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Introduction 
We are in the midst of a technological revolution that will fundamentally alter the way we live, 
work, and relate to one another. Artificial Intelligence (AI) promises to transform nearly every 
aspect of our economy and society. The opportunities are transformational - advancing drug 
discovery, making transport safer and cleaner, improving public services, speeding up and 
improving diagnosis and treatment of diseases like cancer and much more. 

Developments in frontier AI are transforming productivity and software services, which will 
multiply the productivity of many industries and sectors.1 This progress in frontier AI in recent 
years has been rapid, and the most advanced systems can write text fluently and at length, 
write well-functioning code from natural language instructions, make new apps, score highly on 
school exams, generate convincing news articles, translate between many languages, 
summarise lengthy documents, amongst other capabilities. The opportunities are vast, and 
there is great potential for increasing the productivity of workers of all kinds. 

However, these huge opportunities come with risks that could threaten global stability and 
undermine our values. To seize the opportunities, we must understand and address the risks. 
AI poses risks in ways that do not respect national boundaries. It is important that 
governments, academia, businesses, and civil society work together to navigate these risks, 
which are complex and hard to predict, to mitigate the potential dangers and ensure AI benefits 
society. 

The UK Government believes more research into AI risk is needed. This report explains why. It 
describes the current state and key trends relating to frontier AI capabilities, and then explores 
how frontier AI capabilities might evolve in the future and reviews some key risks. There is 
significant uncertainty around both the capabilities and risks from AI, including some experts 
who believe that some of these risks are overstated. This report focuses on evidence for risks 
and concludes that doing further research is necessary.  

This report covers many risks, but we wish to emphasise that the overarching risk is a loss of 
trust in and trustworthiness of this technology which would permanently deny us and future 
generations its transformative positive benefits. In discussing the other risks, we do so in order 
to galvanize action to mitigate them, such that we can capture the full benefits of frontier AI. 

Defining AI is challenging as it remains a quickly evolving technology. For the purposes of the 
Summit we define “frontier AI” as highly capable general-purpose AI models that can perform a 
wide variety of tasks and match or exceed the capabilities present in today’s most advanced 
models (see Figure 1).2 Today, this primarily includes large language models (LLMs)3 such as 
those underlying ChatGPT,4 Claude,5 and Bard.6  However, it is important to note that, both 
today and in the future, frontier AI systems may not be underpinned by LLMs, and could be 
underpinned by another technology. 
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Figure 1: Scope of the AI Safety Summit - 2023 

The limited focus of this report means we do not cover powerful narrow AI7 systems like 
AlphaGo, AlphaFold or DALL·E 3 which cannot perform as wide a variety of tasks.8  

There are already a number of existing international efforts and initiatives which touch upon the 
capabilities and risks of frontier AI. The upcoming AI Safety Summit will provide space for a 
focused and deep discussion on AI safety at the frontier and what further action needs to be 
taken, complementing existing initiatives, and this report is intended to be a resource for all. 

This report is by no means conclusive; there are many risks we omit and we encourage 
readers to view it as the start of a conversation. 

What is the current state of frontier AI 
capabilities? 
Frontier AI can perform a wide variety of tasks, is being augmented with tools to 
enhance its capabilities, and is being increasingly integrated into systems that can have 
a wide impact on the economy and society. Although these models still have major 
limitations such as their factuality and reliability, their current capabilities are 
impressive, may be greater than we have been able to assess, and have appeared 
faster than we expected. 

How frontier AI works 

Frontier AI companies such as OpenAI, DeepMind and Anthropic develop large language 
models (LLMs) such as GPT-4 in two phases: pre-training and fine-tuning. 

During pre-training, an LLM “reads” millions or billions of text documents.9 As it reads, word by 
word,10 it predicts what word will come next. At the start of pre-training it predicts randomly, but 
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as it sees more data it learns from its mistakes and improves its predictive performance. Once 
pre-training is over, the model is significantly better than humans at predicting the next word of 
a randomly chosen text document.11  

During fine-tuning,12 the pre-trained AI is further trained on highly curated datasets, which are 
focused on more specialised tasks, or are structured to direct model behaviour in ways which 
are in alignment with developer values and user expectations 13 

Increasingly, frontier AI models are multi-modal. In addition to text, they can generate and 
process other data types such as images, video, and sound.14  

The key inputs to development are computational resources (“compute”15) to train and run the 
model, data for it to learn from, the algorithms that define this training process, and talent and 
expertise that enable all of this.16 The vast majority of compute is spent on pre-training, which 
is when most core capabilities are learnt by a model.17  

The total development costs for the most capable frontier AI models today runs into the tens of 
millions of pounds,18 with costs expected to soon reach into the hundreds of millions or even 
billions of pounds.19 While the best performing models are developed by a small number of 
well-resourced organisations, a larger number of smaller entities build products on top of these 
frontier models for specific markets.20  

The below diagram outlines the inputs to, and stages of, the development and deployment of 
frontier AI. 

Figure 2. An overview of foundation model development, training and deployment. 
From AI Foundation Models: initial review, CMA, 2023. 
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Frontier AI can perform many economically useful tasks 

Simply from being trained to predict the next word across diverse datasets, models develop 
sophisticated capabilities.21 For example, frontier AI can (with varying degrees of success and 
reliability): 

● Converse fluently and at length, drawing on extensive information contained in training
data.

● Write long sequences of well-functioning code from natural language instructions,
including making new apps.22

● Score highly on high-school and undergraduate examinations in many subjects.23

● Generate plausible news articles.24

● Creatively combine ideas together from very different domains.25

● Explain why novel sophisticated jokes are funny.26

● Translate between multiple languages.27

● Direct the activities of robots via reasoning, planning and movement control.28

● Analyse data by plotting graphs and calculating key quantities.29

● Answer questions about images that require common-sense reasoning.30

● Solve maths problems from high-school competitions.31

● Summarise lengthy documents.32

These capabilities show potential to be applied across a wide array of economic use-cases. In 
addition to some of the applications above, frontier AI has been used to: 

● Improve the performance of leading consultants in developing go-to-market plans.33

● Automate a wide variety of legal work.34

● Support leading wealth managers.35

● Increase the productivity of call-centre workers.36

● Accelerate academic research, for example in economics.37

Annex A provides more detail on AI capabilities in content creation, computer vision, theory of 
mind, memory, mathematics, physical intuition, and robotics.  

Frontier AI models can be augmented with tools to make them 
more autonomous 

Frontier AI models are more useful when augmented with other tools and software. 

7



Frontier AI – Capabilities and Risks 

Frontier AI models, before they are augmented, respond to a request simply by producing a 
snippet of text. By contrast, autonomous38 AI agents39 can take long sequences of actions in 
pursuit of a goal, without requiring human involvement.  

Researchers have built software programs called “scaffolds”40 that allow frontier AI models to 
power autonomous AI agents. The scaffold prompts the AI model to create a plan for achieving 
a high-level goal and to then execute the plan step by step. The scaffold augments the AI 
model with tools like web browsers, allowing it to execute each step autonomously. The 
resultant system, built out of the AI model and the scaffold, is an AI agent. AutoGPT is the 
most well-publicised example of such an AI agent as of late 2023.41 

Today’s AI agents currently struggle to perform most tasks – they often get stuck in loops and 
cannot self-correct, or fail at crucial steps. However, they do allow frontier AI to perform some 
entirely new tasks. Examples of tasks that AI agents can currently do include: 

● Find specific information by browsing the internet.42 

● Organise parties in simulated ‘The Sims’-like environments.43 

● Solve complex problems in open-world survival games like Minecraft44 and Crafter45.  

