B, Shigella flexneri; subgroup C, Shigella boydii; 
and subgroup D, Shigella sonnei. Whilst globally subgroups A, B and C cause more severe 
dysentery (148, 149), subgroup D causes epidemic diarrhoeal disease in school children (150) 
and other care institutions (151). Infection can be spread via the faecal-oral route, or from 
ingesting contaminated food or water (152). Whilst children are usually the most affected, 
travellers and men who have sex with men are the main risk groups in high-income settings 
(152). In the EU/EEA, cases of Shigella peak during August and September (152). 
In Taiwan, the number of shigellosis cases started to increase when temperatures reached 
21°C and relative humidity was between 70% and 74% (153). A meta-analysis found that the 
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incidence of enteric infection increased by 2.3% per 1°C temperature increase for shigellosis 
(154); all included studies investigated infections in persons from China and Iran, so 
interpretation of findings should be done with caution as they may not be directly comparable to 
the UK. An outbreak of S. Sonnei in homeless persons in Oregon, USA during July 2015 to 
June 2016 was attributed to the wettest rainy season on record whereby increasing precipitation 
resulted in increased cases amongst homeless persons but not amongst housed persons (155). 
 
Warmer temperatures could facilitate the growth and survival of Shigella, and climate change is 
expected to increase temperature-related excess deaths due to Shigella globally (156). Whilst 
the impact of global temperature increases on shigellosis incidence in some countries has 
previously been modelled (156), to our knowledge, the impact of climate change on cases in the 
UK has not yet been assessed. 
 

4.9 STEC/VTEC 
Shiga toxin-producing Escherichia coli (STEC, also called Verotoxigenic E. coli or VTEC) are a 
group of bacteria which cause gastrointestinal illness in humans. In the UK, the most commonly 
identified type of STEC is STEC serogroup O157 (157). Ruminants, particularly cattle, have 
been identified as important sources of STEC (158, 159). 
 
Infection with STEC O157 can occur through a number of routes, including eating contaminated 
food (such as raw or undercooked meat, raw milk, fruit and vegetables contaminated with 
animal faeces); drinking from untreated water supplies; swimming in contaminated water; 
contact with infected animals (at petting farms); or contact with infected people (157). A review 
of sporadic STEC cases found that infection was most commonly linked to association with 
animals or their habitat (70.4% of studies), with consumption of raw or undercooked meat also a 
significant risk factor (62.5% of studies) (160). Another review looking at global STEC outbreaks 
found that in European cases which could be attributed to a source, 31% of outbreaks were due 
to beef consumption, 30% were due to fresh produce (vegetables) consumption and 16% due to 
dairy (161). 
 
In the EU/EEA region (including the UK) during 2015 to 2019, the number of confirmed STEC 
cases began to increase generally during April and May, and the highest number of cases were 
reported during June to September (162). Similar results from a systematic review looking at 
incidence across multiple temperate countries have also been reported (163). Focusing on 
England only during 2015 to 2019, there was some variation, with cases increasing from April 
until July (2016 only) or August (all other years) and then decreasing (164). During 2019, the 
highest number of cases per 100,000 population in the EU/EEA was seen in 0- to 4-year-olds, 
who accounted for more than a quarter of all confirmed cases, whilst the lowest number of 
cases were in the 45 year olds to 64 year olds (162). 
 
STEC have an optimum growth temperature of 37°C but can grow in temperatures ranging from 
7°C to 50°C (165). A study of STEC infections in children in Italy showed an increase in cases 
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during heatwaves: the duration, magnitude, amplitude, number and frequency of heatwaves 
was positively correlated with detected STEC infections (166). With the increased likelihood of 
more frequent heatwave periods, it is likely that there will be higher case numbers of STEC 
infections in future (166). A probabilistic modelling study estimated that temperature increases 
in France could affect the microbial growth rate in raw milk (167). The model predicted that 
warmer temperatures coupled with the time taken to pass along the supply chain resulted in 
higher estimated concentrations of E. coli in milk, which could increase the infection risk 
following raw milk consumption in future (167). In addition to raw milk, climate change will likely 
have both positive and negative impacts on the survival of STEC O157 in manure, soil and 
water, which has implications for leafy green vegetable contamination (see (140).  
 
There are risks that STEC cases will increase in the UK under climate change, particularly in 
the context of warmer and drier summers and in relation to the integrity of water supplies used 
in salad production. 
 

