
UK OFFICIAL

RCO_FUT_23_006 Page 1 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

PYRAMID Exploiter's Pack Version 4.1

Annex B – Deployment Guide Issue 4.1

This document has been prepared, as part of the PYRAMID Exploiter’s Pack, in order to set out a generic

approach to implementation of the PYRAMID Architecture. The PYRAMID Reference Architecture has not been

created for any specific system. It is the user’s responsibility to ensure that any article created using this

document meets any required operational, functional and safety needs. The Author accepts no liabilities for

any damages arising due to a failure of the user to verify the safety of any product produced using this document,

nor for any damages caused by the user failing to meet any technical specification.

For further information regarding how you can exploit PYRAMID on your project, provide feedback following

your review of the PYRAMID Exploiter’s Pack V4.1, or have a technical query that you would like answering,

please contact the PYRAMID Team using the following email address. PYRAMID@mod.gov.uk

© Crown owned copyright 2023.

This publication is licensed under the terms of the Open Government Licence v3.0 except where otherwise

stated. To view this licence, visit nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to

the Information Policy Team, The National Archives, Kew, London, TW9 4DU, or email:

psi@nationalarchives.gov.uk

Where we have identified any third party copyright information you will need to obtain permission from the

copyright holder concerned.

This publication is available at https://www.gov.uk/government/publications/pyramid/pyramid-programme

mailto:PYRAMID@mod.gov.uk
file:///C:/Users/daviesl224/AppData/Local/Temp/OneNote/16.0/Exported/%7b0D73053A-FF17-4081-B940-0F8138B22460%7d/NT/0/nationalarchives.gov.uk/doc/open-government-licence/version/3
mailto:psi@nationalarchives.gov.uk
https://www.gov.uk/government/publications/pyramid/pyramid-programme

UK OFFICIAL

RCO_FUT_23_006 Page 2 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

EXECUTIVE SUMMARY

The MOD’s PYRAMID programme introduces a change to the current method of avionic systems design and

procurement, aiming to make the next generation of air systems affordable, capable and adaptable by the

adoption of an open architecture approach and systematic software reuse.

This document outlines how the system and software design processes and strategies used to develop air

system software should be adapted when using the PYRAMID Reference Architecture (PRA), and how PRA

artefacts could be implemented by an Exploiting Programme such that the Key User Requirements (KURs) can

be realised. It identifies at what stage in the design and development lifecycle the different PRA artefacts are

most useful. The development stages discussed in this document, along with associated approaches and the

typical outputs, are as follows:

 Platform Independent System Design

o Build Sets, defining which components are required to meet the customer scenario;

o Component Specifications, defining the services provided and consumed by components;

o Bridges, defining the interrelationships between components;

o Service Modelling and Data Modelling approaches to defining Component Specifications
and bridges.

 Platform Independent Component Design

o A data driving model, representing how data driving is expected to be supported;

o Extensions, defining how component extensions may be used;

o Classes, defining the static structure of the component;

o States, defining the dynamic behaviour of the component.

 Platform Specific System Development

o An infrastructure definition, specifying the Execution Platform to support the components;

o A partitioning approach, defining how components are separated or aggregated;

o Configuration, to prepare data that supports the data driving design decisions;

o A component services approach, defining the underlying mechanisms between services.

 Platform Specific Component Development

o Component Implementation, which is software development of the component.

PRA policies are referenced throughout this document, and should be used to support tailoring of a PRA
deployment.

UK OFFICIAL

RCO_FUT_23_006 Page 3 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

CHANGE HISTORY

Date Issue Description of Changes

November

2019

1 First Issue.

January

2020

1.1 Embodiment of customer review comments.

December

2020

2 Document restructured to remove content duplicated across multiple

documents.

The approaches to defining component specifications has been expanded in the

sections Service Modelling (Section 2.5) and Data Modelling (Section 2.6).

New section has been added to capture best practice recommendations

(Section 2.7).

In addition changes have been made to this document resulting from query

answering from both internal and external stakeholders, and general maturity

improvements.

December

2021

3 Section 4.2.4 updated based on HMI changes.

Material removed from this document to avoid duplication with the Component

Connections PRA Policy.

In addition changes have been made to this document resulting from answering

queries from both internal and external stakeholders, and to improve maturity.

October

2022

3.1 Issue 3.1 is a UK OFFICIAL version of Issue 3. No changes to the content of the

document have been made other than non-technical changes due to the up-

issue of the PYRAMID Exploiter’s Pack from Version 3 to Version 3.1

(headers/footers, references, etc.).

December

2022

4 The description of logical architecting diagram types in section 2.2 has been

refined.

Clarity improvements have been made to sections 2.3, Component

Specification, and 2.5, Service Modelling.

Good practice section 2.7.3 has been added to provide guidance on which

component is most appropriate for managing certain calculations.

The considerations around the rely-guarantee method in section 3.2.5 have

been refined.

In addition general maturity improvements have been made throughout this

document.

UK OFFICIAL

RCO_FUT_23_006 Page 4 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Date Issue Description of Changes

September

2023

4.1 The document has now been updated due to now being released via Open

Government License v3.

List of Effective Pages

82 pages UK OFFICIAL

82 pages in total

UK OFFICIAL

RCO_FUT_23_006 Page 5 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 2

CHANGE HISTORY ... 3

TABLE OF CONTENTS .. 5

TABLE OF FIGURES ... 8

TABLE OF TABLES ... 9

TERMS AND ABBREVIATIONS USED IN THIS DOCUMENT .. 10

REFERENCES ... 11

1 Introduction ... 13

1.1 Scope ... 13

1.2 Purpose .. 13

1.3 Document Structure .. 13

1.3.1 Platform Independent System Design.. 15

1.3.2 Platform Independent Component Design .. 15

1.3.3 Platform Specific System Development ... 15

1.3.4 Platform Specific Component Development .. 15

1.4 How to Read This Document ... 15

1.4.1 Guidance for System Architects and Designers ... 16

1.4.2 Guidance for Component Designers .. 16

1.4.3 Guidance for Component Developers .. 17

1.4.4 Guidance for System Integrators ... 17

2 Platform Independent System Design ... 18

2.1 Requirements Analysis .. 19

2.2 Logical Architecting.. 19

2.2.1 Build Set Identification ... 20

2.2.2 Interaction Definition ... 21

2.2.3 Design Specialisation .. 21

2.3 Component Specification .. 24

2.3.1 Functional Requirements ... 24

2.3.2 Services .. 25

2.3.3 Service Dependencies .. 25

2.4 Bridges ... 26

2.5 Service Modelling .. 26

2.5.1 Model Artefacts ... 27

2.6 Data Modelling .. 28

2.6.1 Model Artefacts ... 29

2.7 Good Practice .. 31

UK OFFICIAL

RCO_FUT_23_006 Page 6 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

2.7.1 Do use other standards and models in conjunction with the PRA ... 31

2.7.2 Do delegate resource conflict decisions as low as possible ... 33

2.7.3 Do consider which component is most appropriate for managing certain calculations.............. 33

2.7.4 Do be aware of emergent properties and behaviour .. 34

2.7.5 Do not create a stove-piped design ... 35

2.7.6 Do not use Tasks as a stand-in for planning ... 36

2.7.7 Do not treat Tasks component as an overseer .. 36

2.7.8 Do not over define inter-component behaviour during system design 37

2.8 Summary .. 37

3 Platform Independent Component Design .. 38

3.1 Component Modelling ... 38

3.1.1 Structural Analysis from Data .. 39

3.1.2 Data Driving .. 40

3.1.3 Behaviour Modelling .. 40

3.2 Design Areas of Concern .. 41

3.2.1 Data Configuration ... 41

3.2.2 Automation, Autonomy and Constraints ... 41

3.2.3 Capability and Health ... 42

3.2.4 Coordination between Nodes .. 42

3.2.5 Safety Related Dependencies and Rely-Guarantees .. 42

3.3 Identification of Extensions ... 43

3.4 Good Practice .. 43

3.4.1 Do avoid pollution .. 43

3.4.2 Do follow S.O.L.I.D guidance .. 44

3.4.3 Do design highly cohesive and loosely coupled services ... 44

3.4.4 Do design reusable services ... 45

3.4.5 Do design services that are decoupled from internal logic .. 45

3.4.6 Do design composable services ... 45

3.4.7 Do design independent services .. 45

3.4.8 Do design state independent services ... 45

3.4.9 Do consider mission planning .. 46

3.5 Summary .. 46

4 Platform Specific System Development .. 47

4.1 Non-Functional Requirements ... 47

4.2 Infrastructure Architecture .. 48

4.2.1 Layered System Infrastructure ... 48

4.2.2 Support for Scheduling ... 49

4.2.3 Software Resource Allocation and Protection ... 50

UK OFFICIAL

RCO_FUT_23_006 Page 7 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

4.2.4 Time ... 50

4.2.5 File Access .. 50

4.2.6 Human-Machine Interface ... 50

4.2.7 Health and Usage Monitoring .. 51

4.2.8 Software Configuration .. 51

4.3 Certification and Accreditation .. 51

4.3.1 Safety Considerations .. 53

4.3.2 Security Assurance Considerations .. 53

4.4 Data Management Design ... 53

4.4.1 Reconfiguration .. 53

4.4.2 Data Synchronisation ... 53

4.4.3 Inter-Application Communications .. 54

4.4.4 Post Mission Data Analysis ... 54

4.5 Component Services .. 55

4.5.1 Service Deployment Design ... 55

4.5.2 Architectural Alignment and Interoperability .. 55

4.6 Infrastructure Implementation .. 55

4.6.1 System Reuse ... 56

4.6.2 Model Transition .. 56

4.7 Good Practice .. 57

4.7.1 Do bridge through middleware .. 57

4.7.2 Do not use component variants to cater for specific uses ... 58

4.7.3 Do use component variants where functionality is separated between platforms 59

4.7.4 Do separate the concept of ‘what data is’ from how it is acquired ... 60

4.7.5 Do use counterparts ... 60

4.7.6 Do coordinate preparation and execution interactions ... 61

4.7.7 Do capture and share platform specific information ... 61

4.8 Summary .. 62

5 Platform Specific Component Development ... 63

5.1 Infrastructure Considerations .. 63

5.1.1 Extensible Data... 63

5.1.2 Health Monitoring and Fault Management ... 64

5.1.3 Interaction with Humans ... 64

5.1.4 Interaction with Equipment ... 64

5.2 Component Implementation ... 64

5.2.1 Legacy Code Reuse ... 65

5.2.2 Automatic Code Generation .. 65

5.3 Working with System Integrators .. 66

UK OFFICIAL

RCO_FUT_23_006 Page 8 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

5.4 Good Practice .. 67

5.4.1 Do consider appropriate middleware access ... 67

5.4.2 Do manage safety artefact development .. 67

5.5 Summary .. 67

Appendix A Component Connection Examples ... 68

Appendix A.1 Coordination – Atomic Transaction .. 68

Appendix A.2 Coordination – Business Agreement .. 72

Appendix A.3 Orchestration .. 76

Appendix A.4 Choreography ... 79

TABLE OF FIGURES

Figure 1: Deployment Lifecycle Diagram ... 14

Figure 2: Main Sections of Interest for System Architects and Designers .. 16

Figure 3: Main Sections of Interest for Component Designers ... 16

Figure 4: Main Sections of Interest for Component Developers ... 17

Figure 5: Main Sections of Interest for System Integrators ... 17

Figure 6: Platform Independent Process.. 18

Figure 7: Example Build Set Diagram ... 20

Figure 8: Example Representations of Initial Interactions ... 21

Figure 9: Service Dependency Diagram .. 25

Figure 10: Example Set of Service Modelling Stages.. 27

Figure 11: Example Set of Data Model Stages ... 29

Figure 12: Data Views Contain Projections of the Subject Matter Attributes ... 30

Figure 13: Example of Multiple Sources Contributing to a Full System Architecture .. 32

Figure 14: Do Not Use Multiple Copies of the Same Component in Stove-Pipes .. 35

Figure 15: Information Is Passed Directly, Not Through Another Component .. 36

Figure 16: Tasks Is Not a Stand-In for Planning .. 36

Figure 17: Reporting Between Components .. 37

Figure 18: Different Sources of Non-Functional Requirements ... 48

Figure 19: Example Deployment Architecture ... 49

Figure 20: Example of Partitioning for Security Purposes in the Platform Specific Model (PSM) 52

Figure 21: PIM to PSM Mapping .. 56

Figure 22: PIM Bridging (22a) and PSM Bridging between Segregated Areas (22b) .. 58

Figure 23: Do Not Use Component Variants as a Tool to Promote Vendor Lock-In .. 59

Figure 24: Counterpart Relationships .. 61

Figure 25: Traditional Software Development Lifecycle .. 66

UK OFFICIAL

RCO_FUT_23_006 Page 9 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Figure 26: Atomic Transaction EM Interoperability ... 69

Figure 27: Atomic Transaction EM Interoperability Sequence Diagram .. 70

Figure 28: Business Activity Jettison Example.. 72

Figure 29: Business Activity Sequence Diagram Jettison Example .. 73

Figure 30: Business Activity Generic Hierarchical Example ... 75

Figure 31: Orchestration Startup Example Diagram .. 77

Figure 32: Orchestration Startup Example Sequence Diagram.. 78

Figure 33: Choreography Generic Example.. 80

Figure 34: Choreography Refuelling Formation Example .. 81

Figure 35: Choreography Refuelling Formation Example Sequence .. 82

TABLE OF TABLES

No tables contained in this document.

UK OFFICIAL

RCO_FUT_23_006 Page 10 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

TERMS AND ABBREVIATIONS USED IN THIS DOCUMENT

Definitions of project terms, the meaning of acronyms and the meaning of abbreviations used in this

document can be found in the PYRAMID Glossary Ref. [5].

UK OFFICIAL

RCO_FUT_23_006 Page 11 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

REFERENCES

The reference numbers are consistent across all the documents in the PYRAMID Exploiter’s Pack. This means

that in this document, when a reference is not used, the corresponding reference number will not appear in

the reference list.

Project Related Document References:

For the avoidance of doubt, all documents referenced below which form part of the PYRAMID Exploiter’s Pack

are subject to the terms of DEFCON 703.

Reference Title, Document Number, Issue & Date

[2]
PYRAMID Exploiter’s Pack Annex A: PRA Description Document, RCO_FUT_23_005, Issue 4.1,

September 2023.

[4]
PYRAMID Exploiter’s Pack Annex C: Compliance Guide, RCO_FUT_23_007, Issue 4.1, September

2023.

[5] PYRAMID Exploiter’s Pack Annex D: Glossary, RCO_FUT_23_008, Issue 12.1, September 2023.

[60] Dstl, Security Guidance for PYRAMID Exploiters, DSTL/TR111125, Issue 1.0, October 2021.

Non-Project Related References:

Non-Project related references below contain information which is proprietary to that referenced third party.

Any information from this source is subject to separate rights and terms.

Reference Title, Document Number, Issue & Date

[8] J. Borky and T. Bradley, Effective Model-Based System Engineering, 2019.

[9] C. Raistrick et al, Model Driven Architecture with Executable UML, 2004.

[11] T. Erl, Service-Oriented Architecture: Concepts, Technology and Design, 2005.

[12] ISO/IEC 18384, Reference Architecture for Service Oriented Architecture (SOA RA), 2016.

[13] C. Raistrick, Land Data Model Methodology and Modelling Standard, 2019. [Online]. Available:
https://landopensystems.mod.uk

[21] Airworthiness Security Process Specification, RTCA DO-326A, 2014.

[24] M. Page-Jones, Practical Guide to Structured System Design, 1988.

[26] The Open Group, Technical Standard for Future Airborne Capability Environment, 3.1 ed.,
2020.

[27] The Open Group, “FACE Shared Data Model,” 2020, [Online]. Available:
https://www.opengroup.org/face/docsandtools.

[28] Multilateral Interoperability Programme, “MIP Information Model,” [Online]. Available:
https://www.mimworld.org.

