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the future. Our scientific work is published as summaries and reports, freely available to 
all.  
 
This report is the result of research commissioned by the Environment Agency’s Chief 
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Executive summary 
Methane is an important greenhouse gas, but methane emissions are currently uncertain 
and more information is needed about the emissions from ‘real world’ facilities. This study 
investigated the potential role of inverse dispersion modelling techniques in quantifying 
whole-site routine methane emissions from facilities regulated by the Environment Agency. 

A literature review of inverse dispersion modelling techniques identified a range of 
methods which could be applied to estimate fugitive emissions based on ambient 
concentration measurements. The simplest method uses ground-level measurements 
along a cross-section of a fugitive plume and fits a Gaussian distribution to it, assuming 
ground-level source height. The most complex methods involve adjoint (reversed) 
computational fluid dynamics (CFD) modelling. Intermediate approaches can either 
consider emissions from a whole site as a single combined plume or differentiate between 
individual sources within a site. 

The overall suitability of methods for source types, including landfill, biogas, onshore oil 
and gas, and wastewater sites depends on the source characteristics for each site type, 
especially horizontal extent and height. The surroundings of an individual source, such as 
the presence of other nearby sources, complex terrain or other flow obstructions, can 
restrict the range of suitable methods available. The selection of an inverse dispersion 
modelling method for a particular application should also balance uncertainty, complexity 
and cost. 

The authors make the following recommendations regarding inverse dispersion 
modelling techniques and their selection for a particular application: 

1. The selection of a suitable inverse dispersion modelling method for a particular source 
and application should consider:  

a. source characteristics such as horizontal length scale and likely emission 
height 

b. characteristics of the area surrounding the source such as open or complex 
terrain and/or nearby obstructions to flow, including buildings 

c. the presence of other nearby sources of the targeted pollutant, especially if 
upwind of the planned measurement locations 

d. the appropriate balance of required accuracy/uncertainty and cost 

2. Inverse dispersion modelling methods are currently an area of active research and 
rapid development, driven by improvements in measurement technologies and 
increased availability of computational resources. The Environment Agency should 
continue to assess emerging inverse dispersion modelling methods as they become 
more mature. 
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3. Information about activities at a regulated site should be collected during any short-
term measurement campaign that is to be used with inverse dispersion modelling 
methods, to assess how representative the inverse dispersion modelling results are of 
longer-term emissions. 

4. Data quality thresholds for measurement data which is to be used with inverse 
modelling need to be developed with care, appropriate to each measurement technique 
and inverse dispersion modelling approach. 

5. The main focus of this study was fugitive methane emissions. However, the 
recommendations above would apply similarly to other fugitive gaseous releases. 

To test a selection of inverse dispersion modelling methods, an inverse dispersion 
modelling study was carried out using data obtained from repeated tracer gas dispersion 
method (TDM) surveys of 3 landfill sites (Rees-White and Beaven, 2020). During each 
survey a tracer gas was released from a ground-level location within the landfill site. 
Plume transect measurements of methane concentration and tracer concentration were 
collected at one second intervals by a vehicle driving along downwind roads which 
crossed the plume. Multiple plume transects at various downwind distances were 
measured during each survey. The number of available surveys varied between sites, 
from a minimum of 4 to a maximum of 7. Four inverse dispersion modelling methods were 
selected for the comparison study: 

• 1D Gaussian profiles: Landfill emissions were modelled as a single ground-
level point source using the Atmospheric dispersion modelling system 
(ADMS) (Carruthers and others, 1994) and CERC (2023)), with a mean 
averaging time of one hour, and a simple Gaussian distribution was fitted to 
the downwind plume.  

• Standard Bayesian: Landfill emissions were modelled in ADMS as separate 
volume sources representing different capping/activity areas, with a mean 
averaging time of one second. A Bayesian inverse dispersion modelling 
approach was implemented, including consideration of measurement 
uncertainty and covariances.  

• Modified Bayesian: A modified application of the Standard Bayesian method 
was developed for this study, including measurement uncertainty and 
covariances. Short-term fluctuations in concentration were estimated by 
ADMS using a mean averaging time of one hour and a fluctuations averaging 
time of one second. The inverse dispersion model was applied to the 
measured peak concentration in each plume transect.  

• Backward Lagrangian Stochastic (WindTrax): This statistical model was 
applied to trace large numbers of simulated flow particles backwards from the 
measurement locations to the landfill. This approach was only tested for the 
smallest of the 3 sites due to WindTrax limits on source-receptor distances. 

These methods were applied to the TDM data to estimate the landfill methane emission 
rates during each survey. These estimates were then compared with those from the TDM 
survey report. There was considerable variation between the estimated landfill emissions 
using the different inverse dispersion modelling methods. The method with the closest 
estimates to the TDM method was the novel Modified Bayesian method, which takes 
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account of the short-term concentration fluctuations caused by the plume meandering that 
occurs due to fluctuations in wind speed, wind direction and turbulence. These fluctuations 
are significant on the one second timescale of TDM measurements. The 1D Gaussian and 
Standard Bayesian methods generally estimated much higher emissions, largely because 
they did not account for these effects. The Backward Lagrangian Stochastic (WindTrax) 
method was only used for the smallest site. For this site, WindTrax gave similar estimates 
to TDM for some surveys but also much larger estimates for other surveys. 

If TDM survey data is to be routinely used with modelling and inverse dispersion 
modelling methods, then the authors make the following recommendations for TDM 
survey data collection: 

6. TDM surveys should also collect high quality, high frequency (for example, one second) 
meteorological and turbulence measurements where possible, so that the model input 
can be optimally specified, thereby improving model performance. 

7. TDM surveys should be conducted in atmospheric conditions where the models are 
best able to represent the atmospheric airflow and turbulence. These are conditions 
where both stability effects and wind direction changes are small, which is typically the 
case in near neutral conditions, with moderate wind speeds, consistent wind directions 
and not around sunrise or sunset.  

8. TDM surveys should carry out repeated transects as close as possible to the site, while 
still capturing the whole plume. 

The following recommendations relate to the inverse dispersion modelling 
approaches tested: 

9. The study shows that the Modified Bayesian method performs well and is a viable 
approach to estimating emissions from transect measurements, supporting further 
testing and refinement, with additional TDM survey data sets, prior to routine 
application. The method combines the ADMS dispersion model, which is already widely 
used for regulatory purposes, with a Bayesian inversion approach, which is similar to 
those used by a number of different groups. 

10.  Another modification of the Standard Bayesian approach, not considered in this study 
but recommended for further examination, is to apply an inverse dispersion modelling 
method to the cross-wind plume-integrated concentration, reducing the complexities 
arising from short-term fluctuations.  

11. The suitability of an inverse dispersion modelling method to the high measurement 
frequency (one second) and mobile nature of TDM survey data should be considered 
when selecting an inverse dispersion modelling method for use with TDM data.        

12.  A robust procedure is required for assessing each TDM survey transect in terms of its 
suitability for the chosen inverse dispersion modelling method. The procedure will 
depend on the inverse dispersion modelling method, but should take the limitations of 
the method into account. For example, the Standard Bayesian method requires the 
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modelled plume position to match the measured plume position, which may not be the 
case for all transects within a survey. 

13.  The inverse dispersion modelling study focused on emissions from one type of facility 
(landfill) using one type of measurement data (tracer gas plume transect 
measurements). Measurements made using a wider range of methods and around 
other types of facilities would be required to compare additional inverse dispersion 
modelling techniques. 

14.  The inverse dispersion modelling study found that the whole-site emissions calculated 
by the 1D Gaussian, Standard Bayesian and Modified Bayesian methods were 
unaffected by the choice of TDM survey used to provide the initial emission rate. This 
suggests that a method involving only one TDM survey combined with inverse 
dispersion modelling, and repeated or continuous methane and meteorological 
monitoring at other times of year, would be sufficient to provide a good estimate of 
annual landfill methane emissions. The recommended time to carry out the annual 
TDM survey would be when landfill emissions are expected to be relatively high, 
subject to the meteorological considerations set out in (7) above. 

15.  On the basis of (14) above, it is recommended that the Environment Agency considers 
further case studies and worked examples in order to develop a practical, ‘user-friendly’ 
protocol for site operators that sets out a typical annual sequence of measurements, 
inverse dispersion modelling and analysis for quantifying methane emissions at a 
regulated site. 
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1. Introduction 
Methane is an important greenhouse gas, but methane emissions are currently uncertain 
and more information is needed about the emissions from ‘real world’ facilities. The 
Environment Agency commissioned an investigation into the potential role of inverse 
dispersion modelling techniques in quantifying whole-site routine methane emissions from 
nationally regulated facilities. This investigation aimed to: 

• identify available inverse dispersion modelling techniques 
• assess the suitability of inverse dispersion modelling techniques for different 

regulated source types 
• test some inverse dispersion modelling techniques in comparison to existing 

landfill methane emissions measurement methods 
• recommend possible inverse dispersion modelling techniques for long-term 

quantification and regulation of fugitive emissions 

Fugitive emissions of methane are associated with a range of different source types, 
including landfill, biogas (anaerobic digestion), onshore oil and gas (OOG) and wastewater 
treatment. OOG methane emission sources and associated measurement techniques 
have been described in a previous Environment Agency study (SC210006/R, 2022). 
Where measurements are taken at sufficient distance downwind for individual releases to 
have merged into a single plume, the geometry of whole-site emissions is often simplified 
and treated as a point source for inverse dispersion modelling. However, in practice, 
fugitive emissions are likely to comprise a mixture of point (leak) and area 
(seepage/evaporation) emission geometries, for example, as described by Abichou and 
others (2010) for landfill sites: 

“Emissions from the landfill surface can be a combination of three distinct 
patterns. One emission pattern consists of a single high-emitting source, 
such as a hot spot associated with a crack and other defects in the soil 

cover. This pattern can also be due to leaking gas collection wells at the 
pipe intrusion or in the pipe fittings. A second pattern consists of multiple 
hot spots randomly located along the surface. A third emission pattern 

consists of uniform emissions from the entire landfill surface associated 
with concentration gradient and pressure difference across the landfill 

cover.”  

Standard dispersion modelling calculates pollutant concentrations produced by a source 
with a known emission rate. Inverse dispersion modelling reverses these calculations to 
estimate unknown emission rates from measured downwind pollutant concentrations. 
Local measurements and inverse dispersion modelling approaches could, therefore, 
contribute to improved emission estimates for regulated facilities. However, the 
mathematical challenge of inverse dispersion modelling to find emissions locations and/or 
emission rates from concentration measurements can form an “ill-posed problem” when 
fewer measurements than parameters to find are available and multiple solutions may 
exist (Borowski and Borwein, 1989). It can also behave as an unstable or ‘ill-conditioned’ 
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problem, where small changes in input parameters can cause big changes in outputs. 
Therefore, it is important for approaches to be tested for sensitivity to inputs and resulting 
output uncertainties. There are also challenges where measurements are taken during 
short-term campaigns but are used to quantify longer-term emissions, if the emissions are 
expected to vary with time. 

This project began with a literature review of different inverse dispersion modelling 
approaches that have been used to quantify fugitive emissions of methane and other 
gases from point and area sources from concentration measurements. It then considered 
which of these methods are suitable to apply to source types regulated by the 
Environment Agency and tested a selection of these methods. Finally, some 
recommendations relating to inverse dispersion modelling approaches have been 
compiled. 

Section 2 of this report lists available inverse dispersion modelling techniques identified 
through a literature review, presenting a method description for each technique, along with 
information about data requirements, constraints and uncertainties. Section 3 describes 
some common challenges which apply to many of the available inverse dispersion 
modelling techniques. The applicability of inverse dispersion modelling techniques to 
different source sectors is discussed in section 4. Section 5 describes the testing of 
selected inverse dispersion modelling techniques, using data supplied by the Environment 
Agency. Recommendations for further use of inverse dispersion modelling and the 
production of standard methods are proposed in section 6. 
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2. Inverse dispersion modelling 
techniques 
2.1. Literature review scope and context  
This section is derived from a literature review of available inverse dispersion modelling 
techniques. The review was carried out with an initial online search of journal articles, with 
relevant references followed up from leading papers. A small number of relevant reports 
and articles were recommended by the Environment Agency. The review is not intended to 
give an exhaustive list of studies, but to form a representative survey of reported 
techniques with examples of their development and application. More detailed information 
is included for techniques where a wider range of studies have been identified. 

The literature review focused on emissions, dispersion and measurements in outdoor air, 
although examples of inverse dispersion modelling were also found relating to gas 
transport in soil (Jung and others, 2011) and within buildings (Sohn and others, 2002). 
This review considers techniques which are appropriate for identifying and quantifying 
individual or local sources (extending up to a few kilometres) rather than regional or global 
inventories, as considered by Hartley and Prinn (1993), Cui and others (2015), Henne and 
others (2016) and the IMPLiCIt project (O’Dowd and others, 2020). This study is primarily 
focused on deriving routine emissions, matching the Environment Agency’s regulatory 
interests, although some techniques were originally developed in the context of 
emergency releases. 

The rest of this section outlines some general principles of inverse dispersion modelling to 
give context to the information about specific techniques in sections 2.2 and 2.3. Section 
2.1.1 describes the early history of inverse dispersion modelling and identifies some 
helpful reviews of multiple techniques. General data requirements for inverse dispersion 
modelling are discussed in section 2.1.2. Optimisation methods are generally used in 
combination with inverse dispersion modelling, in order to find the ‘best’ combination of 
emissions to fit the measured concentrations; a selection of common optimisation methods 
is described in section 2.1.3. Section 2.1.4 summarises the aims of inverse dispersion 
modelling in relation to total emissions from a site or identifying individual sources within a 
site. 

2.1.1. Applications of inverse modelling 

Early applications of inverse dispersion modelling and emissions estimation were 
developed in relation to emergency response modelling, as reviewed by Rao (2007). 
Volcanic emissions have also been a key driver for the development of emissions 
estimation methods, for example, as described by Boichu and others (2013). Trégourès 
and others (1999) and later Babillotte and others (2010) compared methods of estimating 
landfill emissions using measurement methods, including some simple inverse dispersion 
modelling. A review by Mønster and others (2019) gives a helpful overview of a wide 
range of different methods for measuring landfill methane emissions, including advantages 
and disadvantages, with some consideration of associated inverse dispersion modelling 
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techniques. Yeşiller and others (2022) also considered and compared multiple methods for 
assessing landfill methane emissions. There is considerable overlap between the 
measurement techniques used for landfill emissions and those suitable for onshore oil and 
gas (OOG) facilities identified in the Environment Agency’s project report SC210006/R 
(EA, 2022). Fewer studies have been identified relating to biogas or wastewater 
emissions. 

2.1.2. Inverse dispersion modelling requirements 

All inverse dispersion modelling methods have aspects in common, such as the 
requirement for sufficient measurement data, generally at multiple locations. Near-field (<1 
km from source) or far-field measurements are suited to different modelling techniques, as 
are short-term and long-term measurement campaigns. Different approaches also have 
varying requirements for the timescale and sensitivity of measurements, relative to 
turbulent fluctuations; travel speed of measurement equipment for mobile measurement 
approaches; and/or expected variation in source properties. For example, plume transect 
approaches, where measurements are taken moving through a plume approximately 
perpendicular to the wind direction, require measurements at a temporal resolution which 
can resolve the changing concentrations as the sensor moves through the plume. The 
faster travel speed for airborne sensors compared to ground vehicle-based sensors 
requires higher measurement frequencies for the sensors used in airborne applications, 
usually associated with higher costs. However, the temporal resolution on which emissions 
variations can be captured is often limited by the time taken to traverse the plume, while 
there is also a need for multiple measurements/transects to reduce uncertainties. 

2.1.3. Optimisation methods 

Many inverse dispersion modelling techniques require optimisation methods to find the 
best combination of source properties and dispersion for matching measured data. 
Optimisation procedures use a cost function, in the simplest case the difference between 
modelled and measured concentrations, and an iterative method for adjusting source 
parameters to reduce the value of this cost function. Cost function values may be allowed 
to increase between some iterations of the optimisation in order to allow the solution to 
move away from local minima towards an overall (global) minimum of cost function. 
Examples of optimisation algorithms which have been applied within inverse dispersion 
modelling include:  

• non-negative least squares, which iterates through solutions fitting the non-
negative criterion towards lower values of a quadratic cost function. This 
requires an assumption that all parameters have Gaussian probability 
distributions 

• genetic algorithms, where an initial selection of possible input parameter 
values are tested, then ‘successful’ configurations are combined and modified 
to define properties for subsequent iterations. This approach was inspired by 
evolutionary processes of genetic variation, reproduction and natural selection 

• simulated annealing, which by analogy with controlled metal cooling or heat 
treatment processes allows increases in cost function between some 
iterations, in order to be able to escape local minima in the set of possible 
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solutions and find a global minimum of the cost function. Increases in cost 
function are more likely to be accepted between earlier than later iterations 

Markov Chain Monte Carlo algorithms are an approach to deriving the probability 
distribution for source parameters. Monte Carlo analysis refers to a process of modelling 
large numbers of possible solutions, then repeatedly taking random samples from the full 
set of solutions in order to derive probability distributions of the output relative to input 
parameters. The resulting probability distributions may take any form. The Markov chain 
approach makes the selection of the next sample for Monte Carlo analysis dependent on 
the current sample. This approach covers the full probability distribution more efficiently 
than standard Monte Carlo by reducing the number of samples (model configurations) 
required, especially for problems with large numbers of input variables. Markov Chain 
Monte Carlo techniques have also been applied as an optimisation approach for finding 
the most likely combination of source parameters to match an observed pattern of 
concentrations, with associated uncertainties. 

2.1.4. Aims of inverse dispersion modelling 

Existing inverse dispersion modelling techniques have been developed with varying aims, 
in relation to (a) total emissions across a combined source area, and/or (b) more detailed 
location and emission identification within a group of sources. While the current project is 
targeted at improving the representation of whole-site emissions, techniques which allow 
consideration of within-site variation may also help to improve understanding of onsite 
processes. Measurements suitable for determining within-site emissions are likely to be 
made closer to the source(s), before a composite plume has formed, leading to stronger 
but less homogeneous signals. For whole-site methods, a balance must be found between 
i) measurements made nearer to the source, with stronger signals but more heterogeneity, 
which may lead to a poorer estimate of the whole site emissions, or ii) measurements 
made further from the source, with more homogenous plumes but weaker signals, which 
may be harder to distinguish from background or other sources. The optimal balance 
would minimise the uncertainty in the resulting total emission. 

The following discussion is divided into methods generally used for determining (a) total 
site emissions (section 2.2), and for (b) distinguishing individual emissions sources within 
a site (section 2.3). Within the sections, approaches are described in approximate order of 
increasing complexity. The data required, constraints on application and uncertainty of 
resulting emissions estimates have been summarised for each approach. Section 2.4 
covers additional approaches for calculating emissions from concentration measurements 
without explicit dispersion modelling. 

