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Research at the Environment Agency 
Scientific research and analysis underpins everything the Environment Agency does. It 
helps us to understand and manage the environment effectively. Our own experts work 
with leading scientific organisations, universities and other parts of the Defra group to 
bring the best knowledge to bear on the environmental problems that we face now and in 
the future. Our scientific work is published as summaries and reports, freely available to 
all.  
 
This report is the result of research commissioned by the Environment Agency’s Chief 
Scientist’s Group. 
 
You can find out more about our current science programmes at 
https://www.gov.uk/government/organisations/environment-agency/about/research 
 
If you have any comments or questions about this report or the Environment Agency’s 
other scientific work, please contact research@environment-agency.gov.uk. 

 

Dr Robert Bradburne 
Chief Scientist 
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Executive summary 
DNA-based analysis of ecological samples could provide a cost-effective means of acquiring 
species data and an opportunity to establish deeper insights into the make-up of biological 
communities. Benthic diatoms have been used in environmental assessment of aquatic 
environments in the UK for many years; the Trophic Diatom Index (TDI) forms the basis of 
the Water Framework Directive (WFD) classification tool DARLEQ, using benthic diatoms 
as a proxy for the wider phytobenthos. The Environment Agency, in collaboration with the 
Scottish Environment Protection Agency (SEPA), has developed a DNA-based method for 
identifying freshwater benthic diatoms. The relationship between the DNA data and nutrient 
pressures in rivers is similar to that for traditional light microscopy (LM) data. However, the 
2 methods produce differing outputs in terms of the taxa identified and quantified, resulting 
in different assessments of ecological status in 35% of sites in a test data set. In this project, 
we investigated whether additions to the curated ribulose-bisphosphate carboxylase (rbcL) 
DNA barcode reference database and advances in bioinformatics processing pipelines 
affected differences between microscopy and DNA outputs (Phase 1). We also explored the 
potential to extract more information from the DNA analysis by including data from the wider 
phytobenthic community (Phase 2).  

In phase 1, diatom rbcL metabarcoding data generated from ~1,500 UK river samples were 
analysed with 4 bioinformatics pipelines (UPARSE, UCLUST, UNOISE3 and DADA2), and 
taxonomically classified against the latest rbcL diatom barcode reference database 
(diat.barcode) using the Ribosomal Database Project (RDP) classifier. The recently 
developed next generation sequencing based DARLEQ tool (DARLEQ3) was used to 
calculate TDI and ecological status class. Results were compared to LM data, and to data 
generated using the Environment Agency’s original high-throughput sequencing (HTS) 
pipeline. An 11 species mock community was sequenced using the rbcL marker and 
analysed with all pipelines, to compare their accuracy and precision at recovering known 
taxa.  

Correlations between LM TDI and that calculated from DNA data were in the range 0.7 to 
0.85, similar to the HTS pipeline (r=0.87), with UNOISE3 having the lowest correlation. All 
pipelines produced ecological status classes in agreement with LM for ~60 to 65% of sites, 
apart from UNOISE3 (43%). Based on our analyses, we recommend using the DADA2 
pipeline in the future. We believe it to be an accurate, stable pipeline and with widespread 
use is unlikely to change within the next 3 to 5 years, which should improve user confidence. 
More work is still needed to understand the relationship between outputs from bioinformatic 
pipelines and the biological communities they represent. The differences observed between 
LM and DNA analyses (and subsequent derivation of ecological status) appear to be 
fundamental to the different forms of data they produce and are unlikely to be resolved 
through advances in DNA analytical techniques and improved reference databases alone.  

In phase 2, additional samples collected through the Environment Agency’s routine river 
monitoring programme (2017 to 2019) were included in the analysis. All data were analysed 
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using the DADA2 pipeline, which implements a high-resolution amplicon sequence variant 
(ASV) approach. While non-diatom taxonomic groups were detected, few contained the 
diversity that would be expected in riverine environments. This may be due to the 
performance of the current polymerase chain reaction (PCR) primers in characterising the 
wider phytobenthic community and influenced by the sampling method used, as both were 
developed specifically for diatoms.  

The data set was split for further analysis into diatoms and non-diatoms. Different models 
were applied to the data to look at the predictive power of individual taxa and community 
responses to nutrients. ASVs that showed significant pressure responses were further 
classified against the National Center for Biotechnology Information (NCBI) GenBank 
database that contains rbcL sequence data from chloroplast containing species.  

Comparing phase 2 results with those from phase 1 indicates that both diatom and non-
diatom ASV-based models outperform the equivalent taxonomy-based HTS models. In 
addition, results suggest that diatom ASV models may perform as well as, or better than, 
the equivalent LM model. Part of this improvement is likely due to the finer taxonomic 
resolution offered by DNA analysis. 

We recommend that future developments should use ASVs to calculate metrics, with links 
to reference databases made as a final step to generate taxa lists to support interpretation. 
Any further exploration of the potential of non-diatoms would benefit from access to a well-
curated reference database, similar to diat.barcode. Such a database does not yet exist, 
and we caution against the indiscriminate use of NCBI GenBank as a taxonomic resource 
as the rbcL sequences deposited are not checked for errors.  

The present study indicates that there is relatively little scope for improvement in the 
current approach (deriving ecological quality ratios (EQRs) from measures of community 
turnover). Therefore, the possibility of developing alternative metrics (for example, 
incorporating diversity) or bypassing EQR calculation and predicting status class directly 
should be explored.    

This study also identified considerable diversity in Eustigmatophyceae (previously poorly 
known) and a wider distribution than previously thought for the freshwater Phaeophyceae. 
However, beyond the formal remit of the project, these results offer a strong case for the 
benefits of metabarcoding in expanding knowledge of aquatic biodiversity in the UK. 
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1. Background and rationale 
To meet the requirements of the Water Framework Directive (WFD) (2000/60/EC), the UK 
regulatory and conservation agencies, under the auspices of the UK Technical Advisory 
Group (UKTAG), developed and subsequently refined a number of ecological assessment 
tools for rivers, informed by the normative definitions of ecological status in Annex V of the 
directive. These tools rely on the traditional approach to sampling and identifying aquatic 
organisms, maintaining continuity with pre-existing data and established biological 
identification skills.  

Benthic diatoms have been used in environmental assessment in the UK for many years, 
principally in rivers but with some application in lakes. They are easily sampled alongside 
the collection of other biological and/or environmental parameters and have been shown to 
respond to nutrient pressure. The Trophic Diatom Index (TDI) was developed in the 1990s 
(Kelly and Whitton, 1995) and subsequently modified to provide an assessment tool 
(DARLEQ) that was compliant with the requirements of the WFD, diatoms being used as a 
proxy for the status of the wider phytobenthos (Kelly and others, 2008). The DARLEQ tool 
was derived from, and designed for use with, light microscopy (LM) data, and was 
intercalibrated to a common definition of good ecological status as required under the WFD. 

DNA-based analysis of biological samples potentially offers a more cost-effective way of 
acquiring species data, and an opportunity to establish deeper insights into the make-up of 
biological communities than more conventional methods. The Environment Agency has 
been at the forefront of developments in using DNA to identify freshwater benthic diatoms 
in recent years, making significant progress in collaboration with the Scottish Environment 
Protection Agency (SEPA) and with input from other UK agencies (Environment Agency 
2018, 2020 and SEPA 2018).  

A relationship between the diatom DNA data and nutrient pressures has been 
demonstrated, which is similar to that for LM data. However, the 2 methods produce differing 
outputs in terms of the taxa identified and quantified. This leads, in some instances, to 
different TDI scores and calculated ecological quality ratio (EQR) values. Consequently, 
where comparative data are available, mismatches in the WFD phytobenthos status 
classification are seen in about 35% of river sites. It is important, from a regulatory 
perspective, that the ecological status of waterbodies can be assessed over time, with 
confidence in the reasons for observed changes and trends. The mismatch between the 
DNA and LM classifications is not easily explained and was considered unacceptably large 
when reviewed by the devolved UK administrations in 2019. Therefore, the DNA-based 
version of DARLEQ was not adopted for formal classification and reporting purposes for the 
third WFD river basin planning cycle.  

In this project, we re-investigate the differences between methods, in the light of further 
barcode additions to the curated rbcL DNA barcode reference database (diat.barcode: 
Rimet and others, 2019; https://www6.inrae.fr/carrtel-collection_eng/Barcoding-database), 

https://www6.inrae.fr/carrtel-collection_eng/Barcoding-database
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and advances in bioinformatics processing algorithms (Phase 1). In addition, we make an 
initial exploration of different analytical approaches to extract more information from the DNA 
data, seeking to make more effective use of the available information in an assessment of 
the wider phytobenthic community (Phase 2). Phase 1 of the project used samples 
previously collected for developing and refining the original bioinformatics pipeline 
(Environment Agency 2018; 2020), in this report referred to as the ‘HTS pipeline’. This 
pipeline was based on Quantitative Insights into Microbial Ecology (QIIME) 1 and used the 
clustering algorithm UCLUST. Phase 2 included additional samples collected and analysed 
as part of routine river monitoring programmes in 2017, 2018 and 2019. 

The research and application of high-throughput sequencing (HTS) for characterising the 
taxonomic composition of biological communities has matured in recent years, to the point 
at which these techniques have moved from academic research to being used by regulatory 
agencies. Applying these methods for ecological assessment could potentially revolutionise 
the way in which species distribution and biodiversity data are collected and interpreted. 
Recording species composition at lower cost and in less time, would allow the 
implementation of monitoring schemes with higher spatial and temporal resolution, 
encompassing a wider range of taxa and revealing patterns of biodiversity that are not 
possible using current approaches.  

Metabarcoding assays targeting specific marker genes were originally developed by 
microbial ecologists for characterising bacterial and fungal communities, driven by the lack 
of alternative approaches to describe community composition in organisms without 
distinguishing morphological features. A pair of short oligonucleotides (‘primers’) are used 
to bind to and control amplification of all or part of a specific marker gene, amplifying and 
sequencing gene variants representing the diversity of organisms in a mixed community 
sample. Samples can be barcoded with unique DNA sequence tags, meaning many 
samples can be ‘multiplexed’ (run together) on an individual sequencing run. After 
computational processing to assign sequences to samples and perform error correction 
(either via clustering similar sequences or by corrections based on known sequence error 
profiles), sequences can be matched to a taxonomic group by comparing them against 
known sequences stored in a reference database. Metabarcoding has been applied to 
diverse communities from terrestrial and aquatic environments, including terrestrial 
invertebrates (Beng and others, 2016; Dopheide and others, 2019), soil fauna (Yang and 
others, 2014), zooplankton (Schroeder and others, 2020; Zhang and others, 2018), 
freshwater invertebrates (Bista and others, 2017; Hajibabaei and others, 2011; Kuntke and 
others, 2020), diatoms (Bailet and others, 2020; Rimet and others, 2019) and higher plants 
(Baksay and others, 2020; Pornon and others, 2017).   

Metabarcoding of diatom assemblages is one of the most advanced applications in terms of 
use by regulatory agencies. This traces back to work by 2 independent groups; a UK 
consortium working with the Environment Agency (Environment Agency 2018, 2020; Kelly 
and others, 2020) and the INRAE lab at Thonon, France (for example, Vasselon and others, 
2018), along with groups in Germany, Scandinavia, Hungary, Spain, Portugal and 
elsewhere (for example, Duleba and others, 2021). After initial trials of a fragment of the 
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ribulose-1,5-bisphosphate carboxylase (rbcL) gene and V4 region of 18S rRNA gene, rbcL 
was recommended as the marker of choice (Mann and others, 2010). The exact rbcL 
barcodes (and primers) developed by the UK and INRAE groups differ slightly, the INRAE 
barcode being slightly shorter (263 compared with 331 base pairs). However, the INRAE 
barcode is contained within the UK region, and it is therefore possible to directly compare 
metabarcoding outputs obtained by the 2 systems (the INRAE system gives slightly lower 
phylogenetic resolution because of the shorter barcode) and use results from both to guide 
further development of ecological assessment tools. 

1.1 Potential for improving bioinformatics for detecting diversity in 
diatom assemblages 

There are currently a variety of bioinformatics pipelines and approaches available for 
analysing metabarcoding data, including those developed specifically for diatoms based on 
the QIIME, Mothur and DADA2 analysis pipelines. Bailet and others (2020) demonstrated 
that there were differences between the outputs from different bioinformatic approaches, 
particularly in the assignation of sequence reads to specific taxa. The original development 
of the UK DARLEQ 3 tool (https://github.com/nsj3/darleq3) for high-throughput sequencing 
data used a custom-built pipeline based around the QIIME package of software (Caporaso 
and others, 2010) and curated reference database (Environment Agency 2018, 2020). 
There was a good correlation (r=0.77) between the LM TDI and HTS TDI EQR values. 
However, approximately 35% of sites would be assigned to a different WFD status class as 
a result of changing method (differences were both positive and negative, with no bias). 
Since this work was undertaken, alternative bioinformatics approaches have been 
developed and more barcodes added to online databases (Rimet and others, 2019). In 
addition, Vasselon and others (2018) showed that the number of rbcL sequence reads for 
diatoms is partially a function of cell biovolume, rather than of the number of cells present 
(the basis for LM enumeration). This means that there is a fundamental difference in the 
type of data collected by the 2 approaches which hinders simplistic attempts to fit 
metabarcoding outputs to expectations based on LM analyses.  

One of the main changes in bioinformatics approaches has been the development of 
metabarcoding pipelines that generate amplicon sequence variants (ASV) instead of 
operational taxonomic units (OTU). The definition of an OTU in molecular ecology is a group 
of sequences that are similar to each other, based on a threshold which for most marker 
genes is set at 97% similarity. This cut-off is used on the assumption that each group of 97% 
similar sequences has come from a single taxon/species or very closely related species.  
However, the similarity for some taxa may be set either higher or lower, based on what is 
known about their phylogenetic differences for specific marker genes. For most microbial 
groups and marker genes, including diatoms using the rbcL marker, 97% is used as a broad 
compromise to separate the majority of sequences. One of the main purposes of using 
OTUs has been to attempt to correct polymerase chain reaction (PCR) errors or sequencing 
errors produced during the generation of the sequence data, although for many earlier 
algorithms many of these errors remain. ASVs are fundamentally different to OTUs in that 

https://github.com/nsj3/darleq3
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no clustering or grouping of the sequences takes place. Instead, error correction algorithms 
are applied to the data so that erroneous sequences generated during PCR and sequencing 
are corrected or removed. ASVs are therefore a fine scale method of recovering sequences 
from unprocessed metabarcoding data and can detect differences as small as a single 
nucleotide. This means very closely related taxa or within-taxa variation can be detected.  

Despite the demonstrated capabilities and potential advantages of metabarcoding as a tool 
for studying and monitoring the composition of biological communities, there are still 
technical challenges to be overcome. Although state-of-the-art at the time, the clustering 
algorithm originally used to generate OTUs in the UK pipeline (UCLUST) has been shown 
to generate many spurious OTUs in comparison to clustering algorithms used in more recent 
pipelines for other marker genes (16S, 18S, ITS) (Flynn and others, 2015; Majaneva and 
others, 2015; Prodan and others, 2020). Recent studies have used the modern version of 
the Mothur pipeline (Schloss 2020) to generate OTUs for diatom metabarcoding data 
(Rivera and others, 2021), while DADA2 has been used to generate ASVs in other diatom 
metabarcoding studies (Apothéloz‐Perret‐Gentil and others, 2021; Pérez-Burillo and others, 
2021; Tapolczai and others, 2021). No comparison between different OTU/ASV methods to 
assess biological accuracy against mock communities has yet been performed. The most 
comprehensive study to date, Bailet and others, (2020), used only environmental samples 
to compare outputs from different OTU pipelines with each other and against light 
microscopy data. Comparisons have shown, for other marker genes (such as 16S rRNA), 
that DADA2 can also generate some spurious ASVs when compared to the generation of 
ASVs using other pipelines such as UNOISE3 (Nearing and others, 2018; Prodan and 
others, 2020). Therefore, a comparison of ASV pipelines is also needed. However, it has 
been shown that, although rare, individual diatom morphotaxa can hold multiple variants of 
the rbcL gene (Pérez-Burillo and others, 2021) and there may also be population level or 
biogeographic variation, which may cause problems in the ecological interpretation of 
individual ASVs. On the other hand, ASVs can vary at the regional or local scale, indicating 
the potential for improved resolution when looking at fine scale environmental changes 
(Pérez-Burillo and others, 2021). There may be a case for using both OTUs and ASVs to 
address different questions. All these pipelines have already been adapted or can be 
adapted for the UK rbcL barcode. 