● Support the synthesis of chemicals by searching the web for relevant information and 
writing code to operate robotic hardware.46 

Many leading AI researchers and companies explicitly aim to build AI agents whose general 
capabilities would exceed those of humans.47 

Frontier AI could be more capable than evaluations indicate  

Researchers and users frequently uncover surprising capabilities for frontier AI models which 
pre-deployment evaluation did not uncover.48  

The capabilities of frontier AI models are likely to be further enhanced in many ways in the 
future, such as through: 

● Better prompts.49 The way that a question is phrased can significantly affect a frontier 
AI system’s response. For example, encouraging a model to think through its answer 
“step by step” significantly improves performance on maths and logic problems.50 

● Better tools. Frontier AI models can be trained to use tools like web browsers, 
calculators, knowledge databases, or robot actuators, and can competently use entirely 
new tools when provided text instructions on how to use them51. These tools and 
resources can significantly improve capabilities at relevant tasks or endow them with 
entirely novel capabilities, such as the ability to directly manipulate physical systems.52  

● Better scaffolds. Scaffolding software programs (“scaffolds”) structure the information 
flow of an AI model, leaving the model itself unchanged.53 Better scaffolds could, for 
example, help an AI agent self-correct when they have made a mistake,54 or improve 
their long-term memory. 

● New fine-tuning data. Fine-tuning on high-quality data can significantly improve AI 
capabilities in a given domain, at a tiny fraction of the cost of pre-training. 
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● Team-work between AI systems. Multiple different AI systems, including both narrow 
models and more general models, could collaborate to perform tasks.55  

Unlike pre-training, these improvements do not require significant computational resources and 
so a wide range of actors could cheaply improve frontier AI capabilities, provided they 
have easy access to pre-trained models. 

Limitations of frontier AI 

There is ongoing debate about the limitations of frontier AI systems, including whether their 
performance is driven more by general reasoning or by a combination of memorisation and 
following basic heuristics56. 

General reasoning abilities are evidenced by frontier AI producing remarkably apt responses to 
novel questions, For example, PaLM’s ability to understand the humour behind jokes which 
had never before been told.57  

However, there is also evidence that models rely heavily on memorisation and basic heuristics: 

● LLMs perform less well when a question is reworded to make it different from text that is 
in their training data.58  

● LLMs often solve complex problems using overly-simple heuristics that would fail to 
solve other similar problems.59  

● There are instances where LLMs fail to apply information from their training data in very 
basic ways.60 

Beyond an uncertain ability to generalise to new contexts, other key limitations of current 
frontier AI models include: 

● Hallucinations: AI systems regularly produce plausible yet incorrect answers and state 
these answers with high confidence.61 This might be addressed by systems using 
knowledge repositories,62 improved fine-tuning, or new methods for teaching the model 
what it does and does not know.  

● Coherence over extended durations: AI models are less reliable on tasks that require 
long-term planning or taking a large number of sequential steps (e.g. writing a novel).63 
This is partially due to their restricted context length and the scarcity of long-duration 
task training data.64 These limitations might be addressed by algorithmic innovations to 
give AI a source of long-term memory, creating more data on long-horizon tasks, better 
scaffolds that help AI agents spot and correct their own errors,65 or improved techniques 
for breaking long tasks into multiple small steps66. 

● Lack of detailed context: Many tasks in the real economy require extensive context 
about a particular company, project, or code-base. Current frontier systems are 
generically competent, but lack this specific context and cannot learn it from the 
available data. This might be addressed by access to additional private data sources, 
new data generation techniques, more data-efficient fine-tuning techniques, new 
“model-based” learning methods,67 or simply by increasing the compute and data used 
to develop the system. 
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It remains uncertain how these limitations will evolve. Some argue that these limitations will 
permanently limit frontier AI development in certain applications. On the other hand, recent 
progress in AI has greatly surpassed expert predictions in many domains, while 
underperforming in other areas.68 

How might frontier AI capabilities improve 
in the future? 
Recent AI progress has been rapid and will likely continue. This is due to predictable 
improvements in the performance of frontier AI models when developed with more 
compute, more data and better algorithms. Unexpected new capabilities may also 
emerge. Advanced general-purpose AI agents could be developed in the not too distant 
future – although this is a subject of debate, especially regarding the timing. 

Recent AI progress has been rapid 

The recent pace of AI progress has surprised forecasters and machine learning experts alike.69 
Problems that frustrated the AI community for decades have rapidly fallen to ever-more-
capable models.  

Figure 3. An overview of notable AI achievements from 2022-2023 across diverse 
domains, Epoch 2023 

Recent advances in frontier AI are the continuation of a longer-running trend: the rapid 
progress since 2012 in its parent field of deep learning across computer vision, game playing, 
and language modelling.70 In 2014, AI could only generate simple, blurry images. However, by 
2022, models like DALL-E 2 and Imagen could generate high-quality, creative images from text 
prompts (see figure 4a). Substantial advances were seen in the shift from GPT-3.5 to GPT-4, 
released just months apart. For example, on calculus questions GPT-3.5 scored below most 
humans, but GPT-4 improved significantly and scored around the median human level.  
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Figure 4a. Timeline of images generated 
by image models from Our World in Data

Figure 4b. Completions from GPT-2 to 
GPT-4. GPT-4 completion from Bubeck 
et al., 2023. 

Recent progress was driven by systematic trends in compute, 
data and algorithms 

A standard analysis of progress in AI capabilities considers three key factors: computing 
power, data, and improvements in the underlying algorithms.71  

Computing power (“compute” for short) refers to the number of operations that are performed, 
usually in the context of training AI systems. The amount of compute used during training has 
expanded over the past decade by a factor of 55 million: from systems trained by single 
researchers at the cost of a few pounds, to systems trained on multiple GPU clusters by 
companies at the cost of many millions of pounds.72 This trend is mostly the result of spending 
more money on compute, as well as the result of significant technological improvements to 
computing hardware.73 

Training algorithms have also improved substantially over the past decade, so that today’s 
machine learning models can achieve the same performance with less compute and data than 
those of the past. Research suggests that better algorithms roughly halved compute 
requirements each year for vision and language models.74 Massive amounts of data have also 
played an important role in recent AI progress. AI developers have tapped into readily available 
datasets scraped from the internet, with the amount of training data used growing at over 50% 
per year.75 

Enhancements applied after initial training have further augmented system capabilities. These 
post-training enhancements include improved data for fine-tuning,76 equipping models with 
tools like calculators,77 web browsers78, and better prompts.79 Post-training enhancements can 
significantly improve performance in specific domains at a small fraction of the original training 
cost,80 and so a wide range of actors can use them to improve frontier AI capabilities.  
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Scaling laws: performance improves predictably with increased 
compute and data 

The key driver for the increase in compute and data is that frontier AI model performance 
predictably improves with model scale. Researchers have discovered so-called “scaling 
laws”,81 which can predict, given a particular amount of compute and data, a frontier AI model’s 
performance at the specific task of predicting the next word (the task used to train these 
models).  

