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EXECUTIVE SUMMARY 

The MOD’s PYRAMID programme introduces a change to the current method of avionic systems design and 

procurement, aiming to make the next generation of air systems affordable, capable and adaptable by the 

adoption of an open architecture approach and systematic software reuse. 

This document outlines how the system and software design processes and strategies used to develop air 

system software should be adapted when using the PYRAMID Reference Architecture (PRA), and how PRA 

artefacts could be implemented by an Exploiting Programme such that the Key User Requirements (KURs) can 

be realised.  It identifies at what stage in the design and development lifecycle the different PRA artefacts are 

most useful.  The development stages discussed in this document, along with associated approaches and the 

typical outputs, are as follows:  

 Platform Independent System Design 

o Build Sets, defining which components are required to meet the customer scenario; 

o Component Specifications, defining the services provided and consumed by components; 

o Bridges, defining the interrelationships between components; 

o Service Modelling and Data Modelling approaches to defining Component Specifications 
and bridges. 

 Platform Independent Component Design 

o A data driving model, representing how data driving is expected to be supported; 

o Extensions, defining how component extensions may be used; 

o Classes, defining the static structure of the component;  

o States, defining the dynamic behaviour of the component. 

 Platform Specific System Development  

o An infrastructure definition, specifying the Execution Platform to support the components; 

o A partitioning approach, defining how components are separated or aggregated; 

o Configuration, to prepare data that supports the data driving design decisions; 

o A component services approach, defining the underlying mechanisms between services. 

 Platform Specific Component Development 

o Component Implementation, which is software development of the component.   

 

PRA policies are referenced throughout this document, and should be used to support tailoring of a PRA 
deployment. 
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TERMS AND ABBREVIATIONS USED IN THIS DOCUMENT 

Definitions of project terms, the meaning of acronyms and the meaning of abbreviations used in this 

document can be found in the PYRAMID Glossary Ref. [5]. 
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1 Introduction 

The MOD’s PYRAMID programme introduces a paradigm shift to the current method of avionic systems design 

and procurement, aiming to make the next generation of air systems affordable, capable and adaptable by the 

adoption of an open architecture approach and systematic software reuse. 

1.1 Scope 

The PYRAMID Deployment Guide document outlines how the system and software design processes and 

strategies used to develop air system software should be adapted when using the PRA, and how PRA artefacts 

could be implemented by an Exploiting Programme such that the KURs can be realised.  

For the purposes of this document, “deployment” and “system” are terms generally used interchangeably to 

refer to a system implementation based on the PRA. 

Note, the lifecycle outlined in this document may differ from that used in a specific deployment activity. This 

document does not mandate any particular process and it is down to PYRAMID Exploiters to decide which of 

the considerations outlined would best suit their own processes. 

1.2 Purpose 

This document provides a guide to engineers about what to consider when developing a PRA based system 

and how this may affect a more traditional development process. 

1.3 Document Structure 

Future air systems are expected to be increasingly complex, and this document takes a “separation of 

concerns” approach to address this.  Instead of breaking down the problem space into a hierarchy of ever 

decreasing pieces, it breaks the problem space down into two stages: 

 The functional or platform independent stage of the design, independent of the Exploiting Platform’s 

infrastructure, described by the centre section of Figure 1. 

o Platform Independent System Design provides guidance on how the PYRAMID Reference 

Architecture (PRA) can be used to assist in developing a Platform Independent Model (PIM) 

and component specifications. 

o Platform Independent Component Design provides guidance on how the PRA can assist in 

further component maturation by considering component behaviour based on the 

component specification. 

 The non-functional or platform specific stage of design, usually dependent on the Exploiting 

Platform’s infrastructure and environment, is described by the lower section of Figure 1. 

o Platform Specific System Development provides guidance on how the PRA can assist in the 

platform design decisions, and in dealing with impacts on the components that arise upon 

identification of the detailed infrastructure of the Exploiting Platform. 

o Platform Specific Component Development provides guidance on how the PRA can assist in 

further component development for the identified Exploiting Platform’s infrastructure. 
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The document further distinguishes between what is required from the provider of a component specification, 

and the component implementation.  This, combined with an iterative design process, allows these concerns 

to be considered independently even though they may impact on each other in some ways. 

The sections in this document correspond to a potential deployment lifecycle, where a group of components 

are taken from the abstract level covered in the PRA through to executing code as part of a final system, as 

summarised in Figure 1. 

 

Figure 1: Deployment Lifecycle Diagram 
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This document has the following sections: 

1.3.1 Platform Independent System Design 

This section provides guidance on the functional analysis and design of a group of components (or whole 

system), independent of technology or infrastructure detail, with reference to the PRA. 

1.3.2 Platform Independent Component Design 

This section provides guidance on the functional analysis and maturation of a component, independent of 

technology or infrastructure detail, with reference to the PRA. 

1.3.3 Platform Specific System Development 

This section provides guidance on the analysis and development of a system (or group of components) for an 

Exploiting Platform’s infrastructure, with reference to the PRA. 

1.3.4 Platform Specific Component Development 

This section provides guidance on the analysis and development of a component for an Exploiting Platform’s 

infrastructure, with reference to the PRA. 

1.4 How to Read This Document 

Those involved in development of a PRA deployment should use the Description Document, Ref. [2], to 

familiarise themselves with the PRA policies, components, and example component build sets in the form of 

interaction views (IVs).  Many of the architectural policies are referred to throughout the Deployment Guide, 

and these can be read in Appendix A of the Description Document, Ref. [2]. 

The following subsections highlight the sections of the guide that are relevant to different engineering roles.  

The dark blue items are sections of highest relevance, while the light blue items are less relevant but still 

contain useful guidance. 
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1.4.1 Guidance for System Architects and Designers 
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System Design 2.1  Requirements Analysis
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4.4  Data Management Design

4.5  Component Services

4.6  Infrastructure Implementation
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3.4 Good Practice

 

Figure 2:  Main Sections of Interest for System Architects and Designers 

The starting point for those with the role of designing a deployment is section 2.  Platform Independent 

System Design outlines the overarching functional considerations for the deployment and drives out the 

requirements for the individual components.  Some of the technology dependent approaches covered in 

section 4 will also be of interest. 

1.4.2 Guidance for Component Designers  

2  Platform Independent 
System Design 2.1  Requirements Analysis

2.2  Logical Architecting

2.3  Component Specification

2.4  Bridges

2.5  Service Modelling

2.6  Data Modelling

3  Platform Independent 
Component Design 3.1  Component Modelling

3.2  Design Considerations

3.3  Implementation of Extensions

3.4 Good Practice

2.7 Good Practice

 

Figure 3:  Main Sections of Interest for Component Designers 

The starting point for a designer of a component using the PRA is the component specification design, see 

sections 2.3, 2.5 and 2.6. 

Section 3 describes the bulk of the component design work, which can be progressed once the service 

interfaces have been designed.  Platform Independent Component Design outlines the overarching functional 

considerations for components and defines the work that is expected to be done during component design. 
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1.4.3 Guidance for Component Developers 

3  Platform Independent 
Component Design 3.1  Component Modelling

3.2  Design Considerations

3.3  Implementation of Extensions

5  Platform Specific 
Component Development

5.1  Infrastructure Considerations

5.2  Component Implementation

5.3  Working with System Integrators

3.4 Good Practice 5.4 Good Practice

 

Figure 4: Main Sections of Interest for Component Developers 

The starting point for a developer of a component using the PRA is section 5.  Platform Specific Component 

Development outlines the steps to turn the functional design developed in section 3 into components that will 

work on the target execution platform. 

1.4.4 Guidance for System Integrators 

2  Platform Independent 
System Design 2.1  Requirements Analysis

2.2  Logical Architecting

2.3  Component Specification

2.4  Bridges

2.5  Service Modelling

2.6  Data Modelling

3  Platform Independent 
Component Design 3.1  Component Modelling

3.2  Design Considerations

3.3  Implementation of Extensions

4  Platform Specific 
System Development

4.1  Non-Functional Requirements

4.2  Infrastructure Architecture

4.3  Certification and Accreditation

4.4  Data Management Design

4.5  Component Services

5  Platform Specific 
Component Development 5.1  Infrastructure Considerations

5.2  Component Implementation

5.3  Working with System Integrators

4.6  Infrastructure Implementation

2.7 Good Practice

4.7 Good Practice

3.4 Good Practice

5.4 Good Practice

 

Figure 5: Main Sections of Interest for System Integrators 

Those whose role includes integrating the deployment are likely to be interested to some extent in all the 

work that is to be undertaken.  This role may be covered by a party acting as both designer and integrator, 

although it may be done as a distinct role separate to the System Architect.  Earlier integrator involvement will 

lead to a smoother integration and acceptance, particularly if the integration authority is different to the 

system design authority, and this should especially be considered for work described in sections 2.3, 2.4 and 

4.3. 
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2 Platform Independent System Design 

This section covers the platform independent system design.  Platform independent in this context refers to 

consideration of what functionality is required, with independence from the execution platform and all things 

that relate to where, when and how the functionality is to be achieved; those are covered in sections 4 and 5.  

The process, starting with stakeholder requirements, is summarised in Figure 6.  Note that this figure does not 

cover reuse of previously developed components.  
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(Section 2.2.2)
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Figure 6: Platform Independent Process 

Note that it is expected that the design process will be iterative, with developments in the platform specific 

modelling informing the logical design; the separation is about considering the functional and non-functional 

aspects independently. 
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2.1 Requirements Analysis 

The platform independent (functional) requirements applicable to the system need to be captured.  The 

derivation of the system functional requirements from both customer requirements and requirements to 

interface with equipment needs to be achieved by a normal system engineering process. 

2.2 Logical Architecting 

Each PRA component is designed to be solely responsible for any behaviour relating to its role, enabling a high 

level of cohesion, a measure of the component’s functional strength.  This high level of cohesion in 

components is an important principle, not only to minimise the impact of changes on the system but also to 

ensure no component contains information relating to other components.  Cohesion requires that 

components support the architecture in performing common functionality, by for example: providing their 

own logging information, and reporting their state information to support monitoring (see the Capability 

Assessment and Health Management policies).  It also means the components cover different operational 

contexts, for example training and simulation, maintenance support, Mission Planning and post mission 

analysis. 

The PRA is applicable to multiple mission scenarios, meaning that it is very broad in scope.  Therefore, to 

develop a deployment based on the PRA a process of specialising the design for specific deployment 

environments must be undertaken, while still maintaining independence from the execution platform.  The 

rest of section 2.2 provides guidance on the process of logical architecting, which applies this specialisation. 

The PRA does not provide an exploiter with a system architecture.  To utilise the roles, responsibilities and 

other information provided in the PRA, it is considered beneficial to have a schematic phase for a deployment.  

This could consist of features, functionality and hazards “roughly” laid out across the deployment components 

(including safety and security aspects), comprising an initial logical design.  An overall schematic and initial 

functional design helps reduce risk of costly system redesign later in the design lifecycle. 
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2.2.1 Build Set Identification  

Having identified the functional requirements, the next step is to identify the PRA components that will satisfy 

those requirements by mapping the derived functional requirements from the requirement analysis work to 

component responsibilities.  Future systems will need to be changed more quickly, more cost effectively and 

more frequently.  Consistent component definitions across systems is core to reuse at all levels (design, 

functional, and software), making mapping system requirements to the components a fundamental first step. 

Artefacts to assist with build set identification are included within the PRA Model: 

 Interaction views (IVs), which show how higher level functions may be achieved using a combination 
of components.  The IVs are included in Appendix C of Ref. [2].  

 Trace links, which indicate the component responsibilities that interaction events in the IVs 
correspond to. 

 Architectural policies, which discuss architecture wide provisions as well as more specific functional 
areas.  The policies are included in Appendix A of Ref. [2]. 

 Semantics diagrams within each PRA component definition, which contain entity relationships that 
identify the scope of the component and therefore indicate whether it should be included in the build 
set.  These diagrams are included in Appendix B of Ref. [2]. 

 Service Definitions, which define a basic set of services for each PRA component. These definitions 
can assist in determining where build set components will interact. These definitions are included in 
Appendix B of Ref. [2]. 

The identified components need to be captured into a PIM build set.  A PIM build set is effectively a parts list 

that specifies the selected components that make up a specific deployment of the PRA, and their 

interconnections.  An example diagram for a build set of components used in aerial refuelling is shown in 

Figure 7.  Typically a build set is documented in a composite or package UML structural diagram; multiple tiers 

of build set may be required to capture a complete deployment.  The PRA IVs are example use cases (which 

also include interactions, see Section 2.2.2) that can be consulted when identifying relevant components for 

related build sets.  More details on how to develop a build set are provided in Ref. [9] and [13].    

 

Figure 7: Example Build Set Diagram  
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2.2.2 Interaction Definition 

There are many different ways that the components can be combined.  The interaction views (IVs) provide 

examples of how components can be used together to meet a higher level design goal. 

As part of the platform independent design process, the interactions between different components in a PIM 

build set need to be elaborated.  Initially these are likely to be based around simple component-to-component 

interactions.  Multiple techniques for identifying the initial deployment-specific interactions can be used, e.g. 

usage analysis.  At this stage it can be beneficial to produce use cases based on what is required from the 

deployment, or a particular part of it.  Multiple use cases can be investigated within larger use cases, and the 

relationships between them in terms of how they use each other can be determined, as well as the 

relationships with external actors. 

Component interactions for a build set are typically captured in sequence or communication behavioural UML 

diagrams.  Figure 8 shows a communication diagram that defines interactions for the aerial refuelling example 

(introduced in Figure 7).  The communication diagrams used in the PRA IVs (Appendix C of Ref. [2]) show event 

interactions, but data flow interactions could potentially be used, as in Figure 8.  

 

Figure 8: Example Representations of Initial Interactions 

The PRA IVs show example interactions between components, which are satisfied by their services. These 

interactions can be matured into fully defined service interfaces, as described in section 2.3. For initial 

iterations, keeping components and services generic will help promote reusability in future iterations.  Further 

guidance on component design specialisation is covered in section 2.2.3. 

2.2.3 Design Specialisation 

Any design process is not going to be a single pass, as the design process for non-functional requirements will 

impact the functional design.  This means that the design needs to evolve so that the PIM, while still 

independent of the execution platform, continues to be tailored for a particular deployment as the 

infrastructure and non-functional requirements are matured.  To perform logical architecting of the system, 

component design specialisation should be considered.  The architectural policies need to be considered 

during specialisation, particularly the Component Extensions and Data Driving policies.  The following sub-

sections provide additional recommendations on tailoring of a design using the PRA to assist in meeting 

specific stakeholder requirements.   
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Note: these sections are not meant as an exhaustive list of tasks; additional tasks may be necessary, and those 

applicable will depend on the methodology being followed. 