1.2 Looking beyond diatoms: the potential for detecting other algae 

Initial development focused on diatoms, as this group of algae is widely used as a proxy for 
the wider phytobenthos for WFD-related status assessments across the EU (Charles and 
others, 2021). Before the development of metabarcoding, this approach reflected a 
combination of the practical advantages diatoms offered, an established package of working 
practices that developed around the use of diatoms, and the sheer scale of the challenge 
involved in tackling the whole range of microphytobenthos using light microscopy. Focusing 
on diatoms during the first explorations of the potential of metabarcoding made practical 
sense not only because of the expertise and knowledge of diatom ecology accumulated 
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over the years, but also because the body of data from LM analyses offered a unique 
opportunity to benchmark metabarcoding outputs.  

However, this work also showed a large proportion of sequence reads were not being 
assigned to diatoms, raising questions about whether additional ecological information was 
being discarded simply because sequence reads did not belong to the phylogenetic group 
selected for its benefits when using light microscopy. Non-diatom algae are already used in 
a few countries either alongside (Germany: Schaumburg and others, 2004) or instead of 
(Norway: Schneider & Lindstroem, 2011) diatoms, and macroalgae are included in 
macrophyte assessment systems in several countries (Charles and others, 2021). 
Extending the scope of the metabarcoding approach to embrace other groups of algae 
appears, therefore, to be a logical development. 

The potential for using these algae, however, is complicated by several issues, which can 
be summarised under 2 headings: 

1. The likelihood of an alga being found in a biofilm sample. The Rhodophyte 
Lemanea fluviatilis, for example, is common in rivers and is strongly associated with 
high and good status. However, it tends to be attached to larger stones than are 
usually collected when sampling diatoms, typically in the fastest flowing sections of a 
reach. It is therefore likely to be underrepresented by current sampling protocols. This 
patchiness of stream phytobenthos assemblages means that better resolution of non-
diatom algae in a biofilm sample will not automatically translate into a better 
understanding of the phytobenthos present in a river reach. 

2. The likelihood of rbcL from an alga being detected by the primers. The term 
‘algae’ is a catch-all phrase embracing organisms from 2 domains and 4 kingdoms, 
which diverged in deep geological time. Even though rbcL, as a gene for an important 
photosynthetic enzyme, will be highly conserved, there is still considerable variation 
in the structure between groups. Linked to this issue are questions about the reliability 
of reference libraries for several of the groups likely to be detected. Finally, as the 
primers have been optimised for diatoms, there are embedded issues of ‘primer bias’ 
when detecting these other algal groups, particularly those distantly related to 
diatoms. Non-diatom sequence reads are best regarded as ‘bycatch’ rather than as 
an ecologically coherent extension of the existing method. 

Table 1 provides an overview of the major algal groups and their likelihood of being detected 
during the present study. It should be noted that existing knowledge of some groups is 
inadequate due to the limitations of collecting reliable data on tiny, morphologically plastic 
organisms from field samples using light microscopy. It is quite likely that, in a few cases, 
(for example, Eustigmatophyceae, Phaeophyceae) metabarcoding may make a significant 
contribution to current knowledge of the extent of these organisms in the UK. 

 



   

 

14 of 92 

Table 1.  An overview of the major algal groups in freshwaters and their likelihood to 
be included in non-diatom sequence reads using the current UK primers (Forward 
rbcL-646F 5´-ATGCGTTGGAGAGARCGTTT-3´, Reverse rbcL-998R 5´-
GATCACCTTCTAATTTACCWACAACTG-3´; Kelly and others, 2020). Information based 
on the authors’ personal experience, John and others (2011), Adl and others (2019) and 
AlgaeBase  

Group  Family/Sub-group Likely to be in sample?  Likely to be 
amplified?  

Cyanobacteria    Yes. Very abundant in river 
biofilms; many good 
indicators of ecological 
conditions.  

Unlikely. Also 
poor 
representation in 
rbcL reference 
libraries.  

Ochrophyta  
(Diatom relatives) 

    

In theory, 
Ochrophyta, the 
division which 
includes the 
diatoms, have the 
rbcL which is 
most closely 
related and 
should therefore 
amplify. In 
practice, there are 
several issues – 
see 3.2.3. 

  Chrysophyceae 
(Golden algae) 

Rarely abundant in rivers, 
benthic forms only common 
in upland streams in winter.  

  Dictyochophyceae Small group, rarely 
recorded, possibly 
overlooked; most records 
from standing waters.  

  Eustigmatophyceae Relatively little known about 
distribution.  

  Phaeophyceae 
(Brown algae) 

Freshwater representatives 
form crusts which may not 
be removed with usual 
diatom sampling approach; 
likely to be widespread but 
under recorded.  

  Phaeosacciophycea
e 

Very little [nothing?] known 
about freshwater 
representatives in UK.  

  Phaeothamniophyce
ae  

Relatively little known about 
distribution in UK.  

  Raphidophyceae Relatively little known about 
distribution in UK.  

 Xanthophyceae  Widespread and abundant in 
rivers.  

Haptophyta    Widespread but mostly in 
standing waters; possibly 
overlooked.  

Some Haptophyta 
rbcL will amplify, 
but the reverse 
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primer is 
suboptimal. 
However, there 
are rather few 
Haptophyta in 
freshwaters. 

Cryptophyta    Widespread in river biofilms; 
rarely abundant.  

Though not 
closely related to 
Ochrophyta, 
Cryptophyta have 
similar rbcL, 
which is likely to 
be amplified. 

Miozoa/ 
dinoflagellates  

  Widespread, but more 
common in standing waters.  

Extremely 
unlikely to be 
amplified (has 
type II rbcL, 
which is 
phylogenetically 
distinct from rbcL 
region targeted 
by UK rbcL 
primers: Tabita 
and others, 
2008).  

Plantae (includes 
green algae) 

  
  

Chlorophyta  

Very widespread. Many 
likely to be present in 
biofilms. Micro and 
macroalgae representatives. 

Evolutionarily 
extremely distant 
from diatoms in 
evolutionary 
terms, but rbcL in 
some groups is 
sufficiently similar 
that it may be 
amplified.  
However, rbcL is 
not widely used 
as a marker for 
this group so 
reference libraries 
are incomplete.  

 

Streptophyta Very widespread. Many 
likely to be present in 
biofilms. Includes mosses. 

Higher plants  Unlikely to be part of biofilm 
community; about 15% of 
biofilms are sampled from 
macrophytes so DNA likely 
to be removed in the 
process; ample eDNA likely 
within reaches.  

Rhodophyta (Red 
algae) 

  Abundant in streams, and 
sometimes in biofilms. Some 

Some species 
likely to be 
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form distinct crusts which 
may not be removed easily.  

amplified, but 
primer 
mismatches are 
common. 

Euglenophyta    Present in rivers but rarely in 
high numbers.   

Rubiscos of 
Euglenophyta are 
phylogenetically 
related to 
Chlorophyta (q.v.); 
rbcL is interrupted 
by introns in some 
species 
(Karnkowska and 
others, 2018) and 
may not 
amplify/sequence. 
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2. Optimising and improving bioinformatic 
analysis of diatom metabarcoding data 

2.1 Introduction 
The overall objective for phase1 of the project was to re-analyse data from the original 
Environment Agency projects (Environment Agency 2018, 2020) to determine whether 
advances in bioinformatics and updates to the diatom barcode database would change the 
relationship between DNA and LM outputs, with the aim of improving the level of agreement 
between the WFD classifications produced by each method.  

We set out to match rbcL metabarcoding data primarily targeting diatoms, from ~1,500 sites, 
to LM classification results, using the DARLEQ 3 tool to calculate TDI scores. We used the 
latest diatom rbcL DNA barcode reference database (diat.barcode: Rimet and others, 2019) 
and alternative bioinformatics pipelines that use more recent developments in amplicon 
sequence processing algorithms to deliver improved OTUs or ASVs. Pipelines (Table 2) 
were selected based on previous work with diatoms (Kang and others, 2021; Pérez-Burillo 
and others, 2021) or algal communities (Bombin and others, 2021) and were adapted for 
use with the 331bp fragment of the rbcL gene used in this project. 

To assess the accuracy of the pipelines at recovering specific taxa we analysed an 11 
species mock community generated in the original work (Environment Agency, 2018; Kelly 
and others, 2020) with the different analysis pipelines. We also tested 2 methods of 
sequence pair merging quality filtering. We then selected a final set of pipelines to analyse 
the ~1,500 environmental samples which contain molecular data, paired to LM and water 
column nutrient data. 

  

https://github.com/fkeck/diatbarcode
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Table 2. Amplicon sequence processing pipelines used in this study 

Pipeline Features 

QIIME 1 
(Caporaso and 
others, 2010) 
(UCLUST, Edgar 
2010) 

As used in 
original study- 
referred to in 
analysis as 
‘HTS’ pipeline. 

Implemented in 
Ubuntu/Linux 

• No longer supported/updated. 
• Dereplicates sequences. 
• Clusters/picks OTUs at 97% similarity using the UCLUST 

algorithm which was not designed for OTU clustering originally 
and generates many spurious/erroneous OTUs. 

• Removes chimeric sequences using UCHIME. 

USEARCH-
UPARSE (Edgar 
2013) 

Implemented in 
Ubuntu/Linux 

• Dereplicates sequences. 
• Clusters/picks OTUs at 97% similarity with the UPARSE 

algorithm Specifically designed for OTU clustering and has 
been shown repeatedly to generate more biologically accurate 
OTUs than UCLUST.  

• Removes chimeric sequences using UCHIME. 
• Faster runtime and lower memory requirements than QIIME1. 

DADA2 
(Callahan 2016). 

Implemented in 
R/Rstudio in 
Windows or 
Linux 

• Rapidly becoming the standard pipeline in microbial ecology.  
• First models error profiles of RAW sequencing data. 
• Has been used in rbcL diatom monitoring studies in Europe. 
• Removes sequencing errors and chimeras. 
• Merges paired reads. 
• Groups sequences at 100% similarity into amplicon sequence 

variants. 
• Fixed memory requirements. 

USEARCH-
UNOISE3 
algorithm (Edgar 
2016). 

Implemented in 
Ubuntu/Linux 

• Becoming more widely used to generate ASVs in bacterial 16S 
metabarcoding as comparisons have shown less spurious/more 
accurate ASVs generated. 

• Clustering step/chimera detection is performed by UNOISE3 
algorithm. 

• Errors are corrected by removing reads with sequencing and 
PCR point error. Chimeras are removed.  
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• Correct biological sequences are recovered from the reads, 
again at an effective similarity of 100% generating amplicon 
sequence variants. 

• Never been used for rbcL- potentially optimised for 16S. 
• Potentially faster run time (up to 1,000x) and lower memory 

requirements than DADA2 (Nearing and others, 2018) - 
potential capacity to process large volumes of data quicker than 
DADA2. 

 

2.2 Comparison of different pipelines using diatom 
mock community metabarcoding data 

2.2.1 Background 

Using mock communities to validate metabarcoding data is a standard way to assess the 
accuracy and precision of both the molecular and bioinformatics component in 
reconstructing the assemblages present in a community. Mock communities validate the 
molecular analyses by showing which members of the community are amplified and 
sequenced successfully. The bioinformatic analysis of mock communities then validates the 
ability of any pipeline to produce accurate and realistic numbers of OTUs or ASVs, as well 
as to assign the correct taxonomy to those taxonomic units (Hleap and others, 2021). Mock 
communities have been used effectively for various taxonomic groups such as bacteria 
(Bukin and others, 2019), fungi (Egan and others, 2018), invertebrates (Braukmann and 
others, 2019) and algae (dinoflagellates: Smith and others, 2017). Analysis of a mock 
community is an important step in validating bioinformatic pipelines for metabarcoding data. 

The original study (Environment Agency, 2018) included an 11 species mock community in 
the analysis. DNA from a culture of each species was extracted separately and the DNA 
mixed in equal volumes for PCR amplification and sequencing. However, QIIME 1 (see 
Figure 1) generated thousands of OTUs for just 11 species, and identified numerous other 
species in addition to those included in the mock community. 

This demonstrated the potential for either false positives, where sequences are annotated 
as species during taxonomic assignment that are not present in the sample, or false 
negatives, where sequences from species that are present in the sample are not annotated 
at all or misannotated as other taxa. Some of the mismatched species or taxa that failed to 
be identified in the mock community were, in part, due to an incomplete reference database 
at the time the study was carried out. Additionally, some of the cultures of diatoms used for 
the study may have been incorrectly identified, as DNA barcoding identified at least 2 
cultures that were not as labelled (Table 4a). As no culture material was available for the 
current project, we were unable to verify the exact provenance of each culture using 
microscopy or by comparing the original DNA barcodes to the reference database. However, 
the overall precision of the original pipeline was poor due to the vast number of OTUs 
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generated. Theoretically, one might hope, if there is a 'barcode gap', that each species would 
correspond to a single OTU. However, in many cases, this gap is minimal or absent with the 
331-bp rbcL marker, complicating analysis, while some species, as currently defined, 
contain 2 or more rbcL variants (Perez-Burillo and others. 2021). Despite some potential 
variation in the rbcL sequences within an individual taxon, there is not an order of magnitude 
difference between some taxa, as was seen in the original study. Therefore, taxa having 
hundreds or thousands of associated OTUs would not be biologically accurate. While the 
original pipeline managed to deal with this by grouping the OTUs at the species level, a 
huge amount of potential taxonomic resolution would have been lost. 

 

 

Figure 1: The original Environment Agency HTS pipeline. (Figure reproduced from 
SC140024 report) 

 

Initial quality filtering steps and the algorithms used to merge paired reads in Illumina data 
can also impact on the outcomes of bioinformatic pipelines and the accuracy of generated 
OTUs. The original pipeline used Sickle (Joshi and Fass, 2011), which is a sliding window 
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quality filter to remove poor quality sequences. Other pipelines such as USEARCH (Edgar, 
2010) filter sequences based on expected error (Edgar and Flyvbjerg, 2015). Expected error 
has been shown to be better at overall error correction of sequences, leading to fewer 
spurious OTUs (Edgar and Flyvbjerg, 2015). PEAR (Zhang and others, 2014) was also used 
in the original pipeline to merge paired reads. However, USEARCH has been shown to have 
a much more stringent read pair merger and is likely to lead to better overall data quality 
going into the next steps of the pipeline (Edgar and Flyvbjerg, 2015). 

Based on previous work for other taxonomic groups (Flynn and others, 2015; Majaneva and 
others, 2015; Nearing and others, 2018; Prodan and others, 2020;), we expected the 
alternative pipelines to QIIME 1 (Table 2) would generate far fewer OTUs/ASVs and provide 
a more accurate recall of the species within the mock community.  

The aims of the work described here were to assess:  

• the accuracy and precision of new bioinformatics pipelines on diatom metabarcoding 
data using an 11-species diatom mock community 

• the impact of 2 different quality filtering and pair merging algorithms on the overall 
number of sequence reads and numbers of OTUs/ASVs 

2.2.2 Methods 

Quality filtering and pair merging 

Initial processing steps (quality filtering, pair merging) varied between pipelines and 
therefore a standardised approach was taken for analysis. Two methods of pair merging 
and quality filtering were tested on the mock community data. These were: 

i) the method used in the original HTS pipeline, using PEAR to merge Read 1 and 
Read 2, followed by 2 rounds of Sickle to quality filter the sequences (Figure 2a)  

 ii) USEARCH to both merge paired reads and quality filter (Figure 2b). The pipeline 
DADA2 applies its own quality filtering and pair merging as part of the pipeline  

For taxonomic assignment, all pipelines used the Ribosomal Database Project (RDP) naïve 
Bayesian classifier (Wang and others, 2007) and v10 of the diat.barcode database 
(http://genoweb.toulouse.inra.fr/frogs_databanks/assignation/Diat.barcode/) formatted for 
input into the RDP classifier. 

  

http://genoweb.toulouse.inra.fr/frogs_databanks/assignation/Diat.barcode/
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Figure 2 a) Preliminary filtering as for the original HTS pipeline with Sickle and 
PEAR b) USEARCH filter pipeline 

  

a) 

b) 
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2.2.3 Results and discussion 

Sequence metrics between the different pipelines 

Table 3 summaries the performance of the 4 pipelines and 2 filtering approaches using the 
11 species diatom mock community. The Sickle and PEAR filter approach incorporated 
many more sequence reads into the filtered data set than the more stringent USEARCH.  
Overall, far fewer sequence pairs merged using USEARCH (<30%), resulting in a final data 
set with relatively few sequence reads. The UCLUST pipeline with Sickle and PEAR filtering 
recovered thousands of OTUs. These were subsequently filtered to hundreds after 
discarding OTUs with a cluster size <5 and a presence in all 4 mock community libraries. 
For the UCLUST pipeline 83 OTUs had 100% species matches. DADA2 recovered 51 ASVs, 
with 10 having 100% species match. UPARSE performed better than UNOISE3 in 
recovering a more realistic number of taxa. The UPARSE pipeline produced 10 species with 
100% match using the preliminary filtering done as original HTS pipeline with Sickle, and 8 
using the USEARCH filter. UPARSE using the USEARCH filtering produced 12 OTUs in 
total, which was the closest to the 11 species analysed. Both DADA2 and USEARCH 
pipelines ran in less than 15 minutes compared to the UCLUST pipeline, which took over 45 
minutes. 