UK OFFICIAL

RCO_FUT_23_006 Page 12 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Reference Title, Document Number, Issue & Date

[29] EUROCONTROL, “Aeronautical Information Exchange Model”.

[30] Society of Automotive Engineers, “Unmanned Systems (UxS) Control Segment (UCS)
Architecture: Data Model,” 2016.

[31] RTCA DO-332, Object-Oriented Technology and Related Techniques Supplement to DO-178C
and DO-278A, Radio Technical Commission for Aeronautics, 2011.

[32] RTCA, “Handbook for Object-Oriented Technology in Aviation (OOTiA),” Radio Technical
Commission for Aeronautics, 2004.

[33] Assurance Case Working Group, “Goal Structuring Notation Community Standard (version 2),”
GSN Working Group. [Online]. [Accessed 24 10 2019].

[34] R. Martin, “Clean Code: A Handbook of Agile Software Craftsmanship,” 2008.

[35] F. Devos, “Patterns and Anti-Patterns in Object-Oriented Analysis,” 2004. [Online]. Available:
http://www.cs.kuleuven.ac.be/publicaties/doctoraten/cw/CW2004_06.pdf. [Accessed 2020].

[36] S. S. a. T. A. M. Eileen A. Bjorkman, “Using Model-Based Systems Engineering as a Framework
for Improving Test and Evaluation Activities,” Systems Engineering, vol. 16, no. 3, 2012.

[37] SAE International, Guidelines and Methods for Conducting the Safety Assessment Process on
Civil Airborne Systems and Equipment, ARP-4761, 1996.

[38] SAE International / EUROCAE, Guidelines for Development of Civil Aircraft and Systems, ARP-
4754A, 2010.

[39] F. D. Giraldo, Introduction to Model-Driven Engineering, 2015.

[40] M. Handley, SDP: Session Description Protocol, IETF, 2006.

[48] A. Baraldi, (2012) ‘Operational Automatic Remote Sensing Image Understanding Systems:
Beyond Geographic Object-Based and Object-Oriented Image Analysis (GEOBIA/GEOOIA). Part
2: Novel system Architecture, Information/Knowledge Representation, Algorithm Design and
Implementation’ in Remote Sensing Vol 4, issue 9, pp. 2768-2817

[49] A. Dennis, et al (2015), ‘Systems Analysis and Design: An Object-Oriented Approach with UML’

[50] L. Liu, (2020) ‘Requirements Modeling and Coding:An Object-Oriented Approach’

[56] María Emilia Cambronero, et al., 'A Comparative Study between WSCI, WS-CDL, and OWL-S',
IEEE International Conference on e-Business Engineering, 2009, Volume: 1, Pages: 377-382.

[57] OASIS Standards, Web Service Atomic Transaction Specification, version 1.2, 2009, available at
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec.pdf

[58] OASIS Standards, Web Service Business Activity, version 1.1, 2007, available at
http://docs.oasis-open.org/ws-tx/wstx-wsba-1.1-spec-os.pdf

[59] OASIS Standards, Web Service Business Process Execution Language, Version 2.0, 2007,
available at http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf

[63] The Open Group, “Open Universal Domain Description Language (Open UDDL),” 2019, [Online].
Available: https://www.opengroup.org/face/docsandtools.

UK OFFICIAL

RCO_FUT_23_006 Page 13 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

1 Introduction

The MOD’s PYRAMID programme introduces a paradigm shift to the current method of avionic systems design

and procurement, aiming to make the next generation of air systems affordable, capable and adaptable by the

adoption of an open architecture approach and systematic software reuse.

1.1 Scope

The PYRAMID Deployment Guide document outlines how the system and software design processes and

strategies used to develop air system software should be adapted when using the PRA, and how PRA artefacts

could be implemented by an Exploiting Programme such that the KURs can be realised.

For the purposes of this document, “deployment” and “system” are terms generally used interchangeably to

refer to a system implementation based on the PRA.

Note, the lifecycle outlined in this document may differ from that used in a specific deployment activity. This

document does not mandate any particular process and it is down to PYRAMID Exploiters to decide which of

the considerations outlined would best suit their own processes.

1.2 Purpose

This document provides a guide to engineers about what to consider when developing a PRA based system

and how this may affect a more traditional development process.

1.3 Document Structure

Future air systems are expected to be increasingly complex, and this document takes a “separation of

concerns” approach to address this. Instead of breaking down the problem space into a hierarchy of ever

decreasing pieces, it breaks the problem space down into two stages:

 The functional or platform independent stage of the design, independent of the Exploiting Platform’s

infrastructure, described by the centre section of Figure 1.

o Platform Independent System Design provides guidance on how the PYRAMID Reference

Architecture (PRA) can be used to assist in developing a Platform Independent Model (PIM)

and component specifications.

o Platform Independent Component Design provides guidance on how the PRA can assist in

further component maturation by considering component behaviour based on the

component specification.

 The non-functional or platform specific stage of design, usually dependent on the Exploiting

Platform’s infrastructure and environment, is described by the lower section of Figure 1.

o Platform Specific System Development provides guidance on how the PRA can assist in the

platform design decisions, and in dealing with impacts on the components that arise upon

identification of the detailed infrastructure of the Exploiting Platform.

o Platform Specific Component Development provides guidance on how the PRA can assist in

further component development for the identified Exploiting Platform’s infrastructure.

UK OFFICIAL

RCO_FUT_23_006 Page 14 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

The document further distinguishes between what is required from the provider of a component specification,

and the component implementation. This, combined with an iterative design process, allows these concerns

to be considered independently even though they may impact on each other in some ways.

The sections in this document correspond to a potential deployment lifecycle, where a group of components

are taken from the abstract level covered in the PRA through to executing code as part of a final system, as

summarised in Figure 1.

Figure 1: Deployment Lifecycle Diagram

UK OFFICIAL

RCO_FUT_23_006 Page 15 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

This document has the following sections:

1.3.1 Platform Independent System Design

This section provides guidance on the functional analysis and design of a group of components (or whole

system), independent of technology or infrastructure detail, with reference to the PRA.

1.3.2 Platform Independent Component Design

This section provides guidance on the functional analysis and maturation of a component, independent of

technology or infrastructure detail, with reference to the PRA.

1.3.3 Platform Specific System Development

This section provides guidance on the analysis and development of a system (or group of components) for an

Exploiting Platform’s infrastructure, with reference to the PRA.

1.3.4 Platform Specific Component Development

This section provides guidance on the analysis and development of a component for an Exploiting Platform’s

infrastructure, with reference to the PRA.

1.4 How to Read This Document

Those involved in development of a PRA deployment should use the Description Document, Ref. [2], to

familiarise themselves with the PRA policies, components, and example component build sets in the form of

interaction views (IVs). Many of the architectural policies are referred to throughout the Deployment Guide,

and these can be read in Appendix A of the Description Document, Ref. [2].

The following subsections highlight the sections of the guide that are relevant to different engineering roles.

The dark blue items are sections of highest relevance, while the light blue items are less relevant but still

contain useful guidance.

UK OFFICIAL

RCO_FUT_23_006 Page 16 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

1.4.1 Guidance for System Architects and Designers

2 Platform Independent
System Design 2.1 Requirements Analysis

2.2 Logical Architecting

2.3 Component Specification

2.4 Bridges

2.5 Service Modelling

2.6 Data Modelling

4 Platform Specific
System Development 4.1 Non-Functional Requirements

4.2 Infrastructure Architecture

4.3 Certification and Accreditation

4.4 Data Management Design

4.5 Component Services

4.6 Infrastructure Implementation

2.7 Good Practice 4.7 Good Practice

3 Platform Independent
Component Design 3.1 Component Modelling

3.2 Design Considerations

3.3 Implementation of Extensions

3.4 Good Practice

Figure 2: Main Sections of Interest for System Architects and Designers

The starting point for those with the role of designing a deployment is section 2. Platform Independent

System Design outlines the overarching functional considerations for the deployment and drives out the

requirements for the individual components. Some of the technology dependent approaches covered in

section 4 will also be of interest.

1.4.2 Guidance for Component Designers

2 Platform Independent
System Design 2.1 Requirements Analysis

2.2 Logical Architecting

2.3 Component Specification

2.4 Bridges

2.5 Service Modelling

2.6 Data Modelling

3 Platform Independent
Component Design 3.1 Component Modelling

3.2 Design Considerations

3.3 Implementation of Extensions

3.4 Good Practice

2.7 Good Practice

Figure 3: Main Sections of Interest for Component Designers

The starting point for a designer of a component using the PRA is the component specification design, see

sections 2.3, 2.5 and 2.6.

Section 3 describes the bulk of the component design work, which can be progressed once the service

interfaces have been designed. Platform Independent Component Design outlines the overarching functional

considerations for components and defines the work that is expected to be done during component design.

UK OFFICIAL

RCO_FUT_23_006 Page 17 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

1.4.3 Guidance for Component Developers

3 Platform Independent
Component Design 3.1 Component Modelling

3.2 Design Considerations

3.3 Implementation of Extensions

5 Platform Specific
Component Development

5.1 Infrastructure Considerations

5.2 Component Implementation

5.3 Working with System Integrators

3.4 Good Practice 5.4 Good Practice

Figure 4: Main Sections of Interest for Component Developers

The starting point for a developer of a component using the PRA is section 5. Platform Specific Component

Development outlines the steps to turn the functional design developed in section 3 into components that will

work on the target execution platform.

1.4.4 Guidance for System Integrators

2 Platform Independent
System Design 2.1 Requirements Analysis

2.2 Logical Architecting

2.3 Component Specification

2.4 Bridges

2.5 Service Modelling

2.6 Data Modelling

3 Platform Independent
Component Design 3.1 Component Modelling

3.2 Design Considerations

3.3 Implementation of Extensions

4 Platform Specific
System Development

4.1 Non-Functional Requirements

4.2 Infrastructure Architecture

4.3 Certification and Accreditation

4.4 Data Management Design

4.5 Component Services

5 Platform Specific
Component Development 5.1 Infrastructure Considerations

5.2 Component Implementation

5.3 Working with System Integrators

4.6 Infrastructure Implementation

2.7 Good Practice

4.7 Good Practice

3.4 Good Practice

5.4 Good Practice

Figure 5: Main Sections of Interest for System Integrators

Those whose role includes integrating the deployment are likely to be interested to some extent in all the

work that is to be undertaken. This role may be covered by a party acting as both designer and integrator,

although it may be done as a distinct role separate to the System Architect. Earlier integrator involvement will

lead to a smoother integration and acceptance, particularly if the integration authority is different to the

system design authority, and this should especially be considered for work described in sections 2.3, 2.4 and

4.3.

UK OFFICIAL

RCO_FUT_23_006 Page 18 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

2 Platform Independent System Design

This section covers the platform independent system design. Platform independent in this context refers to

consideration of what functionality is required, with independence from the execution platform and all things

that relate to where, when and how the functionality is to be achieved; those are covered in sections 4 and 5.

The process, starting with stakeholder requirements, is summarised in Figure 6. Note that this figure does not

cover reuse of previously developed components.

Determination of System Requirements
(Section 2.1)

Build Set
Identification
(Section 2.2.1)

Interaction
Definition

(Section 2.2.2)

Definition of
Component

Requirements
(Section 2.3.1)

Candidate
Component

Identification

Definition of
Services

(Section 2.3.2)

Service and Data Modelling
(Sections 2.5 and 2.6)

Component
Specification
(Section 2.3)

Infrastructure
Design

(Section 4.2)

PRA
Components

Definition of
Candidate Bridges

(Section 2.4)

Design
Specialisation
(Section 2.2.3)

PRA Polices

PRA
Components

PRA
Components

PRA
Interaction

Views

PRA
Interaction

Views

PRA
Components

PRA
Document
Artefacts

PRA
Document
Artefacts

Figure 6: Platform Independent Process

Note that it is expected that the design process will be iterative, with developments in the platform specific

modelling informing the logical design; the separation is about considering the functional and non-functional

aspects independently.

UK OFFICIAL

RCO_FUT_23_006 Page 19 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

2.1 Requirements Analysis

The platform independent (functional) requirements applicable to the system need to be captured. The

derivation of the system functional requirements from both customer requirements and requirements to

interface with equipment needs to be achieved by a normal system engineering process.

2.2 Logical Architecting

Each PRA component is designed to be solely responsible for any behaviour relating to its role, enabling a high

level of cohesion, a measure of the component’s functional strength. This high level of cohesion in

components is an important principle, not only to minimise the impact of changes on the system but also to

ensure no component contains information relating to other components. Cohesion requires that

components support the architecture in performing common functionality, by for example: providing their

own logging information, and reporting their state information to support monitoring (see the Capability

Assessment and Health Management policies). It also means the components cover different operational

contexts, for example training and simulation, maintenance support, Mission Planning and post mission

analysis.

The PRA is applicable to multiple mission scenarios, meaning that it is very broad in scope. Therefore, to

develop a deployment based on the PRA a process of specialising the design for specific deployment

environments must be undertaken, while still maintaining independence from the execution platform. The

rest of section 2.2 provides guidance on the process of logical architecting, which applies this specialisation.

The PRA does not provide an exploiter with a system architecture. To utilise the roles, responsibilities and

other information provided in the PRA, it is considered beneficial to have a schematic phase for a deployment.

This could consist of features, functionality and hazards “roughly” laid out across the deployment components

(including safety and security aspects), comprising an initial logical design. An overall schematic and initial

functional design helps reduce risk of costly system redesign later in the design lifecycle.

UK OFFICIAL

RCO_FUT_23_006 Page 20 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

2.2.1 Build Set Identification

Having identified the functional requirements, the next step is to identify the PRA components that will satisfy

those requirements by mapping the derived functional requirements from the requirement analysis work to

component responsibilities. Future systems will need to be changed more quickly, more cost effectively and

more frequently. Consistent component definitions across systems is core to reuse at all levels (design,

functional, and software), making mapping system requirements to the components a fundamental first step.

Artefacts to assist with build set identification are included within the PRA Model:

 Interaction views (IVs), which show how higher level functions may be achieved using a combination
of components. The IVs are included in Appendix C of Ref. [2].

 Trace links, which indicate the component responsibilities that interaction events in the IVs
correspond to.

 Architectural policies, which discuss architecture wide provisions as well as more specific functional
areas. The policies are included in Appendix A of Ref. [2].

 Semantics diagrams within each PRA component definition, which contain entity relationships that
identify the scope of the component and therefore indicate whether it should be included in the build
set. These diagrams are included in Appendix B of Ref. [2].

 Service Definitions, which define a basic set of services for each PRA component. These definitions
can assist in determining where build set components will interact. These definitions are included in
Appendix B of Ref. [2].

The identified components need to be captured into a PIM build set. A PIM build set is effectively a parts list

that specifies the selected components that make up a specific deployment of the PRA, and their

interconnections. An example diagram for a build set of components used in aerial refuelling is shown in

Figure 7. Typically a build set is documented in a composite or package UML structural diagram; multiple tiers

of build set may be required to capture a complete deployment. The PRA IVs are example use cases (which

also include interactions, see Section 2.2.2) that can be consulted when identifying relevant components for

related build sets. More details on how to develop a build set are provided in Ref. [9] and [13].

Figure 7: Example Build Set Diagram

UK OFFICIAL

RCO_FUT_23_006 Page 21 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

2.2.2 Interaction Definition

There are many different ways that the components can be combined. The interaction views (IVs) provide

examples of how components can be used together to meet a higher level design goal.

As part of the platform independent design process, the interactions between different components in a PIM

build set need to be elaborated. Initially these are likely to be based around simple component-to-component

interactions. Multiple techniques for identifying the initial deployment-specific interactions can be used, e.g.

usage analysis. At this stage it can be beneficial to produce use cases based on what is required from the

deployment, or a particular part of it. Multiple use cases can be investigated within larger use cases, and the

relationships between them in terms of how they use each other can be determined, as well as the

relationships with external actors.