2.2.3.1 Autonomy and System Constraints 

Air systems of the future are likely to include many automated decision making functions.  The ability to 

include multi-level decision making is at the core of the PRA design. 

 The Control Architecture policy describes a control architecture that has been embodied in the PRA, 

enabling the architect of an Exploiting Platform to implement system-wide control. 

 The Autonomy policy provides recommendations on capturing the level of autonomy that is deemed 

appropriate. 

 The Constraint Management policy provides recommendations on handling constraints associated 

with rules and limits, etc. 

 The Capability Assessment policy describes how changes in component and wider system capability 

should be detected, and use of capability information in determining response to the changes. 

The level of autonomy that is desired in the system, and the handling of system constraints, should be 

considered as part of the platform independent system design.  A principle of the Control Architecture policy is 

that decisions are made by the component that has the appropriate level of information (e.g. detailed low 

level information) and subject matter knowledge to make the decision. 

Note that although some components have oversight roles within the control architecture, they are still 

agnostic of where the tasks are carried out (i.e. they are still unaware of what other components are present 

in the build set).  The control architecture is not a solution for bridging the semantic gap between components 

(see the Component Connections policy for this). 

2.2.3.2 Component Scaling 

For a given deployment, it may be desirable to specialise the functionality of components for resourcing, 

temporal or spatial reasons (e.g. offline planning or ground support).  Each component can be scaled into 

distinct component variants containing a subset of the component’s responsibilities; each variant can then be 

tailored for specific resource profiles or operational contexts.  

When scaling a component it is important to avoid producing high coupling between the component variants.  

Given that variants will share the subject-matter knowledge of their original component, this needs some 

thought; meaningful and comprehensive boundaries between the variants are required in order to ensure the 

components can operate without each other, or so that they can co-operate efficiently. 

Component variants may be used to distribute a component’s functionality to address resourcing, security or 

safety concerns.  If this is the reason for the variants, they are likely to need synchronising with each other.  

These considerations are covered in section 2.2.3.3 and 2.2.3.4.  Additional guidance on distributing 

components by context is provided by M. Page-Jones who proposes several key strategies for developing 

coherent components; see Ref. [24] [48] [49] [50]. 
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2.2.3.3 Multiple Instances of Components 

Whereas scaling a component can enable specialisation of its overall functionality for aspects like different 

operational situations or settings (see Section 2.2.3.2), more specific details can be specialised using multiple 

actual instantiations of the same component (or variant thereof).  This may be done for numerous reasons, for 

example to: 

 Distribute or compartmentalise behaviour for resourcing, security and/or safety reasons.  Security 

and safety concerns should be considered together, see section 4.3. 

 Instantiate a data-driven generic component multiple times for specific purposes. 

The communications between multiple instances of components need to be kept to a minimum.  The service 

interfaces must be as carefully considered as those between different component variants (the distributed 

parts) – this will not be achieved by treating it as a single component. 

The following architectural policies offer recommendations on distributed working: 

 The Multi-Vehicle Coordination policy contains guidance on the orchestration of tasking over a 

system distributed between multiple geographic locations; 

 The Use of Communication policy contains guidance on how the data communications work together 

to provide a managed multi-node solution;  

 The Operational Support policy contains guidance on how instances of components can be used in 

the planning and operational usage of the system. 

Where instances of the same component co-exist, they are most likely to be changed by configuration with 

particular requirements incorporated specific to the Exploiting Programme, enabling the component to be 

more accurately tailored to its intended role.  An example might be multiple instances of a resource 

component with each instance configured to operate as a specific type of resource (e.g. a sensor type), see the 

Data Driving policy. 

Note that using multiple instantiations of a generic component for a particular purpose is a choice; a single 

parent instance could instead be used as the final arbiter of its extension components.  For example, a single 

instance of a resource component could delegate behaviour for different resource types to the extension 

components responsible for  behaviour specific to that resource type.  For information on component 

extensibility, see section 3.3 and the Component Extensions policy. 

2.2.3.4 Data Synchronisation 

The PRA components are designed to be highly cohesive, partially to minimise the amount of data sharing.  

When a component is scaled or distributed, interactions need to be created for the required synchronisation 

between the different instances of the same component.  This will often occur naturally as part of the 

expected interactions with other services, and does not require any additional dedicated design.  These new 

interactions are important because they may not have been covered in any previous interaction views. 

Synchronisation needs to be analysed; initially it is sufficient to consider existing interaction definitions to 

cover synchronisation.  Section 2.6 suggests how data that may require synchronisation can be analysed, so 

that it can be better understood. 
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2.3 Component Specification 

Based on the interaction definition identified as part of logical architecting, it should now be possible to better 

refine what is required of each component.  It is recommended that component specifications are iteratively 

refined in a collaborative manner with the Component Designer.  Although the Component Designer does not 

have to be involved when the specification is first defined, they should be involved as early as possible. 

The component specification defines the purpose of a component in terms of what it provides and what it 

needs from the system.  This allows for parallel work to be carried out on all the components, and helps 

determine whether components are going to meet the system needs.  When specifying a component for a 

deployment, any specified terms that are particular to the deployment should be aligned with or related to the 

language of the PRA definitions on which they are based.   For example, when specifying a specialised 

interface based on a PRA service definition, the relationship between specialised attributes and any equivalent 

attributes in the PRA definition should be stated (if they are not going to be aligned).  This will help maintain 

traceability and understanding. 

Depending on the level of reuse being undertaken in the deployment, a component specification may already 

exist.  Reuse of components should be maximised at this stage so that software and artefacts with pre-existing 

functionality are not developed unnecessarily.  Component specification typically covers three main areas: 

• Functional Requirements – requirements that have been derived for the component during system 

analysis.  See section 2.3.1. 

• Services – define what is provided by the component and what it requires in return, see section 2.3.2. 

• Service Dependencies – define the relationship between services the component provides and 

consumes, see section 2.3.3. 

For compatibility and consistency, component specification functional requirements and service definitions 

should specify the detail for how the component will be required to support the necessary PRA policies.  This 

should be specified while considering both the policy’s direct implications for the component and also the 

effect on the wider deployment.  For example, the way that different requirements should be communicated 

through the component’s services will support the Dependency Management architectural policy.  The policies 

are included in Appendix A of Ref. [2]. 

As the component specification is refined and the design better understood, safety, security and autonomy 

related dependencies can be captured.  Section 3.2.5 discusses further detailing of these dependencies to 

enable later component implementation, particularly with respect to safety.  Section 4.3 discusses addressing 

of non-functional requirements at the Platform Specific Model (PSM) stage. 

2.3.1 Functional Requirements 

Component requirements need not be textual.  One of the key goals of model based design is to provide a 

more automated way of progressing from high level requirements to running software.  Ideally, to support this 

the requirements should be captured in a machine interpretable way, with the component supplier and 

System Integrator having an agreed approach to electronic exchange of requirements, traceability and 

verification evidence. 
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2.3.2 Services 

Services are at the core of the component specification; a service may be as simple as providing a piece of 

information or as complex as generating a complete flight path.  There are many approaches to defining the 

service interface to components; while the PRA does not mandate any particular methodology for service 

design the PRA has been designed with support for the following modelling methodologies in mind: 

 A service modelling approach as detailed in section 2.5.   

 A data modelling approach as detailed in section 2.6. 

 A domain modelling approach as detailed in Ref. [13]. 

Multiple approaches can be used at once, but often a dominant method is required across a deployment to 

avoid multiple definitions of the same service; for more on this see Ref. [8].  Each PRA component definition 

(included in Appendix B of Ref. [2]) provides basic services which can be used as the basis for the services in a 

component specification.   

2.3.3 Service Dependencies 

A service dependency explains how the services a component provides depend on other provided or 

consumed services.  The dependencies between a component’s service activities can be represented in activity 

diagrams, of which a generalised version is shown in Figure 9.  Aspects such as events and signals can be 

included in an activity diagram to provide the desired level of detail.   
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Figure 9:  Service Dependency Diagram 
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As the components are refined during a deployment, these diagrams should be modified and matured. The 

PRA includes a service dependency activity diagram in each component definition, and these can be used to 

inform a component’s service dependencies for a deployment.   

A service dependency is the part of the component specification that has to be the most co-operative in its 

development, as it is used to tell a System Integrator what has to be provided to the component in order to 

get the service that is requested. 

2.4 Bridges 

The need for information to be exchanged, and to overcome semantic gaps between components, is met by 

passing information via special inter-component connections known as bridges.   

Part of the design process is to identify these bridges to make sure that the gap being crossed is not too wide, 

and to ensure the complexity that needs to be reasoned about in the architecture is not being hidden in the 

bridges.  Approaches to specifying this behaviour are provided in the Component Connections and Use of 

Communications policies.  Additionally, there are examples of bridges within the standardised connection 

patterns provided in Appendix A of this document. 

Within the PIM, model partitioning and timing are not considered; the model ‘assumes’ that all interactions 

are instantaneous and allowed. The platform specific modelling described in later sections will address non-

functional constraints such as partitioning and timing; where this changes the logical behaviour, an iterative 

approach can be undertaken to capture this in the platform independent model if required. 

Section 4.7.6 describes the use of component subject matter entity counterparts later in the design process to 

enable bridges to be implemented in a code efficient way.   

For more information on bridges see the Component Connections policy. 

2.5 Service Modelling 

Service modelling methodologies such as Service Oriented Architecture (SOA) start from the assumption that 

the component specification can be fully defined by its services alone.  This means that, unlike data modelling 

(see section 2.6), when defining the component the behavioural aspects such as operations are considered but 

the associations between the subject matter entities are not.  These methods complement the approach used 

to create the components defined in the PRA, as the key service characteristics are very similar.  For more 

information on SOA see Ref. [11] and [12]. 

A service modelling approach is often iterative and subdivides the platform independent model into separate 

stages of development, providing further separation of concerns.  Example separation is shown in Figure 10.  

This can represent the evolution of a single model, however in an auto-translation environment this will often 

be multiple models with approximately the first 80% of the next layer auto-generated from the model above; 

see section 4.6.2 for more on auto-translation. 
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Figure 10: Example Set of Service Modelling Stages 

Note that the set of stages shown in Figure 10 is a progression through both PIM and PSM levels, without a strict 
boundary between them. 

2.5.1 Model Artefacts  

Good service definition is essential for efficient integration of a deployment.  Service modelling provides two 

types of services at the PIM level: 

• Provided services, which are services offered by the component; 

• Consumed services, which are services required by the component from elsewhere in the system.   

Typically component specifications will provide the following artefacts related to services: 

 Service interfaces, which define the functionality provided or consumed by the component.  

Interfaces may contain service operations and/or attributes that are each related to the overall 

provided or consumed service.   

 Component centric service contracts that define which service aspects must be adhered to so that 

the service can form a relationship in order to provide a capability.  For more information see the 

Component Connections policy. 

Service interfaces can be modelled in two ways:  

 A simple service, where the interface is defined as attributes on a service interface class that can be 

mapped via a data-only relationship in a similar way as in data modelling, e.g. where the interface is 

just passing data. 

 A contract service, where a simple interface cannot fully represent the expected behaviour, e.g. if the 

interface is requesting an action rather than just passing data.  
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These two are often combined in the same service definition (e.g. an attribute that is used in a simple interface 

to report the progress on the task in the contract interface).  This eliminates the need for “get/set” operations 

as part of the platform independent model, allowing for a simpler representation.   

A service pattern defines a description of a common solution to a recurring problem within a certain context.    

See the Component Connections policy for more on service patterns.  Appendix A of this document contains 

examples of applicable service patterns in use. 

The basic services provided in the PRA (Appendix B of Ref. [2]) should be specialised for the needs of a 

deployment.  A base set of attributes are included on Service Interfaces in the PRA model, and these can be 

refined or additional attributes can be added as services are developed further.  The PRA interaction views 

(Appendix C of Ref. [2]) provide examples of how components interact, which can help when determining 

service operations; the interactions can be considered as needs to provide and consume services, which in 

turn may be realised by more than one service operation. 

When defining attributes and operations on the services it is important to remember that the service object 

only exists for the life of that service being started, so it cannot capture and retain information for it to be 

called elsewhere. However complex services are allowed where they are set-up or planned via one operation, 

and the data is retrieved by a different attribute or operation. 

2.6 Data Modelling 

Data modelling methodologies start from the assumption that the component specification can be fully 

defined by a component’s entities, their attributes, and the relationship between the entities.  This means that 

unlike service modelling (see section 2.5), when defining the component the relationship between subject 

matter entities are considered, but behaviours and behavioural aspects such as operations are not.  The 

semantics diagrams within the PRA component definitions, despite not being complete class diagrams, give 

context to the component’s entities that can be useful in development of a data model.  Data modelling is 

often done using a bottom up approach where the data provided by a component is already known and is 

defined as being available to external parties.  Data modelling can be used as a stand-alone approach or in 

combination with service contract definition to help develop a cleaner integration.  For data issues relating to 

component design see section 3.2. 

A data modelling approach, like service modelling, is often iterative and subdivides the platform independent 

model into architectural layers to provide further separation of concerns.  Future Airborne Capability 

Environment (FACE), Ref. [26], for example, separates the model into conceptual, logical and platform (i.e. 

physical) models; an illustration of the modelling approach is shown in Figure 11.  Note that the logical and 

physical models can often be generated through auto-translation based on a set of predefined rules; see 

section 4.6.2. 
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Figure 11: Example Set of Data Model Stages 

Note that the set of stages shown in Figure 11 is a progression through both PIM and PSM levels, without a strict 
boundary between them. 

2.6.1 Model Artefacts 

Across a deployment, a shared data model is used that contains the lowest level data type definitions.  This 

allows shared physical measurements and observations so that conversion overheads between deployed 

programmes are reduced. 

The term data model can refer to either a component information data model or a system information data 

model.   

 Component specifications are defined using component information data models, user concept views 

and data views, see section 2.6.1.1 for more information. 

 The relationships between components are captured in system information data models, see section 

2.6.1.2 for more information.   



UK OFFICIAL 

RCO_FUT_23_006 Page 30 of 82                                                            Issue 4.1 

© Crown owned copyright 2023.   

UK OFFICIAL 

2.6.1.1 Component Information Data Model and Data Views  

A Component Specification can provide the following artefacts: 

 A component information data model, defining the data that is used within a component, and data 

views, defining which parts of the entity data model are exchanged over a particular interface.   

 User concept views, incorporating customer focused component use cases, therefore only showing 

the parts of the deployment that the component is directly involved in.  

An information model is represented as an entity, relationship and attribute (ERA) diagram, which shows a 

logical breakdown of the data structure within the component. 