Figure 5a. Training error reduces 
predictably with compute across a 
broad range of empirically-studied 
training runs. Figure from Hoffmann et 
al, 2022.  

 
Figure 5b. Exponential increase in 
training compute for OpenAI's GPT 
models from 2018 to 2023.82 Epoch.  

Next word prediction has continually improved over time as developers have scaled their 
training compute and data. It is uncertain how long this trend will continue, but it has held over 
many orders of magnitude of compute and dataset size increases without breaking.  

While the next word prediction task is not itself what we care about, it is used as an indicator of 
model capabilities since it is strongly correlated with performance in many downstream tasks.83 
For example, if a model is extremely good at next word prediction on code and mathematics 
data, it is more likely to be good at solving programming puzzles and mathematics problems.  
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Figure 6. Performance on broad benchmarks such as BIG-Bench and MMLU 
improves with more training compute. This figure was taken from Owen 2023. 

Although average performance, aggregated across many downstream tasks, improves fairly 
predictably with scale, it is much harder to predict performance improvements at specific real-
world problems. The development of frontier AI systems has involved many examples of 
surprising capabilities, unanticipated by model developers before training and often only 
discovered by users after deployment. There are documented examples of unexpected 
capabilities where models were not showing any signs of improvement before a certain scale 
and then rapidly improved suddenly84 – though the interpretation of these examples is 
contested.85 In any case, we cannot currently reliably predict ahead of time which specific new 
capabilities a frontier AI model will gain when it is trained with more compute and data. 
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Figure 7. Individual capabilities may appear suddenly or unexpectedly as the 
compute used to develop AI increases. Figure from Wei et al, 2022. 

Rapid AI progress is likely to continue for several years 

The recent improvement in AI capabilities is not the result of a single breakthrough but rather a 
concerted advancement across multiple dimensions, including algorithms, spending on 
compute, improvements in hardware performance, and post-training enhancements. All of 
these factors can independently enhance progress, meaning that challenges or limits in any 
single one of them is unlikely to stop progress in AI as a whole. 

Investments in AI will continue to grow rapidly over the next few years.86 Leading AI developers 
like Anthropic and OpenAI have garnered significant funding and established cloud 
partnerships, in large part to support further scaling of compute.87 Hardware manufacturers like 
TSMC are reportedly expanding their production of AI chips, again suggesting that more 
computational resources will be available for training.88 

However, sustaining the rate of recent rapid scale up of compute and data past 2030 is likely to 
require new approaches. Developers would have to i) spend hundreds of billions of pounds on 
compute for a single training run89 and ii) find ways to generate sufficient high-quality data 
going beyond what is readily available on the internet.90 Having said this, improvements in 
algorithmic efficiency may reduce compute needs, such that compute might not be a binding 
constraint.  

Novel research directions that could further accelerate frontier AI progress include: 
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● Enriched training data – e.g. expert human feedback, AI generated synthetic feedback,
and data pruning – may increase data efficiency, improve capabilities on challenging
scientific problems, and reduce costs.91

● Multimodal training, which may offer increasing synergies between the different
modalities and the potential for frontier AI to process and produce text, images, audio
and video.92

● Training frontier AI to act as an autonomous agent that navigates the internet as a
human and performs long sequences of actions, using the above techniques to
generate cheap data for learning these skills.93

Importantly, there is also the prospect that AI systems themselves accelerate AI progress. 
Frontier AI is already helping AI researchers to create synthetic data for training,94 write new 
code,95 and even improve model architectures.96 While AI research is currently mostly non-
automated, increased automation by future frontier AI systems may accelerate the pace of AI 
progress significantly.97 This could mean we develop very capable AI systems sooner that we 
would otherwise expect, and have less time to prepare for the associated risks. 

Advanced general-purpose AI agents might be developed in 
the future 

Recent progress in AI has prompted discussion regarding the potential near-term development 
of advanced general-purpose, highly autonomous AI agents that can perform most 
economically valuable tasks better than human experts. 

Several leading AI companies explicitly aim to build such systems,98 and believe that they may 
succeed this decade.99 Some surveys of published machine learning researchers have found 
the median respondent predicts a greater than 10% chance of human-level machine 
intelligence by 2035, though these surveys have been critiqued.100 Attempts at forecasting the 
development of human-level machine intelligence based on historic trends in computing costs 
and growth in AI research inputs sometimes conclude that there is a greater than 10% 
probability by 2035.101 

However, there is a large amount of uncertainty about the timeline to these capabilities. Many, 
if not most, other researchers do not expect AI systems that generally match human 
performance within twenty years and do not agree that it is a concern.102 Historically, and 
frequently, there have been predictions of imminent AI breakthroughs that did not come to 
pass.103 

What risks do frontier AI present? 
We must understand the risks associated with frontier AI to safely access and seize the 
opportunities and benefits the technology brings.  

In this section, we first review several cross-cutting risk factors – technical and societal 
conditions that could aggravate a number of particular risks. We then discuss individual risks 
under three headings: societal harms, misuse and loss of control.  
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We do not comprehensively cover all important AI risks and only highlight some salient 
examples. 

Cross cutting risk factors 

There are many long-standing technical challenges104 to building safe AI systems, 
evaluating whether they are safe, and understanding how they make decisions. They 
exhibit unexpected failures and there are barriers to monitoring their use.  

Adequate safety standards have not yet been established for AI development, there 
may be insufficient economic incentives for AI developers to invest in safety measures, 
and significant market concentration might exacerbate various risks.  

It is difficult to design safe frontier models in open-ended domains 
Frontier AI systems operate in open-ended domains, such as free-form dialogue or code 
generation. The complexity of open-ended domains makes it difficult to design safe systems or 
exhaustively evaluate all downstream use cases. While we can restrict the behavioural 
repertoire of an AI (for instance to text outputs from a limited vocabulary), this limits 
performance so may be uncompetitive and AI systems often use their behavioural repertoire in 
unanticipated ways, realising unexpected -- and potentially dangerous -- outcomes.105  

In general, frontier AI systems are not robust, i.e. they frequently fail in situations sufficiently 
unlike their training data.106 In particular, safeguards to prevent frontier AI models from 
complying with harmful requests (such as designing cyberattacks)107 are not robust, and 
“adversarial” users who aim to bypass these safeguards have succeeded. Simple “jailbreaking” 
approaches, such as prompting the model to respond affirmatively to a request, are often 
sufficient, although more unusual prompts can be more effective.108 AI that processes visual 
inputs may be especially vulnerable,109 and methods for automatically generating adversarial 
prompts may worsen the situation.110 Though AI robustness is a well-developed research field 
with thousands of published papers, in practice, lack of robustness is still an unsolved problem 
that affects all kinds of machine learning models, including language models,111 image 
models,112 and other AI agents.113  

Preventing AI systems from pursuing unintended goals is an unsolved research problem, 
known as the “specification problem”. It is generally not possible to completely express 
complex behaviours, concepts, or goals directly in code, and so teaching AI which behaviours 
are desirable or undesirable must be done indirectly and can only be learned approximately; 
giving rise to potential specification and assurance gaps.114 Current approaches to solving the 
specification problem involve training AI to behave in ways that score highly according to some 
metrics derived from data about human preferences.115 Existing methods suffer from known 
limitations, and may not scale to highly advanced AI systems.116 In addition, even if a solution 
to the technical specification problem was found, there are further social and technical 
challenges given the wide variation in people’s values.117 

Evaluating the safety of frontier AI systems is an open challenge 

Safety testing and evaluation of frontier AI is ad-hoc, with no established standards, scientific 
grounding or engineering best practices. Broadly, we can use techniques like interpretability to 
try to inspect a model’s inner functioning to understand whether it will behave as intended; or, 
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we can try to evaluate a model’s behaviour by running experiments to see what outputs it gives 
in response to certain inputs. Both of these approaches have several limitations. 