 
Table 3. Total number of OTUs or ASVs: those which showed a 100% species match 
and total numbers of sequence reads after quality filtering in rbcL gene fragment 
libraries generated from an 11 species mock community.  

  
Sickle PEAR filter  USEARCH filter    

 Pipeline UPARSE  UNOISE
3  

UCLUST  UPARS
E  

UNOISE
3  

UCLUS
T  

DADA
2  

Total 
OTUs/ASVs  

129  234  809  12  44  116  51  

Numbers of 
OTUs/ASVs 
with 100% 
species match  

10  38  83  8  16  3  10  

Total 
sequence 
reads 

227,793  298,835  240,787  7,326  8,486  7,849  86,295 

 

Taxonomic composition using the different pipelines 

All of the pipelines with the different filtering criteria detected either the species or genus of 
the taxa present in the mock community (Table 4). Cyclotella cryptica, Fragilaria sp. 
Nitzschia inconspicua and Gomphonema parvulum were only detected at genus level, with 
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no pipeline producing a 100% species match. This is likely, in part, due to uncertainty in 
identifying the species used for the mock community: several of them had their taxonomy 
revised when they were sequenced using single read Sanger sequencing (Table 4a). It is 
likely that some of the taxa in the mock community are new undescribed species with an 
erroneous taxonomic identification assigned by the culture collection, making accurate 
taxonomic identification problematic. This is highlighted by the fact that all pipelines detected 
very few additional genera or species that weren’t present in the mock community. Any 
additional taxa that were detected are likely to be the correct taxonomy of the species used 
in the mock community rather than that assigned by the culture collection.  

All pipelines with the different filtering criteria performed better than the original analysis of 
the mock community (See Environment Agency, 2018, figure 5.4). One interesting feature 
is that all pipelines detected genetic variation in the species Melosira nummuloides, with 
multiple ASVs/OTUs being assigned a 100% species match. This either shows multiple 
variants of the rbcL gene within a single taxon or suggests within the algal culture itself there 
may be a mixed community of very closely related species or variants. 

While Fragilaria was not detected by the UPARSE and UNOISE3 pipelines, filtered and 
merged with USEARCH, this is likely to be because this taxon was present in low abundance 
within the mock communities and the stringent quality filter removed too much data for it to 
be detected. 

The pair merging implemented by USEARCH was highly stringent, with successful merging 
in only 20 to 30% of the sequence reads. In comparison, the PEAR sequence successfully 
merged 60 to 80% of the sequence reads, retaining more data. USEARCH quality filtering, 
although stringent, generated more realistic numbers of OTUs for the 11 species. Therefore, 
all further analysis in the project combined pair merging using PEAR and quality filtering 
with USEARCH. This decision is based on the results obtained here, along with evidence 
that quality filtering using expected errors leads to better quality sequences than using a 
sliding window quality filter (Edgar and Flyvbjerg, 2015). 
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Table 4: a) Species used for the original mock communities and their revision after 
identification with Sanger sequencing. b) Diatom species mock community detection 
in the rbcL metabarcoding libraries, using various bioinformatic pipelines and 
clustering algorithms. Table shows correct species assignment in yellow, genus only in 
orange and absent in blue. 

a) 
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b) 

 

2.2.4 Recommendations 

• Using PEAR to merge sequences combined with a stringent quality filter in 
USEARCH will improve the accuracy of the USEARCH based pipelines. 

• Future validation work should use known numbers of cells, forming a community with 
absolute numbers of each taxon. This would allow accurate representation of relative 
abundance to validate the whole process and improve the precision of relative 
abundance estimates using molecular data. It would also allow for better correction 
of relative abundances by applying factors related to cell volume (Vasselon and 
others, 2018). 

• Species used in future mock community validation studies should have better 
taxonomic certainty. For instance, by using strains that have been used directly to 
add additional sequences to the diat.barcode database. 

• Mock communities should ideally comprise species likely to be encountered in 
environmental samples.  

• Mock communities should include non-diatom representatives if these are part of the 
study aims. 
 

 
It should be noted that working with algal cultures, or PCR products from cultures, does 
raise potential issues for contamination. They represent a source of concentrated DNA from 
specific species that may contaminate environmental samples, which typically have much 
lower DNA concentrations. Contamination can occur in the laboratory or particularly when 
environmental samples are sequenced alongside mock communities. This can be mitigated 
by good laboratory practice and protocols. If this not possible (for example, contracting work 

(SP)= species present 100% match
(GP)=Genus present at 100%
Abscent UPARSE UNOISE3 UCLUST UPARSE UNOISE3 UCLUST DADA2

Total OTUs/ASVs 129 234 809 12 44 116 51

Total species in mock community =11
Numbers of OTUs/ASVs with 

100% species match 10 38 83 8 16 3 10
Total reads (4 mocks, 4 

different runs, dilutions) 227793 298835 240787 7326 8486 7849 86295
Asterionella formosa (SP) 1 (SP) 5 (SP) 16 (SP) 1 (SP) 3 (SP) 1 (SP) 1
Cyclotella cryptica (GP) (GP) (GP) (GP) (GP) (GP) (GP)
Cyclotella meneghiniana (SP) (SP) (SP) (SP) (SP) (GP) (SP) 
Fragilaria crotonensis and Fragilaria bidens (GP) (GP) (GP) (GP) (GP)
Gomphonema parvulum (GP) 0.99 (GP) (GP) (GP) (GP) (GP) (GP)
Mayamaea permitis (97% identity match) (SP) (SP) (SP) (SP) (SP) (SP)
Melosira nummuloide (SP) 2 (SP) 25 (SP) 51 (SP) 1 (SP) 6 (SP) 3
Nitzschia inconspicua (98% identity match) (GP) (GP) (GP) (GP) (GP) (GP)
Nitzschia palea (SP) (SP) (SP) (SP) (SP) (SP) 
Sellaphora capitata (SP) (GP) (SP) (GP) (GP) (GP)
Tabellaria flocculosa (SP) (SP) (SP) (SP) (SP) (SP) (SP) 
Additional species (100% ,match) Navicula_lancDiscostella_pseudostDiscostellaDiscostella_pseudostNavicula_l

Melosira_varians
Additional Genus (100% match)

Discostella Discostella Discostella

EA Sickle PEAR filter Usearch filter
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to a lab of unknown provenance), then mock communities should be comprised of species 
that will not be present in the sample (for example, marine species for freshwater work). 

2.3 Comparison of HTS bioinformatic pipelines and LM 
for assessment of diatom assemblages 

2.3.1 Introduction  

Comparisons between morphotaxonomic and molecular approaches are often carried out 
to validate the utility of molecular approaches in replacing or complementing traditional 
analysis techniques. In many cases, molecular approaches perform as well as 
morphological analysis in predicting environmental pressure gradients (Hinz and others, 
2022; Keck and others, 2022). However, there are always inherent differences, with 
molecular profiles being often complementary, but not identical, to morphological profiles 
(Keck and others, 2022; Pérez-Burillo and others, 2022). This was noted in the development 
of the UK DARLEQ 3 tool where microscopy and molecular methods showed strong 
correlation when calculating TDI scores, but the mismatch between the 2 techniques 
resulted in a significant proportion of sites being assigned different ecological status classes 
(Environment Agency 2018, 2020; and SEPA 2018). Much of the difference is due to 
fundamental differences in the type of data generated by the 2 approaches, but another 
factor that can influence taxonomic outputs from molecular data is the way the data are 
processed. We sought to improve agreement between the 2 methods in calculating TDIs by 
analysing the original data using 4 different bioinformatics pipelines (Figure 2b). Three more 
recently developed pipelines (UPARSE, UNOISE3 and DADA2) were compared with the 
original clustering algorithm (UCLUST) but with different quality filtering and taxonomic 
assignment applied in line with the other pipelines to be tested. These were compared with 
outputs from the original HTS pipeline, which classified the sequences using an older 
version of the diat.barcode database. 

 2.3.2 Methods 

Sequence processing 

The program USEARCH version 11 (Edgar, 2010) was used to analyse the data using 
UPARSE, UCLUST and UNOISE3 (Appendix 1), allowing a direct comparison of the 
performance of the clustering algorithm from the HTS pipeline (UCLUST) with newer 
clustering algorithms. All data were analysed together. Forward and reverse reads were first 
merged using PEAR (Zhang and others, 2014) using the default settings. Cutadapt (Martin, 
2011) was then used to trim primer pairs from the data. Low quality expected error >0.5 and 
short sequences <200bp were removed from the fastq files using USEARCH. Sequence 
headers were replaced with a unique sample identifier and the fastq files converted to 
FASTA files. The FASTA files were dereplicated, abundance sorted and singleton 
sequences removed. At this point, the 3 pipelines deviated: OTUs were clustered using 
either UPARSE (Edgar, 2013) or UCLUST at 97%. Chimeras were filtered using UCHIME 
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(Edgar, and others, 2011) run against the diat.barcode v10 database as a reference. 
Separately, UNOISE3 was used to generate ASVs. All OTUs/ASVs were then mapped back 
to the original reads and a separate ASV/OTU table produced for each of the 3 pipelines.  

To analyse the sequences using DADA2, demultiplexed Illumina MiSeq data were analysed 
in RStudio (version 2021.09.0 Build 351), implementing R version 4.0.0 within Microsoft 
Windows using the DADA2 package (Callahan and others, 2016). Scripts for analysing 
diatom metabarcoding data were obtained from 
https://github.com/fkeck/DADA2_diatoms_pipeline/blob/master/pipeline.R (Appendix 2). 
For published method see Pérez-Burillo and others, (2021). As DADA2 denoises the data 
per individual sequencing run, each run was first analysed separately. Primers were 
removed from the R1 and R2 reads using Cutadapt. The resulting R1 and R2 reads were 
truncated to 200 and 170 nucleotides respectively, based on their quality profile (median 
quality score <30) and those reads with ambiguities or an expected error (maxEE) higher 
than 2 were discarded. The DADA2 denoising algorithm was applied to determine an error 
rate model to infer ASVs. At this point the data were saved as .rds files. RDS files were 
merged from different sequencing runs for the formation of finalised ASVs and removal of 
chimeric sequences. ASVs detected as chimeras were discarded using the function 
‘removeBimeraDenovo’ implemented in DADA2. This final step then produced a final ASV 
table for further analysis. OTUs or ASVs with sequence clusters of <8 sequences and 
appearing in less than 3 samples were removed. 

Taxonomic assignment and filtering of OTUs 

To ensure consistency in taxonomic assignment all pipelines were classified in the same 
way. ASVs or OTUs were classified using the RDP classifier (Wang and others, 2007) 
against the most recent version (version 10) of the diat.barcode  reference database (Rimet 
and others, 2019),  formatted for input into the RDP classifier 
(http://genoweb.toulouse.inra.fr/frogs_databanks/assignation/Diat.barcode/). The classifier 
assigns bootstrap confidence to each taxonomic level. All ASV/OTU tables were filtered to 
remove all taxonomic units with a sequence cluster size of less than 8 sequences and all 
taxonomic units that appeared in less than 3 samples. This was done to remove residual 
PCR errors or spurious taxonomic units. 

The taxonomically assigned data from each of the 4 pipelines were processed as follows. 
Firstly, samples from lakes and those with total read counts of fewer than 500, along with 
all ASVs/OTUs assigned to non-diatom groups, were excluded from further analyses. 
Secondly, diatom ASVs/OTUs with species assignment confidence of at least 0.97 were 
retained as species-level assignments. Thirdly, ASVs/OTUs with species confidence of less 
than 0.97 but genus assignment confidence of at least 0.97 were retained as genus-level 
assignments. Finally, ASVs/OTUs with genus-level confidence of less than 0.97 were 
recorded as unknown diatoms. This filter of uncertain taxonomic assignment was set much 
lower in the original study (>0.90), with a change to >0.95 for further work and methods 
refinement. The original study also used top BLAST hit as the method of classification; it is 
likely that many OTUs were wrongly assigned in the original study. For the updated pipelines 

https://github.com/fkeck/DADA2_diatoms_pipeline/blob/master/pipeline.R
http://genoweb.toulouse.inra.fr/frogs_databanks/assignation/Diat.barcode/
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read counts were normalised to sample total (relative abundance) to account for the 
differences in total reads (read depth, sample depth) among samples, as this method has 
been shown to be superior to other methods of HTS data normalisation for comparing 
microbiological communities (McKnight and others, 2019).  

Statistical analysis 

Species and genus assignments in the final HTS data from each pipeline, transformed to 
proportions, were harmonised to the taxonomy and nomenclature used in DARLEQ 3. This 
stage involved linking synonyms between the barcode database and taxon names used in 
DARLEQ 3 and aggregating some varieties into the nominate type. To examine the 
congruence between the HTS and LM data sets the assemblage data were ordinated using 
non-metric multidimensional scaling (nMDS), summarising the main species distributional 
patterns with a 2-dimensional solution. The resulting ordinations of each pipeline were then 
compared to that from the LM data and the congruence between the 2 ordinations quantified 
using Procrustes analysis (Peres-Neto and Jackson, 2001). This method rotates the HTS 
ordination to maximise similarity with the LM ordination. The degree of congruence is 
quantified by the correlation between the 2 sets of ordination scores. TDI metrics (TDI5 
HTS), EQRs and WFD status classes were calculated according to Kelly and others (2008; 
2020) using the R package darleq3 (https://github.com/nsj3/darleq3). The resulting metrics 
were then compared with similar metrics derived from LM and HTS data sets from previous 
analysis of the same set of samples reported in Environment Agency, 2018, 2020 and Kelly 
and others, 2020.  

2.3.3 Results 

Table 5 summarises the number of samples and ASVs/OTUs in each pipeline and original 
HTS and LM data sets. Numbers of assigned taxa (ASVs/OTUs matched to the barcode 
database with a species or genus confidence of at least 0.97), varied from 223 (UPARSE) 
to 271 (UNOISE) and were lower than assignments in the original HTS data set (331), likely 
due to the less stringent taxonomic assignment in the original study. All HTS pipelines have 
substantially fewer taxa than the LM data (485). 

 

 

 

 

 

 

https://github.com/nsj3/darleq3
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Table 5: Numbers of samples, ASVs/OTUs and assigned taxa for each pipeline and 
light microscopy (LM) data set 

Pipeline  Number of 
samples  

Number of 
ASVs/OTUs  

Number of 
assigned 
taxa  

DADA2  1,850  6,107  265  
UCLUST  1,685  17,646  230  
UNOISE3  1,687  16,605  271  

UPARSE  1,685  10,401  223  

HTS (Original)  1,736    331  

LM  1,578    485  
Common to all  1,071     

Figure 3 compares the proportion of the total diatom assemblage assigned to species, genus 
or ‘unknown diatom’ categories using the 4 different pipelines. DADA2 and UPARSE have 
broadly similar patterns of assignments, with over 50% of the assemblage assigned to 
species in 75% of samples (Figure 3, density plots, top left). For UCLUST and UNOISE3 
the corresponding figures are 53% and 31% respectively. The overall proportion of genus-
level assignments is broadly similar for the 4 pipelines, although there is considerable 
variability in the pattern of genus assignments among samples (Figure 3, scatter plots, top 
right). Patterns of unassigned ASVs/OTUs are broadly similar between DADA2, UCLUST 
and UPARSE but very different for UNOISE3 (Figure 3, bottom left). 
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Figure 3: Scatterplot matrices comparing the proportion of the assemblage assigned 
to species, genera or unknown diatoms among pipelines. Density plots on the 
diagonal show the distribution of each group of assignments. x- and y-axis scales 
pan 0 to 1.0 

 

Table 6 lists Procrustes correlations between ordinations of the LM and HTS data sets 
generated from each of the pipelines. Except for UNOISE3, correlations for the original HTS 
and new pipelines are all high (around 0.83), suggesting that these pipelines capture the 
same species/sample relationships that exist in the LM data. The correlation for UNOISE3 
is somewhat lower (r=0.72). 

 

Table 6: Procrustes correlations between ordinations of LM and HTS data sets 

Pipeline  Procrustes 
correlation  

HTS  0.837 
DADA2  0.833 
UCLUST  0.833 
UNOISE3  0.720 
UPARSE  0.828 
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Figure 4 summarises the relationships between TDI5 scores for the different pipelines and 
LM data sets. There is very close agreement between TDI5 scores produced from DADA2, 
UCLUST, UPARSE and the original HTS pipeline (including the use of the older barcode 
reference database) (r > 0.95). UNOISE3 is again a clear outlier with correlations with other 
HTS pipelines of <0.8. Correlations between LM TDI5 scores for DADA2, UCLUST and 
UPARSE are very similar (r = 0.845 to 0.857) and lower for UNOISE (r = 0.705). Correlations 
between DADA2, UCLUST and UPARSE and LM TDI5 scores are slightly lower than that 
for the original HTS pipeline (r = 0.872), which is expected as the TDI5HTS metric was tuned 
to maximise the correlation with TDI5LM using this pipeline. Correlations between TDI 
scores and measured nutrient pressure are highest for LM (r=0.77) and lowest UNOISE3 
(r=0.53).  