The information model can be used to define the component specification, as the understanding of the 

relationships between the entities is important.  Although the full representation of the data available for a 

component is captured in the information model, often only a subset is required to be shared with other 

components; the relationships involving data made available outside of the component are modelled as data 

views.  A view is a projection of attributes within the information model, see Figure 12.  These are often 

represented as counterparts, as described in the Component Connections policy.  

 

Figure 12: Data Views Contain Projections of the Subject Matter Attributes 

System Designers should assess whether an information data model is required, and if so whether it should be 

a single model or subdivided into relevant sub-models.  Where necessary, the management of links and 

overlaps in multiple data models should also be considered.  Only the parts of the information model that are 

required for the interface specification need to be released to third parties, which is important where 

Component Developers are concerned with the privacy of their information model. 
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2.6.1.2 System Information Data Model 

A reasonable subdivision within a system data model for a typical programme might be: 

 User concept views, incorporating customer focused system use cases. 

 A system information data model, describing the subject matter data groups.  The subject matter 

entities within the PRA can be used as a starting point for the data model. 

The information model can be used to: 

 Model parts of the system, particularly the data-driven parts of a component. 

 Define the semantic data exchanges across multiple platforms operating in a common operating 

domain. 

 Support reuse of existing data types across multiple deployments prior to contract placing. 

In the same way that a component information data model is used in combination with data views to define 

the component’s relationship to its interfaces (see section 2.6.1.1), the system data model can be used to 

capture the relationship between different components.  Again a layered approach here can bring reuse 

advantages, including defining bridge conversion routines. 

2.7 Good Practice 

This section provides good practice recommendations applicable to typical cases of platform independent 

system design, including guidance for avoiding common pitfalls. 

2.7.1 Do use other standards and models in conjunction with the PRA 

The PYRAMID Reference Architecture is not designed to contain all the information that is required to design a 

fully interoperable end system.  Rather it is designed to provide a common component structure and 

overarching policies which when combined with other architectures and models provide a full definition of a 

system architecture, see Figure 13.   
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 Data driving strategy

 Shared data model

 Data type definitions

 Overarching Rules/Policies

 Common Vocabulary

 Generic Component Scope

 Generic Component behaviour

 Generic Focused Views

PYRAMID Reference Model

 Modelling approach

 Structure representation 

 Behaviour representation

 Service definition method 

 Extension interface strategy

Category Architecture Data Interchange Definition

System Architecture

 

 Tailored data models, design patterns, logical 
views

 Service taxonomy and allocations

 Focused views

 Often common across programmes

Subject Matter Data Models  

 

 Middleware definitions

 Target execution platform definitions

 Coding standards

 Data interchange protocol standards

 Timing model, threads, storage, logging

 Partitioning strategy

 Safety and security Standards

Production Line Architecture

 Operational, Logical and Physical Views

 Detailed Service Catalogue

 Data Exchange Protocol

 Runtime environment definition

 May include artefacts from multiple architectures

 

Figure 13: Example of Multiple Sources Contributing to a Full System Architecture 

The advantage of the mix and match approach is that it allows for end systems to be standardised while still 

being tailorable; allowing for an instance of a deployment to be Multilateral Interoperability Programme (MIP) 

compliant and PRA based at the same time.  For more on the relationships between different reference 

architecture types see Ref. [8]. 

A category architecture typically identifies features that are common across multiple programmes such as 

canonical models, e.g. a FACE Shared Data Model, Ref. [27].  A programme will need to assess if an information 

data model is required, and if so whether it should be a single or subdivided data model (e.g. a separate model 

of data for data driving). 
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Similarly, the use of subject matter data models allows a common model to be shared between programmes, 

increasing the compatibility between programmes and also driving down cost.  Subject matter models may be 

defined by the programme for any specific deployment, or subject matter specialisations may be used such as: 

 Battlespace Situational awareness e.g. MIP Information Model, Ref. [28]; 

 Airspace integration e.g. AIXM, Ref. [29]; 

 UAV Command and Control e.g. OSD UCS, Ref. [30]; 

 A conceptual model conformant to FACE metamodel, Ref. [27] and [63].   

Individual programmes should specify and share their logical and physical layers for detailed enumerates and 

logical representations, such that interface code could be auto-generated through mapping to the relevant 

entities in the category architecture conceptual layer. 

2.7.2 Do delegate resource conflict decisions as low as possible 

A principle of the Control Architecture policy is that decisions are made by the component that has the 

appropriate level of information and subject matter knowledge to make the decision.  Where decision conflicts 

arise, these should then be made as close to the end of derived requirement chains as possible.  This means 

that components close to the interfaces with resources are encouraged to make the resource level decisions.  

The higher levels of the control architecture are abstracted away from the resources and are therefore not 

likely to be able to make the detailed decisions.  Components with the broader understanding of the subject 

only need to be involved if the components that understand certain specific detail can’t find a way to meet the 

requirements they have been given.  See the Dependency Management and Resource Management policies 

for more information. 

2.7.3 Do consider which component is most appropriate for managing certain 

calculations 

When a component requires data to be calculated that is not yet available, it is often the responsibility of that 

component to instigate the calculation of the data when needed.  However, a design decision needs to be made 

concerning which component should actually perform the calculation (and therefore what data needs to be 

transferred and to where).  Various considerations should be weighed against one another when making these 

decisions: 

1. Keeping the calculation within the component most concerned with the result.  This has the 

benefits associated with the calculated data being more easily available where it is needed, such as 

reduced latency or data transfer overheads if the result contains a large amount of data.  

2. The amount of data needing to be transferred.  Performing the calculation in a component that 

contributes a significantly larger data set to the calculation will reduce data transfer overheads and 

potentially latency in producing the result. Note that: 

 Whilst it may be possible to narrow down the amount of data needed for a calculation within a 

large data set, additional design or computational effort may be required to achieve this 

efficiency. 

 Thought should be given to whether current technical limitations that restrict large scale data 

transfer may be reduced in future. 
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3. Keeping the calculation in one place.  Where there are common elements or a common theme 

across calculations, it may be beneficial to perform the calculations in the component that contains or 

is responsible for the common elements. Whilst common libraries (e.g. mathematical libraries) do 

enable multiple components to use the same library function without having to redevelop it, there 

may still be benefits to restricting the number of components that perform similar calculations, such 

as easier integration of library changes. 

4. Safety and security considerations.  The location of the calculation may need to take account of: 

 The required or desired integrity of the component and/or the hardware that it is intended to be 

hosted on. 

 The possibility of source or output data corruption, or surveillance during transit, and any 

additional overheads required to mitigate this. 

The significance of point 1 verses point 2 will require assessment to determine where the greatest performance 

or design effort benefits lie. For example, a conflict between a proposed route and the terrain would be of most 

concern to the Routes component rather than the Geography component. However, performing the calculation 

in the Routes component would likely require large amounts of terrain data to be transferred to the Routes 

component, rather than a much smaller amount of route data (e.g. represented as a line or simple volume) 

being transferred to the Geography component. Furthermore, there will likely be other cases where lines or 

volumes, representing things in the subject matter of other components, need to be compared with terrain to 

determine if they intersect. Therefore, performing the calculation in the Geography component may be the best 

solution from both a performance and design effort perspective. 

2.7.4 Do be aware of emergent properties and behaviour 

Emergence occurs where a group of components have properties and behaviour when interacting as a group 

that no individual component has on its own. 

There are two main problems related to emergence that should be considered. Firstly, desired emergent 

behaviour is not immediately apparent in the component set. Secondly, undesirable behaviour may result from 

the components being unaware of the behaviour of each other. 

Many examples of how to model desired emergent behaviour are covered in the interaction views.  Emergent 

properties resulting from emergent behaviour can often cause confusion, as it may seem that they should be 

properties within an individual component. These properties can often be identified in that they can only be 

described clearly at an abstract level, covering multiple subject domains: one such concept is the context of a 

mission.  Mission context information on, for example, an area of operation may be represented by a set of 

related data from different components, and may not appear with an ‘area of operation’ label in any individual 

components.  However it may well appear in a more abstract component that understands the subject 

broadly, but with certain details distributed between other components that understand those details 

specifically. 

Undesirable emergent behaviour is a problem with any system which is an integration of its constituent parts.  

However, this is a greater problem with a design for which separation of concerns is the underlying philosophy 

due to the deliberate ‘independence’ of components and emphasis on autonomous behaviour.  This may lead 

to issues such as undesirable ‘loops’ of behaviour, or over processing (e.g. filtering) data in different places 

which can result in degraded quality and unacceptably extrapolated data.  These issues can generally be 
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mitigated through being careful with and understanding the implications of how components interact during 

design.  Careful analysis of alternative scenarios and dynamic constraints can be helpful. 

2.7.5 Do not create a stove-piped design 

One of the hallmarks of a legacy style functional decomposition is the stove-pipes it creates, where lower level 

resources are under the control of a dedicated higher level component, with all access going through that high 

level component (see Figure 14).  This leads to a high degree of coupling, in turn leading to code duplication 

and increased design change latency; clearly this is to be avoided in new systems.   

 

Figure 14: Do Not Use Multiple Copies of the Same Component in Stove-Pipes 

If a specialisation of a component’s role is needed to support some of the behaviour in new equipment, this 

should where possible be accommodated using extensions rather than variants.  The impact of this 

specialisation will decrease as you go up the abstraction layers in the control architecture: if you need 

specialisations in a long chain it suggests that abstraction is not taking place, as shown in Figure 14.  Decisions 

should be made by a component to which all the required information detail is available, and detailed 

information should not be available at the higher abstraction levels.  For instance, it is reasonable for a Tasks 

component to decide that to meet intelligence objectives a sensing action is needed, and then delegate the 

details of that to Sensing.  As a result there is no place for a dedicated “Tasking for Sensing” specialisation, as 

all the sensing subject matter knowledge is within Sensing, not Tasks. 
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Another symptom of this bad practice is the passing of data through an intermediary component to give it to 

another; an example of this is illustrated in Figure 15.  Components should access the data they need directly 

and not via an intermediate component.  Higher level components are not a special case; the control 

architecture is about the level of abstraction of components, not the control of access to low level data. 

 

Figure 15: Information Is Passed Directly, Not Through Another Component 

2.7.6 Do not use Tasks as a stand-in for planning 

A common pitfall when determining the logical separation of the system is to look at a snapshot of the 

lifecycle of a component; a symptom of this mistake is to think that another component will provide the 

planning (e.g. Tasks).  Tasks will provide the requirements for an activity, but this is about a high level 

abstraction, not about prior knowledge in time, as illustrated in Figure 16.  If you find yourself duplicating data 

from a component in Tasks or a tactics extension then this suggests that you have failed to properly abstract 

up the activity to constraints and triggers.   

 

Figure 16: Tasks Is Not a Stand-In for Planning 

2.7.7 Do not treat Tasks component as an overseer 

A common problem is to think of the control architecture as a control hierarchy with Tasks sitting on the top as 

a substitute for a pilot in an overseer role.  A symptom of this is long chains of status messages being passed 

between components, triggered from the same event, with Tasks acting as a progress tracker.  The Control 

Architecture is about abstracted views of tasks; each component should only report progress in its own 

context.  Any problems and decisions should be handled by the component that has enough information detail 

to correct the problem, which due to the subject-matter-centric nature of components will usually be in the 

one that detected the problem or change, if applicable to its role and responsibilities. Tasks will only be 

involved in the abstracted view of the actions, as illustrated in Figure 17.   
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Figure 17: Reporting Between Components 

Tasks should not need information about the progress of a component with the relevant lower levels of detail, 

but if it does, it can go direct to that component for the information.  It does not need to be passed up a chain.  

Similarly, if a user wishes to view low level information about an activity this would be provided to the HMI 

directly from the related resource component.   

2.7.8 Do not over define inter-component behaviour during system design 

When analysing inter-component interactions in multi-component sequences for a use case, going into too 

much detail can lead to the component design being constrained to do things one way, which makes it harder 

to incorporate a change into the system at a later date.  A symptom of this is showing detailed protocol 

handshaking in high level inter-component use cases. 

Likewise, although the logic that is required from components should initially be determined assuming that all 

goes as desired, too much focus on multi-domain ‘sunny day’ and ‘rainy day’ scenarios may drive a 

component’s design to be overly specific and less resilient to change or reuse.  Simple design patterns, for 

example not assuming that a request on another component is always carried out, can drive out a more 

general approach giving a generalised resilience. 

2.8 Summary 

System level artefacts that should be identified by this stage are: 

• Build sets that define which components are required to meet the customer requirements; see 

section 2.2.1. 

• Component specifications, which are populated with the parameters to be exchanged; see section 

2.3. 

• Bridges, which are populated with mappings that connect the services of interacting components; see 

section 2.4. 
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3 Platform Independent Component Design 

This section covers the platform independent component design process, which considers how the PRA 

supports the maturation of component behaviour: the behaviour required from a component in order to fulfil 

its responsibilities within the system and provide its services.  The maturation of this behaviour enables 

implementation of the component specification.  Where compliant component specifications are available 

that meet the needs of the deployment, reuse of already implemented components should be considered.   

The platform independent system design produces the component specification, which defines the purpose of 

the component, in terms of what it provides and what it needs from the system.  This was discussed in section 

2.3.   

Component design is considered separately from component specification, as the specification should not 

expose any internal details and could be applicable to many different component designs.  However, where 

the Component Designer discovers the need for new services, they should consult with the System Designer to 

agree any changes to the component specification.  This will improve the correctness of the specification, and 

makes sure that component design remains within the bounds of the component scope. 

The functional requirements placed on the components by the system design need to be analysed to further 

the maturation of component design artefacts.  As with the system level, the requirements need to be 

analysed through a normal system engineering process; see Ref. [8].  In line with the rest of this document, 

this section assumes a separation of concerns from non-functional requirements, addressed in sections 4 and 

5. 

3.1 Component Modelling 

The modelling performed by the System Designer will have defined the component specification, and this will 

have identified the component’s services along with the data required to support them (including data-types 

for parameters referenced by the service interfaces).  Future systems are required to be rapidly adaptable at 

an increased frequency with an overall reduction in through life costs; this section covers what component 

modelling techniques support this goal, and what assistance is provided in the PRA.   
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3.1.1 Structural Analysis from Data 

The PIM focuses on modelling high-level concepts to achieve the highest level of independence, as the level of 

independence inversely correlates to the amount of low level detail.  Object-oriented design techniques 

should be used to define the system, for which additional guidance is given in Ref. [31] and Ref. [32]. 

A system wide data model can be used to help identify what data is available at the component interface.  