In general, the inverse dispersion modelling approaches for whole sites use less complex 
mathematical approaches than methods which attempt to identify sources within sites. In 
principle, approaches capable of within-site application could also be used to determine 
total emissions. Similarly, some whole-site methods could possibly be applied separately 
to individual well-spaced sources from a single large site. Within-site methods can be 
valuable for identifying a specific significant source among other more diffuse emissions, 
such as a leak from pipework at an OOG site. 
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2.2. Whole-site inverse dispersion modelling methods 
Inverse dispersion modelling methods applied to measure and derive whole-site fugitive 
emissions include: 

• horizontal plume transect measurements with 1D Gaussian profile fitting 
• 2D vertical plane measurements with bi-Gaussian fitting 
• airborne mass balance measurements  
• single point measurements sampling a plume transect from varying wind 

directions  
• Gaussian dispersion modelling using direct search with simulated annealing 

Each of these approaches is described in the following sections. 

2.2.1. Horizontal plume transects with 1D Gaussian profile fitting 

Method description  

Whole-site emissions are estimated by fitting a simple Gaussian profile to horizontal near-
ground plume transect measurements, typically using least-squares fitting. This method 
was described by the US Environmental Protection Agency (EPA) OTM 33a methodology 
(Thoma and Squier, 2014). It was applied to Walleys Quarry Landfill in the SC210019 
report (Rees-White and Beaven, 2022), with transects carried out at 3 downwind 
distances, comprising measurements of methane and hydrogen sulphide. Fredenslund 
and others (2019b) used it as a screening method for categorising methane emission rates 
from closed landfill sites in Denmark. It has also been applied to UK biogas plants, for 
example, by Bakkaloglu and others (2021). 

Data required  

Concentration measurements are made with vehicle-based equipment driven along roads 
approximately perpendicular to the wind direction and sufficiently downwind for a 
combined plume to have formed from all on-site sources. The measurements should 
capture the full horizontal extent of the plume from the targeted site, with a clear increase 
in concentrations above local background levels when measurements proceed across the 
plume from its edge to its centre. 

Simultaneous meteorological data are required to identify the wind direction and 
atmospheric stability for Gaussian profile fitting.  

Data from multiple plume transects (at different distances from the site and/or repeated 
measurements from the same distance) are recommended for reducing uncertainties, for 
example, Fredenslund and others (2019b) used 4 transects for each site.  
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Constraints  

Sources should be isolated from other emissions of the targeted pollutant (for example, 
methane), as in the simplest implementations no consideration is given to concentrations 
upwind of the site. It may not be possible to fit a Gaussian profile to measurements 
influenced by multiple distinct sources. 

Emissions from the targeted site must generate concentrations which form a detectable 
plume at the transect road. Bakkaloglu and others (2021) were able to detect methane 
plumes from only 10 biogas sites out of 56 surveyed. The authors suggest that 
measurements could not be made close enough to 8 sites, 7 did not have suitable wind 
direction for plumes to be detected at public roads during the survey, and 9 were too close 
to other methane sources to have simple Gaussian plume shapes. 22 sites had suitable 
access and favourable atmospheric conditions (possibly only considering wind direction) 
during the surveys, but may not have been operating/emitting at the time of the survey. 
The lack of measured signals leading to sites being excluded from the study could also be 
due to plumes emitted at height not dispersing down to the near-ground measurement 
height. 

Caulton and others (2018) suggest that measurements should be made within 300m of the 
site, partly in order to make sure that measured plumes could be associated with a specific 
visible (OOG) site, although this may be too close for a combined plume to have formed 
for larger sites. Fredenslund and others (2019b) made measurements at distances of 
100 m to 2,200 m from closed landfill sites, with measurements required closer to lower-
emitting sites due to detection limits. 

Meteorological conditions should be broadly uniform for the duration of each transect, to 
ensure that measurements cover a full plume and are representative. Emissions are 
assumed to be constant on the timescale of a single transect (15 minutes or more). The 
precise limits for meteorological variability will depend on the details of the specific source 
and study, such as the source size and downwind distance to the transect measurement 
locations. 

The simplified Gaussian plume expressions used to calculate emission rates tend to 
assume that the source, plume centreline and measurement heights are all identical. This 
assumption is reasonable for near-ground non-buoyant releases and near-ground 
measurements except in highly convective meteorological conditions. It is not suitable for 
buoyant releases (for example, flares) or releases with substantial initial vertical 
momentum (for example, tank depressurisation). USEPA OTM33 suggests that this 
method should not be used with source heights of more than 25 feet (7.6 m) due to the 
chance of the plume centreline passing over the measurement equipment. Some authors 
have extended the method to include the effect of source height, such as Bakkaloglu and 
others (2021). 

The simplified Gaussian plume dispersion assumptions are best suited to sources located 
in flat, open terrain. 
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The Gaussian plume dispersion assumptions are not applicable in very low wind speed 
conditions, for example, < 0.75 ms-1 at 10 m above ground, where mean wind speed may 
be similar to turbulent fluctuation velocities in the along-wind direction, and mean wind 
directions have greater uncertainty.  

The labour-intensive measurement method and restrictions on suitable meteorological 
conditions mean only intermittent short-term measurements tend to be available for this 
approach.  

Uncertainty  

Fredenslund and others (2019b) used this method for screening emission rates from 
Danish landfill sites, but found low accuracy compared to tracer dispersion methods 
(section 2.4.1). They estimated emissions by fitting a Gaussian plume to measurements 
made along a 1D transect, and found that the estimates from fitting were 72% of those 
derived from tracer dispersion. They found the estimated emission rates were sensitive to 
the assumed stability parameters; input wind speed and direction; land surface type 
(‘urban’ or open); and source-measurement distance. The relative uncertainty in source-
measurement distance is greater for measurements made close to site boundaries than 
those made further downstream. The minimum detectable emission rate varies with 
measurement equipment, atmospheric conditions and downwind measurement distance, 
with an average value of 0.15 kg hour-1 across all sites in this study. 

Bakkaloglu and others (2021) attempted to calculate methane emission rates from all UK 
biogas plants based on their survey of 32 sites, with 10 detected plumes. They generated 
a lower bound estimate by assuming that the 22 sites with no detected plume had no 
emissions, and an upper bound estimate by assuming that all sites emit similarly to the 10 
sites with detected plumes. 

2.2.2. 2D vertical plane measurements with bi-Gaussian fitting 

Method description  

A similar approach to horizontal plume transects (section 2.2.1) but with measurements 
expanded to cover a 2D plane is sometimes referred to as ‘vertical radial plume mapping’ 
(VRPM). This approach is described in the US EPA OTM 10 methodology (Thoma and 
others, 2010). The approach aims to measure mass flux through a virtual vertical plane 
downwind of a site, approximately perpendicular to the plume centreline, with fitting of bi-
Gaussian profiles to the planar profiles to estimate emissions. The use of vertical plane 
measurements may be more likely to capture plume centrelines in conditions where the 
plume centreline is above ground, provided that the vertical plane is sufficiently large to 
capture the full extent of the plume. However, the VRPM analysis assumes that the 
vertical peak concentration is located at ground level. Optical measurement techniques 
and smooth basis function minimisation fitting have been used with this method as 
described by Hashmonay and Yost (1999), Hashmonay and others (2001), and Wu and 
others (2014), all with open-path Fourier transform infrared spectrometer measurements. 
Shah and others (2019) and follow-up work in Shah and others (2020) describe a similar 
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approach but with measurements from an unmanned aerial vehicle (UAV) connected to a 
ground-based sensor and least squares Gaussian fitting.  

Data requirements 

Vertical plane measurements of concentration are required. Ideally, the measurement 
plane should cover the full 2D cross-section extent of the targeted plume. However, this 
can be challenging for large landfill sources. The US EPA methodology suggests that the 
area source length scale (for example, largest across-source distance) should be <75% of 
the horizontal extent of the measurement plane, with a distance from the source also 
<75% of the measurement plane horizontal extent. Simultaneous meteorological 
measurements are required for flux calculations, ideally including wind speeds at multiple 
heights.  

Constraints  

Similar to the 1D plume transect and Gaussian fitting method described in section 2.2.1, 
this method requires relatively consistent meteorological conditions throughout the 
measurement period, so that the measurement plane remains downwind for fixed optical 
measurements or during the time taken to traverse the measurement plane for UAV 
measurements. 

Emissions are assumed to remain constant during each measurement period. Optical 
methods can scan the measurement plane in a few minutes, but measurements from 
several scans are generally combined to reduce uncertainties, giving an effective 
measurement period of around 15 minutes. Shah and others (2020) report UAV-based 
measurement survey periods of 8 to 9 minutes. 

Optical measurement equipment could be left in place for long-term measurements, but 
would only provide useful data for wind directions and meteorological conditions where the 
plume is fully captured in the measurement plane, while UAV measurements are only 
available for short-term traverses. 

Assumptions can be required to represent concentrations below the base of the 
measurement plane, which is likely to be higher above ground for UAV-based sensors 
than for optical approaches. 

Sources should be isolated from other emissions of the targeted pollutant (for example, 
methane), as, by default, no consideration is given to concentrations upwind of the site. 

It may not be possible to fit bi-Gaussian profiles to measurements influenced by multiple 
distinct sub-sources within the overall area of the target source. 

The simplified Gaussian plume dispersion assumptions are best suited to sources located 
in flat, open terrain. 

The Gaussian plume dispersion assumptions are not applicable in very low wind speed 
conditions, for example, <0.75 ms-1 at 10 m above ground, where mean wind speed may 
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be similar to turbulent fluctuation velocities in the along-wind direction, and mean wind 
directions have greater uncertainty.  

In strongly convective atmospheric conditions, the increased vertical mixing may cause 
difficulty with capturing the full vertical extent of the plume in the measurement plane. 

UAV safety considerations would prevent this method being used with UAV 
measurements in high wind speeds, for example, >6 to 10 ms-1 at the survey height. 

Uncertainty  

Abichou and others (2010) explore the uncertainties of this method in relation to simulated 
landfill sources, in particular describing challenges with:  

• sources which are larger than the extent of the measurement plane 
• sources located too close to or far from the measurement plane, such that 

plumes are not well formed or concentrations are close to sensor detection 
limits 

• and/or plumes not fully covered by the measurement plane due to wind 
direction shift 

There can be additional uncertainty in this approach where separate plume signatures are 
found in the plane, not well matched to the bi-Gaussian assumptions. Abichou and others 
(2010) estimated uncertainties as: 

• -34% to 190% due to spatial heterogeneity of source emissions, estimated 
from data simulating dispersion from 2 small sources at increasing separation 
distances (the tendency to overestimate total emissions may relate to the 
fitting of a single-peaked bi-Gaussian profile to the twin-peaked 
‘measurements’) 

• ±20% due to change in wind direction during testing 

• ±10-30% due to estimates of area contributing to flux, a function of 
atmospheric stability class 

Hashmonay and others (2001) found a tendency for the vertical plane measurement 
method with optical measurements to underestimate emissions from controlled releases 
by 10 to 15%. Shah and others (2020) report uncertainties from -83% to +127% with UAV-
based measurements, with again a small tendency to overestimate controlled release 
emissions. 

Thoma and others (2010) excluded cases from a database of controlled releases where: 

• the plume centreline was close to the edge of the measurement plane, defined 
as within 20% of the horizontal plane length from an edge, such that the plume 
was incompletely captured in the plane  

• the wind direction led to a plume centreline approaching the measurement 
plane at an angle >60° from perpendicular, leading to increased uncertainty in 
the plume capture 
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2.2.3. Airborne mass balance 

Method description 

A further extension to the approach of planar plume cross-section measurements 
(described in section 2.2.2) has used aircraft-mounted sensors to calculate mass balance 
between flux through upwind and downwind sides of a cylindrical or spiral flight-path 
above and encircling the source. In the simplest form it is not strictly an inverse dispersion 
modelling technique, but it can be used in combination with plume fitting methods in order 
to form a more complete representation of downwind concentrations and a better estimate 
of emission rates. This approach has been described by Nathan and others (2015), 
Conley and others (2017) and Yeşiller and others (2022). The explicit measurement of 
upwind concentrations allows this method to be used for sites with other nearby sources, 
as long as the aircraft trajectory can distinguish the different plumes. It is also likely to be 
best suited to sources with larger length scales (for example, >1 km) and higher emission 
rates when using crewed full-scale aircraft. 

Data requirements  

Measurements are made with airborne concentration sensors with simultaneous flight data 
and wind speed measurements. The travel speed of aircraft requires high-frequency 
measurement equipment to resolve plumes. Conley and others (2017) determined that 20 
to 25 measurement circuits around the plume are needed to produce a statistically stable 
estimate of emission rate. 

Constraints  

The minimum measurement height associated with aircraft, especially crewed aircraft, can 
make it difficult to capture pollutant transport near ground accurately. This makes this 
method best suited for sources and/or meteorological conditions where emissions rise 
above the ground. 

The use of aircraft means that measurements are only available for short-term traverses. 
Nathan and others (2015) used a battery-powered UAV (model aircraft) for flights of 
around 6 minutes duration, making 4 to 8 circuits of the targeted source (OOG compressor 
station) in each flight. For crewed aircraft, the measurement time is likely to be determined 
by cost constraints. In both cases, it would not be possible to assess longer-term 
emissions variation with this approach.  

Emissions are assumed to remain constant throughout the measurement period 
(approximately one hour in Conley and others (2017)). 

Aircraft safety requirements could prevent this method being used in very strong winds. 
For UAV, this limit may be >6 to 10 ms-1 at the maximum measurement height. 
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Uncertainty  

Cambaliza and others (2017) report emission rate ranges suggesting uncertainties of 
±50%, while earlier work from the same group estimated uncertainties from this method at 
around ±30% (Cambaliza and others, 2014). Conley and others (2017) aimed to specify 
emission rates with this method to within ±20%. Nathan and others (2015) estimated 
uncertainties in emission rates of ±55% through statistical analysis. This is within the range 
reported by Shah and others (2020) for 2D plane measurements using UAV. 

2.2.4. Stationary plume transect from single location measurements 

Method description  

An alternative approach to analysing a 1D plume transect has been developed using high-
frequency single location measurements with simultaneous high-frequency wind direction 
measurements in order to measure a cross-plume profile as the wind direction varies 
across the sensor. This approach is also part of the USEPA OTM 33A methodology 
(Thoma and Squier, 2014), and has been applied by Brantley and others (2014), Lan and 
others (2015) and Foster-Wittig and others (2015).  

Data requirements  

High-frequency simultaneous concentration and wind measurements, including turbulent 
intensity and standard deviation of wind direction are required. Mobile measurement 
equipment allows a suitable location for stationary measurements to be selected by first 
driving along a downwind transect and stopping near the location of the peak 
concentration for a longer stationary measurement period. The analysis for calculating the 
emission rate is carried out on the stationary measurements rather than the initial mobile 
survey. 

Constraints  

The measurement location needs to be broadly downwind, but the wind direction needs to 
be sufficiently variable during the measurement period to allow sampling of a full 
crosswind plume profile. 

Emissions are assumed to be constant during each measurement period (approximately 
20 minutes). 

Simplified Gaussian profile assumptions also limit the range of meteorological conditions 
for which this approach is applicable, for example, Gaussian plume assumptions are not 
valid in very low wind speed conditions (<0.75 ms-1 at 10 m above ground).  

Similar to 1D transect measurements with moving sensors (section 2.2.1), there is an 
implicit assumption of identical source, plume centreline and receptor heights, which is not 
robust for all fugitive source types or in strongly convective atmospheric conditions. 
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This type of measurement could be carried out on a long-term basis, but might need 
multiple measurement locations surrounding a site in order to capture useful data in a 
wider range of wind directions. 

Uncertainty  

An uncertainty analysis for this approach in relation to known releases was carried out by 
Edie and others (2020). They found errors in estimated emissions of -75% to 50% for 
idealised releases in open terrain, but -60% to 170% for releases from simulated OOG 
equipment. Larger percentage errors were generally related to smaller emission rates 
(<0.5 kg hour-1), with a tendency to overestimate smaller releases. More than 85% of the 
estimated emission rates were within ±50% of the known value. 

Lan and others (2015) also explored uncertainties in emissions estimates from this 
approach using Monte Carlo sampling with varying input parameters, and comparisons of 
the derived emissions with controlled releases. Their calculated uncertainties in emission 
rates range from -28% to 81% for different OOG well pad sites, with uncertainties up to a 
factor of 3 for larger emitting OOG sites (compressor stations). 

Brantley and others (2014) used a 3-part data quality filtering process, requiring peak 
concentration within ±30° of source direction; average in-plume concentration greater 
than 1 ppm; and a Gaussian fit with R2 >0.80. 77% of their controlled release 
measurements and 71% of field study measurements met these criteria. Using this 
filtering, the authors found errors in emissions compared to controlled releases in the 
range -60% to 52%, with 72% of emission rates within 30% of the known rate. 

Uncertainties found for controlled releases from point sources may be lower than those 
that would apply to real-world area sources, which are less likely to generate clean 
Gaussian concentration profiles. 

2.2.5. Gaussian plume modelling with direct search 

Method description  

Thomson and others (2007) aimed to locate and estimate the emissions of a fugitive 
source in desert surroundings based on a small number of measurement locations. They 
used a simple Gaussian representation of dispersion from a grid of possible source 
locations with an iterative direct search algorithm to explore possible source distributions. 
The direct binary search method was developed in the context of hologram image 
processing (Seldowitz and others, 1987). It involves randomly perturbing one image 
component and evaluating the resulting cost function change to identify improvements. 
Thomson and others (2007) combined direct search with the simulated annealing 
optimisation approach to minimise the cost function of modelled concentrations compared 
to measurements. 
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Data requirements  

A spatial array of concentration measurements within or around the source area are 
required. Thomson and others (2007) used the same measurement equipment for 15 
minutes at each of 7 downwind locations in turn; this approach requires consistent 
meteorological conditions throughout the ~4hour overall measurement period. 

Constraints  

Care is required to define a suitable cost function which does not lead to spurious source 
locations related to noise in the measurement data set; these authors implemented cost 
functions which prioritise smooth distributions and minimise total emissions.  

The use of simplified Gaussian dispersion expressions limits the meteorological conditions 
in which this approach could be applied. For example, Gaussian plume assumptions are 
not valid in very low wind speed conditions (<0.75 ms-1 at 10 m above ground).  

It is likely to have higher computational expense than the simple 1D or 2D Gaussian fitting 
approaches. More than 4 million iterations of the search algorithm were required to 
reconstruct a source grid defined using 16 x 16 cells. 

The approach of moving measurement equipment between different sites can require 
consistent meteorological conditions over long time periods. 

Uncertainty  

Thomson and others (2007) focused on the qualitative location of a controlled release and 
did not quantify the calculated emission or associated uncertainty. 