Component interactions for a build set are typically captured in sequence or communication behavioural UML

diagrams. Figure 8 shows a communication diagram that defines interactions for the aerial refuelling example

(introduced in Figure 7). The communication diagrams used in the PRA IVs (Appendix C of Ref. [2]) show event

interactions, but data flow interactions could potentially be used, as in Figure 8.

Figure 8: Example Representations of Initial Interactions

The PRA IVs show example interactions between components, which are satisfied by their services. These

interactions can be matured into fully defined service interfaces, as described in section 2.3. For initial

iterations, keeping components and services generic will help promote reusability in future iterations. Further

guidance on component design specialisation is covered in section 2.2.3.

2.2.3 Design Specialisation

Any design process is not going to be a single pass, as the design process for non-functional requirements will

impact the functional design. This means that the design needs to evolve so that the PIM, while still

independent of the execution platform, continues to be tailored for a particular deployment as the

infrastructure and non-functional requirements are matured. To perform logical architecting of the system,

component design specialisation should be considered. The architectural policies need to be considered

during specialisation, particularly the Component Extensions and Data Driving policies. The following sub-

sections provide additional recommendations on tailoring of a design using the PRA to assist in meeting

specific stakeholder requirements.

UK OFFICIAL

RCO_FUT_23_006 Page 22 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Note: these sections are not meant as an exhaustive list of tasks; additional tasks may be necessary, and those

applicable will depend on the methodology being followed.

2.2.3.1 Autonomy and System Constraints

Air systems of the future are likely to include many automated decision making functions. The ability to

include multi-level decision making is at the core of the PRA design.

 The Control Architecture policy describes a control architecture that has been embodied in the PRA,

enabling the architect of an Exploiting Platform to implement system-wide control.

 The Autonomy policy provides recommendations on capturing the level of autonomy that is deemed

appropriate.

 The Constraint Management policy provides recommendations on handling constraints associated

with rules and limits, etc.

 The Capability Assessment policy describes how changes in component and wider system capability

should be detected, and use of capability information in determining response to the changes.

The level of autonomy that is desired in the system, and the handling of system constraints, should be

considered as part of the platform independent system design. A principle of the Control Architecture policy is

that decisions are made by the component that has the appropriate level of information (e.g. detailed low

level information) and subject matter knowledge to make the decision.

Note that although some components have oversight roles within the control architecture, they are still

agnostic of where the tasks are carried out (i.e. they are still unaware of what other components are present

in the build set). The control architecture is not a solution for bridging the semantic gap between components

(see the Component Connections policy for this).

2.2.3.2 Component Scaling

For a given deployment, it may be desirable to specialise the functionality of components for resourcing,

temporal or spatial reasons (e.g. offline planning or ground support). Each component can be scaled into

distinct component variants containing a subset of the component’s responsibilities; each variant can then be

tailored for specific resource profiles or operational contexts.

When scaling a component it is important to avoid producing high coupling between the component variants.

Given that variants will share the subject-matter knowledge of their original component, this needs some

thought; meaningful and comprehensive boundaries between the variants are required in order to ensure the

components can operate without each other, or so that they can co-operate efficiently.

Component variants may be used to distribute a component’s functionality to address resourcing, security or

safety concerns. If this is the reason for the variants, they are likely to need synchronising with each other.

These considerations are covered in section 2.2.3.3 and 2.2.3.4. Additional guidance on distributing

components by context is provided by M. Page-Jones who proposes several key strategies for developing

coherent components; see Ref. [24] [48] [49] [50].

UK OFFICIAL

RCO_FUT_23_006 Page 23 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

2.2.3.3 Multiple Instances of Components

Whereas scaling a component can enable specialisation of its overall functionality for aspects like different

operational situations or settings (see Section 2.2.3.2), more specific details can be specialised using multiple

actual instantiations of the same component (or variant thereof). This may be done for numerous reasons, for

example to:

 Distribute or compartmentalise behaviour for resourcing, security and/or safety reasons. Security

and safety concerns should be considered together, see section 4.3.

 Instantiate a data-driven generic component multiple times for specific purposes.

The communications between multiple instances of components need to be kept to a minimum. The service

interfaces must be as carefully considered as those between different component variants (the distributed

parts) – this will not be achieved by treating it as a single component.

The following architectural policies offer recommendations on distributed working:

 The Multi-Vehicle Coordination policy contains guidance on the orchestration of tasking over a

system distributed between multiple geographic locations;

 The Use of Communication policy contains guidance on how the data communications work together

to provide a managed multi-node solution;

 The Operational Support policy contains guidance on how instances of components can be used in

the planning and operational usage of the system.

Where instances of the same component co-exist, they are most likely to be changed by configuration with

particular requirements incorporated specific to the Exploiting Programme, enabling the component to be

more accurately tailored to its intended role. An example might be multiple instances of a resource

component with each instance configured to operate as a specific type of resource (e.g. a sensor type), see the

Data Driving policy.

Note that using multiple instantiations of a generic component for a particular purpose is a choice; a single

parent instance could instead be used as the final arbiter of its extension components. For example, a single

instance of a resource component could delegate behaviour for different resource types to the extension

components responsible for behaviour specific to that resource type. For information on component

extensibility, see section 3.3 and the Component Extensions policy.

2.2.3.4 Data Synchronisation

The PRA components are designed to be highly cohesive, partially to minimise the amount of data sharing.

When a component is scaled or distributed, interactions need to be created for the required synchronisation

between the different instances of the same component. This will often occur naturally as part of the

expected interactions with other services, and does not require any additional dedicated design. These new

interactions are important because they may not have been covered in any previous interaction views.

Synchronisation needs to be analysed; initially it is sufficient to consider existing interaction definitions to

cover synchronisation. Section 2.6 suggests how data that may require synchronisation can be analysed, so

that it can be better understood.

UK OFFICIAL

RCO_FUT_23_006 Page 24 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

2.3 Component Specification

Based on the interaction definition identified as part of logical architecting, it should now be possible to better

refine what is required of each component. It is recommended that component specifications are iteratively

refined in a collaborative manner with the Component Designer. Although the Component Designer does not

have to be involved when the specification is first defined, they should be involved as early as possible.

The component specification defines the purpose of a component in terms of what it provides and what it

needs from the system. This allows for parallel work to be carried out on all the components, and helps

determine whether components are going to meet the system needs. When specifying a component for a

deployment, any specified terms that are particular to the deployment should be aligned with or related to the

language of the PRA definitions on which they are based. For example, when specifying a specialised

interface based on a PRA service definition, the relationship between specialised attributes and any equivalent

attributes in the PRA definition should be stated (if they are not going to be aligned). This will help maintain

traceability and understanding.

Depending on the level of reuse being undertaken in the deployment, a component specification may already

exist. Reuse of components should be maximised at this stage so that software and artefacts with pre-existing

functionality are not developed unnecessarily. Component specification typically covers three main areas:

• Functional Requirements – requirements that have been derived for the component during system

analysis. See section 2.3.1.

• Services – define what is provided by the component and what it requires in return, see section 2.3.2.

• Service Dependencies – define the relationship between services the component provides and

consumes, see section 2.3.3.

For compatibility and consistency, component specification functional requirements and service definitions

should specify the detail for how the component will be required to support the necessary PRA policies. This

should be specified while considering both the policy’s direct implications for the component and also the

effect on the wider deployment. For example, the way that different requirements should be communicated

through the component’s services will support the Dependency Management architectural policy. The policies

are included in Appendix A of Ref. [2].

As the component specification is refined and the design better understood, safety, security and autonomy

related dependencies can be captured. Section 3.2.5 discusses further detailing of these dependencies to

enable later component implementation, particularly with respect to safety. Section 4.3 discusses addressing

of non-functional requirements at the Platform Specific Model (PSM) stage.

2.3.1 Functional Requirements

Component requirements need not be textual. One of the key goals of model based design is to provide a

more automated way of progressing from high level requirements to running software. Ideally, to support this

the requirements should be captured in a machine interpretable way, with the component supplier and

System Integrator having an agreed approach to electronic exchange of requirements, traceability and

verification evidence.

UK OFFICIAL

RCO_FUT_23_006 Page 25 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

2.3.2 Services

Services are at the core of the component specification; a service may be as simple as providing a piece of

information or as complex as generating a complete flight path. There are many approaches to defining the

service interface to components; while the PRA does not mandate any particular methodology for service

design the PRA has been designed with support for the following modelling methodologies in mind:

 A service modelling approach as detailed in section 2.5.

 A data modelling approach as detailed in section 2.6.

 A domain modelling approach as detailed in Ref. [13].

Multiple approaches can be used at once, but often a dominant method is required across a deployment to

avoid multiple definitions of the same service; for more on this see Ref. [8]. Each PRA component definition

(included in Appendix B of Ref. [2]) provides basic services which can be used as the basis for the services in a

component specification.

2.3.3 Service Dependencies

A service dependency explains how the services a component provides depend on other provided or

consumed services. The dependencies between a component’s service activities can be represented in activity

diagrams, of which a generalised version is shown in Figure 9. Aspects such as events and signals can be

included in an activity diagram to provide the desired level of detail.

Validate Reported
Position

Estimated Object
Position & Accuracy

[valid]

[estimate still
valid]

Object Position
Estimation

Update Capability

X

New Position
Measurement

Health Status of
Measurement

[report appears
invalid]*

X

[reporter invalid]

[invalid data]

Current Component
Capability

Dependents
Capability

Capability Assessment Capability Object Evidence

Tactical Objects

Predicted
Trajectory

 Key

 Initial
 Activity

 Action

 Final
 Activity

 * e.g. repeated invalid position reports
contributing to the components assessment
of its capability

X

Figure 9: Service Dependency Diagram

UK OFFICIAL

RCO_FUT_23_006 Page 26 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

As the components are refined during a deployment, these diagrams should be modified and matured. The

PRA includes a service dependency activity diagram in each component definition, and these can be used to

inform a component’s service dependencies for a deployment.

A service dependency is the part of the component specification that has to be the most co-operative in its

development, as it is used to tell a System Integrator what has to be provided to the component in order to

get the service that is requested.

2.4 Bridges

The need for information to be exchanged, and to overcome semantic gaps between components, is met by

passing information via special inter-component connections known as bridges.

Part of the design process is to identify these bridges to make sure that the gap being crossed is not too wide,

and to ensure the complexity that needs to be reasoned about in the architecture is not being hidden in the

bridges. Approaches to specifying this behaviour are provided in the Component Connections and Use of

Communications policies. Additionally, there are examples of bridges within the standardised connection

patterns provided in Appendix A of this document.

Within the PIM, model partitioning and timing are not considered; the model ‘assumes’ that all interactions

are instantaneous and allowed. The platform specific modelling described in later sections will address non-

functional constraints such as partitioning and timing; where this changes the logical behaviour, an iterative

approach can be undertaken to capture this in the platform independent model if required.

Section 4.7.6 describes the use of component subject matter entity counterparts later in the design process to

enable bridges to be implemented in a code efficient way.

For more information on bridges see the Component Connections policy.

2.5 Service Modelling

Service modelling methodologies such as Service Oriented Architecture (SOA) start from the assumption that

the component specification can be fully defined by its services alone. This means that, unlike data modelling

(see section 2.6), when defining the component the behavioural aspects such as operations are considered but

the associations between the subject matter entities are not. These methods complement the approach used

to create the components defined in the PRA, as the key service characteristics are very similar. For more

information on SOA see Ref. [11] and [12].

A service modelling approach is often iterative and subdivides the platform independent model into separate

stages of development, providing further separation of concerns. Example separation is shown in Figure 10.

This can represent the evolution of a single model, however in an auto-translation environment this will often

be multiple models with approximately the first 80% of the next layer auto-generated from the model above;

see section 4.6.2 for more on auto-translation.

UK OFFICIAL

RCO_FUT_23_006 Page 27 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Contextual

Conceptual

Logical

Physical

Execution

Deployment
Specific Detail

added

 Identify Participant components

 Identify Service Candidates

 Use case analysis

 Determine if services are going to be
contract or interface based

 Apply Service Patterns

 Define Service Operations

 Define Service Attributes

 Define Service Contracts

 Define Service Choreography

 Define all parameters

 Apply Data types to attributes and
parameters

 Define information exchange philosophy for
each service pattern

 Match exchange philosophy to protocol

Execution
Platform Specific

Detail added

Figure 10: Example Set of Service Modelling Stages

Note that the set of stages shown in Figure 10 is a progression through both PIM and PSM levels, without a strict
boundary between them.

2.5.1 Model Artefacts

Good service definition is essential for efficient integration of a deployment. Service modelling provides two

types of services at the PIM level:

• Provided services, which are services offered by the component;

• Consumed services, which are services required by the component from elsewhere in the system.

Typically component specifications will provide the following artefacts related to services:

 Service interfaces, which define the functionality provided or consumed by the component.

Interfaces may contain service operations and/or attributes that are each related to the overall

provided or consumed service.

 Component centric service contracts that define which service aspects must be adhered to so that

the service can form a relationship in order to provide a capability. For more information see the

Component Connections policy.

Service interfaces can be modelled in two ways:

 A simple service, where the interface is defined as attributes on a service interface class that can be

mapped via a data-only relationship in a similar way as in data modelling, e.g. where the interface is

just passing data.

 A contract service, where a simple interface cannot fully represent the expected behaviour, e.g. if the

interface is requesting an action rather than just passing data.

UK OFFICIAL

RCO_FUT_23_006 Page 28 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

These two are often combined in the same service definition (e.g. an attribute that is used in a simple interface

to report the progress on the task in the contract interface). This eliminates the need for “get/set” operations

as part of the platform independent model, allowing for a simpler representation.

A service pattern defines a description of a common solution to a recurring problem within a certain context.

See the Component Connections policy for more on service patterns. Appendix A of this document contains

examples of applicable service patterns in use.

The basic services provided in the PRA (Appendix B of Ref. [2]) should be specialised for the needs of a

deployment. A base set of attributes are included on Service Interfaces in the PRA model, and these can be

refined or additional attributes can be added as services are developed further. The PRA interaction views

(Appendix C of Ref. [2]) provide examples of how components interact, which can help when determining

service operations; the interactions can be considered as needs to provide and consume services, which in

turn may be realised by more than one service operation.

When defining attributes and operations on the services it is important to remember that the service object

only exists for the life of that service being started, so it cannot capture and retain information for it to be

called elsewhere. However complex services are allowed where they are set-up or planned via one operation,

and the data is retrieved by a different attribute or operation.

2.6 Data Modelling

Data modelling methodologies start from the assumption that the component specification can be fully

defined by a component’s entities, their attributes, and the relationship between the entities. This means that

unlike service modelling (see section 2.5), when defining the component the relationship between subject

matter entities are considered, but behaviours and behavioural aspects such as operations are not. The

semantics diagrams within the PRA component definitions, despite not being complete class diagrams, give

context to the component’s entities that can be useful in development of a data model. Data modelling is

often done using a bottom up approach where the data provided by a component is already known and is

defined as being available to external parties. Data modelling can be used as a stand-alone approach or in

combination with service contract definition to help develop a cleaner integration. For data issues relating to

component design see section 3.2.

A data modelling approach, like service modelling, is often iterative and subdivides the platform independent

model into architectural layers to provide further separation of concerns. Future Airborne Capability

Environment (FACE), Ref. [26], for example, separates the model into conceptual, logical and platform (i.e.

physical) models; an illustration of the modelling approach is shown in Figure 11. Note that the logical and

physical models can often be generated through auto-translation based on a set of predefined rules; see

section 4.6.2.