However, this does not provide a detailed structure of what the component needs to hold internally, which 

needs to be considered further to identify software structure.  Typically this information is captured as a class 

diagram, and should address the following: 

 Consider the “items” (the actualisation of the entities) that the component reasons about and 

manages; the semantics diagram within a PRA component definition can be used as a starting point 

for this by providing context to the component’s subject matter entities.  The component 

specification will have defined the public entities, i.e. those entities needed to support the services.  

Those entities, within the subject matter part of the component specifications, can be considered as a 

conceptual definition for the “items”.   

 Consider whether any additional internal entities are needed to support the public entities.  The 

Component Designer should address this to enable the component model to be completed, and 

should also take into account the component’s scope boundary (as defined in Appendix B of the PRA 

Description Document, Ref. [2]). 

 Consider the information and state data that entities need to capture.  This is done by defining 

attributes on the classes to capture the data they own, or data they use to capture their current state. 

 Consider the relationships between the entities.  This defines which entities make use of or reference 

other entities.  Note that references between entities are implied attributes – so there is no need to 

model attributes to show containment or aggregation of entities. 

 Consider the operations needed to support the required behaviour.  This includes operations needed 

to support services and any autonomous/internal behaviour.  The level of behaviour detail needing to 

be defined at this stage will depend on whether code auto-generation will be performed at the 

Platform Specific Model (PSM) design stage, and on the selected middleware. 

The structural and behavioural design of the component following standard object-oriented design practices 

may drive out additions to the data model to support data driving; examples include configuration data such 

as maximum and minimum limits of allowable values for a particular class.  Methods for loading this 

configuration data should also be considered when modelling the internal structure. 
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3.1.2 Data Driving 

The PRA promotes a data-driven approach in the development of the PIM; see the Data Driving policy.  This 

means that data can be used to configure, initialise and determine how components can be expanded where 

applicable.  The designer needs to consider whether a component would benefit from being data-driven 

through use of data in any of those ways, which are elaborated below: 

 As configuration data, which includes datatype specifications, constants and constraints.  This data 

defines the characteristics of the component, and the characteristics of types within its data model.  

Typically this data is used to instantiate specification-classes.  These are classes which define the 

characteristics of a super-type; namely its class level attributes and value constraints which apply to 

all classes associated with the specification-class. 

 As initialisation data, which provides initial state data used to instantiate entities according to their 

datatype specifications.  The process of using initialisation data includes the loading of the initial data-

set and population of any data dictionaries or enumerated types.  Further detail on data loading can 

be found in the Data Load Interactions section of the Operational Support policy. 

 As extension data, which determines how and in what way component behaviour can be specialised 

(e.g. identifying extension components and relating them to the entities they specialise). 

Often a structure can be developed that allows for the data loading of an external data model, allowing for a 

design to quickly change as the data model develops. There are several standards specifically set up to support 

this; for an example see Ref. [26].   

When looking at logical grouping of data driving, the owner of the data needs to be considered.  Some data 

(e.g. software configurations) may be added by the component development team and baked in as part of the 

code level certification, other data will be set by the System Integrators, while still more will come out of 

mission planning.  The consideration of all these data control points often leads to unearthing a whole set of 

data-driven parameters that may not otherwise have been identified.  Although the data groupings are a PIM 

problem, how the different data controls are separated, including the impact on certification & accreditation, 

is a topic for the platform specific design (see section 5).   

Note that using data alone to determine how a component can be expanded is covered by configuration data 

(through datatype specialisation) and initialisation data (by instantiating instances of specialisations).  This can 

result in expansion of the range of entities that a component can manage and control, but cannot truly 

specialise behaviour beyond activating specialisations already factored into the component’s design. 

3.1.3 Behaviour Modelling 

Static structural diagrams (e.g. class diagrams and entity relationship diagrams) only tell part of the story; it is 

also important to capture the behaviour expected from services.  This is done using activity and sequence 

diagrams showing the relationship between external services and internal operations.   

State transition diagrams should also be considered for classes that manage state data, showing how they will 

behave for different situations and operations; this can also help drive out additional required information.  

The level of detail to be modelled depends on how formal this needs to be, for safety critical systems this may 

well include action language statements providing a clear definition of the expected behaviour. 
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Use case diagrams are also important, as they help to represent the functionality of the component under 

analysis in terms of how it is intended to be used by external actors.  Use case analysis is recommended as it is 

a modelling activity that is customer focused but component centred, and can capture the intended behaviour 

of individual components. 

With this information in place it is then possible to design the test cases that will be used in testing of the 

component prior to integration. 

3.2 Design Areas of Concern 

Each component definition within the PRA contains design considerations and design assumptions sections.  

These outline key aspects of the behaviour, structure and dependencies that were anticipated when the 

component was being developed.  As well as the component specific guidance, the PRA Description Document 

contains policies that are relevant to component development, and these are discussed in the following 

sections.   

3.2.1 Data Configuration 

When configuring a component using data-driven techniques, the specification of the component identifies 

the type of data that will be data-driven but does not concern itself with the internal structure that is required 

to achieve this.  This ensures that the internal structure of the component is not restricted to any one design 

style. 

Configuration is beneficial because it supports different sorts of deployments (e.g. different Exploiting 

Platforms or different hardware setups) and adaption to end-user scenarios (e.g. different role-fit, operational 

requirements, etc.).  However, adding configurability will likely increase the complexity of verification, and 

associated cost implications should be considered when deciding whether to make a component configurable.  

For further guidance see the Data Driving policy. 

3.2.2 Automation, Autonomy and Constraints 

In order to aid understanding of the likely behaviour of a component, the PRA components have been grouped 

by levels of expected decision making responsibility and control.  For further guidance see the Control 

Architecture policy.   

Whatever the level of the component within the architecture, if it has the information needed to make an 

informed decision then it should make the decision rather than delegate it or push it up the chain to another 

component.  This information may include the authorisation to make the decision.  The level of autonomy that 

is supported, including requirements for when human interaction is needed, should be captured as part of a 

service contract.  For further guidance see the Autonomy and HMI policies. 

To support its decision-making, a component needs to provide the facility for the correct determination of 

constraints.  Constraints may be provided as part of configuration data (see section 3.2.1) and loaded during 

initialisation, through planning activities, live via other mechanisms, or as an integral part of a component’s 

data model.  Component Developers should provide sufficient information to aid initial component 

integration, such as example constraint data.  This will allow the System Integrator to better understand what 

is expected from the supporting components and infrastructure.  For further guidance see the Constraint 

Management policy. 
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3.2.3 Capability and Health 

It is important that where appropriate components are able to assess their capability over time and with use, 

including the ability to predict capability progression, and to highlight missing information that could improve 

the certainty or specificity of the assessment of their capability.  This capability assessment functionality can 

support activities for alerting a user to anomalies, offering remedial action or performing automatic 

corrections. 

As well as Anomaly Detection and Health Assessment components monitoring the health of the underlying 

infrastructure that a component relies on and is aware of, the component needs to be able to provide 

information for determining whether there are anomalies that are the result of systemic changes, which may 

be the result of faulty or corrupted software. 

A Component Developer should provide data to support the configuration of health and cyber defence 

monitoring components (including detection of anomalies), allowing other components to better characterise 

changes in the capabilities of the system.  For further guidance see the Capability Assessment, Health 

Management, and Cyber Defence policies. 

3.2.4 Coordination between Nodes 

The PRA components can be designed to cover the numerous types of situation or setting that the deployment 

may be involved in (e.g. training, maintenance support, and from mission planning to post mission data 

analysis).  At the platform independent stage of design it is assumed that every component has access to the 

data that it needs to carry out its role; however, there needs to be consideration of how to coordinate data 

between multiple locations.  Data coordination requirements are likely to drive out specific services and 

dependencies to be captured in the service contracts and service dependencies.  For further guidance on 

coordination between vehicles in operation see the Multi-Vehicle Coordination policy, although note that this 

is only one specific case out of many types of coordination between nodes. 

3.2.5 Safety Related Dependencies and Rely-Guarantees 

In section 2.3.3 we covered definition of dependencies between services within the service specification.  Now 

that the logical separation within the component is better understood, more detail can be added to this 

relationship.  Rely-guarantees can be used to express the relationships between the services that a component 

guarantees and the dependencies it relies upon to provide those guarantees.  A rely-guarantee method allows 

the behaviour of services to be abstractly specified, meaning that they can be verified separately without 

requiring extensive implementation details. 

Where dependencies are expected to affect safety aspects of the system, rely-guarantees can be used to 

support modular certification.  Safety information can be overlaid onto rely-guarantees to provide a safety 

view concerning the relationships in question, and they can be expressed at the desired level of component 

abstraction to support certification at that specific level.  They can be refined for decomposed lower levels of 

design, down to the effect of individual code segments.  

Goal Structuring Notation (GSN) may be utilised in conjunction with rely-guarantees to support safety 

certification (see Ref. [33]).  GSN can be used to provide a reasoned argument that component guarantees will 

be met and provide the supporting evidence.  
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3.3 Identification of Extensions  

In order to maximise reuse and reduce integration and testing overheads, the PRA allows for extension 

components, which can be separately modified, added or removed when needed.  For an explanation of 

extension components and how this relates to the PRA, see the Component Extensions policy. 

The designer should consider whether the component’s behaviour benefits from being factored out into 

extensions.  The System Integrator should be consulted about the areas of functionality that are likely to 

change through the system’s life.  This will help identify where use of extensions could reduce time and effort 

compared to that required when changing the whole component, due to the additional functional separation 

that they enable. 

3.4 Good Practice 

This section provides good practice recommendations applicable to typical cases of platform independent 

component design, including guidance for avoiding common pitfalls. 

3.4.1 Do avoid pollution 

Pollution is where a component has been expanded to the point that its subject matter now overlaps with the 

subject matter of another component.  Pollution will result in a PYRAMID non-compliant component as 

described in Ref. [4].  The following points explain how to avoid common occurrences of pollution: 

 Do not force details into a component that understands a subject more broadly so that it can 

“manage” the components that understand the specific detail.  Components that understand a 

subject more broadly operate at a higher level of abstraction and should not know details. 

 Do not duplicate information in one domain that belongs to another domain.   

o Use data in the domains without duplicating it; how this data will be accessed is a concern 

for the platform specific modelling.  

o Renaming the data classes is hiding the fact that you are copying data, and will lead to non-

compliant components.   

o The components have been designed to be loosely coupled. If you need to duplicate data, 

checks should be made that you are not also duplicating functionality.   

 Do not be too implementation specific in components higher in the control architecture; this may 

make them simpler, but will reduce the usability.  They should stay at their designed level of 

abstraction to avoid pollution and promote reusability. 
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3.4.2 Do follow S.O.L.I.D guidance 

S.O.L.I.D is an acronym for five of the key object-oriented design principles first put forward by Robert C.  

Martin, which should be considered when designing components; see Ref. [34] for this and further guidance: 

• Single-responsibility principle – A service should have one job, giving it one reason for change.  This 

principle also extends to classes within a component.  This segregation will help the design in many 

areas, from partitioning the software to safety case creation.   

• Open-closed principle – Components (and all other parts of the design) should be open for extension, 

but closed to modification.  A key aim for a PRA deployment is to be open to change while still 

conforming to safety requirements applicable to its operational environment.  This single principle 

can contribute significantly towards meeting this aim.   

• Liskov substitution principle – Extension components should add to (or extend) a Parent 

Component’s behaviour, not replace it.  This principle should also be considered in relation to 

polymorphism within the component. 

• Interface segregation principle – A component should never be forced to implement a service 

interface that it doesn't use, and consumer components shouldn't be forced to depend on service 

interfaces they do not use. 

• Dependency inversion principle – Components should depend on abstractions, not on concretions.  

In addition, abstractions should not depend on details, but details can depend on abstractions.  This is 

about decoupling in component design, and should come from applying the open-closed and Liskov 

substitution principles.  This principle should also be applied within a component. 

Other reference texts with guidance for object-oriented design practice are widely available.  For example, Ref. 

[35] provides general guidance on patterns and anti-patterns in object-oriented modelling of systems, whereas 

Ref. [32] provides specific guidance on object-oriented design in avionic systems. 

3.4.3 Do design highly cohesive and loosely coupled services   

The PRA components have been designed to each have a well-defined, tightly related subject matter.  

Designing highly cohesive components this way leads to the relationship between components being loosely 

coupled.  This principle should be extended to the services.  Services should be designed from a consumer 

focus, but also from the component’s perspective, i.e. consider a generic consumer for the component, but 

also consider the needs of the specific component under design. 

Service design should be approached with care by those who are new to Service-Oriented Architecture (SOA), 

with specific attention to considering services from the consumer focus and understanding the difference 

between services provided by the component and those which are consumed by the component. Those new 

to SOA may be inclined to consider services as exchange of data, rather than requests for work to be done, 

which can result in poor service design. 
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3.4.4 Do design reusable services 

The future of technology is hard to predict.  Even if a service is only accessed by a single component in a build 

set of a specific design, it should still be designed so that it can be reused in the future, when previously 

unknown consumers are added to the system.   

However when addressing services that you expect to be reused in various ways, care needs to be taken not to 

define a parameter or attribute that is so vague that it is meaningless.  Care should be taken with quality and 

capability measures as they are particularly prone to this. 

3.4.5 Do design services that are decoupled from internal logic 

While the best component services are often developed in collaboration with Component Developers, the 

service interface should be abstracted from how the service is fulfilled.  This allows for changes to the internal 

structure of the component to take place without impacting the interface, and vice-versa.   

3.4.6 Do design composable services 

Services can be composed of other services, which allows capabilities to be orchestrated at different levels of 

granularity.  Composition in services can be promoted through common service patterns.  General guidance on 

service patterns can be found in the Component Connections policy. 

3.4.7 Do design independent services 

To facilitate simple choreography services should be designed with the ability to be independent, having self-

control over the logic they govern within an explicit boundary.  Therefore, services should be designed to be 

able to stand alone from other services with the minimum of conversation between the consumer and 

provider (see Ref. [8]).  This allows for a greater decoupling between components, and as a result greater 

independence in the development of components.  Many one-way flow services with a high degree of 

dependency between them are a symptom that this has not been considered. 

3.4.8 Do design state independent services 

Services should minimise the amount of state information managed on behalf of consumers (users of the 

service).  When a single transaction for a given consumer involves multiple service calls, there is sometimes a 

need for a service to manage the state for its consumer for the duration of the transaction.  This need is 

greater in loosely coupled components, as state is private to the component providing the service.  This 

maintains high cohesion and keeps consumer interactions simple, but is inefficient, scales poorly and is less 

resilient.  To avoid these problems, services expect the transaction state to be maintained by the consumer.  

The consumer passes the transaction state into each service call related to the same transaction.   

