B. J. UNWIN FORE	Y ONSULTA	t	Parsonage Farm, Longdon
Jim Unwin BScFor, MICFor,	rA, CEnv.		Tewkesbury,
Chartered Forester		MEMBER	Glos.
Fellow of the Arboricultural A		2	GL20 6BD
Chartered Environmentalist.	Institute of Chartered Foresters		$\begin{aligned} & \text { UK } \\ & \text { T: } 01684833538 \end{aligned}$
	Registered Consultant	ISA	$\mathrm{M}: \mid$

Site: Land west of Robin Hood Road, Elsenham, Essex, CM22 6EB.

Subject: BS5837 Tree Constraints, Tree Impacts and draft Tree Protection Method Statement for OUTLINE Residential Development.

Surveyor: Owen Hutchison.
Report::
Dates:
Owen Hutchison. (professional-CV in Appendix VI).
Inspection 2018, updated $25^{\text {th }}$ May 2023. Report: Stage 1: $14^{\text {th }}$ June Stage 2: $1^{\text {st }}$ Sept \& $9^{\text {th }}$ Oct 2023.

Summary:

- The land west of Robin Hood Road contains negligible trees within the site. Just an overgrown hedge on the north-west and eastern boundaries, and a copse of riparian trees in the southern corner along the Stanstead Brook.
- The proposal for 40 homes respects most trees. But a length of the eastern-boundary hedge is replaced by a new roadside footpath.
- Section 5 of this report lists tree impacts, and section 6 shows methods to minimise impact on trees.

Contents:

		Summary	Page 1
Sections 1-4 are Stage 1 constraints report.	1.	Instruction.	Page 3
	2.	Inspection.	Page 3
	3.	The Site.	Page 3
	$\begin{aligned} & 4 . \\ & 4.1 \\ & 4.2 \\ & 4.3 \\ & 4.4 \\ & 4.5 \end{aligned}$	The Trees. Trees on site: Off-site trees:- Amenity: Photos: Tree Descriptions \& Tree Constraints Table.	Page 4-17
Sections 5 \& 6 are Stage 2 Tree impact assessment and tree protection method statement.	5. 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Proposed Development \& Tree Impacts. The proposal. Tree Constraints and Impacts (considered below). Physical contact of above-ground parts of trees. Below-ground root spread. Light Interception \& Shading. Over-bearing and Falling material. Subsidence/heave \& root growth. Amenity impact.	Page 18-21
	6. 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11	DRAFT Arboricultural Method Statement in sequential order for proposed development. Supervision Tree Management Tree Protection Construction Access. Demolition / Excavation within RPAs:- Foundations within RPAs:- Drainage. Service Trenches within RPAs. Minimal-dig construction for new access Drives, parking \& paths. Tree work following construction. New Planting.	Page 22-33
	I III IV V VI VII VIII IX	Appendices 1 to VIII:- BS5837 Tree Quality Categorisation. Location plan \& Google Earth aerial. Vertical Tree Protection Fencing, from BS5837. Horizontal Ground Protection x 2 examples. Materials for porous, minimal-dig, roading, 3 examples. Example of Air-spade. B J UNWIN FORESTRY CONSULTANCY CV. Constraints plans:- Tree Crowns, Root Protection Areas, Theoretical Shading. Tree Retention and Tree Protection Plan.	Page 34-end.

Notes:

Copyright: This report is copyright of BJUFC, and licensed only to the client, site and purpose(s) named above. It may not be assigned without the author's permission.

Under GDPR no personal information can be used for cold-calling or marketing
Limitation of Report:-The statements made in this Report do not take account of the effects of extremes of climate, vandalism or accident, whether physical, chemical or fire. BJUFC cannot therefore accept any liability in connection with these factors, nor where prescribed work is not carried out in a correct and professional manner in accordance with current good practice. The authority of this Report ceases at any stated time limit within it, or if none stated after two years from the date of the survey or when any site conditions change, or pruning or other works unspecified in the Report are carried out to, or affecting, the Subject Tree(s), whichever is the sooner.

1. Instruction.

1.1 Rosconn Strategic Land Ltd wish to develop land at the above address.
1.2 The local authority (Uttlesford District Council) will require a tree impact assessment and tree protection method statement for any proposal. The local authority may require mitigation by new planting for any trees lost as part of any development. Therefore, Rosconn has asked B J Unwin Forestry Consultancy Ltd to advise on trees for planning application purposes.
1.3 I have used a topo survey Updated Survey, of December 2022, by Beacon Land Surveys 18-106-22-01, for constraints plans. The Proposal: JCN Design Development Layout BW289a-PL-02 Rev C of August 2023, extract in section 5, shows the proposal, and guides our tree impact and tree protection sections 5 \& 6 of this report.
1.4 Therefore methodology of the report below follows BS5837:2012 Trees in Relation to Design, Demolition \& Construction.
2. Inspection.
2.1 Owen Hutchison visited the site on $25^{\text {th }}$ May 2023, met with Nigel Holmes and made an un-accompanied inspection in clear weather conditions. Jim Unwin had inspected previously in 2018.
2.2 The survey was from ground level, involving visual observation (Visual Tree Assessment: Mattheck and Breloer, 1994 and Lonsdale, 1999). I measured dbh, (estimated for off-site and inaccessible trees) measured or estimated height, and measured or paced crown spread.

3. The Site.

3.1 The site inspected is an area of pasture-land.
3.2 The site falls gently from approximately 85 m aod in the north, to 75 m aod in the south. Woodland and higher ground to the south-west affords the site a degree of shelter from prevailing winds.
3.3 British Geological Survey website suggests geology for the site is:

Superficial deposits: Head - Clay, silt, sand and gravel. Sedimentary superficial deposit formed between 2.588 million years ago and the present during the Quaternary period.
Bedrock geology: Thanet Formation and Lambeth Group - Clay, silt and sand.
Sedimentary bedrock formed between 66 and 47.8 million years ago during the Palaeogene period.
Therefore, subsoils will be fine-textured with volume-change potential. This should be confirmed by soil investigation.
3.4 The site is set on the northern side of a shallow stream valley (the Stanstead Brook). Mill House is located at the site's south-western end, with associated gardens to its north-east and south-west. A small bridge links the house to an access drive and public footpath, which joins Rush Lane and runs adjacent to the site's north-western boundary. Robinhood Road and a railway line run adjacent to the site's south-eastern boundary. Residential development sits to the north and east, while open farmland sits south of the railway line.

4. The Trees.

4.1 Trees on site:-

- Minimal trees on the site: only a handful of self-sown sapling ash and alder in the wet area on the north-east corner of the paddocks, T64, T67 etc.
- On the southern edge of the site, in the valley garden near Mill House, are many trees, some good and some large and good such as oak T86 and copper beech T19.
- The stream between house and railway line is edged by a linear copse of large alders. These have an understorey (G87) comprising holly, hawthorn elder and smaller self-sown alders.
- Rush Lane is edged on both sides by old, neglected hedges including some large hazels.
- The north-western edge of the site contains numerous trees: mostly ash grown up out of the hedge, completely un-managed, and many exhibit symptoms of ash dieback.
- There is an argument to coppice almost all of these ash on Rush Lane, in order to restore the hedgerow running along the north-western site boundary.
- Of note along the Rush Lane boundary are good oaks T43 \& T53.
4.2 Off-site trees:-
- As noted above the north-western side of Rush Lane is an overgrown hedge.
- Also in this hedge are some big trees: the best being oaks T30, T31 \& T32.
4.3 Amenity: This could describe an attractive tree, a screening function, habitat potential, or historic/veteran tree.
- The belt of trees and old overgrown hedge lining Rush Lane provides a large and interesting linear landscape feature and wildlife corridor.
- Garden trees around the Mill House, being in a valley bottom, cause some oppression.
- But trees along the brook including big alders, oak and beech mentioned above also provide a large linear copse feature.
- Trees and hedge H56, located along Robin Hood Road provide screening from the houses beyond. A number of the smaller ash exhibit symptoms of ash dieback.
Ash T59 is the largest tree on Robin Hood Rd and currently exhibits no symptoms of dieback.
- Uttlesford District Council's constraints map (extract below) indicates that the site is not located within a conservation area, and contains no trees protected by TPO.

4.4 Photos below:

4.4.1 View east through garden trees T11 to T24.

4.4.2 View south-west along access road old hazel coppices G26 to the right.

4.4.3 View south-west along the access road. Many ash exhibiting various stages of ash dieback, particularly along the south-eastern edge.

4.4.4 View south-west along Rush Lane. Hedge H56 to the left and off-site birch T55 to the right.

4.4.5 View north from inside the site, showing trees along the south-eastern edge of the access track.

4.4.6 View south along Robinhood Lane. Smaller ash trees exhibiting symptoms of ash dieback.

4.4.7 View north-east along the rear garden of Mill House. Trees T68 to G87 located on both sides of the stream.

4.5 Detailed Tree Descriptions

4.5.1 Trees on, or potentially influencing the site, are individually described in the table below, and shown on the plans in Appendices.

Age class is described as:-
Sap: Very young tree, or sapling, one-five years old.
Y: Young tree less than fifteen years old and $<1 / 3$ fully grown.
Sm: Semi-mature tree having attained $1 / 3$ to $2 / 3$ full stature and $1 / 3$ to $1 / 2$ estimated lifespan.
Em: Early mature: tree at $2 / 3$ to virtually full size, and halfway through its safe life.
M: Mature: fully-grown tree with useful life expectancy.
Lm: Late-mature: fully grown, of declining vigour, but still healthy.
Om: Overmature tree: fully grown and starting to decline in health (but may still have years of safe life).
Vet: Veteran: usually very old; of significant historic, habitat or cultural value.

Health \& Structural condition:- Self-explanatory:- Good, Fair, Poor or Dead.