UK OFFICIAL

RCO_FUT_23_006 Page 29 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

 Define Entities in terms of Observables
e.g. Temperature

 Define entities in terms of
Measurements e.g. Centigrade

 Define relationship to Conceptual Model

 Define expected data ranges and
accuracies

 Define entities in terms of data
primitives e.g. integer

 Define relationship to Logical Model

 Define what will be in each interface
view

 Define how the deployment entity
model will be broken up to support
partitioning

Conceptual
Data
Model

Shared Data
Model

Deployment
Entity Model

Logical
Data
Model

Shared Data
Model

Deployment
Entity Model

Platform
Data
Model

Shared Data
Model

Deployment
Entity Model

Interface
Model Units of

Portablity
Interface

Data Views

Deployment
Specific Detail

added

Figure 11: Example Set of Data Model Stages

Note that the set of stages shown in Figure 11 is a progression through both PIM and PSM levels, without a strict
boundary between them.

2.6.1 Model Artefacts

Across a deployment, a shared data model is used that contains the lowest level data type definitions. This

allows shared physical measurements and observations so that conversion overheads between deployed

programmes are reduced.

The term data model can refer to either a component information data model or a system information data

model.

 Component specifications are defined using component information data models, user concept views

and data views, see section 2.6.1.1 for more information.

 The relationships between components are captured in system information data models, see section

2.6.1.2 for more information.

UK OFFICIAL

RCO_FUT_23_006 Page 30 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

2.6.1.1 Component Information Data Model and Data Views

A Component Specification can provide the following artefacts:

 A component information data model, defining the data that is used within a component, and data

views, defining which parts of the entity data model are exchanged over a particular interface.

 User concept views, incorporating customer focused component use cases, therefore only showing

the parts of the deployment that the component is directly involved in.

An information model is represented as an entity, relationship and attribute (ERA) diagram, which shows a

logical breakdown of the data structure within the component.

The information model can be used to define the component specification, as the understanding of the

relationships between the entities is important. Although the full representation of the data available for a

component is captured in the information model, often only a subset is required to be shared with other

components; the relationships involving data made available outside of the component are modelled as data

views. A view is a projection of attributes within the information model, see Figure 12. These are often

represented as counterparts, as described in the Component Connections policy.

Figure 12: Data Views Contain Projections of the Subject Matter Attributes

System Designers should assess whether an information data model is required, and if so whether it should be

a single model or subdivided into relevant sub-models. Where necessary, the management of links and

overlaps in multiple data models should also be considered. Only the parts of the information model that are

required for the interface specification need to be released to third parties, which is important where

Component Developers are concerned with the privacy of their information model.

View

Entity 2

Attribute 1
Attribute 2
Attribute 3
Attribute 4

Entity 1

Attribute 1
Attribute 2

Entity 3

Attribute 1
Attribute 2
Attribute 3
Attribute 4 Entity 4

Attribute 1
Attribute 2
Attribute 3
Attribute 4

Entity A
 Attribute A
 Attribute B

Entity B
 Attribute A
 Attribute B
 Attribute C
 Attribute D

Projection

UK OFFICIAL

RCO_FUT_23_006 Page 31 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

2.6.1.2 System Information Data Model

A reasonable subdivision within a system data model for a typical programme might be:

 User concept views, incorporating customer focused system use cases.

 A system information data model, describing the subject matter data groups. The subject matter

entities within the PRA can be used as a starting point for the data model.

The information model can be used to:

 Model parts of the system, particularly the data-driven parts of a component.

 Define the semantic data exchanges across multiple platforms operating in a common operating

domain.

 Support reuse of existing data types across multiple deployments prior to contract placing.

In the same way that a component information data model is used in combination with data views to define

the component’s relationship to its interfaces (see section 2.6.1.1), the system data model can be used to

capture the relationship between different components. Again a layered approach here can bring reuse

advantages, including defining bridge conversion routines.

2.7 Good Practice

This section provides good practice recommendations applicable to typical cases of platform independent

system design, including guidance for avoiding common pitfalls.

2.7.1 Do use other standards and models in conjunction with the PRA

The PYRAMID Reference Architecture is not designed to contain all the information that is required to design a

fully interoperable end system. Rather it is designed to provide a common component structure and

overarching policies which when combined with other architectures and models provide a full definition of a

system architecture, see Figure 13.

UK OFFICIAL

RCO_FUT_23_006 Page 32 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

 Data driving strategy

 Shared data model

 Data type definitions

 Overarching Rules/Policies

 Common Vocabulary

 Generic Component Scope

 Generic Component behaviour

 Generic Focused Views

PYRAMID Reference Model

 Modelling approach

 Structure representation

 Behaviour representation

 Service definition method

 Extension interface strategy

Category Architecture Data Interchange Definition

System Architecture

 Tailored data models, design patterns, logical
views

 Service taxonomy and allocations

 Focused views

 Often common across programmes

Subject Matter Data Models

 Middleware definitions

 Target execution platform definitions

 Coding standards

 Data interchange protocol standards

 Timing model, threads, storage, logging

 Partitioning strategy

 Safety and security Standards

Production Line Architecture

 Operational, Logical and Physical Views

 Detailed Service Catalogue

 Data Exchange Protocol

 Runtime environment definition

 May include artefacts from multiple architectures

Figure 13: Example of Multiple Sources Contributing to a Full System Architecture

The advantage of the mix and match approach is that it allows for end systems to be standardised while still

being tailorable; allowing for an instance of a deployment to be Multilateral Interoperability Programme (MIP)

compliant and PRA based at the same time. For more on the relationships between different reference

architecture types see Ref. [8].

A category architecture typically identifies features that are common across multiple programmes such as

canonical models, e.g. a FACE Shared Data Model, Ref. [27]. A programme will need to assess if an information

data model is required, and if so whether it should be a single or subdivided data model (e.g. a separate model

of data for data driving).

UK OFFICIAL

RCO_FUT_23_006 Page 33 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Similarly, the use of subject matter data models allows a common model to be shared between programmes,

increasing the compatibility between programmes and also driving down cost. Subject matter models may be

defined by the programme for any specific deployment, or subject matter specialisations may be used such as:

 Battlespace Situational awareness e.g. MIP Information Model, Ref. [28];

 Airspace integration e.g. AIXM, Ref. [29];

 UAV Command and Control e.g. OSD UCS, Ref. [30];

 A conceptual model conformant to FACE metamodel, Ref. [27] and [63].

Individual programmes should specify and share their logical and physical layers for detailed enumerates and

logical representations, such that interface code could be auto-generated through mapping to the relevant

entities in the category architecture conceptual layer.

2.7.2 Do delegate resource conflict decisions as low as possible

A principle of the Control Architecture policy is that decisions are made by the component that has the

appropriate level of information and subject matter knowledge to make the decision. Where decision conflicts

arise, these should then be made as close to the end of derived requirement chains as possible. This means

that components close to the interfaces with resources are encouraged to make the resource level decisions.

The higher levels of the control architecture are abstracted away from the resources and are therefore not

likely to be able to make the detailed decisions. Components with the broader understanding of the subject

only need to be involved if the components that understand certain specific detail can’t find a way to meet the

requirements they have been given. See the Dependency Management and Resource Management policies

for more information.

2.7.3 Do consider which component is most appropriate for managing certain

calculations

When a component requires data to be calculated that is not yet available, it is often the responsibility of that

component to instigate the calculation of the data when needed. However, a design decision needs to be made

concerning which component should actually perform the calculation (and therefore what data needs to be

transferred and to where). Various considerations should be weighed against one another when making these

decisions:

1. Keeping the calculation within the component most concerned with the result. This has the

benefits associated with the calculated data being more easily available where it is needed, such as

reduced latency or data transfer overheads if the result contains a large amount of data.

2. The amount of data needing to be transferred. Performing the calculation in a component that

contributes a significantly larger data set to the calculation will reduce data transfer overheads and

potentially latency in producing the result. Note that:

 Whilst it may be possible to narrow down the amount of data needed for a calculation within a

large data set, additional design or computational effort may be required to achieve this

efficiency.

 Thought should be given to whether current technical limitations that restrict large scale data

transfer may be reduced in future.

UK OFFICIAL

RCO_FUT_23_006 Page 34 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

3. Keeping the calculation in one place. Where there are common elements or a common theme

across calculations, it may be beneficial to perform the calculations in the component that contains or

is responsible for the common elements. Whilst common libraries (e.g. mathematical libraries) do

enable multiple components to use the same library function without having to redevelop it, there

may still be benefits to restricting the number of components that perform similar calculations, such

as easier integration of library changes.

4. Safety and security considerations. The location of the calculation may need to take account of:

 The required or desired integrity of the component and/or the hardware that it is intended to be

hosted on.

 The possibility of source or output data corruption, or surveillance during transit, and any

additional overheads required to mitigate this.

The significance of point 1 verses point 2 will require assessment to determine where the greatest performance

or design effort benefits lie. For example, a conflict between a proposed route and the terrain would be of most

concern to the Routes component rather than the Geography component. However, performing the calculation

in the Routes component would likely require large amounts of terrain data to be transferred to the Routes

component, rather than a much smaller amount of route data (e.g. represented as a line or simple volume)

being transferred to the Geography component. Furthermore, there will likely be other cases where lines or

volumes, representing things in the subject matter of other components, need to be compared with terrain to

determine if they intersect. Therefore, performing the calculation in the Geography component may be the best

solution from both a performance and design effort perspective.

2.7.4 Do be aware of emergent properties and behaviour

Emergence occurs where a group of components have properties and behaviour when interacting as a group

that no individual component has on its own.

There are two main problems related to emergence that should be considered. Firstly, desired emergent

behaviour is not immediately apparent in the component set. Secondly, undesirable behaviour may result from

the components being unaware of the behaviour of each other.

Many examples of how to model desired emergent behaviour are covered in the interaction views. Emergent

properties resulting from emergent behaviour can often cause confusion, as it may seem that they should be

properties within an individual component. These properties can often be identified in that they can only be

described clearly at an abstract level, covering multiple subject domains: one such concept is the context of a

mission. Mission context information on, for example, an area of operation may be represented by a set of

related data from different components, and may not appear with an ‘area of operation’ label in any individual

components. However it may well appear in a more abstract component that understands the subject

broadly, but with certain details distributed between other components that understand those details

specifically.

Undesirable emergent behaviour is a problem with any system which is an integration of its constituent parts.

However, this is a greater problem with a design for which separation of concerns is the underlying philosophy

due to the deliberate ‘independence’ of components and emphasis on autonomous behaviour. This may lead

to issues such as undesirable ‘loops’ of behaviour, or over processing (e.g. filtering) data in different places

which can result in degraded quality and unacceptably extrapolated data. These issues can generally be

UK OFFICIAL

RCO_FUT_23_006 Page 35 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

mitigated through being careful with and understanding the implications of how components interact during

design. Careful analysis of alternative scenarios and dynamic constraints can be helpful.

2.7.5 Do not create a stove-piped design

One of the hallmarks of a legacy style functional decomposition is the stove-pipes it creates, where lower level

resources are under the control of a dedicated higher level component, with all access going through that high

level component (see Figure 14). This leads to a high degree of coupling, in turn leading to code duplication

and increased design change latency; clearly this is to be avoided in new systems.

Figure 14: Do Not Use Multiple Copies of the Same Component in Stove-Pipes

If a specialisation of a component’s role is needed to support some of the behaviour in new equipment, this

should where possible be accommodated using extensions rather than variants. The impact of this

specialisation will decrease as you go up the abstraction layers in the control architecture: if you need

specialisations in a long chain it suggests that abstraction is not taking place, as shown in Figure 14. Decisions

should be made by a component to which all the required information detail is available, and detailed

information should not be available at the higher abstraction levels. For instance, it is reasonable for a Tasks

component to decide that to meet intelligence objectives a sensing action is needed, and then delegate the

details of that to Sensing. As a result there is no place for a dedicated “Tasking for Sensing” specialisation, as

all the sensing subject matter knowledge is within Sensing, not Tasks.

Tasking for Sensors

Equipment A Equipment B Equipment C

Sensing

Sensors
for Resource B

Sensors
for Resource C

Sensors
 for resource A

Sensing
 for resource A

Sensing
for Resource B

Sensing
for Resource C

Tasking

Tasking for

UK OFFICIAL

RCO_FUT_23_006 Page 36 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Another symptom of this bad practice is the passing of data through an intermediary component to give it to

another; an example of this is illustrated in Figure 15. Components should access the data they need directly

and not via an intermediate component. Higher level components are not a special case; the control

architecture is about the level of abstraction of components, not the control of access to low level data.

Figure 15: Information Is Passed Directly, Not Through Another Component

2.7.6 Do not use Tasks as a stand-in for planning

A common pitfall when determining the logical separation of the system is to look at a snapshot of the

lifecycle of a component; a symptom of this mistake is to think that another component will provide the

planning (e.g. Tasks). Tasks will provide the requirements for an activity, but this is about a high level

abstraction, not about prior knowledge in time, as illustrated in Figure 16. If you find yourself duplicating data

from a component in Tasks or a tactics extension then this suggests that you have failed to properly abstract

up the activity to constraints and triggers.

Figure 16: Tasks Is Not a Stand-In for Planning

2.7.7 Do not treat Tasks component as an overseer

A common problem is to think of the control architecture as a control hierarchy with Tasks sitting on the top as

a substitute for a pilot in an overseer role. A symptom of this is long chains of status messages being passed

between components, triggered from the same event, with Tasks acting as a progress tracker. The Control

Architecture is about abstracted views of tasks; each component should only report progress in its own

context. Any problems and decisions should be handled by the component that has enough information detail

to correct the problem, which due to the subject-matter-centric nature of components will usually be in the

one that detected the problem or change, if applicable to its role and responsibilities. Tasks will only be

involved in the abstracted view of the actions, as illustrated in Figure 17.

Component B Component C

Route 1 changes

Component B Component C

Component A

Route 1 changes
Route 1 changes

Tasks

Routes

Waypoints as
Requirements

Tasks
(Planning)

Tasks

Enactment
Requirements

(Dataload)

Routes
(Planning)

Routes

Waypoints (Dataload)

Triggers

Requirement

UK OFFICIAL

RCO_FUT_23_006 Page 37 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Tasks

Routes

Path Demands

Vehicle Guidance

Vehicle Manoeuvred

Vehicle Manoeuvred

Vehicle Manoeuvred

Tasks

Routes

Path Demands

Vehicle Guidance

Path execution approved

Activate route

Arbitrate path execution

Command course Completed course

Met route to destination

Figure 17: Reporting Between Components

Tasks should not need information about the progress of a component with the relevant lower levels of detail,

but if it does, it can go direct to that component for the information. It does not need to be passed up a chain.

Similarly, if a user wishes to view low level information about an activity this would be provided to the HMI

directly from the related resource component.

2.7.8 Do not over define inter-component behaviour during system design

When analysing inter-component interactions in multi-component sequences for a use case, going into too

much detail can lead to the component design being constrained to do things one way, which makes it harder

to incorporate a change into the system at a later date. A symptom of this is showing detailed protocol

handshaking in high level inter-component use cases.

Likewise, although the logic that is required from components should initially be determined assuming that all

goes as desired, too much focus on multi-domain ‘sunny day’ and ‘rainy day’ scenarios may drive a

component’s design to be overly specific and less resilient to change or reuse. Simple design patterns, for

example not assuming that a request on another component is always carried out, can drive out a more

general approach giving a generalised resilience.

2.8 Summary

System level artefacts that should be identified by this stage are:

• Build sets that define which components are required to meet the customer requirements; see

section 2.2.1.

• Component specifications, which are populated with the parameters to be exchanged; see section

2.3.

• Bridges, which are populated with mappings that connect the services of interacting components; see

section 2.4.

UK OFFICIAL

RCO_FUT_23_006 Page 38 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

3 Platform Independent Component Design

This section covers the platform independent component design process, which considers how the PRA

supports the maturation of component behaviour: the behaviour required from a component in order to fulfil

its responsibilities within the system and provide its services. The maturation of this behaviour enables

implementation of the component specification. Where compliant component specifications are available

that meet the needs of the deployment, reuse of already implemented components should be considered.

The platform independent system design produces the component specification, which defines the purpose of

the component, in terms of what it provides and what it needs from the system. This was discussed in section

2.3.