When building software, developers can precisely describe instructions for specific behaviours. 
This enables them to predict the system’s behaviour and understand its limitations. By 
contrast, frontier AI developers merely specify a learning process. The system produced by 
that process is not interpretable even to the system’s developers: hundreds of billions of 
parameters (numbers), which do not map cleanly to human-interpretable concepts.118 For this 
reason, frontier AI systems are “black boxes” to their developers, who can observe their 
behaviour but have little understanding of the internal mechanisms that produce them. This 
lack of mechanistic understanding makes it challenging to know how to change, much less 
how to predict, the behaviour of an AI system.119 

The nascent field of mechanistic interpretability aims to understand a model’s inner functioning, 
not just the behaviour in response to individual inputs. However, the field has so far only 
managed to explain a small fraction of behaviours in toy models much smaller and less 
capable than those used in practice.120 Alternative techniques like saliency maps, which aim to 
identify which parts of input are salient to an AI model, have been shown to be unreliable or 
misleading.121 Other approaches provide developers with an incomplete understanding of the 
model.122 

Because of the above interpretability issues, many have turned to behavioural evaluations 
which simply involve observing the model’s response to certain inputs. However, such 
behavioural evaluations cannot exhaustively explore all possible vulnerabilities, and reliably 
extrapolating from those that have been explored is an open problem.123 Due to their lack of 
robustness, frontier AI systems are likely to exhibit novel failure modes during deployment,124 
as they encounter novel situations not covered by previous evaluations.125  

Formal verification techniques can prove the correctness of software (subject to assumptions).  
Some degree of robustness to small modifications to the input can be proven for AI systems 
using such techniques.126 But in general, there may be many differences in an input that 
humans consider unimportant but that have major effects on an AI systems’ behaviour, and 
vice versa.127 So using formal verification to ensure expected behaviour would require better 
methods of specifying what aspects of an input humans consider behaviourally (ir)relevant. 

It may be difficult to track how frontier AI systems are deployed or used 

Tracking the use of frontier AI models is important for monitoring misuse, noticing malfunctions 
or establishing liability for harms caused in part by frontier AI models. 

Two common forms of deployment are: (i) an “open release” of the entire model, (ii) releasing a 
limited Application Programming Interface (API)128 by which users can interact with the model 
in a particular way, e.g. receiving responses to user inputs.129,130  Either mechanism opens up 
the ability for third parties to develop applications using the frontier models, potentially 
enhancing model capabilities. 

Open release (often referred to as open source) makes a model permanently available for 
other actors to copy, fine-tune, and use as they see fit. It is currently relatively cheap to fine-
tune a model to enhance its capabilities or remove any safety features that have been put in 
place.131 This could be misused,132 but is also essential for innovation and enabling broader 
research into both AI safety and AI for good.  
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API access is reversible and allows a deployer to maintain control over a model and monitor its 
use. However, some of the model’s capabilities might still be extracted.133 As an example, 
responses from GPT-3.5 were used to train the open release Alpaca model, which does not 
have the same safety features as GPT-3.5.134 Although open release generally has fewer 
reliable guardrails in place, APIs may also require less skill and resources to make use of, 
potentially lowering the bar for misuse. 

Frontier AI systems, especially open release models, could also be used privately, and such 
use would likely remain undetected.  

Frontier AI models embody extremely valuable intellectual property. Even if frontier developers 
intend to limit deployment, the information security practices of frontier developers will 
influence the likelihood that the full model is exfiltrated by employees or external actors. Much 
more investment in security would be needed for frontier AI developers to defend against 
attacks from the most well-resourced actors.135 After exfiltration, attackers might then be able 
to use and modify the model without detection. 

Unintended behaviours or dangerous capabilities might also be introduced in models via 
supply chain vulnerabilities such as training data poisoning or vulnerabilities in the hardware or 
software used to train or operate frontier models. For example, recent research has 
demonstrated that it is possible to automatically construct adversarial attacks on LLMs, that 
cause some systems to ignore their safeguards and obey user commands even if doing so 
produces harmful content.136 At all levels of the supply chain, from hardware, to data ingestion, 
training, deployment and monitoring, vulnerabilities exist that could be deliberately exploited, or 
accidentally neglected. 

AI safety standards have not yet been established 

Researchers have argued that the breadth of potential use-cases for foundation models makes 
them a general-purpose technology, similar to electricity.137 These industries can create 
systemic risks and are sometimes subject to dedicated regulators and have extensive 
standards, codes of practice and certification regimes.138 Some researchers have argued that 
the AI industry should draw on practices observed in highly safety focussed industries such as 
healthcare, aviation, and nuclear engineering.139 

But AI safety standards are still at an early stage. Work by standard development 
organisations such as IEEE, ISO/IEC and CEN/ CENELEC is still ongoing in many areas.140 
Similarly, while external assurance of models prior to and after deployment has been identified 
as an important mechanism for managing AI risks.141 There is currently little government 
capacity for this and more work is required to build a mature ecosystem.142 One challenge is 
that systems are often developed in one country and then deployed in another, enhancing the 
need for global coordination.143 

Insufficient incentives for AI developers to invest into risk mitigation measures 

Market failures are observed in many global challenges, such as climate change. When a 
company produces carbon emissions, the harms are not only incurred by them, but by the 
world. They do not incur the full cost, so there is an externality.144 As a consequence, the 
company lacks sufficient incentive to reduce the harm. 

Similarly, safe AI development may be hindered by market failure among AI developers and 
collective action problems among countries because many of the harms are incurred by 
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society as a whole.145 Individual companies may not be sufficiently incentivised to address all 
the potential harms of their systems. In recent years there has been an intense competition 
between AI developers to build products quickly.146 Competition on AI has raised concern 
about potential “race to the bottom” scenarios, where actors compete to rapidly develop AI 
systems and under-invest in safety measures.147 In such scenarios, it could be challenging 
even for AI developers to commit unilaterally to stringent safety standards, lest their 
commitments put them at a competitive disadvantage.148 The risks from this “race” dynamic will 
be exacerbated if it is technologically feasible to maintain or even accelerate the recent rapid 
pace of AI progress. 