Remaining Contribution, in years

Prediction of safe useful life in its location, estimated as:-
<10 years, >10 years, >20 years, >40 years.
Retention categories, based on BS 5837 Section 4.5, and shown in Appendix I, are:-
Retain:
A = High quality or value >40 yrs safe life: Light Green*
$\mathbf{B}=$ Moderate quality or value >20yrs safe life: \quad Mid Blue*
$\mathbf{C}=$ Low quality or value $>10 y$ rs safe life or young trees <150mm stem diameter:

Grey*
Remove:
$\mathbf{U}=<10 y r s ~ s a f e ~ l i f e ~ o r ~ s h o u l d ~ b e ~ r e m o v e d ~ f o r ~$ sound arboricultural reasons:

Dark Red*
(*Colour marking on relevant Tree plan).
Sub-category for retention:-
1 = Arboricultural Value
2 = Landscape Value
3 = Cultural and/or Habitat Conservation Value

BS 5837:2012 Root Protection Area:

The estimated area rootable soil required to sustain the tree, centred on the tree's trunk.
The RPA can be a varied shape enclosing the correct rootable area: but usually shown as a circle for convenience, unless obvious constraints stop rooting.
Radius calculated as:-
Single-stem tree, radial distance $=12 \times$ stem diameter at 1.5 m ht .
Multi-stem trees $1-5$ stems $=$ Square root of (sum of individual stem diameters squared).
>5 stems = Square root of (average dbh squared x number of stems).
(Area can be calculated by $\pi \times r^{2}$.)
\# - Denotes estimated stem diameter in mm at 1.5 m height where measurement was not possible.

$$
\mathrm{T}=\text { tree } \mathrm{S}=\text { shrub } \mathrm{H}=\text { hedge } \mathrm{G}=\text { group } \quad \mathrm{HG}=\text { hedge group. }
$$

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{18}{|c|}{4．5．2 Elsenham－BS5837 Inspection－BJUFC－ \(25^{\text {th }}\)} \\
\hline \begin{tabular}{l}
No． \\
T＝tree S＝ shrub \(\mathrm{H}=\) hedge G＝ group
\end{tabular} \& Species \& \begin{tabular}{l}
Dbh \\
（stem diam ＠ 1.5 m ht） mm．
\end{tabular} \& Tot Ht Es \& hei bas own Ht yrs． m． \& ht． of 10 \& \begin{tabular}{l}
Cr \\
\\
Z \\
\hline m
\end{tabular} \& Own \& radii

\sum \& m．

$$
\sum_{<}^{z}
$$ \& \& \[

$$
\begin{aligned}
& \text { T } \\
& \substack{\mathbb{D} \\
\\
\underset{J}{5}}
\end{aligned}
$$
\] \& u0！！！pu0つ ןeanłonats \& ©

$\underset{\sim}{\text { m }}$ \& | Comment |
| :--- |
| （All are in average to good health and condition，unless stated otherwise．） | \& \& \& Recommended WORK excluding development．

\hline T1 \& Acer brilliant－ issimum \& 260 \& の \& N \& $$
\begin{aligned}
& 0 \\
& c \\
& \text { co }
\end{aligned}
$$ \& － \& － \& － \& \pm \& Em \& F \& F \& 40＋ \& Ornamental．In garden． \& B1 \& 3.1 \&

\hline T2 \& Contorted willow \& $$
\begin{aligned}
& 120, \\
& 160
\end{aligned}
$$ \& \pm \& \rightarrow \& の \& $\boldsymbol{\omega}$ \& $\boldsymbol{\omega}$ \& $\boldsymbol{\omega}$ \& N \& Y \& F \& F \& 10＋ \& Small．In garden． \& C1 \& 2.0 \&

\hline T3 \& Flowering cherry \& $$
\begin{aligned}
& 140, \\
& 250
\end{aligned}
$$ \& $\boldsymbol{\bullet}$ \& \[

$$
\begin{aligned}
& \text { N } \\
& \boldsymbol{M}
\end{aligned}
$$
\] \& $\stackrel{\rightharpoonup}{0}$ \& 0 \& － \& － \& 0 \& Sm \& F／P \& F／P \& 10＋ \& Lean north．Poor．In garden． \& C1 \& 3.4 \&

\hline T4 \& Domestic apple \& $$
\begin{aligned}
& 240 \\
& 240
\end{aligned}
$$ \& の \& \rightarrow \& O \& $\boldsymbol{\omega}$ \& N \& $\boldsymbol{\omega}$ \& N \& M \& P \& P \& 10＋ \& Poor．In garden． \& C1 \& 3.4 \&

\hline T5 \& Domestic pear \& 250 \& $\stackrel{\rightharpoonup}{0}$ \& \[

\] \& $\stackrel{\rightharpoonup}{0}$ \& $\boldsymbol{\omega}$ \& N \& － \& N \& \[

$$
\begin{gathered}
\mathrm{Em} / \\
\mathrm{M}
\end{gathered}
$$
\] \& F \& F \& 20＋ \& Upright fruit tree．In garden． \& C1 \& 3.0 \&

\hline T6 \& Domestic pear \& 250 \& \bullet \& \[
$$
\begin{aligned}
& N \\
& \mathbf{Z}
\end{aligned}
$$

\] \& $\boldsymbol{0}$ \& － \& N \& N \& N \& \[

$$
\begin{gathered}
\mathrm{Em} / \\
\mathrm{M}
\end{gathered}
$$
\] \& F \& F \& 20＋ \& Upright fruit tree．In garden． \& C1 \& 3.0 \&

\hline T7 \& Ash \& $$
\begin{gathered}
280 \\
\#
\end{gathered}
$$ \& \pm \& \[

$$
\begin{aligned}
& \omega \\
& \boldsymbol{\omega} \\
& \sum
\end{aligned}
$$
\] \& $\vec{\omega}$ \& $\boldsymbol{\omega}$ \& － \& N \& ω \& Sm \& F \& F \& 20＋ \& In garden． \& B2 \& 3.4 \&

\hline
\end{tabular}

T8	Ash	290	\pm	$\begin{aligned} & \omega \\ & \omega \\ & \boldsymbol{n} \end{aligned}$	$\stackrel{\rightharpoonup}{\omega}$	N	－	N	－	Sm	F	F	$\begin{aligned} & 20- \\ & 40 \end{aligned}$	In garden．	B2	3.5	
T9	Tulip tree	510	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\begin{aligned} & N \\ & N \\ & \boldsymbol{N} \end{aligned}$	$\stackrel{\rightharpoonup}{\text { N }}$	の	の	－	－	$\begin{aligned} & \hline \mathrm{Sm} / \\ & \mathrm{Em} \end{aligned}$	F	P／F	＞40	Weak main fork．In garden．	B1	5.2	Add rod brace 0．3m above fork．
G10	Hawthorn x 2，field maple x 7	$\begin{gathered} 130 \\ \# \\ \text { Ave. } \end{gathered}$	$\stackrel{\dot{B}}{\boldsymbol{\sigma}}$	\vec{N}	号	－	N	－	\pm	$\begin{aligned} & \mathbf{Y} \\ & \overline{\mathbf{M}} \end{aligned}$	F	P－F	20＋	Two old hawthorns and planted field maples．On edge of garden．	C2	1.6	Trim back hard off footpath．
T11	Holly	$\begin{aligned} & 400, \\ & 420 \end{aligned}$	$\stackrel{\rightharpoonup}{0}$	ω	\pm	ω	ω	の	の	M	F	F	20＋	In garden．	B1	5.8	
T12	Yew	$\begin{gathered} 700 \\ \# \end{gathered}$	\pm	N	$\stackrel{\rightharpoonup}{\mathrm{N}}$	0	0	v	0	M	F	F	40＋	In garden．	A1	8.4	
T13	Lawson cypress	520	の	N	ν	N	\pm	N	\pm	M	F	F／P	20＋	Break－out wound east side． In garden．	B1	6.2	
T14	Lawson cypress cultivar	$\begin{aligned} & \hline 350, \\ & 410, \\ & 450 \end{aligned}$	へ	$\begin{aligned} & \hline N \\ & N^{N} \end{aligned}$	へ	－	－	－	0	M	F	P／F	20＋	Spreading form．In garden．	C1	7.0	
T15	Box elder	390	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{G} \\ & \mathcal{N} \end{aligned}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	N	∞	\checkmark	0	Em	F	F／P	20＋	Acer negundo Lean southeast．In garden．	B2	4.7	
S16	Hazel	400 basal \＃	－	0	∞	N	N	N	N	M	F	F	20＋	Big shrub．In garden． Copparded．	C2	4.0	
$\begin{aligned} & \hline \text { S17, } \\ & \text { S18 } \end{aligned}$	Hazels	400 basal \＃	\bigcirc	0	$\stackrel{\rightharpoonup}{0}$	0	0	0	0	M	F	F	20＋	Big shrubs．In garden．	C2	4.0	
T19	Copper beech	990	N	io	N	\bullet	\bigcirc	∞	\bullet	M	F	F	40＋	Good．In garden．	A1	11.9	
T20	Hawthorn	$\begin{aligned} & \hline 170, \\ & 220 \end{aligned}$	\bigcirc	ω	∞	ω	\checkmark	ω	N	M	F	F／P	10＋	Lean southeast．In garden．	C2	3.3	