Component design is considered separately from component specification, as the specification should not

expose any internal details and could be applicable to many different component designs. However, where

the Component Designer discovers the need for new services, they should consult with the System Designer to

agree any changes to the component specification. This will improve the correctness of the specification, and

makes sure that component design remains within the bounds of the component scope.

The functional requirements placed on the components by the system design need to be analysed to further

the maturation of component design artefacts. As with the system level, the requirements need to be

analysed through a normal system engineering process; see Ref. [8]. In line with the rest of this document,

this section assumes a separation of concerns from non-functional requirements, addressed in sections 4 and

5.

3.1 Component Modelling

The modelling performed by the System Designer will have defined the component specification, and this will

have identified the component’s services along with the data required to support them (including data-types

for parameters referenced by the service interfaces). Future systems are required to be rapidly adaptable at

an increased frequency with an overall reduction in through life costs; this section covers what component

modelling techniques support this goal, and what assistance is provided in the PRA.

UK OFFICIAL

RCO_FUT_23_006 Page 39 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

3.1.1 Structural Analysis from Data

The PIM focuses on modelling high-level concepts to achieve the highest level of independence, as the level of

independence inversely correlates to the amount of low level detail. Object-oriented design techniques

should be used to define the system, for which additional guidance is given in Ref. [31] and Ref. [32].

A system wide data model can be used to help identify what data is available at the component interface.

However, this does not provide a detailed structure of what the component needs to hold internally, which

needs to be considered further to identify software structure. Typically this information is captured as a class

diagram, and should address the following:

 Consider the “items” (the actualisation of the entities) that the component reasons about and

manages; the semantics diagram within a PRA component definition can be used as a starting point

for this by providing context to the component’s subject matter entities. The component

specification will have defined the public entities, i.e. those entities needed to support the services.

Those entities, within the subject matter part of the component specifications, can be considered as a

conceptual definition for the “items”.

 Consider whether any additional internal entities are needed to support the public entities. The

Component Designer should address this to enable the component model to be completed, and

should also take into account the component’s scope boundary (as defined in Appendix B of the PRA

Description Document, Ref. [2]).

 Consider the information and state data that entities need to capture. This is done by defining

attributes on the classes to capture the data they own, or data they use to capture their current state.

 Consider the relationships between the entities. This defines which entities make use of or reference

other entities. Note that references between entities are implied attributes – so there is no need to

model attributes to show containment or aggregation of entities.

 Consider the operations needed to support the required behaviour. This includes operations needed

to support services and any autonomous/internal behaviour. The level of behaviour detail needing to

be defined at this stage will depend on whether code auto-generation will be performed at the

Platform Specific Model (PSM) design stage, and on the selected middleware.

The structural and behavioural design of the component following standard object-oriented design practices

may drive out additions to the data model to support data driving; examples include configuration data such

as maximum and minimum limits of allowable values for a particular class. Methods for loading this

configuration data should also be considered when modelling the internal structure.

UK OFFICIAL

RCO_FUT_23_006 Page 40 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

3.1.2 Data Driving

The PRA promotes a data-driven approach in the development of the PIM; see the Data Driving policy. This

means that data can be used to configure, initialise and determine how components can be expanded where

applicable. The designer needs to consider whether a component would benefit from being data-driven

through use of data in any of those ways, which are elaborated below:

 As configuration data, which includes datatype specifications, constants and constraints. This data

defines the characteristics of the component, and the characteristics of types within its data model.

Typically this data is used to instantiate specification-classes. These are classes which define the

characteristics of a super-type; namely its class level attributes and value constraints which apply to

all classes associated with the specification-class.

 As initialisation data, which provides initial state data used to instantiate entities according to their

datatype specifications. The process of using initialisation data includes the loading of the initial data-

set and population of any data dictionaries or enumerated types. Further detail on data loading can

be found in the Data Load Interactions section of the Operational Support policy.

 As extension data, which determines how and in what way component behaviour can be specialised

(e.g. identifying extension components and relating them to the entities they specialise).

Often a structure can be developed that allows for the data loading of an external data model, allowing for a

design to quickly change as the data model develops. There are several standards specifically set up to support

this; for an example see Ref. [26].

When looking at logical grouping of data driving, the owner of the data needs to be considered. Some data

(e.g. software configurations) may be added by the component development team and baked in as part of the

code level certification, other data will be set by the System Integrators, while still more will come out of

mission planning. The consideration of all these data control points often leads to unearthing a whole set of

data-driven parameters that may not otherwise have been identified. Although the data groupings are a PIM

problem, how the different data controls are separated, including the impact on certification & accreditation,

is a topic for the platform specific design (see section 5).

Note that using data alone to determine how a component can be expanded is covered by configuration data

(through datatype specialisation) and initialisation data (by instantiating instances of specialisations). This can

result in expansion of the range of entities that a component can manage and control, but cannot truly

specialise behaviour beyond activating specialisations already factored into the component’s design.

3.1.3 Behaviour Modelling

Static structural diagrams (e.g. class diagrams and entity relationship diagrams) only tell part of the story; it is

also important to capture the behaviour expected from services. This is done using activity and sequence

diagrams showing the relationship between external services and internal operations.

State transition diagrams should also be considered for classes that manage state data, showing how they will

behave for different situations and operations; this can also help drive out additional required information.

The level of detail to be modelled depends on how formal this needs to be, for safety critical systems this may

well include action language statements providing a clear definition of the expected behaviour.

UK OFFICIAL

RCO_FUT_23_006 Page 41 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Use case diagrams are also important, as they help to represent the functionality of the component under

analysis in terms of how it is intended to be used by external actors. Use case analysis is recommended as it is

a modelling activity that is customer focused but component centred, and can capture the intended behaviour

of individual components.

With this information in place it is then possible to design the test cases that will be used in testing of the

component prior to integration.

3.2 Design Areas of Concern

Each component definition within the PRA contains design considerations and design assumptions sections.

These outline key aspects of the behaviour, structure and dependencies that were anticipated when the

component was being developed. As well as the component specific guidance, the PRA Description Document

contains policies that are relevant to component development, and these are discussed in the following

sections.

3.2.1 Data Configuration

When configuring a component using data-driven techniques, the specification of the component identifies

the type of data that will be data-driven but does not concern itself with the internal structure that is required

to achieve this. This ensures that the internal structure of the component is not restricted to any one design

style.

Configuration is beneficial because it supports different sorts of deployments (e.g. different Exploiting

Platforms or different hardware setups) and adaption to end-user scenarios (e.g. different role-fit, operational

requirements, etc.). However, adding configurability will likely increase the complexity of verification, and

associated cost implications should be considered when deciding whether to make a component configurable.

For further guidance see the Data Driving policy.

3.2.2 Automation, Autonomy and Constraints

In order to aid understanding of the likely behaviour of a component, the PRA components have been grouped

by levels of expected decision making responsibility and control. For further guidance see the Control

Architecture policy.

Whatever the level of the component within the architecture, if it has the information needed to make an

informed decision then it should make the decision rather than delegate it or push it up the chain to another

component. This information may include the authorisation to make the decision. The level of autonomy that

is supported, including requirements for when human interaction is needed, should be captured as part of a

service contract. For further guidance see the Autonomy and HMI policies.

To support its decision-making, a component needs to provide the facility for the correct determination of

constraints. Constraints may be provided as part of configuration data (see section 3.2.1) and loaded during

initialisation, through planning activities, live via other mechanisms, or as an integral part of a component’s

data model. Component Developers should provide sufficient information to aid initial component

integration, such as example constraint data. This will allow the System Integrator to better understand what

is expected from the supporting components and infrastructure. For further guidance see the Constraint

Management policy.

UK OFFICIAL

RCO_FUT_23_006 Page 42 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

3.2.3 Capability and Health

It is important that where appropriate components are able to assess their capability over time and with use,

including the ability to predict capability progression, and to highlight missing information that could improve

the certainty or specificity of the assessment of their capability. This capability assessment functionality can

support activities for alerting a user to anomalies, offering remedial action or performing automatic

corrections.

As well as Anomaly Detection and Health Assessment components monitoring the health of the underlying

infrastructure that a component relies on and is aware of, the component needs to be able to provide

information for determining whether there are anomalies that are the result of systemic changes, which may

be the result of faulty or corrupted software.

A Component Developer should provide data to support the configuration of health and cyber defence

monitoring components (including detection of anomalies), allowing other components to better characterise

changes in the capabilities of the system. For further guidance see the Capability Assessment, Health

Management, and Cyber Defence policies.

3.2.4 Coordination between Nodes

The PRA components can be designed to cover the numerous types of situation or setting that the deployment

may be involved in (e.g. training, maintenance support, and from mission planning to post mission data

analysis). At the platform independent stage of design it is assumed that every component has access to the

data that it needs to carry out its role; however, there needs to be consideration of how to coordinate data

between multiple locations. Data coordination requirements are likely to drive out specific services and

dependencies to be captured in the service contracts and service dependencies. For further guidance on

coordination between vehicles in operation see the Multi-Vehicle Coordination policy, although note that this

is only one specific case out of many types of coordination between nodes.

3.2.5 Safety Related Dependencies and Rely-Guarantees

In section 2.3.3 we covered definition of dependencies between services within the service specification. Now

that the logical separation within the component is better understood, more detail can be added to this

relationship. Rely-guarantees can be used to express the relationships between the services that a component

guarantees and the dependencies it relies upon to provide those guarantees. A rely-guarantee method allows

the behaviour of services to be abstractly specified, meaning that they can be verified separately without

requiring extensive implementation details.

Where dependencies are expected to affect safety aspects of the system, rely-guarantees can be used to

support modular certification. Safety information can be overlaid onto rely-guarantees to provide a safety

view concerning the relationships in question, and they can be expressed at the desired level of component

abstraction to support certification at that specific level. They can be refined for decomposed lower levels of

design, down to the effect of individual code segments.

Goal Structuring Notation (GSN) may be utilised in conjunction with rely-guarantees to support safety

certification (see Ref. [33]). GSN can be used to provide a reasoned argument that component guarantees will

be met and provide the supporting evidence.

UK OFFICIAL

RCO_FUT_23_006 Page 43 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

3.3 Identification of Extensions

In order to maximise reuse and reduce integration and testing overheads, the PRA allows for extension

components, which can be separately modified, added or removed when needed. For an explanation of

extension components and how this relates to the PRA, see the Component Extensions policy.

The designer should consider whether the component’s behaviour benefits from being factored out into

extensions. The System Integrator should be consulted about the areas of functionality that are likely to

change through the system’s life. This will help identify where use of extensions could reduce time and effort

compared to that required when changing the whole component, due to the additional functional separation

that they enable.

3.4 Good Practice

This section provides good practice recommendations applicable to typical cases of platform independent

component design, including guidance for avoiding common pitfalls.

3.4.1 Do avoid pollution

Pollution is where a component has been expanded to the point that its subject matter now overlaps with the

subject matter of another component. Pollution will result in a PYRAMID non-compliant component as

described in Ref. [4]. The following points explain how to avoid common occurrences of pollution:

 Do not force details into a component that understands a subject more broadly so that it can

“manage” the components that understand the specific detail. Components that understand a

subject more broadly operate at a higher level of abstraction and should not know details.

 Do not duplicate information in one domain that belongs to another domain.

o Use data in the domains without duplicating it; how this data will be accessed is a concern

for the platform specific modelling.

o Renaming the data classes is hiding the fact that you are copying data, and will lead to non-

compliant components.

o The components have been designed to be loosely coupled. If you need to duplicate data,

checks should be made that you are not also duplicating functionality.

 Do not be too implementation specific in components higher in the control architecture; this may

make them simpler, but will reduce the usability. They should stay at their designed level of

abstraction to avoid pollution and promote reusability.

UK OFFICIAL

RCO_FUT_23_006 Page 44 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

3.4.2 Do follow S.O.L.I.D guidance

S.O.L.I.D is an acronym for five of the key object-oriented design principles first put forward by Robert C.

Martin, which should be considered when designing components; see Ref. [34] for this and further guidance:

• Single-responsibility principle – A service should have one job, giving it one reason for change. This

principle also extends to classes within a component. This segregation will help the design in many

areas, from partitioning the software to safety case creation.

• Open-closed principle – Components (and all other parts of the design) should be open for extension,

but closed to modification. A key aim for a PRA deployment is to be open to change while still

conforming to safety requirements applicable to its operational environment. This single principle

can contribute significantly towards meeting this aim.

• Liskov substitution principle – Extension components should add to (or extend) a Parent

Component’s behaviour, not replace it. This principle should also be considered in relation to

polymorphism within the component.

• Interface segregation principle – A component should never be forced to implement a service

interface that it doesn't use, and consumer components shouldn't be forced to depend on service

interfaces they do not use.

• Dependency inversion principle – Components should depend on abstractions, not on concretions.

In addition, abstractions should not depend on details, but details can depend on abstractions. This is

about decoupling in component design, and should come from applying the open-closed and Liskov

substitution principles. This principle should also be applied within a component.

Other reference texts with guidance for object-oriented design practice are widely available. For example, Ref.

[35] provides general guidance on patterns and anti-patterns in object-oriented modelling of systems, whereas

Ref. [32] provides specific guidance on object-oriented design in avionic systems.

3.4.3 Do design highly cohesive and loosely coupled services

The PRA components have been designed to each have a well-defined, tightly related subject matter.

Designing highly cohesive components this way leads to the relationship between components being loosely

coupled. This principle should be extended to the services. Services should be designed from a consumer

focus, but also from the component’s perspective, i.e. consider a generic consumer for the component, but

also consider the needs of the specific component under design.

Service design should be approached with care by those who are new to Service-Oriented Architecture (SOA),

with specific attention to considering services from the consumer focus and understanding the difference

between services provided by the component and those which are consumed by the component. Those new

to SOA may be inclined to consider services as exchange of data, rather than requests for work to be done,

which can result in poor service design.

UK OFFICIAL

RCO_FUT_23_006 Page 45 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

3.4.4 Do design reusable services

The future of technology is hard to predict. Even if a service is only accessed by a single component in a build

set of a specific design, it should still be designed so that it can be reused in the future, when previously

unknown consumers are added to the system.

However when addressing services that you expect to be reused in various ways, care needs to be taken not to

define a parameter or attribute that is so vague that it is meaningless. Care should be taken with quality and

capability measures as they are particularly prone to this.

3.4.5 Do design services that are decoupled from internal logic

While the best component services are often developed in collaboration with Component Developers, the

service interface should be abstracted from how the service is fulfilled. This allows for changes to the internal

structure of the component to take place without impacting the interface, and vice-versa.

3.4.6 Do design composable services

Services can be composed of other services, which allows capabilities to be orchestrated at different levels of

granularity. Composition in services can be promoted through common service patterns. General guidance on

service patterns can be found in the Component Connections policy.

3.4.7 Do design independent services

To facilitate simple choreography services should be designed with the ability to be independent, having self-

control over the logic they govern within an explicit boundary. Therefore, services should be designed to be

able to stand alone from other services with the minimum of conversation between the consumer and

provider (see Ref. [8]). This allows for a greater decoupling between components, and as a result greater

independence in the development of components. Many one-way flow services with a high degree of

dependency between them are a symptom that this has not been considered.

3.4.8 Do design state independent services

Services should minimise the amount of state information managed on behalf of consumers (users of the

service). When a single transaction for a given consumer involves multiple service calls, there is sometimes a

need for a service to manage the state for its consumer for the duration of the transaction. This need is

greater in loosely coupled components, as state is private to the component providing the service. This

maintains high cohesion and keeps consumer interactions simple, but is inefficient, scales poorly and is less

resilient. To avoid these problems, services expect the transaction state to be maintained by the consumer.

The consumer passes the transaction state into each service call related to the same transaction.

In the PRA modelling approach, this transaction state can be maintained in a counterpart class that holds a

counterpart relationship with the corresponding counterpart existing from the provider component’s

perspective. The consumer component’s counterpart class is a representation of its understanding of the

transaction. This counterpart will then be passed in any service calls and translated by the bridge into terms

UK OFFICIAL

RCO_FUT_23_006 Page 46 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

understood by the component providing the service. Following this approach will reduce resource

consumption and enable the service to efficiently handle multiple concurrent consumer requests.