2.3. Within-site inverse dispersion modelling methods 
Methods used to distinguish emissions sources within a site with inverse dispersion 
modelling include:  

• high-resolution spatial survey monitoring 
• Backward Lagrangian stochastic approaches following backward trajectories 

of ‘parcels’ of air from sensors to likely source locations 
• semi-analytical inverse Gaussian plume approaches 
• Bayesian frameworks incorporating Gaussian plume or Lagrangian dispersion 

models 
• Gaussian plume modelling with genetic algorithm optimisation 
• adjoint modelling in complex flow fields 
• machine learning 

Each of these approaches is described in the following sections. 
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2.3.1. High-resolution spatial survey monitoring 

Method description  

Golston and others (2018) describe a conceptually simple approach to identifying and 
quantifying fugitive emissions based on high resolution spatial surveying with UAV-
mounted sensors. The measurements are post-processed using simple identification of 
peak concentration locations. Emission flow rates are estimated by inverse correlation with 
wind speed. The approach of associating emission rates with wind speed includes an 
implicit modelling assumption of steady state dispersion. This is a relatively new approach 
with the emerging technology of UAV sampling, so has not yet been widely implemented. 

Data requirements 

High-resolution (<1 m) spatial survey(s) of concentrations above source of interest, with 
simultaneous meteorological data are required. The approach of measuring very close to 
sources, where concentrations are highest, has lower requirements for measurement 
equipment sensitivity than measurements further downstream. 

Constraints  

The small areas covered in each high-resolution survey flight, for example, 12 x 12 m, 
limited by UAV flight times, would suit small source areas and might not be easily 
extended to large landfill sites. 

Improved spatial accuracy of leak detection was found by combining concentration 
measurements from multiple flights. 

The use of UAVs limits this approach to short-term survey measurements. 

UAV safety considerations would prevent this method being used in high wind speeds, for 
example, >6 to 10 ms-1 at the survey height. 

Uncertainty  

Golston and others (2018) identified strong sensitivities of the derived source location to 
errors in measurement positions and the quantity of measurement data available. The 
estimated emission rates showed different sensitivities to input bias and/or noise in 
development and validation test scenarios. Estimated flow rates were reported within 25% 
of controlled releases. 

2.3.2. Backward Lagrangian stochastic approaches 

Method description  

Lagrangian flow models track ‘particles’ of air to generate flow trajectories, and can be 
used to calculate ‘backward’ trajectories from measurement locations to identify fluxes 
from likely source area(s). This backward Lagrangian stochastic approach is used in the 
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WindTrax2.0 software1, with some simplified representations of atmospheric turbulence, 
as described by Flesch and others (1995, 2004), and further applications by Gao and 
others (2008), Riddick and others (2017) and You and others (2021). Bühler and others 
(2022) applied this method to biogas and wastewater sources, including testing 
assumptions about whole-site or within-site emissions. This approach can be applied to 
total site emissions or to distinguish within-site sources, although separating nearby 
sources can be challenging, whereas the total emissions may be more reliably estimated. 

Data requirements  

Concentration measurements from at least as many locations as sources with unknown 
emissions are required. For example, if there are 4 separate suspected leak sources 
within an industrial site, measurements from at least 4 monitoring locations would be 
required to calculate emissions from each leak. For whole-site applications, only one 
downwind measurement location is required. However, using measurements from multiple 
locations may increase confidence in the resulting emissions and/or allow calculations to 
proceed for a wider range of wind directions. 

Meteorological conditions to define mean wind flow, atmospheric stability and surface 
roughness length. Averaging periods of 15 to 30 minutes are typical. This approach could 
be used with either short-term or long-term measurement data. It can use transect or 
optical linear measurements as well as individual point measurements. Bühler and others 
(2022) used linear optical measurement data both upwind and downwind of the targeted 
sites to help separate targeted emissions from other nearby sources. 

Constraints 

The flow calculations are likely to fail in low wind speed and/or very stable conditions. 
Riddick and others (2017) excluded periods from modelling when the measured wind 
speed (at 2 m above ground) was below 0.15 ms-1. Flesch and others (2004) found 
reduced accuracy of emissions estimates with surface friction velocity (u*) below 0.15 ms-1 
and/or with magnitude of Monin-Obukhov length below 2 m. 

If no concentration measurement locations are predicted to be influenced by a particular 
source, no emissions estimate can be made for that source. 

If there are flow obstructions such as buildings and/or fences between sources and 
measurement locations, a distance of at least 10 to 15 obstacle heights between sources 
and measurement locations is recommended. 

 

 

1 Freely available from http://www.thunderbeachscientific.com/, however the software 
licence conditions require permission from the developers for any commercial application. 

http://www.thunderbeachscientific.com/
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WindTrax documentation recommends that the maximum distance between source(s) and 
sensor(s) should be approximately one kilometre. 

Uncertainty  

Uncertainties in estimated emission rates arise primarily due to inaccuracies in the input 
wind speed and stability class data used to characterise dispersion. WindTrax divides 
particles into 10 subgroups and calculates the model error from the standard deviation of 
mean values derived from each subgroup. Using more computational particles reduces the 
standard error reported by the model but increases computational time. For example, the 
study reported in section 5 used 1,000,000 particles for both forward (point source) and 
backward (area source) modelling within WindTrax, with average run times of almost 2 
hours per model calculation. These run times were too long to allow repeated sensitivity 
runs. 

Flesch and others (2004) report an uncertainty of ±36% in calculated emission rates 
compared to a controlled small area source release. 

Bühler and others (2022) compared total emissions estimates calculated using either a 
single source to represent a wastewater site or more detailed modelling with multiple 
sources. They found differences of up to 43% in the total emissions between these 2 
approaches, giving an indication of the level of uncertainty associated with simplifying site 
emissions to a single source. 

2.3.3. Semi-analytical Gaussian plume inverse dispersion modelling 

Method description  

Semi-analytical approaches have been used to calculate inverse Gaussian plumes for 
multiple sources and receptors, for example, using a linear least squares solution as 
reported by Lushi and Stockie (2010) using deposition measurements. This approach uses 
known or assumed source locations (for near-ground and/or elevated sources) and aims 
to quantify emission rates. A similar approach was extended by Hosseini and Stockie 
(2016) to allow time-varying emissions with mixed receptor timescales, using Markov 
Chain Monte Carlo optimisation in a Bayesian framework to find the best set of emissions 
compatible with available measurements.  

Data requirements  

This approach can be used with either short-term or long-term measurement data. It has 
been used with deposition measurements as well as concentration data. It requires 
pollutant measurements from multiple locations, along with meteorological data. 

Constraints  

The use of somewhat simplified Gaussian dispersion, with discrete stability classes, may 
increase uncertainty in strongly convective or stable conditions. Hosseini and Stockie 
(2016) assumed constant neutral stability throughout their modelling period and showed 
substantial sensitivity of the derived emission rates to this assumption. 
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The simplified Gaussian plume dispersion assumptions are best suited to sources located 
in flat, open terrain. 

The Gaussian plume dispersion assumptions are not applicable in very low wind speed 
conditions, for example <0.75 ms-1 at 10 m above ground, where mean wind speed is 
similar to turbulent fluctuation velocities in the along-wind direction, and mean wind 
directions have greater uncertainty. 

Fugitive emissions from area sources are approximated by a single point source at the 
area centroid. 

Uncertainty  

When testing the method with synthetic data, Hosseini and Stockie (2016) found that the 
mean emission rate and time-variation of sources with larger emissions magnitudes were 
identified more accurately than sources with lower emission rates. They estimated an 
uncertainty range of ±15-18%. This is likely to be lower than would be found with more 
complex real data. 

2.3.4. Bayesian inversion frameworks 

Method description  

A Bayesian inversion approach, solving a cost function between measured and modelled 
concentrations by non-negative least squares and matrix inversion techniques, has been 
described in relation to both regional and local-scale modelling by Boichu and others 
(2013), Thomson and others (2017), Carruthers and others (2019) and Pelley and others 
(2021). This technique is applied to known source location(s) with initial emission 
estimates to improve emission estimates, for example, for volcanic or road traffic 
emissions. Using more complex dispersion models (NAME – Jones and others (2007), 
ADMS – Carruthers and others (1994) and CERC (2023)) allows this technique to be 
applied in a broader range of meteorological conditions than those using simplified 
dispersion. It can also be used for both near-ground and elevated sources. The 
development of this method for operational use (especially in relation to volcanic 
emissions) has led to improved computational efficiency. 

A further application of a Bayesian inference approach for inverse dispersion modelling, 
with dispersion from sources to receptors calculated using the ISCST3 model (US EPA 
1995), was described by Goyal and others (2005). This approach used multiple non-linear 
(logarithmic) regression techniques to find unknown stack (elevated point source) and 
fugitive (near-ground area source) emission rates, with a Markov Chain Monte Carlo 
optimisation method. These authors also incorporated a ‘hierarchical’ framework with initial 
calculations for separate sites and subsequent assumptions about common factors in 
calculations across multiple sites. The approach was developed with small numbers of 
receptors per site and averaging daily measurements into monthly values, which reduces 
the temporal resolution of the derived emissions.  
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Data requirements  

This technique requires an initial assumption of source location(s) and emission rates, 
along with modelled dispersion using meteorological data. The Bayesian framework 
requires estimates of the uncertainties in and co-variances between concentration 
measurements and source emissions. It can be applied with either short-term or long-term 
measurement data. 

Constraints  

When using discrete concentration measurement locations, emission rate adjustments will 
be most robust for sources which influence at least one of these locations. 

Care is required in estimating the uncertainty and covariance values for concentration 
measurements and source emissions. 

When using Gaussian plume dispersion models (ADMS, AERMOD, ISCST3) the 
underlying assumptions are not applicable in very low wind speed conditions, for example, 
<0.75 ms-1, where mean wind speed may be similar to turbulent fluctuation velocities in the 
along-wind direction, and mean wind directions have greater uncertainty. However, 
alternative modelling approaches may be used in low wind speed conditions, such as 
radial dispersion in the ‘calms’ module in ADMS. 

Uncertainty  

Within the group of studies beginning from Boichu and others (2013), the uncertainty in 
transport and dispersion modelling has been neglected or treated as part of the 
measurement uncertainty. Therefore, part of the resulting adjustment of emissions from 
initial assumptions may compensate for inaccuracies in input meteorological data and/or 
dispersion calculations. The uncertainty in the derived emissions may be increased by 
other unknown sources nearby if not included in the modelling. Uncertainties are likely to 
be reduced by using measurement data from larger numbers of locations and longer 
periods. The uncertainties of this method are to some extent constrained by the initial 
emissions estimates and associated uncertainty and covariance values. However, they 
have not yet been quantified in relation to controlled releases. 

2.3.5. Gaussian plume dispersion with genetic algorithms 

Method description  

An approach to establishing both source location and emissions, taking account of 
uncertainties in meteorological data, has been described by Allen and others (2007), with 
further development and/or applications by Kormi and others (2018), Bel Hadj Ali and 
others (2020) and Yeşiller and others (2022). This approach relies on repeated forward 
dispersion modelling with simplified Gaussian plume expressions, with potential source 
combinations developed according to ‘genetic algorithms’. These adjust properties 
towards an optimum solution based on combining and modifying successful solutions from 
a previous iteration. This approach was originally developed to use landfill surface 
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concentration measurements, but was extended by Bel Hadj Ali and others (2020) with 
UAV concentration surveys and downwind plume transect measurements, finding 
limitations with UAV-mounted sensor sensitivities and a tendency for underestimating total 
emissions when using downwind plume transect measurements compared to surface 
surveys.  

Data requirements  

Concentration measurements at multiple locations with associated meteorological data for 
mean wind and atmospheric stability are required. Bel Hadj Ali and others (2020) 
implemented this technique with downwind transects, surface and aerial surveys. Surface 
survey measurements require site access. This approach is most likely to suit short-term 
measurement techniques due to computational expense. 

Constraints  

The stochastic element in the genetic algorithm can require multiple runs to ensure that a 
robust solution has been found. 

The combination of repeated forward dispersion modelling calculations within a single 
optimisation run and the need for multiple optimisation runs makes this approach 
computationally expensive for substantial measurement data sets and/or large source 
areas. Allen and others (2007) explained that the use of simplified Gaussian dispersion 
algorithms was required because a more complex dispersion model such as SCIPUFF 
would lead to prohibitive computational costs for running the full system. 

The simplified Gaussian plume dispersion assumptions are best suited to sources located 
in flat, open terrain. 

The Gaussian plume dispersion assumptions are not applicable in very low wind speed 
conditions, for example, <0.75 ms-1 at 10 m above ground, where mean wind speed is 
similar to turbulent fluctuation velocities in the along-wind direction, and mean wind 
directions have greater uncertainty.  

Uncertainty  

When this technique is used to identify within-site emissions the sources with higher 
emission rates tend to be located more accurately and reliably than sources with lower 
emission rates. This is also true for other within-source inversion modelling methods. 

The Gaussian plume dispersion and genetic algorithms approach relies on an accurate 
estimate of the number of individual sources within the source area. 

Bel Hadj Ali and others (2020) assessed sensitivity of the estimated total emission rates in 
relation to errors in meteorological data, with strong dependencies on the assumed 
atmospheric stability class and measured wind speed. 
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Kormi and others (2018) report emission rate errors of below 20% for the sources with 
highest emission rates in a case study using synthetic data. Uncertainties in emission 
rates are likely to be higher when using real-world data. These authors also identified 
strong sensitivities of the estimated emission rates to errors in input atmospheric stability, 
wind speed and direction. They estimated total emissions within 15% in comparison to 
tracer gas measurements on a real closed landfill site. 

2.3.6. Adjoint modelling in complex flow fields 

Method description  

Adjoint modelling is a method for calculating advection and dispersion backwards in time 
from receptor locations to form a ‘conjugate concentration field’, which indicates areas 
where a source could have contributed to the concentration reading at the detector. This 
approach is suited to problems with unknown source location(s) and relatively few 
receptors. It has been applied with a variety of dispersion modelling approaches with 
differing levels of complexity, although primarily Eulerian grid-based models. 

Brereton and others (2018) describe adjoint optimisation modelling, using multiple sensors 
within the area of expected emissions, along with a pre-computed 3D wind field, to locate 
and quantify unknown emission sources from broadly downstream measurements. The 
optimisation loop comprises forward dispersion modelling of assumed source parameters 
using the modelled wind field, assessment of predicted concentrations against 
observations, followed by inverse dispersion modelling to assess sources upstream of 
each receptor and adjust source rates. The use of both forward and inverse dispersion 
modelling makes this approach computationally expensive, although subsequent 
developments have improved efficiency by pre-computing inverse tracer transport 
(Brereton and others 2019). It could be useful for capturing complex local flow and 
dispersion patterns around industrial infrastructure. 

Liu and others (2021) implemented a regional application of adjoint modelling, in a 
simplified 2D transport and dispersion model, with the aim of improving operational 
forecasting of hazardous pollution events. A limited memory quasi-Newton line search 
method was used for error minimisation between modelled and observed concentrations. 
The assumption of inert particulates on regional spatial and temporal scales, along with 
only 2-dimensional transport and dispersion, increases computational efficiency but is 
likely to limit the accuracy of this approach. 

Keats and others (2007) applied an adjoint of computational fluid dynamic (CFD) 
modelling in a Bayesian inference framework, taking account of uncertainties in modelled 
and measured concentrations. They implemented Markov Chain Monte Carlo optimisation 
to identify the most likely location and magnitude of short-term releases in urban areas 
with complex geometries. With the adjoint modelling and Markov Chain Monte Carlo 
techniques, the computational effort for a fixed spatial extent scales linearly with the 
number of measurement locations and the number of source parameters.  

Data requirements  
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These approaches all use a sparse spatial network of concentration measurements. They 
rely on detailed 3D flowfield modelling, which requires information about mean 
meteorological conditions and physical obstacles to the flow (buildings, terrain). 

Constraints  

This approach is likely to remain more computationally expensive than methods which 
assume simpler flow fields and dispersion properties, and limit its application to short-term 
measurement data. 

CFD models are generally limited to neutral atmospheric stability conditions. 

Where releases occur in a zone of rapid mixing, for example in the wake of a building, it 
may not be possible to identify a precise source location within this zone. 

Uncertainty  

Keats and others (2007) carried out a careful derivation of probabilistic uncertainties 
associated with the method. The mean emission rate from a controlled release in an array 
of obstacles was identified with an error of around +20%. Brereton and others (2018) 
found a tendency for the approach to overestimate total emissions, by up to 24% for a 
case study in a complex 3D geometry. Causes of error in total emissions include 
predicting spurious small sources, while also missing small sources. The uncertainty in 
results might be reduced by measurement data sets including a wider range of wind 
directions. 

2.3.7. Machine learning 

Method description  

Standard machine learning techniques, such as neural networks and decision trees, have 
not yet been widely applied to pollutant emission estimation problems. These techniques 
generally need known data for model development (‘training data set’) before they can be 
applied to find unknown data. Kia and others (2022) tested several different machine 
learning algorithms with tracer gas dispersion modelling using the Weather Research and 
Forecasting (WRF) model at 510 m spatial resolution, forcing surface concentrations to 
match measurements and assessing the flux rates required to maintain these. This 
approach would not be suitable for smaller sites due to the relatively coarse resolution of 
the dispersion modelling used, while the modelling assumptions may need further 
development.  

Machine learning approaches may become more useful in exploring emissions variation 
with other parameters when more robust emissions estimates are available from another 
technique. Positive Matrix Factorisation (PMF) is another mathematical approach which 
can be used to assess the significant influences of other measured parameters on 
concentrations, but it is unclear whether it can be used to quantify emissions. The US EPA 
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is no longer developing its PMF model2, with which users had reported difficulties when 
working with large data sets. 

Data requirements  

Initial training data set with a wide range of known emissions, other input parameters such 
as meteorological data and associated resulting concentrations are required. 

Constraints  

The constraints of this approach will depend on the method used to compile the training 
data set. 

Most machine learning approaches infer relationships between cause and effect without 
seeking to explain the underlying mechanisms such as dispersion. This brings novel 
challenges for both quality assurance and stakeholder communication. 

Uncertainty 

Emissions estimates for combinations of inputs which were not included in the training 
data set will have increased uncertainty. Robust estimates of uncertainty have not yet 
been reported for this approach. 

2.4. Other methods for estimating fugitive emissions 
Two methods for estimating whole-site fugitive emission rates from concentration 
measurements do not involve inverse dispersion modelling. However, they share many 
characteristics with inverse dispersion modelling techniques and are useful to consider in 
comparison with inverse dispersion modelling methods. The additional methods are: 

• tracer dispersion methods, which assume analogous dispersion of tracer and 
target gases during a controlled tracer release 

• eddy covariance methods which measure net vertical transport 

These methods are described in the following sections. 

2.4.1. Tracer dispersion method 

Method description  

Controlled releases of tracer gases have been used to estimate fugitive emissions by 
assuming analogous dispersion of tracer and target gases. This is not strictly an inverse 
dispersion modelling method, but it shares some characteristics with the other methods 

 

 

2 https://www.epa.gov/air-research/positive-matrix-factorization-model-environmental-data-
analyses 
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assessed in this study, in using ambient concentration measurements to derive emissions 
data. This method was used by Fredenslund and others (2019a) and Matacchiera and 
others (2019). Delre and others (2017) applied it to 5 Scandinavian wastewater sites to 
assess emissions of both methane and nitrous oxide (N2O). The tracer dispersion method 
(TDM) has also been used in previous landfill monitoring studies for the UK Department 
for Environment, Food and Rural Affairs (Defra), described in Rees-White and others 
(2019) and Rees-White and Beaven (2020).  