4.10 Vibriosis 
There are at least 12 Vibrio spp. That are pathogenic for humans (168); the most significant are 
Vibrio vulnificius, Vibrio parahaemolyticus and Vibrio cholerae. Cholera epidemics are caused 
by V. cholerae (serogroups O1 and O139) and have been eliminated in high-income countries 
due to the availability of sanitation and treated and safe drinking water (169). However, cholera 
outbreaks can occasionally occur in parts of Europe (for example, (170)). There are also 
nontoxigenic V. cholerae (nonO1 and nonO139) which are associated with sporadic cases of 
infection. Human vibriosis infections have occurred following consumption of raw or 
undercooked seafood or fish, exposure to contaminated water or exposure of skin lesions, and can 
result in gastroenteritis, septicaemia, ear infections, wound infections and cholera (171). In the 
USA, vibriosis cases have a marked seasonal distribution, with most occurring during summer and 
early autumn (172). There have not been large foodborne Vibrio outbreaks in the UK in recent 
years, although there is evidence of the bacteria in the environment (173). The only vibriosis cases 
reported for England, Wales and Northern Ireland are linked to overseas travel (174). 
 
Vibrio spp. Are commonly found in marine and estuarine waters around the world (175), and 
infections were traditionally observed in tropical and sub-tropical locations (176), but this is now 
changing. Vibrio presence and growth in shellfish is dependent on seawater temperature, and 
warmer temperatures are predicted to increase Vibrio growth, resulting in more disease 
outbreaks. Increasing sea surface temperatures are also thought to be driving the emergence of 
Vibrio infections in areas historically considered too cold for survival (177). For example, Galicia 
in north-western Spain is considered a hotspot region for V. parahaemolyticus and increases in 
sea surface temperature are associated with the emergence of cases and changes in the 
epidemiology of the pathogen (176, 178). Similarly, increases in UK sea surface temperatures 
have been associated with the presence of V. parahaemolyticus in shellfish samples collected 
from locations along the UK coastline, with high concentrations of V. parahaemolyticus, V. 
vulnificus and V. cholerae detected during periods of higher water temperatures and lower 
salinity (173, 179). 
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Coastal waters are becoming more suitable for non-cholera Vibrio (180): the area of suitable 
coastline has increased from 47.5% to 86.3% in the Baltic and from 30.0% to 57.1% in the 
north-eastern USA coastline (180). Compared with 1982 to 1989, an extra 4.3% of coastal 
waters in northern latitudes had temperatures suitable for Vibrio from 2014 to 2021, increasing 
the suitability of brackish waters for Vibrio transmission (180). Extreme heat events during 
summer months resulting in the warming of sea surface temperatures have been linked to the 
emergence of Vibrio infections in the Baltic region (177, 181, 182). In Denmark, human Vibrio 
infections were correlated with high summer coastal water temperatures and low salinity (182). 
A study focusing on the Swedish coastline found a statistically significant increased risk of 
Vibrio infections when sea surface temperatures exceeded 16°C (181). The authors looked at 
projection data for sea surface temperatures under the RCP4.5 and RCP8.5 scenarios and 
found that the area suitable for Vibrio growth was projected to expand, an increase in relative 
risk of infection was predicted beyond the year 2039 for both scenarios, and the number of 
months where transmission could take place increased (181). 
 
As temperatures increase, UK coastal waters will become more favourable for the growth of 
Vibrio and the risk of vibriosis outbreaks (175). Predicted sea-level rise is projected to result in 
the flooding of low-lying coastal areas, expanding estuarine and brackish environments (24, 
181). Elderly people have been recognised as vulnerable to vibriosis infection (182), and as the 
elderly population continues to grow in future, there will be a greater proportion of the population 
at risk of infection. While the occurrence of widespread cholera is unlikely, because of UK 
sanitation and safe potable water supplies, there could be increases in Vibrio infections related 
to bathing and to contaminated seafood. 
 

4.11 Yersinia enterocolitica 
In humans, infection with Yersinia pestis causes plague, whilst yersiniosis is predominantly 
caused by Yersinia enterocolitica, and on rare occasions by Yersinia pseudotuberculosis. Pigs 
are the most common reservoir of Y. enterocolitica and infections can occur following 
consumption of under-cooked pork, or cross-contamination following handling of raw pork, 
whilst outbreaks of Y. pseudotuberculosis have been associated with contaminated vegetable 
consumption (183). Fatalities are usually rare, but there is increased risk for patients with 
chronic liver disease. In addition, complications such as reactive arthritis and endocarditis can 
occur (84). During 2017 to 2019, incidence rates in the UK were approximately 0.2 to 0.3 per 
100,000 population, which was lower than the overall European 2020 rate of 1.9 cases per 
100,000 population (183). 
 