Table 7 shows the extent to which species assignments and the resulting TDI scores are 
influenced by the confidence threshold at which ASVs/OTUS are assigned to species. 
Relaxing the threshold from 0.97 to 0.93 leads to an additional approximately 20 
ASVs/OTUs being assigned to species and increases the correlation between TDI scores 
slightly from around 0.85 to 0.87.  
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Figure 4: The relationships between TDI5 scores for the different pipelines and LM 
data sets and a composite N and P nutrient pressure variable. Density plots on the 
diagonal show the distribution of each group of variables  

 

Table 7: Numbers of assigned species and correlations between HTS and LM TDI5 
scores using different species assignment thresholds 

Pipeline  Threshold =0.97 Threshold = 0.93 
No. species r No. species r 

DADA2  265 0.854 287 0.867 
UCLUST  230 0.857 249 0.871 
UNOISE3  271 0.705 294 0.713 
UPARSE  223 0.845 242 0.876 

 

Figure 5 compares the site-based WFD status classes for the 5 HTS pipelines against that 
derived from light microscopy. Converting the TDI values to EQRs using the current UK 
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reference model to predict ‘expected’ TDI shows how these differences will convert to 
changes in ecological status. Except for UNOISE3, the different pipelines have very similar 
patterns of agreement with LM, with 62 to 66% of sites allocated to the same status class 
as that derived from LM, and 96 to 98% allocated to the same or neighbouring class (Table 
8). UNOISE3 is again the outlier, with only 43% of sites allocated to the same status class 
(Table 8). 

 

 

Figure 5: Comparison of site-based EQRs for each HTS pipeline (y-axis) and LM (x-
axis) (N=675)  

Table 8: Agreement between site-based predictions of WFD status class for each 
pipeline and status class derived from light microscopy data. Numbers indicate 
percentage of sites (N=675) 

Agreement HTS DADA2 UCLUST UNOISE3 UPARSE 
Same class  65.8 64.7  65.5  42.7  62.2  
1 class  31.9 32.0  31.3  48.7  34.2  
2 classes  2.2  3.1  3.1  7.9  3.3  
3 classes  0.1  0.1  0.1  0.7  0.3 
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The relationships between the representation of a range of common taxa in LM and the 
different pipelines are shown in Figure 6. The relationship with LM is always poor, due to 
the fundamentally different nature of LM and HTS data; more surprising is the extent of 
variation among the pipelines, bearing in mind that they are sorting the same sequence 
reads using the same reference database. Once again, UNOISE is a clear outlier, with 
generally low correlations with other pipelines. There are also differences among other 
pipelines. For example, DADA2 and ULCUST generally give high correlations for most taxa, 
but there is a low correlation between proportions of Tabellaria flocculosa detected with 
these pipelines.  
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Figure 6: Relationships between the proportions of selected taxa for each pipeline 
and LM data sets 

 

2.3.4 Discussion 

The HTS pipeline used for the original development of the diatom metabarcoding approach 
(Environment Agency, 2018) was state-of-the-art when it was written, but subsequent 
developments in bioinformatics, particularly the benefits of ASVs over OTUs (Pérez-Burillo 
and others, 2021) have made this approach no longer the preferred standard in analysis of 
metabarcoding data. Furthermore, the OTU clustering algorithm used by QIIME- UCLUST 
has been consistently outperformed by similar OTU clustering algorithms for accuracy and 
precision. QIIME 1 has been surpassed by QIIME2 and QIIME1 is therefore no longer 
supported. Additionally, QIIME2 does not implement many of the options used in the original 
pipeline in its default analysis. This means that a revision to the pipeline was overdue. This 
section compares outputs from the original HTS pipeline with 4 newer alternatives, and with 
LM results. 

For regulatory purposes, a seamless transition between old and new methods is desirable, 
with either no significant change in outcomes, or an ability to explain and account for 
observed changes. In statistical terms, this means that analyses are treated as ‘type 1’ 
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regressions, where the existing approach (‘X’) is assumed to be without error and all 
variability is due to the new approach (‘Y’). In reality the situation is better considered as a 
‘type 2’ regression, with error shared between X and Y.  Individual plots in Figure 5 and 
Table 8 showing status class agreement between approaches, are likely to show inflated 
estimates of the number of sites that have changed class specifically because of the change 
in method. It is also reasonable to assume that some of those sites that have changed class 
could have been wrongly classified using the microscopy-based method. This is 
acknowledged in the use of ‘confidence of class’ in formal ecological status assessments, 
but this nuance could not be incorporated into the present study. Because the mode of 
quantification in LM and HTS (direct counts versus relative abundance of sequence reads) 
is completely different, it is unrealistic to expect perfect agreement between the 2 
approaches. While LM counts valves (= half a frustule/cell wall), HTS counts sequence 
reads of rbcL which are related to cell volume (Vasselon and others, 2018). This explains at 
least part of the variability between LM and HTS reported by Kelly and others (2020), 
Pérez_Burillo and others (2020) and, more recently, Kulaš and others (2022) as well as in 
Figure 6 in this report. The extreme examples of the impact of cell volume are large-celled 
species such as Melosira varians and Ulnaria ulna, where a small number of valves reported 
in an LM analysis may translate into an overwhelming dominance of rbcL sequence reads 
in HTS. Kelly and others (2020) argued that this meant that HTS, by quantifying a property 
related to a key photosynthetic enzyme, offers a better indication of the contribution made 
by each species to primary production than LM. These studies also suggest an 
underrepresentation of small, weakly-silicified taxa such as Fistulifera saprophila and 
Mayamaea permitis in LM, most likely due to their dissolution during preparation for light 
microscopy.  

These potential sources of difference between LM and HTS do not invalidate either 
approach but do need to be considered when comparing outputs. Furthermore, diatom 
metrics are based on proportional representation of individuals subject to the properties of 
multinomial distributions. This means that a sharp increase of Melosira varians sequence 
reads in HTS relative to LM will lead to a decrease in the proportions of many other diatoms 
in the same sample. This, in turn, will have consequences for the values of metrics 
calculated from these data. While the link between cell volume and rbcL read number has 
not yet been tested on field data, we believe this to be a major reason for observed 
differences greater than one WFD class.  

Using this information and other published sources, the variation observed in Figures 3-6 
can be partitioned into the following categories: 

a) Statistical 
• Repeated measurements on the same sample are unlikely to generate exactly the 

same values (‘repeatability’ - see Environment Agency, 2020). Nonetheless, this is 
unlikely to account for any differences greater than one class.  

• Variation due to the mode of quantification – likely to contribute to differences both 
less than and greater than one class. 
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b) Molecular 
• Variation due to gaps in the reference database – Figure 10 from Kelly and others 

(2020) suggests that this source of difference is, again, too small to account for 
differences greater than one class and the reference database has grown since this 
graph was derived, meaning that impacts should have reduced even further. 

• There are known issues with molecular work, including biases in DNA extraction or 
incomplete cell/chloroplast lysis, biases in PCR amplification for certain sequences, 
biases in sequencing for certain sequences, PCR primer bias, and PCR primer 
exclusion of certain taxa. Cumulatively, these are likely to have the biggest impact.  

• Variation due to some diatom species with larger cells with higher biovolume having 
more rbcL copies than smaller cells. 

c) Laboratory practice 
• Variation due to potential contamination, cross-sample mixing during processing and 

molecular work, or contamination of samples from positive controls or previously 
processed samples. This is likely to affect only a minimal number of samples and will 
be controlled by good sampling and laboratory protocols.  

• Variation due to sample mislabelling either physically or within the sequence data 
(multiple steps in sample label transfer presents a high risk of this, for example, FERA 
ID to sample ID conversion). This is likely to affect only a few samples, but the scale 
of effect could be large. 
 

All of the above sources of variation, although small individually, will have a cumulative effect 
on the data set. In brief, considerable variability between LM and HTS is to be expected; 
what is more of a surprise is the level of difference observed between the performance of 
individual pipelines. Despite these differences and the fact that all pipelines are analysing 
the same data set with the same biases and issues, these differences, in most cases 
(UNOISE3 is the exception), do not translate into major differences in index values (Figure 
3). However, these strong correlations conceal some major differences in the composition 
of the assemblages. Noteworthy too is the relatively good performance of the original HTS 
pipeline. It should be borne in mind that development of the HTS TDI (TDI5HTS) was ‘tuned’ 
to the characteristics of this particular pipeline, giving it an inbuilt advantage. While it may 
be questioned whether a switch from the original pipeline is justified, it should be noted that 
the original HTS pipeline and the UCLUST pipeline (which is the same clustering algorithm 
used in the original pipeline) performed poorly on the mock community analysis, generating 
thousands of taxonomic units for just 11 species. In the data from environmental samples, 
the impact of this appears to have been smoothed because the taxonomic units were 
collapsed to the species level, and because of the high volume of (poor quality) data the 
HTS pipeline incorporates. However, any extra information that may be obtained from the 
data (see section 3) is completely lost when using the HTS pipeline, and individual 
differences in taxonomic units for species between samples will likely be a result of 
erroneous sequences rather than true biological variation. To our knowledge, UNOISE3 had 
never been used for diatom rbcL data before, and its performance was poor compared to 
the other methods. This is contrary to work done for 16S rRNA gene data (Nearing and 
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others, 2018) which has shown better performance in mock communities and environmental 
samples for bacteria. The algorithm was designed and tested on 16S analysis and it would 
appear, perhaps because rbcL is a protein coding region, that UNOISE3 does not perform 
well in generating biologically accurate ASVs for the rbcL gene. 

Overall, the results of this study are similar to those of Baillet and others (2020) who also 
explored taxonomic composition in detail, demonstrating considerable differences in the 
allocation of species within the genera Fragilaria and Eunotia, despite the same reference 
database being used with all pipelines. These results caution against simplistic 
interpretations in terms of good fits with ecological assessment metrics and point to issues 
in correctly characterising the diatom assemblage itself. More work is needed to decide 
which pipeline, and which settings within each pipeline, are most appropriate. Meanwhile, a 
pragmatic way forward is to consider the pipeline to be an integral part of the assessment 
protocol, not as a distinct preliminary stage.  

We recommend using DADA2 over the other pipelines for both scientific and practical 
reasons. Importantly, the performance of DADA2 on the mock communities was good 
compared to the other pipelines, generating 52 ASVs in total and classifying 10 ASVs to 
species level (of an 11 species mock community). It is likely that using ASVs will enable 
finer scale detection of changes in assemblages in response to environmental pressures. 
They also make it possible to look at potential population level differences that would be 
missed by morphological analysis alone (Pérez-Burillo and others, 2021; 2022). The error 
correction that DADA2 uses on an individual sequence run basis provides more confidence 
in the sequence data and allows for better comparison between sequence runs. This was 
particularly important for this project where there was high variability in data quality and 
quantity between runs. Another important reason for selecting this pipeline is that other 
researchers in continental Europe have also been using it for diatom metabarcoding data 
(Apothéloz‐Perret‐Gentil and others, 2021; Pérez-Burillo and others, 2021; 2022) allowing 
for pan-European comparisons in diatom responses to pressure gradients. As the research 
community further develops the pipeline for diatom metabarcoding and develops better 
metrics and indices for molecular monitoring of ecological status, it will be important to 
promote a unified approach.  

DADA2 is becoming a standard pipeline in microbial ecology and because of this it is highly 
likely to continue to be maintained and supported. It has been stable since 2016 (no DADA3 
released) and although updates have been released, the main features remain unchanged. 
This pipeline is implemented in the R programming language which can be run in the 
program Rstudio (Rstudio team 2020) on a standard Windows machine. Since DARLEQ 3 
is also written in R, bioinformatics and metric calculation could be merged in the future. This 
makes it easier to implement than a Linux based pipeline. DADA2 also requires less memory 
than the other pipelines and is fully open access. While the UPARSE pipeline was 
comparable in some respects to DADA2, to analyse very large data sets a 64bit version of 
USEARCH is required; this is a paid-for version which is limited to a single machine. Despite 
reports in the literature that DADA2 was slower than other pipelines, for this study, total 
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processing times were similar for DADA2, UPARSE and UNOISE3 (approximately 24 hours 
each). However, we also emphasise that, just as bioinformatics have moved on since the 
original QIIME HTS pipeline was written, they are likely to continue to evolve. How to 
incorporate new scientific developments into assessment approaches without 
compromising the need for stable methods for regulation needs to be considered.  

All the pipelines found many diatom taxa with uncertain taxonomic identity. For example, 
they were either identifiable with confidence to genus level only or identified to higher 
taxonomic levels. While at present there is no alternative to using Diat.barcode as the DNA 
reference database, the ASVs themselves can be converted progressively into a reference 
data set. Several thousand ASVs are already known and could potentially be added to the 
reference database once their identities have been established with an acceptable degree 
of certainty. There is scope for doing this by careful comparative analysis of the matched 
HTS and LM data, by identifying samples with unusually high abundances of particular 
species in cell counts (cf. Rimet and others, 2018) or, more generally, by correlating ASV 
and LM relative abundances. Subsequently, exact matches could be used for identification, 
rather than the somewhat arbitrary percentage cut-offs currently applied. It is likely that 
relatively few previously undetected ASVs will be found in future sampling campaigns, 
unless new ranges of waterbodies are sampled. 

2.3.5 Recommendations 

• LM should not be treated as a benchmark for testing HTS data unless biovolumes 
are also available.   

• DADA2 is our recommended pipeline. We believe it to be an accurate, stable pipeline 
that allows for more accurate and detailed analysis of diatom assemblages. DADA2’s 
widespread use is also likely to improve user confidence. This pipeline is unlikely to 
change within the next 3 to 5 years. 

• More work is needed to understand the relationship between outputs from 
bioinformatic pipelines and the biological communities they represent (improvement 
to mock community analysis, see section 2.2.4). 

• Develop a unified catalogue of identified ASVs to move towards identification by 
exact matching. We can use ASVs to build an accurate local reference database, 
particularly for those that don’t have a good reference match in diat.barcode.  

• Establish protocols for data handling. Regarding sequence data we strongly 
recommend:  

o a unified sample labelling strategy for sequence data with no variation in the 
numbering from sample collection through to generating fastq files 

o a standard labelling system for sequence runs 
o a complete data archiving strategy for sequence data (upload to National 

Centre for Biotechnology Information (NCBI)) 
o storing sequence runs/projects as zipped/tarball archives (reduces file size 

and improves sample transfer and transport time) 
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o a better catalogue of repeated samples and informative labelling for any 
repeats 

o a better link of sequence data files to meta-data 
o a detailed catalogue of associated run meta-data reads per sample, quality 

information 
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3. Maximising the potential of rbcL 
metabarcoding data 

3.1 Objectives 
 

Although the previous section recommended going forward with DADA2, there was no 
improvement in the strength of the relationship with the underlying pressure gradient (Figure 
4) for the reasons set out in section 2.2.4. The mismatch between LM and HTS remained.  
All pipelines examined in phase 1 assigned only about 60% of the total sequence to known 
diatom taxa. However, it is possible that the unassigned reads, many of which belong to 
non-diatom algae, will add extra ecological information and, as a result, increase the 
strength of the relationship between phytobenthos and important environmental variables, 
or provide new insights regarding ecological function.  

The objectives of phase 2 of this project were to explore HTS data to determine the potential 
to extract wider information on the river phytobenthic community and to examine 
relationships with environmental variables to assess the potential for new approaches/new 
metrics for the assessment of river phytobenthos. 