There may be significant concentration of market power in AI 

Researchers and regulators have begun to explore the likelihood of high concentration of 
market power among frontier AI developers.149 The high upfront costs associated with training 
frontier AI models appear to create economies of scale and significant barriers to entry for 
smaller players. Established leaders benefit from better access to the cutting-edge computing 
resources and specialised talent required to develop frontier AI models. In addition, an early 
lead might grow over time, e.g. because the leader gathers data from their users they can use 
in training or because the leader uses their AI systems to accelerate their own progress.150  

A considerable concentration of market power could weaken competition, reducing innovation 
and consumer choice. A loss of consumer choice also means users have less say in the use of 
their personal data, potential behavioural manipulation, surveillance, and an erosion of 
democratic norms.151  

Societal harms 

There is a wide range of potential societal harms arising from the use of AI.152 This has 
sparked a debate around the ethics of AI, with a wide proliferation of ethical frameworks 
and principles.153 We focus here on only a few societal harms, but this is not to 
downplay the importance of others.  

Degradation of the information environment 

Frontier AI can cheaply generate realistic content which can falsely portray people and events. 
There is potential risk of compromised decision-making by individuals and institutions who rely 
on inaccurate or misleading publicly available information, as well as lower overall trust in true 
information. 

Information abundance leads to information saturation – people turn off and ignore information, 
including whether it is verified or not. A study by Ofcom reveals that 30% of UK adults who go 
online are unsure about, or do not even consider, the truthfulness of information.154 The 
attention economy means on the supply side, trade-offs are made between the truth orientation 
of information and attention-grabbing strategies.155 Additionally, frontier AI can be known for its 
tendency to generate false information, sometimes called ‘hallucinations’, without users being 
aware; meaning they could spread it unintentionally.156 Meanwhile, adults and children 
overestimate their ability to spot misinformation.157 Against this backdrop, the risk of frontier AI 
degrading the information environment is significant. 

Impacts will be felt first where the truth is critical, news reporting, legal processes, and public 
safety.158 There are examples already of outlets concerned that real images and videos are 
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increasingly likely to be regarded as unreliable given they may have been AI generated.159 
There have been examples of AI hallucinating dangerous information, inadvertently radicalising 
individuals, and nudging users towards harmful actions as an unintended consequence of 
model design.160 Long-term consequences, particularly as frontier AI becomes more 
embedded in mainstream applications and more accessible to children and vulnerable people, 
are highly uncertain. 

Frontier AI may also result in indirect consequences that further degrade the information 
environment. For example, AI-generated functionalities and content are increasingly being 
integrated into search engines, which may lower traffic to news articles, harming the business 
models of news organisations that play an important role in debunking misinformation.161 

Many of the harms arising from this degradation of the information environment would not be 
novel to AI, but the use of frontier AI may accelerate existing trends. Some examples of 
potential harm caused by frontier AI degrading the information environment include: 

● Encouraging individuals to make dangerous decisions, for example through suggesting 
toxic substances as medicine. 

● Exposing young or vulnerable people to high-risk information and age-restricted content, 
or significantly shaping their information diet.  

● Promoting skewed or radical views as a result of model features — i.e. sycophancy162 
— that could lead to criminal or other harmful behaviours.  

● Reducing public trust in true information, institutions, and civic processes such as 
elections. 

● Contributing to systemic biases in online media as a result of bias in AI-generated 
content.163 

● Inciting violence.164 

● Exacerbating public health crises.165 

● Increase political divisiveness, through malicious and non-malicious mechanisms.166 

On the other hand, some have been using frontier AI to try to improve the information 
environment. For example, frontier AI chat assistants have been used to improve 
conversations about divisive topics, including political divisiveness.167  

Authentication solutions (e.g. ‘watermarking’) are under development,168 but should not be 
considered fully reliable yet as there are techniques that may allow users to escape 
detection.169  Watermarking, like other solutions, may introduce new risks, that must be 
weighed up in balance with those which they mitigate. For example, watermarking may require 
new verification institutions or standards bodies with the major players involved, which could 
lead to a reinforcement or further concentration of power. 

Labour market disruption 

Economists view disruption and displacement in labour markets as one of the risks through 
which rapid advances in AI may affect citizens and reduce social welfare.170 Technological 
change can also bring about improvements to working conditions, historically reducing the 
demand for human labour in more dangerous occupations.171 While the impacts on labour 
markets remain uncertain and shapeable,172 economists have identified potential risks and 
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opportunities from AI to labour markets. AI has already begun to reduce the administrative 
burden of some roles and has the potential to accelerate this considerably including in areas 
such as teaching and medicine. 

Throughout history, technological progress has always resulted in some level of change within 
the labour market. Introducing new technologies often causes temporary disruption as some 
workers transition within or between jobs.173 For example, in 1940, 60% of job categories today 
didn’t exist.174 Studies suggest that the sectors with greatest exposure to labour market 
disruption from current AI capabilities are IT, financial, legal while education, manufacturing, 
agriculture and mining are least exposed.175 On the other hand, we may return to pre-1980 
trends in which worker displacement from automation was roughly offset by creation of new 
roles.176 

Figure 8. Share of industry employment by relative exposure to automation by AI. 
Taken from The Potentially Large Effects of Artificial Intelligence on Economic Growth, 
Goldman Sachs, 2023. 

Bias, Fairness and Representational Harms 

Frontier AI models can contain and magnify biases ingrained in the data they are trained on, 
reflecting societal and historical inequalities and stereotypes.177 These biases, often subtle and 
deeply embedded, compromise the equitable and ethical use of AI systems, making it difficult 
for AI to improve fairness in decisions.178 Removing attributes like race and gender from 
training data has generally proven ineffective as a remedy for algorithmic bias, as models can 
infer these attributes from other information such as names, locations, and other seemingly 
unrelated factors.179 

Frontier AI models are primarily trained on textual sources, including digitised books and online 
text. Consequently, they are exposed to derogatory language and stereotypes that target 
marginalised groups. The training data often mirrors historical patterns of systemic injustice, 
inequalities in the contexts from which the data is sourced,180 or it reflects dominant cultures 
(consider high internet-access regions) and lack data on certain worldviews, cultures and 
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languages.181 Frontier AI systems have been found to not only replicate but also to perpetuate 
the biases ingrained in their training data.182  

When bias manifests in AI outputs, it can do so in subtle and complex ways.183 Because 
frontier models lack transparency, it becomes a formidable task to pinpoint the exact 
mechanisms through which bias has been introduced into their decisions.184 The complex 
nature of bias makes it challenging to identify and rectify instances of unfairness.185 Individuals 
may therefore question whether their treatment by an AI system was influenced by their 
gender, race, or other personal characteristics – without insight into the model's inner 
workings, it is difficult to find answers. 

As frontier model capabilities develop, and AI-generated content could come to represent a 
greater proportion of content available online,186 there is potential for a reinforcing loop 
whereby future AI systems are trained on increasingly biased AI-generated content. 

AI technologies are increasingly integrated into systems responsible for consequential 
decision-making, including in sectors where fairness is paramount.187 Frontier AI technologies 
have predictable risks when deployed in these settings.188 Bias in AI systems is particularly 
concerning in high-stakes real-world domains like job recruitment, financial lending, and 
healthcare, where biased decisions can have profound consequences.189 However, there may 
be cases where taking such factors into account is legitimate, e.g., in some healthcare settings 
where doses of medication may vary with age; this makes identification of harmful biases even 
more difficult.190 Nonetheless, it is possible to mitigate bias, , both at the point of curating the 
training data and during or after training, when evaluating to what extent outputs are biased.191 

It is worth noting that discrimination due to model bias can be seen as a kind of alignment 
problem: AI systems are behaving in ways that its developers did not intend. This highlights the 
importance of investing in AI alignment and AI ethics research. 