T21	Hawthorn	$\begin{aligned} & 140, \\ & 100, \\ & 240 \end{aligned}$	0	\rightarrow	の	$\stackrel{\omega}{\omega}$	ω	N	N	M	F	P／F	10＋	Suppressed．In garden．	C2	3.0	
T22	Horse chestnut	$\begin{aligned} & \hline 450, \\ & 670 \end{aligned}$	の	\rightarrow	$\stackrel{\rightharpoonup}{V}$	v	\checkmark	\checkmark	∞	Em	F	P	20＋	Recovered from bacterial canker，but several narrow forks．In garden．	C1	8.1	
T23	Sycamore	400	\pm	N	$\stackrel{\rightharpoonup}{\omega}$	ω	0	0	\checkmark	Sm	F	P	10＋	Severe squirrel damage．In garden．	C1	4.8	
T24	Silver birch	$\begin{aligned} & 140, \\ & 190 \end{aligned}$	$\stackrel{\rightharpoonup}{0}$	\rightarrow	\pm	or	ω	ω	$\boldsymbol{\omega}$	$\begin{gathered} \mathrm{Y} / \\ \mathrm{Sm} \end{gathered}$	F	F	20＋	In garden．	C1	2.4	
G25	$\begin{gathered} \text { Blackthorn } \\ \times 10 \end{gathered}$	$200 \text { \# }$ Ave．	－	0	v	$\overrightarrow{i r}$	0	\sim	0	M	F	P	10	Leaning or fallen southeast out of hedge．	C2	2.4	Coppice all．
G26	Hazel x 8	$\begin{gathered} 300 \\ \# \\ \text { Ave. } \end{gathered}$	\bullet	$\overrightarrow{\dot{u}}$	\bullet	0	の	0	\bigcirc	Lm	F	P	20＋	Overgrown hedge with heavy lean south east．	B2	4.8	
T27	Hornbeam	400	$\stackrel{\rightharpoonup}{\omega}$	N	市	ω	の	\pm	\pm	Em	F	F	＞40	Hedgerow tree．	A1	4.8	
T28	Hornbeam	490	$\stackrel{\square}{0}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \boldsymbol{m} \end{aligned}$	の	－	\checkmark	－	－	Em	F	F／P	10＋	Lean east out of hedge．	C1	5.9	
T29	Hornbeam	580	$\stackrel{\rightharpoonup}{0}$	N	の	\pm	cr	N	\pm	Em	F	F	40＋	In hedge．	A2	7.0	
T30	Oak	$\begin{gathered} 800 \\ \# \end{gathered}$	の	\cdots	の	0	－	\checkmark	\checkmark	M	F	P	20＋	Northeast side of crown broken off．	B2	9.6	
T31	Oak	1100	～	の	N	∞	د	\square	\bigcirc	M	F	P／F	40＋	Big． Several broken or hung－up limbs．Future veteran tree．	A1／A2	13.2	

T32	Oak	$\begin{gathered} 700 \\ \# \end{gathered}$	$\stackrel{\rightharpoonup}{v}$	$\begin{aligned} & \stackrel{r}{n} \\ & \boldsymbol{N} \end{aligned}$	$\overrightarrow{0}$	0	0	0	-	M	P/F	P/F	>40	Suppressed by T31.	B2	8.4	
T33	Ash	$\begin{gathered} 300, \\ 300 \\ \# \end{gathered}$	$\stackrel{\rightharpoonup}{\infty}$	0	$\stackrel{\rightharpoonup}{\bullet}$	\pm	\rightarrow	0	0	Em	F	F	10+	Comprises two ivy-clad stems from base. Exhibiting sparse foliage and tip dieback. Possibly ash dieback.	C2	4.2	
T34	Ash	$\begin{gathered} 360 \\ \# \end{gathered}$	$\stackrel{\rightharpoonup}{\infty}$	\square	$\stackrel{\rightharpoonup}{\bullet}$	-	N	0	-	Em	F	F	10+	Rooting across ditch. Minor deadwood in lower canopy. Exhibiting sparse foliage and tip dieback. Possibly ash dieback.	C1	4.3	
T35	Hornbeam	$\begin{gathered} \hline 100, \\ 140, \\ 170 \\ \# \\ \hline \end{gathered}$	∞	N	$\stackrel{\rightharpoonup}{0}$	ω	\pm	ω	-	Sm	F	F	>40	In hedge.	B2	2.4	
T36	Ash	$\begin{gathered} 300, \\ 340 \\ \# \end{gathered}$	N	0	N	\checkmark	ω	ω	-	Sm	F	F	10+	Ivy-covered tree in hedge. Exhibiting sparse foliage and tip dieback. Possibly ash dieback.	C2	4.5	
T37	Ash	$\begin{aligned} & 200, \\ & 300, \\ & 400 \end{aligned}$	$\stackrel{\rightharpoonup}{2}$	ω	$\stackrel{\rightharpoonup}{\infty}$	-	ω	0	0	Em	P	P	<10	Clear evidence of ash dieback. One stem ringbarked.	U	5.8	Remove dead stem.
T38	Ash	$\begin{aligned} & 150, \\ & 200, \\ & 250, \\ & 430 \end{aligned}$	$\stackrel{\rightharpoonup}{\infty}$	0	$\stackrel{\rightharpoonup}{\bullet}$	-	0	-	0	Em	F	F	10+	Four main stems from base. Exhibiting sparse foliage and tip dieback. Possibly ash dieback.	C2	5.6	
T39	Ash	$\begin{aligned} & 200, \\ & 200 \end{aligned}$	\bullet	ω	∞	N	N	N N	N	$\begin{gathered} \mathrm{Sm} / \\ \mathbf{Y} \end{gathered}$	P	P	<10	Standing dead tree.	U	2.8	
T40	Swedish whitebeam	$\begin{gathered} 270 \\ \# \end{gathered}$	\checkmark	$\stackrel{\rightharpoonup}{\mathrm{r}}$	∞	$\boldsymbol{\omega}$	ω	ω	ω	$\begin{gathered} \mathrm{Y} / \\ \mathrm{Sm} \end{gathered}$	F	F	>40	Growing in off-site garden.	B2	3.2	

H41	Hawthorn， field maple， hazel， elder，and blackthorn	$\begin{gathered} 200 \\ \# \\ \text { Ave. } \end{gathered}$	$\begin{gathered} \boldsymbol{\omega} \\ \dot{6} \end{gathered}$	வे	$\underset{\sigma}{\omega}$	$\stackrel{\text { ¢ }}{ }$	$\stackrel{\rightharpoonup}{\omega}$	$\stackrel{\rightharpoonup}{\omega}$	$\stackrel{\rightharpoonup}{\omega}$	M	$\begin{aligned} & \mathrm{P}- \\ & \mathrm{F} \end{aligned}$	P－F	20＋	Old，neglected hedge along track．	C2/C3 Habitat	2.4	
T42	Ash	$\begin{gathered} 550, \\ 550 \\ \# \end{gathered}$	の	－	の	－	$\stackrel{\rightharpoonup}{0}$	の	0	Em	P	P	＜10	Multi－stem，one across field． Deadwood and epicormic in central canopy．Sparse foliage Likely ash dieback．	U	7.8	
T43	Oak	720	N	0	$\xrightarrow{\sim}$	a	$\stackrel{\rightharpoonup}{0}$	\checkmark	\pm	$\begin{gathered} \mathrm{Em} / \\ \mathrm{M} \end{gathered}$	F	F	＞40	Recent trench down field within rootzone．	A1／A2	8.6	
T44	Field maple	$\begin{gathered} 250, \\ 250 \\ \# \end{gathered}$	\checkmark	N	\checkmark	－	0	or	0	Em	F	P／F	20＋	Supressed under oak．	C1	3.5	
$\begin{gathered} \text { T45 } \\ - \\ \text { T47 } \end{gathered}$	Ash	basal \＃	$\stackrel{\rightharpoonup}{\infty}$	σ	$\stackrel{\rightharpoonup}{\circ}$	－	の	0	0	Em	P	P	＜10	Ash dieback． Leaning stem over field．	U	4.0	
T48	Ash	$\begin{gathered} 250, \\ 350 \\ \# \end{gathered}$	$\stackrel{\rightharpoonup}{\infty}$	\pm	$\stackrel{\rightharpoonup}{\infty}$	0	∞	0	N	M	F	P／F	＜10	Lean southeast across field． Dense ivy cover．Exhibiting sparse foliage significant epicormic growth and tip dieback．Likely ash dieback．	U	4.3	
T49	Oak	$\begin{gathered} 400 \\ \# \end{gathered}$	$\stackrel{\rightharpoonup}{0}$	ω	\pm	N	\checkmark	N	0	$\begin{aligned} & \mathrm{Sm} / \\ & \mathrm{Em} \end{aligned}$	F	P	40＋	Pushed diagonally across field．	B2	4.8	Coppice three ash behind．
G50	Ash $\times 14$	$\begin{gathered} 300 \\ \# \\ \text { Ave. } \end{gathered}$	$\begin{aligned} & \stackrel{\infty}{N} \\ & \stackrel{1}{2} \end{aligned}$	0	$\begin{aligned} & \infty \\ & \underset{N}{N} \end{aligned}$	N	a	N	$\begin{aligned} & N \\ & \underset{\sim}{X} \end{aligned}$	Sm	$\begin{gathered} \mathrm{P}- \\ \mathrm{F} \end{gathered}$	P－F	＜10	Slender ash of coppice origin，grown up in hedge． Many trees exhibiting ash dieback．	U	3.6	Coppice．