 Symptoms of this principle not being followed are the need to capture states and mode information in bridges

(making them over complex and potentially polluted by component subject matter), or having to pollute

another component with knowledge of the component in question’s state. Over-complex bridges that have a

high Development Assurance Level (DAL) potentially make certification more difficult, among other issues.

Often, to achieve state independent and atomic services it is necessary to pass more information in the service

operations in order to avoid reliance on state management between calls. This leads to more complex service

operations (see the Component Extensions policy, which describes extensible components for which extension

data is usually data-driven).

3.4.9 Do consider mission planning

Part of the separation of concerns between the platform independent and platform specific models is that the

Platform Independent Model (PIM) assumes that there are no interface delays, all exchanges are

instantaneous, and all data that is in the domain of the component exists in the component. That is not to say

that interface latency, data transfer synchronicity and data loading are not all important, but that they are

considered independently during the design. This seems to cause some particular problems when considering

mission planning, which in the PIM is co-located with the operation; planning and execution are not

fundamentally different. The following guidance is recommended:

 Do not treat mission planning as solely an off-board process, all execution involves some level of

planning.

 The parts of a plan that are either requirements or solution options should be clearly and distinctly
defined as such. This enables design that can allow plans to be changed appropriately as circumstances
change.

 Do not assume that smart equipment is unable to support extensive re-planning on the fly.

Note that maintaining the level of abstraction of components will promote reusability, as components will

support both planning and in mission use.

3.5 Summary

 PIM artefacts that should be identified by this stage are:

• Classes for each component, depicted on class diagrams, which represent the attributes and

operations required to support the services of each component, the operations associated with those

services, and the relationships between the classes.

• A data driving model, representing any data driving requirements.

• States for classes whose behaviour is state-dependent (usually depicted using state diagrams) which

represent the sequences and cycles of states entered by instances of the associated class, as the class

progresses through its lifecycle. Note that state here refers to states which control behaviour or

lifecycle, and not simple changes to data values.

• Extensions for some components, including the service interface with the parent.

UK OFFICIAL

RCO_FUT_23_006 Page 47 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

4 Platform Specific System Development

The principle behind the PYRAMID approach is a separation of concerns by only dealing with the problems that

are specific to the model abstraction level being considered at the time. The platform independent modelling

looked at the functionality that was required without consideration for the execution platform specific details

of how it would be achieved. The next step is to consider the non-functional requirements and the

infrastructure architecture strategies, while still remaining independent of the detailed mechanisms of the

underlying middleware that is to be used to achieve the desired result; this will constrain the system more and

add detail.

The infrastructure needs to be identified so that it can be related to the platform independent system design

outlined in section 2. This section will focus on the platform design decisions and the resulting impact on the

components.

Although it is possible to miss out the modelling of the Platform Specific Model (PSM) and go straight to the

application software code, the underlying principle of separation of concerns allows for solutions to problems

to be considered in a narrow context, avoiding overcomplicating parts of the design stages and missing the

impact of some of the decisions.

4.1 Non-Functional Requirements

The specific Exploiting Platform infrastructure choice will mainly be constrained and selected based on the

non-functional requirements of the deployment system (e.g. environmental and maintainability

requirements). It is not unusual for the Exploiting Platform infrastructure choice to be heavily influenced by

the customer community, either through a preferred supplier or existing standards. Figure 18, adapted from

Ref. [36], shows sources of non-functional requirements.

UK OFFICIAL

RCO_FUT_23_006 Page 48 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Structure Behaviour

Requirements Parametrics

Customer
Needs

Standards

Security and
Safety

Usability and
Maintainability

Mechanical
Design
Models

Electrical
Design
Models

Software
Design
Models

Testing
Methods &

Models

Analysis and
Simulations

Performance
estimate

Analysis
Needs

Traceability

Framework For Design

Constraints

Figure 18: Different Sources of Non-Functional Requirements

The non-functional requirements will need to be analysed and considered in conjunction with the

considerations outlined in the subsequent sections of this document.

4.2 Infrastructure Architecture

An Exploiting Programme needs to make a number of decisions around the specific infrastructure that

supports the components it uses. Some of these decisions will be based on the scale of the deployed system,

and whether the system needs to be distributed across a number of computing resources.

The complexity of the architecture transformation, and so the amount of effort required, depends on the

complexity of the target of the transformation; for example, if the infrastructure needs to support deployment

of the components across a distributed computing architecture then that is more complex than deploying to a

single piece of executable software running on a single computer. Additionally, the infrastructure that

supports the components is typically a software infrastructure including middleware, operating system and

hardware (see section 4.2.1), but depending on the implementation it may include Field-Programmable Gate

Arrays (FPGAs), crystal oscillators, integrated circuits or relays.

This section outlines some specific infrastructure-related areas that need to be considered at this stage of the

design, and points to guidance within the PRA Description Document, Ref. [2].

4.2.1 Layered System Infrastructure

A layered infrastructure architecture is recommended for a deployment where possible, as this allows the

application software to be decoupled from the underlying infrastructure. This layered approach employs a

UK OFFICIAL

RCO_FUT_23_006 Page 49 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

well-defined interface between the applications and the infrastructure. The number of layers in the

infrastructure is dependent on the precise implementation; Figure 19 illustrates an example layered approach.

Figure 19: Example Deployment Architecture

Communication between components should use bridges to connect their defined service interfaces.

However, a component is allowed to access middleware directly for specific purposes within its subject

matter, such as:

 Reading the system clock;

 Controlling or interrogating a hardware resource;

 Inspecting health data.

Access to middleware must never be:

 Beyond the scope of the component’s subject matter;

 Instead of using the component’s defined interface.

It is expected that an Exploiting Programme will use an industry standard Application Programming Interface

(API) for access to middleware. For further guidance on a layered architecture see Ref. [26].

4.2.2 Support for Scheduling

An infrastructure architecture for a deployment must consider a run-time system that is capable of scheduling.

This includes not only scheduling of the software items but also threads within those (i.e. supports software

items being multi-threaded). Different types, extensions and combinations of scheduling algorithms should be

considered (e.g. earliest deadline first, shortest job first) when choosing the work scheduling method.

Scheduling of access to resources is detailed in more depth in the Resource Management policy.

The software infrastructure must also provide a mechanism for implementing threads and semaphores for

protection of multi-threaded code. For more information on model based design for real-time systems and

the importance of thread management see chapter 8 of Ref. [8].

UK OFFICIAL

RCO_FUT_23_006 Page 50 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

4.2.3 Software Resource Allocation and Protection

The expectation is that some parts of the deployment system will be safety critical, and so the software

infrastructure will need to support safety critical software. In each case, the infrastructure architecture must

consider the safety level of the software it supports.

A PRA deployment needs to consider software resource allocation, and protection between software items or

between groups of applications (protection domains). Software items should not be capable of accessing the

memory space of other software items.

All communications between applications (except those in the same protection domain) should go via the

software infrastructure. For lower safety criticality levels, dynamic memory allocation should be possible, and

this should be constrained to avoid interference between applications.

4.2.4 Time

An Exploiting Programme may have a requirement for a common representation of time across system nodes

(e.g. multiple air vehicles or items of hardware within an air vehicle). When choosing a time synchronisation

method, the system design should take into account its use of the infrastructure as a time source.

4.2.5 File Access

A PRA deployment must consider a file access mechanism for software items, which should allow both read

and write access to files, and should be agnostic of the hardware mechanism for data storage. These

requirements apply whether data storage is provided on each line replaceable unit or centralised within the

system. For additional guidance see:

 Recording and Logging policy.

 Storage policy.

 Cryptographic Management interaction view – for protection of files accessed by different
applications.

Note that protection of file access should be thought of both in terms of read (access should only be given to

the appropriate applications) and write (a component should not be able to use more storage than is allocated

to it).

4.2.6 Human-Machine Interface

A PRA deployment should, as required, provide a mechanism for generating information such as visuals and

audio for Human-Machine Interface (HMI) output devices (e.g. rendering a graphical user interface to a

display), and for obtaining user interaction events (e.g. pointer movement) from HMI input devices (e.g.

keyboards, mice, hands on throttle and stick (HOTAS), touchscreens, etc.).

It is expected that as a minimum any graphics support should be through a primitive interface; higher level

functionality can be achieved using graphics libraries and toolkits. For more information see the HMI policy

and interaction views, Ref. [2].

UK OFFICIAL

RCO_FUT_23_006 Page 51 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

In a similar way, a basic mechanism for capturing and playing audio may be needed; this audio can range from

basic sounds (e.g. warning beeps) to speech and complex audio sounds. For more information see the HMI

policy and the Human Communications interaction view, Ref. [2].

4.2.7 Health and Usage Monitoring

System infrastructure faults (e.g. power failure) potentially impact the execution of every application on the

Exploiting Platform; see the Cyber Defence and Health Management policies. Some of these faults (and

resulting error messages) may occur because the system is being initialised, while others may not get reported

if the system is being initialised or is incorrectly configured. These occurrences are often an indication of bad

system design.

The Exploiting Platform infrastructure needs to provide a mechanism for reporting faults found in the

processing hardware, and a mechanism for reporting faults found in the execution of the software also needs

to be provided (e.g. invalid memory access, arithmetic errors etc.); for more information see the Middleware

Error IV (Appendix C of Ref. [2]) and the Health Management policy.

4.2.8 Software Configuration

Where software configurations refer to data that is related to the subject matter of the relevant component,

this should be treated as data driving within that relevant component. The Data Driving policy should be

referred to in this case. Where software configurations refer to software behaviour, e.g. buffer sizes, this

information should be included at the infrastructure level, but may also have to be included in subsequent

processes for achieving certification or accreditation relating to the software.

4.3 Certification and Accreditation

Whilst safety and security assurance objectives are different, the organisational and procedural issues are very

similar. Safety and security assurance are properties that only exist for an entire product. An Exploiting

Programme will have the responsibility for the analysis and verification activities, and completing the

certification and accreditation. For this reason, exploiters should follow their normal safety and security

processes; this section provides guidance in support of this and highlights where the PRA contains safety and

security related information for components.

The platform specific design needs to provide deployment-specific safety and security isolation. The

deployment process needs to be flexible and support a number of strategies to allow these requirements for

isolation of information to be satisfied. This flexibility can be enabled by segregating components so that

certain data and functionality are partitioned, and then producing the data that enables the infrastructure to

instantiate the required segregation. Segregation may be done for any reason, and by any means.

UK OFFICIAL

RCO_FUT_23_006 Page 52 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

An Exploiting Programme should segregate components based on the isolation requirements identified as part

of the platform specific design; this should be in line with the following recommendations:

 If segregation is used, a component instance should be kept wholly within its partition.

 An extension is treated as a component in its own right, subject to the rules defined in the

Component Extensions policy. The PRA does not preclude an extension being segregated from its

parent or other extensions to the component.

 A component could be deployed in multiple instances that could each be segregated from one

another.

If a platform specific design has no isolation requirements then the mapping can be performed on a purely

resource allocation basis. A further complication that needs to be taken into account is that some other non-

functional requirements might conflict with isolation requirements (e.g. performance related concerns).

While partitioning was not considered during development of the PIM, platform specific security and safety

requirements may lead to changes in the build sets that take into consideration the new partitioning, as

illustrated in Figure 20.

PIM
does not consider partitioning

Network Route

Cryptographic Methods

Lower Trust Security DomainHigher Trust Security Domain

PSM
does consider partitioning, which may change some build sets

Network RouteNetwork Route
Cryptographic

Methods

Figure 20: Example of Partitioning for Security Purposes in the Platform Specific Model (PSM)

Both security and safety requirements may drive certain components to be high assurance. DO-326A, Ref.

[21], covers data requirements and compliance objectives, related to aircraft safety, for aircraft development

and certification. Ref. [37] and Ref. [38] tackle the security assessment process and safety process.

UK OFFICIAL

RCO_FUT_23_006 Page 53 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

4.3.1 Safety Considerations

The PRA has been designed with safety certification in mind; each PRA component has been assigned an

indicative Item Development Assurance Level (IDAL), which is the highest IDAL that the component is expected

to have to achieve for a large (>5700kg) air vehicle (see the Safety Analysis policy). The IDAL and associated

analysis are provided for design assistance only, and do not place a requirement on the Exploiting Programme.

4.3.2 Security Assurance Considerations

Security controls should be identified as a result of a security risk assessment. Technical security controls are

either security enforcing functions (SEF) or security related functions (SRF), and these are identified through a

low level assessment and classification of data flows between components. A security considerations section

is included within every component definition in the PRA, which helps identify whether the component is

expected to participate in security related functionality. The security levels and associated functions are

provided for design assistance only and do not place a requirement on the Exploiting Programme.

A Security Guidance for PYRAMID Exploiters document, Ref. [60], is available from Dstl on request. This

guidance document provides additional insight on a number of security aspects that are likely to apply to

Exploiting Programmes using PYRAMID-based deployments, including those "good practice" engineering and

development standards necessary for a secure implementation, and other considerations to be addressed in

order to achieve security accreditation and capability assurance sign-off for MOD acquisition projects.

4.4 Data Management Design

The PRA design is predicated on the concept of data-driven components (see section 3.2.1), which allows

existing components to be reconfigured for reuse in new systems. This configuration exercise is in addition to

the run time flexibility also provided by the data-driven paradigm. Following the PRA guidance should leave

what are in effect placeholders for data driving in the deployment. The mechanisms for this data driving need

designed, and data management design covers this.

4.4.1 Reconfiguration

A deployment needs to consider a mechanism for reconfiguring components, at runtime, to one of a

predetermined set of configurations. This reconfiguration should be as transparent as possible to components

which are not affected by the reconfiguration. For more guidance see the Data Driving policy.

Reconfiguration at runtime needs to be very carefully considered so that the reconfiguration does not result in

safety or security issues arising as a component transitions from one configuration to another, or for the

transition to be erroneously detected as an anomaly due to an error.

4.4.2 Data Synchronisation

A data synchronisation strategy enables multiple instances of a component to be deployed and segregated

whilst acknowledging that an amount of data needs to be synchronised between instances.

UK OFFICIAL

RCO_FUT_23_006 Page 54 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Reasons data synchronisation is required include:

 Component instances are separated by mission phase (e.g. mission planning and mission execution)

in different locations.

 Load sharing, e.g. to stop bottlenecks of resource usage at a particular component instance and/or to

optimise collective performance.

 Multiple instances of a single component existing, e.g. for security partitioning, or physical

segregation for safety redundancy (see section 4.3).

 Components that exist explicitly for the purposes of data replication, e.g. where parts of a system are

aligned for backup or redundancy. Communications components could be used for this purpose; see

the Use of Communications policy for more information on how these components can be used.

Partial replication may also be desirable when implementing components into different situations or settings

from one another, i.e. a component can be coordinated between multiple air vehicles, each with their own

version of the component sharing some data.

Services need to be defined to support data synchronisation; these should follow pre-defined patterns, e.g.

‘peer-to-peer’ synchronisation, or synchronisation via a common data source (e.g. database).

Data synchronisation between components presents an overhead; the choice of pattern needs to account for

the ways in which the components could be deployed (distributed or not) in order to take account of system

constraints (e.g. bandwidth and latency).

4.4.3 Inter-Application Communications

Inter-partitioning and inter-computing resource communications mechanisms need to be provided by the

software infrastructure. Each component’s provided and consumed services are connected by bridges, which

are able to access the underlying communications mechanism provided by the software infrastructure,

allowing the components to be distributed across the available computing resources.

The configuration of the partitioning and communications mechanism in the bridges could be data-driven to

enable flexibility in the process of deployment. Even in a single Exploiting Programme, a number of

deployment configurations will be required to support different phases of system and integration testing.

Implementing a data-driven configuration approach enables tools to be developed to aid the deployment

process.