Misuse risks 

Frontier AI may help bad actors to perform cyberattacks, run disinformation campaigns 
and design biological or chemical weapons. Frontier AI will almost certainly continue to 
lower the barriers to entry for less sophisticated threat actors.192 We focus here on only 
a few important misuse risks, but this is not to downplay the importance of others.  

Dual Use Science risks 

Frontier AI systems have the potential to accelerate advances in the life sciences, from training 
new scientists to enabling faster scientific workflows. While these capabilities will have 
tremendous beneficial applications, there is a risk that they can be used for malicious 
purposes, such as for the development of biological or chemical weapons. Experts are in 
disagreement about the magnitude of risk that AI advances will pose for biosecurity.193 

Current capabilities  

Frontier AI models can provide user-tailored scientific knowledge and instructions for 
laboratory work which can potentially be exploited for malicious purposes.194 Studies have 
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shown that systems may provide instruction on how to acquire biological and chemical 
materials.195  

Existing frontier AI models have some ability to design and troubleshoot laboratory 
experiments.196 These capabilities can be enhanced when equipping LLMs with the ability to 
access tools such as web search and specialised computational tools.197 When connected to 
laboratory robots or cloud labs,198 LLMs can directly instruct these platforms to carry out 
experiments.199 

While our focus is on frontier AI, it is important to note that frontier capabilities can be used in 
conjunction with the capabilities of narrower biological AI design tools,200 such as 
AlphaFold2201 and RFDiffusion.202 Narrower AI tools can already generate novel proteins with 
single simple functions and support the engineering of biological agents with combinations of 
desired properties.203 Biological design tools are often open sourced which makes 
implementing safeguards challenging.204 Frontier AI can instruct specialised AI systems205 and 
make them more accessible, and in the future may itself feature similar abilities.206 

Projected capabilities  

Future frontier AI will likely feature even greater content-level knowledge, reasoning abilities, 
and capacity to formulate complex plans. Additionally, some expect that future capabilities will 
make experimental instructions more accessible, including through the ability to generate 
images and video, and may make science systems more automated.207 However, it remains 
unclear whether frontier AI systems add additional capability over just using existing tools such 
as web search, as studies do not yet control for this. 

Potential Risks and Impacts 

While the impact of current systems on biological and chemical security risks is still limited, 
anticipated near-future capabilities have the potential to increase dual-use science capabilities. 
Current AI systems in particular pose risks where current biological and chemical supply 
chains already feature vulnerabilities. Significant barriers remain for novel laboratory work.208 
Some of these barriers could be reduced by near-future advances in frontier AI and associated 
advances in laboratory automation. 

Cyber 

As the programming abilities of AI systems continue to expand, frontier AI is likely to 
significantly exacerbate existing cyber risks. Most notably, AI systems can be used by 
potentially anyone to create faster paced, more effective and larger scale cyber intrusion via 
tailored phishing methods or replicating malware. Frontier AI’s effect on the overall balance 
between cyber offence and defence is uncertain, as these tools also have many applications in 
improving the cybersecurity of systems and defenders are mobilising significant resources to 
utilise frontier AI for defensive purposes.209 In the future, we may see AI systems both 
conducting and defending against cyberattacks with reduced human oversight at each step. 

Current Cyber Capabilities of Frontier AI 

Frontier AI can upskill threat actors by advising on attack techniques, critiquing cyberattack 
plans, or finding relevant information about a target.210 Some models have measures to avoid 
supporting cyber criminals, but these are frequently circumvented through ‘jailbreaks’.211 The 
uplift provided by current models is limited: they often hallucinate or otherwise give unhelpful 
answers. As the models improve, this uplift is expected to increase. 
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Frontier AI systems are saving skilled threat actors time. For example, AI systems have helped 
create computer viruses that change over time to avoid detection, which previously would have 
required significant time from experts.212 Users on underground hacking forums have claimed 
to be using tools like ChatGPT to help them recreate malware quickly in many different 
programming languages.213 

AI improves the effectiveness of existing techniques. AI-enhanced social engineering is 
already being used by cybercriminals to conduct scams and steal login credentials, with 
systems that can gather intelligence on targets,214 impersonate voices of trusted contacts,215 
and generate persuasive spear phishing messages.216 The risk is significant given most cyber 
attackers use social engineering to gain access to the victim organisation's networks.217 

AI systems create new attack techniques. For example, they can power highly targeted 
malware to act benignly until it detects the intended victim and only then act maliciously.218 
This makes it harder for antivirus software to detect the attack. 

Projected Capabilities 

Future frontier AI developments will increase the scale and speed of attacks. Current tactics 
often require human effort which could be replaced by more advanced AI systems, leading to 
greater scalability of potent cyberattacks. Additionally, AI systems will be able to perform 
actions more quickly than humans, making human-based defence less effective.  

Frontier AI developments will continue to enhance existing attack techniques. For instance, 
information gathering and targeting is highly likely to become more effective as AI systems are 
able to be able to process more information simultaneously,219 and more accurate as models' 
reasoning capabilities improve,220 or they are augmented with other tools.221 

Frontier AI developments may result in systems that can act on the internet to perform their 
own cyberattacks autonomously.222 Behaviours such as autonomous replication and self-
improving exploit generation are of particular concern, and some work has started to look at 
how good today’s models are at these behaviours.223 

Cyber defence using frontier AI will likely mitigate some of this risk. In particular, frontier AI is 
highly likely to help with anomaly detection, security scanning, and mitigating insider threats.224 
However, this defence capability may lag behind offence in the short term, since AI-assisted 
vulnerability repair and detection may rely on significantly more capable frontier AI systems 
than currently exist to be effective.225 

Frontier AI also introduces security vulnerabilities when it is integrated into broader systems. 
These new digital vulnerabilities – for example corrupting training data (‘data poisoning’), 
hijacking model output (‘prompt injection’), and extracting sensitive training data (‘model 
inversion’) – will require new and bespoke cybersecurity responses.226 

Potential Risks and Impact 

Critical infrastructure like energy,227 transportation,228 healthcare,229 and finance,230 are already 
frequently targeted by cyberattacks today.231 This can result in the theft of intellectual property, 
direct theft of funds, data destruction or ransom, privacy breaches, and disruption to operations 
across the private, public and third sectors. 

Cyberattacks also often cause significant harm to the public, including physical,232 monetary, 
mental and emotional harms, abuse,233 discrimination, denial of access to key services and 
loss of control over personal data.234 In addition to direct and visible impacts, these harms can 
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lead to erosion of trust in digital systems, limiting people’s access to services, preventing 
responsible innovation, and reducing democratic engagement. 

Frontier AI might increase the harms in the above categories and may also create novel 
harms, such as emotional distress caused by fake kidnapping or sextortion scams.235 As 
frontier AI continues to be deployed and used in cybersecurity,236 it is uncertain where the 
balance between offence and defence capabilities will end up as frontier AI development 
continues. 