G51	Ash x many	$\begin{gathered} 400 \\ \# \\ \text { Ave. } \end{gathered}$	の	ω	の	－	σ	0	ω	Em	$\begin{gathered} \mathrm{P}- \\ \mathrm{F} \end{gathered}$	P－F	10＋	Slender ash of coppice origin，grown up in hedge． Many exhibiting symptoms of advanced ash dieback．	C2	4.8	Coppice dieback affected stems as necessary．
H52	Hawthorn etc．	$\begin{gathered} 200 \\ \# \\ \text { Ave. } \end{gathered}$	N	$\stackrel{\text { d }}{ }$	N	N	N	N	$\begin{aligned} & N \\ & \underset{\sim}{\otimes} \end{aligned}$	M	$\begin{gathered} \mathrm{P}- \\ \mathrm{F} \end{gathered}$	P－F	20＋	Neglected，gappy hedge． Suppressed under ash trees．	C2	2.4	
T53	Oak	800	の	－	$\stackrel{\rightharpoonup}{V}$	σ	v	\checkmark	σ	M	F	F	40＋	Good tree．Dense ivy cover up main stem and scaffold branches．	A1／A2	9.6	Sever ivy at base．
T54	Ash	$\begin{gathered} 400, \\ 400 \\ \# \end{gathered}$	$\stackrel{\rightharpoonup}{\square}$	ω	$\stackrel{\rightharpoonup}{v}$	\bullet	の	\bullet	0	Em	F	F	20＋	Dense ivy．Slightly thin canopy with some tip dieback．Possible early ash dieback．	B2	6.8	
T55	Kashmir birch	$\begin{gathered} \hline 220 \\ \# \end{gathered}$	∞	N	د	$\stackrel{\mathrm{N}}{\mathrm{v}}$	N	$\stackrel{N}{N}$	$\stackrel{N}{N}$	Y	F	F	20＋	Off－site in garden．	C1	2.6	
H56	Hawthorn etc．	250	0	0	0		ω		두	M	F	F	40＋	Overgrown hedge．Dense bramble on field side．Mixed planted hazel，field maple， dogwood and hawthorn at northern end．	C2	3.0	
G57	$\begin{aligned} & \hline \text { Mixed } \\ & \text { species } \end{aligned}$	$\begin{gathered} \hline 70 \\ \# \\ \text { Ave. } \end{gathered}$	$\stackrel{\rightharpoonup}{\mathrm{G}}$	N	ω	or	or	io	or	Sap	F	F	40＋	Multiple newly planted hawthorns，hazel，dogwood and apples．	C1	1.0	
T58	Field maple	$\begin{aligned} & \text { 150, } \\ & 150, \\ & 150 \text { \# } \\ & \text { Ave. } \end{aligned}$	\checkmark	－	∞	－	－	－	－	Em	F／P	F／P	10＋	Growing in dense hedge with hazel coppice beneath．	C2	2.6	

T59	Ash	$\begin{gathered} 4 \\ \text { stem } \\ 400 \\ \# \\ \text { Ave. } \end{gathered}$	$\stackrel{\rightharpoonup}{c}$	-	\vec{v}	0	\checkmark	0	v	M	F	F	10+	Dense ivy throughout. Easterly stem topped at approximately 5 m . Dense ivy cover. Four stems from old coppice stool. Power and telephone lines within central canopy. No symptoms of ash dieback observed.	B1	8.0	Sever ivy at base.
T60	Ash	$\begin{gathered} 5 \\ \text { stem } \\ 350 \\ \# \\ \text { Ave. } \end{gathered}$	$\stackrel{\rightharpoonup}{0}$	v	$\stackrel{\rightharpoonup}{0}$	-	-	$\stackrel{\rightharpoonup}{i r}$	-	$\begin{gathered} \mathrm{Em} / \\ \mathbf{M} \end{gathered}$	F	F	20+	Dense ivy cover. Comprises five stems from coppice origin. Exhibiting symptoms of ash dieback.	U	7.8	
G61	$\begin{aligned} & \text { Ash } \\ & \text { X2 } \end{aligned}$	$\begin{gathered} \hline 150 \\ \# \\ \text { Ave } \end{gathered}$	\square	v	0	N	N	N	N	Y	P	P	<10	Two ivy-clad ash stems exhibiting advanced ash dieback.	U	1.8	
T62	Ash	$\begin{aligned} & \hline 300, \\ & 300 \end{aligned}$	\pm	v	\pm	N	N	N N	$\stackrel{N}{i}$	$\begin{aligned} & \mathrm{Sm} / \\ & \mathrm{Em} \end{aligned}$	P	P	<10	Ash dieback. Ivy.	U	4.2	
T63	Ash	$\begin{gathered} 300 \\ \# \end{gathered}$	∞	N	$\stackrel{\rightharpoonup}{0}$	N	N	$\underset{\sim}{N}$	N	Sm	F	F	10+	In hedge. Exhibiting sparse foliage and tip dieback. Possibly ash dieback.	C2	3.6	
G64	Beech	$\begin{gathered} 200 \\ \# \\ \text { Ave } \end{gathered}$	-	N	-	$\stackrel{\rightharpoonup}{i}$	\vec{i}	\vec{i}	\vec{i}	Sm	F	F	20+	Three beech located in front garden. Trimmed to conical form .	C2	2.4	
T65	Ash	$\begin{gathered} 150 \\ \# \end{gathered}$	σ	\rightarrow	∞	\rightarrow	-	-	-	Y	F	F	$\begin{gathered} 20- \\ 40 \end{gathered}$	Growing within dense hedgerow.	C1	1.8	
T66	Alder	$\begin{gathered} 100, \\ 100, \\ 100 \\ \# \\ \hline \end{gathered}$	-	-	∞	N	N	N	N	Y	F	F	40+	Growing in dense bramble.	C2	1.7	
T67	Alder	$\begin{aligned} & 120, \\ & 170, \\ & 230 \end{aligned}$	v	-	$\stackrel{\rightharpoonup}{0}$	ω	ω	ω	$\boldsymbol{\omega}$	Y	F	F	40+	In boggy spring area.	C1	3.1	

$\begin{gathered} \text { T68 } \\ - \\ \text { T80 } \end{gathered}$	Alders	$\begin{gathered} 550 \\ \# \\ \text { Ave. } \end{gathered}$	ज	\pm	जे	0	\checkmark	cr	$\begin{aligned} & \mathcal{O} \\ & \underset{\sim}{0} \end{aligned}$	M	F	F	20+	Big alders either side of stream.	B2	6.6	
T81	Sycamore	$\begin{gathered} 300 \\ \# \end{gathered}$	$\stackrel{\rightharpoonup}{N}$	ω	$\stackrel{\rightharpoonup}{N}$	\pm	-	\pm	\pm	Sm	F	P	20+	Squirrel damage.	C1	3.6	
T82	Ash	420	$\stackrel{\rightharpoonup}{\circ}$	N	$\stackrel{\rightharpoonup}{N}$	-	-	\pm	ω	$\begin{gathered} \mathrm{Sm} / \\ \mathrm{Em} \end{gathered}$	F	F	10+	On railway boundary.	C2	5.0	
T83	Alder	$\begin{gathered} 400 \\ \# \end{gathered}$	$\stackrel{\rightharpoonup}{N}$	\pm	$\stackrel{\rightharpoonup}{N}$	\cdots	\cdots	cr	cr	M	F	F	20+	Ivy-covered alder on stream edge.	B2	4.8	
T84	Hawthorn	$\begin{gathered} 200, \\ 200 \\ \# \end{gathered}$	0	N	σ	0	0	ω	0	Lm	F/P	F/P	10+	Two stems originating from a decayed base.	C2	2.8	
T85	Field maple	$\begin{gathered} 200, \\ 200 \\ \# \end{gathered}$	v	N	v	-	0	N	N	M	F	F/P	10+	Two stems from base. Suppressed form.	C2	2.8	
T86	Oak	$\begin{gathered} 1200 \\ \# \end{gathered}$	N	-	N	\pm	\pm	\pm	\pm	M	G	G	>40	Very good tree.	A1/A2	14.4	
G87	Mixed species	$\begin{gathered} 200 \\ \# \\ \text { Ave. } \end{gathered}$	$\vec{~}$	0	$\vec{~}$	N	N	N	N	$\begin{aligned} & \hline \mathbf{Y} \\ & - \\ & \mathbf{M} \end{aligned}$	F/P	F/P	10+	Holly, hawthorn, elder and self-seeded alder, forming an understorey.	C2, 3	2.4	

End of table.
4.5.3 Trees are listed in the table above, and coloured on the Tree Constraints Plans, to indicate their retention categories A, B, C, U : with the colours explained in the keys of the table (4.5.1) \& plan, and Appendix I ($\mathrm{A}=$ best to $\mathrm{U}=$ remove).
This allows the site designer to plan around important trees, and ignore lesser trees.

5. Proposed Development \& Tree Impacts.

5.1 The proposal.

5.1.1 The proposal, JCN Design Development Layout BW289a-PL-02 Rev C of August 2023, extract below, shows the development.
5.1.2 Forty dwellings are created within the site.

5.1.3 A footpath halfway along the north-western boundary links the site to Rush Lane.
5.1.4 The existing access off Robin Hood Road is improved, with a footway along the western side of the road. Indicative footway shown on Savoy Consulting DWG-05 Rev C, extract below:

5.2 Potential Tree Impacts (considered below).

5.2.1 There are six potential arboricultural impacts caused by re-development of the site:

- physical contact above-ground,
- below-ground conflicts (roots),
- shading,
- over-bearing, and falling material,
- subsidence/heave, and damage from root growth,
- impact on amenity value.

These are assessed below:

5.3 Physical contact with above-ground parts of trees.

5.3.1 General:-

Buildings, roads, paths and associated structures can replace trees or intrude into canopy zones. Tree removal and pruning is listed in table 6.2.3 below.
5.3.2 Specific above-ground impacts:-

- The proposal to accommodate a new $2 m$ footway on the road edge requires pruning the Robin Hood Road hedge H56 back to stems in its northern 45 m , and removal of about 60 m of hedge further south along Robin Hood Road.
- About 4 m of Rush Lane's H56 need removing to make a new footpath access.
- H56 needs pruning back for construction access behind plot 1 house.
- Some small trees (alders and hawthorns) may be removed to allow new drain outfall and headwall in G87 on the southern edge.
- Some of G87 may be replaced by attenuation pond on the southern edge of the site.

5.4 Below-ground root spread.

5.4.1 General:-

BS5837 defines a tree's Root Protection Area as a circular area of 12 x stem diameter: required to maintain long-term health of a full-canopied tree. We show it as an idealised circle. Rooting areas are never symmetrical. At the discretion of an arboriculturalist, where rooting is restricted on one side, the RPA can be offset to provide the same protection area. This is shown on the RPA plan.
Ground disturbance within the RPA zone should be avoided. But, the structural rootplate of a tree to resist windthrow is usually smaller than the RPA. Therefore tree stability should not be affected by some planned disturbance within the RPA.
5.4.2 Specific Rootzone Impacts:-

- The Robin Hood Road path needs special elevated construction so close to H56 and ash T59. See 6.9 below for overview of working method. An elevated section of footway would minimise any impact on hedgerow trees.
- Parking by oak T53 for plot 13 needs careful root pruning. See 6.9 below.