In the PRA modelling approach, this transaction state can be maintained in a counterpart class that holds a 

counterpart relationship with the corresponding counterpart existing from the provider component’s 

perspective.  The consumer component’s counterpart class is a representation of its understanding of the 

transaction.  This counterpart will then be passed in any service calls and translated by the bridge into terms 
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understood by the component providing the service.  Following this approach will reduce resource 

consumption and enable the service to efficiently handle multiple concurrent consumer requests.   

 Symptoms of this principle not being followed are the need to capture states and mode information in bridges 

(making them over complex and potentially polluted by component subject matter), or having to pollute 

another component with knowledge of the component in question’s state.  Over-complex bridges that have a 

high Development Assurance Level (DAL) potentially make certification more difficult, among other issues. 

Often, to achieve state independent and atomic services it is necessary to pass more information in the service 

operations in order to avoid reliance on state management between calls.  This leads to more complex service 

operations (see the Component Extensions policy, which describes extensible components for which extension 

data is usually data-driven).   

3.4.9 Do consider mission planning 

Part of the separation of concerns between the platform independent and platform specific models is that the 

Platform Independent Model (PIM) assumes that there are no interface delays, all exchanges are 

instantaneous, and all data that is in the domain of the component exists in the component.  That is not to say 

that interface latency, data transfer synchronicity and data loading are not all important, but that they are 

considered independently during the design.  This seems to cause some particular problems when considering 

mission planning, which in the PIM is co-located with the operation; planning and execution are not 

fundamentally different.  The following guidance is recommended: 

 Do not treat mission planning as solely an off-board process, all execution involves some level of 

planning. 

 The parts of a plan that are either requirements or solution options should be clearly and distinctly 
defined as such.  This enables design that can allow plans to be changed appropriately as circumstances 
change.  

 Do not assume that smart equipment is unable to support extensive re-planning on the fly. 

Note that maintaining the level of abstraction of components will promote reusability, as components will 

support both planning and in mission use. 

3.5  Summary 

 PIM artefacts that should be identified by this stage are: 

• Classes for each component, depicted on class diagrams, which represent the attributes and 

operations required to support the services of each component, the operations associated with those 

services, and the relationships between the classes.  

• A data driving model, representing any data driving requirements. 

• States for classes whose behaviour is state-dependent (usually depicted using state diagrams) which 

represent the sequences and cycles of states entered by instances of the associated class, as the class 

progresses through its lifecycle.  Note that state here refers to states which control behaviour or 

lifecycle, and not simple changes to data values. 

• Extensions for some components, including the service interface with the parent. 
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4 Platform Specific System Development 

The principle behind the PYRAMID approach is a separation of concerns by only dealing with the problems that 

are specific to the model abstraction level being considered at the time.  The platform independent modelling 

looked at the functionality that was required without consideration for the execution platform specific details 

of how it would be achieved.  The next step is to consider the non-functional requirements and the 

infrastructure architecture strategies, while still remaining independent of the detailed mechanisms of the 

underlying middleware that is to be used to achieve the desired result; this will constrain the system more and 

add detail. 

The infrastructure needs to be identified so that it can be related to the platform independent system design 

outlined in section 2.  This section will focus on the platform design decisions and the resulting impact on the 

components. 

Although it is possible to miss out the modelling of the Platform Specific Model (PSM) and go straight to the 

application software code, the underlying principle of separation of concerns allows for solutions to problems 

to be considered in a narrow context, avoiding overcomplicating parts of the design stages and missing the 

impact of some of the decisions.   

4.1 Non-Functional Requirements 

The specific Exploiting Platform infrastructure choice will mainly be constrained and selected based on the 

non-functional requirements of the deployment system (e.g. environmental and maintainability 

requirements).  It is not unusual for the Exploiting Platform infrastructure choice to be heavily influenced by 

the customer community, either through a preferred supplier or existing standards.  Figure 18, adapted from 

Ref. [36], shows sources of non-functional requirements. 
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Figure 18: Different Sources of Non-Functional Requirements 

The non-functional requirements will need to be analysed and considered in conjunction with the 

considerations outlined in the subsequent sections of this document. 

4.2 Infrastructure Architecture 

An Exploiting Programme needs to make a number of decisions around the specific infrastructure that 

supports the components it uses.  Some of these decisions will be based on the scale of the deployed system, 

and whether the system needs to be distributed across a number of computing resources.   

The complexity of the architecture transformation, and so the amount of effort required, depends on the 

complexity of the target of the transformation; for example, if the infrastructure needs to support deployment 

of the components across a distributed computing architecture then that is more complex than deploying to a 

single piece of executable software running on a single computer.  Additionally, the infrastructure that 

supports the components is typically a software infrastructure including middleware, operating system and 

hardware (see section 4.2.1), but depending on the implementation it may include Field-Programmable Gate 

Arrays (FPGAs), crystal oscillators, integrated circuits or relays. 

This section outlines some specific infrastructure-related areas that need to be considered at this stage of the 

design, and points to guidance within the PRA Description Document, Ref. [2]. 

4.2.1 Layered System Infrastructure 

A layered infrastructure architecture is recommended for a deployment where possible, as this allows the 

application software to be decoupled from the underlying infrastructure.  This layered approach employs a 
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well-defined interface between the applications and the infrastructure.  The number of layers in the 

infrastructure is dependent on the precise implementation; Figure 19 illustrates an example layered approach.   

 

Figure 19: Example Deployment Architecture 

Communication between components should use bridges to connect their defined service interfaces.  

However, a component is allowed to access middleware directly for specific purposes within its subject 

matter, such as: 

 Reading the system clock; 

 Controlling or interrogating a hardware resource; 

 Inspecting health data. 

Access to middleware must never be: 

 Beyond the scope of the component’s subject matter; 

 Instead of using the component’s defined interface. 

It is expected that an Exploiting Programme will use an industry standard Application Programming Interface 

(API) for access to middleware.  For further guidance on a layered architecture see Ref. [26]. 

4.2.2 Support for Scheduling 

An infrastructure architecture for a deployment must consider a run-time system that is capable of scheduling.  

This includes not only scheduling of the software items but also threads within those (i.e. supports software 

items being multi-threaded).  Different types, extensions and combinations of scheduling algorithms should be 

considered (e.g. earliest deadline first, shortest job first) when choosing the work scheduling method.  

Scheduling of access to resources is detailed in more depth in the Resource Management policy. 

The software infrastructure must also provide a mechanism for implementing threads and semaphores for 

protection of multi-threaded code.  For more information on model based design for real-time systems and 

the importance of thread management see chapter 8 of Ref. [8].   
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4.2.3 Software Resource Allocation and Protection 

The expectation is that some parts of the deployment system will be safety critical, and so the software 

infrastructure will need to support safety critical software.  In each case, the infrastructure architecture must 

consider the safety level of the software it supports. 

A PRA deployment needs to consider software resource allocation, and protection between software items or 

between groups of applications (protection domains).  Software items should not be capable of accessing the 

memory space of other software items.   

All communications between applications (except those in the same protection domain) should go via the 

software infrastructure.  For lower safety criticality levels, dynamic memory allocation should be possible, and 

this should be constrained to avoid interference between applications. 

4.2.4 Time  

An Exploiting Programme may have a requirement for a common representation of time across system nodes 

(e.g. multiple air vehicles or items of hardware within an air vehicle).  When choosing a time synchronisation 

method, the system design should take into account its use of the infrastructure as a time source.  

4.2.5 File Access  

A PRA deployment must consider a file access mechanism for software items, which should allow both read 

and write access to files, and should be agnostic of the hardware mechanism for data storage.  These 

requirements apply whether data storage is provided on each line replaceable unit or centralised within the 

system.  For additional guidance see: 

 Recording and Logging policy. 

 Storage policy. 

 Cryptographic Management interaction view – for protection of files accessed by different 
applications. 

Note that protection of file access should be thought of both in terms of read (access should only be given to 

the appropriate applications) and write (a component should not be able to use more storage than is allocated 

to it).   

4.2.6 Human-Machine Interface 

A PRA deployment should, as required, provide a mechanism for generating information such as visuals and 

audio for Human-Machine Interface (HMI) output devices (e.g. rendering a graphical user interface to a 

display), and for obtaining user interaction events (e.g. pointer movement) from HMI input devices (e.g. 

keyboards, mice, hands on throttle and stick (HOTAS), touchscreens, etc.).   

It is expected that as a minimum any graphics support should be through a primitive interface; higher level 

functionality can be achieved using graphics libraries and toolkits.  For more information see the HMI policy 

and interaction views, Ref. [2]. 
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In a similar way, a basic mechanism for capturing and playing audio may be needed; this audio can range from 

basic sounds (e.g. warning beeps) to speech and complex audio sounds.  For more information see the HMI 

policy and the Human Communications interaction view, Ref. [2]. 

4.2.7 Health and Usage Monitoring 

System infrastructure faults (e.g. power failure) potentially impact the execution of every application on the 

Exploiting Platform; see the Cyber Defence and Health Management policies.  Some of these faults (and 

resulting error messages) may occur because the system is being initialised, while others may not get reported 

if the system is being initialised or is incorrectly configured.  These occurrences are often an indication of bad 

system design. 

The Exploiting Platform infrastructure needs to provide a mechanism for reporting faults found in the 

processing hardware, and a mechanism for reporting faults found in the execution of the software also needs 

to be provided (e.g. invalid memory access, arithmetic errors etc.); for more information see the Middleware 

Error IV (Appendix C of Ref. [2]) and the Health Management policy. 

4.2.8 Software Configuration 

Where software configurations refer to data that is related to the subject matter of the relevant component, 

this should be treated as data driving within that relevant component.  The Data Driving policy should be 

referred to in this case.  Where software configurations refer to software behaviour, e.g. buffer sizes, this 

information should be included at the infrastructure level, but may also have to be included in subsequent 

processes for achieving certification or accreditation relating to the software. 

4.3 Certification and Accreditation 

Whilst safety and security assurance objectives are different, the organisational and procedural issues are very 

similar.  Safety and security assurance are properties that only exist for an entire product.  An Exploiting 

Programme will have the responsibility for the analysis and verification activities, and completing the 

certification and accreditation.  For this reason, exploiters should follow their normal safety and security 

processes; this section provides guidance in support of this and highlights where the PRA contains safety and 

security related information for components. 

The platform specific design needs to provide deployment-specific safety and security isolation.  The 

deployment process needs to be flexible and support a number of strategies to allow these requirements for 

isolation of information to be satisfied.  This flexibility can be enabled by segregating components so that 

certain data and functionality are partitioned, and then producing the data that enables the infrastructure to 

instantiate the required segregation.  Segregation may be done for any reason, and by any means. 
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An Exploiting Programme should segregate components based on the isolation requirements identified as part 

of the platform specific design; this should be in line with the following recommendations: 

 If segregation is used, a component instance should be kept wholly within its partition. 

 An extension is treated as a component in its own right, subject to the rules defined in the 

Component Extensions policy.  The PRA does not preclude an extension being segregated from its 

parent or other extensions to the component. 

 A component could be deployed in multiple instances that could each be segregated from one 

another. 

If a platform specific design has no isolation requirements then the mapping can be performed on a purely 

resource allocation basis.  A further complication that needs to be taken into account is that some other non-

functional requirements might conflict with isolation requirements (e.g. performance related concerns). 

While partitioning was not considered during development of the PIM, platform specific security and safety 

requirements may lead to changes in the build sets that take into consideration the new partitioning, as 

illustrated in Figure 20. 

PIM 
does not consider partitioning

Network Route

Cryptographic Methods

 

Lower Trust Security DomainHigher Trust Security Domain

PSM 
does consider partitioning, which may change some build sets

Network RouteNetwork Route
Cryptographic 

Methods

 

Figure 20: Example of Partitioning for Security Purposes in the Platform Specific Model (PSM) 

Both security and safety requirements may drive certain components to be high assurance.  DO-326A, Ref. 

[21], covers data requirements and compliance objectives, related to aircraft safety, for aircraft development 

and certification.  Ref. [37] and Ref. [38] tackle the security assessment process and safety process.   
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4.3.1 Safety Considerations 

The PRA has been designed with safety certification in mind; each PRA component has been assigned an 

indicative Item Development Assurance Level (IDAL), which is the highest IDAL that the component is expected 

to have to achieve for a large (>5700kg) air vehicle (see the Safety Analysis policy).  The IDAL and associated 

analysis are provided for design assistance only, and do not place a requirement on the Exploiting Programme. 

4.3.2 Security Assurance Considerations 

Security controls should be identified as a result of a security risk assessment.  Technical security controls are 

either security enforcing functions (SEF) or security related functions (SRF), and these are identified through a 

low level assessment and classification of data flows between components.  A security considerations section 

is included within every component definition in the PRA, which helps identify whether the component is 

expected to participate in security related functionality.  The security levels and associated functions are 

provided for design assistance only and do not place a requirement on the Exploiting Programme. 

A Security Guidance for PYRAMID Exploiters document, Ref. [60], is available from Dstl on request. This 

guidance document provides additional insight on a number of security aspects that are likely to apply to 

Exploiting Programmes using PYRAMID-based deployments, including those "good practice" engineering and 

development standards necessary for a secure implementation, and other considerations to be addressed in 

order to achieve security accreditation and capability assurance sign-off for MOD acquisition projects. 

4.4 Data Management Design 

The PRA design is predicated on the concept of data-driven components (see section 3.2.1), which allows 

existing components to be reconfigured for reuse in new systems.  This configuration exercise is in addition to 

the run time flexibility also provided by the data-driven paradigm.  Following the PRA guidance should leave 

what are in effect placeholders for data driving in the deployment.  The mechanisms for this data driving need 

designed, and data management design covers this. 

4.4.1 Reconfiguration 

A deployment needs to consider a mechanism for reconfiguring components, at runtime, to one of a 

predetermined set of configurations.  This reconfiguration should be as transparent as possible to components 

which are not affected by the reconfiguration.  For more guidance see the Data Driving policy. 

Reconfiguration at runtime needs to be very carefully considered so that the reconfiguration does not result in 

safety or security issues arising as a component transitions from one configuration to another, or for the 

transition to be erroneously detected as an anomaly due to an error. 

4.4.2 Data Synchronisation 

A data synchronisation strategy enables multiple instances of a component to be deployed and segregated 

whilst acknowledging that an amount of data needs to be synchronised between instances. 
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Reasons data synchronisation is required include: 

 Component instances are separated by mission phase (e.g. mission planning and mission execution) 

in different locations. 

 Load sharing, e.g. to stop bottlenecks of resource usage at a particular component instance and/or to 

optimise collective performance. 

 Multiple instances of a single component existing, e.g. for security partitioning, or physical 

segregation for safety redundancy (see section 4.3). 