Disinformation and Influence Operations 

In addition to unintentional degradation of the information environment (discussed in the 
section on Societal Harms above), frontier AI can be misused to deliberately spread false 
information to create disruption, persuade people on political issues, or cause other forms of 
harm or damage.  Although current financial costs for human-generated disinformation remain 
low,237 there is already some evidence that cheap, realistic content generated by frontier AI 
systems is already aiding disinformation campaigns.238   

Although many emphasise the forms this could take are unpredictable,239 improved capabilities 
could stem from several factors. First, the accessibility of cheap, high quality content will lower 
the price and barrier to entry to creating a disinformation campaign.240  More actors producing 
more disinformation could increase the likelihood of high-impact events. 

Additionally, AI-generated deepfakes are becoming extremely realistic, meaning they often 
cannot be identified by individuals or even institutions with advanced detection technologies.241 
Even where AI-generated content is not universally believed, its strategic deployment may 
cause disruption, confusion, and loss of trust.  

Frontier AI can generate hyper-targeted content with unprecedented scale and 
sophistication.242 This could lead to “personalised” disinformation, where bespoke messages 
are targeted at individuals rather than larger groups and are therefore more persuasive.243 
Furthermore, one should expect that as AI-driven personalised disinformation campaigns 
unfold, these AIs will be able to learn from millions of interactions and become better at 
influencing and manipulating humans, possibly even becoming better than humans at this.244 
In doing so, they may utilise new manipulation tactics against which we are not prepared 
because defences have been developed through the influencing attempts of other humans.245 

Disinformation detection approaches, such as watermarking, discussed above, have been 
proposed and trialed but still face challenges in effectively detecting false content.246 Whilst 
improving media literacy is crucial, it is hard given that the quality of outputs from frontier AI is 
in many cases indistinguishable even to experts. This is a trend expected to increase with 
model size – in the GPT-3 paper, authors experiments found humans were better at 
distinguishing AI generated text for smaller models, but for larger models they could only tell 
the difference about 52% of the time, barely above random chance.247 

Loss of control 

Humans may increasingly hand over control of important decisions to AI systems, due 
to economic and geopolitical incentives. Some experts are concerned that future 
advanced AI systems will seek to increase their own influence and reduce human 
control, with potentially catastrophic consequences - although this is contested. 
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There are broadly two factors that could contribute to loss of control:  

● Humans increasingly hand over control of important decisions to AIs. It becomes 
increasingly difficult for humans to take back control.  

● AI systems actively seek to increase their own influence and reduce human control.  

These are not mutually exclusive – if humans have already handed over significant control to 
AI systems, it will likely be easier for them to actively gain more influence.  

The likelihood of these risks remains controversial, with many experts thinking the likelihood is 
very low and some arguing a focus on risk distracts from present harms.248 However, many 
experts are concerned that losing control of advanced general-purpose AI systems is a real 
possibility and that loss of control could be permanent and catastrophic.249  

Humans might increasingly hand over control to misaligned AI systems  

Organisations around the world are already deploying misaligned AI systems that are causing 
harm in unexpected ways.250 Recommendation algorithms increase the consumption of 
extremist content.251 Medical algorithms have been known to misdiagnose US patients,252 and 
recommend incorrect prescriptions.253 Still, we hand over more control to them, often because 
they are still as - or more - effective than human decision making, or because they are 
cheaper.  

As AI systems become increasingly capable and autonomous, the economic and competitive 
incentives to deploy them will grow accordingly.254 Surveys have found that a large number of 
users overestimate the reliability of generative AI systems.255 Known biases can lead 
consumers to over rely on AI applications, including automation bias,256 confirmation bias,257 
and anthropomorphism.258 These factors could lead to overreliance on autonomous AI systems 
that perform increasingly wide-ranging and critical tasks,259 even if there is a risk the systems 
are misaligned.260  

As economic production becomes increasingly dependent on AI systems, the cost of 
maintaining or reintroducing human control will increase. Advanced AI systems may alter 
complex systems in ways that are hard to understand,261 making it hard or risky to extract 
them. As a result, AI systems may increasingly steer society in a direction that is at odds with 
its long-term interests, even without any intention by any AI developer for this to happen.262 
Even if many people recognize it happening, it may be difficult to stop (again, the analogy with 
climate change is illustrative). 

Future AI systems might actively reduce human control 

Loss of control could be accelerated if AI systems take actions to increase their own influence 
and reduce human control. This threat model is controversial - experts in AI significantly 
disagree on how likely it is and those who deem it is likely disagree on the timeframe. 

There are two requirements for an AI system to actively reduce human control. First, it must 
have the disposition to take actions that would reduce human control. Second, it must have the 
capabilities to succeed in the face of countermeasures.  
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Future AI systems may have the disposition to reduce human control 
AI systems might be disposed to take actions that increase their own influence and reduce 
human control either because a bad actor instructs them to do so, or because they have 
unintended goals.  

A bad actor could give an AI system an objective that causes it to reduce human control, for 
example a self-preservation objective.263 Some groups may simply want to inflict harm on 
broader society or raise their profile (terrorism).264 There are people who believe, for a variety 
of reasons, that the highly advanced AI systems of the future are natural successors to 
humanity.265 If there are safeguards in place, bad actors might dismantle them.266 

Future advanced AI systems with unintended goals may have the disposition to reduce human 
control. Ensuring that AI systems do not pursue unintended goals, i.e., are not misaligned, is 
an unsolved technical research problem and one that is particularly challenging for highly 
advanced AI systems.267 Many examples of unintended goal-directed behaviour have been 
observed in the lab.268 Many possible unintended goals would be advanced by reducing 
human control.269 Future AI systems may consistently take actions that advance their goals 
and so such a system might, without human instruction, be disposed to take actions that 
reduce human control.270  

Some researchers are sceptical of our ability to assess the plausibility of hypothetical future 
scenarios like this,271 while others believe that this scenario is the default consequence of the 
current trajectory of AI development.272 

If future AI systems were disposed to take actions that reduce human control – either from 
human instruction or from unintended goals – this would only pose a risk if they had 
capabilities that could meaningfully reduce human control. 

Frontier AI shows early signs of capabilities that could be used to reduce human 
control 
Today’s systems have some basic capabilities that could, if rapid AI progress continues, be 
used to increase their own influence and reduce human control. Currently, these capabilities 
are not sufficient to pose significant risks and some argue that we are unlikely to ever see the 
future development of such capabilities.  

At present, frontier AI is confined almost exclusively to the digital realm, thus the most 
immediate risks are likely to arise via manipulating humans or exploiting software 
vulnerabilities. 

Current frontier AI systems have shown early signs of capabilities that could enable: 

● Manipulation,273 for example:
○ One social companion chatbot, based on GPT-3, quickly built trust and intimacy

with users.274 A user of the chatbot described themselves as “happily retired from
human relationships.”275 Such intimacy could potentially be used to manipulate
users.

○ There is evidence that language models tend to respond as though they share
the user’s stated views, and larger models do this more than smaller ones.276 The
ability to predict people’s views and generate text that they will endorse could be
useful for manipulation.