5.5 Light Interception \& Shading.

5.5.1 General:-

The sun rises to about 60° at mid-day in mid-Summer when trees are in leaf (ratio of 16 m vertical height to 10 m horizontal distance).
The sun only rises to 12° in mid-Winter. However, in winter deciduous trees are leafless, so light interception is much reduced.
Theoretical shadows of arcs equal to estimated tree height in ten-years' time are illustrated on our Shading Plan. This is the shadow pattern for the period from May to September inclusive, from 10.00hrs to 18.00hrs daily.
5.5.2 Specific Shading Impacts:-

- The houses are all situated on a south-facing bank. Bigger trees are either set on lower ground on the southern boundary or along the northwestern edge. So shading impacts are modest.

5.6 Over-bearing and Falling material.

5.6.1 General:-

Trees drop detritus in the form of flower parts, leaves, twigs, fruits or needles throughout the year. These can be an annoyance to persons living nearby. Bird droppings and honeydew from aphids can be difficult to clean off, or can spoil car paintwork. Big trees make adjacent dwellers nervous.

5.6.2 Specific Impacts:-

- Ash T54 is 6.6 m west from plot 5 house. This tree has some dieback, so may need removing by the time construction starts. Or prune back east side by 2 m to increase clearance.
- Ash trees in the Rush Lane boundary such as G51 are suffering dieback. I would advise removing all leaning stems, and all stems showing any dieback.

5.7 Subsidence/heave \& root growth.

5.7.1 Subsoil and upper geology are most-likely fine-textured-draining, with some volume-change potential.
5.7.2 These must be assessed by an engineer. Structures near trees will need foundations designing according to NHBC Chapter 4.2, or equivalent guidance.

5.8 Amenity impact.

5.8.1 Amenity can be visual landscape, functional landscape, habitat or heritage/historic.

- The proposal requires removal of most of the hedge along Robin Hood Lane.
- Some of the lost habitat can be replaced by new hedging within the site.
- Screening can be restored with new hedging.

6. DRAFT Arboricultural Method Statement in sequential order for proposed development at Robin Hood Road site.

6.1 Supervision

6.1.1 We would recommend the following arboriculturist supervision on this site:-

- A pre-start site meeting between architect, building / groundwork contractor, Council Tree/Landscape Officer, and retained arboriculturist to agree tree protection and working methods.
- Check that site management has approved tree protection report and plans, and copies are available on site.
- Check installation of protection fencing.
- Exact route of drainage outfall through G87 to be agreed by project arboriculturist and marked out on site.
- Direct arboricultural oversight of path construction along Robin Hood Road past T59.
6.1.2 All inspections to be followed within three working days with emailed supervision log with action points and photos, copied to client and tree/landscape officer.

6.2 Tree Management

$\frac{\text { 6.2.1 } \text { Tree Work prior to ground work:- }}{\text { Table overleaf........... }}$
6.2.2 Treework informatives, included for general information:-
6.2.2.1 Disturbance to wildlife.

It is essential to check for nesting birds, bat roosts, badgers and hibernating animals such as hedgehogs under trees, before pruning or removing trees, as negligent disturbance is an offence under the EC Habitats Directive 92/43/EEC, Countryside and Rights of Way Act 2000, Protection of Badgers Act 1992. The Conservation (Natural Habitats, \& C) (Amendment) Regulations 2007 make any damage or destruction of a breeding site or resting place of a European Protected species (mainly bats in a tree context) an offence.
In general, autumn tree work: September, October and November is least disruptive to bats and birds. Work on very ivy-clad trees may need a formal pre-start bat assessment by a trained bat worker.
6.2.2.2 Permission

Trees may be protected by a TPO, or could lie within a Conservation Area.
Trees may be owned by third-parties.
Trees may be protected by planning conditions.
Therefore, a contractor must satisfy himself that all necessary permissions from the local planning authority or tree owners are in place before touching trees.
A Felling Licence may be needed to clear non-domestic areas.
6.2.2.3 Quality of Tree Work

All off-ground tree work should be done by insured tree surgeon with certificates in aerial chainsaw use (new designations:- NPTC 020-04, 0020-05, 0020-07, 0021-01, 0021-07; LANTRA 600/5703/8, 600/5717/8, 600/5715/5, 600/5704/X, 600/5714/2), and working to BS3998:2010, and "Treework at Height", the Arboricultural Association's ICoP. (Stumps can be left to shoot again, ground out, or grubbed out, or poisoned, depending on location.)
6.2.3 Treework for development at Robin Hood Road site:-

	No	Species	$\begin{gathered} \hline \text { RPA } \\ \text { radius } \\ \mathrm{m} . \end{gathered}$	Work forlandscape / tree health.	ADDITIONAL WORK FOR DEVELOPMENT	
					Specification.	Reason for additional work for development.
T1		Acer brilliantissimum	3.1			
T2		Contorted willow	2.0			
T3		Flowering cherry	3.4			
T4		Domestic apple	3.4			
T5		Domestic pear	3.0			
T6		Domestic pear	3.0			
T7		Ash	3.4			
T8		Ash	3.5			
T9		Tulip tree	5.2	Add rod brace 0.3 m above fork.		
G10	Haw	thorn $\times 2$, field maple $\times 7$	1.6	Trim back hard off footpath.		
T11		Holly	5.8			
T12		Yew	8.4			
T13		Lawson cypress	6.2			
T14		Lawson cypress cultivar	7.0			
T15		Box elder	4.7			
S16		Hazel	4.0			
$\begin{aligned} & \hline \text { S17, } \\ & \text { S18 } \end{aligned}$		Hazels	4.0			
T19		Copper beech	11.9			
T20		Hawthorn	3.3			
T21		Hawthorn	3.0			

T22	Horse chestnut	8.1			
T23	Sycamore	4.8			
T24	Silver birch	2.4			
G25	Blackthorn x 10	2.4			
G26	Hazel x 8	4.8			
T27	Hornbeam	4.8			
T28	Hornbeam	5.9			
T29	Hornbeam	7.0			
T30	Oak	9.6			
T31	Oak	13.2			
T32	Oak	8.4			
T33	Ash	4.2			
T34	Ash	4.3			
T35	Hornbeam	2.4			
T36	Ash	4.5			
T37	Ash	5.8			
T38	Ash	5.6			
T39	Ash	2.8			
T40	Swedish whitebeam	3.2			
H41	Hawthorn, field maple, hazel,	2.4			
elder, and blackthorn					
T42	Ash	7.8			
T43	Oak	8.6			
T44	Field maple	3.5			
T45	Ash	4.0			
T47					

T48	Ash	4.3			
T49	Oak	4.8	Coppice three ash behind.		
G50	Ash $\times 14$	3.6	Coppice.		
G51	Ash x many	4.8	Coppice dieback affected stems as necessary.		
H52	Hawthorn etc.	2.4			
T53	Oak	9.6	Sever ivy at base.		
T54	Ash	6.8			
T55	Kashmir birch	2.6			
H56	Hawthorn etc.	3.0		Remove about 60m	$\frac{\frac{\text { 4m for new footpath access off }}{\text { Rush Lane. The rest for new }}}{\frac{\text { footpath along Robin Hood }}{\text { Road. }}}$
G57	Mixed species	1.0			
T58	Field maple	2.6			
T59	Ash	8.0	Sever ivy at base.		
T60	Ash	7.8		Remove.	For new footpath.
G61	$\begin{aligned} & \text { Ash } \\ & \text { X2 } \end{aligned}$	1.8		Remove.	For new footpath.
T62	Ash	4.2		Remove.	For new footpath.
T63	Ash	3.6		Remove.	For widened access.
G64	Beech	2.4			
T65	Ash	1.8		Remove.	For new footpath.
T66	Alder	1.7			
T67	Alder	3.1			
$\begin{gathered} \text { T68 } \\ - \\ \text { T80 } \end{gathered}$	Alders	6.6			

T81	Sycamore	3.6			
T82	Ash	5.0			
T83	Alder	4.8			
T84	Hawthorn	2.8			
T85	Field maple	2.8			
T86	Oak	14.4		Remove some.	$\frac{\text { For attenuation pond }}{\text { and outfall Ito stream. }}$
G87	Mixed species	2.4			a

(Treework following development see 6.10 below.)

6.3 Tree Protection

6.3.1 Requirement

The most important tree-protection measure is effective protective fencing, erected as close as possible to the Root Protection Area (RPA) boundary before any other work starts on site including demolition in the vicinity of trees. It must be maintained until all work is completed, except final soft landscaping. Here tree protection is proposed for retained trees, and for areas of possible new planting where this is feasible: called landscape protection zones.

6.3.2 Vertical Tree Protection

6.3.2.1 Tree Protection fencing locations are shown on Tree Retention \& Protection Plan (TRP) in Appendices.
6.3.2.2 Two specifications for suitable protective fencing are suggested in BS5837. Suitable specification is given in Appendix III.
6.3.2.3 Within the fenced off CEZ Construction Exclusion Zone: there must be:-

- no construction access,
- no storage of materials, including soil,
- no ground disturbance.
6.3.2.4 Fencing to remain until all demolition, construction and hard landscaping work is completed, and removed only for final soft landscaping.
6.3.2.5 Fence may need lifting temporarily across G87 to make drainage outfall.
6.3.3 Temporary Ground Protection (TGP) within RPAs:-
6.3.3.1 IF work is required to be closer than the all-round protection zone, then the fenced off zone can be made smaller on that side, or entered temporarily, subject to permission from retained arboriculturalist.
Within such zones, temporary horizontal ground protection plus temporary fencing would be essential.
TGP is required for current proposal to protect RPA of T59 by Plot 1 and T54's RPA by plot 5.
Obvious options for temporary ground protection would be:-
-Temporary ground protection plates such as aluminium "Eve Trakway" or plastic interlocking-plate ground protection; both on 50 mm depth of woodchip or bark mulch, as shown in Appendix IV.
-Butted scaffold boards or 22 mm plyboard laid on bearers on 50 mm depth woodchip or bark mulch (pedestrian access only). -A layer of woven geo-textile under minimum 250 mm depth of graded aggregate which is lifted after work.