 Components that exist explicitly for the purposes of data replication, e.g. where parts of a system are 

aligned for backup or redundancy.  Communications components could be used for this purpose; see 

the Use of Communications policy for more information on how these components can be used. 

Partial replication may also be desirable when implementing components into different situations or settings 

from one another, i.e. a component can be coordinated between multiple air vehicles, each with their own 

version of the component sharing some data. 

Services need to be defined to support data synchronisation; these should follow pre-defined patterns, e.g. 

‘peer-to-peer’ synchronisation, or synchronisation via a common data source (e.g. database).   

Data synchronisation between components presents an overhead; the choice of pattern needs to account for 

the ways in which the components could be deployed (distributed or not) in order to take account of system 

constraints (e.g. bandwidth and latency).   

4.4.3 Inter-Application Communications 

Inter-partitioning and inter-computing resource communications mechanisms need to be provided by the 

software infrastructure.  Each component’s provided and consumed services are connected by bridges, which 

are able to access the underlying communications mechanism provided by the software infrastructure, 

allowing the components to be distributed across the available computing resources.   

The configuration of the partitioning and communications mechanism in the bridges could be data-driven to 

enable flexibility in the process of deployment.  Even in a single Exploiting Programme, a number of 

deployment configurations will be required to support different phases of system and integration testing.  

Implementing a data-driven configuration approach enables tools to be developed to aid the deployment 

process.   

Note that when assessing the integrity required to achieve the desired safety or information assurance goals, 

the level of assurance required for the bridges between components will also need to be assessed. 

4.4.4 Post Mission Data Analysis 

Components should log significant decisions taken by the component and any events that the component 

raises or receives, which will allow the actions undertaken by components to be analysed during post mission 

analysis.  Logged data also provides a record of how components contributed to outcomes, which can be used 

as evidence in cases where mission events have legal consequences.  For more guidance see the Recording 

and Logging policy and the Operational Support policy. 
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4.5 Component Services 

4.5.1 Service Deployment Design 

Knowledge of the current and future Exploiting Platforms that may harness a deployment should be utilised to 

develop component services beyond their specification in the PIM.  The mode of inter-component 

communications is a fundamental characteristic of the interactions, and the two modes that are typically 

chosen between at this stage are synchronous (request response) or asynchronous (event driven).  The choice 

of communications mode is likely to be based on the environment that the system is to be used in; see Ref. 

[13].   

A deployment’s services, including its internal services, should be available to System Integrators outside of 

the original deployment so that it is forward compatible.  A PRA-based system should be able to discover 

which known services of systems and equipment external to the deployment are available at a certain time, as 

covered in the Capability Assessment policy.  For more information on component discoverability see Ref. [11]. 

Attributes on service interfaces are expected to be made specific to a deployment. An attribute on a PRA 

component may be specialised into one or more deployment-specific attributes. Service interfaces themselves 

are also expected to be made specific to a deployment, e.g. either the name or description made specific to 

the deployment while remaining within the PRA component’s subject matter. 

4.5.2 Architectural Alignment and Interoperability 

Architectural Alignment is the process of aligning a deployment’s architecture to the architecture of other 

(external) systems.   

This alignment supports the sharing of best practice and the pursuit of interoperability through the use of 

patterns and consideration of component responsibilities and data exchanges.  For an example of how to 

support interoperability with other systems, see the Tactical Exchange interaction view. 

When considering other architectures, it is important to be cognisant of the roles and responsibilities of PRA 

components in order to ensure that alignment with external components doesn’t conflict with PRA component 

definitions.  Although there may be little or no control over external components, the internal alignment 

should not blur component boundaries or introduce tight coupling. 

4.6 Infrastructure Implementation 

As part of the PSM the technology dependent detail needs to be captured and included in the design; this 

includes identification of low level communications protocols and underlying operating systems and libraries.  

The design abstraction should not be confused with ambiguity; from a system point of view the aim of the 

modelling of the Platform Specific Implementation is to generate an unambiguous definition of what the 

component interfaces are, and what the component requires from the infrastructure.  By working with 

Component Developers the service definitions can be aligned, reducing the bridging effort. 

Safety and security targets still need to be met in the infrastructure that supports the components; when 

implementing a bridge, the DAL of the components whose service interactions the bridge supports need to be 

considered.  Operating systems and middleware also need to support the DAL requirements of their hosted 

components. 
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4.6.1 System Reuse 

There is always more than one route to a final product and a new system is never designed in a vacuum, 

therefore there will be existing systems that can be in part reused within a PRA deployment.  Reuse can take 

the form of code reuse or system design reuse; either way the blocks of code need to be considered.  PRA 

components are deliberately designed to encompass isolated areas of functionality to increase the potential 

for reuse, making it likely for legacy code to encompass the functionality provided by a set of components. 

Although it is the intention that artefacts can be reused at any stage of the design process, reuse of PSM 

artefacts is typically more difficult due to the greater detail of platform specific specialisation and 

dependencies by that stage.  Therefore if it is an aim is to generate feasibly reusable PSM artefacts, both those 

working on the PIM and PSM should consider how their decisions may affect this reusability.  Most decisions 

about the functionality of reused artefacts are appropriate earlier, at the PIM level, before these decisions are 

implemented at the PSM level. 

It is important to note that reuse of developed components may adversely affect the security of Exploiting 

Platforms; the use of a developed component (or fragments thereof) on both secret and lesser classified 

platforms has the potential to compromise the secret one. Care must be taken in this respect, and the Security 

Guidance for PYRAMID Exploiters, Ref. [60], has further information on provenance and proliferation of 

developed components. 

4.6.2 Model Transition 

The steps outlined in section 4 can be viewed as a generic set of guidelines and recommendations applicable 

across all components that map the PIM to the PSM.  As these guidelines are disconnected from the 

middleware solution and final messaging protocols, they can be captured in a transformation specification, 

which itself forms the requirements for a model translator.  The model translator can then be used in a 

transformation engine to do the mapping and automatically generate the PSM, as summarised in Figure 21, 

which has been adapted from Ref. [39]. 

Platform Independent Model 

Descrip tion of the system
Information and a lgorithms, 

Independent from technology

Platform Specific Model

Implementation Specific 

Description of the Design

Aware of technical 

implementation platform

Transformation 
Engine

Mapping

 

Figure 21: PIM to PSM Mapping 

Automatic transformation of PIM to PSM ensures a consistent approach for all components, and allows the 

impact of changes to the PIM to be captured.  A PSM can still be inspected, allowing any inspection of the 

detailed design before it is committed to code.  This is particularly important in high assurance level 

implementations. 
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Different transformation specifications can be used to generate different PSMs for different target systems, 

allowing a family of PSMs to be generated for different uses.  Automatic transformation can be taken a step 

further with the PSM being used to automatically generate code for the structure of component 

implementations and the integration of components with the Exploiting Platform infrastructure. 

The adoption of standards based shared meta-models across the deployment is more likely to allow for the 

sharing of information between design tools supported by different vendors.  If this approach is adopted 

across multiple deployment programmes then they can be quoted along with the PRA model to define a de 

facto standard.  For example, by using the FACE standard (Ref. [26]) it is possible to: 

 Map conceptual data elements to the deployment-specific elements, automatically identifying logical 

and physical representations on all sides of an interface linked by a common conceptual meaning.   

 Select suitable logical representations or translations that reflect physical phenomena from a library 

of predefined logical data types.  This can support future reuse.   

 Select a subset of logical representations from the existing library, which will reduce the number of 

logical conversions needed, and will support the maintenance of bridges within the deployment. 

 Generate interface control documentation that matches the modelled interface definition.  This is 

particularly powerful where the final interface is also auto-generated from the model.  If all 

documentation is automatically generated from the model, this should help avoid the staleness that 

often comes during later revisions of the product where the documentation is not updated.   

4.7 Good Practice 

This section provides good practice recommendations applicable to typical cases of platform specific system 

development, including guidance for avoiding common pitfalls. 

4.7.1 Do bridge through middleware  

What is treated at the platform independent level as a simple peer interaction may occur between physically 

segregated areas, as illustrated in Figure 22.  Part of the job of bridges is to hide the complexity of 

communications from components.  A component should be unaware of the source of information, although 

the service implementation needs to be designed to cope with latencies or delays resulting from sourcing 

information from a distance away.   
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Bridge Component BComponent A

Figure 22a: PIM Bridging

 

BridgeComponent A

Bridge Component B

Middleware

Messaging 
protocol

Partitioning

Figure 22b:  PSM Bridging between Segregated Areas

 

Figure 22: PIM Bridging (22a) and PSM Bridging between Segregated Areas (22b) 

The concept of a service being separated from the internal working of the component is to allow the 

component to carry on activities while the related service deals with the bridge and any data exchange.  If 

components cannot be decoupled in a particular platform, consideration should be given to co-locating them 

when deploying them. 

Additionally, where PSM bridging is used between segregated areas particular consideration should be given 

to the effect on the component’s operation if the interconnection is lost.   

A common middleware interface / messaging protocol should be used to aid with cross platform re-usability; 

see section 2.7.1 for more on the use of additional standards and reference models.   

4.7.2 Do not use component variants to cater for specific uses 

The PRA components have been based on a logical definition of what the component needs to do, and what 

data it needs to do it.  Where the same logical activity would be duplicated in a legacy functional 

decomposition (e.g. in different subsystems), there is only one component definition in the PRA.  An example 

of this would be the Observability component determining if a communication signal is detectable for both 

survivability and for communication uses.   

The goal is to break away from stove-piped designs, into something that is more flexible while still meeting 

high security and safety standards.  It is possible to recreate a legacy functional decomposition by using 

component variants (different specific use implementations of the same component); see Figure 23.  This 

should be avoided.  Other choices such as using a shared component as a resource, using a component with 

tailored extensions, or multiple copies of the same component should be considered ahead of creating a 

variant of a component for a specific use. 
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Figure 23: Do Not Use Component Variants as a Tool to Promote Vendor Lock-In 

4.7.3 Do use component variants where functionality is separated between 

platforms 

Following on from section 4.7.2, where component variants should instead be used is where the functionality 

is being separated in space or time.  At later iterations of the design, after the required design separation is 

understood from the platform specific analysis, the functional model can be updated to reflect this.  Typical 

examples of this would be offline planning and maintenance support, both of which are typically deployed on 

different hardware to an air platform, with different design goals.  The partitioned functional model is 

technically platform specific and it is recommended to keep this separate from the PIM, so that unexpected 

logical behaviours detected in testing can still be analysed in either the PIM or a fully separated functional 

model, as appropriate.  

Note that as the PRA does not include definitions of services to support splitting of a single component’s 

functionality, additional services may need adding to components to enable interaction with other variants of 

the same component, for example to synchronise data. 

This may include data loading services, such as where a mission planning variant’s data needs loading into an 

operational variant. To aid reusability, it would be good practice to develop these types of service in-line with 

suitable standards. 
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4.7.4 Do separate the concept of ‘what data is’ from how it is acquired 

The PIM assumes that there are no interface delays – all exchanges are instantaneous and all data that is in the 

domain of the component exists in the component.  These things do however need to be considered as part of 

the platform specific modelling, including where data is created.  It is the responsibility of all the components 

to manage their own data, including data loading; see the Operational Support and Storage policies.  However, 

a common approach to data loading should be identified and implemented at the PSM level, as it will be 

infrastructure dependent. 

4.7.5 Do use counterparts 

The principle of components dealing only with data within their own subject matter knowledge means that 

different components are likely to have their own views on the same real world thing, such as some liquid fuel 

on an Exploiting Platform.  The Fluids component may hold data on the volume of the fuel, whereas the Mass 

and Balance component is concerned with the mass of the fuel, and Environmental Conditioning may view the 

fuel as a heat source or sink.  In such a case, each component contains a class to represent the fuel from the 

component’s subject matter specific point of view, with these classes being used to form a counterpart 

relationship.  See the Component Connections policy and Ref. [9] for more details on counterparts. 

Counterpart relationships support separation of information between the relevant domains, helping avoid 

subject matter pollution.  Key benefits of such an approach are summarised below: 

 The domain based approach to components is predicated around minimum amounts of information 

being passed between components because each component should encapsulate information 

relevant to its subject matter.  However, it is the nature of an integrated system that there will be 

related changes in different components; counterparts are a good way of making sure that this 

related information is kept aligned.  

 Information on an object known to the deployment can be obtained efficiently, with relatively low 

data passing between components; for example through the use of system wide identifiers to obtain 

the relevant counterpart data from the owning components.  This also applies, in a broader sense, to 

management of counterparted information, potentially via standard operations. 

 A counterparting approach can help link preparation data to associated execution data between 

components (see section 4.7.6). 

 By mapping counterparts (via bridges), their data can be synchronised between domains to enable 

coordination and consistency across a deployment. 

 Use of counterparts supports the extensibility and scalability of a deployment, as it allows easy 

addition or removal of information types made up of data linked through counterpart relationships.  

It enables specialisation of shared interfaces between domains, regardless of programming language 

and execution platform.  

 Counterparting is a suitable way to enable data views (see section 2.6.1.1), since counterpart 

relationships can indicate the attributes that a component may need to make available to other 

components. 
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Note that while a counterparting approach is effective for capturing relationships between the information in 

different subject matter areas, a service operation approach can be advantageous when capturing event-

based relationships, such as command and control relationships. 

4.7.6 Do coordinate preparation and execution interactions  

As part of the platform specific development, concerns around how to manage resources and latencies need 

to be taken into account when considering component interactions.  There is a particular issue in how 

prepared resources are matched to their intended usage at execution.   

The solution is likely to involve an action level identifier, for the planned action, that is a counterpart to an 

identifier at the resource level; see the Component Connections policy and Ref. [9] for more details on 

counterparts. 

The counterpart identification cannot be determined implicitly in bridges as this is a problem of recall of earlier 

preparation.  If the identifiers were contained within the bridge, the user of the resource would still have to 

identify something to the bridge that would enable it to recall the relevant planned action.  This means the 

System Designers need to consider how identifiers are managed as part of component design and capture this.  

Otherwise, different parts of the system will not work together, as show in Figure 24. 

 

Figure 24: Counterpart Relationships 

4.7.7 Do capture and share platform specific information 

It is important that platform specific information is captured and shared early in the process.  This enables 

component design and development to consider platform specific aspects when needed, and is especially 

important for aspects common across components.  Artefacts such as standard documents or shared models 

may be used to capture this information into a single record source, which can then be referred to when needed 

in specifications. 
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4.8 Summary 

An iterative process is expected to be followed that will involve looking at the execution environment and its 

impact on component design specialisation and separation (see section 2.3), as well as the integration of 

components as they are produced (see section 5).  As the design gets closer to the implementation, the 

specific additional contribution of the technology agnostic architecture becomes less clear.  However, the core 

goals, especially around reusability and extensibility, should be kept in mind. 