Data requirements  

This method is centred on the controlled release of a tracer gas, with current practice 
favouring acetylene (C2H2). Downwind transect measurements are made of both the tracer 
and target gases, typically using vehicle-mounted sensors. Meteorological data are used 
to identify suitable downwind transect routes. Matacchiera and others (2019) used forward 
dispersion modelling to identify suitable locations for tracer release and transect 
measurements in differing meteorological conditions. 

Constraints  

When a point source tracer release is used to represent a larger scale target gas source 
(for example, landfill methane), there can be a mismatch of initial release properties 
including: 

• release location 
• release horizontal scale (point or area) 
• release height (surface or above ground) 
• plume rise (depends on release buoyancy)  
• relative magnitude of background and in-plume concentrations 

These discrepancies can become less important at larger distances downwind, but 
measurements further downwind require sensor equipment able to detect lower 
concentration increments of both tracer and target gases. 

The tracer dispersion method may require the source of interest to be isolated from other 
sources of the target gas.  

As with 1D transect measurement methods and Gaussian fitting (section 2.1.1), this 
method may fail to detect the plume if emissions and/or atmospheric mixing lift the plume 
substantially above the near-ground measurement height. Rees-White and Beaven (2020) 
had to abandon one survey as weather conditions changed from overcast to sunny. This 
meant that the tracer gas plume was no longer detectable in the transect measurements 
due to increased vertical mixing. 

When measurements are made along crosswind trajectories, Fredenslund and others 
(2019a) found the best match of controlled release emissions with calculations when 
emissions estimates were based on simple arithmetic integration of raw tracer and target 
gas concentration measurements along the plume transect trajectory rather than fitting 
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Gaussian profiles. They also noted that real landfill plume measurements may not have 
clean Gaussian profiles due to heterogeneous spatial distributions of emissions within the 
landfill.  

As with simpler plume transect measurements, the time required to make multiple transect 
measurements (4 to 5 minutes per transect, 10 to 15 transects recommended), in order to 
reduce uncertainties, limits the resolution with which emissions variations can be 
identified. However, it may be possible to make measurements in a wider range of 
meteorological and topographical conditions, subject to sensor detection limits, than for 
single pollutant plume transect methods as Gaussian profile dispersion assumptions are 
not used. 

The use of controlled tracer gas release, which is likely to require site access, limits the 
duration for which this method can be applied. 

Uncertainty  

Fredenslund and others (2019a) report errors of ±10% for higher rate controlled releases 
but ±18% for lower releases. This increase in the magnitude of uncertainties with reducing 
tracer release rate may be associated with a reduced signal-to-noise ratio in the 
downstream measurements. This study also estimated overall errors as likely to be within 
±20% when following best practice for measurements. 

2.4.2. Eddy covariance 

Method description  

Eddy covariance measures net vertical transport of a pollutant through a horizontal plane 
and equates this to the surface emissions flux. This method has been described by 
Trégourès and others (1999), Lohila and others (2007), L. Zhang and others (2019) and 
You and others (2021). EddyPro software has been developed to process measurement 
data into flux values. Eddy covariance is a vertical net mass balance approach, and so 
does not fit strict definitions of an inverse dispersion modelling approach. However, 
assumptions or modelling are required to estimate the area of emissions source which 
may be contributing to the measured flux values.  

Data requirements  

Eddy covariance analysis is based on high-frequency simultaneous concentration and 
meteorological measurements, focused on vertical fluctuations. More general 
meteorological data is also needed to define atmospheric stability. Roughness length 
values for the ground surface are also required to give context to the meteorological data. 

Constraints  

This approach may not be suitable for heterogeneous area sources, as it assumes that the 
surface properties at the single measurement location and contributing emissions area are 
representative of the full source. 
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The eddy covariance method does not explicitly consider background concentrations 
around the target source. If background concentrations are spatially homogeneous and 
temporally slowly varying relative to a typical eddy covariance averaging time of 30 
minutes, then they will not contribute to the net turbulent flux used to calculate emission 
rates. 

This method fails in calm and/or strongly stable conditions with no vertical mixing, and may 
fail in conditions of heavy rain (Lohila and others, 2007). 

Eddy covariance can estimate negative emissions values, which may not be physical. 

Within each averaging period (typically 30 minutes), mean meteorological conditions are 
assumed to remain steady. 

Eddy covariance measurements can be carried out on a long-term basis. As eddy 
covariance only captures emissions from a footprint area upwind of the measurement site, 
multiple measurement locations might be required around a site boundary in order to 
capture useful data in a range of wind directions. 

Uncertainty  

The calculation of the ‘footprint’ area contributing to the measured fluxes is dependent on 
measurement height, wind speed and assumed stability conditions and is a significant 
source of uncertainty. Kljun and others (2004) and Kljun and others (2015) present 
parameterisations of footprint area based on meteorological data, receptor height and 
surface properties, derived from Lagrangian dispersion modelling. Lohila and others 
(2007) report estimates of 90% of flux measured at a height of 2.5 m originating within 150 
m of the measurement location. Trégourès and others (1999) found methane flux rates 
from eddy covariance techniques an order of magnitude lower than tracer gas or surface 
chamber measurements. This may have been due to a low measurement height for the 
eddy covariance data (1 m) capturing only a small area of the heterogeneous surface. 

2.5. Summary 
Some important criteria with simple categorisations have been developed to allow a 
consistent assessment of the characteristics of each inverse dispersion modelling method. 
This assessment is useful for considering which techniques are suitable for different 
source types and applications. There can be a balance between the uncertainty and cost 
associated with particular methods, so it may be appropriate to consider a low cost, high 
uncertainty method for an initial ‘reconnaissance’ survey, followed up with a higher cost, 
lower uncertainty method where high emissions are detected. 

Table 1 gives a summary of the main aspects of each of the inverse dispersion modelling 
techniques considered in this section. Machine learning has been excluded as insufficient 
information was available. The row criteria are as follows: 

• Widely used? Whether the method has been used by multiple groups and/or is 
well established for regulatory purposes (Low/Medium/High). 
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• Site access? Whether the method requires site access (Yes/No/Unclear or 
depends on implementation). Some methods can be applied with 
measurements/equipment either within or outside a site. 

• Long-term? Whether the method can be used for long-term monitoring 
purposes (Yes/No/Unclear or depends on implementation), compatibility with 
short-term monitoring data only is assumed by default. 

• Complex terrain? Whether the method can be applied to sites in complex 
terrain or with other flow obstructions (Yes/No/Unclear or depends on 
implementation). 

• Elevated sources? Whether the method can be applied to sites with elevated 
sources (Yes/No/Unclear or depends on implementation). 

• Nearby sources? Whether the method can be applied to sites with other 
nearby sources of the same target pollutant (Yes/No/Unclear). 

• Uncertainty? Uncertainty in derived emission rates 
(Low/Medium/High/Unclear).  

• Cost? Estimated costs of method (Low/Medium/High), considering both 
measurement and computational costs. Methods requiring greater specialist 
expertise are also assumed to have higher associated costs. 

As an example of how the table contents can be used to select an inversion modelling 
method, consider a biogas site. These generally have a relatively small horizontal extent 
but can include tall tank structures, with potential leak locations up to 19 m above ground. 
An important requirement, therefore, is that methods are suitable for elevated sources. 
Within the whole-site methods, possibilities include 2D plane measurements (if the plane 
has sufficient vertical extent) or airborne mass balance. However, airborne mass balance 
is likely to have a disproportionate cost for this type of small site. Therefore, one of the 
moderate cost within-site options, such as Backward Lagrangian Stochastic or Bayesian 
inversion, may be more appropriate. 
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Table 1 – Summary of available inverse dispersion modelling methods 
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3. Challenges of inverse dispersion 
modelling 
This section describes the challenges of inverse dispersion modelling which are common 
to multiple techniques. It is related to the ‘Constraints’ subsections within the descriptions 
of each inverse dispersion modelling technique in sections 2.2 and 2.3. 

The challenges of inverse dispersion modelling methods include obtaining sufficient input 
data, at multiple locations and/or for multiple time periods, as well as taking into account 
uncertainties in measured concentrations and meteorological parameters. The 
requirements for input measured data become more extensive as the underlying source 
and dispersion conditions become more complex. 

Many of the approaches listed in this review only apply in limited atmospheric stability 
conditions, as well as in particular ranges of wind speed and/or direction. For example, 
methods using Gaussian plume assumptions are unsuitable in very low wind speeds, 
while unmanned aerial vehicle (UAV) measurements may not be possible in high wind 
speeds. 

For reliable measurements of a Gaussian-type plume, measurement locations need to be 
far enough downwind of the source to avoid additional uncertainties from initial plume 
formation, but close enough to the source to identify plume concentrations above 
background and/or sensor noise. Also, the local area upwind of the source should have 
relatively few other sources so that background concentrations are low and homogeneous. 

Quality thresholds applied to measurement data can lead to substantial data losses, for 
example, Bühler and others (2022) report losses of 50% and above for optical linear 
measurements, with greater losses during night-time periods. Foster-Wittig and others 
(2015) found only 41 out of 106 virtual plume transects measurements passed their 4 data 
quality thresholds for further calculations. Data quality thresholds may need to be set with 
care, possibly for individual cases, in order to optimise the reliability of calculated 
emissions from available measurement data. 

It is particularly difficult for inverse dispersion modelling approaches to find both unknown 
source location and source emissions simultaneously, as the increased number of 
unknown variables has increased requirements for measurement data. Low-emitting 
sources located close to a higher-emitting source are especially likely to be missed by 
inverse dispersion modelling. 

For techniques using airborne measurements, there are constraints on the measurement 
locations for safety reasons, with minimum measurement heights which can restrict the 
accuracy of concentration and/or flux estimates near the ground. High precision methane 
sensors are only just being developed with weights within typical UAV payload limits, while 
tethered UAV, which pass sampled air to ground-based sensors through a fixed length of 
tubing, have limited spatial range. Airborne measurements are usually only available for 
short periods due to cost constraints. 
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Comparisons of different inverse dispersion modelling and emissions estimation methods 
show substantial differences in the resulting emissions from each method, for example, 
Babillotte and others (2010) report flux estimates from 12 to 163 gs-1 from 5 methods, 
while Yeşiller and others (2022) found emissions estimates covering 2 orders of 
magnitude. Mønster and others (2019) provide a summary of intercomparisons between 
different methods applied to real landfills and controlled releases; larger variations are 
usually found for real sources, with increased complexity of source and terrain conditions 
compared to controlled releases. 

When considering the cost and applicability of inverse dispersion modelling methods, the 
cost and complexity of measurement approaches should be considered alongside the 
computational cost of associated modelling. Mobile measurement approaches are 
generally only available for short surveys, whereas fixed measurements at a small number 
of locations could be available for longer-term analysis. 

Forward dispersion modelling can be used to inform planning of measurements for inverse 
dispersion modelling, as described by Matacchiera and others (2019). However, this 
requires an initial assumption of emission rates and locations. It may also require care to 
identify the conditions in which there is greater uncertainty in forward modelling results, for 
example, low wind speeds, which may also lead to greater uncertainty in inverse 
dispersion modelling.  
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4. Applicability of inverse dispersion 
modelling methods 
The applicability of inverse dispersion modelling methods to different source sectors 
depends on the characteristics of each sector type. The following sections (4.1 to 4.5) 
summarise the characteristics of methane-emitting sources currently regulated by the 
Environment Agency and discuss suitable inverse dispersion modelling methods for each 
type. Applicability to other source types, for example, methane emissions due to land use 
change in the creation of new wetlands, could be derived by considering the source 
properties in conjunction with the summary of inverse dispersion modelling methods.  

Methods classified as ‘medium’ or ‘high’ in the category of ‘Widely used?’ (Table 1) have 
primarily been considered in this section, along with methods included in the 
recommendations of the onshore oil and gas (OOG) study (EA, 2022). The remaining 
methods are more recently developed, generally within a single academic group, and 
would require substantial further development to become more widely applicable and 
available to other users.  

Methane emissions for 2019 reported by the UK under the Pollutant Release and Transfer 
Register (UK-PRTR3) are summarised by source activity types in Table 2. The latest 
reporting year available from the UK-PRTR is 2020. However, activity levels, and resultant 
emissions, are likely to have been impacted by the Covid-19 pandemic, so the 2019 data 
may be more generally representative. The table shows that landfill sites are both the 
largest contributor (74.1% of total methane emissions reported under UK-PRTR) and the 
most numerous site category (210 regulated sites) in this data. This reporting only includes 
sites which have estimated emissions exceeding the reporting threshold of 0.1 kt year-1. It 
excludes some smaller-scale emissions such as urban wastewater treatment plants with 
capacity below 100,000 population equivalent. There is uncertainty about the cumulative 
impacts from small-scale sources such as biogas, where individual sites do not exceed the 
emission threshold, but there are substantial and rapidly increasing numbers of small sites 
(660 operating sites in the UK in 2019 with an additional 390 planned, Bakkaloglu and 
others, 2021). Methane emissions reported under UK-PRTR for 2019 represent 11% of 
total methane emissions in the UK in 2019 (UK Greenhouse Gas Inventory, 1990 to 2021).     

 

 

3 Available as a searchable online database via https://www.gov.uk/guidance/uk-pollutant-
release-and-transfer-register-prtr-data-sets  

https://www.gov.uk/guidance/uk-pollutant-release-and-transfer-register-prtr-data-sets
https://www.gov.uk/guidance/uk-pollutant-release-and-transfer-register-prtr-data-sets
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Table 2 – Summary of UK methane emissions in 2019 reported under UK-PRTR. The ‘Reported sites’ column is the number of installations 
which report emission rates above the reporting threshold. ‘% reported methane’ is the contribution of this sub-sector activity to total 
reported methane emissions. 

Annex I activity description Sub-sector activity Reported 
sites 

Annual 
methane 
emissions 
(kt) 

% 
reported 
methane 

Release 
type 

1 Energy sector Thermal power plants and other combustion 
installations with a thermal input greater than 
50MW  

97 43.02 18.0% Point 

Mineral oil and gas refineries (includes terminals 
and refineries) 

13 5.29 2.2% Point, 
fugitive 

2 Production and 
processing of metals 

Metal ore roasting or sintering  1 0.24 0.1% Point, 
fugitive 

3 Mineral industry Ceramic products manufacture 1 0.21 0.1% Point 

4 Chemical industry Manufacture of simple hydrocarbons 1 0.17 0.1% Point 

Manufacture of oxygen containing hydrocarbons 1 0.11 <0.1% Point 

Manufacture of fertilisers 1 2.15 0.9% Point, 
fugitive 
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Annex I activity description Sub-sector activity Reported 
sites 

Annual 
methane 
emissions 
(kt) 

% 
reported 
methane 

Release 
type 

5 Waste and wastewater 
management 

Incineration of non-hazardous waste 11 0.18 0.1% Point 

Landfill 210 174.96 74.1% Point, 
fugitive 

Other treatment of non-hazardous waste (including 
anaerobic digestion/biogas) 

12 9.34 4.0% Point, 
fugitive 

Waste water treatment 3 0.43 0.2% Fugitive 

7 Intensive livestock 
production and aquaculture 

Intensive livestock production 1 0.16 0.1% Fugitive 

8 Animal and vegetable 
products from the food and 
beverage sector 

Food and beverage production 1 0.21 0.1% Point, 
fugitive 
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4.1. Landfill 
Landfill sites may be small (length scales ~500 m) or large (several km), and may be 
closed or still active. For active sites, there may be different forms of surface covering for 
older and newer deposits, with variable emission properties. Active landfill sites accepting 
biodegradable waste will have equipment to capture and process gas, with pipework and 
pumping stations. Some closed landfill sites also have gas capture and processing 
equipment. In general, fugitive emissions are expected to occur near ground level and with 
minimal buoyancy. However, there may also be some point source emissions due to 
incomplete combustion (methane slippage) in landfill gas engines and possibly flares. The 
magnitude and spatial distribution of landfill emissions can vary with time due to both 
changes in activity patterns and environmental conditions. This has been investigated in a 
parallel study (Environment Agency, 2023). 

Most of the available inverse dispersion modelling methods identified in this study have 
been applied to landfill sites. Smaller landfill sites are likely to suit the simpler whole-site 
methods, while larger sites may require more detailed within-site approaches. Closed sites 
with permanent coverings are likely to have lower emissions than active sites with 
temporary coverings and may require more sensitive measurement techniques to detect 
emissions. 

Applicable inverse dispersion methods for small landfill sites in open terrain and without 
other nearby sources could include 1D plume transects; 2D vertical plane measurements; 
tracer dispersion methods; Backward Lagrangian Stochastic and Bayesian inversion 
techniques. The first 3 methods use short-term survey measurements, whereas the last 2 
can be used with either short-term surveys or longer-term measurements at a small 
number of monitoring locations. 

Applicable methods for larger active landfill sites with complex terrain and/or other nearby 
sources might include airborne mass balance, and Bayesian inversion techniques. 

4.2. Anaerobic digestion plant (biogas) 
Anaerobic digestion is a technique for processing organic waste materials, which captures 
gases from decomposition for use as energy (biogas). A rapidly increasing proportion of 
organic waste is diverted from landfill into alternative processes such as biogas plants. 
Methane makes up 50 to 70% of biogas, so there is potential for fugitive emissions from 
the processing equipment. Where biogas is used in onsite combined heat and power 
(CHP) engines, ‘methane slip’ (where unburnt methane gas passes to exhaust gases) is 
also likely to be a significant contributor. 

Waste materials typically used as input to anaerobic digestion include livestock manure, 
food waste, crop wastes and sewage sludge. When biogas plants are located on livestock 
farms it may be difficult to distinguish fugitive emissions from biogas equipment and from 
livestock housing. Similarly, the emissions from biogas plants used for sewage sludge and 
located within wastewater plants may be difficult to differentiate from other methane 
emissions within the wastewater processing site. Optimum temperatures for biogas 
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production are 35 to 37°C (Cioabla and others, 2012), which is likely to make fugitive 
releases weakly buoyant. 

Bakkaloglu and others (2021) carried out 1D plume transect surveys of biogas plants in 
southern England. However, they were only able to derive emissions estimates from 10 
out of 56 sites, due to difficulties with road access, proximity to other methane sources 
leading to non-Gaussian plume shapes, or a lack of detectable plumes. For the sites 
where they were able to make emissions estimates, the maximum facility heights, for 
example, tank roofs are reported as 6 to 19 m where known. 

Applicable methods for biogas plants in open terrain include 2D vertical plane 
measurements (if no other nearby sources of the target gas); high-resolution spatial 
survey; Backward Lagrangian Stochastic; and Bayesian inversion techniques. Airborne 
mass balance measurements and adjoint modelling techniques are likely to be excessively 
costly for these relatively small sites, due to specialist personnel, equipment and/or 
computational requirements. 