 

3.2 Analysis of non-diatom sequences within rbcL gene 
fragment metabarcoding libraries 

3.2.1 Introduction 

The UK rbcL primers had previously been shown to detect other algal groups in addition to 
diatoms. At the time of the original work there were very few reference sequences for 
these groups and so further detailed taxonomy was not possible for many of the OTUs. 
Given the high number of OTUs generated in the original study, it was not feasible to 
manually investigate the taxonomy of the main groups. The generation of ASVs produces 
a much more manageable number of sequences to investigate the taxonomy of non-
diatoms in the data set. Since the original projects were completed, new rbcL sequences 
for different algal groups have been added to the NCBI nucleotide database. However, 
there still is no curated database for other algal groups as we have for the diatoms in the 
diat.barcode reference database. Given what is known about the rbcL gene and the primer 
sequences used to generate previous data sets, we expected several taxa may be 
amplified by the primer set (see Table 1). We therefore sought to investigate the taxonomy 



   

 

43 of 92 

of non-diatom ASVs in a data set generated from the data used in phase 1 of this project. 
The aims in this section of the project were to: 

• taxonomically classify non-diatom ASVs within a large rcbL metabarcoding data set, 
generated from environmental samples using the UK diatom ‘specific’ primers 

• investigate the feasibility of a non-diatom reference database  

 

3.2.2 Methods  

To investigate the representation of non-diatoms in the HTS data set a subsample of 10 
sequencing runs was prepared. The data set was analysed with the DADA2 pipeline and 
taxonomically assigned with the RDP classifier following the same methods as above 
(section 2.3.2). Non-diatom ASVs were extracted from the total list using the criterion of 
failing to achieve 100% bootstrap support for classification in Bacillariophyta at phylum level. 
Over 8,000 ‘non-diatom’ ASVs were detected. Some were artefacts or pseudo-genes, 
despite the use of the denoising and chimera detecting algorithms in the DADA2-based 
pipeline. This was shown by inspecting the amino-acid sequences coded by the ASV 
sequences, which showed that some contained stop codons despite the barcode region 
being well within the gene, or implausible amino-acid substitutions. To minimise these 
residual errors, we worked only on ASVs represented in more than 2 samples (out of 
approximately 1,825 samples in the data set used) and we focused on the most abundant 
1,000 of these to examine the representation of different non-diatom groups. 

3.2.3 Results and discussion 

Non-diatom ASVs were in general much less abundant than diatom ASVs. For example, the 
5 most abundant non-diatom ASVs (Ulvella cf. tongshanensis, Heribaudiella fluviatilis, 
Chlioscyphos polyanthos, Oedogonium sp. and Diplosphaera chodatii) were ranked 141, 
180, 218, 220 and 258, in order of total read abundance across the 1,825 samples. 

The rbcL primers developed by the Environment Agency (2018, 2020) were designed to 
capture and quantify diatom diversity. However, rbcL is a highly conserved and functionally 
vital gene, which means that a wide range of other photosynthetic organisms are also 
amplified by the primer set. Among the 1,000 most abundant ASVs we analysed, there were 
representatives of almost all the autotrophic phyla known to occur in freshwaters (Table 9), 
including both eukaryotes and prokaryotes. The extent of this ‘contamination’ was rather 
surprising, however, because the groups detected span both of the principal lines of rbcL 
evolution in eukaryotes. These are both the the line represented by the green plants 
(Viridiplantae = Plantae) and Euglenophyta, in which RuBisCO was derived from 
Cyanobacteria, and the ‘red lineage’ of chloroplasts (Rhodophyta, Haptophyta, Cryptophyta 
and Ochrophyta), which acquired a proteobacterial rbcL by horizontal gene transfer after the 
primary endosymbiotic event that created the eukaryotic chloroplast (Delwiche & Palmer 
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1996). The wide spread of taxa that can be amplified with the ‘UK’ primers must either reflect 
conservation of ancestral sequences in the primer-binding regions in many distantly related 
lineages, or convergent evolution in a gene where there are limited possibilities for variation 
without loss of enzyme function. 

Assessing bias for certain taxonomic groups 

It is impossible to know, without laboratory tests of amplification success with mock 
communities, what relation the numbers of reads recorded bears to the abundance of 
organisms in environmental or other samples. Nevertheless, some non-diatom groups are 
rather well amplified and probably well quantified (these include Cryptophyta, 
Eustigmatophyceae and some green algae), whereas others are much less abundant than 
would be expected in the natural communities sampled. For example, it is unlikely that no 
Synurophyceae (for example, Mallomonas, Synura) and very few Chrysophyceae were 
present in any of the samples, and they should have been detected given the number of 
samples collected. The almost total absence of Synurophyceae and Chrysophyceae is likely 
to be because of lack of amplification. Indeed, inspection of the primer binding sites shows 
multiple mismatches in the forward primer for these 2 groups, even though the amino-acid 
sequence is conserved at this point. In addition, Cyanobacteria are not represented very 
strongly among the ASVs but will have been present in many of the habitats sampled. On 
the other hand, some ‘unlikely’ groups were recorded, including Raphidophyceae and 
various riparian angiosperms, which can only have been present in trace amounts (they will 
not have been growing on river cobbles and other hard substrata). However, in around 15% 
of sites, where sampling is not possible from cobbles, macrophytes are sampled, so some 
of the angiosperm sequences could have come from these. 

Underrepresentation of some groups of green algae reflects unusual chloroplast genome 
organisation, notably in Cladophorales (Del Cortona and others, 2017). Probably the only 
detectable member of this order will be Chaetomorpha linum, which is relatively uncommon 
in rivers. In other green algae and euglenophytes, introns interrupt the barcode region, for 
example, in some Chaetophorales (a search in the NCBI GenBank gives examples in 
Uronema confervicola MN701586, Draparnaldia mutabilis MN659372) and in Euglena 
(Koller and others 1984). Nevertheless, there are some Chaetophorales among the ASVs 
and these species must either not possess introns or the introns are outside the region 
amplified. The only way to detect algae with rbcL introns would be to use RNA, rather than 
DNA. Many green algae, however, do not possess introns and are common among the non-
diatom ASVs, especially unicellular and coenobial species of the Chlamydomonadales, 
Scenedesmaceae and Trebouxiophyceae. 
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Table 9. Numbers of ASVs and reads attributable to the major groups of 
photosynthetic eukaryotic microalgae and bacteria among the 1,000 most abundant 
ASVs in the data set analysed (2014 to 2017 reads). The figures are illustrative, to give 
an impression of the representation and diversity of the groups in the UK metabarcoding 
data set: no attempt was made to standardise read numbers among samples. Some diatom 
ASVs were present in the data set, having failed the criterion for exclusion from the non-
diatom data set (100% bootstrap support for classification in ‘Bacillariophyta’ from the naïve 
classifier, using the Diat.barcode v. 10 reference database); these comprised 27 ASVs and 
14,030 reads. 

Major group  Family/subgroup ASVs   Reads  
Green plants 
(Viridiplantae) 

Chlorophyta 648 1,761,699 

 Streptophyte green algae 19 58,752 

 Marchantiophyta+Bryophyta 3 78,749 

 Angiosperms 5 3,379 
Euglenophyta  19 62,098 
Rhodophyta  4 51,554 
Haptophyta  4 6,189 
Cryptophyta  75 165,297 
Ochrophyta Chrysophyceae 1 360 
 Dictyophyceae 5 10,313 
 Eustigmatophyceae 75 159,252 
 Phaeophyceae 5 128,102 
 Phaeosacciophyceae 1 550 
 Phaeothamniophyceae 1 301 
 Raphidophyceae 2 643 
 Xanthophyceae 35 62,793 
 Total Ochrophyta 125 362,314 
Cyanobacteria  67 111,052 
Proteobacteria  5 2,295 

 

Potential to develop a reference database 

There is no off-the-shelf rbcL reference database for algae apart from diatoms (in 
Diat.barcode) and the existing rbcL sequences in GenBank need curation to try to eliminate 
incorrect identifications and modernise taxonomy. There is circumstantial evidence that 
some of the identifications in GenBank have been obtained by matching sequences to those 
already in GenBank, rather than by independent identification from morphology. 
Consequently, value judgements must be made about the trustworthiness of particular 
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GenBank accessions. Moreover, availability of reference sequences is patchy across the 
range of phyla and classes represented among the ASVs, largely reflecting differences in 
which genes have been chosen for phylogenetic analysis and barcoding by taxonomists. In 
red and brown algae (Rhodophyta and Phaeophyceae), for example, rbcL is often used and 
so there are many reference sequences available, but these groups are not strongly 
represented in freshwaters. There is active research into the Eustigmatophyceae using rbcL 
as a marker of choice, and so the reference database for this group can be expected to 
become fuller in the near future, and Cryptophyta are also quite well covered. There are 
many rbcL sequences for green algae (Chlorophyta and Streptophyta). However, some 
green algal systematists prefer the internal transcribed spacer (ITS) regions of rDNA for 
species differentiation. As a result, many green algal ASVs do not have close matches in 
GenBank. The reference database for Cyanobacteria is poor. While Cyanobacteria were 
fairly abundant among the non-diatom ASVs relative to other non-diatom groups, very few 
cyanobacterial ASVs had close matches in the reference database, although some of the 
assignments were plausible (for example, Chamaesiphon). 

To produce a reference database equivalent to that of diat.barcode for non-diatom taxa 
would require a significant amount of work based on reference sequences from cultures of 
a number of taxa. 

Unusual records of algae 

Regardless of whether it is valuable to use non-diatom data for ecological assessment (cf 
WFD ecological status assessments), the ASVs detected using the UK rbcL metabarcoding 
protocols provide valuable information about the diversity and distribution of algae present 
in UK rivers. This is especially true for groups which are difficult to identify, such as the green 
alga Oedogonium (morphological identifications depend to a considerable extent on resting 
spore morphology, and resting spores are observed only rarely) and the many coccoid and 
coenobial representatives of the green algal classes Chlorophyceae and Trebouxiophyceae. 

Among the ASVs analysed there are some interesting finds. The most striking and clearly 
established new record is of the brown alga Bodanella lauterbornii, known previously from 
only a handful of subalpine lakes in central Europe, including Lake Constance, where it 
occurred deeply submerged (10 to 30m) on steep limestone cliffs (Schütz and others, 2021). 
Its occurrence in UK rivers is therefore very unexpected, its distribution and requirements 
need investigating, and it may deserve a conservation assessment. 

Among the red algae, one ASV is a 100% match to Nemalionopsis shawii. This genus 
appears never to have been recorded before in European freshwaters; the few existing 
records coming from Asia and North America. The most abundant red algal ASV has no 
close match in GenBank (the nearest is Madagascaria erythrocladioides). It is therefore 
possibly an unsequenced member of the Compsopogon group. 
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3.2.4 Recommendations 

• While numerous taxa are amplified by the primers, these are in much lower relative 
abundance than the diatoms, and there are notable absences in the data set of algal 
groups that we may expect to be present in the phytobenthos. If some of these groups 
need to be targeted, the primers either need to be modified, or redesigned entirely, 
to produce another set of group specific primers (for example, Chlorophyta or 
Cyanobacteria) to target an algal group of interest. 

• Work is required to develop a reference database for non-diatom ASVs, or potentially 
use the ASVs themselves as reference sequences with a basic taxonomy included. 
. 

3.3 Maximising the potential of rbcL metabarcoding 
ASVs 

3.3.1 Introduction  

As was both expected and outlined in the section above, the primers used to amplify diatoms 
also amplify a wide range of other algal groups. Many of the groups, in addition to the 
diatoms, may show strong responses to environmental pressure gradients. Being able to 
make use of these data potentially maximises the amount of information we can harvest 
from rbcL metabarcoding data sets. However, for many of the groups, we know little about 
their ecology, as differentiation of morphospecies using light microscopy is difficult. 
Molecular techniques obviously make the differentiation between different species possible. 
There are also many diatom taxa that are not identifiable to species level in the molecular 
data set, as there is no reference sequence for these taxa in diat.barcode. These potentially 
represent undescribed species or cryptic within-morphospecies diversity. For example, in 
the case of some small Navicula species, distinguishing between different taxa is impossible 
without scanning electron microscopy. These ‘unidentified’ diatoms may also show 
important relationships with environmental gradients. In this section, we sought to 
investigate the relationship of non-diatom ASVs and all diatom ASVs with environmental 
pressure gradients. The aim was to investigate to what extent both non-diatom ASVs and 
all diatom ASVs are good predictors of environmental pressure gradients. This analysis was 
performed on a large sample set of ~900 river phytobenthos samples collected from across 
the UK that have both rbcL metabarcoding data and nearby environmental water chemistry.  

3.3.2 Methods 

Sequence processing and taxonomic classification  

Samples used included all data from phase 1 of this project (2014, 2015) as well as samples 
collected and analysed as part of routine monitoring in 2017, 2018 and 2019 phase 2 
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samples). All samples were analysed using the DADA2 pipeline (see section 2.3.2, and 
Appendix 1 for details). A total of 45 sequencing runs with over 5,000 individual samples 
(including PCR positive/negative mock communities and the environmental samples) were 
analysed. Each run was analysed individually, and the final outputs saved as an rds file 
before chimera removal and generation of final ASVs on a merged data set of all 45 
sequencing runs (this step took over 36 hours to run, on a 64Gb RAM machine, using a 
maximum of 24Gb of RAM, with 6 CPU cores). Taxonomy was assigned as above (section 
2.3.2) The data set was then split for further analysis into diatoms and non-diatoms. In 
subsequent analyses of these 2 subsets a taxonomy-free approach was adopted; ASVs that 
showed significant responses were further classified against the full NCBI database.  

Data processing and sample matching 

Sample metadata for phase 2 HTS samples contained information for 2,556 unique samples 
from 901 sites. Table 10 summarises the number of samples by waterbody (river or lake) 
and monitoring purpose. Samples from lakes and those collected from macrophyte or man-
made substrates were excluded from subsequent analysis. 

Table 10: Numbers of new phase 2 samples by waterbody type, showing those sites 
where water chemistry monitoring was taken from the same or different waterbodies 
and sampling purpose 

 Number of sites Number of samples 
Total 901 2,556 
Lake 51 181 
River 850 2,354 
Monitoring (same water body) 469 1,313 
Monitoring (different water 
body) 

53 138 

Investigative 333 924 

 

Water quality data were extracted from the Defra water quality data archive 
(https://environment.data.gov.uk/water-quality/view/landing). Given the variation in the 
frequency of water quality determinations, and the range of distances between water 
chemistry and biology sampling locations, biology and chemistry were linked manually using 
a custom-written R Shiny (https://shiny.rstudio.com/) map-based application as follows. 
Firstly, each biology site was plotted together with the closest, and other nearby, chemistry 
monitoring sites. Locations of potential pollutant discharges were obtained from the list of 
consented discharges to controlled waters (https://data.gov.uk/dataset/55b8eaa8-60df-
48a8-929a-060891b7a109/consented-discharges-to-controlled-waters-with-conditions) and 
Environment Agency compliance monitoring sites. The remaining biology samples (not 
lakes, macrophytes or those with no close nutrient data match) were matched to the nearest 
chemistry monitoring site that had at least 4 total reactive phosphorus determinations in the 

https://environment.data.gov.uk/water-quality/view/landing
https://shiny.rstudio.com/
https://data.gov.uk/dataset/55b8eaa8-60df-48a8-929a-060891b7a109/consented-discharges-to-controlled-waters-with-conditions
https://data.gov.uk/dataset/55b8eaa8-60df-48a8-929a-060891b7a109/consented-discharges-to-controlled-waters-with-conditions
https://data.gov.uk/dataset/55b8eaa8-60df-48a8-929a-060891b7a109/consented-discharges-to-controlled-waters-with-conditions
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sampling year, was less than 1,000m away, and had no obvious sewage or other discharges 
between biology and chemistry sites. For each of the matched chemistry sites, reactive 
phosphorus (P), nitrate (NO3-N), ammonium (NH4-N), alkalinity, conductivity and pH values 
were extracted and expressed as annual means (arithmetic for pH, geometric for other 
variables). Table 11 summarises the number of biology samples by distance to matched 
chemistry site, and the number of individual reactive P determinations in the sampling year. 
Reactive P sampling at many locations is infrequent (<6 times per year) and many sites 
either had no reactive P data or could not be matched to a suitable chemistry site within 
1,000m. 

Table 11: Number of HTS samples with matching chemistry as a function of distance 
to matched chemistry site and number of reactive P determinations in the sampling 
year 

Distance to matched 
chemistry site 

1-5 6-11 >= 12 No reactive P 
data 

<300m 524 281 226 344 

300 to 1,000m 72 37 45 71 

>1,000m or not matched 754 

 

Of the 2,354 river samples, 1,699 could not be matched to a water quality monitoring site 
within 1,000m distance and with at least 4 reactive P determinations in the sampling year, 
so were omitted from further analyses. Given the reduced number of samples with matching 
environmental data, the phase 2 samples were merged with the existing data set from phase 
1 to give a total of 1,688 samples. From this total, samples with a total diatom read count of 
less than 500 and a total non-diatom read count of less than 100 were removed. This 
screening yielded a final HTS data set of 1,220 samples with matching chemistry data (750 
phase 1, 470 phase 2), containing 4,036 diatom ASVs and 3,187 non-diatom ASVs. The 
data were then split into diatom and non-diatom subsets and each normalised to the total 
diatom and non-diatom reads respectively. All analyses are based on the screened data set 
of 1,220 samples unless otherwise stated. 