To date, there has been very little research examining the impact of weather on Y. enterocolitica 
infections. In South Korea, infections of Y. enterocolitica were not significantly associated with 
any of the 5 climatic factors investigated: temperature, relative humidity, rainfall, insolation, and 
cloudiness (98). To the best of our knowledge, the impact of weather on cases within the UK 
has not been examined but warrants further investigation.  
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5. Parasitic diseases 

5.1 Cyclosporiasis 
Cyclosporiasis is caused by the parasite Cyclospora cayetanensis, with recent evidence 
suggesting that there are 2 other species that may also infect humans: Cyclospora ashfordi and 
Cyclospora henanensis (184). Infections are not passed from person-to-person but are readily 
passed in contaminated water or food (185, 186), and infected food can be imported from 
endemic countries into countries where Cyclospora is otherwise absent (187, 188). In the UK, 
infections are linked to travel abroad (189, 190), or through ready-to-eat foods such as salads, 
herbs and soft fruit (191). 
 
Infections are seasonal in many countries (190, 192 to 195). However, there is little evidence to 
date of the impact that weather may have on Cyclospora cases. As UK cases are linked to 
travel abroad, rises in infections in other countries as a result of climate change could increase 
the risk of travel-related infections (for instance, (196)).  
 

5.2 Cryptosporidiosis 
Human cryptosporidiosis is caused by Cryptosporidium spp. That are both zoonotic 
(Cryptosporidium parvum) and predominantly associated with humans as the host species 
(Cryptosporidium hominis). Cryptosporidium spp. Are transmitted by environmentally robust 
oocysts, which also resist chlorine and some other disinfectants. Water samples from various 
sources are commonly contaminated (197). As a result, these organisms are commonly a cause 
of outbreaks caused by contaminated drinking water, swimming pools, food and contact with 
agricultural animals. The outbreaks can range from small and local – often linked to swimming 
pools – to large local outbreaks linked to drinking water, as well as national or international 
outbreaks (198) linked to contaminated food or water, outbreaks linked to foreign travel, or 
sporadic disease linked to continuing source exposure. During 2012 to 2017, there was a small 
peak in reported cases in England and Wales around mid-April until the end of May, with a 
much larger peak seen during late August until the end of November (199). Focusing solely on 
outbreaks in England and Wales during 2009 to 2017, the largest peak occurred during March 
and April, with the majority attributed to contact with animals; there were smaller peaks during 
August and September that were mostly associated with recreational water (200).  
 
Heavy rainfall episodes are thought to be associated with cryptosporidiosis outbreaks, as wash-
off may lead to infected faeces contaminating surface drinking water sources (201). In Canada, 
the odds of identifying Cryptosporidium oocysts in fresh surface water was 2.61 (95% CI: 1.63 
to 4.21) times higher during and after extreme precipitation events compared to baseline 
conditions (202). In north-western England, increased rates of cryptosporidiosis were 
associated with increased levels of precipitation (203). Similarly, a study of cryptosporidiosis in 
Australia found there was increased risk of infection in years with higher rainfall, with an 
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estimated 1.8% increase in cryptosporidiosis risk associated with a 78mm increase in annual 
rainfall (204). Several studies have also found a link between infections and temperature. In 
Massachusetts USA, Cryptosporidium infections peaked approximately one month after the 
peak in temperatures (205). Similar findings were reported from Australia, where 
cryptosporidiosis infections were significantly associated with monthly maximum temperature, 
with the model estimating that there could be an increase in 50 cases per year per 1°C increase 
in maximum temperature (206). 
 
The risks of an increase in cryptosporidiosis in the UK associated with climate change are 
strongly linked to the main sources that have been shown to be responsible for outbreaks. 
Waterborne disease due to potable waters is the responsibility of Industry and Regulators, and 
additional measures may be required to upgrade catchments, storage, and treatment to cope 
with weather changes projected in UKCP18, with lower summer rainfalls and more extreme 
weather in winter months. 
 

5.3 Giardiasis 
Giardiasis is an infection caused by the protozoan parasite Giardia lamblia (synonyms: Giardia 
duodenalis, Giardia intestinalis). Giardiasis has a global distribution, and is the most reported 
foodborne and waterborne parasitic disease in the EU/EEA (207). In 2019, there were 18,004 
confirmed cases of giardiasis reported across the EU/EEA, with the highest notification rates 
reported in Belgium (18.0 per 100,000 population), compared with a notification rate in the UK 
during 2019 of 7.7 per 100,000 (207). Giardiasis infections can be asymptomatic, acute or 
chronic, with the most frequent symptoms being diarrhoea, stomach cramps and bloating. Cysts 
are shed in faeces from an infected person or animal, and they can survive in water, food or on 
surfaces for prolonged periods of time (208). The most common route of infection is ingestion of 
cysts through contaminated water or food, and occasionally through person-to-person 
transmission (207). 
 
A systematic review found that in the UK, there is a large summer peak of giardiasis cases 
during July to September (209). The peak in infections during the summer could result from 
higher temperatures, as positive associations between giardiasis and temperature have been 
previously reported (205, 210), but this may also be affected by increased travel during the 
summer months. Higher temperatures may increase foodborne disease transmission, or it may 
be driven by increased recreational water use during periods of high temperature to cool down, 
leading to greater exposure to untreated water sources. 
 