Note that when assessing the integrity required to achieve the desired safety or information assurance goals,

the level of assurance required for the bridges between components will also need to be assessed.

4.4.4 Post Mission Data Analysis

Components should log significant decisions taken by the component and any events that the component

raises or receives, which will allow the actions undertaken by components to be analysed during post mission

analysis. Logged data also provides a record of how components contributed to outcomes, which can be used

as evidence in cases where mission events have legal consequences. For more guidance see the Recording

and Logging policy and the Operational Support policy.

UK OFFICIAL

RCO_FUT_23_006 Page 55 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

4.5 Component Services

4.5.1 Service Deployment Design

Knowledge of the current and future Exploiting Platforms that may harness a deployment should be utilised to

develop component services beyond their specification in the PIM. The mode of inter-component

communications is a fundamental characteristic of the interactions, and the two modes that are typically

chosen between at this stage are synchronous (request response) or asynchronous (event driven). The choice

of communications mode is likely to be based on the environment that the system is to be used in; see Ref.

[13].

A deployment’s services, including its internal services, should be available to System Integrators outside of

the original deployment so that it is forward compatible. A PRA-based system should be able to discover

which known services of systems and equipment external to the deployment are available at a certain time, as

covered in the Capability Assessment policy. For more information on component discoverability see Ref. [11].

Attributes on service interfaces are expected to be made specific to a deployment. An attribute on a PRA

component may be specialised into one or more deployment-specific attributes. Service interfaces themselves

are also expected to be made specific to a deployment, e.g. either the name or description made specific to

the deployment while remaining within the PRA component’s subject matter.

4.5.2 Architectural Alignment and Interoperability

Architectural Alignment is the process of aligning a deployment’s architecture to the architecture of other

(external) systems.

This alignment supports the sharing of best practice and the pursuit of interoperability through the use of

patterns and consideration of component responsibilities and data exchanges. For an example of how to

support interoperability with other systems, see the Tactical Exchange interaction view.

When considering other architectures, it is important to be cognisant of the roles and responsibilities of PRA

components in order to ensure that alignment with external components doesn’t conflict with PRA component

definitions. Although there may be little or no control over external components, the internal alignment

should not blur component boundaries or introduce tight coupling.

4.6 Infrastructure Implementation

As part of the PSM the technology dependent detail needs to be captured and included in the design; this

includes identification of low level communications protocols and underlying operating systems and libraries.

The design abstraction should not be confused with ambiguity; from a system point of view the aim of the

modelling of the Platform Specific Implementation is to generate an unambiguous definition of what the

component interfaces are, and what the component requires from the infrastructure. By working with

Component Developers the service definitions can be aligned, reducing the bridging effort.

Safety and security targets still need to be met in the infrastructure that supports the components; when

implementing a bridge, the DAL of the components whose service interactions the bridge supports need to be

considered. Operating systems and middleware also need to support the DAL requirements of their hosted

components.

UK OFFICIAL

RCO_FUT_23_006 Page 56 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

4.6.1 System Reuse

There is always more than one route to a final product and a new system is never designed in a vacuum,

therefore there will be existing systems that can be in part reused within a PRA deployment. Reuse can take

the form of code reuse or system design reuse; either way the blocks of code need to be considered. PRA

components are deliberately designed to encompass isolated areas of functionality to increase the potential

for reuse, making it likely for legacy code to encompass the functionality provided by a set of components.

Although it is the intention that artefacts can be reused at any stage of the design process, reuse of PSM

artefacts is typically more difficult due to the greater detail of platform specific specialisation and

dependencies by that stage. Therefore if it is an aim is to generate feasibly reusable PSM artefacts, both those

working on the PIM and PSM should consider how their decisions may affect this reusability. Most decisions

about the functionality of reused artefacts are appropriate earlier, at the PIM level, before these decisions are

implemented at the PSM level.

It is important to note that reuse of developed components may adversely affect the security of Exploiting

Platforms; the use of a developed component (or fragments thereof) on both secret and lesser classified

platforms has the potential to compromise the secret one. Care must be taken in this respect, and the Security

Guidance for PYRAMID Exploiters, Ref. [60], has further information on provenance and proliferation of

developed components.

4.6.2 Model Transition

The steps outlined in section 4 can be viewed as a generic set of guidelines and recommendations applicable

across all components that map the PIM to the PSM. As these guidelines are disconnected from the

middleware solution and final messaging protocols, they can be captured in a transformation specification,

which itself forms the requirements for a model translator. The model translator can then be used in a

transformation engine to do the mapping and automatically generate the PSM, as summarised in Figure 21,

which has been adapted from Ref. [39].

Platform Independent Model

Descrip tion of the system
Information and a lgorithms,

Independent from technology

Platform Specific Model

Implementation Specific

Description of the Design

Aware of technical

implementation platform

Transformation
Engine

Mapping

Figure 21: PIM to PSM Mapping

Automatic transformation of PIM to PSM ensures a consistent approach for all components, and allows the

impact of changes to the PIM to be captured. A PSM can still be inspected, allowing any inspection of the

detailed design before it is committed to code. This is particularly important in high assurance level

implementations.

UK OFFICIAL

RCO_FUT_23_006 Page 57 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Different transformation specifications can be used to generate different PSMs for different target systems,

allowing a family of PSMs to be generated for different uses. Automatic transformation can be taken a step

further with the PSM being used to automatically generate code for the structure of component

implementations and the integration of components with the Exploiting Platform infrastructure.

The adoption of standards based shared meta-models across the deployment is more likely to allow for the

sharing of information between design tools supported by different vendors. If this approach is adopted

across multiple deployment programmes then they can be quoted along with the PRA model to define a de

facto standard. For example, by using the FACE standard (Ref. [26]) it is possible to:

 Map conceptual data elements to the deployment-specific elements, automatically identifying logical

and physical representations on all sides of an interface linked by a common conceptual meaning.

 Select suitable logical representations or translations that reflect physical phenomena from a library

of predefined logical data types. This can support future reuse.

 Select a subset of logical representations from the existing library, which will reduce the number of

logical conversions needed, and will support the maintenance of bridges within the deployment.

 Generate interface control documentation that matches the modelled interface definition. This is

particularly powerful where the final interface is also auto-generated from the model. If all

documentation is automatically generated from the model, this should help avoid the staleness that

often comes during later revisions of the product where the documentation is not updated.

4.7 Good Practice

This section provides good practice recommendations applicable to typical cases of platform specific system

development, including guidance for avoiding common pitfalls.

4.7.1 Do bridge through middleware

What is treated at the platform independent level as a simple peer interaction may occur between physically

segregated areas, as illustrated in Figure 22. Part of the job of bridges is to hide the complexity of

communications from components. A component should be unaware of the source of information, although

the service implementation needs to be designed to cope with latencies or delays resulting from sourcing

information from a distance away.

UK OFFICIAL

RCO_FUT_23_006 Page 58 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Bridge Component BComponent A

Figure 22a: PIM Bridging

BridgeComponent A

Bridge Component B

Middleware

Messaging
protocol

Partitioning

Figure 22b: PSM Bridging between Segregated Areas

Figure 22: PIM Bridging (22a) and PSM Bridging between Segregated Areas (22b)

The concept of a service being separated from the internal working of the component is to allow the

component to carry on activities while the related service deals with the bridge and any data exchange. If

components cannot be decoupled in a particular platform, consideration should be given to co-locating them

when deploying them.

Additionally, where PSM bridging is used between segregated areas particular consideration should be given

to the effect on the component’s operation if the interconnection is lost.

A common middleware interface / messaging protocol should be used to aid with cross platform re-usability;

see section 2.7.1 for more on the use of additional standards and reference models.

4.7.2 Do not use component variants to cater for specific uses

The PRA components have been based on a logical definition of what the component needs to do, and what

data it needs to do it. Where the same logical activity would be duplicated in a legacy functional

decomposition (e.g. in different subsystems), there is only one component definition in the PRA. An example

of this would be the Observability component determining if a communication signal is detectable for both

survivability and for communication uses.

The goal is to break away from stove-piped designs, into something that is more flexible while still meeting

high security and safety standards. It is possible to recreate a legacy functional decomposition by using

component variants (different specific use implementations of the same component); see Figure 23. This

should be avoided. Other choices such as using a shared component as a resource, using a component with

tailored extensions, or multiple copies of the same component should be considered ahead of creating a

variant of a component for a specific use.

UK OFFICIAL

RCO_FUT_23_006 Page 59 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Vendor 1 Lock-in Build set*

:Tasks*

:Sensing*:Countermeasures*

*only supports vendor 1 provided components & equipment

service 1 manager
:Release Effecting*

service n manager
:Release Effecting*

 service 1 manager
:Sensing*

 service n manager
:Sensing*

service 1:Effectors*

service n:Effectors*

service 1:Sensors*

Service n:Sensors*

:Sensors Data
Interpretation*

:Tactical
Objects*

:Data Fusion*

:Sensors
Products*

Countermeasures
Stovepipe

Sensing
Stovepipe

Tactical Data
Stovepipe

:Tactical
Objects

:Data Fusion

:Tasks

AnotherOther
Component

AnotherOther
Component

Rest of System

Figure 23: Do Not Use Component Variants as a Tool to Promote Vendor Lock-In

4.7.3 Do use component variants where functionality is separated between

platforms

Following on from section 4.7.2, where component variants should instead be used is where the functionality

is being separated in space or time. At later iterations of the design, after the required design separation is

understood from the platform specific analysis, the functional model can be updated to reflect this. Typical

examples of this would be offline planning and maintenance support, both of which are typically deployed on

different hardware to an air platform, with different design goals. The partitioned functional model is

technically platform specific and it is recommended to keep this separate from the PIM, so that unexpected

logical behaviours detected in testing can still be analysed in either the PIM or a fully separated functional

model, as appropriate.

Note that as the PRA does not include definitions of services to support splitting of a single component’s

functionality, additional services may need adding to components to enable interaction with other variants of

the same component, for example to synchronise data.

This may include data loading services, such as where a mission planning variant’s data needs loading into an

operational variant. To aid reusability, it would be good practice to develop these types of service in-line with

suitable standards.

UK OFFICIAL

RCO_FUT_23_006 Page 60 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

4.7.4 Do separate the concept of ‘what data is’ from how it is acquired

The PIM assumes that there are no interface delays – all exchanges are instantaneous and all data that is in the

domain of the component exists in the component. These things do however need to be considered as part of

the platform specific modelling, including where data is created. It is the responsibility of all the components

to manage their own data, including data loading; see the Operational Support and Storage policies. However,

a common approach to data loading should be identified and implemented at the PSM level, as it will be

infrastructure dependent.

4.7.5 Do use counterparts

The principle of components dealing only with data within their own subject matter knowledge means that

different components are likely to have their own views on the same real world thing, such as some liquid fuel

on an Exploiting Platform. The Fluids component may hold data on the volume of the fuel, whereas the Mass

and Balance component is concerned with the mass of the fuel, and Environmental Conditioning may view the

fuel as a heat source or sink. In such a case, each component contains a class to represent the fuel from the

component’s subject matter specific point of view, with these classes being used to form a counterpart

relationship. See the Component Connections policy and Ref. [9] for more details on counterparts.

Counterpart relationships support separation of information between the relevant domains, helping avoid

subject matter pollution. Key benefits of such an approach are summarised below:

 The domain based approach to components is predicated around minimum amounts of information

being passed between components because each component should encapsulate information

relevant to its subject matter. However, it is the nature of an integrated system that there will be

related changes in different components; counterparts are a good way of making sure that this

related information is kept aligned.

 Information on an object known to the deployment can be obtained efficiently, with relatively low

data passing between components; for example through the use of system wide identifiers to obtain

the relevant counterpart data from the owning components. This also applies, in a broader sense, to

management of counterparted information, potentially via standard operations.

 A counterparting approach can help link preparation data to associated execution data between

components (see section 4.7.6).

 By mapping counterparts (via bridges), their data can be synchronised between domains to enable

coordination and consistency across a deployment.

 Use of counterparts supports the extensibility and scalability of a deployment, as it allows easy

addition or removal of information types made up of data linked through counterpart relationships.

It enables specialisation of shared interfaces between domains, regardless of programming language

and execution platform.

 Counterparting is a suitable way to enable data views (see section 2.6.1.1), since counterpart

relationships can indicate the attributes that a component may need to make available to other

components.

UK OFFICIAL

RCO_FUT_23_006 Page 61 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Note that while a counterparting approach is effective for capturing relationships between the information in

different subject matter areas, a service operation approach can be advantageous when capturing event-

based relationships, such as command and control relationships.

4.7.6 Do coordinate preparation and execution interactions

As part of the platform specific development, concerns around how to manage resources and latencies need

to be taken into account when considering component interactions. There is a particular issue in how

prepared resources are matched to their intended usage at execution.

The solution is likely to involve an action level identifier, for the planned action, that is a counterpart to an

identifier at the resource level; see the Component Connections policy and Ref. [9] for more details on

counterparts.

The counterpart identification cannot be determined implicitly in bridges as this is a problem of recall of earlier

preparation. If the identifiers were contained within the bridge, the user of the resource would still have to

identify something to the bridge that would enable it to recall the relevant planned action. This means the

System Designers need to consider how identifiers are managed as part of component design and capture this.

Otherwise, different parts of the system will not work together, as show in Figure 24.

Figure 24: Counterpart Relationships

4.7.7 Do capture and share platform specific information

It is important that platform specific information is captured and shared early in the process. This enables

component design and development to consider platform specific aspects when needed, and is especially

important for aspects common across components. Artefacts such as standard documents or shared models

may be used to capture this information into a single record source, which can then be referred to when needed

in specifications.

UK OFFICIAL

RCO_FUT_23_006 Page 62 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

4.8 Summary

An iterative process is expected to be followed that will involve looking at the execution environment and its

impact on component design specialisation and separation (see section 2.3), as well as the integration of

components as they are produced (see section 5). As the design gets closer to the implementation, the

specific additional contribution of the technology agnostic architecture becomes less clear. However, the core

goals, especially around reusability and extensibility, should be kept in mind.

Artefacts identified at this stage should be appropriately captured (e.g. in platform specific equivalent versions

of a component specification) and shared with Component Designers and Component Developers. The

mechanisms for this should enable close regular interfacing between any separate parties. Some of the typical

artefacts identified at this stage are:

• Non-functional requirements to be met by the system; see section 4.1.

• Infrastructure definition, which specifies the sub-systems, infrastructure interfaces, middleware and

operating system chosen to support the components; see section 4.2.

• A partitioning approach, which defines how components should be segregated or aggregated to

meet safety, security and performance requirements; see section 4.3.

• Configuration, preparation of data that supports the data driving design decisions; see section 4.4.

• A component services approach, which defines the underlying protocols and mechanisms that have

been chosen to tie services together; see section 4.5.

UK OFFICIAL

RCO_FUT_23_006 Page 63 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

5 Platform Specific Component Development

The principle behind the PYRAMID approach is a separation of concerns by only dealing with the problems that

are specific to the model abstraction level being considered at the time. The platform independent

component development process defined the required component functionality without consideration for

how it was to be achieved (see section 3); the next step of the component development process involves the

consideration of the non-functional requirements and the infrastructure specification that have been defined

in conjunction with the System Designer (see section 4).

As is generally important throughout the deployment process there should be regular sharing and

communication between any different parties carrying out the different engineering roles. Decisions made

during platform specific system design, such as the choice and establishment of system infrastructure

architecture approaches or mechanisms, should be captured appropriately and discussed throughout

component development. The method for this should enable all relevant information to be captured, and one

option is to evolve a specification from the PIM component specifications. Additionally, a suitable approach

for verification and integration of components on the platform specific system should be agreed. The

contribution towards safety, security and other non-functional requirements provided by a component or the

infrastructure should also be discussed and updated as development continues.