4.3. Onshore oil and gas (OOG) 
The project report ‘Onshore oil and gas: quantifying whole-site methane emissions and 
associated uncertainties’ (EA, 2022) classifies UK OOG sites into 4 categories, based on 
size, site type and surrounding location characteristics: 

• small production site, simple topography, limited potential emission sources, 
likely to be near-ground 

• small production site, complex topography (woodland), more complex 
potential emission sources 

• large production site, complex topography (woodland), multiple within-site 
areas and activities forming potential emission sources, including some more 
elevated locations 

• large processing site, complex topography (terrain), with a large number of 
potential emission sources, including elevated locations 

The ‘Onshore oil and gas: quantifying whole-site methane emissions and associated 
uncertainties’ project (EA, 2022) considered a wide range of methods for quantifying 
emissions, not restricted to inverse dispersion modelling methods. Tracer gas methods 
and OTM33a (1D plume transect) methods are recommended by the OOG methane 
quantification report within the first 3 quantification approaches for all site types, as having 
moderate cost. The tracer gas method is assessed as having substantially lower 
uncertainty than plume transect methods. The suitability of other methods varies between 
site types, with component-level measurements considered prohibitively uncertain for 
large complex sites and airborne mass balance measurements excessively costly for small 
simple sites. 

In addition to the methods recommended by the Environment Agency (2022) report, the 
following could be applied to small production sites in open terrain: vertical plane 
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measurements; high-resolution spatial survey (similar to component-level measurement); 
Backward Lagrangian Stochastic; and Bayesian inversion.  

For the remaining site types, with larger extents, more complex sources and/or complex 
terrain, Bayesian inversion or adjoint modelling methods could be applicable. 

4.4. Wastewater treatment plant 
Wastewater treatment plants vary in size and complexity, but generally include a range of 
storage tanks and processing equipment. Methane emissions are likely to be dominated 
by near-ground releases from open storage tanks and open flow channels, which will have 
higher emission rates than covered tanks with gas recovery. Emission rates from different 
types of storage or processing tanks can vary. For example, Bühler and others (2022) 
report that emissions per unit area from sludge storage tanks are expected to be 
substantially higher than those from secondary settlers. There may also be emissions from 
onsite anaerobic digestion, as described in section 4.2. 

Applicable methods for inverse dispersion modelling of wastewater treatment plant 
emissions will depend on the size of the site; the maximum emission height from onsite 
equipment; and the complexity of the surrounding terrain. Large, open sites dominated by 
near-ground sources could be assessed using 1D plume transects; stationary plume 
transects; tracer dispersion methods; Backward Lagrangian Stochastic techniques; or 
Bayesian inversion techniques. Large complex sites including elevated sources could be 
assessed using airborne mass balance; Backward Lagrangian Stochastic techniques or 
Bayesian inversion techniques.  

4.5. Other source types 
There are minor methane emissions from a range of industrial processes, including metal 
ore roasting, manufacture of ceramics, and manufacture of fertilisers. Part of these 
emissions originate from ‘methane slip’ (unburnt gas) or from process releases containing 
methane, both of which are discharged through chimney stacks and can be represented 
as point sources. Other industrial methane emissions are fugitive, for example, pipe leaks 
or storage tank venting. Emissions from leaks could be represented as point, line, area or 
volume sources, depending on any other knowledge about likely release locations. 

Industrial sources are likely to be associated with complex structures. Stack-based 
emissions can be monitored using in-stack measurement equipment. Fugitive emissions 
could be assessed using high-resolution spatial surveys, Bayesian inversion or adjoint 
modelling approaches. 

The conversion of large areas of land to create wetland environments as a flood 
prevention measure may lead to new methane emission sources. These are likely to be 
ground-based emissions over large open areas. Suitable inverse dispersion modelling 
approaches would include 1D horizontal plume transect, stationary plume transect and/or 
Bayesian inversion. 
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4.6. Summary 
Table 3 summarises the applicable inverse dispersion modelling methods for each source 
sector and type as discussed in the previous sections. Note that large landfill sites are 
expected to have larger spatial extents than either large OOG or wastewater sources. The 
suggestions for OOG sites are influenced by the recommendations of the ‘Onshore oil and 
gas: quantifying whole-site methane emissions and associated uncertainties’ report (EA, 
2022). This placed 1D plume transect methods (OTM33a) lower down the listed 
quantification approaches for larger and/or more complex sites due to high uncertainty. 
Biogas sources are expected to be small in horizontal extent but include above-ground 
releases and built structures. 
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Table 3 – Summary of applicable inverse dispersion modelling techniques by source type 
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5. Inverse dispersion modelling study 
An inverse dispersion modelling study has been carried out using data obtained from 
repeated tracer gas dispersion method (TDM) surveys of 3 landfill sites, as reported in 
Rees-White and Beaven (2020). A selection of inverse dispersion modelling approaches 
have been applied to this data to estimate whole-site methane emissions. The objectives 
of this study were to: 

• compare the emission rates estimated by the selected inverse dispersion 
modelling approaches with the emission rates previously calculated using the 
TDM approach  

• investigate the potential for a methane quantification approach that involves: 
• a single detailed annual TDM survey 
• some other methane concentration monitoring through the rest of the year, 

either at intervals or continuously 
• inverse dispersion modelling  

Section 5.1 summarises the available data and section 5.2 describes the initial data 
processing required to use this data in inverse dispersion modelling. The selected inverse 
dispersion modelling approaches are described in section 5.3 and the forward model 
refinement based on the tracer gas measurements is described in section 5.4. The inverse 
dispersion modelling results for the selected approaches are presented in section 5.5, the 
potential for a methane quantification approach involving one annual TDM survey is 
discussed in section 5.6, and section 5.7 presents a more general discussion of the 
inverse dispersion modelling study. 

5.1. Data available 
The 3 landfill sites with available data are referred to as sites A, B and C, all located in 
southern England. Site A is a medium-sized closed site, whereas sites B and C are larger 
and active sites. Appendix A in the report document (Rees-White and Beaven, 2020) gives 
the following information relating to each site and the measurement surveys: 

• brief description of site characteristics, including activity status, gas collection 
equipment, and surface covering materials 

• outcome of background screening measurements to identify any nearby 
sources of methane (only found for site B) 

• schematic map – this shows the tracer release locations (often the centre of 
the landfill site but sometimes offset for operational reasons) and the site 
outline, with indications of active/covered areas where relevant, but does not 
show any gas collection equipment, gas engine or flare locations 

• overview tables for each survey day, with summary data for each transect, 
including which transects were included or excluded from further analysis  

In addition to the TDM report document, the authors were supplied with spreadsheets for 
each site survey which contained: 
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• summary sheet: date of survey; description of meteorological conditions; 
coordinates, release rate and start/end times of acetylene tracer gas release; 
distance to monitoring road with estimate of tracer gas arrival time  

• met data sheet: The content of this sheet varied between survey days. In the 
majority of cases, it contained meteorological data at 5-minute resolution from 
a portable weather station: wind speed and direction; ambient temperature; 
humidity; and pressure. The measurement height was uncertain, so was 
assumed to be a typical hand-held height, 1.5 m. In some cases (only sites A 
and B) it contained onsite 30-minute resolution meteorological data: peak and 
10-minute average wind speed; wind direction; ambient temperature; rainfall; 
and pressure. For site C, it sometimes contained 3-hourly data from a national 
network weather station 

• TDM data: one second average methane and acetylene concentration 
measurements with associated times and latitude-longitude coordinates for 
each transect measurement 

The one second averaging time for concentration measurements leads to transects which 
represent the instantaneous plume from the site. This contrasts with longer-term 
measurements and modelling approaches, which represent an ensemble average plume. 
One second average concentrations are strongly influenced by short-term fluctuations in 
wind direction and turbulent intensity; this is discussed further in section 5.3. 

5.2. Initial data processing 
The following initial data processing tasks were carried out for all inverse dispersion 
modelling approaches: 

• reformatted meteorological data as required by models 
• digitised maps of landfill sites with reference to satellite imagery as required, 

using tracer gas release latitude-longitude coordinates to identify sites 
• identified typical surface conditions (for example, roughness length) for landfill 

sites and surrounding area 
• cross-referenced spreadsheet transect data, with report appendix tables that 

label transects as included/excluded 
• reformatted transect measurement locations to receptor co-ordinates as 

required by models 
• identified periods where the vehicle was stationary and assigned the median 

measured value to these receptors 
• assessed quality of transect data – this step excluded transects where the 

apparent wind direction was different to the other transects in a survey 

Landfill site activity data was not used in this study, since the primary objective was to 
compare the emission rates estimated by the selected inverse dispersion modelling 
approaches for the selected surveys. This is discussed further in section 5.3. 
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5.3. Selected approaches 
The inverse dispersion modelling approaches tested were initially selected based on the 
measurement data available, the characteristics of each site in relation to applicability 
considerations as discussed in section 4.1, and methods available to the project team. 
During this study the authors developed an additional inversion modelling method, which 
is a modified version of the ‘Standard’ Bayesian method. This new ‘Modified Bayesian’ 
method takes account of the short-term concentration fluctuations present in the TDM 
survey data due to the very high time frequency of the measurements (one second). 
Simulating high time frequency measurements using forward or inverse Gaussian plume 
models is challenging, because these models are generally designed to model hourly 
mean plumes. Short-term fluctuations in wind direction, wind speed and turbulence can be 
considerable on a one-second timescale, and a Gaussian plume model would not be 
expected to capture this behaviour. However, the ADMS fluctuations module estimates the 
effects of these fluctuations on concentration at a given location, and this has been used in 
the ‘Modified Bayesian’ method. 

The 4 selected inverse dispersion modelling approaches were: 

• Modified Bayesian inversion: A modified application of ADMS and CERC’s 
Bayesian inversion scheme (Carruthers and others (2019), section 2.3.4), 
developed by the authors for this study. This method uses ADMS to estimate 
the short-term fluctuations in concentration caused by short-term fluctuations 
in wind direction and turbulent intensity, and applies the inversion scheme to 
only the measured peak concentration in each transect. The modelling used a 
mean averaging time of one hour and a fluctuations averaging time of one 
second. Measurement uncertainty, measurement covariance and emissions 
covariance were set appropriately based on the available information. This 
approach was applied to all 3 sites. It was applied to methane using the same 
landfill volume source definitions as the Standard Bayesian method (described 
below), and to the tracer, which was modelled as a point source at the tracer 
release location with height one metre. The method is described in the 
Appendix (section 7.1). 

• Standard Bayesian inversion (section 2.3.4): ADMS and CERC’s Bayesian 
inversion scheme were used to simulate the landfill surface methane 
emissions as separate, ground-based, one metre deep, volume sources 
representing different capping/activity areas, with a mean averaging time of 
one second. The one metre volume source depth helps to represent the 
undulations in the landfill surface and the resulting small variations in release 
height over the site. Measurement uncertainty, measurement covariance and 
emissions covariance were set appropriately based on the available 
information. This approach was applied to all 3 sites. The method is described 
in the Appendix (section 7.2). 

• 1D Gaussian profiles (section 2.2.1): ADMS and CERC’s inversion scheme 
were used to simulate the landfill methane emissions as a single ground-level 
point source located at the landfill centroid, with a mean averaging time of one 
hour. The measurements were assigned zero uncertainty and zero error 
covariance. This approach reduces the inversion scheme to a 1D least-
squares Gaussian solver. This method is generally only recommended for 
small landfills in open terrain (Table 3). Sites B and C are slightly larger than 
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recommended for this method. However, since it is commonly used for 
landfills of this size it was applied to all 3 sites in this study. The method is 
described in the Appendix (section 7.3). 

• Backward Lagrangian Stochastic (section 2.3.2) (WindTrax): WindTrax is 
recommended for horizontal distances of up to approximately 1km, for both 
source size (= ‘site length scale’) and distance between source and 
measurement location. Sites B and C both have site length scales bigger than 
1 km, therefore, this approach was only tested for methane emissions from 
site A, the smallest of the 3 sites. The method is described in the Appendix 
(section 7.4). 

5.4. Forward model refinement using tracer gas data  
For each landfill site and for each TDM survey, tracer gas measurements from selected 
transects were used to refine our understanding of the site characteristics and 
meteorological conditions during the surveys. Forward ADMS modelling of the tracer gas 
release was used to calculate tracer concentrations at the transect measurement 
locations. This modelling used the known tracer gas flow rate. Details of the ADMS 
forward modelling configurations for each site are given in the Appendix (section 7). 

Gaussian plume models such as ADMS are designed to model an hourly mean plume. 
They do not generally account for the plume meandering caused by fluctuations in wind 
speed, wind direction and turbulence that occur at timescales of less than one hour. This 
makes comparing ADMS modelled concentrations with one-second measurements very 
challenging. However, short-term concentration fluctuations caused by short-term 
meteorological variability can be estimated using the ADMS ‘fluctuations’ module. This has 
been used in this study to predict the maximum likely concentration at each transect 
measurement location and time, given the meteorological variations that occur on a one-
second timescale. This quantity is hereafter referred to as the ‘fluctuations local maximum 
concentration’. 

Hourly mean modelled and one-second fluctuations local maximum tracer concentrations 
were compared with measured tracer concentrations for each site for each survey, with 
the aim of obtaining reasonable agreement between the peak measured value in each 
transect and the modelled fluctuations local maximum concentration at the same location 
and time. Model refinements to improve the model agreement were made as follows: 

• For a given survey, the wind direction value was aligned with the direction 
from the source to whichever location had the highest monitored concentration 
out of all the transect locations measured in the survey. 

• Wind speed data was taken from nearby meteorological observation sites if 
the observed site data resulted in a poor correlation with observed 
concentrations. 

• Boundary layer height data were calculated using full day observations from 
nearby meteorological observation sites if modelling with the individual hour of 
observed site data resulted in poor agreement with observed concentrations. 

• Transects were excluded from inverse dispersion modelling if the measured 
tracer plume location was different to the modelled plume location using the 
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refined modelled wind direction for that hour, suggesting greater wind direction 
variability within the survey than can be treated by any of the inversion 
methods. 

Example modelled and measured tracer concentrations for 2 transects (one at site B, one 
at site C) are shown in Figure 1. This demonstrates that the refinement of the modelling 
configuration leads to good agreement for some transects (for example, site B example). 
In other cases (for example, site C), there may be variations of wind direction between 
transects for the same survey which are not captured by the current approach, leading to 
poorer model performance. This effect has been minimised by selecting only transects 
where the measured plume location agrees with the modelled plume location (a list of 
transects included for each site is given in section 7.1). The chosen settings were further 
validated by running the modified Bayesian inversion method on the tracer. No change in 
the tracer gas emission rate means that the model agreement for the tracer gas is good 
enough to give confidence in using the refined model configuration for estimating CH4 
emissions. Section 7.1 gives details of the tracer gas inversion results. 

    

Figure 1 – Example transect evaluation results with hourly mean modelled tracer 
concentration in dark blue, modelled fluctuations local maximum tracer in lime green and 
monitoring data in bright green, showing variation in model performance. The error bars 
around the fluctuations local maximum value represent the standard deviation of the 
concentration due to short-term meteorological fluctuations. The pale blue square on the 
left-hand plot shows the peak measurement location and value used in the modified 
Bayesian approach. 

The refined ADMS forward modelling configuration was also used as a basis for the 
WindTrax model configuration for site A. Additional information about the input data 
processing, configuration and post-processing used for WindTrax is given in the Appendix 
(section 7.4). WindTrax generated separate values of landfill emissions corresponding to 
multiple model calculations for each transect, with (i) values for standard deviation/mean 
emissions ratio, and (ii) the fraction of the landfill area calculated to influence the relevant 
measurement point(s) on the transect. These values were combined into overall average 
emissions estimates by (i) excluding negative emission rates, (ii) applying a minimum 
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threshold to the fraction of landfill area calculated to influence the measurements, and (iii) 
applying a maximum threshold to the standard deviation/mean ratio.  

5.5. Inverse dispersion modelling methane emissions results 
Following refinement of the forward ADMS modelling based on the tracer measurements, 
inverse dispersion modelling was carried out using the selected approaches to calculate 
whole-site methane emission rates, for comparison with the methane emission rates 
calculated by the TDM survey approach. 

Estimates of total methane emissions calculated by the 4 inverse dispersion modelling 
methods were compared with the emission rates calculated from the original TDM survey. 
The resulting emission rates are shown in scatter plots in Figure 2. Numerical results from 
each inverse dispersion modelling method are given in Tables 4 to 6. The inverse 
dispersion modelling methods capture the general variation in the magnitude of emissions 
between the sites, with the lowest emission rates for site A and higher rates for sites B and 
C. However, the inverse dispersion modelling results tend to predict higher emission rates 
than TDM for sites B and C.  
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Figure 2 – Scatter plots comparing total site methane emission rates derived from TDM with 
inverse dispersion modelling results. Each point represents a single survey, comprising 
multiple transects measured on the same day (survey). 

The modified Bayesian method generally agrees more closely with the TDM method than 
the other 3 methods. The 1D Gaussian method generally predicts higher emissions than 
the modified Bayesian method. This is likely to be because the 1D Gaussian method 
predicts a wider and more dispersed plume with lower peak concentrations, leading to the 
measured plume being associated with a higher emission rate. Also, the 1D Gaussian 
method does not account for measurement uncertainty, so requires closer agreement 
between modelled and measured values. 

There is considerable variation between surveys in the spread of emission predictions 
from TDM and the inverse dispersion modelling methods. Possible causes for this 
variation have been explored by plotting the predicted emission rates against 2 important 
dispersion modelling parameters: input wind speed (Figure 3) and stability parameter 
H/LMO (Figure 4). H/LMO represents the relative importance of thermal and mechanical 
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mixing in the atmosphere. Large negative values are associated with unstable, convective 
conditions with vigorous vertical mixing. In contrast, positive values correspond to stable 
conditions with reduced vertical mixing. Boundary layer height (H) and Monin-Obukhov 
length (LMO) are both calculated by the ADMS meteorological pre-processor. 

  
Figure 3 – Variation of predicted methane emission rates for each site from TDM and 
inversion modelling methods, plotted against local wind speed in m.s-1.  

There is no clear trend in the spread in the emission rates from the different inversion 
modelling methods with wind speed for all sites. The emission rates calculated for site C 
show an increase in emission rates with increasing wind speed for all methods, whereas 
there is no clear relationship between emission rates and wind speed at the other sites.  

For sites B and C, there is a weak trend towards increasing spread in the emission rates 
as atmospheric conditions become more unstable, particularly for the Gaussian and 
standard Bayesian results. There is no consistent observable trend at site A. For site A, 
the Backward Lagrangian Stochastic (WindTrax) method tends to predict higher emission 
rates as atmospheric conditions become more unstable.  