6.4 Construction Access.

6.4.1 General points:-

- Initial access can use gateway off Robin Hood Road.
- All retained trees and hedges need protection.
- No pedestrian, vehicle, plant or machinery to enter RPAs without temporary ground protection, as detailed in para 6.3.3 above.
6.4.2 Site huts could be placed within RPA of trees and hedges; provided they stand elevated on stilt feet, no excavation is required for temporary services, and pedestrian and vehicle access is ground protected as detailed in 6.3.3 above. SITE HUTS COULD be located in the existing entrance.

6.5 Demolition / Excavation within RPAs:-

6.5.1 General specification to demolish existing surfacing or digging anywhere near trees:
Method below....

- Parallel tracking with slewing outside the RPA:-
- Use maximum 3-tonne rubber-tracked mini-digger with toothed bucket.
- Slew outside RPA.
- Heap spoil outside RPA, for dumper to collect and run outside RPA.
- Replace sub-surface with new soil to landscape specification.

6.6 Foundations within RPAs:-

6.6.1 No special measures needed for houses to protect trees. But see 6.9 for parking areas and footpath.

6.7 Drainage.

We are unaware of a drainage design, but general tree protection principles must be followed:
6.7.1 Storm-water drainage: Any soak-away system must be designed to avoid significant increase and no decrease of ground water in trees' rooting zones. See 6.8 below for drain pipe location through G87. Divert into soakaways outside RPAs, or store for greywater recycling.
6.7.2 Foul Drainage: Keep out of RPAs. Link to existing wherever possible.
6.7.3 Sustainable Urban Drainage System: Any SUDS scheme, to reduce the load on local mains drainage, must not significantly add to, or reduce, the soil water in trees' root zones. Drain into ponds, store for greywater re-use, or allow percolation into landscaped or parking areas.

6.8 Service Trenches within RPAs.

6.8.1 We are unaware of proposed services, but service trenches (electric lights, utilities, telecoms, drains etc) must be designed to run as far from trees as possible.
6.8.2 Trenches within RPAs should be avoided. But if there is no other option:-
6.8.3 Drainage outfall through G87:

- Project arboriculturist to agree exact location and access required.
- All trenching, hand root pruning and restoration under direct arboricultural supervision.
6.8.3 Any trenching within an RPA ideally uses a trenchless boring system.
6.8.4 Otherwise use onerous hand digging method:-
- If soil is coarse-textured and friable use an air-spade to reveal roots (Appendix VI).
- No roots $>25 \mathrm{~mm}$ diameter or bundles of smaller roots must be exposed or severed without express written permission of local authority tree officer or retained arboriculturalist.
- Retain roots $>25 \mathrm{~mm}$ diameter or bundles of smaller roots within service trenches. Thread service pipe underneath.
- Any root pruning must use a sharp saw or loppers, and not ripped by digger bucket.
- Any excavation within the RPA of a tree must be covered immediately after digging with damp hessian, topped by tarpaulin \& plyboard, to prevent root desiccation.
- Hole must be backfilled within five days of opening.
- Wrap exposed roots $>20 \mathrm{~mm}$ or bundles of smaller roots with hessian, and surround by 50 mm depth sand, as part of backfill medium.
- Tamp backfill material by hand thumper or whacker plate only.

6.9 Minimal-dig construction for new access drives, parking \& paths

6.9.1 If roads, footpaths, cycle-ways, yards or parking are required near trees, they can be constructed in two ways:-

Conventional construction:- If outside a tree's RPA, as here.
Minimal-dig construction:- If within a tree's RPA. Not needed here.
6.9.2 Parking bays by oak T53:

- Use mini-digger to carefully dig narrow trench along kerbline
- Max depth of dig 0.5 m .
- Banksman to sever roots by hand with loppers as soon as exposed.
- Cover tree side of trench with damp hessian and sheet material to prevent desiccation \& slumping.
- Dig out rest of parking area.
- Install kerb or retaining structure within two weeks of opening ground.
- Backfill on tree side with excavated topsoil.
6.9.3 Footway past ash T59 \& H56.
- A new footway $1.5-2 \mathrm{~m}$ wide with adequate construction depth would need slight elevation for 10 m past T59, so an elevated section on a frame secured by screwpiles would need installing between road edge and tree.
- Excavation at the western (tree) edge of the footway should be limited to 50 mm depth max, to minimise root pruning.
- If any roots were exposed, they would need careful pruning under arboricultural supervision. Roots $>25 \mathrm{~mm}$ diam should be retained.
- Given the fact that road level is likely to be raised by about 150 mm , a handrail may not be needed.
- Below is an example of a Green Grid Systems' footpath elevated on screwpiles at 1 m centres on each side. This results in insignificant RPA disturbance.
- The rest of the footway would also need hand pruning to trim off hedge roots, but could be set into the ground at only standard 100mm above road level.

Green Grid Systems RootBridge Variant

RB Pedestrian 3.5kN

There are areas in the cities, in urban areas where a lot of people traverse the streets. These areas, being the hotspots for people movement are often designed around the trees which soften the hard landscaping, bring cooling benefits and to give the area a pleasant look and feel. Integrating with trees amongst this continuous area of footfall however can be tricky as space needs to be maximized as well as consideration given for the needs of the tree. The pedestrian version of RootBridge comes into its own here, providing a thin bridge over the RPA (65 mm total depth) and suitable to take heavy pedestrian loading.

Where can it be used?

The RootBridge system as a system is very adaptable. Different length groundscrews are used to accommodate a wide range of soil conditions and the low overall depth ensures that overall levels are kept as low as possible. This version can be finished with heel-safe mesh grids for a contemporary look or can be overlaid with paving or asphalt.

Possible scenarios are as follows:

- Walkways between trees
- Around trees in paved areas such as city centres
- Use with pavements

Depth	65 mm
Configuration	$1 m \times 1 \mathrm{~m}$ sections
Loading capacity	3.5 kN point load/pedestrian only
Surface finish	Heel-safe mesh, pave over or GRP

Green Grid Systems

The Nursery/Littleton Lane
Winchester
Hampshire
SO21 2LS
United Kingdom
Contact Details
01962433460
sales@greengridsystems.com
6.9.4 No minimal-dig construction is required for this design proposal. Appendix V gives examples of materials for minimal-dig, porous, build-up.

6.10 Tree work following construction.

6.10.1 Trees should be re-inspected at completion of construction and hard landscaping. This inspection would reveal the need for remedial tree work for the following reasons:-
-to rectify damage occurring during construction (regrettable but possible), -to allow additional clearance.
-or complete tree removal if trees were considered too close for safe retention.
6.10.2 All additional work subject to further local authority agreement if trees are protected by planning conditions, TPO, or location within a Conservation Area.

6.11 New Planting.

6.11.1 The proposal requires extensive hedge removal: so additional planting is needed. Particularly to re-screening along Robin Hood Road.
6.11.2 If additional planting is desired, useful web-based guide: Tree Species Selection for Green Infrastructure - A guide for specifiers by Dr Andrew Hirons \& Dr Henrik Sjoman Issue 1.3 of 2019, advises on tree selection and size.
Any planting and maintenance must comply with: BS 8545 "Trees: from nursery to independence in the landscape - Recommendations". BSI 2014.
6.11.3 Any planting must be provided with adequate long-term soil-moisture. To remind architects and engineers, we reproduce below, Stockholm Tree Pits' (www.stockholmtreepits.co.uk) table of root volumes for a given final size of tree:

Table 1: Minimum requirements for tree pit specifications.

	Mature Size of Tree*+				
	Very Small (<5m)	Small (5-10m)	Medium (10-15m)	Large ($15-25 \mathrm{~m}$)	Massive $(>25 \mathrm{~m})$
Recommended minimum volume of uncompacted loam soil	$\begin{gathered} 6 \boldsymbol{m}^{\mathbf{3}} \\ \left(5 m^{3} \text { if shared }\right) \end{gathered}$	$\begin{gathered} 12 \mathrm{~m}^{3} \\ \left(9.5 \mathrm{~m}^{3}\right. \text { if shared) } \end{gathered}$	$\begin{gathered} 20 \mathrm{~m}^{3} \\ \left(16 \mathrm{~m}^{3} \text { if shared }\right) \end{gathered}$	$\begin{gathered} 28 \mathrm{~m}^{\mathbf{3}} \\ \left(24 \mathrm{~m}^{3} \text { if shared }\right) \end{gathered}$	$36 \mathrm{~m}^{3}$ ($30 \mathrm{~m}^{3}$ if shared)
Recommended minimum volume of stone-based structural soil	$\begin{gathered} 8 m^{3} \\ \left(6 m^{3} \text { if shared }\right) \end{gathered}$	$\begin{gathered} 15 m^{3} \\ \left(12 m^{3}\right. \text { if shared) } \end{gathered}$	$26 \mathrm{~m}^{3}$ ($20 \mathrm{~m}^{3}$ if shared)	$\begin{gathered} 36 m^{3} \\ \left(28 m^{3}\right. \text { if shared) } \end{gathered}$	$45 m^{3}$ ($35 \mathrm{~m}^{3}$ if shared)
Recommended number of air/water inlets \ddagger	$\begin{gathered} 1 \\ \text { (0.5 if shared) } \end{gathered}$	$\begin{gathered} 1 \\ (0.5 \text { if shared) } \end{gathered}$	1	2 (1.5 if shared)	2

${ }^{\text {tF Fastigiate }}$ trees will require less rooting space than trees with wide canopy shapes. As a rule of thumb, one should assume that a tree with a narrow and columnar crown form would require half as much soil volume as a tree of the same height that has a wide crown.
tldeally the surface of the tree pit should be open, rough in texture, and protected from compaction. If there is hard surfacing above the tree pit designers must provide pathways for water ingress and gaseous exchange. This could be provided by a permeable surface over the whole of the tree pit or by using a non-permeable surface with specially designed inlets. Suitable inlets would be substantially larger than an irrigation tube and service the whole of the tree pit.