In New Zealand, there were positive associations between giardiasis incidence and rainfall 
(210). Similarly, increased concentrations of Giardia cysts in the Delaware River, USA was 
associated with rainfall, thought to be driven by increased particulate matter in the water column 
following surface run off (211). In contrast, however, a study of Giardia cyst concentrations in 
the Grand River, Canada found significantly higher concentrations in the year with the lowest 
levels of average precipitation (212). The authors posed that the higher observed 
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concentrations could be a result of low water levels in rivers due to the lack of precipitation, 
reducing the dilution of cysts (212). In addition, sewage effluents being washed into source 
waters can also result in high concentrations of cysts (212) which, if combined with low river 
levels or high temperatures, could have important public health implications. 
 
It is possible that with predicted warmer summers, the peak of giardiasis cases during the 
summer could last longer. It is also possible that predicted increased rainfall could increase 
concentrations of cysts in rivers, as described above. Clearly, modelling using climate 
projections is required to understand future UK risk.  
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6. Harmful algal blooms  
Algal blooms in water bodies are a natural phenomenon, yet there are a range of micro- and 
macro-algae that can bloom in marine and freshwater bodies and impact upon human, animal 
and ecosystem health (213). Harmful algal blooms (HABs) can occur due to several factors, 
including changes in water temperature, salinity, turbidity, and nutrients. Exposure to HABs 
occurs through ingestion of contaminated seafood products, ingestion of contaminated water, 
inhalation of aerosolised toxins or direct skin contact with toxin-contaminated water (214). 
Ingestion of contaminated seafood can cause a range of poisonings, including amnesic shellfish 
poisoning (SP), azaspirazid SP, diarrhetic SP, neurotoxic SP, paralytic SP and ciguatera fish 
poisoning (see (214). As well as direct impacts on human health, toxic HAB outbreaks can have 
important socio-economic consequences to the shellfish industry (215).  
 
There is evidence to suggest that climate change has already affected the frequency and 
severity of HABs (214, 216 to 219). Possible responses of HABs to changing climatic conditions 
are likely to be highly species-specific, due to the diverse ecology, physiology and toxicity of 
HAB organisms (214). A study in the USA that used climate change projections from 5 global 
circulation models has predicted that the number of days with harmful cyanobacterial blooms 
will increase from 7 days per year per waterbody under current conditions to between 18 and 39 
days in 2090 (220). It is likely that similar increases in HABs will be seen in Europe, including 
the UK in future, which will have public health implications.  
 
A scoping review on the impact of HABs on human health found that there was a low number of 
studies describing outcomes in Europe (221), and only 3 relevant UK studies were detected 
(222 to 224). It is possible that the impact of HABs on health in the UK is currently unknown or 
underestimated; understanding the current burden is vital to predict how incidence may change 
in future (217, 219, 221, 225). 
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7. Discussion 
Climate and weather can affect pathogen prevalence, survival in the environment and in the 
food chain, transmissibility and host susceptibility to infection as well as human behaviour (226) 
and other extrinsic and ecological factors, resulting in complex impacts on infectious diseases, 
notably seasonality and spatial distribution. This chapter has reviewed the information currently 
available in the literature detailing the seasonality, links between weather and disease incidence 
for pathogens which are currently or likely to become a public health concern in the UK, as well 
as impacts that the UK may face in future. A summary of the conclusions, the confidence in 
likely impact for the UK and estimated likely capacity to adapt to the changing risks from the 
literature review are presented in Table 2. For some pathogens there is existing robust 
modelling data on the relationships between weather variables and pathogen incidence, such 
as Salmonella, Campylobacter, Vibrio spp. which demonstrates well-documented sensitivity to 
climate variability, and there is some evidence suggesting that UK disease risk could increase in 
future. There are also infections such as influenza, where the impact of climate change will 
likely be relatively minor and factors such as human behaviour and population immunity will be 
greater drivers of incidence levels. For other pathogens (for instance, astroviruses, sapoviruses 
and noroviruses), the review conducted here has identified that not only is the interaction with 
weather variables unclear, but that this modelling data does not currently exist for the UK. It is 
currently unclear how disease incidence in the UK may change because of climate change, so 
analyses using climate projections, such as UKCP18 are vital to understand and prepare for 
how infectious diseases are likely to be affected by the UK’s changing climate in future. 
 