Statistical analysis 

Statistical analyses were performed to (1) quantify the magnitude and test the significance 
of the response of the diatom and non-diatom assemblages to the nutrient pressure 
gradient, and (2) examine the degree to which these assemblages can be used as indicators 
of nutrient pressure. In all analyses, nutrient pressure is quantified as a combination of 
reactive P and NO3-N (derived from the first axis of a principal components analysis of these 
2 variables). The combined pressure gradient explained more variance in the biological 
communities than reactive P or NO3-N alone. 
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The magnitude of compositional turnover or beta-diversity along the nutrient pressure 
gradient was quantified using detrended canonical correspondence analysis (DCCA), with 
nutrient pressure as the constraining variable. The gradient length of the first DCCA 
ordination axis gives a measure of turnover scaled in so-called standard deviation (SD) 
units, and on average ASVs rise and fall over 4SD. A turnover of 4SD units therefore 
represents a complete exchange of species (ter Braak and Prentice, 1988). Diatom and non-
diatom assemblages were ordinated using non-metric multidimensional scaling and 
ordinations compared using Procrustes analysis to quantify the overall similarity in 
assemblage structure between the diatom and non-diatom data sets (Peres-Neto and 
Jackson 2001). Redundancy analysis (RDA) with the 6 selected water quality variables was 
used to explore community-wide patterns in assemblage structure. The significance of each 
variable was assessed using a Monte-Carlo permutation test (Borcard and others, 2011). 
Variance partitioning based on RDA was used to partition the total variance in the ASV 
assemblages explained by each water quality variable into shared and unique components 
(Peres-Neto and others, 2006). Diatom relative abundance data were square root 
transformed prior to RDA to yield ordinations based on Hellinger’s distance, which is more 
appropriate for ecological community data (Legendre and Gallagher, 2001). 

In addition to distance-based methods (RDA/DCCA), we also tested the diatom and non-
diatom data sets for nutrient response using a model-based approach to fit separate 
generalised linear models (GLMs) to each ASV, with nutrient pressure as the explanatory 
variable, and using a negative binomial link to model the proportional abundance of each 
taxon (Wang and others, 2012). Significance of trends were assessed as for RDA. This 
model-based multivariate-GLM (mGLM) provides an alternative to RDA to test community-
level trends and has the advantage that it also provides a significance test of the response 
for each individual ASV (Wang and others, 2012).  

Predictive models were developed using weighted averaging (WA) and supervised machine 
learning (SML). Weighted averaging underlies the TDI and many other diatom-based indices 
and provides a benchmark for existing approaches. SML methods allow the development of 
predictive models using the information contained in a large training data set. Here, we 
develop SML models using random forests (RF) (Brieuc and others, 2018) and boosted 
regression trees (BRT) (Elith and others, 2008), as these are 2 of the most commonly used 
machine learning algorithms and can model non-linear relationships and high-dimensional 
data. Both methods are based on decision trees but take differing approaches to reducing 
errors in prediction or classification. Prediction error is a function of model bias and variance. 
A shallow tree with few splits will have high bias (poor accuracy) but low variance (small 
changes in the data won’t change the outcome much). A large tree with many nodes will 
have low bias (fits the data well) but high variance (small changes will give a different 
outcome, that is, the model is ‘overfitted’). A single tree is a weak learner and will usually 
perform poorly. RF and BRT are both ensemble methods that combine a large number 
(potentially thousands) of slightly different trees to reduce bias and variance. RF generates 
a large number of independent trees built using a random sample of the data, and the 
prediction is based on the consensus or mean of all trees. BRT builds the trees sequentially, 
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with each new tree trying to correct errors made by previous trees. BRTs and RFs have 
different advantages and disadvantages, so we evaluated both. BRTs can be more accurate 
but are prone to overfitting with noisy data and RFs are less prone to overfitting but can 
exhibit shrinkage of the predicted value towards the mean. 

RF and BRT models were fitted to a subset of the diatom and non-diatom data sets 
containing only those ASVs with a maximum relative abundance greater than 1% and at 
least 10 occurrences. Hyper-parameters used to tune the tree models (number of potential 
variables for each split, number of trees for RF, depth of tree, learning rate for BRT) were 
optimised with a grid search using 2-fold cross-validation, in which the data were randomly 
split in 2 and the model trained on one half and tested on the other. 2-fold cross-validation 
was also used to compare the performance of WA and tree models as it is a useful guide to 
the likely error when the model is applied to new data. Each tree in a RF or BRT ensemble 
is trained on a slightly different random selection of variables. The relative importance of 
each explanatory variable (ASV) for predicting nutrient pressure can be estimated as a 
function of the number of times each variable is selected to split individual trees (weighted 
by the improvement in prediction error for BRTs). 

All statistical analyses were performed using R software for statistical computing (R Core 
Team, 2020) with the following additional packages: vegan (PCA and RDA: Oksanen and 
others, 2020), mvabund (mGLM: Wang and others, 2012), ranger (RF: Wright and Zeigler 
2017), gbm (BRT: Greenwell and others, 2020); rioja (WA: Juggins 2020), caret (tree 
optimisation, Kuhn 2021). 

3.3.3 Results 

Water quality data 

Figure 7 summarises the distribution of selected water quality variables in the paired HTS-
chemistry data set. As is common in landscapes shaped by human activity several variables 
were strongly correlated with each other (for example, reactive P with both NO3-N and NH4-
N, alkalinity with conductivity). pH was relatively weakly associated with nutrients, but there 
are also relatively few records with pH values low enough to expect significant impacts on 
the biota.    
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Figure 7: Distribution and relationship between selected water quality variables in the 
paired HTS-chemistry data set (N=1,220). Units are log10 µgL-1 (PO4-P); log10 mgL-1 
(NO3-N, NH4-N); log10 mgL-1 (alkalinity); log10 µS cm-1 (conductivity) 

 

HTS data characteristics 

Figure 8 shows the distribution of total diatom and non-diatom reads and the proportion of 
the total reads assigned to non-diatom ASVs. The majority of samples are dominated by 
diatom ASVs, with only 36% of samples having more than 5% non-diatom reads. 98.5% of 
samples have at least 500 diatom reads but only 36% have more than 500 non-diatom 
reads.  

The HTS data set contains 4,036 diatom and 3,187 non-diatom ASVs. The majority of these 
have low occurrence and/or low maximum relative abundance: only 1,152 diatom ASVs 
(28%) have a maximum abundance of greater than 1% in any single sample and only 398 
(9.9%) are recorded in more than 50 samples. Non-diatom ASVs exhibit a different pattern, 
with 2,252 (71%) having a maximum abundance of greater than 1%, but only 66 (2.1%) 
recorded in more than 50 samples. Figure 9 (left) shows this apparent difference in the 
abundance/occupancy relationship in more detail. There is a strong positive relationship 
between abundance and occupancy for both taxonomic groups (diatoms, r=0.81; non-
diatoms, r=0.78, both p < 0.001): more abundant taxa are generally more widespread. 
However, the pattern of taxon abundance is visibly different for the 2 groups: However, the 
pattern of taxon abundance is visibly different for the two groups: non-diatom ASVs tend to 
be more abundant for any given level of occupancy, and non-diatoms ASVs tend to be less 
widespread but more locally abundant. The patchy or disjunctive distribution of many non-



   

 

53 of 92 

diatom ASVs is especially apparent in the left-hand side of the figure that shows that many 
non-diatom ASVs with only one or two occurrences can be dominant in some samples.  

 

 

Figure 8: Distribution of total diatom and non-diatom read counts (left) and proportion 
of the total read count represented by non-diatom ASVs (right). Data represents 
paired HTS-chemistry data before screening for total read count (N=1,688) 

 

An alternative way to examine the abundance/occurrence characteristics of organisms is to 
compare their N2 number of occurrences. Whereas N0, or the total number of samples in 
which an ASV is recorded, takes no account of abundance, N2 is a measure of the effective 
number of occurrences, that is, the number of N0 occurrences with equal abundance that 
would be needed to give the same N2 value (Hill 1973). Figure 9 (right) shows the distribution 
of Hill’s N2 occurrences and is again markedly different between the 2 groups: 298 diatom 
ASVs (7.4%), but only 53 (1.7%) non-diatom ASVs have more than 20 N2 occurrences, 
again indicating that, in general, non-diatom ASVs have a patchier distribution than diatoms 
and are generally recorded in fewer samples. 
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Figure 9: Relationship between the frequency of occurrence (occupancy) and mean 
relative abundance (left) and the distribution of Hill’s N2 number of occurrences for 
diatom and non-diatom ASVs (right). Note the overplotting of diatom ASVs on the left 
of the abundance/occupancy plot 

Figure 10 summarises patterns in assemblage diversity between the 2 groups. Figure 10 
(left) shows the distribution of N2 effective number of ASVs per sample: for diatoms, 38% of 
samples have a N2 diversity of 10 or more. For non-diatoms, the figure is 15%, meaning that 
non-diatom assemblages are, in general, less diverse than diatom assemblages. Figure 10 
(right) shows the proportion of the assemblage that is contained in the top 100 most 
abundant diatom or non-diatom ASVs. For diatoms, at least 50% of the assemblage is 
comprised of the top 100 ASVs in 92% of samples. For non-diatoms, the figure is 71%, 
again emphasising the patchy distribution of ASVs in this data set, where there is a greater 
tendency for assemblages to be dominated by taxa that are rare or have low overall 
abundance. 
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Figure 10: N2 effective number of ASVs per sample (left) and proportion of the total 
assemblage accounted for by the 100 most abundant ASVs (right) 

 

HTS community characteristics and species/environment relationships 

The gradient length of the diatom ASV data set was 4.46 and non-diatom ASV data set 4.70, 
derived using detrended canonical correspondence analysis constrained to the nutrient 
pressure gradient. On average, each ASV rises and falls over 4 SDs. The gradient lengths 
of both data sets are similar and greater than 4, indicating a complete turnover of taxa – 
samples from sites with low nutrient pressure would be expected to have no species in 
common with those subjected to high nutrient pressure. The similarity in gradient length 
suggests that the 2 data sets have similar beta diversity, or patterns of turnover along the 
nutrient pressure gradient. That is, diatoms and non-diatoms respond in a similar way, and 
should exhibit similar sensitivity of species’ response to nutrient pressure.  

The species/environment patterns in the 2 data sets are further explored using ordination 
analysis. Procrustes correlations between unconstrained ordinations of the 2 data sets 
(using non-metric multidimensional scaling, nMDS) and constrained ordinations (using 
redundancy analysis, RDA) were performed. The first compares the main patterns of overall 
species distributions, making no assumptions about the relationship to pressure or other 
environmental gradients. The second quantifies the similarity of the explicitly modelled 
species environment relationship between the data sets. Results of the RDAs are shown in 
Figure 11. Procrustes correlation for the unconstrained ordination is 0.49, suggesting that 
approximately 25% of the variance in ASV distribution is common to both data sets. The 
corresponding correlation for the constrained ordination is 0.72, suggesting that about 50% 
of the species-sample-environment relationship is common to both data sets. Taken 
together, the results suggest that both data sets reflect a strong, common signal in the 
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gradients represented by the environmental data, but that there are also other patterns of 
variation not related to the measured environmental data which may differ between the 
diatom and non-diatom data sets.  

 

Figure 11: Redundancy analysis biplots of the HTS data sets showing sites (circles) 
and environmental variables (arrows). The marginal effects of all environmental 
variables are significant (p <0.01; 999 permutations)  

 

Results of the constrained ordination suggest that the main species/environment response 
is related to the alkalinity/conductivity gradient. Nutrient-related variables (reactive P, NO3-
N, NH4-N) also have a statistically significant effect, albeit confounded with the alkalinity 
gradient in both data sets, somewhat more so for non-diatoms. 

Figure 12 shows the variance partitioning results for diatoms and non-diatoms. For both data 
sets the explained variance by each of the 4 selected environmental variables is low 
(approximately 4 to 6% for diatoms, 1 to 2% for non-diatoms). Such low values are usual for 
large, highly diverse data sets, and all the shared and unique components of variation are 
significant (p <0.01). The variance partitioning results mirror the conclusions from the RDA 
ordinations, that alkalinity and conductivity explain slightly more variation than the nutrient 
variables, and that a large part of the explained variance is shared or confounded between 
nutrient and alkalinity gradients. The pattern of shared and unique variance explained is 
remarkably similar between diatoms and non-diatoms, suggesting they are responding in 
the same way, at least to these gradients, except that there might be a slightly stronger NO3-
N response in the non-diatom ASVs. 
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Figure 12: Variance partitioning results, showing the total variance explained by each 
environmental variable partitioned into unique and shared components. All 
components of variation are significant (p < 0.01) 

 

Results of the ordination analyses indicate a statistically significant effect of nutrient-related 
variables on diatom and non-diatom assemblage composition at the assemblage level. 
Figure 13 shows the results of ASV-level analysis using generalised linear modelling (GLM) 
to model the response of each ASV to the pressure gradient. This analysis was performed 
on a subset of ASVs that have a maximum relative abundance of at least 1% and at least 
10 occurrences, yielding reduced data sets of 765 and 449 ASVs for diatom and non-
diatoms respectively. Overall, a total of 244 diatom ASVs (32%) and 108 non-diatom ASVs 
(24%) exhibited a significant response to the nutrient pressure gradient (p <0.01). The 
majority of dominant or highly abundant diatom ASVs (with maximum relative abundance 
greater than 10% and present in more than 100 samples) have a significant response, 
although significant responses are also recorded for many less frequent and less abundant 
ASVs. Non-diatom ASVs tend to have fewer occurrences and significant responses are 
recorded predominantly for those ASVs with maximum relative abundance greater than 
10%. 
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Figure 13: Abundance–occurrence plot for the subset of ASVs used in species 
response modelling. ASVs with a significant response to the nutrient pressure 
gradient are shown as red circles 

Figure 14 plots the distribution of the 36 most abundant diatom and non-diatom ASVs that 
show a significant response along the nutrient pressure gradient, along with their fitted 
response models. While these models are an oversimplification of the distributions shown 
by many ASVs, they do capture the broad trends in species turnover along the pressure 
gradient and highlight differences between ASVs. Note too that several species’ names 
(Achnanthidium minutissimum, Navicula gregaria, Amphora pediculus) recur, as ASVs will 
be picking up variation within ‘species’ as identified by light microscopy. A. minutissimum is 
a catch-all for a complex that is known to be more diverse than the current UK recording 
convention allows, but variation within N. gregaria does not map neatly onto known 
morphospecies. Noteworthy within the non-diatoms is the large number of ‘cf.’ (= conferret, 
literally, ‘compare’, used to indicate difficulties in assigning a binomial) as well as 3 ‘NAs’, 
where it was impossible to make a link with any known species. Non-diatoms in this list are 
drawn from the Chlorophyta, Streptophyta, Xanthophyceae, Cyanobacteria, Euglenophyta 
and Cryptophyta, not all of which would necessarily be expected to amplify readily using our 
primers (see section 3.2.3). Interestingly, the Phaeophyceae, Eustigmatophyceae and 
several Ochrophyta that might be expected to amplify well were absent. 
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Figure 14: Distributions of the 36 most abundant diatom (top) and non-diatom 
(bottom) AVSs that show a significant response to the nutrient pressure gradient (p 
<0.01). Pressure gradient scaled from low (left) to high (right). Fitted species response 
curves shown as red lines. Numbers in brackets are the confidence of species 
assignment. 

 

Quantifying predictive pressure-response relationships 

Results of the ordination analyses indicate a statistically significant effect of nutrient-related 
variables on diatom and non-diatom assemblage composition. We now reverse the direction 
of the modelling and ask how well can nutrient pressure be predicted using biology? The 
degree to which taxonomy-free HTS data can be used as an indicator of nutrient pressure 
was explored by fitting a series of predictive models, starting with a simple weighted-
averaging (WA) model as this is the basis of the TDI and many other biological water quality 
metrics. 

Results of the WA models are shown in Figure 15. Diatoms, non-diatoms and the combined 
data set (‘both’) exhibit a similar and strong correlation between measures of nutrient 
pressure and model fits (r=0.83 to 0.85). This compares well with the correlation of 0.80 
between TDI5LM scores and nutrient pressure, calculated from phase 1 data. 
Corresponding values under 2-fold cross-validation, which gives a more realistic idea of 
model performance when applied to samples, are only slightly lower for diatoms and ‘both’ 
(r=0.80) but more so for non-diatoms (r=0.76). The poorer performance of the non-diatom 
model under cross-validation is the result of the greater heterogeneity and patchy/disjunctive 
distribution of many ASVs in this data set. The scatter plots and density plots also both show 
that predicted values shrink towards the mean of the pressure gradient, especially at high 
nutrient pressure. 