Author:

B J Unwin Forestry Consultancy.

References:

"The Body Language of Trees". Claus Mattheck and Helge Breloer. HMSO 1994.
"Principles of Tree Hazard Assessment and Management". David Lonsdale. HMSO 1999.
BS 3998: 2010 "British Standard Recommendations for Treework".
BS 5837: 2012 "Trees in Relation to Design, Demolition \& Construction".
BS 8545 "Trees: from nursery to independence in the landscape - Recommendations". BSI 2014.
NJUG Volume 42007 "Guidelines for the Planning, Installation and Maintenance of Utility Services in Proximity to Trees". NJUG, 30 Millbank, London,SW1P 4RD.
"Trees and Development". Nelda Matheny and James R Clark. ISA. 1998.
BS 8206:1992 "Lighting for buildings" .
BRE guide 209 (2002) "Site Layout planning for daylight and sunlight".
NHBC Chapter 4.2, Building Near Trees. National House Building Council, 2021.
"Tree Roots in the Built Environment". J Roberts, N Jackson \& M Smith. R.A.T.8, TSO (The Stationary Office), London, 2006.
"Tree Species Selection for Green Infrastructure - A guide for specifiers" Dr Andrew Hirons \& Dr Henrik Sjoman Issue 1.3 2019.
"Treework at Height" Industry Code of Practice. Arboricultural Association. 2020.
"The use of Cellular Confinement Systems near Trees". Practice Guidance Note 12. Arb Association. Sept 2020.

Appendix I

Table 1 overleaf:

Table 1 Cascade chart for tree quality assessment

Category and definition	Criteria (including subcategories where appropriate)			Identification on plan
Trees unsuitable for retention (see Note)				
Category U Those in such a condition that they cannot realistically be retained as living trees in the context of the current land use for longer than 10 years	- Trees that have a serious, irremedia including those that will become un reason, the loss of companion shelt - Trees that are dead or are showing - Trees infected with pathogens of signi quality trees suppressing adjacent t	e, structural defect, such that their early los iable after removal of other category U tree cannot be mitigated by pruning) gns of significant, immediate, and irreversib ificance to the health and/or safety of other es of better quality	is expected due to collapse, (e.g. where, for whatever overall decline trees nearby, or very low	See Table 2
	NOTE Category U trees can have existing or potential conservation value which it might be desirable to preserve; see 4.5.7.			
	1 Mainly arboricultural qualities	2 Mainly landscape qualities	3 Mainly cultural values, including conservation	
Trees to be considered for retention				
Category A Trees of high quality with an estimated remaining life expectancy of at least 40 years	Trees that are particularly good examples of their species, especially if rare or unusual; or those that are essential components of groups or formal or semi-formal arboricultural features (e.g. the dominant and/or principal trees within an avenue)	Trees, groups or woodlands of particular visual importance as arboricultural and/or landscape features	Trees, groups or woodlands of significant conservation, historical, commemorative or other value (e.g. veteran trees or wood-pasture)	See Table 2
Category B Trees of moderate quality with an estimated remaining life expectancy of at least 20 years	Trees that might be included in category A, but are downgraded because of impaired condition (e.g. presence of significant though remediable defects, including unsympathetic past management and storm damage), such that they are unlikely to be suitable for retention for beyond 40 years; or trees lacking the special quality necessary to merit the category A designation	Trees present in numbers, usually growing as groups or woodlands, such that they attract a higher collective rating than they might as individuals; or trees occurring as collectives but situated so as to make little visual contribution to the wider locality	Trees with material conservation or other cultural value	See Table 2
Category C Trees of low quality with an estimated remaining life expectancy of at least 10 years, or young trees with a stem diameter below 150 mm	Unremarkable trees of very limited merit or such impaired condition that they do not qualify in higher categories	Trees present in groups or woodlands, but without this conferring on them significantly greater collective landscape value; and/or trees offering low or only temporary/transient landscape benefits	Trees with no material conservation or other cultural value	See Table 2

Appendix II

Site location, shows local roads and public rights of way.

Google Earth aerial. Taken 2023.

Appendix III

Vertical Tree Protection Fencing, from BS5837.

Vertical protective fence: location on plan:

Lightweight: in situ for < 3 months or constrained site-
Heras panels joined by two clamps, on feet, with pegged strut on each panel.

Example of Barrier stakes \& heavy-duty tape, use three strands, for tree protection on a modest site.

```
Quote Request| Contact Us | \! Catalogue Quick Order | C0800 3166933
```

Search Product Code / Keyword

Home / Traffic \& Car Park Management / Barriers \& Access Management / Barrier Warning Tapes / Barrier Tape \& Fence Pins Kit

Barrier Tape \& Fence Pins Kit

Heavy duty, practical solution to temporary hazard barriers

- Highly visible tape with UV coating and scratch resistant ink
- Durable fence pins hold your barrier in place outdoors
- Non-adhesive tapes come in a variety of colours
> View full product information

Description
Red/Yellow stripe extra strong tape \& pins kit
> View all available options (7)

Appendix IV

Horizontal Ground Protection x 2 examples

Example of aluminium temporary ground protection.

EVE TRAKWAY

Roadways - Medium Duty Trakpanel
The Medium Duty Trakpanel, or 'Box' panel, is ideal for where both pedestrian and vehicle access is required. This versatile panel can be laid with either a smooth or corrugated surface uppermost. The smoother surface finish provides excellent support underfoot, whilst the construction of the panel maintains a high load bearing capacity. Due to the way these panels fit together, a smooth joint is created therefore reducing trip hazards.
The Benefits:-
Pedestrian friendly upper surface
Suitable for heavy vehicles Ideal for where both pedestrians and vehicles require safe passage.

Technical Specifications			
Dimensions	$2.5 \times 3 \mathrm{~m}$ (when installed $2.44 \mathrm{~m} \times 3 \mathrm{~m}$ due to overlap)		
Weight	274.7 kg		Carrying
:---	:---		
Capacity	\quad	A more pedestrian friendly roadway, this system is capable of taking any	
:---			
road going loads.			

The following Roadways are available.
Please select an item to view more information:
Other Roadways products:-
Heavy Duty Trakpanel-
LD20-
Roadway Ramps-
Multi-Directional Trakpanel

Example of plastic temporary ground protection.

Ground-Guards Tree Root Protection

Tree root protection for construction projects

Planning Departments may often need to stipulate that site access roads will not involve any excavation because of the proximity of tree roots on the site. Furthermore, that they will also provide additional ground cushioning when passing over the immediate areas where there are tree roots beneath. This is very important to prevent compaction of the ground, and long-term damage to the soil structure, the tree roots, and ultimately, to the health of the trees themselves.

An effective means of protecting tree roots is to use a
 double layer of Ground-Guards. Panels with 150mm of wood chips sandwiched in-between which creates a suitably cushioned roadway for this purpose.

The Ground-Guards system is so durable and versatile that whatever your need, the team will be delighted to work with you to provide an effective solution. Please just call our team on 01132676000 for friendly advice on any difficult site conditions that you need assistance with.

Appendix V

Two Examples of 3-dimensional cellular confinement build up for minimal-dig roading or parking.

Cellweb* TRP is a 3D cellular confinement tree root protection system. The system provides a 'no dig' solution for the construction of new hard surfaces within root protection areas (RPAs). Cellweb ${ }^{*}$ TRP has been designed and independently tested to comply with recommendations made in Arboricultural Practice Note 12 and BS 58372012 - Trees in relation to design, demolition and construction.

Cellweb ${ }^{\ominus}$ TRP Key Functions
Cellweb ${ }^{8}$ is a 'no dig' solution which is constructed directly on the existing ground surface. This eliminates the requirement for excavation, preventing root severance.

Cellweb* is a completely porous system allowing continued water permeation and gas exchange between the rooting environment and atmosphere.

Cellweb ${ }^{*}$ spreads point loads, minimising increases in soil compaction within the rooting environment. This maintains an open graded soil structure allowing continued root growth, water, gas and nutrient migration.

The Cellweb ${ }^{\text {® }}$ TRP system comprises the following three components
Ireetex ${ }^{\mathrm{Tm}}$ Geotextile. Following minimal ground preparation the Treetex ${ }^{\mathrm{Tm}}$ is laid onto the existing ground and top soil. This acts as a separation layer, separating the system above from the soil and rooting environment below. Treetex ${ }^{\text {TM }}$ performs as a hydrocarbon pollution control measure in accordance with BS5837, holding 1.7 It of oil per square meter.

Cellweb* 3D Cellular Confinement. The Cellweb* is installed on top of the Treetex ${ }^{\text {TM }}$ layer. This is fixed to the ground using ten steel J pins per panel. The panels can be cut to the required shape and adjoining panels can be connected using heavy duty staples or cell ties.
$4-20 \mathrm{~mm}$ Clean Angular Stone, The expanded Cellweb ${ }^{*}$ is infilled with a $4-20 \mathrm{~mm}$ clean angular stone. The confined angular stone locks together to produce a rigid stone mattress, while maintaining air pockets for continued water permeation and gas exchange. The low fines content of the stone prevents the Treetex ${ }^{\text {TM }}$ layer from becoming blocked over time.

Which depth of Cellweb ${ }^{\circ}$ TRP?

The Cellweb* System is provided in four different depths; $200 \mathrm{~mm}, 150 \mathrm{~mm}, 100 \mathrm{~mm}$ and 75 mm . The depth required is determined by the proposed traffic loadings and the site ground conditions. Geosynthetics in house engineering department can provide a free site specific technical recommendation. For free technical and engineering support please contact Geosynthetics Ltd 01455 617139 or the full installation guide can be found on our website www.geosyn.co.uk.