The chapter has focused on foodborne, waterborne and respiratory infections currently acquired 
within the UK. However, climate change is likely to increase human population movement in 
future, with mass displacement arising in response to sea-level rise, food insecurity or extreme 
weather events. Migrating populations may be exposed to endemic diseases for which they 
have limited resistance, or they may bring infections which can easily spread within host 
populations (227, 228). In addition, there may be an increased risk of multi-drug resistant 
infections, such as antimicrobial-resistant tuberculosis, which can spread in crowded living 
conditions and transmission can be exacerbated by lack of access to medical care and 
diagnostics (15). Climate change-induced migration is thought to be a major driver of emerging 
and re-emerging diseases. There has been a rise in emerging infectious diseases over the last 
few decades (229), with recent outbreaks including severe acute respiratory syndrome (SARS) 
coronavirus (2003), swine flu (2009), and the COVID-19 pandemic (2019). Although these have 
not been covered in the chapter, such outbreaks are likely to increase in future, and although 
they are likely to emerge overseas initially, there are likely to be spill-over effects on the UK 
population, as was seen during the COVID-19 pandemic. 
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Table 2. Summary of the monetary disease burden, likely impact of climate change (and confidence of the impact), as well as the 
capacity to adapt to climate change based on each of the infections reviewed in this chapter 

Type of 
infection  

Disease or pathogen  UK Monetary 
Disease Burden1 

Likely climate 
change impact2 

Confidence in 
likely impact3 

Capacity to adapt 
to increased risk4  

Virus  Adenovirus  Low Low Weak Limited 

Virus  Astrovirus  Low Low Weak Limited 

Virus  Influenza  High Low Strong Good 

Virus  Norovirus High Moderate Weak Limited# 

Virus  RSV  Moderate Low Moderate Limited# 

Virus  Rotavirus  Low Low Moderate Good 

Virus Sapovirus  High Low Weak Limited 

Bacteria  Campylobacter  High Moderate Moderate Moderate 

Bacteria Clostridium perfringes High Low Weak Good 

Bacteria  Clostridium difficile High Low Weak Good 

Bacteria  Legionella  Moderate Moderate Moderate Good 

Bacteria  Leptospirosis  Low Moderate Weak Good 

Bacteria  Listeria  Low Moderate Moderate Good 

Bacteria  Salmonellosis  High Moderate Strong Good 

Bacteria  Shigellosis  Low Moderate Weak Moderate 

Bacteria  STEC/VTEC  Low Moderate Strong Good 

Bacteria  Vibriosis  Low* Moderate Moderate Good 

Bacteria  Yersinia enterocolitica Low Low Weak Good 
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Type of 
infection  

Disease or pathogen  UK Monetary 
Disease Burden1 

Likely climate 
change impact2 

Confidence in 
likely impact3 

Capacity to adapt 
to increased risk4  

Parasite  Cyclospora  Low* Moderate Weak Limited 

Parasite  Cryptosporidiosis  Low Moderate Moderate Good 

Parasite  Giardiasis  Moderate Moderate Weak Good 

Harmful algal 
bloom  

Dinoflagellates and 
cyanobacteria  

Low* Moderate Weak Moderate 

Notes 
1 Most values are based upon information from (26), but for pathogens not included in the report, figures come from other sources (183, 230 to 234). An asterisk (*) 
indicates that no official figures could be found but values are estimated based on small case numbers and author judgement: 
• Low: less than £50 million per annum (p/a) and shown in green 
• Moderate: £50 million to £150 million p/a and shown in yellow 
• High: more than £150 million p/a and shown in red 
 
2 Based on the findings from the literature review conducted in this chapter: 
• Low: low evidence that climate change may affect incidence, or evidence that it may reduce incidence 
• Moderate: moderate evidence that climate change may increase incidence 
• High: high evidence that climate change may increase incidence 
 
3 Based on the findings from the literature review conducted in this chapter: 
• Weak: low confidence of the impact described in the previous column due to low numbers of published studies, particulars of study design or conflicting findings 
• Moderate: moderate confidence of the impact described in the previous column 
• Strong: high confidence of the impact described in the previous column  
 
4 Based on academic judgement and routes of transmission highlighted within the document, the capacity to adapt should changes in disease incidence be apparent: 
• Good: predominantly food and water transmission which are typically highly regulated. Or effective vaccine available. 
• Moderate: mixture of food and water and human to human transmission.  
• Limited: predominantly human-to-human or airborne transmission which is typically less regulated. A hashtag (#) indicates where current vaccine 