Artefacts identified at this stage should be appropriately captured (e.g. in platform specific equivalent versions 

of a component specification) and shared with Component Designers and Component Developers.  The 

mechanisms for this should enable close regular interfacing between any separate parties.  Some of the typical 

artefacts identified at this stage are: 

• Non-functional requirements to be met by the system; see section 4.1. 

• Infrastructure definition, which specifies the sub-systems, infrastructure interfaces, middleware and 

operating system chosen to support the components; see section 4.2. 

• A partitioning approach, which defines how components should be segregated or aggregated to 

meet safety, security and performance requirements; see section 4.3. 

• Configuration, preparation of data that supports the data driving design decisions; see section 4.4. 

• A component services approach, which defines the underlying protocols and mechanisms that have 

been chosen to tie services together; see section 4.5. 
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5 Platform Specific Component Development 

The principle behind the PYRAMID approach is a separation of concerns by only dealing with the problems that 

are specific to the model abstraction level being considered at the time.  The platform independent 

component development process defined the required component functionality without consideration for 

how it was to be achieved (see section 3); the next step of the component development process involves the 

consideration of the non-functional requirements and the infrastructure specification that have been defined 

in conjunction with the System Designer (see section 4). 

As is generally important throughout the deployment process there should be regular sharing and 

communication between any different parties carrying out the different engineering roles.  Decisions made 

during platform specific system design, such as the choice and establishment of system infrastructure 

architecture approaches or mechanisms, should be captured appropriately and discussed throughout 

component development.  The method for this should enable all relevant information to be captured, and one 

option is to evolve a specification from the PIM component specifications.   Additionally, a suitable approach 

for verification and integration of components on the platform specific system should be agreed.  The 

contribution towards safety, security and other non-functional requirements provided by a component or the 

infrastructure should also be discussed and updated as development continues.   

5.1 Infrastructure Considerations 

5.1.1 Extensible Data 

The Data Driving policy describes how data can be specified for operational use (e.g. to provide the weapon fit 

for a mission).  Data can be delimited and/or encoded, which enables extension of the data without having a 

direct impact on components that are making use of the data. 

Extensibility can be achieved by relating individual parts of the data with an identifier or tag along with an 

indication of the extent of the data; this allows components to identify which data the extension requires and 

ignore data that the extension does not require.  Data can therefore be extended to support a particular 

component or extension component requirement without affecting existing interface integrations.   

An example is the use of Session Description Protocol subunits within the Session Initiation Protocol (SIP), Ref. 

[40], to define supported capability.  If the receiver supports the capability it can decipher the message; if it 

does not it can understand enough to say that capability is not supported. 

When selecting a format for the data, care should be taken to consider whether the adoption of data 

representation standards may result in the need for safety certifiable data translation library code. Safety 

certifiable library code with appropriate verification artefacts may need to be supplied to all Component 

Developers to avoid duplication of effort on a deployment programme. Similarly, the security aspects of 

processing data need to be given appropriate attention. 
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5.1.2 Health Monitoring and Fault Management 

During the platform independent component development phase described in section 3 it is assumed that the 

component will execute the expected behaviour, and all the supporting infrastructure and components can be 

fully relied on.  In the platform specific phase enough is known about the infrastructure (e.g. the operating 

system, application software, hardware or managed equipment) to make judgments on what can and cannot 

be relied on, and what the development implications are. 

Components should be able to identify how loss of capability that they depend on impacts their own 

capability.  Documenting service dependencies, typically in a service dependencies diagram, could help 

indicate implications of failure in the chain.   

Components will have to provide information that will be analysed by the health monitoring components; see 

the Health Management policy.   

5.1.3 Interaction with Humans 

Specific components are provided for interaction with humans; see the HMI policy.  However these HMI 

components do not have any ‘domain’ knowledge, so to meet human interaction requirements other 

components will be involved via the HMI components, and the implications of this should be considered.  For 

example, needs to present information, such as a communications heat map, would require additional data to 

be held within an appropriate component. 

5.1.4 Interaction with Equipment 

Components are needed to determine the capability of equipment or parts of the software infrastructure, and 

to understand how to control hardware resources.  For guidance on developing these components see the 

Interaction with Equipment policy and Interfacing with Deployable Assets policy.  Some guidance on the 

boundary of the PRA with respect to equipment hardware is also given in the ‘Smart Equipment and the PRA-

Equipment System Boundary’ section of the Interaction with Equipment policy.  Interface requirements with 

existing equipment also need to be taken into account.   

5.2 Component Implementation  

Given a set of requirements, there are many ways in which to realise a component; these are not covered at 

any length in this document.  However, it is recommended that any code developed with a PRA deployment in 

mind should be data-driven (provided that it is done in a way that is feasible within the development time and 

cost constraints).  This means that representative data sets should be provided to any System Integrator; see 

section 5.3.   
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5.2.1 Legacy Code Reuse 

The PRA and this document cover the idea of design reuse primarily at the system level, with the goal of saving 

time and effort in a development programme.  However this does not rule out code reuse within a PRA 

deployment.  Below is a summary of considerations for code reuse based on the guidance in the FACE 

reference guide, Ref. [26], which covers similar issues:  

 Determine the grouping and applicability of components for the legacy system:  

o Split the legacy system into multiple components or keep it as a single deployment?  

o Is the software still supportable?  

o Can the software be adapted to the PRA?  

 Characterise and assess the legacy software functionality (Ref. [26] describes this functionality as 

software-based “capability”):  

o Was the functionality designed for capability monitoring, safety, or security?  

o What other functionalities does this code interface to?  

o What types of interfaces are there and what standards were used for those interfaces?  

 Assess how the functionality fits into the PRA architecture:  

o Have component group boundaries been defined for the functionality?  

o To what protection domain(s) do the component group(s) belong?  

o Is a more restrictive profile applicable for future use of this functionality?  

 Determine how to integrate the functionality into the architecture without polluting components:  

o Should the legacy architecture be converted to align to the PRA?  

o Should the legacy architecture interface to new PRA based system functionality hosted 

within the existing architecture?  

o Should the legacy architecture interface to new PRA based system functionality hosted 

within an architecture aligned to the PRA?  

Where refactoring of legacy code would be required, the expected costs should first be evaluated against the 

benefits of refactoring the code.  Reverification, capturing of safety artefacts, and capability update issues 

should be considered where applicable.  Additionally, where legacy code from a standard product is being 

specialised or tailored during integration, the full impact of this should be carefully considered to weigh the 

benefits and issues, such as future support challenges arising from changes to the product. 

5.2.2 Automatic Code Generation 

The traditional approach to software development (see Figure 25) was to treat design and development as 

elaborative process steps, where “fidelity” was added that was considered ‘too low level’ for the analysis 

model, with independent assessment of completeness.  This often led to vague and incomplete analysis 

models (Ref. [9]). 
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Figure 25: Traditional Software Development Lifecycle 

By moving some of the rigour into the model it is possible to automate the generation of large parts of the 

code; this improves the consistency of code, facilitates documentation of behaviour (in the model), and, 

dependent on toolchain support, allows for faster rework.  An implementation specific model can be produced 

to allow more technology specific targets to be built direct from a model.   

When using auto-generation of code from a model, it is likely that any validation rules required for the 

resultant system still need to be applied, e.g. DO-326A, Ref. [21].  For details on how to use a Model Driven 

Architecture (MDA) approach to support a model based approach to software development see Ref. [9]. 

Note that executable code is not the only thing that can be generated from the model.  Wherever possible, 

documentation should also be generated from the model, allowing the model to be the single source of truth.  

Data models and service interfaces can be used instead of, or to produce, interface control documents. 

5.3 Working with System Integrators 

Modelled components are by design not complete applications in their own right.  Therefore individual 

components, or groups of components, will always require integrating into a larger deployment.  A decision 

has to be made through discussion with the System Integrator on the component group to be delivered as a 

mini-deployment, and whether internally used services and interfaces are defined at a PIM or PSM level (even 

if not accessible in the executable software) to allow reuse of the modelled components in a different 

configuration. 

To give examples of context for a component of interest, in order to determine potential broader use of the 

component in other deployments, Component Developers can use interaction views (Appendix C of Ref. [2]).  

System Integrators of other potential deployments should be engaged at the earliest opportunity. 

 

Design

Develop

Test

Requirements

Analysis

Review



UK OFFICIAL 

RCO_FUT_23_006 Page 67 of 82                                                            Issue 4.1 

© Crown owned copyright 2023.   

UK OFFICIAL 

5.4 Good Practice 

This section provides good practice recommendations applicable to typical cases of platform specific 

component development, including guidance for avoiding common pitfalls. 

5.4.1 Do consider appropriate middleware access 

While a component will access the resources provided by or via middleware, this interaction must never be: 

 Beyond the scope of the component’s subject matter. 

 Instead of using the component’s defined interface. 

A component can directly interact with middleware where it is within the scope of that component to do so, 

for instance directly accessing stored data when it is owned by the component; this is true no matter what role 

a component has within the control architecture. 

5.4.2 Do manage safety artefact development 

An agreement between Component Developers and System Designers on how appropriate safety artefact 

development will be managed should be reached early in the development process, so that dependencies can 

be identified.  The agreed management methods should cover the mechanisms for provision of any applicable 

safety evidence from a Component Developer to the System Designer.  Frequent information sharing between 

the parties is good practice, and is especially important regarding safety related developments. 

5.5  Summary 

This section covered additional considerations that help mature a component based on execution platform 

considerations.  The expectation is that this will be an iterative process, and the development of the 

component will be done in parallel to the system design and integration discussed in section 4, the final goal 

being to generate executable software.  The main points discussed in this section were: 

 Interaction with Humans, consider components that capture services required to support the HMI 

interactions with the system, see section 5.1.3. 

 Component Implementation, either through software development, code reuse or automatic code 

generation; see section 5.2.   
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Appendix A Component Connection Examples 

Four component connection patterns are identified within the Component Connections policy in PYRAMID Exploiter’s Pack Annex A, Ref. [2].  This appendix contains 

examples of the use of those patterns. 

Appendix A.1 Coordination – Atomic Transaction 

One of the most commonly used component interaction patterns is atomic transaction coordination. It is used when actions or data need to be synchronised between 

components that are not direct counterparts. For example, atomic transaction coordination can be used for resource allocation, when moving to new modes of 

operation, or for data loading. 

This service pattern is only appropriate if the transaction passes the ACID test, which means that it is: 

 Atomic – All participants, including any subordinate components, can be treated as a single 'atomic' unit, with all components changing together or all failing 

together. 

 Consistent – None of the changes violate the validity of data in the components; if they do all the changes need to be rolled back. 

 Isolated – Multiple instances of the service can occur concurrently, without interfering with each other. 

 Durable – Upon successful completion the change will survive any subsequent failures of new transactions. 

There are several protocol definitions for this service pattern, and other similar ACID transactions; one example is the Web Service Atomic Transaction standard, Ref. 

[57]. 
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Figure 26: Atomic Transaction EM Interoperability 

The example atomic transaction shown in Figure 26 is analogous to a single coordination from the EM Interoperability interaction view (IV) in the PYRAMID model.  In 

this example three components (Sensing, Sensors and Countermeasures) have their frequency allocation updated in a coordinated way by the Spectrum component in 

(steps 7.1, 7.2 and 7.3 in Figure 27 below).  The new frequency allocation is added as a change to the constraint on all the components; for more detail see the Constrain 

Capability use case in section B.1.2 of Ref. [2].  To avoid any conflicting allocation all components need to be updated together. 

The details of an atomic transaction for EM operability can be seen in Figure 27.   

Atomic Transaction EM Interoperability Example

Spectrum : Coordinator

 : ~Coordination

 : Activation

Sensing : Participant

 : Constraint

Countermeasures : Participant

 : Constraint

effectors : Subordinate

Bridge : Atomic_Transaction_Pattern

 : Coordination

sensing : ~Constraint countermeasures : ~Constraintsensor : ~Constraint

Sensor : Participant

 : Constraint

Bridge

Activator
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Figure 27: Atomic Transaction EM Interoperability Sequence Diagram 

First Spectrum prepares those involved for the coordinated change. As components are agnostic of other components, with requests based on their own understanding, 

it is possible that there is not always a one-to-one match between coordination requests and component services; this is managed as a mapping in the bridge. In this 

example the bridge duplicates the sensor request to Sensing and Sensors components. The prepared request includes the type of change (but not the details), allowing 

components to also prepare subordinate components for the change.  They can do this using a simple transaction, another atomic transaction (often using the same ID) 

or a counterpart relationship. 

The second stage of the transaction is a request for all components to commit to the details of a change, within the provided timeout. If any of the components fail to 

respond within the timeout, or as in this example one of the components responds that it has to abort, then Spectrum request a rollback from all involved, resetting all 

the constraints to how they were before the transaction started. The resolution to why the transaction was aborted is the subject of a different set of transactions. 

Atomic Transaction EM Interoperability Example

Description Spectrum:Coordinator Sensing:ParticipantCountermeasures:ParticipantBridge:Atomic_Transaction_Pattern Sensor:Participant

Spectrum determines that the sensor and effector changes 
are required to be made together.

1

Prepare coordinated change.1.1 prepare : Context

Expect to receive a request to change constraints 
in a coordinated way.

1.1.1 Prepare_For_Constraint_Change : Context

Prepare coordinated change.1.2
prepare : Context

Expect to receive a request to change constraints 
in a coordinated way.

1.2.1 Prepare_For_Constraint_Change : Context

Expect to receive a request to change constraints 
in a coordinated way.

1.2.2
Prepare_For_Constraint_Change : Context

Spectrum updates the allowed spectrum of type effector 
(transmit only).

2 commit : Spectrum_Allocation

The bridge maps countermeasures to a demand on 
Countermeasures.

2.1 update_constraint( frequency_constrant, context )

Spectrum updates the allowed spectrum of type active sensor 
(receive and transmit).

3 commit : Spectrum_Allocation

Bridge maps this to a strategy update by Sensing....3.1 update_constraint( frequency_constrant, context )

Bridge maps this to a blanking update on Sensor.3.2 update_constraint( blanking_constrant, context )

Countermeasures responds that it can commit to the change.4
update_constraint : Committed

The response is mapped to the task status.4.1 committed : Spectrum_Allocation

Sensor responds that it can commit to the change.5
update_constraint : Committed

Sensing responds that it has to ABORT the change 
(reason not in this transaction).

6
update_constraint : Abort

The response is mapped to the task status.6.1 abort : Spectrum_Allocation
As one of the participants failed to commit, Spectrum rolls 
back all changes.