TDM studies are usually carried out in conditions with low wind speed and limited vertical 
mixing in order to measure clear tracer plumes. This may help inverse dispersion 
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modelling if it improves the data quality of the tracer and methane measurements, with 
greater contrast between in-plume and background concentrations. However, the changes 
in wind direction and, therefore, different transect paths relative to the site locations for 
each survey may also contribute to the different behaviour of each method.  
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Figure 4 – Variation of predicted methane emission rates for each site from TDM and 
inversion modelling methods, plotted against H/LMO stability parameter. Red dashed lines 
show the thresholds between atmospheric stability categories: H/LMO < -0.4 indicates 
convective or unstable conditions with vigorous vertical mixing; H/LMO > 1.0 indicates 
stable conditions with suppressed vertical mixing; while H/LMO close to 0 indicates neutral 
stability conditions with moderate vertical mixing.  
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Table 4 - Comparison of total site methane emission rates derived from TDM and inverse 
dispersion modelling methods for site A.  

Survey Methane emission rate (kg hour-1) 

TDM 1D Gaussian Standard 
Bayesian 

Modified 
Bayesian 

Backward 
Lagrangian 
Stochastic 
(WindTrax) 

1 35.26 75.33 70.52 34.36 30.12 

2 27.41 41.69 23.36 20.62 81.08 

3 38.30 53.86 44.35 16.61 278.15 

4 20.84 50.71 16.24 13.50 12.06 

5 35.75 48.46 41.71 44.20 125.52 

6 36.63 135.12 32.26 24.39 68.99 

7 31.42 69.49 59.42 44.86 18.59 

Mean 32.23 67.81 41.12 28.36 87.79 

Median 35.26 53.86 41.71 24.39 68.99 
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Table 5 – Comparison of total site methane emission rates derived from TDM and inverse 
dispersion modelling methods for site B.  

Survey Methane emission rate (kg hour-1) 

TDM 1D Gaussian Standard 
Bayesian 

Modified 
Bayesian 

3 214.78 803.12 808.60 288.93 

4 103.56 269.30 267.86 159.51 

5 202.89 408.96 371.91 250.20 

6 286.05 493.79 651.07 357.06 

Mean 201.82 493.79 524.86 263.93 

Median 208.84 451.37 511.49 269.56 
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Table 6 – Comparison of total site methane emission rates derived from TDM and inverse 
dispersion modelling methods for site C. 

Survey Methane emission rate (kg hour-1) 

TDM 1D Gaussian Standard 
Bayesian 

Modified 
Bayesian 

2a 573.36 1,005.95 852.93 720.01 

2b 537.87 1,288.99 1,141.49 813.15 

5 420.02 521.00 327.58 456.71 

6 402.24 509.10 412.34 498.91 

7a 385.09 903.27 1,046.19 613.20 

7b 502.18 898.60 1015.20 642.84 

Mean 464.46 854.48 799.29 624.14 

Median 430.49 900.94 934.06 628.02 
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5.6. Additional uncertainty using a single TDM survey 
The Environment Agency is interested in exploring the potential for an alternative methane 
quantification approach that requires only one annual TDM survey, together with inverse 
dispersion modelling and downwind methane concentration monitoring to provide 
estimates of annual methane emissions. Such an approach would reduce the amount of 
tracer gas concentration monitoring activity needed, reducing the need for site access and 
supervision of the tracer gas release. In this section, we discuss the feasibility of such an 
approach and any additional uncertainty that may arise due to the timing of the TDM 
survey. 

Section 5.4 described how the forward modelling was refined based on the tracer gas 
results. Tracer gas measurements from a singular survey would be sufficient to refine the 
ADMS forward modelling in a general sense. Although ADMS model input parameters 
such as wind direction, surface roughness and wind direction variability were refined to 
give the best tracer agreement on a survey-by-survey basis, methane measurements 
could be used for this refinement stage, in the absence of tracer gas measurements, and 
would likely yield a similar result. 

Nominal unit emission rates were used as the initial methane emission rates for the 
inverse dispersion modelling described in the previous section. The TDM methane 
emission rates were only used for comparison purposes, which maintained the 
independence of the methods for the comparison. However, in the scenario where a 
singular TDM survey and subsequent modelling are different stages of the same 
quantification approach, the TDM survey could provide the initial methane emission rate 
estimate used to initialise the inverse dispersion modelling.  

Different TDM surveys produced different methane emissions estimates, so the sensitivity 
of the inverse dispersion modelling methane emission results to which TDM survey was 
used for the initial methane emission rates has been investigated. The 1D Gaussian, 
Standard Bayesian and Modified Bayesian inverse dispersion modelling methods were all 
run for all 3 sites for all surveys using the modelling setup described in the previous 
section. Each survey was repeated using the TDM calculated methane emission rate for 
each of the other surveys as the initial emission rate. Separate WindTrax modelling was 
not carried out for this analysis due to excessively long run times. 

For each of the 3 sites, for each survey, and for each of the 3 inverse dispersion modelling 
methods, the methane emissions results were found to be exactly the same regardless of 
which TDM survey was used for the initial methane emission rates; these are the values 
given in Tables 4, 5 and 6. This suggests that it would be feasible to have a methane 
quantification approach that requires one annual TDM survey together with inversion 
dispersion modelling and downwind methane concentration surveys. Subsequent annual 
TDM surveys could be used to validate and refine the inverse dispersion modelling. 
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5.7. Discussion 
The literature review and applicability phases of this project considered a wide range of 
inversion modelling approaches and source types. However, the active modelling phase 
only had access to measurement data for landfill sources, modelled as large near-ground 
volume sources. This means that approaches more appropriate to sources with smaller 
horizontal but larger vertical extents, such as 2D Gaussian fitting or adjoint modelling, 
have not been tested. 

There is considerable variation between the estimated landfill emissions using the different 
inversion methods. The method with the closest estimates to the TDM method is the 
Modified Bayesian method discussed above. The 1D Gaussian and Standard Bayesian 
methods generally estimate much higher emissions, due to the recognised mismatch 
between the one second measurements and the hourly mean plume modelling. The 
Backward Lagrangian Stochastic (WindTrax) method was only used for site A, because it 
is only suitable for domains up to 1 to 2 km. WindTrax gave similar estimates to TDM for 
some surveys, but also much larger estimates in other cases. 

An alternative inversion approach, not investigated in the current study, would be to apply 
an inversion method to the crosswind plume-integrated concentration, therefore reducing 
the complexities arising from fluctuations. This could be done with standard ADMS model 
output by adding receptors across the plume, for individual transects, manually integrating 
modelled concentrations, and applying the inversion method to the integrated totals. 
Alternatively, the ADMS model code could be modified to add this type of output. 
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6. Recommendations 
Following the project literature review and applicability assessment (sections 2, 3 and 4), 
the authors make the following recommendations: 

1. We recommend that the selection of a suitable inverse dispersion modelling method for 
a particular source and application should consider: 

a. source characteristics such as horizontal length scale and likely emission 
height 

b. characteristics of the area surrounding the source such as open or complex 
terrain and/or nearby obstructions to flow including buildings 

c. the presence of other nearby sources of the targeted pollutant, especially if 
upwind of the planned measurement locations  

d. the appropriate balance of required accuracy/uncertainty and cost 

2. Inverse dispersion modelling methods are currently an area of active research and 
rapid development, driven by improvements in measurement technologies (for 
example, UAV-borne sensors) and increased availability of computational resources. 
We recommend that the Environment Agency continues to assess emerging inverse 
dispersion modelling methods as they become more mature. 

3. It is important to collect information about activities at a regulated site during any short-
term measurement campaign that is to be used with inverse dispersion modelling 
methods, in order to estimate how representative the inverse dispersion modelling 
emissions results are of longer-term emissions. 

4. Data quality thresholds for measurement data which is to be used with inverse 
modelling need to be developed with care, appropriate to each measurement technique 
and inverse dispersion modelling approach. 

5. The main focus of this study was fugitive methane emissions. However, the 
recommendations above would apply similarly to other fugitive gaseous releases, for 
example, when estimating nitrous oxide emissions from wastewater treatment facilities. 
Different measurement techniques might affect which inverse dispersion modelling 
methods are most suitable, but the same broad principles apply. 

The remainder of the project recommendations relate to the active modelling phase of the 
project (section 5). 

If TDM survey data is to be routinely used with modelling and inversion methods, then the 
authors make the following recommendations for TDM survey data collection: 

6. We recommend that TDM surveys also collect high quality, high frequency (for 
example, one second) meteorological and turbulence measurements where possible so 
that the model input can be optimally specified, thereby improving model performance.  
During the forward ADMS modelling stage of this project, in many cases the available 
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wind speed and direction data was found to be inconsistent with the location of the 
peak tracer gas and methane concentrations in survey transects, so the wind direction 
had to be adjusted. 

7. We recommend that TDM surveys for use with modelling and inverse dispersion 
methods are carried out in atmospheric conditions where the models are best able to 
represent the atmospheric airflow and turbulence. These are conditions where both 
stability effects and wind direction changes are small, which is typically the case in near 
neutral conditions, moderate wind speeds, consistent wind directions and not around 
sunrise or sunset.  

8. We recommend that TDM surveys for use with modelling and inverse dispersion 
modelling methods carry out repeated transects as close as possible to the site while 
still capturing the whole plume, instead of undertaking transects at different distances 
from the site (this is more difficult for elevated sources). In the modelling study, 
transects closest to the site with the strongest landfill signal were the most useful. 
Fewer transects with a stronger landfill signal in general are more useful than more 
transects with a lower signal. Many TDM survey transects were excluded from the 
inverse dispersion modelling because the tracer signal was too faint. However, 
measurements made too close to a source may include uncertainties from initial plume 
formation, as discussed by Matacchiera and others (2019). 

The following recommendations relate to the selected inverse dispersion modelling 
approaches: 

9. The study shows that the Modified Bayesian method performs well and is a viable 
approach to estimating emissions from transects which would warrant further testing 
and refinement, with additional TDM survey data sets, prior to routine application. The 
method combines the ADMS dispersion model, which is already widely used for 
regulatory purposes, with a Bayesian inversion approach, which is similar to those used 
by a number of different groups.  

10.  Another modification of the Standard Bayesian approach, not considered in this study 
but recommended for further examination, is to apply an inverse dispersion modelling 
method to the crosswind plume-integrated concentration, reducing the complexities 
arising from short-term fluctuations. 

11.  The suitability of an inverse dispersion modelling method to the high measurement 
frequency (one second) and mobile nature of TDM survey data should be considered 
when selecting an inverse dispersion modelling method for use with TDM data.        

12.  A robust procedure is required for assessing each TDM survey transect in terms of its 
suitability for the chosen inverse dispersion modelling method. The procedure will 
depend on the inverse dispersion modelling method, but should take the limitations of 
the method into account. For example, the Standard Bayesian method requires the 
modelled plume position to match the measured plume position, which may not be the 
case for all transects within a survey. 
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13. The inverse dispersion modelling study focused on emissions from one type of facility 
(landfill) using one type of measurement data (tracer gas plume transect 
measurements). Measurements made using a wider range of methods and around 
other types of facilities would be required to compare additional inverse dispersion 
modelling techniques. 

14. The inverse dispersion modelling study found (section 5.6) that the whole-site 
emissions calculated by the 1D Gaussian, Standard Bayesian and Modified Bayesian 
methods were unaffected by the choice of TDM survey used to provide the initial 
emission rate. This suggests that a method involving only one TDM survey combined 
with inverse dispersion modelling, and repeated or continuous methane and 
meteorological monitoring at other times of year, would be sufficient to provide a good 
estimate of annual landfill methane emissions. The recommended time to undertake 
the annual TDM survey would be when landfill emissions are expected to be relatively 
high, subject to the meteorological considerations set out in (7) above.  

15. On the basis of (14) above, we recommend that the Environment Agency considers 
further case studies and worked examples in order to develop a practical, ‘user-friendly’ 
protocol for site operators that sets out a typical annual sequence of measurements, 
inverse dispersion modelling and analysis for quantifying methane emissions at a 
regulated site. 
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7. Appendix: Inverse dispersion 
modelling methods and results 
This section describes the inverse dispersion modelling methods that have been applied to 
estimate landfill CH4 emissions using the TDM survey data available for the 3 landfill sites 
in southern England known as sites A, B and C. 

Four inverse dispersion modelling methods have been applied: 

• Modified Bayesian inversion (section 7.1): A modified application of ADMS 
and CERC’s inversion scheme (Carruthers and others (2019)), using ADMS to 
estimate the short-term fluctuations in concentration caused by short-term 
fluctuations in wind direction and turbulent intensity. The inverse dispersion 
modelling scheme was applied only to the measured peak concentration in 
each transect. This approach was applied to all 3 sites. 

• Standard Bayesian inversion (section 7.2): ADMS and CERC’s inversion 
scheme used to simulate the landfill emissions as separate volume source(s) 
representing different capping/activity areas. Measurement uncertainty, 
measurement covariance and emissions covariance were set appropriately 
based on the available information. This approach was applied to all 3 sites.  

• 1D Gaussian profiles (section 7.3): ADMS and CERC’s inversion scheme 
used to simulate the landfill emissions as a single ground-level point source, 
with the measurements assigned zero uncertainty and zero error covariance. 
This approach reduces the inverse dispersion modelling scheme to a 1D least-
squares Gaussian solver. It was applied to all 3 sites.  

• Backward Lagrangian Stochastic (section 7.4) (WindTrax): WindTrax is 
recommended for horizontal distances of up to around 1 km, either within a 
source or between source(s) and measurement locations. Sites B and C both 
have site length scales bigger than 1 km, therefore, this approach has only 
been tested for site A, the smallest of the 3 sites. 

Three of the methods (1D Gaussian, Standard Bayesian and Modified Bayesian) used the 
ADMS dispersion model for the forward modelling stage. A summary of the ADMS 
configuration differences between the 3 methods is given in Table 7. CH4 concentration 
results from these 3 methods are given in section 7.5. 
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Table 7 – Differences in ADMS configuration between the 3 inverse dispersion modelling 
methods where ADMS was used for the forward modelling. 

 Mean 
averaging time 
(s) 

Wind direction 
variability 

Fluctuations 
averaging time 
(s) 

Sources 

Modified 
Bayesian 

3,600 Calculated from 
wind direction 
data 

1 Multiple 
volume 
sources 

Standard 
Bayesian 

1 n/a n/a Multiple 
volume 
sources 

1D Gaussian 3,600 n/a n/a Single point 
source in the 
centre of the 
landfill 
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7.1. Modified Bayesian inversion method 
Gaussian plume models such as ADMS are designed to model an hourly mean plume; 
they do not generally account for the plume meandering caused by fluctuations in wind 
speed, wind direction and turbulence that occur at timescales of less than one hour. This 
makes comparing ADMS modelled concentrations with one-second measurements very 
challenging. However, short-term concentration fluctuations caused by short term 
meteorological variability can be estimated using the ADMS ‘fluctuations’ module. A 
‘Modified Bayesian’ inversion method has been developed to account for this. 

The ADMS fluctuations module has been used to predict the maximum likely modelled 
concentration and standard deviation of the mean modelled concentration at the location 
of the peak measurement in each transect for each survey. This modelling used a mean 
averaging time of one hour (approximately equal to the duration of each survey), wind 
direction variability calculated as the standard deviation of the measured wind direction 
during each survey, and a fluctuations averaging time of one second. The maximum likely 
modelled concentration accounts for both horizontal and vertical fluctuations, while the 
measurements are recorded at a single height and, therefore, only capture the horizontal 
plume position. The maximum likely modelled concentration captures vertical fluctuations 
not captured by the measurements and, therefore, should be expected to exceed the 
measured concentration at a given transect measurement location. 

The CERC Bayesian inversion scheme (Carruthers and others (2019)) has been applied 
to this reduced set of measurement locations (one location per transect per survey). The 
modelled concentration used was the maximum likely modelled concentration. The 
combined model and measurement uncertainty was taken to be the standard deviation of 
the mean modelled concentration. 

This method was first applied to estimate tracer gas emission rates and the modelling, 
then refined to yield the minimum possible change in C2H2 emission rates, since the tracer 
emission rates are known. This was done to increase confidence that differences between 
modelled and measured CH4 levels were mainly due to CH4 emission errors. 

Using this method results in whole-site CH4 emission values because the ADMS 
fluctuations output relates to total concentrations. The initial CH4 emission rate used in the 
inverse dispersion modelling was 1x10-5 g m-3 s-1. The uncertainty and covariance values 
that were used in the CH4 inverse dispersion modelling with this method are given, with 
justifications, in Table 8. 
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Table 8 – Uncertainty and covariance values used in the Modified Bayesian inversion 
scheme for all sites for CH4. 

Parameter Value Unit Comment 

Measurement 
uncertainty 

Variable µg m-³ Set equal to the sum of the fluctuations 
standard deviation of the concentration 
at the location of the peak measurement 
and the instrument accuracy (1.3 µg m-

³). 

Measurement 
uncertainty 
covariance 

0  Set to zero to allow the error to vary 
between the different transect peaks. 

Emissions 
uncertainty 

0.01 g m-³ s-1 Set to a high value to allow the initial 
nominal unit emission rate (1x10-5 g m-3 
s-1) to be changed as much as 
necessary to obtain good model 
agreement 

Adjusted modelled methane concentrations using this method are compared with results 
for the Standard Bayesian method and the 1D Gaussian method in section 7.5. 

The following sections give information about the input configuration of the ADMS forward 
runs for the Modified Bayesian inversion method for each site. A pre-release version of 
ADMS 6 (version 5.9.0.1) was used for the forward modelling. Tracer gas evaluation 
results are also provided for each site. 
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7.1.1. Site A inputs 

Site A was represented by 14 volume sources representing the landfill cells, as shown in 
Figure 5. The total source area was 150,390.5 m2. Each volume source had a depth of 
1m. It was found that some of the measurement locations provided needed adjusting in 
order to achieve alignment with the roads. This is likely to be due to GPS errors. The 
adjustment applied was -115 m in the X direction and +42 m in the Y direction. 

 

 

Figure 5 – Site A showing transect locations relative to tracer release site and modelled 
volume sources used to represent the landfill site. Receptor locations highlighted using a 
triangle symbol locate the position of the maximum values used for the inverse dispersion 
modelling. 

The modelling used a latitude of 51.92°. All other site options, such as minimum Monin-
Obukhov length were left as the model default values. 

The tracer release was modelled as a point source with a height of 1 m, a diameter of 
0.02 m and a volume flow rate calculated using the release mass of pollutant with the 
ambient temperature and pressure recorded on site for each survey. The supplied tracer 
emission rates were input for each survey. The input values are shown in Table 9. 
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Table 9 – Site A tracer gas emission parameters for each survey.  

Survey Tracer emission rate of C2H2 (gs-1) Tracer volume flow rate (m3s-1) 

1 0.73 6.67E-04 

2 0.76 6.60E-04 

3 0.37 3.30E-04 

4 0.90 7.90E-04 

5 0.88 7.83E-04 

6 0.83 7.41E-04 

7 0.87 7.91E-04 

Initial modelling used the provided onsite meteorological data. Inspection of the results 
and comparison of the provided meteorological data with data available for a nearby Met 
Office site at Mildenhall suggested that the wind direction data was not accurate enough 
for precise modelling.  