developments could improve response)
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7.1 Climate mitigation impacts 
Food is one important pathway for infectious disease, and the food system (farm to fork) 
accounts for around a third of global and UK GHG emissions (235, 236). Hence, a net zero 
strategy will involve changes to the food system to reduce GHG emissions and many 
companies have signed the Courtauld Commitment 2030, a voluntary agreement to deliver food 
chain reductions in GHG of 50% by 2030 (236). From an agricultural perspective, such 
reductions in GHG emissions will require “fundamental changes to how land is used” in the UK 
(237) and overseas where 23% of food system emissions originate. These changes have the 
potential to alter the range and type of pathogens in food in potentially unknown ways. Through 
their impacts on ecological and biological systems, they also have the potential to influence 
infectious disease risks. Furthermore, food waste (23%), refrigeration (2%) and packaging (3%) 
are other important components of total emissions, and changes to these components have the 
potential to influence infections disease agents in food. Dietary choice is also highlighted as 
important for climate change mitigation and several studies have suggested replacing red meat 
consumption with plant-based foods will help to reduce GHG emissions (238 to 240). The 
incorporation of sustainability into dietary guidelines can face stiff opposition from vested 
interests (241). Nonetheless, a potentially changing diet implies a shifting pattern of infectious 
diseases. For example, many recent outbreaks of STEC O157 have been associated with salad 
whereas Campylobacter is often associated with the consumption of poultry. 
 
The management of water resources is responsible for around 5% of GHG emissions although 
there is much uncertainty (242). This chapter has highlighted the role that water plays in some 
infectious diseases, and changes to the sector to reduced GHG emissions have the potential to 
influence infectious disease risks associated with water transmission routes. Similarly, 
reductions in air exchange rates within buildings to save energy is another potentially important 
climate change mitigation measures (see Chapter 5) with the potential to influence viral 
transmission rates within buildings. 
 

7.2 Adaptation to climate change 
This chapter has presented evidence on how, within the UK, several infectious diseases are 
likely to be affected by climate change. The specific impacts are uncertain, and this is enhanced 
by wider issues such as the potential for the emergence of novel species, future levels of AMR 
and impacts from climate change mitigation. However, the overall impact of climate change will 
also depend upon the capability of society to adapt to changes in infectious disease. 
Understanding these capabilities and adaptation potentials are key to understanding not only 
the risks of climate change for infectious disease, but also how resilience to climate change may 
be enhanced (147). 
 
Public health and preventative medicine are the disciplines with key responsibility for preventing 
infectious diseases, and this implies a commitment to address climate change (243). The tools 
and basic concepts of these disciplines provides a blueprint for responding and adapting to 
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climate change, although these may need extending to meet future challenges (243). There are 
multiple frameworks classifying how health systems can be made more resilient to climate 
change (for example, (244)). Here we adapt the 10 World Health Organization (WHO) Europe 
Essential Public Health Operations (EPHOs) (245) and provide specific examples relevant to 
climate change and infectious disease. Other studies have used similar approaches (141, 143). 
The EPHOs are presented in Table 3, alongside examples pertinent to climate change.  
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Table 3. Ten Essential Public Health Operations (EPHOs) focusing on climate change and infectious diseases 

Essential Public Health Operation 
(EPHO) 

Climate change and infectious disease examples 

1. Infectious disease surveillance Sample sequencing data is becoming increasingly important for pathogen tracking (246) and 
also play a key role in identifying pathogen clusters (247). The UK has well-established 
surveillance systems for infectious diseases of concern in the environment, animals and 
humans. International surveillance conducted by the European Centre for Disease Prevention 
and Control (ECDC), EFSA and WHO informs public policy and prevention strategies. 
Laboratory services need strengthening to further understand climate impacts on disease; 
enhanced surveillance may be necessary for the climate-sensitive pathogens identified in this 
report or products originating in areas undergoing rapid environmental change (143). 

2. Monitoring and responding to 
infectious disease outbreaks and threats 

Monitoring for outbreaks and emerging threats potentially goes beyond surveillance. 
Collectively this effort is defined as epidemic intelligence, which combines surveillance 
information with event-based data such as the media, case reports and scientific publications 
(141) as well as investigation of potentially contaminated environments and materials. 
Strengthening such capacities is an important mechanism to prepare for climate threats to 
health.  

3. Health protection The field of health protection, including environmental, occupational, and food safety, is 
important to address the potential impacts of climate change. For example, within the UK, 
primary responsibility for food safety legally falls upon food business operators, who implement 
procedures based upon the Hazard Analysis and Critical Control Points principles (HACCP) for 
food protection and applies common hygiene requirements, with the policy and regulations 
being a responsibility of the Food Standards Agency (FSA). Within the water industry water 
safety plans perform a similar function. These standards and regulations provide capability 
within the food and water system but also need to be enhanced to cope with new emerging 
risks. Future approaches could include enhanced pathogen detection methods and One 
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Essential Public Health Operation 
(EPHO) 

Climate change and infectious disease examples 

Health approaches to food safety (248). Other systems for detecting future threats include 
early warning systems which merge health, climate, veterinary and environmental data to 
indicate impending disease outbreaks (249). Horizon scanning is the identification of future 
hazards on the border of present thinking and planning (250).  