Indicative Cellweb with overfill

Trays for strengthening gravelled or grassed areas over tree roots. Or for surfacing porous, minimal-dig, build-up. GOPLPA 40 mm thick or 85 mm thick Bodpave, below.

Bodpave 85 Plastic Paver

PRODUCT CODE: 150WW4080-PRO

Bodpave ${ }^{\circledR} 85$ porous pavers can be installed with either a grass or gravel filled surface. Bodpave ${ }^{\circledR} 85$ pavers/grids are strong interlocking 100\% recycled cellular porous plastic paving grid systems for grass reinforcement, ground stabilisation and gravel retention for regular trafficked surfaces (pedestrian and vehicles) BodPave ${ }^{\circledR} 85$ permeable pavers are manufactured in the UK from
 UV Stabilised 100\% recycled HDPE and are very strong, chemically inert and non-toxic. Bodpave ${ }^{\circledR} 85$ porous paving provides a durable, safe and environmentally friendly surface for trafficked areas with a very low carbon footprint. BodPave ${ }^{\circledR} 85$ is a cost effective solution to worn and rutted grassed areas, displaced gravel and for source control of surface water run-off. Bodpave ${ }^{\circledR} 85$ offers a load bearing capacity of up to $400 \mathrm{t} / \mathrm{m}^{2}$, will cope with static axle loads up to 60 kN .

Appendix VI

Example of Air-spade.

Courtesy of Ruskins Trees \& Landscapes

Appendix VII

- B J UNWIN FORESTRY CONSULTANCY Ltd. -

Head office: Parsonage Farm, Longdon, Tewkesbury, Gloucestershire. GL20 6BD.
Tel / Fax: 01684833538 . Home Tel: 01684 833795. Mob: \square E-mail:
Satellite Offices: - Haley Ridge, Highcliffe, Nr. Wadebridge, Cornwall, PL27 6TN. -105 Charfield Court, 2 Shirland Road, London, W9 2JR.
Associate office: - 1 Market Place Mews, Henley-on-Thames, Oxfordshire, RG9 2AH.
Principal: Jim Unwin BScFor, MICFor, FArborA, CEnv.
Chartered Forester - ICF Registered Consultant - Fellow of the Arboricultural Association Chartered Environmentalist.

From:	Jim Unwin	To:	Prospective Client
Date:	July 2023	No. of pages:	$\mathbf{2}$
Subject:	Professional CV		

Below are set out B J Unwin Forestry Consultancy's competences and experience.

Insurance:-

£5m Public Liability \& £2m Professional Indemnity (renewed June).

Personnel:-

B J Unwin (born 1956) started his forestry career as a tree surgeon and landscape contractor in 1975.
He studied forestry at Aberdeen University from 1977 to 1981, worked for Unilever as a Forestry
Manager in the Solomon Islands from 1981 to 1983. Since then he has been based in Gloucestershire assisting clients to manage their woodland, trees and vegetation throughout Southern Britain, and occasionally in northern England, Scotland and Northern Ireland.
In the mid-1980s to mid-1990s for a period of about ten years he taught chainsaw, tree felling and tree surgery courses at Worcestershire Agricultural College on a part-time basis. He was assessed and passed as a LANTRA assessor in these skills, and held NPTC certificates of competence in chainsaw use on the ground and up trees.
He now works as a tree consultant / adviser to a range of clients listed below.
For tree decay testing we have a PICUS II ULTRASOUND tomograph with electronic callipers and a
RESISTOGRAPH-R400 micro-drill.
A secretary/ plan technician assists; plus calling in extra help as required (eg ecologist or arboricultural assistant). On bigger projects he regularly works as a part of a multi-disciplinary team.

Current BJUFC qualifications are:-
BSc Forestry Hons $1^{\text {st }}$ Class, Aberdeen 1981.
Chartered Forester No. 0330064, 1986.
Fellow of the Arboricultural Association, 1995.
Licensed Subsidence Risk Assessor, 1997-2001 (scheme closed in 2001).
Completed Training in September 2002 to Prepare Native Woodland Plans for CCW and FC in Wales.
Arboricultural Association Registered Consultant No. 42, from 2004 to May 2021.
LANTRA certificate for Arboriculture and Bats, BJU in 2005.
Examined and approved to submit Welsh WGS as Management Planner and PAWS Assessor, 2006. Joined Utilities Vendor DataBase, Supplier No: 88101 in Feb 2006 (left 2010).
Training and Certification in basic CAD operation 2006.
Chartered Environmentalist April 2008.
Woodfuel Production and Supply : LANTRA Certificate of Training Dec 2008.
Training in CAVAT amenity tree asset valuation October 2010.
Company Safety Policy:- We were successfully assessed by Safety Management Advisory Services (SMAS) for many years as meeting CDM Regs 2015 Core Criteria Stage 1, as a Worksafe Consultant No. 75950. expired 09/2020. Not renewed.
CITB Health, Safety \& Environment Test for Managers \& Professionals passed 22/01/2015.
First-aid at work June 2013.
DBS Basic Certificate P0003GX9B7C dated $28^{\text {th }}$ Nov 2022 Certificate 001100238741.
ROSPA Routine Playground Inspection Certificate valid from 20/10/2022 to 20/10/2025.

Current clients and typical work include:-

English Heritage	Tree safety inspection contract 2007-2013 for East Midlands, East Anglia, London and SE England. Tree safety inspection contract for West of England \& Midlands 2008-2021.
Planning Inspectorate (PINS) \& Dept for Communities and Local Government. 2000-2017.	Arboricultural Inspecting Officer in South-West England, South East England, West Midlands and East Midlands; advising the First Secretary of State on TPO appeals since 2000. Contract with DCLG expired April 2008 when transferred to PINS. Contract continued with PINS, as Non-Salaried Arboricultural Inspector, determining TPO appeals and High Hedge appeals. All non-salaried inspectors released in 2017.
Architects / Developers / Planning Appeals	Complete Tree Constraints, Impact Assessment \& Tree Protection advice for planning, working with other professionals to input arboriculture into more complex development schemes. Recent assignments in Liverpool to Cornwall, Kent, Norfolk \& London. All using BS5837:2012. FULL CAD CAPABILITY.
Amey Mouchel Ltd	Overseeing Amey Tree Officer on motorway and trunkroad tree inspections throughout Midlands and Marches to 2012. Amey Mouchel are agents for Highways Agency.
CRH Tarmac Ltd, + Midland Quarry Products Quarryplan (in Northern Ireland).	Since 1990 working with Estates staff, quarry managers and Landscape / ecological consultancies organising and managing contracts for tree and woodland planting both pre- and post- quarrying. Also preparing landscape restoration schemes for straightforward sites plus landscape management on sites throughout southern England, East Anglia and south and south-west Wales. (Commendations for Land Restoration and Environmental improvements from Spelthorne Borough Council 2003.) Also in England \& Northern Ireland ongoing tree consultancy for Quarryplan.
Land Agents	Assisting Bruton Knowles clients' with woodland management and other tree issues since 1984. We also assist clients of Fisher German and Savills on a regular basis.
Tarmac Central now CRH Tarmac Ltd.	1988-2018 woodland management of Hopwas Hays Wood, Tamworth.
Rural estates in Herefordshire, Worcestershire and Gloucestershire, plus private woodland owners in southern England and Wales.	Since 1983 woodland management, tree management, hedgerow management. Many are Ancient woodlands and SSSI's requiring detailed ecological management plans produced in consultation with ecologists. About forty Farm Woodland Premium Schemes and about twenty Native Woodland Plans prepared to date in England and Wales. On-going EWGS grant applications. Input into Tir Gofal (and its successor) and Stewardship schemes. Better Woods for Wales (BWW) applications.
British Waterways	Ten-year Tree and Vegetation Management Plans along canals and around reservoirs in London, Hertfordshire, Berkshire, Birmingham, Staffordshire, Worcestershire, Gloucestershire, Shropshire, Llangollen Canal, etc: plus help in dispute with riparian owners. This work ceased around 2011
Stroud District Council	Management of 49Ha woodland since 1989 on FC schemes plus grassland on DEFRA Stewardship Schemes, including HLS. Retired Nov07.
One-off clients	Since 1983 assisting tree owners, developers, lawyers etc throughout southern or midland Britain, including Wales, on a wide range of tree-related issues including planning, planning appeals, subsidence, health \& safety, disputes, vegetation control, expert witness, valuation of woodlands, standing and felled timber, Christmas trees etc, and tree and landscape planting schemes. Recently High Hedge issues and BS5837 are hot topics.
Malvern Hills District Council. South Oxfordshire District Council	BJU Stand-in part-time Consultant Tree Officer Summer 2003. JF-D stand in Consultant Tree Officer summer 2009 to spring 2010.
Golf course \& leisure facilities	Assistance with development of Carden Park golf course in Cheshire. Management advice for trees on other golf courses: Eg Ross Golf Club, Swindon Golf Club .
Farm management	Management of own 95Ha farmland since 1985.

Please do not hesitate to ask for further information. B J Unwin END.

Constraints plans:-

- Tree Plan

Retention categories, based on BS 5837 Table 1:-
A = High quality \& Value ($>40 y r s$ life): Green.
B = Moderate quality \& Value (>20yrs life): Blue.
**C = Low quality \& Value (>10yrs life): Grey.
U = Trees to be removed (<10yrs life): Red.
**PLEASE NOTE. FOR CLARITY, C-CATEGORY TREES MAY NOT BE COLOURED.
and

- Root Protection Areas Plan RPA = circles.
 See Tree Table for dimensions.

and

- Theoretical Shading Plan
= quadrant of tree height in ten years' time from north west
(mid-morning) to due east (evening).
This is a shadow pattern for 1 x tree height
from 10.00-18.00hrs from May to September.

Appendix IX

Tree retention \& Tree Protection Plan. (TRP)

End.