Sensitivity testing was carried out to find the meteorological parameters that gave the best 
agreement between modelled and measured tracer gas concentrations, leading to the 
minimum change in tracer gas emission rate using this inverse dispersion modelling 
method. Surface roughness values were selected separately for each survey as part of 
this process. The final set of input meteorological parameters are shown in Table 10. 
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Table 10 – Site A meteorological parameters for each survey. 

Survey Surface 
roughness 
(m) 

10 m 
height 
wind 
speed 
(ms-1) 

Wind 
direction 
(degrees) 

Cloud 
cover 
(Oktas) 

Temperature 
(oC) 

Wind 
direction 
variability 
(degrees) 

1 1.00 7.7 245 0 12.7 12.1 

2 0.08 3.6 80 0 2.8 1.0 

3 2.00 2.1 300 0 3.8 1.0 

4 0.15 2.6 130 0 5.4 5.0 

5 0.10 5.7 210 8 8.4 3.0 

6 0.01 3.6 105 0 8.6 3.4 

7 2.00 3.2 195 8 8.8 7.5 
 

Initial estimates of background concentrations of CH4 were taken from monitoring data at 
the UK government BEIS network measurement site at Tacolneston. These values were 
largely in agreement with the background concentrations suggested from the monitored 
data at site A. The initial background concentrations of C2H2 were assumed to be zero, 
however the monitored data baseline was above zero for some surveys, suggesting that a 
low background concentration should be applied in these cases. The final background 
concentrations used are shown in Table 11. 
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Table 11 – Site A background concentrations. 

Survey CH4 (mg m-3) C2H2 (mg m-3) 

1 1.277 0 

2 1.323 0.00108 

3 1.396 0.00162 

4 1.423 0.00216 

5 1.323 0 

6 1.370 0.00216 

7 1.330 0.00216 
 

A subset of the TDM survey transects were used for each survey, to choose transects 
where the landfill signal was strong and the modelled wind direction was consistent with 
the measured values. Transects used for each survey are given in Table 12. 
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Table 12 – Transects used for Site A. 

Survey Total number of 
transects available 

Number of 
transects used 

Transects used 

1 9 3 9,10,11 

2 8 3 1,2,3 

3 6 4 4,5,6,7 

4 16 10 5,6,7,8,9,10,15,16,17,18 

5 12 10 4,5,6,7,8,9,10,11,12,14 

6 9 7 2,3,4,5,6,7,8 

7 16 2 1,3 

 

7.1.2. Site A evaluation 

The Modified Bayesian inversion approach was applied to estimate tracer gas emission 
rates for site A, to evaluate the model configuration. A perfect model configuration would 
lead to the inverse dispersion modelling input and output emission rates being equal. 

The inverse dispersion modelling input and output tracer gas emission rates are compared 
in Figure 6 and Table 13. In general, the differences are small, only surveys 4 and 5 give a 
change of more than 0.1 g s-1. The mean change is 0.001 g s-1.   
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Figure 6 – Inverse dispersion modelling output C2H2 emission rate versus input C2H2 
emission rate for the 7 surveys for site A. 

Table 13 – Inverse dispersion modelling input and output C2H2 emission rate for the 7 
surveys for site A. 

Survey Input C2H2 emission 
rate (g s-1) 

Output C2H2 
emission rate (g s-1) 

Difference (g s-1) 

1 0.73 0.72 -0.002 

2 0.76 0.71 -0.047 

3 0.37 0.33 -0.046 

4 0.90 0.80 -0.100 

5 0.88 1.02 0.134 

6 0.84 0.85 0.008 

7 0.87 0.93 0.063 

Mean 0.76 0.77 0.001 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

O
ut

pu
t C

2H
2

em
is

si
on

 ra
te

 (g
/s

)

Input C2H2 emission rate (g s-1)



75 of 127 

Modelled and measured C2H2 concentrations for site A for each survey are compared in 
Figures 7 to 13. Transects used in the inverse dispersion modelling are identified by the 
blue squares marked ‘Peaks’ – these represent the measured peak values in the included 
transects. In general, the mean modelled concentration (dark blue) is considerably lower 
than the measurements (bright green), while the fluctuations local maximum concentration 
(lime green) is higher at most locations, but gives a reasonable match to measurements at 
the measured peaks used. This is the expected behaviour, because the mean modelled 
concentration has an averaging time of one hour, and the fluctuations local maximum 
represents the maximum likely one-second concentration at all locations during a one-hour 
period, so at any given time should only be expected to match the measurement at the 
measured peak location, not everywhere. 
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Figure 7 – Time series graph of hourly mean modelled (dark blue), modelled one-second fluctuations local maximum (lime green) and 
monitored (bright green) C2H2 concentrations for site A survey 1. The error bars represent the one-second fluctuations standard deviation 
of the modelled mean concentration. The ‘Peaks’ (blue squares) highlight the measured one-second peak C2H2 concentrations in the used 
transects (3 out of 9). The monitoring data is noisy with clearer peaks towards the end of the survey. The measurement noise could have 
been caused by the relatively strong wind speed during this survey (7.7 ms-1). 
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Figure 8 – Time series graph of hourly mean modelled (dark blue), modelled one-second fluctuations local maximum (lime green) and 
monitored (bright green) C2H2 concentrations for site A survey 2. The error bars represent the one-second fluctuations standard deviation 
of the modelled mean concentration. The ‘Peaks’ (blue squares) highlight the measured one-second peak C2H2 concentrations in the used 
transects (3 out of 8). This was a morning survey (9.30am) in cold, clear conditions. The modelled wind direction was in line with measured 
peaks for the first 3 transects, then the wind direction changed, because the measured peaks moved round gradually by 10 degrees over 
transects 4 to 8. 
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Figure 9 – Time series graph of hourly mean modelled (dark blue), modelled one-second fluctuations local maximum (lime green) and 
monitored (bright green) C2H2 concentrations for site A survey 3. The error bars represent the one-second fluctuations standard deviation 
of the modelled mean concentration. The ‘Peaks’ (blue squares) highlight the measured one-second peak C2H2 concentrations in the used 
transects (4 out of 6). All measured peaks were in line with the modelled wind direction, but the measurements show a significant 
reduction in the peak from the start to the end of the survey, which was not present in the modelled values. 
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Figure 10 – Time series graph of hourly mean modelled (dark blue), modelled one-second fluctuations local maximum (lime green) and 
monitored (bright green) C2H2 concentrations for site A survey 4. The error bars represent the one-second fluctuations standard deviation 
of the modelled mean concentration. The ‘Peaks’ (blue squares) highlight the measured one-second peak C2H2 concentrations in the used 
transects (10 out of 16). The measured peaks aligned well with the modelled wind direction. The initial and final transects were 2 km from 
the site; the 3 transects at 19:20, 19:26 and 19:31 were 4 km away. 
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Figure 11 – Time series graph of hourly mean modelled (dark blue), modelled one-second fluctuations local maximum (lime green) and 
monitored (bright green) C2H2 concentrations for site A survey 5. The error bars represent the one-second fluctuations standard deviation 
of the modelled mean concentration. The ‘Peaks’ (blue squares) highlight the measured one-second peak C2H2 concentrations in the used 
transects (10 out of 12). The survey was carried out at dusk. Transects were measured at distances of 2, 3 and 4 km. The beginning and 
end transects were in line with the modelled wind direction; the middle transects were offset. 
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Figure 12 – Time series graph of hourly mean modelled (dark blue), modelled one-second fluctuations local maximum (lime green) and 
monitored (bright green) C2H2 concentrations for site A survey 6. The error bars represent the one-second fluctuations standard deviation 
of the modelled mean concentration. The ‘Peaks’ (blue squares) highlight the measured one-second peak C2H2 concentrations in the used 
transects (7 out of 9). The survey was carried out at dusk. The initial transects had monitored peaks in line with the modelled wind 
direction, but then the wind direction changed. 
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Figure 13 – Time series graph of hourly mean modelled (dark blue), modelled one-second fluctuations local maximum (lime green) and 
monitored (bright green) C2H2 concentrations for site A survey 7. The error bars represent the one-second fluctuations standard deviation 
of the modelled mean concentration. The ‘Peaks’ (blue squares) highlight the measured one-second peak C2H2 concentrations in the used 
transects (2 out of 16). The survey was carried out at dusk. The initial transects had measured peaks in line with the modelled wind 
direction, but then the wind direction changed. 
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7.1.3. Site B inputs 

Site B was represented by 5 volume sources which were positioned over the location of 
the landfill site as shown in Figure 14. The total footprint area of sources was 
205,115.0 m2. Each volume source had a depth of 1 m.  

 

 

Figure 14 – Site B showing transect locations relative to tracer release site and modelled 
volume sources used to represent the landfill site. Receptor locations highlighted using a 
triangle symbol locate the position of the maximum values used for the inverse dispersion 
modelling. 

The model domain used a latitude of 51.92°. All other site options, such as minimum 
Monin-Obukhov length were left as the model default values. 

The tracer release was modelled as a point source with a height of 1 m, a diameter of 
0.02m and a volume flow rate calculated using the release mass of pollutant, with the 
ambient temperature and pressure recorded on site for each survey. The emission rates 
and the tracer volume flow rates were calculated in the same way as for site A, the 
resulting input values are shown in Table 14. 
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Table 14 – Site B emission parameters for each survey. 

Survey Tracer emission rate of C2H2 (g s-1) Tracer volume flow rate (m3 s-1) 

3 0.88 7.88E-04 

4 0.74 6.59E-04 

5 0.88 7.91E-04 

6 0.86 7.91E-04 

Sensitivity testing was carried out to find the meteorological parameters that gave the best 
agreement between modelled and measured tracer gas concentrations, leading to the 
minimum change in tracer gas emission rate using this inversion dispersion modelling 
method. Surface roughness values were selected separately for each survey as part of 
this process. The final set of input meteorological parameters used are shown in Table 15. 

Table 15 – Site B meteorological parameters for each survey.  

Survey Surface 
roughness 
(m) 

10 m 
height 
wind speed 
(m s-1) 

Wind 
direction 
(degrees) 

Cloud 
cover 
(Oktas) 

Temperature 
(oC) 

Wind 
direction 
variability 
(degrees) 

3 0.25 6.2 189 4 8.9 5.0 

4 1.25 5.7 240 8 11.4 3.5 

5 0.20 3.6 230 8 10.3 3.0 

6 0.70 12.9 230 6 9.6 5.0 
 
Initial estimates of background concentrations of CH4 were taken from monitoring data at 
the DECC background site at Tacolneston. These values were largely in agreement with 
the background concentrations suggested from the monitored data at site B. The initial 
background concentrations of C2H2 were assumed to be zero, however the monitored data 
baseline was above zero for some surveys, suggesting that a low background 
concentration should be applied in these cases.  
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Table 16 – Site B background concentrations. 

Survey CH4 (mg m-3) C2H2 (mg m-3) 

3 1.343 0.000541 

4 1.330 0.002162 

5 1.316 0.001622 

6 1.320 0 

A subset of the TDM survey transects were used for each survey, to choose transects 
where the landfill signal was strong and the modelled wind direction was consistent with 
the measured values. The transects used for each survey are given in Table 17. 

Table 17 – Transects used for site B 

Survey Total number of 
transects 
available 

Number of 
transects used 

Transects used 

3 14 6 2,3,4,5,6,7 

4 18 5 1,2,3,4,5 

5 23 6 1,2,3,4,5,6 

6 23 15 4,5,6,8,9,10,11,15,18,20,21,22,23,24,25 

 
7.1.4. Site B evaluation 

The modified Bayesian inversion approach was applied to estimate tracer gas emission 
rates for site B, to evaluate the model configuration. A perfect model configuration would 
lead to the inverse dispersion modelling input and output emission rates being equal. 

The inverse dispersion modelling input and output tracer gas emission rates are compared 
in Figure 15 and Table 18. In general, the differences are small, only survey 4 gives a 
change of more than 0.1 g s-1. The mean adjustment is -0.06 g s-1.   
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Figure 15 – Inverse dispersion modelling output C2H2 emission rate versus input C2H2 
emission rate for the 4 surveys for site B. 

Table 18 – Inverse dispersion modelling input and output C2H2 emission rate for the 4 
surveys for site B. 

Survey Input C2H2 emission rate 
(g s-1) 

Output C2H2 emission rate (g 
s-1) 

Difference  
(g s-1) 

3 0.89 0.80 -0.083 

4 0.74 0.58 -0.156 

5 0.88 0.82 -0.055 

6 0.86 0.92 0.054 

Mean 0.84 0.78 -0.060 

 

Modelled and measured C2H2 concentrations for site B for each survey are compared in 
Figures 16 to 19. Transects used in the inverse dispersion modelling are identified by the 
blue squares marked ‘Peaks’ – these represent the measured peak values in the included 
transects. In general, the mean modelled concentration (dark blue) is considerably lower 
than the measurements (bright green), while the fluctuations local maximum concentration 
(lime green) is higher at most locations, but gives a reasonable match to measurements at 
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the measured peaks used. This is the expected behaviour, because the mean modelled 
concentration has an averaging time of one hour, and the fluctuations local maximum 
represents the maximum likely one-second concentration at all locations during a one-hour 
period, so at any given time should only be expected to match the measurement at the 
measured peak location, not everywhere.
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Figure 16 – Time series graph of hourly mean modelled (dark blue), modelled one-second fluctuations local maximum (lime green) and 
monitored (bright green) C2H2 concentrations for site B survey 3. The error bars represent the one-second fluctuations standard deviation 
of the modelled mean concentration. The ‘Peaks’ (blue squares) highlight the measured one-second peak C2H2 concentrations in the used 
transects (6 out of 14). The measurements were a little noisy. The wind direction was stable for the first few transects then gradually 
changed over the reminder of the time. The initial transects were 2.5 km from the site, moving to 4 km away for the final transects. 
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Figure 17 – Time series graph of hourly mean modelled (dark blue), modelled one-second fluctuations local maximum (lime green) and 
monitored (bright green) C2H2 concentrations for site B survey 4. The error bars represent the one-second fluctuations standard deviation 
of the modelled mean concentration. The ‘Peaks’ (blue squares) highlight the measured one-second peak C2H2 concentrations in the used 
transects (5 out of 18). The first 5 transects were along a road 1.5 km from the site, and the modelled plume aligned reasonably well with 
the monitored data. The transects then moved to 4 km away. These roads did not form a straight line transect so are more difficult to 
interpret. 
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Figure 18 – Time series graph of hourly mean modelled (dark blue), modelled one-second fluctuations local maximum (lime green) and 
monitored (bright green) C2H2 concentrations for site B survey 5. The error bars represent the one-second fluctuations standard deviation 
of the modelled mean concentration. The ‘Peaks’ (blue squares) highlight the measured one-second peak C2H2 concentrations in the used 
transects (6 out of 23). This survey was similar to survey 4 in terms of location. The modelled wind direction aligned well with the 
measured peaks at the beginning of the survey, but then the wind direction changed. This survey was carried out at dusk. 
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Figure 19 – Time series graph of hourly mean modelled (dark blue), modelled one-second fluctuations local maximum (lime green) and 
monitored (bright green) C2H2 concentrations for site B survey 6. The error bars represent the one-second fluctuations standard deviation 
of the modelled mean concentration. The ‘Peaks’ (blue squares) highlight the measured one-second peak C2H2 concentrations in the used 
transects (15 out of 23). The monitoring data is quite noisy. The measured peaks were in line with the modelled wind direction during most 
of the survey. The first transect was 6.5 km away, the transect at around 11:43am is 3.5 km away and the rest of the transects were 1.5 km 
away. The more distant transects were not used.
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7.1.5. Site C inputs 

Site C was represented by 8 volume sources which were positioned in the location of the 
landfill site, as shown in Figure 20. The total footprint area of the sources was 756,074.5 
m2. Each volume source had a depth of 1 m.  

 

 

Figure 20 – Site C showing transect locations relative to the tracer release sites and 
modelled volume sources used to represent the landfill site. Receptor locations highlighted 
using a triangle symbol locate the position of the maximum values used for the inverse 
dispersion modelling. 

The modelling used a latitude of 51.92°.  All other site options, such as minimum Monin-
Obukhov length were left as the model default values. 

The tracer release was modelled as a point source with a height of 1 m, a diameter of 
0.02 m and a volume flow rate calculated using the release mass of pollutant, with the 
ambient temperature and pressure recorded on site for each survey. 

The emission rates and the tracer volume flow rates were calculated in the same way as 
for site A, the resulting input values are shown in Table 19. 
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Table 19 – Site C emission parameters for each survey.  

Survey Tracer emission rate of C2H2 (gs-1) Tracer volume flow rate (m3s-1) 

1 0.71 6.38E-04 

2a 0.74 6.64E-04 

2b 0.58 5.22E-04 

5 0.89 7.97E-04 

6 0.90 8.00E-04 

7a 0.86 7.99E-04 

7b 0.86 8.02E-04 
 

Sensitivity testing was carried out to find the meteorological parameters that achieve gave 
the best agreement between modelled and measured tracer gas concentrations, leading to 
the minimum change in tracer gas emission rate using this inversion dispersion modelling 
method. Surface roughness values were selected separately for each survey as part of 
this process. The input meteorological parameters are shown in Table 20. 

Table 20 – Site C meteorological parameters for each survey. 

Survey Surface 
roughness 
(m) 

10 m 
height 
wind 
speed (m 
s-1) 

Wind 
direction 
(degrees) 

Cloud 
cover 
(Oktas) 

Temperature 
(oC) 

Wind 
direction 
variability 
(degrees) 

2a 1.50 5.7 170 8 8.9 8.6 

2b 1.00 6.7 160 7 8.7 4.0 

5 0.10 3.6 210 7 7.0 1.0 

6 0.05 3.5 290 7 6.2 5.0 

7a 2.50 4.0 180 7 11.6 3.5 

7b 2.00 4.0 180 7 11.0 3.5 
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Initial estimates of background concentrations of CH4 were taken from monitoring data at 
the DECC background site at Heathfield. These values were largely in agreement with the 
background concentrations suggested from the monitored data at site C. The initial 
background concentrations of C2H2 were assumed to be zero, however the monitored data 
baseline was above zero for some surveys, suggesting that a low background 
concentration should be applied in these cases.  

Table 21 – Site B background concentrations 

Survey CH4 (mg m-3) C2H2 (mg m-3) 

2a 1.270 0 

2b 1.270 0 

5 1.350 0 

6 1.343 0.000540 

7a 1.316 0.001081 

7b 1.316 0.001622 
 

A subset of the TDM survey transects were used for each survey, to choose transects 
where the landfill signal was strong and the modelled wind direction was consistent with 
the measured values. The transects used for each survey are given in Table 22. 

Table 22 – Transects used for site C. 

Survey Total number of 
transects available 

Number of 
transects used 

Transects used 

2a 8 8 2,3,4,5,6,7,8,11 

2b 4 3 1,3,4 

5 15 4 13,14,16,17 

6 16 7 2,3,4,5,6,7,8 

7a 14 8 2,3,4,5,12,13,14,15 

7b 15 10 1,2,3,4,5,6,14,15,16,17 
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7.1.6. Site C evaluation 

The Modified Bayesian inversion approach was applied to estimate tracer gas emission 
rates for site C, to evaluate the model configuration. A perfect model configuration would 
lead to the inverse dispersion modelling input and output emission rates being equal. 