4. Health Promotion including action to 
address social determinants and health 
inequity 

Health promotion plays an important role in informing and empowering individuals to protect 
themselves from infectious diseases. However, it can be challenging to consistently affect 
human behaviour especially in relation to uncertain information (251). Challenges in health 
promotion arise when potential conflicts occur and these need to be carefully managed. 
Examples include the tension between food use by date (safety management) and wider 
objectives to reduce food waste, or balancing personalised choices and food safety, such as 
the consumption of uncooked seafood. 

5. Infectious disease prevention, 
including early detection of illness 

For effective disease prevention, surveillance is key, especially in situations undergoing rapid 
environmental changes. Early disease detection is vital and new rapid surveillance methods, 
including rapid antigen tests and calls to telehealth, potentially have a key role to play. 
Enhancements to surveillance are most useful if this data is integrated and rapidly 
disseminated. Schemes such as the FSA PATH-SAFE project, which aims to develop an 
enhanced UK surveillance system for tracking and monitoring foodborne disease and AMR in 
the environment and agri-food system and the FSA incident prevention strategies including 
root case analysis which aims to capture and communicate root causes of incidents including 
foodborne disease are welcome (252, 253). However, data sharing across international 
borders is key. These have changed following the UK’s exit from the EU in 2020 (such as loss 
of full access to the EU Rapid Alert System for Food and Feed) that were replaced by the 
exchange of information with the International Food Safety Authority Network, (INFOSAN), and 
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Essential Public Health Operation 
(EPHO) 

Climate change and infectious disease examples 

it is important that capacity is maintained. Possible examples include new data sharing 
agreements with ECDC (254) and EFSA, and enhanced use of INFOSAN. 

6. Assuring governance for health and 
wellbeing 

Good governance is essential to address current and future infectious disease threats. This 
requires efficient methods, processes and institutions which maintain accountability, quality 
and equity and have the capacity for early infectious disease prevention, detection and 
response. Internationally, such standards are mandated through the 2005 International Health 
Regulations (WHO 2005), which are legally binding for all WHO member states. Such 
structures are important to facilitate adaptation to changing infectious disease threats.  

7. Assuring a sufficient and competent 
workforce 

Human resource is essential, and through this chapter we have highlighted expertise such as 
sequencing, data science, risk assessment and early warning systems as being key. 
Interdisciplinary skills working within One Health are also important. 

8. Sustainable organisational structures 
and financing 

Minimising the impact of climate change upon infectious disease is potentially resource 
intensive. However, there is also the potential to increase efficient use of resources through 
prevention of diseases and associated human economic costs, food safety action and food 
safety product withdrawal and recall costs or reputational damage of food from environmental 
contamination. Appropriate and sustainable funding for these activities is key but challenging. 
Cost effectiveness is also important, and in many cases, public health funding is cost-effective 
in the short- and long-term (255). 

9. Advocacy communication and social 
mobilisation for health 

Reducing infectious disease burden is helped by effective communication across society 
between, for example individuals, businesses, UKHSA and the FSA. This is necessary to 
directly address infectious disease threats, but also to influence policy and sustain investment 
and multisectoral commitment in health protection. Climate change should be an important 
part of these discussions.  
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Essential Public Health Operation 
(EPHO) 

Climate change and infectious disease examples 

10. Advancing public health research to 
inform policy and practice 

This chapter has detailed how climate change may affect infectious diseases and this plays a 
key role in helping to provide accessible information for practitioners and policy-makers. Public 
health research is key to the adaptation response, and this requires research across all 
sectors to support effective public health decision-making. 
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7.3 Conclusions 
7.3.1 Research priorities 
Most studies assessing the effect of weather on infectious diseases tend to focus on ambient air 
temperature, precipitation, relative humidity, and sunlight. For some infectious diseases, other 
meteorological factors may be more important, such as soil temperature, UV levels and dew 
point temperature. Evidence suggests that linking data on appropriately selected infectious 
disease incidence and weather parameters at a local level and determining a comparative 
conditional incidence across geographic boundaries can identify thresholds relating to disease 
occurrence and allow combinations of parameters to be compared together (for example, 
(256)). Further development of routine data linkage of surveillance data sets to all pathogens 
may allow the range of diseases impacted by climate change to be elucidated. As well as linking 
infectious disease to weather, methods need to be established for attributing the burden of 
infectious diseases due to climate change. Studies that quantify how much the burden of 
disease is ascribable to specific weather and climate factors are still uncommon, but it is 
important to quantify as climate change will have differential effects on different weather factors. 
To date, most research has focused on weather or meteorological variability as a proxy for 
longer-term climatic change, though weather remains an imperfect proxy and correlations with 
infectious disease incidence must be taken with caution when attempting to infer implications for 
how infectious diseases might respond to climate change, especially when inferring from 
studies based in different geographical locations. 
 