7 rollback : Context

Sensing reverts all data to as it was before the start of 
the transaction.

7.1 rollback_constraint( context )

Sensor reverts all data to as it was before the start of the 
transaction.

7.2 rollback_constraint( context )

Countermeasures reverts all data to as it was before 
the start of the transaction.

7.3 rollback_constraint( context )

This shows a possible solution to a single transaction taken from the EM Interoperability IV.
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In this example all the properties changed are of the same type, but that does not have to be the case, as long as the change passes the ACID test. This kind of 

transaction is often used even with single participants, allowing them to prepare subordinate components for the change. However the isolation requirement means 

that this coordination type is only really appropriate to small actions or data changes; for complex actions that require coordination, an alternative approach is required, 

such as the Business Agreement covered in the next section.
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Appendix A.2 Coordination – Business Agreement 

The second common component interaction pattern is Business Activity coordination.  This is used when the priorities of multiple parts of the system need to be 

coordinated when coming up with a solution.  For example, as far as the Sensors component is concerned, the best search solution may be to turn on all active sensors, 

whereas this is the worst solution as far as the Observability component is concerned; a middle ground that both are happy with needs to be chosen.   

The coordinator’s aim is to reach an agreement on a level of service based around a set of derived requirements, with the solution owned by the participants. 

As with the Atomic Transaction coordination there are several standards for this service pattern; one example is the Web Service Business Activity standard, Ref. [58]. 

The example Business Activity Coordination pattern shown in Figure 28 is a snapshot of a single coordination from the Jettison Management IV, where Jettison asks 

Asset Transitions to determine a solution that will make the jettison package releasable (i.e. opening doors before release), and requests Stores Release to provide a 

stores jettison solution.  

  

Figure 28: Business Activity Jettison Example 

 

Business Activity Jettison Example

Jettison : Coordinator

 : Activation

 : ~Coordination

Bridge : Business_Activity_Pattern

 : Coordination

Request_to_1 : ~Request Request_to_2 : ~Request

Asset Transitions : Participant

 : Request

Stores Release : Participant

 : Request

Activator
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As can be seen in Figure 29, this component interaction pattern begins with requirements being placed on the two components from Jettison.  The requirements take the 

form of one or more criteria and a measurement of success. All participants determine a proposed solution against their requirements, and provide scores against the 

criteria.   

 

Figure 29: Business Activity Sequence Diagram Jettison Example 

The second stage is the coordinator selecting the solution to enact. As the actual details of the solution are based on the subject matter of participant components (not 

the coordinator), the coordinator selects the best solution based on the score of the solutions and the score of any pre-requisites required for the solution. In this case 

the criterion provided by Jettison is binary (you can jettison or not), but for other transactions this is likely to be a more nuanced measure, for example including time or 

resource cost. Once a solution is selected by the coordinator, the participants are informed of the choice and when the solution is to be enacted (at an agreed time or on 

demand).   

The final stage of the pattern is for the participants to enact the solution. Jettison can monitor progress of achievement against the requirement. Asset Transitions and 

Stores Release are best placed to determine whether their own requirements have been met, and the coordinator determines completion of the overall requirement.  

Note: If for any reason the service level agreed against the requirement can no longer be met, then the coordinator is to be informed; however, if the requirement can 

still be met by a new solution without impacting other components, this is within the scope of the participants to select.  

Business Activity Coordination can often be for very long term and high level goals. This leads to a further derivation of requirements within the deployment as part of 

the top level requirement (as shown in Figure 30), with each subject matter area owning its own solution, and derived requirements. 

Business Activity Jettison Example

Description Jettison:Coordinator Stores Release:ParticipantAsset Transitions:ParticipantBridge:Business_Activity_Pattern

Ready1

Jettison, understanding there is a task to fulfil, 
informs the participants that they are going to take part
in a collaborative activity together.

1.1
create : Context

Jettison sets the requirements and measurement criteria
and pushes these out to the participants.

1.2

object_to_be_jettisoned : Subject_Specific_Requirement

Command sent to Asset Transitions to determine a solution.1.2.1

determine_releasable_state( object_to_be_jettisoned )

Command sent to Stores Release to determine a solution.1.2.2

determine_stores_jettison_implementation( object_to_be_jettisoned )

Set2

Asset Transitions reports back that is has found a solution.2.1

releasable_state_solution : solution_specific_name

Stores Release reports back that is has found a solution.2.2
stores_jettison_solution : solution_specific_name

Score against criteria reported back to Jettison.2.3

criteria_score : Solution

Go3

Jettison commands action sequence to commence.3.1

solution_specific_name : Subject_Specific_Requirement

Command sent to Asset Transitions to execute the solution.3.1.1
execute_releasable_state

Command sent to Stores Release to execute the solution.3.1.2
command_jettison_of_stores_package

This shows a possible solution to a single transaction taken from the Jettison Management IV.
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This coordination differs from an Atomic Transaction in three key ways: 

 The coordinator only owns derivation of the requirements; the participant determines how the solution is achieved, allowing it to be used at an abstract level. 

 Business Activity transactions involve requirement derivation and solution determination, followed by solution selection and then a final enactment stage, 

whereas the steps in an Atomic Transaction are just for the components to prepare and then commit. 

 There is no requirement to be able to roll-back to a previous state, allowing it to be used for long term irreversible change such as ‘fly to this location’. 

It should be noted that the pattern for solution derivation does not require 'coordination'. As in the Business Activity Jettison Example above, if the derived 

requirements and solutions are independent of each other they can be treated as separate transactions. The ‘keeping track’ of the dependencies can then be considered 

‘invisible’ outside of the coordinating component. Taken to its logical extreme this stops becoming so much of a coordination between participants and more a directed 

series of steps, and this approach is covered in the orchestration pattern in the next section. 
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Figure 30: Business Activity Generic Hierarchical Example 

Business Activity Generic Hierarchical Example

Atomic Transaction A

Sub-Coordinator Participant_1 : Participant Subordinate_3 : Subordinate

Coordinator

Participant_1

Business Activity B

Sub-Coordinator

Participant_1 : Participant

participant_2 : Participant

Subordinate_4

Bridge : Business_Activity_Pattern

Activator

Bridges omitted from diagram in subtask for simplicity
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Appendix A.3 Orchestration 

The Orchestration component interaction pattern differs from a coordination transaction in that the orchestrator owns the workflow logic, rather than just the 

requirement derivation.  This can be a very versatile approach, where multiple building block components can be reused in a variety of different configurations and 

orders to achieve different results. 

The process itself is usually data-driven, allowing a lot of flexibility, with multiple standards existing for the process execution; one example is the Web Service Business 

Process Execution Language standard, Ref. [59]. 

The example Orchestration component interaction pattern (Figure 31) shows Asset Transitions in a role that is similar to the role it plays in the Startup IV.  In this 

interaction view, Asset Transitions manages the workflow of starting up an air vehicle across multiple interactions, driving out the process steps one by one to achieve 

an overall result. This pattern involves orchestrating multiple component interaction patterns across multiple services, either in parallel or in series depending on the 

workflow dependencies.  This example involves three stages all activated by the same request.  
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Figure 31: Orchestration Startup Example Diagram 

As can be seen in Figure 32, this component interaction pattern begins with Asset Transitions determining the correct sequence of steps and dependencies.  The first 

step is to check with Interlocks that the correct authorisations and interlocks have been fulfilled to allow startup. Asset Transitions doesn’t need to know the details of 

what is required, just whether permission is granted or not. 

When this task is complete Asset Transitions requests that Power and Propulsion both determine if they can bring basic check power online at a given time. This is done 

as a business activity coordination, because power and propulsion systems may be able to start up independently but not together. Again Asset Transitions does not 

need to know the details (they are outside its subject matter area), just whether a solution for initial power is in place.  As a solution exists, application of limited power 

to a store attachment mechanism can be started. 

The last step of the process flow shown is the triggering of Inventory to do a stores fit check. In reality there will be further checks but this illustrates the pattern.

Orchestration Startup Example

Asset Transitions : [Orchestrator]

 : Activation

 : ~Coordination

Inventory : Partner

 : Simple_Action

Power : Partner

 : Requirement

Interlocks : Partner

 : Simple_Action

Propulsion : Partner

 : Requirement

: Atomic_Transaction_Pattern : Atomic_Transaction_Pattern: Business_Activity_Pattern

Activator
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Figure 32: Orchestration Startup Example Sequence Diagram

Orchestration Startup Example

Description Asset Transitions:Orchestrator Inventory_Check:Atomic_Transaction_PatternPower_Systems:Business_Activity_PatternInterlocks:Atomic_Transaction_Pattern Inventory:PartnerPower:PartnerInterlocks:Partner Propulsion:Partner

Asset Transitions is instructed to activate startup. 1

Asset Transitions determines the allowable startup scheme.1.1

Asset Transitions starts the workflow by requesting 
if startup interlocks are satisfied.

1.2 Initiate_interlock_check

The bridge maps this to a demand on Interlocks.1.2.1 determine_interlock_status : Specific_Instruction

Interlocks confirms that all the required prerequisites have been met.1.2.2 Confirm_Go_State : Specific_Instruction

The bridge maps this as now complete to Asset Transitions....1.2.3 interlock_check_complete
Asset Transitions moves to the next workflow step 
and coordinates power system startup.

2

Asset Transitions requests Power capability.2.1 power_requirement

The bridge maps this to a demand on Power.2.1.1 determine_solution

Power confirms it has a solution.2.1.2 determine_solution : confirmed

The bridge maps this as a confirmation to Asset Transitions.2.1.3 power_solution_confirmed

Asset Transitions requests Propulsion capability.2.2 propulsion_requirement

The bridge maps this to a demand on Propulsion.2.2.1 determine_solution

Propulsion confirms it has a solution.2.2.2 determine_solution : confirmed

The bridge maps this as a confirmation to Asset Transitions.2.2.3 propulsion_solution_confirmed

Asset Transitions determines that all solutions are in place.2.3

Asset Transitions issues a demand that power is started up.2.4 power_startup

The bridge places a startup demand on Power.2.4.1 enact_solution

Asset Transitions issues a demand that propulsion is started up....2.5 propulsion_requirement

The bridge places a startup demand on Propulsion.2.5.1 enact_solution

Asset Transitions confirms power systems are go.

Asset Transitions moves to the next workflow step 
and issues startup demand to Inventory.

3 initiate_inventor_check

The bridge places a demand on Inventory.3.1 specific_instruction

Inventory draws power for Role Fit Discovery from Power.3.1.1
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Appendix A.4 Choreography 

An important characteristic of the choreography interaction pattern is that it is about collaboration, not control. This interaction pattern is useful where the goal is to 

establish the rules and limits for interactions between collaborating components. Choreographies are often used between very disparate groups of components that 

operate autonomously and have not explicitly been designed to work together, for example an on-ground system of radars and facilities that may occasionally interact 

with air vehicles. They can operate at relatively specific levels of detail; for example informing components of which counterpart relationships to setup when a new 

store is attached to the air vehicle (e.g. different components are involved depending on whether it is a fuel tank or a missile). 

The component that owns the choreography and the collaborating components need to be able to identify the context of the collaboration before the choreography 

transaction itself starts.  Data loaded in the components from common or at least aligned mission plans enables the collaborators to register for involvement in the 

particular collaboration group, typically when a set of conditions are met (e.g. this may simply be at startup). 

The transaction is initiated by the collaborators registering with the choreographer, and requesting the rules and limits.  The collaborators then use the information 

supplied as the basis for direct interactions, as shown in Figure 33.  The choreographer knows about the different groups involved, but is unlikely to control their actions. 

As you might expect, the details of the rules can be quite complex, and there are several protocols designed explicitly to express this. See Ref. [56] for a comparison of 

three of the standards. 
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Figure 33: Choreography Generic Example 

In the example shown in Figure 34 and Figure 35, the air platform is required to perform an air-to-air refuelling (AAR). The Formations component can be used to set up 

a collaboration relationship between the Routes and Tactical Objects components, so as to enable Formations to coordinate a suitable rendezvous for refuelling. In this 

scenario, the tanker aircraft is not a PRA based platform and cannot accept, nor provide, manoeuvring control. 

Choreography Generic Example

: Choreographer
 : Choreography

: Collaborator
 : ~Ensemble

: Collaborator
 : ~Ensemble

: [Choreography_Pattern]

 : ~Choreography

 : Ensemble

 : Ensemble

: Resulting_From_Rules

Cooperation based on agreed rules

Autonomous Region 1

Autonomous Region 2
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Figure 34: Choreography Refuelling Formation Example 

The Formations component can provide the initial positional offset that the air vehicle should adopt before joining formation, and it is provided with an identifier for the 

tanker aircraft, but not its current position. Therefore two services are required, one that can route the air vehicle to a specified location, and another that can provide 

the position of the tanker aircraft to which a positional offset can be applied. 

The Tactical Objects component has the capability to provide the tanker position, and the Routes component has the capability to direct the manoeuvring of the aircraft. 

These capabilities are reported to the Formations component via the bridge, which then allocates the service provider based on their stated capabilities. 

Since the Formations component does not need to know the actual position of the tanker, the pattern can be used to instruct Tactical Objects to transfer the positional 

information directly to the Routes component. The Routes component can then use this information to generate a route to the rendezvous point and request the 

manoeuvres via commands to Path Demands. 

Choreography Refuelling Formation Example

Formation_Pattern : Choreography_Pattern

 : ~Choreography

 : Ensemble  : Ensemble

Positional_Relationship

Formations : Choreographer

 : Choreography

Routes : [Collaborator]

 : ~Ensemble

Tactical Objects : [Collaborator]

 : ~Ensemble

Path Demands : Subordinate
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Figure 35: Choreography Refuelling Formation Example Sequence 

Roles are allocated so that the required services are provided to Formations, and its consumption of services associated with the other components involved in the 

choreography is monitored. So long as the components have the capability to provide the required services, they can be left to manoeuvre the aircraft without further 

input from the Formations component. 

Once the air vehicle reaches the location of the air tanker, a new positioning requirement is generated and this relationship can be removed. 

Choreography Refuelling Formation Example

Description Routes Tactical Objects Path Demands:Choreography_PatternFormations Positional_Relationship

Create collaboration.1
create : Context

Register as part of collaboration.2
create : Context

Role Request.2.1 role_request : Context
Check capability and allocate role.2.2 allocate_requirement
Provide requirement for route.2.3 positional_requirement

Register as part of collaboration.3
create : Context

Role request.3.1 role_request : Context

Check capability and allocate role.3.2
allocate_requirement

Allocate requirement to provide data.3.3 provide_position
loop4

Provide tanker position.4.1 provide_position

Receive tanker position.4.2 receive_position
Maintain spacial seperation.4.3

path_demand
end loop
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