The inverse dispersion modelling input and output tracer gas emission rates are compared 
in Figure 21 and Table 23. In general, the differences are small, only survey 7a gives a 
change of more than 0.1 g s-1. The mean adjustment is -0.045 g s-1.   

 

 

Figure 21 – Inverse dispersion modelling output C2H2 emission rate versus input C2H2 
emission rate for the 6 surveys for site C. 
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Table 23 – Inverse dispersion modelling input and output C2H2 emission rates for the 6 
surveys for site C. 

Survey Input C2H2 emission rate 
(g s-1) 

Output C2H2 emission rate 
(g s-1) 

Difference  
(g s-1) 

2a 0.74 0.65 -0.087 

2b 0.58 0.63 0.045 

5 0.89 0.83 -0.062 

6 0.90 0.90 -0.007 

7a 0.86 0.73 -0.131 

7b 0.86 0.83 -0.029 

Mean 0.81 0.76 -0.045 

Modelled and measured C2H2 concentrations for site C for each survey are compared in 
Figures 22 to 27. Transects used in the inverse dispersion modelling are identified by the 
blue squares marked ‘Peaks’ – these represent the measured peak values in the used 
transects. In general, the mean modelled concentration (dark blue) is considerably lower 
than the measurements (bright green), while the fluctuations local maximum concentration 
(lime green) is higher at most locations, but gives a reasonable match to measurements at 
the measured peaks used. This is the expected behaviour, because the mean modelled 
concentration has an averaging time of one hour, and the fluctuations local maximum 
represents the maximum likely one-second concentration at all locations during a one-hour 
period, so at any given time should only be expected to match the measurement at the 
measured peak location, not everywhere.
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Figure 22 – Time series graph of hourly mean modelled (dark blue), modelled one-second fluctuations local maximum (lime green) and 
monitored (bright green) C2H2 concentrations for site C survey 2a. The error bars represent the one-second fluctuations standard deviation 
of the modelled mean concentration. The ‘Peaks’ (blue squares) highlight the measured one-second peak C2H2 concentrations in the used 
transects (8 out of 8). For this survey, all transects were in the same location, the wind direction was consistent, and all transects were 
used. 
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Figure 23 – Time series graph of hourly mean modelled (dark blue), modelled one-second fluctuations local maximum (lime green) and 
monitored (bright green) C2H2 concentrations for site C survey 2b. The error bars represent the one-second fluctuations standard deviation 
of the modelled mean concentration. The ‘Peaks’ (blue squares) highlight the measured one-second peak C2H2 concentrations in the used 
transects (3 out of 4). This was a short survey with 3 transects, each had a double peak, and the highest peak was in line with the modelled 
wind direction. 
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Figure 24 – Time series graph of hourly mean modelled (dark blue), modelled one-second fluctuations local maximum (lime green) and 
monitored (bright green) C2H2 concentrations for site C survey 5. The error bars represent the one-second fluctuations standard deviation 
of the modelled mean concentration. The ‘Peaks’ (blue squares) highlight the measured one-second peak C2H2 concentrations in the used 
transects (4 out of 15). All transects were 3km away, the wind direction shows variation, with only the last transects in line with the 
modelled wind direction. 
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Figure 25 – Time series graph of hourly mean modelled (dark blue), modelled one-second fluctuations local maximum (lime green) and 
monitored (bright green) C2H2 concentrations for site C survey 6. The error bars represent the one-second fluctuations standard deviation 
of the modelled mean concentration. The ‘Peaks’ (blue squares) highlight the measured one-second peak C2H2 concentrations in the used 
transects (7 out of 16). This was a morning survey with the wind direction showing a shift half way through the survey. 
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Figure 26 – Time series graph of hourly mean modelled (dark blue), modelled one-second fluctuations local maximum (lime green) and 
monitored (bright green) C2H2 concentrations for site C survey 7a. The error bars represent the one-second fluctuations standard deviation 
of the modelled mean concentration. The ‘Peaks’ (blue squares) highlight the measured one-second peak C2H2 concentrations in the used 
transects (8 out of 14). This survey measured 2 sets of transects, at 1.5 km and 3.5 km away. The measured peaks show consistency with 
the modelled wind direction throughout. 
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Figure 27 – Time series graph of hourly mean modelled (dark blue), modelled one-second fluctuations local maximum (lime green) and 
monitored (bright green) C2H2 concentrations for site C survey 7b. The error bars represent the one-second fluctuations standard deviation 
of the modelled mean concentration. The ‘Peaks’ (blue squares) highlight the measured one-second peak C2H2 concentrations in the used 
transects (10 out of 15). The transects measured in the middle of the survey were further away (4.1 km) from the landfill site than those at 
the start and end of the survey (2.1 km). This survey measured 2 sets of transects, at 1.5 km and 3.5 km away. The measured peaks show 
consistency with the modelled wind direction throughout.
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7.2. Standard Bayesian inversion methodology 
The standard CERC Bayesian inversion scheme (Carruthers and others (2019)) was 
applied with the same site characteristics, selected transects, meteorology and input CH4 
emissions as the modified methodology described above, with the following differences: 

ADMS forward modelling: 

• one second mean averaging time 
• no modelling of concentration fluctuations 
• default values for wind direction variability 

Inverse dispersion modelling: 

• all measurements for the selected transects were included in the inverse 
dispersion modelling 

The uncertainty and covariance values that were used in the CH4 inverse dispersion 
modelling with this methodology are given, with justifications, in Table 24. 

Table 24 – Uncertainty and covariance values used in the standard Bayesian inversion 
scheme for all sites for CH4. 

Parameter Value Unit Comment 

Measurement 
uncertainty 

50 µg m-³ Estimate. Large enough to account for the 
instrument accuracy (1.3 µg m-³) and 
model error. 

Measurement 
uncertainty 
covariance 

0  Set to zero to allow the error to vary 
between the different transect peaks. 

Emissions 
uncertainty 

0.01 g m-³ s-1 Set to a high value to allow the initial 
nominal unit emission rates (1x10-5 g m-3 s-

1) to be changed as much as necessary to 
obtain good model agreement. 

Emissions 
uncertainty 
covariance 

50%  Percentage of emissions uncertainty 
common to different sources. All sources 
represent part of the same landfill site, so 
have some interdependence. 
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7.3. 1D Gaussian profiles methodology 
The CERC inversion scheme was applied to simulate a 1D Gaussian profile inverse 
dispersion modelling method, using the same selected transects and meteorology as the 
modified and standard Bayesian methodologies described above, with the following 
differences: 

ADMS forward modelling: 

• one hour mean averaging time 
• landfill site represented as a single point source in the approximate centre of 

the landfill, with height 1 m, diameter 100 m and exit velocity 0.01 m s-1 
• no modelling of concentration fluctuations 
• default values for wind direction variability 

Inverse dispersion modelling: 

• all measurements for the selected transects were included in the inverse 
dispersion modelling 

• zero measurement uncertainty 
• initial point source emission rate 1 g s-1 
• point source emissions uncertainty 5 g s-1, a high value to allow the initial 

nominal unit emission rate (1 g s-1) to be changed as much as necessary to 
obtain good model agreement  
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7.4. Backward Lagrangian Stochastic (WindTrax) modelling 
WindTrax version 2.0.9.7 was used for the Backward Lagrangian Stochastic inverse 
dispersion modelling.  

An overview of the WindTrax configuration for site A is shown in Figure 28. The 
background map was exported from ArcGIS with a visible 200 m resolution grid for 
matching with the WindTrax map grid. WindTrax runs in local coordinates, so the 
coordinate origin was set as the location of the tracer release for surveys 3 to 7. 

The landfill source outline was digitised manually to match the combined ADMS source 
outlines, giving a total source area of 158,272 m2. The mobile methane and tracer 
concentration measurements are represented by ‘truck’ measurement platforms, linked to 
files containing coordinates and associated concentrations. Ten virtual trucks were used, 
so each WindTrax calculation incorporates up to 10 measurements spread across a single 
transect. Measurements were assigned in blocks along the transect to each truck in turn, 
in order to ensure that each calculation uses measurements distributed along the transect. 
Figure 29 shows how measurements from survey 1, transect 11 were split between the 
trucks. 

An anemometer and thermometer, nominally located at the northern edge of the landfill, 
are linked to a file of input meteorological data. The input meteorological data also 
includes the Monin-Obukhov length calculated by ADMS as an indication of stability, linked 
to the atmospheric profile. Input meteorological data values are shown in Table 25. 

Background concentrations were input as an atmosphere property for each survey. The 
surface roughness length was set as 0.07 m to match ADMS. 1,000,000 calculation 
particles were used in both the backwards (landfill area source) and forwards (tracer point 
source) Lagrangian models for each measurement point. 
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Figure 28 – Visualisation of WindTrax configuration. The bright green shape is the landfill 
area. Input files on the left are connected to each of 10 trucks (concentration measurements 
and locations), or anemometer and general atmospheric properties (meteorological data). 
An output file at the bottom gives the calculated emission rates. Coloured curved lines 
show the measurement data locations (background image). The grid lines are at 200 m 
resolution.  
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Figure 29 – An example of the distribution of transect data points split evenly between 10 
trucks for survey 1, transect 11.  
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Table 25 – Input meteorological data used for WindTrax. 

Survey Wind 
speed (ms-

1) 

Wind 
direction (°) 

Temperature 
(°C) 

Monin-
Obukhov 
length (m) 

Background 
concentration 
CH4 (ppm) 

1 7.7 245 12.7 -2,500.0 1.92 

2 3.6 85 2.8 46.9 1.99 

3 2.1 290 3.8 -32.5 2.10 

4 2.6 130 5.4 8.9 2.14 

5 5.7 210 8.4 400.0 1.99 

6 3.6 105 8.6 44.6 2.06 

7 3.2 195 8.8 84.0 2.00 

 

WindTrax is not recommended for use with source-receptor distances over 1 km. None of 
the TDM study measurements are within this limit and some are much further away. The 
measurements used for WindTrax in this study were limited to within around 3 km of the 
source, using only the closest transects in each survey. In addition, in initial runs a large 
number of points showed no influence from the source. This was reduced by removing 
points which lay more than ±20° away from a line along the modelled wind direction from 
the source centre. These distance and angle limits reduced the number of measurements 
available for each survey as summarised in Table 26. Figure 30 presents the WindTrax 
and TDM emission rates plotted against the number of measurements available for 
WindTrax. This graph shows a trend for the WindTrax results to be more closely matched 
to TDM with increasing numbers of available input measurements within the angular and 
distance thresholds. 
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Table 26 – Summary of measurement data used for input to WindTrax, with distance and 
angle limits applied.  

Survey Number of 
measurements 

Transects 
included 

Maximum 
distance 
(km) 

Comment 

1 528 2,5,7,9,11 2.07 No distance limit applied. 

2 239 2,4,6 2.99 One distant transect 
excluded. 

3 409 3,5,7 2.09 No distance limit applied. 

4 939 3,5,7,9,16,18 2.55 
One distant transect 
excluded, one wide angle 
transect excluded. 

5 369 3,9 2.99 Four distant transects 
excluded. 

6 501 3,5,7 2.68 One distant transect 
excluded. 

7 474 1,12,14,16,18 1.86 Three transects beyond 
3 km excluded. 
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Figure 30 – Comparison of TDM and WindTrax calculated emission rates for site A, plotted 
against the number of measurements available for WindTrax.  

The output from WindTrax included a separate emission rate estimate for each model 
calculation (based on up to 10 measurement points). It also provides the corresponding 
proportion of the landfill area which influenced the measured concentration and the ratio of 
the standard deviation of emissions to the mean emissions. Some of the output emission 
rates are negative. This may result from measured concentrations which are lower than 
the specified background concentration. High values of standard deviation/mean ratio 
indicate higher uncertainty in the emissions estimate. Post-processing was used to derive 
an overall emission rate estimate from the individual calculation estimates, by excluding: 

• any negative emissions 
• calculations with standard deviation/mean greater than 0.9 
• calculations where the proportion of landfill area influencing the measured 

concentrations is less than 0.4  

Survey 2 showed the lowest proportions of landfill area influencing the measured 
concentrations. This may indicate a mismatch between the modelled wind direction and 
transect location. An example of the emissions rates and standard deviation/mean ratio 
values for each model calculation within a single transect (survey 1, transect 5) is 
visualised in Figure 31. The number of model calculations included in the final emission 
rate averages is summarised in Table 27 for each survey. 
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Figure 31 – WindTrax emissions and standard deviation/mean for individual model subset 
calculations within a single transect (transect 5) for survey 1. Excluded values are shown 
with a cross: one negative emission rate and one standard deviation/mean above the 
threshold value. 

Table 27 – Summary of the number of model calculations included in average emission rate 
for each survey. 

Survey Number of model calculations 
included in average 

1 42 

2 10 

3 43 

4 95 

5 37 

6 51 

7 48 
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Comparing Tables 26 and 27, it is clear that most surveys with higher numbers of 
available measurement points lead to high numbers of calculation subsets included in the 
output average. However, survey 1 has more points available for WindTrax than survey 3, 
but fewer valid calculation subsets. These discrepancies may indicate that some of the 
surveys generate a significant proportion of invalid model calculation subsets. Figure 32 
compares TDM and WindTrax emission estimates, plotted against the number of model 
calculation subsets included in the WindTrax emission estimate. Comparing with Figure 30 
shows a weak trend for WindTrax emissions to be closer to the TDM emissions when 
more calculations can be included in the output average. 

 

 

Figure 32 – Comparison of TDM and WindTrax emission rates, plotted against the number 
of model calculations used to derive the WindTrax average emission rate.  
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7.5. Inverse dispersion modelling CH4 concentration results 
The Modified Bayesian, Standard Bayesian and 1D Gaussian inverse dispersion modelling 
methods return the adjusted modelled concentration at the modelled receptors. The CH4 
results for these 3 methods for each site are given in Figures 33 to 35 as time series 
graphs for each site for each survey. The 1D Gaussian and Standard Bayesian methods 
return the adjusted modelled concentration at each measurement location; the Modified 
Bayesian method returns only the adjusted modelled concentration at the location of the 
peak measurement in each transect. 

The results confirm that the same transects have been modelled with each method. The 
1D Gaussian and Standard Bayesian methods capture some of the peaks but not others, 
whereas the Modified Bayesian method captures most of the peaks. In general, the 
differences between the 1D Gaussian and Standard Bayesian results are small. The 1D 
Gaussian plume is often wider and shallower than the Standard Bayesian plume because 
of the longer averaging time used in the forward ADMS modelling. The Modified Bayesian 
method gives the highest concentrations because these values represent the maximum 
likely concentration at the locations of the peak measurements, given the local short-term 
meteorological variability. The 1D Gaussian and Standard Bayesian method give the 
mean plume for the forward model averaging time used. The level of agreement between 
the adjusted modelled and measured methane concentrations gives varying levels of 
confidence in the inverse dispersion modelling methods’ abilities to improve the modelled 
concentrations by adjusting the emissions. The methods’ different treatments of the landfill 
plume result in differences between the resulting emissions (section 5.5).   
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Figure 33 – Time series plots comparing site A monitored CH4 concentrations (grey) with 
inverse dispersion modelling CH4 concentration results using the 1D Gaussian (orange), 
Standard Bayesian (green) and Modified Bayesian (purple) methods. Surveys were carried 
out on different days and at different times. Inverse dispersion modelling results are shown 
for transects selected for inclusion. 
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Figure 34 – Time series plots comparing site B monitored CH4 concentrations (grey) with 
inverse dispersion modelling CH4 concentration results using the 1D Gaussian (orange), 
Standard Bayesian (green) and Modified Bayesian (purple) methods. Surveys were carried 
out on different days and at different times. Inverse dispersion modelling results are shown 
for transects selected for inclusion. 
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Figure 35 – Time series plots comparing site C monitored CH4 concentrations (grey) with 
inverse dispersion modelling CH4 concentration results using the 1D Gaussian (orange), 
Standard Bayesian (green) and Modified Bayesian (purple) methods. Surveys were carried 
out on different days and at different times. Inverse dispersion modelling results are shown 
for transects selected for inclusion. 
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Glossary 
Adjoint modelling - Running a model with the time direction reversed, for example, to 
follow advection/dispersion backwards from receptor locations towards source areas from 
which concentrations could have originated. 

Anaerobic digestion - A process for the controlled decomposition of biodegradable 
materials, which captures the methane and other gases produced. Feedstock materials 
include food waste, agricultural waste and/or sewage sludge. 

Bayesian - Statistical frameworks and methods which use Bayes’ theorem; Bayes’ 
theorem describes the conditional probability of an event given prior knowledge and 
observed data, this probability is updated in light of new data.   

Biogas - Fuel gas produced through anaerobic digestion. 

Cost function - A measure of model performance which quantifies differences between 
predicted and actual outputs, the aim of optimisation processes is to minimise this cost 
function to find the best solution.  

Fluctuations local maximum concentration - Maximum likely ADMS modelled 
concentration at a given location, given the plume meandering caused by wind and 
turbulence variations that occur on sub-hourly timescales, when using the ADMS 
fluctuations module. 

Fugitive emissions - Emissions from poorly-controlled sources, such as leaks from 
pipework or landfill coverings. 

Gaussian - A probability distribution that is symmetric and bell-shaped. Also known as a 
normal distribution. Gaussian dispersion models use Gaussian-shaped plume 
concentration profiles in the vertical and crosswind directions. 

Inverse dispersion modelling - Modelling techniques which estimate the location and/or 
emission rate of pollutant sources based on measured pollutant concentrations at known 
locations under known meteorological conditions.  

Lagrangian - A function which combines the kinetic and potential energy of the system. 
The Lagrangian at each point along a path over time gives the ‘action’; the action between 
2 points will be minimised and so the path taken may be determined. Lagrangian 
dispersion models follow a large number of individual simulation particles through a flow 
field, with random perturbations representing smaller-scale turbulent motions.  

Mass balance - Based on the Law of Conservation of Mass; if the mass of a specific 
substance entering a defined spatial volume (for example, airborne measured upwind 
background and source emissions) and the mass exiting the volume (for example, 
airborne measured downwind plume) are known, then the amount of mass emitted from 
the source can be calculated as the difference (balance) of the 2 measured masses.  
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Measurement plane - A 2D vertical surface where concentrations are measured 
downwind from the source. This surface aims to cover the crosswind and vertical extent of 
the target plume. Either optical or airborne methods can be used to measure 
concentrations across a vertical plane. 

Monin-Obukhov length (LMO) - A measure of the scale of atmospheric mixing, 
influenced by the balance between thermal and mechanical parameters.  

Simulated annealing - An optimisation algorithm which works in analogy to the metallurgy 
technique of annealing, where metals are heated to above their recrystallisation 
temperature before cooling to optimise the structure and physical properties of the final 
material. 

Stochastic - A random process for which the specific outcome cannot be precisely 
determined, only described statistically. 

UAV - Unmanned aerial vehicle, for example, quadcopter drones, model aircraft. 
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