Figure 16 shows similar results for random forest and boosted regression tree models. For 
diatoms and the combined diatom and non-diatom data set, both methods have the same 
correlation with nutrient pressure and have similar patterns of predictions. Although there is 
some bias towards the mean (that is, high values are under-predicted, low values are over-
predicted, this is less so than for WA models (compare Figure 15 and 16 density plots). 
Performance of the non-diatom tree models is also similar for the 2 methods and uniformly 
worse than the diatom models (r=0.70 and 0.73). 
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Figure 15: Results of weighted-average (WA) predictive models, showing relationship 
between observed and ASV-inferred nutrient pressure for diatoms and non-diatoms, 
and both (combined) (left). Upper plots show relationship for model fits, lower plots 
show results after 2-fold leave-out cross validation. Right-hand figures show the 
distribution of original and predicted nutrient pressure 

 

Figure 16: Results of random forest (RF) and boosted regression tree (BRT) predictive 
models, showing relationship between observed and ASV-inferred nutrient pressure 
for diatoms and non-diatoms (left). All plots show cross-validation predictions based 
on 2-fold leave-out. Right-hand figures show the distribution of original and predicted 
nutrient pressure 
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Variable importance statistics, derived from the random forest model trained using the 
combined diatom and non-diatom data, indicate that the model is primarily based on diatom 
ASVs, especially those assigned to the orders Achnanthales, Bacillariales, Naviculales, 
Fragilariales and Tabellariales (Figure 17). However, ASVs belonging to several 
Chlorophyta orders and several Vaucheriales also contribute. Variable importance derived 
from the BRT models is very similar to that from RF and is not shown. 

 

Figure 17: Boxplot summarising importance of ASVs for predicting nutrient pressure, 
grouped by taxonomic order, for random forest model using combined diatom and 
non-diatom data 

Figures 18 and 19 summarise the response of the 80 most important ASVs in the diatom 
(Figure 18) and non-diatom (Figure 19) RF predictive models to nutrient pressure. ASVs 
have been assigned names using diatom and non-diatom barcode libraries as described in 
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section 3.2. There are marked differences in distribution for most ASVs listed and whether 
these ASVs can be assigned to a morphological taxon with some confidence. There are also 
marked intra-species differences: for example, differences in distribution for ASVs assigned 
to Tabellaria flocculosa and Achnanthidium minutissimum.  

 

Figure 18: Distribution of the 80 most important diatom taxa for predicting nutrient 
pressure using tree-based models. Nutrient pressure gradient is divided into 10 equal 
sample-size bands (1=low). Bars show the mean relative abundance of ASVs in that 
nutrient pressure band. X-axis is square root scaled 
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Figure 19: Distribution of the 80 most important non-diatom taxa for predicting 
nutrient pressure using tree-based models. Nutrient pressure gradient is divided into 
10 equal sample-size bands (1=low). Bars show the mean relative abundance of ASVs 
in that nutrient pressure band. X-axis is square root scaled 

3.3.3 Discussion 

Limitations in the water quality data greatly reduced the number of HTS samples that could 
be used in this analysis, but by combining the phase 2 (2017 to 2019) HTS samples with 
existing data from 2014 to 2016 analysed in phase 1 we were able to produce a large, paired 
HTS and water quality data set. These data were generated using a consistent approach 
and can be used to explore the relationships between taxonomy-free diatom and non-diatom 
ASVs and nutrient pressure. 



   

 

65 of 92 

Examination of the abundancy, occupancy and diversity plots reveal differences in the 
frequency/abundance relationships between diatom and non-diatoms ASVs. While non-
diatoms often have a patchier distribution within reaches (M. Kelly, unpublished data), these 
differences are likely to also be a result of primer bias as the primers were designed for 
diatoms. We have no way of assessing how the primers react to other groups with and 
without the presence of a large diatom biomass. At certain times of the year when diatom 
biomass may be lower, there may be greater amplification of non-diatoms. Furthermore, 
some of the other algal groups are multicellular and are classed as macroalgae rather than 
microalgae. This will have a distinct impact on their relative abundance in the sequence 
libraries as a single individual of a multicellular macroalga could dominate a sample, but it 
does not mean that it is more abundant at one site than another or more abundant than a 
biofilm of diatoms. As a result, the non-diatom ASV data must be treated with caution, both 
in terms of the total non-diatom reads, and the community-wide patterns of non-diatom 
composition. It should also be noted that both the sampling protocol and DNA extraction has 
been optimised for diatoms, and other methods may well be more appropriate for non-
diatom taxa. 

Despite problems accurately identifying and quantifying non-diatom ASVs, the 
species/environment patterns in the diatom and non-diatom data sets are remarkably 
similar, and both data sets exhibit similar patterns and strength of response to the nutrient 
and other water quality variables. This is perhaps in part because both groups are from the 
same sample but also because, as algae, both groups are likely to respond in the same way 
to environmental variables required for a photosynthetic life strategy.  

The potential for developing new metrics based on diatom and/or non-diatom taxonomy-free 
HTS data using weighted-averaging and decision tree models was evaluated. The target 
variable was a composite nutrient pressure metric derived from combining P and N 
variables, as this relationship was stronger than for P or N alone. The aim was not to predict 
nutrient pressure - this can be measured directly with water chemistry - but the models were 
used to quantify the likely strength and relative performance of any future metrics developed 
using this approach. 

We measured the strength of this relationship using the correlation between observed and 
predicted nutrient pressure under 2-fold cross-validation. When evaluating these models, it 
should be noted that the unexplained error emanates both from the model error (how well 
mean annual chemistry encapsulates an ecologically meaningful driver, and how the 
numerical method accurately models the potentially complex and non-linear response to this 
variable) and the measure error in the target variable (how accurate the estimate of mean 
annual chemistry is). The measurement error of the composite nutrient variable can be 
estimated from the within-year variance in standardised N and P measurements at each site 
and is 14.8 for PO4 and 12.4 for NO3. Therefore, the maximum variance the models could 
explain is around 1 to 13.6, or 86.4%, equivalent to a correlation between measured and 
predicted nutrient pressure of 0.93.  



   

 

66 of 92 

Comparing phase 2 results with those from phase 1 indicates that both diatom and non-
diatom ASV-based models outperform the equivalent taxonomy-based HTS models 
(compare Figures 15 and 16 with Figure 4). For example, the DADA2 TDI5 model has a 
correlation of 0.66 with the pressure gradient, whereas the cross-validated DADA2 ASV 
diatom models have correlations of 0.80 to 0.83. In addition, results suggest that diatom 
ASV models may perform as well as, or better than, the equivalent light-microscopy model. 
Part of this improvement may be the finer taxonomic resolution offered by HTS. For 
example, a total of 47 ASVs are assigned to the taxon Achnanthidium minutissimum. Figure 
20 shows the distribution of the most frequently occurring 12 (with N >40). Some ASVs have 
similar distribution (for example, 15 and 237), but there is also considerable variation in the 
apparent response of these ASVs to nutrient pressure. This potentially useful information 
would be lost using a taxonomy-based approach. Achnanthidium minutissimum is a complex 
of species that have been ‘lumped’ for convenience in the TDI but where there is abundant 
evidence of many species, albeit difficult to separate reliably using LM. 

 

Figure 20: Distribution against nutrient pressure of the most frequently occurring 
ASVs assigned to Achnanthidium minutissimum 

Given the problems with the enumeration of the non-diatom phytobenthos, it is difficult to 
compare the relative predictive power of diatom and non-diatom components and to quantify 
the improvement in predictive ability of any new metrics by including non-diatoms. That said, 
the performance of the non-diatom tree-based models, the importance of some non-diatom 
ASVs in these models, and the statistically significant relationships of many non-diatom AVS 
with nutrient pressure suggest that there is the potential for improvement. 

A major problem in deriving a nutrient pressure metric using observation data is the 
correlation between alkalinity and nutrients in many data sets, making it difficult to separate 
a nutrient from an alkalinity response (see Figures 7 and 12; Baattrup-Pedersen and others, 
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2022). Species response modelling using multivariate GLMs may help here. The models 
shown in Figure 14 have a single explanatory variable (nutrient pressure) and are based on 
a simple symmetric unimodal response curve. More complex distribution models could be 
fitted to multiple environmental variables using generalised additive models (GAMs) to test 
the differential response to nutrient and alkalinity gradients at the individual ASV level. Many 
ASVs have extremely low abundance or occurrence (or both) and do not make a meaningful 
contribution to prediction. Extracting useful information from these rare ASVs is an additional 
challenge that could be addressed by using a 2-step GAM to model presence and 
abundance separately (Barry and Welsh 2002). From a practical point of view, however, 
alkalinity is used to predict the reference value in EQR calculations and Kelly and others 
(2020) extended this to explicitly account for interactions between nutrients and alkalinity. 

Although taxonomy-free approaches have been suggested by others (Apothéloz-Perret-
Gentil and others, 2017; Feio and others, 2020), we stress the importance of retaining the 
link between HTS output and Linnaean nomenclature, the latter acting as a bridge to the 
wide knowledge base on freshwater functioning. The approach of Apothéloz-Perret-Gentil 
and others (2017) aimed at little more than replicating the correlations with water quality 
achieved using LM indices: we argue that the ‘added value’ for ecological assessment 
depends on being able to understand how phytobenthos assemblages interact with physical, 
chemical and biological components of ecosystems. This is exemplified by Willby (2011) 
and Poikane and others’ (2018) use of ‘guiding images’ to encapsulate ‘good ecological 
status’ for lake macrophytes, but the concepts extend to phytobenthos too (Kelly, 2012; Kelly 
and others, 2019), with the 3-dimensional arrangement within biofilms influencing (and 
influenced by) interactions with other trophic levels. Matching OTUs to Linnaean 
nomenclature before deriving metrics was a sensible approach when negotiating the 
transition from LM to HTS, helping us to understand how the 2 types of data compared 
(section 2.2.4). We now recommend basing metrics on ASVs and fitting outputs to Linnaean 
nomenclature as a final step to produce taxa lists to help interpretation. This will enable 
metrics to make full use of information, including cryptic species (Kahlert and others , 2019; 
Pérez-Burillo and others, 2021) and species not yet included in the barcode database. 
Although this does not result in a significant increase in the strength of the relationship 
between the diatom assemblage and pressures, it is a conceptual shift that will create more 
opportunities for developing the phytobenthos metabarcoding approach in the future. 

Further development of the phytobenthos metabarcoding approach does not have to be 
confined to diatoms (see section 1.2), although in this study we saw no increase in sensitivity 
to nutrient pressure when non-diatoms were included in models. Section 3.1 outlines some 
of the challenges involved in detecting non-diatoms with a barcode optimised for diatoms. 
Extending the reach of the approach also brings some new challenges, such as distorted 
signals when the biofilm is sampled from macrophytes rather than cobbles, and 
contamination from terrestrial and exotic vegetation (for example, bananas). It is clear some 
groups of non-diatoms should amplify well with the present barcode (Cryptophyta, 
Eustigmatophyceae, Phaeophyceae), but others that would be expected to be abundant in 
rivers are under-represented. Reasons are discussed in section 3.1, and Figures 11 and 12 
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also highlight these issues. The present barcode library is not suitable for evaluating the 
condition of the whole phytobenthos community. It is suitable for diatoms and the groups 
listed above, likely to be bycatch, dependent upon competition from diatoms at the PCR 
stage, rather than as a representative ecological signal.  

Detecting the whole phytobenthos community would mean either the UK rbcL primers would 
need to be redesigned, an optimised rbcL primer set added for other major algal lineages 
found in rivers, or a different marker (for example, 18S) used, which would still miss 
Cyanobacteria – a major component of riverine biofilms. There would also be a need to 
develop well-curated reference libraries similar to diat.barcode (Rimet and others, 2019) for 
these groups (we caution against indiscriminate use of GenBank as a taxonomic resource 
for this purpose). We have, however, identified ASVs from non-diatoms that do have 
ecological signals along pressure gradients of interest (Figure 20), and which could be used 
in future metric development. Caution is needed when using these, as there is no 
independent validation of the distribution of the organisms that they represent. Nonetheless, 
a subset, where there is a priori reason to assume reliable amplification, could be included 
in future metrics. Once again, however, we emphasise that the overall increase in sensitivity 
to principal pressure gradients from including these will be relatively small, largely, we 
suspect, because they contribute relatively little unique information to a gradient already well 
captured by the diatoms.   

Finally, we would like to highlight that traditional microscopic analysis of diatoms for the 
purpose of monitoring is built on several decades (perhaps even a century) of research and 
analysis of specific species. We know a great deal about their ecology and responses to 
pressure gradients. The same is not true for molecular analysis of these taxa. As already 
mentioned, there is potential to reveal within-morphospecies diversity. While there is good 
agreement in some respects between LM and molecular data for monitoring diatoms, there 
is still a learning curve regarding responses of ASVs to environmental pressures. We have 
also highlighted many potential caveats within the molecular analysis of diatoms. With this 
in mind, an exclusive focus on diatoms may not be the best way forward for monitoring 
rivers. Several studies have highlighted the utility of other microbial groups, such as bacteria 
(Stoeck and others, 2018; Aylagas and others, 2021; Pearman and others, 2022), protists 
(Ai and others, 2021; Kulaš and others, 2021) or multi-taxa assemblages using multiple 
phylogenetic markers (Keeley and others, 2018; Clark and others, 2020) in classifying the 
status of aquatic habitats, based on the assemblages of these taxa in response to 
environmental pressures (see Sagova-Mareckoba 2021 for a review). As we have already 
highlighted, the rbcL primers would need to be redesigned to target other photosynthetic 
organisms to ensure consistency of taxa recovery.   

Currently, there is a legislative requirement to evaluate phytobenthos (WFD Regulations 
2017 and WFD Annex V), and diatoms have proved valuable in meeting this need. While 
the regulatory landscape is determined by the WFD, there is sense in continuing with an 
approach that minimises disruption (even if this cannot be eliminated entirely). However, as 
policy evolves, there may be advantages in looking at other microbial groups entirely or 
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using a combined multi-taxa data set to build a new index equivalent to the TDI but based 
on molecular monitoring of numerous microbial groups. 

3.3.4 Recommendations 

• The link between HTS outputs and Linnaean taxonomy should be retained for the 
information this provides when interpreting outputs. However, future developments 
should use ASVs to calculate metrics, with links to reference libraries made as a 
final step in order to generate taxa lists for interpretation. 

• Studies using mock communities of known biomass are needed to better 
understand the relationship between sequence biomass of individual taxa and 
sequence reads in a metabarcoding library; this work would also underpin better 
QA/QC within workflows. The mock communities should include a range of benthic 
species, including non-diatoms, where possible.   

• There is limited benefit in including non-diatom reads in models using the current 
barcode. There are also some problems, such as distorted signals when the biofilm 
is sampled from macrophytes rather than cobbles, and contamination from 
terrestrial and exotic vegetation. Therefore, we do not recommend using ASVs 
without some prior filtering. 

• It may be possible to include a few other groups known to amplify well, but this will, 
at best, only give a partial overview of the phytobenthic community. If a coarse ‘total 
phytobenthos’ assessment is required, a more general approach (general 
eukaryote primers for sequencing) should be used. If a finer resolution is required, a 
number of specific taxa should be targeted (using a number of different group-
specific PCR primer sets). 

• The present study indicates that there is relatively little scope for improvement in 
the current approach (deriving EQRs from measures of community turnover); 
therefore, the possibility of exploring alternative metrics (for example, incorporating 
diversity) or bypassing EQR calculation and predicting status class directly should 
be explored.    

• Any further exploration of the potential of non-diatoms will benefit from access to a 
well-curated reference database, similar to diat.barcode. Such a database does not 
yet exist; we caution against the indiscriminate use of GenBank as a taxonomic 
resource.  

• This study has identified considerable diversity in Eustigmatophyceae (previously 
poorly known) and a wider distribution than previously thought for the freshwater 
Phaeophyceae. Although beyond the formal remit of this project, these results offer 
a strong case study for the benefits of metabarcoding for expanding knowledge of 
aquatic biodiversity in the UK. It is therefore recommended that metabarcoding is 
more widely incorporated into biodiversity monitoring. 
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4.Moving forward  

4.1 Phase 1 – diatom metabarcoding methods 

4.1.1 Options 

1. Continue with current pipeline (QIIME 1) with methodology as it is for the 
analysis of metabarcoding data. 
a. Advantages: 

i. Will not require updates to software or hardware 
ii. Has been used on previous data sets, although these could be rerun 

quickly with newer pipelines 
iii. Appears to be meeting the needs of stakeholders and end users 

b. Disadvantages: 
i. Generates many spurious OTUs 
ii. Low accuracy with potential for false positives/negatives 
iii. Limited utility beyond aims of original study 
iv. QIIME 1 no longer supported 
v. Potentially can’t update linux operating system or servers as QIIME 

has several dependencies where the programs need to be specific 
versions(i.e these cannot be updated) 

vi. Potentially difficult to publish data using UCLUST estimates of OTUs  

 

2. Switch to a UPARSE OTU based pipeline 
a. Advantages: 

i. Showed similar correlation to light microscopy as original pipeline 
ii. Better accuracy than the original pipeline 
iii. Easy to install and run 

b. Disadvantages: 
i. Does not denoise data, will still contain spurious OTUs 
ii. Larger datasets will require 64bit version, cost over £1000 per 

machine 
iii. Does not have some of the advantages of ASV generation - no within 

species/population variation 
iv. Requires update of code and methodologies  
v. Cost involved in setting up new protocols 

 
3. Switch to DADA2 pipeline for all future diatom metabarcoding work. 

a. Advantages: 
i. Showed similar correlation to light microscopy as original pipeline 
ii. Runs on Windows or linux in R. Can be wrapped with DARLEQ scripts 
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iii. Stable release continually supported 
iv. Extra taxonomic information can be gained from non-diatoms and total 

diatoms 
b. Disadvantages: 

i. Requires update of code and methodologies 
ii. Produces larger data sets – that is, many ASVs where just species 

names needed, would require additional scripts  
iii. Cost involved in setting up new protocols 

 4.1.2 Recommendation 

Option 3, upgrading the current pipeline to DADA2 is recommended. This will allow 
detailed analysis of all rbcL metabarcoding data sets and comparison/validation with 
European monitoring (and potentially globally, depending on species assemblages), where 
metabarcoding is used. It will improve accuracy and reduce the potential for false 
negatives/positives. The potential extra utility gained from this method would be 
significant.  