This chapter has highlighted that for many infectious diseases, the exact transmission 
mechanism remains unclear, and this makes it challenging to estimate the likely impact of 
climate change. Even when transmission routes are relatively clear, holistic and multidisciplinary 
research incorporating all relevant biological and ecological influences are still uncommon. For 
instance, robust assessment of the impact of weather and climate on respiratory diseases 
would benefit from epidemiological studies integrated with research assessing the dynamics of 
aerosols and droplets emitted from individuals, in different meteorological settings. For 
foodborne diseases, the impact of food production or food chain factors and the interplay with 
human behavioural and societal influences requires further elucidation. 
 
An additional priority is for more research to disentangle the individual, compounding and joint 
effects of climate (and climate change) on the multiple processes – including abiotic factors like 
land-use changes, demographic, and socio-economic factors – involved in the emergence, 
establishment, amplification and spread, of infectious diseases. Wildlife act as animal reservoir 
for many zoonotic diseases, and climate change-induced variations to the distribution and 
abundance of wildlife are also expected, which will have consequences for infectious disease 
burdens. For instance, changes in the distribution of rodent populations could lead to new 
populations being exposed to rodent-borne diseases. A second example is the association that 
has been identified between warming local temperatures, growing population densities and 
increasing antibiotic resistance in some common pathogens (E. coli, Klebsiella pneumoniae and 
Staphylococcus aureus), which would have serious consequences on global health (9). 
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As has been mentioned previously in this chapter, it is important to quantify baseline burdens of 
infection for climate-sensitive pathogens; this will help with understanding and predicting the 
impact that climate change could have in future. For instance, the symptoms of toxic exposure 
to HABs are similar to other infectious diseases, such as norovirus, and also mild and self-
limiting, so it is possible that the impacts of HABs on human health are under-diagnosed (221). 
It is important, therefore, to improve estimations of the current burden of disease from HABs, 
and to assess the impact of climate on diseases to understand how incidence may change in 
future (217, 219, 225). 
 
7.3.2 Implications for public health 
As many emerging infectious diseases are zoonotic, there needs to be increased attention on 
the ways in which people interact with wild and domestic animals and animal products, and the 
impact this can have on disease risks. Strong collaborations are needed between other national 
and international public health agencies, and as some of the drivers for infectious diseases lie 
outside of public health, solutions will involve working with cross-governmental agencies, as 
well as farmers, food manufacturers and the public. 
 
Early detection is important in responding to infectious disease, and a range of surveillance 
methods (such as sentinel surveillance, routine surveillance, epidemic intelligence and genomic 
data) all have roles to play. In analysing increasing large and complex surveillance data, 
artificial intelligence may play an important role. Global surveillance also needs to be 
strengthened so that emerging diseases can be detected and monitored domestically and 
globally. 
 
The best defence against infectious disease emergence is dedicated reduction programmes 
against sporadic and outbreak disease. Risk assessments may need to be updated, however, 
(such as highlighting areas where droughts are increasingly likely), and policies (such as 
drinking and bathing water regulations) updated in light of future climatic change projections. 
Additionally, the availability of real time weather data enables dynamic risk assessment (such 
as on agricultural floodplains) to occur. However, climate change also implies increasing 
uncertainty and complexity of disease determinants, highlighting the importance not only of 
enhancing the speed of detection and response, but also techniques such as horizon scanning, 
which is the identification of hazards on the border of present thinking and planning. 
Response is equally key and requires efficient, rapid and multi-sector incident response 
procedures. Important recommendations and lessons with translatable insights for climate and 
health preparedness may emerge from the UK COVID-19 inquiry. In addition, responding to 
climate change impacts on infectious diseases requires a toolbox of interventions, many of 
which may not be the direct responsibility of public health agencies.  
 
In designing interventions against climate change, the potential for co-benefits should be 
explored. For example, vaccination of animals such as livestock or poultry might not only reduce 
infectious disease risk, but also enhance animal welfare and have a positive influence on farm 
livelihoods. Second, vaccinations could be developed against a broad range of diseases that 
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may be particularly sensitive to climate. Thus, active research is needed to target those climate-
sensitive pathogens, as well as emerging pathogens that might be amenable to controls through 
vaccination. 
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Acronyms and abbreviations 
Abbreviation Meaning 
AMR  anti-microbial resistance 

ECDC  European Centre for Disease Prevention and Control  

EFSA  European Food Safety Authority 
EPHOs  Essential Public Health Operations 

EU/EEA  European Union/European Economic Area 

GHG  greenhouse gases 
HABs  harmful algal blooms 

RSV  respiratory syncytial virus 

SP  shellfish poisoning 
STEC  Shiga toxin-producing Escherichia coli 
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