○ Frontier AI models can maintain coherent lies in simple deception games, and
larger models are more persuasive liars.277
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○ In an online study, 1500 participants used an opinionated LLM to help them write 
about a topic. They reported agreeing with the LLM’s opinion on the topic 
considerably more often in a subsequent survey, having changed their opinion to 
align with it.278 

● Cyber offence. Instead of - or in addition to - manipulating humans, AI systems could 
acquire influence by exploiting vulnerabilities in computer systems. Offensive cyber 
capabilities could allow AI systems to gain access to money, computing resources, and 
critical infrastructure. As discussed earlier in this report, frontier AI is already lowering 
the barrier for threat actors and future AI agents may be able to execute cyber attacks 
autonomously. 

● Autonomous replication and adaptation. Controlling AI systems could become much 
harder if they could autonomously persist, replicate, and adapt in cyberspace. No 
current AI systems have this capability, but recent research found that frontier AI agents 
can perform some relevant tasks.279  

As discussed earlier in the report, while some experts believe that highly capable general-
purpose AI agents might be developed soon, others are sceptical it will ever be possible. If this 
does materialise such agents might exceed the capabilities of human experts in domains 
relevant to loss of control, for example political strategy, weapons design, or self-improvement. 
For loss of control to be a catastrophic risk, AI systems would need to be given or gain some 
control over systems with significant impacts, such as military or financial systems. This 
remains a hypothetical and hotly disputed risk. 

Conclusion 
Understanding the capabilities and risks of frontier AI is critical to unlocking its benefits. That is 
why we are being proactive in grappling with the risks, rather than waiting for them to transpire.  

We have seen that recent progress in frontier AI has been fast and impressive. Frontier AI can 
perform a wide variety of tasks, and is being augmented with tools to enhance its capabilities. 
Systematic trends driving recent growth will continue for the next several years. This is due to 
a correlation between more compute, more data and better algorithms, with the performance of 
frontier AI. Progress over the next few years could be fast and surprising in certain ways. We 
cannot predict which specific capabilities will emerge as AI improves. It is possible that 
advanced general-purpose AI agents could be developed in the not too distant future. On the 
other hand, some argue there is a lack of evidence that this will happen anytime soon, or that 
the capabilities we are observing do not trend towards fully general AI.  

There are many opportunities from these developments, and these can only be realised if the 
risks are mitigated. There are several deep, unsolved cross-cutting technical and social risk 
factors that exacerbate the risks. We outlined examples of societal harms, risks of misuse from 
bad actors, and even the possibility of losing control of the technology itself if it becomes 
advanced enough. Some think this is very unlikely, or that if general AI agents did exist they 
would be easy to control. Regardless of likelihood, these risks require further research – they  
and can interact with and amplify each other, and could cause significant harm if not 
addressed. Addressing them, however, will allow us to seize the opportunity, and realize their 
transformative benefits.  
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There may not be sufficient economic incentives to develop advanced AI with sufficient 
guardrails in place, and adequate safety standards have not yet been established for these 
potential future risks. Therefore it is important that we build a shared understanding of the 
risks, so that we are equipped to coordinate effectively on preventing and mitigating them as 
best as possible, and that we continue to work together internationally on frontier AI safety. 

Glossary 
● Autonomous: Capable of operating, taking actions, or making decisions without human

oversight.

● AI agents: Autonomous AI systems that perform multiple sequential steps – sometimes
including actions like browsing the internet, sending emails, or sending instructions to
physical equipment – to try and complete a high-level task or goal.

● AI developers: Organisations in which scientists, engineers, and researchers work on
developing AI models and applications.

● AI risks: The potential negative or harmful outcomes arising from the development or
deployment of AI systems.

● Alignment: the process of ensuring an AI system’s goals and behaviours are in line
with human values and intentions.

● Application Programming Interface (API): a set of rules and protocols that enables
integration and communication between AI systems and other software applications.

● Biological design tools: AI systems trained on biological data that can help design
new proteins or other biological agents.

● Capabilities: The range of tasks or functions that an AI system can perform and the
proficiency with which it can perform them.

● Cloud labs: remotely controlled automatised biochemical laboratories.

● Cognitive tasks: Tasks involving a combination of information processing, memory,
information recall, planning, reasoning, organisation, problem solving, learning, and
goal-oriented decision-making.

● Compute: Computational processing power, including CPUs, GPUs, and other
hardware, used to run AI models and algorithms.

● Computer worm: A type of malicious software that self-replicates and spreads
autonomously across computer networks, exploiting vulnerabilities to infect systems and
potentially causing damage or disruption.

● Disinformation: Deliberately false information spread with the intent to deceive or
mislead.

● Evaluations: systematic assessments of an AI system’s performance, capabilities, or
safety features. These could include benchmarking tests, adversarial testing, or user
feedback amongst other methods.
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● FLOPS: are ‘floating point operations per second’ and measure the computing power of 
a computer 

● Foundation models: Machine learning models trained on very large amounts of data 
that can be adapted to a wide range of tasks.  

● Frontier AI: AI models that can perform a wide variety of tasks and match or exceed 
the capabilities present in today’s most advanced models. 

● Guardrails: pre-defined safety constraints or boundaries set up in an attempt to ensure 
an AI system operates within desired parameters and avoids unintended or harmful 
outcomes. 

● Heuristic: a rule-of-thumb, strategy, or a simplified principle that has been developed to 
solve problems more efficiently when classic methods are too slow or fail to find an 
exact solution.  

● Input [to an AI system]: The data or prompt fed into an AI system, often some text or 
an image, which the AI system processes before producing an output. 

● Large Language Models (LLMs): Machine learning models trained on large datasets 
that can recognise, understand, and generate text and other content.  

● Misinformation: Incorrect or misleading information spread without harmful intent.  

● Misgeneralisation: When an AI system trained to perform well in one context fails to 
perform well in a new context. For instance, if an AI trained mostly on pictures of white 
cats, labels a black cat as a "dog," it is misgeneralising from its training data. 

● Narrow AI: an AI system that performs well on a single task or narrow set of tasks, like 
sentiment analysis or playing Chess. 

● Open ended domains: Scenarios or environments that have a very large set of 
possible states and inputs to an AI system – so large that developers cannot test the 
AI’s behaviour in all possible situations.  

● Prompt: an input to an AI system, often a text-based question or query, that the system 
processes before it produces a response.  

● Scaffold: Software program that structures the information flow, leaving the model itself 
unchanged.   

o For example, a scaffold allows GPT-4 to power the autonomous AI agent 
AutoGPT. The scaffold prompts GPT-4 to: break down a high-level task into sub-
tasks, assign sub-tasks to other copies of itself, save important information to 
memory, and browse the internet. 

● Risk factors: Elements or conditions that can increase downstream risks. For example, 
weak guardrails (risk factor) could enable an actor to misuse an AI system to perform a 
cyber attack (downstream risk). 

● Weights: parameters in a model are akin to adjustable dials in the algorithm, tweaked 
during training to help the model make accurate predictions or decisions based on input 
data, ensuring it learns from patterns and information it has seen before. 
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Annex A – Future Risks of Frontier AI (attached) 

Annex B - Safety and Security risks from Generative AI (attached) 
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