 

4.2 Phase 2 – inclusion of non-diatom taxa 

4.2.1 Options 

1. Go forward with current rbcL primers.  
a. Advantages:  

i. Good representation of diatoms 
ii. Improved reference model already available 
iii. Good (and expanding) reference database available at diat.barcode 

b. Disadvantages:  
i. Limited representation of other algae  
ii. Some important filamentous algal genera missed entirely 
iii. Limited potential for improving predictions of ecological status along 

principal pressure gradient 
c. Other: 

i. Some potential for moving beyond weighted average-type models and 
developing new statistical approaches for predicting status  

ii. Scope for developing additional metrics using existing data and/or 
easy-to-collect field information (visual assessment of filamentous 
algae) to increase ecological insight 
 

2. Add extra rbcL primers to improve representation of other groups. 
a. Advantage:  
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i. Better representation of other algal groups 
b. Disadvantages: 

i. Well-curated reference libraries will need to be developed 
ii. May not overcome reach-level ‘patchiness’ of many algae 
iii. rbcL is not a standard taxonomic marker for some algal groups 
iv. Expensive 

 
3. Shift to alternative marker or taxonomic group(s) (for example, 16S,18S). 

a. Advantages: 
i. Better representation of other algal groups 
ii. Expand coverage to include other eukaryotic organisms 

b. Disadvantages: 
i. Well-curated reference libraries will need to be developed 
ii. May not overcome reach-level ‘patchiness’ of many algae 
iii. Quantification less well understood than for algae using the rbcL 

marker 
iv. There is an advantage in using a chloroplast marker, because it 

restricts the data set to photosynthetic organisms (in some 
communities, these could be swamped by heterotrophic protists and 
fungi in rDNA HTS outputs) and excludes problems caused by 
intraindividual rDNA variation (for example, Behnke and others, 2004), 
which could exaggerate and bias perceived organismal diversity 

v. Where tested, 18S was a less effective barcode for algae than rbcL 
(for example, Mann and others, 2010) 

vi. Expensive 
 

4.2.2 Evaluation 

Phytobenthos metrics, to date, have focused on community turnover along stressor 
gradients, and the present study suggests limited improvement from simply adding 
more (non-diatom) taxa to these metrics. Option 1, staying with the current primers, 
is the least risky option, as the other options assume that there is a significant 
untapped signal in the other algae. However, the general direction of travel (away 
from an exclusive focus on diatoms) is more likely to meet longer term goals of 
monitoring aquatic habitats with molecular techniques, allowing.  assessment of 
ecological functioning. Using these data to develop new approaches may be as 
fruitful as adding a wider range of taxa. Based on results for phase 2, it can be 
assumed that all options will result in considerable change in the assessment of 
ecological status, so significant further work would be required to embed any novel 
approach within the future statutory framework.   
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4.2 Future work 
The potential studies listed below, particularly further mock community validation, would 
help to progress development of the methodologies, with the aim of improving end-user 
confidence and uptake of the methods. Although it would increase the cost, developing 
methodologies for analysis of other microbial communities alongside the diatoms is likely to 
provide a great deal of information about nutrient and other pressures, habitat quality and 
ecological functioning of rivers. 

1. Experiments could be conducted with mock communities of different taxa, both 
diatoms and non-diatoms, to better assess how accurately the assay performs in 
recovering relative abundance information from mixed communities. This would 
provide validation of the DNA extraction methodology, by adding known numbers of 
cells to extraction tubes and looking at recovery rates in relation to other taxa. 

2. Reference library: assigning identities to ASVs to generate reliable taxa lists; use 
phylogenetic placement as a tool to ensure correct identifications at the lowest 
taxonomic level possible; include non-diatoms for groups that are known to amplify 
with the present primers. At this stage, it is more important to ensure that the higher 
level taxonomy is correct within the reference library, rather than that coverage of 
freshwater diatom species is complete. This will boost the efficiency of 
bioinformatics algorithms and limit the number of misclassifications of ASVs.  

3. Explore new metrics and new approaches to predicting ecological status using 
supervised machine learning algorithms. Detailed development and testing of 
metabarcoding with different marker genes 16S, 18S, internal transcribed spacer 
(ITS) region to look at a range of different microbial communities and how they 
respond to environmental stressors. A multi-taxa assessment of the river benthos is 
likely to give better assessment of the impact of water quality/stressors than a 
single taxon alone. Other microbial groups may well perform better than the 
diatoms. Assessment of bacterial communities may also identify factors such as 
point source pollution from agriculture or sewage treatment (such as detection of 
faecal coliforms).  
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Appendix I 
The following scripts were run to analyse the data using the USEARCH pipelines, the 
scripts run in the Linux operating system such as ubuntu. 

 

#assumes cutadapt and USEARCHv11 are both installed.  

#merge sequence pairs and relabel sequences with sample name 

usearch11 -fastq_mergepairs *R1*.fastq -fastqout merged.fastq -relabel @ 

#trim the primers 

cutadapt -a ATGCGTTGGAGAGARCGTTTC...GATCACCTTCTAATTTACCWACAACTG -
o trimmed.fastq merged.fastq --discard-untrimmed 

#filter and trim  

usearch11 -fastq_filter trimmed.fastq -fastq_maxee 0.5 -fastq_minlen 200 -fastaout 
reads1.fa 

#relabel sequences 

sed 's/\./\;/g' reads1.fa > reads2.fa 

sed 's/>/>barcodelabel=/g' reads2.fa > reads.fa 

#dereplicate and sort 

usearch11 -fastx_uniques reads.fa -fastaout derep.fa -sizeout 

usearch11 -sortbysize derep.fa -fastaout sorted.fa 

UPARSE pipeline 

usearch11 -cluster_otus sorted.fa -otus otus1.fa 

python $HOME/drive5_py/fasta_number.py otus2.fa OTU_ > otus.fa 

usearch8 -uchime_ref otus1.fa -db USEDIAT.BARCODE database fasta here -strand plus 
-nonchimeras otus2.fa 

#Relabel OTU names  

python $HOME/drive5_py/fasta_number.py otus2.fa OTU_ > otus.fa 
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#usearch to map the otus back to the original seqs 

usearch11 -usearch_global reads.fa -db otus.fa -strand plus -id 0.97 -uc map.uc 

#construct otutable (a species abundance matrix) 

python $HOME/drive5_py/uc2otutab.py map.uc > otu_table.txt 

UNOISE3 

# takes “sorted.fa” file from above and makes amplicon sequence variants (100% OTUs) 

usearch11 -unoise3 sorted.fa -zotus zotus.fa 

# makes OTU table can use reads.fa or “trimmed.fastq” 

usearch11 -otutab reads.fa -otus zotus.fa -otutabout otutab_raw.tx 

#assigning taxonomy using RDP https://sourceforge.net/projects/rdp-classifier/ 

#database here http://genoweb.toulouse.inra.fr/frogs_databanks/assignation/Diat.barcode/ 

rdp_classifier -Xmx8g classify -t frogs/diat_barcode_v10_all_rbcl_frogs.fasta.properties -o 
rdp.outputuclust -q otus.fa 

 

  

https://sourceforge.net/projects/rdp-classifier/
http://genoweb/
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Appendix II 
The following scripts were run to process diatom metabarcoding data using the DADA2 
pipeline. 

Cutadapt can be installed on Windows, alternatively in Linux can be run as a loop where 
your sequences are: 

for r1 in *_R1_*.fastq.gz; do 

    # replace _R1_ in the file name with _R2_ 

    r2=${r1/_R1_/_R2_} 

    out1=$(basename ${r1}) 

    out2=${out1/_R1_/_R2_} 

    cutadapt -a 
ATGCGTTGGAGAGARCGTTTC...CAGTTGTWGGTAAATTAGAAGGTGATC -A 
AYGGTATCTRATCRTCTTYG...GAGCTGGAATTACCGCRG  --discard-untrimmed --
minimum-length 200 -o trimmed/${out1} -p trimmed/${out2} ${r1} ${r2} 

done 

DADA2 sequencing pipeline modified from 
https://github.com/fkeck/DADA2_diatoms_pipeline/blob/master/pipeline.R 

# Ran in R studio. R version 4.0 

 

library(dada2) 

# Your path to your sequences here 

path <- ("D:/Diatom data all/2018_raw/Run10/trimmed") 

path_results <- file.path(path, "results") 

if(!dir.exists(path_results)) dir.create(path_results) 

 

# Set patterns to discriminate your forward and reverse read files 

#Note for Environment agency data this coding was different for some runs 

https://github.com/fkeck/DADA2_diatoms_pipeline/blob/master/pipeline.R
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file_pattern <- c("F" = "_R1_001.fastq", "R" = "_R2_001.fastq") 

 

fas_Fs_raw <- sort(list.files(path, pattern = file_pattern["F"], full.names = TRUE)) 

fas_Rs_raw <- sort(list.files(path, pattern = file_pattern["R"], full.names = TRUE)) 

 

path_process <- ("D:/Diatom data all/2018_raw/Run10/trimmed") # If you skipped primers 
removal, provide the path to your sequences here 

 

fas_Fs_process <- sort(list.files(path_process, pattern = file_pattern["F"], full.names = 
TRUE)) 

fas_Rs_process <- sort(list.files(path_process, pattern = file_pattern["R"], full.names = 
TRUE)) 

#Note sample names cannot be identical 

sample_names <- sapply(strsplit(basename(fas_Fs_process), "_"), function(x) x[1]) 

 

#### Inspect read quality profiles #### 

plotQualityProfile(fas_Fs_process[2]) 

plotQualityProfile(fas_Rs_process[2]) 

 

pdf(file.path(path_results, "Read_quality_profile_aggregated.pdf")) 

  p <- plotQualityProfile(sample(fas_Fs_process, replace = FALSE, 

                            size = ifelse(length(fas_Fs_process) < 100, length(fas_Fs_process), 
100)), 

                     aggregate = TRUE) 

  p + ggplot2::labs(title = "Forward") 

  p <- plotQualityProfile(sample(fas_Rs_process, replace = FALSE, 



   

 

88 of 92 

                            size = ifelse(length(fas_Rs_process) < 100, length(fas_Rs_process), 
100)), 

                     aggregate = TRUE) 

  p + ggplot2::labs(title = "Reverse") 

dev.off() 

 

 

#### FILTER AND TRIM #### 

fas_Fs_filtered <- file.path(path, "filtered", basename(fas_Fs_process)) 

fas_Rs_filtered <- file.path(path, "filtered", basename(fas_Rs_process)) 

all.equal(basename(fas_Fs_raw), basename(fas_Fs_filtered)) 

 

names(fas_Fs_filtered) <- sample_names 

names(fas_Rs_filtered) <- sample_names 

 

# Settings below are conservative for poor quality data 

out_2 <- filterAndTrim(fas_Fs_process, fas_Fs_filtered, fas_Rs_process, fas_Rs_filtered, 

                       truncLen = c(200, 170), maxN = 0, maxEE = c(2, 2), truncQ = 2, 

                       rm.phix = TRUE, compress = TRUE, multithread = TRUE) 

head(out_2) 

 

 

#### LEARN THE ERROR RATES #### 

error_F <- learnErrors(fas_Fs_filtered, multithread = TRUE, randomize = TRUE) 

error_R <- learnErrors(fas_Rs_filtered, multithread = TRUE, randomize = TRUE) 
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pdf(file.path(path_results, "Error_rates_learning.pdf")) 

  p <- plotErrors(error_F, nominalQ = TRUE) 

  p + ggplot2::labs(title = "Error Forward") 

  p <- plotErrors(error_R, nominalQ = TRUE) 

  p + ggplot2::labs(title = "Error Reverse") 

dev.off() 

 

 

#### DEREPLICATION, SAMPLE INFERENCE & MERGE PAIRED READS #### 

merged_list <- vector("list", length(sample_names)) 

names(merged_list) <- sample_names 

 

for(i in sample_names){ 

  cat("Processing -------", which(sample_names == i), "/", length(sample_names), "-------", i, 
"\n") 

  derep_Fs <- derepFastq(fas_Fs_filtered[[i]], verbose = TRUE) 

  derep_Rs <- derepFastq(fas_Rs_filtered[[i]], verbose = TRUE) 

  dds_Fs <- dada(derep_Fs, err = error_F, multithread = TRUE, verbose = TRUE) 

  dds_Rs <- dada(derep_Rs, err = error_R, multithread = TRUE, verbose = TRUE) 

  merged_list[[i]] <- mergePairs(dds_Fs, derep_Fs, dds_Rs, derep_Rs, verbose = TRUE) 

} 

 

#### CONSTRUCT SEQUENCE TABLE #### 

seqtab <- makeSequenceTable(merged_list) 

dim(seqtab) 

table(nchar(getSequences(seqtab))) 
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saveRDS(seqtab, file="seqtab.rds") 

The easiest way is to use R's native facilities for saving and reloading objects: 

 

 

#### REMOVE CHIMERA #### 

seqtab_nochim <- removeBimeraDenovo(seqtab, method = "consensus", multithread = 
TRUE, verbose = TRUE) 

dim(seqtab_nochim) 

table(nchar(getSequences(seqtab_nochim))) 

 

#### ASSIGN TAXONOMY #### 

# Here we download and use the Diat.barcode (last version) pre-processed for DADA2. 

# You can use your own local database if needed. 

tax_fas <- diatbarcode::download_diatbarcode(flavor = "rbcl312_dada2_tax") 

tax <- assignTaxonomy(seqtab_nochim, tax_fas$path, minBoot = 75, 

                      taxLevels = c("Empire", "Kingdom", "Subkingdom", "Phylum", "Class", 
"Order", "Family", "Genus", "Species"), 

                      outputBootstraps = TRUE, verbose = TRUE, multithread = TRUE) 

 

spe_fas <- diatbarcode::download_diatbarcode(flavor = "rbcl312_dada2_spe") 

exact_sp <- assignSpecies(seqtab_nochim, spe_fas$path) 

 

 

#### CLEAN AND SAVE EVERYTHING ####  

prep_cdm <- function(x){ 

  x <- t(x) 



   

 

91 of 92 

  x <- as.data.frame(x) 

  x <- cbind(rownames(x), x) 

  colnames(x)[1] <- "DNA_SEQ" 

  return(x) 

} 

 

write.csv(prep_cdm(st.all), file.path(path_results, "sequence_table.csv"), row.names = 
FALSE) 

write.csv(prep_cdm(seqtab), file.path(path_results, "sequence_table_nochim.csv"), 
row.names = FALSE) 

tax <- as.data.frame(tax) 

tax <- cbind(rownames(tax), tax) 

colnames(tax)[1] <- "DNA_SEQ" 

colnames(tax) <- sub("^tax\\.", "", colnames(tax)) 

colnames(tax) <- sub("^boot\\.", "BOOT_", colnames(tax)) 

write.csv(tax, file.path(path_results, "seq_nochim_tax.csv"), row.names = FALSE) 

 

exact_sp <- as.data.frame(exact_sp) 

exact_sp <- cbind(rownames(exact_sp), exact_sp) 

colnames(exact_sp)[1] <- "DNA_SEQ" 

write.csv(exact_sp, file.path(path_results, "seq_nochim_exact_sp.csv"), row.names = 
FALSE) 
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Would you like to find out more about us or 
your environment? 
Then call us on 

03708 506 506 (Monday to Friday, 8am to 6pm) 

Email: enquiries@environment-agency.gov.uk 

Or visit our website 

www.gov.uk/environment-agency 

incident hotline  
0800 807060 (24 hours) 

floodline  
0345 988 1188 (24 hours) 

Find out about call charges (https://www.gov.uk/call-charges) 

Environment first 
Are you viewing this onscreen? Please consider the environment and only print if 
absolutely necessary. If you are reading a paper copy, please don’t forget to reuse and 
recycle. 

mailto:enquiries@environment-agency.gov.uk
https://www.gov.uk/environment-agency
https://www.gov.uk/environment-agency
https://www.gov.uk/call-charges
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