5.1 Infrastructure Considerations

5.1.1 Extensible Data

The Data Driving policy describes how data can be specified for operational use (e.g. to provide the weapon fit

for a mission). Data can be delimited and/or encoded, which enables extension of the data without having a

direct impact on components that are making use of the data.

Extensibility can be achieved by relating individual parts of the data with an identifier or tag along with an

indication of the extent of the data; this allows components to identify which data the extension requires and

ignore data that the extension does not require. Data can therefore be extended to support a particular

component or extension component requirement without affecting existing interface integrations.

An example is the use of Session Description Protocol subunits within the Session Initiation Protocol (SIP), Ref.

[40], to define supported capability. If the receiver supports the capability it can decipher the message; if it

does not it can understand enough to say that capability is not supported.

When selecting a format for the data, care should be taken to consider whether the adoption of data

representation standards may result in the need for safety certifiable data translation library code. Safety

certifiable library code with appropriate verification artefacts may need to be supplied to all Component

Developers to avoid duplication of effort on a deployment programme. Similarly, the security aspects of

processing data need to be given appropriate attention.

UK OFFICIAL

RCO_FUT_23_006 Page 64 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

5.1.2 Health Monitoring and Fault Management

During the platform independent component development phase described in section 3 it is assumed that the

component will execute the expected behaviour, and all the supporting infrastructure and components can be

fully relied on. In the platform specific phase enough is known about the infrastructure (e.g. the operating

system, application software, hardware or managed equipment) to make judgments on what can and cannot

be relied on, and what the development implications are.

Components should be able to identify how loss of capability that they depend on impacts their own

capability. Documenting service dependencies, typically in a service dependencies diagram, could help

indicate implications of failure in the chain.

Components will have to provide information that will be analysed by the health monitoring components; see

the Health Management policy.

5.1.3 Interaction with Humans

Specific components are provided for interaction with humans; see the HMI policy. However these HMI

components do not have any ‘domain’ knowledge, so to meet human interaction requirements other

components will be involved via the HMI components, and the implications of this should be considered. For

example, needs to present information, such as a communications heat map, would require additional data to

be held within an appropriate component.

5.1.4 Interaction with Equipment

Components are needed to determine the capability of equipment or parts of the software infrastructure, and

to understand how to control hardware resources. For guidance on developing these components see the

Interaction with Equipment policy and Interfacing with Deployable Assets policy. Some guidance on the

boundary of the PRA with respect to equipment hardware is also given in the ‘Smart Equipment and the PRA-

Equipment System Boundary’ section of the Interaction with Equipment policy. Interface requirements with

existing equipment also need to be taken into account.

5.2 Component Implementation

Given a set of requirements, there are many ways in which to realise a component; these are not covered at

any length in this document. However, it is recommended that any code developed with a PRA deployment in

mind should be data-driven (provided that it is done in a way that is feasible within the development time and

cost constraints). This means that representative data sets should be provided to any System Integrator; see

section 5.3.

UK OFFICIAL

RCO_FUT_23_006 Page 65 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

5.2.1 Legacy Code Reuse

The PRA and this document cover the idea of design reuse primarily at the system level, with the goal of saving

time and effort in a development programme. However this does not rule out code reuse within a PRA

deployment. Below is a summary of considerations for code reuse based on the guidance in the FACE

reference guide, Ref. [26], which covers similar issues:

 Determine the grouping and applicability of components for the legacy system:

o Split the legacy system into multiple components or keep it as a single deployment?

o Is the software still supportable?

o Can the software be adapted to the PRA?

 Characterise and assess the legacy software functionality (Ref. [26] describes this functionality as

software-based “capability”):

o Was the functionality designed for capability monitoring, safety, or security?

o What other functionalities does this code interface to?

o What types of interfaces are there and what standards were used for those interfaces?

 Assess how the functionality fits into the PRA architecture:

o Have component group boundaries been defined for the functionality?

o To what protection domain(s) do the component group(s) belong?

o Is a more restrictive profile applicable for future use of this functionality?

 Determine how to integrate the functionality into the architecture without polluting components:

o Should the legacy architecture be converted to align to the PRA?

o Should the legacy architecture interface to new PRA based system functionality hosted

within the existing architecture?

o Should the legacy architecture interface to new PRA based system functionality hosted

within an architecture aligned to the PRA?

Where refactoring of legacy code would be required, the expected costs should first be evaluated against the

benefits of refactoring the code. Reverification, capturing of safety artefacts, and capability update issues

should be considered where applicable. Additionally, where legacy code from a standard product is being

specialised or tailored during integration, the full impact of this should be carefully considered to weigh the

benefits and issues, such as future support challenges arising from changes to the product.

5.2.2 Automatic Code Generation

The traditional approach to software development (see Figure 25) was to treat design and development as

elaborative process steps, where “fidelity” was added that was considered ‘too low level’ for the analysis

model, with independent assessment of completeness. This often led to vague and incomplete analysis

models (Ref. [9]).

UK OFFICIAL

RCO_FUT_23_006 Page 66 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Figure 25: Traditional Software Development Lifecycle

By moving some of the rigour into the model it is possible to automate the generation of large parts of the

code; this improves the consistency of code, facilitates documentation of behaviour (in the model), and,

dependent on toolchain support, allows for faster rework. An implementation specific model can be produced

to allow more technology specific targets to be built direct from a model.

When using auto-generation of code from a model, it is likely that any validation rules required for the

resultant system still need to be applied, e.g. DO-326A, Ref. [21]. For details on how to use a Model Driven

Architecture (MDA) approach to support a model based approach to software development see Ref. [9].

Note that executable code is not the only thing that can be generated from the model. Wherever possible,

documentation should also be generated from the model, allowing the model to be the single source of truth.

Data models and service interfaces can be used instead of, or to produce, interface control documents.

5.3 Working with System Integrators

Modelled components are by design not complete applications in their own right. Therefore individual

components, or groups of components, will always require integrating into a larger deployment. A decision

has to be made through discussion with the System Integrator on the component group to be delivered as a

mini-deployment, and whether internally used services and interfaces are defined at a PIM or PSM level (even

if not accessible in the executable software) to allow reuse of the modelled components in a different

configuration.

To give examples of context for a component of interest, in order to determine potential broader use of the

component in other deployments, Component Developers can use interaction views (Appendix C of Ref. [2]).

System Integrators of other potential deployments should be engaged at the earliest opportunity.

Design

Develop

Test

Requirements

Analysis

Review

UK OFFICIAL

RCO_FUT_23_006 Page 67 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

5.4 Good Practice

This section provides good practice recommendations applicable to typical cases of platform specific

component development, including guidance for avoiding common pitfalls.

5.4.1 Do consider appropriate middleware access

While a component will access the resources provided by or via middleware, this interaction must never be:

 Beyond the scope of the component’s subject matter.

 Instead of using the component’s defined interface.

A component can directly interact with middleware where it is within the scope of that component to do so,

for instance directly accessing stored data when it is owned by the component; this is true no matter what role

a component has within the control architecture.

5.4.2 Do manage safety artefact development

An agreement between Component Developers and System Designers on how appropriate safety artefact

development will be managed should be reached early in the development process, so that dependencies can

be identified. The agreed management methods should cover the mechanisms for provision of any applicable

safety evidence from a Component Developer to the System Designer. Frequent information sharing between

the parties is good practice, and is especially important regarding safety related developments.

5.5 Summary

This section covered additional considerations that help mature a component based on execution platform

considerations. The expectation is that this will be an iterative process, and the development of the

component will be done in parallel to the system design and integration discussed in section 4, the final goal

being to generate executable software. The main points discussed in this section were:

 Interaction with Humans, consider components that capture services required to support the HMI

interactions with the system, see section 5.1.3.

 Component Implementation, either through software development, code reuse or automatic code

generation; see section 5.2.

UK OFFICIAL

RCO_FUT_23_006 Page 68 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Appendix A Component Connection Examples

Four component connection patterns are identified within the Component Connections policy in PYRAMID Exploiter’s Pack Annex A, Ref. [2]. This appendix contains

examples of the use of those patterns.

Appendix A.1 Coordination – Atomic Transaction

One of the most commonly used component interaction patterns is atomic transaction coordination. It is used when actions or data need to be synchronised between

components that are not direct counterparts. For example, atomic transaction coordination can be used for resource allocation, when moving to new modes of

operation, or for data loading.

This service pattern is only appropriate if the transaction passes the ACID test, which means that it is:

 Atomic – All participants, including any subordinate components, can be treated as a single 'atomic' unit, with all components changing together or all failing

together.

 Consistent – None of the changes violate the validity of data in the components; if they do all the changes need to be rolled back.

 Isolated – Multiple instances of the service can occur concurrently, without interfering with each other.

 Durable – Upon successful completion the change will survive any subsequent failures of new transactions.

There are several protocol definitions for this service pattern, and other similar ACID transactions; one example is the Web Service Atomic Transaction standard, Ref.

[57].

UK OFFICIAL

RCO_FUT_23_006 Page 69 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Figure 26: Atomic Transaction EM Interoperability

The example atomic transaction shown in Figure 26 is analogous to a single coordination from the EM Interoperability interaction view (IV) in the PYRAMID model. In

this example three components (Sensing, Sensors and Countermeasures) have their frequency allocation updated in a coordinated way by the Spectrum component in

(steps 7.1, 7.2 and 7.3 in Figure 27 below). The new frequency allocation is added as a change to the constraint on all the components; for more detail see the Constrain

Capability use case in section B.1.2 of Ref. [2]. To avoid any conflicting allocation all components need to be updated together.

The details of an atomic transaction for EM operability can be seen in Figure 27.

Atomic Transaction EM Interoperability Example

Spectrum : Coordinator

 : ~Coordination

 : Activation

Sensing : Participant

 : Constraint

Countermeasures : Participant

 : Constraint

effectors : Subordinate

Bridge : Atomic_Transaction_Pattern

 : Coordination

sensing : ~Constraint countermeasures : ~Constraintsensor : ~Constraint

Sensor : Participant

 : Constraint

Bridge

Activator

UK OFFICIAL

RCO_FUT_23_006 Page 70 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Figure 27: Atomic Transaction EM Interoperability Sequence Diagram

First Spectrum prepares those involved for the coordinated change. As components are agnostic of other components, with requests based on their own understanding,

it is possible that there is not always a one-to-one match between coordination requests and component services; this is managed as a mapping in the bridge. In this

example the bridge duplicates the sensor request to Sensing and Sensors components. The prepared request includes the type of change (but not the details), allowing

components to also prepare subordinate components for the change. They can do this using a simple transaction, another atomic transaction (often using the same ID)

or a counterpart relationship.

The second stage of the transaction is a request for all components to commit to the details of a change, within the provided timeout. If any of the components fail to

respond within the timeout, or as in this example one of the components responds that it has to abort, then Spectrum request a rollback from all involved, resetting all

the constraints to how they were before the transaction started. The resolution to why the transaction was aborted is the subject of a different set of transactions.

Atomic Transaction EM Interoperability Example

Description Spectrum:Coordinator Sensing:ParticipantCountermeasures:ParticipantBridge:Atomic_Transaction_Pattern Sensor:Participant

Spectrum determines that the sensor and effector changes
are required to be made together.

1

Prepare coordinated change.1.1 prepare : Context

Expect to receive a request to change constraints
in a coordinated way.

1.1.1 Prepare_For_Constraint_Change : Context

Prepare coordinated change.1.2
prepare : Context

Expect to receive a request to change constraints
in a coordinated way.

1.2.1 Prepare_For_Constraint_Change : Context

Expect to receive a request to change constraints
in a coordinated way.

1.2.2
Prepare_For_Constraint_Change : Context

Spectrum updates the allowed spectrum of type effector
(transmit only).

2 commit : Spectrum_Allocation

The bridge maps countermeasures to a demand on
Countermeasures.

2.1 update_constraint(frequency_constrant, context)

Spectrum updates the allowed spectrum of type active sensor
(receive and transmit).

3 commit : Spectrum_Allocation

Bridge maps this to a strategy update by Sensing....3.1 update_constraint(frequency_constrant, context)

Bridge maps this to a blanking update on Sensor.3.2 update_constraint(blanking_constrant, context)

Countermeasures responds that it can commit to the change.4
update_constraint : Committed

The response is mapped to the task status.4.1 committed : Spectrum_Allocation

Sensor responds that it can commit to the change.5
update_constraint : Committed

Sensing responds that it has to ABORT the change
(reason not in this transaction).

6
update_constraint : Abort

The response is mapped to the task status.6.1 abort : Spectrum_Allocation
As one of the participants failed to commit, Spectrum rolls
back all changes.

7 rollback : Context

Sensing reverts all data to as it was before the start of
the transaction.

7.1 rollback_constraint(context)

Sensor reverts all data to as it was before the start of the
transaction.

7.2 rollback_constraint(context)

Countermeasures reverts all data to as it was before
the start of the transaction.

7.3 rollback_constraint(context)

This shows a possible solution to a single transaction taken from the EM Interoperability IV.

UK OFFICIAL

RCO_FUT_23_006 Page 71 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

In this example all the properties changed are of the same type, but that does not have to be the case, as long as the change passes the ACID test. This kind of

transaction is often used even with single participants, allowing them to prepare subordinate components for the change. However the isolation requirement means

that this coordination type is only really appropriate to small actions or data changes; for complex actions that require coordination, an alternative approach is required,

such as the Business Agreement covered in the next section.

UK OFFICIAL

RCO_FUT_23_006 Page 72 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Appendix A.2 Coordination – Business Agreement

The second common component interaction pattern is Business Activity coordination. This is used when the priorities of multiple parts of the system need to be

coordinated when coming up with a solution. For example, as far as the Sensors component is concerned, the best search solution may be to turn on all active sensors,

whereas this is the worst solution as far as the Observability component is concerned; a middle ground that both are happy with needs to be chosen.

The coordinator’s aim is to reach an agreement on a level of service based around a set of derived requirements, with the solution owned by the participants.

As with the Atomic Transaction coordination there are several standards for this service pattern; one example is the Web Service Business Activity standard, Ref. [58].

The example Business Activity Coordination pattern shown in Figure 28 is a snapshot of a single coordination from the Jettison Management IV, where Jettison asks

Asset Transitions to determine a solution that will make the jettison package releasable (i.e. opening doors before release), and requests Stores Release to provide a

stores jettison solution.

Figure 28: Business Activity Jettison Example

Business Activity Jettison Example

Jettison : Coordinator

 : Activation

 : ~Coordination

Bridge : Business_Activity_Pattern

 : Coordination

Request_to_1 : ~Request Request_to_2 : ~Request

Asset Transitions : Participant

 : Request

Stores Release : Participant

 : Request

Activator

UK OFFICIAL

RCO_FUT_23_006 Page 73 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

As can be seen in Figure 29, this component interaction pattern begins with requirements being placed on the two components from Jettison. The requirements take the

form of one or more criteria and a measurement of success. All participants determine a proposed solution against their requirements, and provide scores against the

criteria.

Figure 29: Business Activity Sequence Diagram Jettison Example

The second stage is the coordinator selecting the solution to enact. As the actual details of the solution are based on the subject matter of participant components (not

the coordinator), the coordinator selects the best solution based on the score of the solutions and the score of any pre-requisites required for the solution. In this case

the criterion provided by Jettison is binary (you can jettison or not), but for other transactions this is likely to be a more nuanced measure, for example including time or

resource cost. Once a solution is selected by the coordinator, the participants are informed of the choice and when the solution is to be enacted (at an agreed time or on

demand).

The final stage of the pattern is for the participants to enact the solution. Jettison can monitor progress of achievement against the requirement. Asset Transitions and

Stores Release are best placed to determine whether their own requirements have been met, and the coordinator determines completion of the overall requirement.

Note: If for any reason the service level agreed against the requirement can no longer be met, then the coordinator is to be informed; however, if the requirement can

still be met by a new solution without impacting other components, this is within the scope of the participants to select.

Business Activity Coordination can often be for very long term and high level goals. This leads to a further derivation of requirements within the deployment as part of

the top level requirement (as shown in Figure 30), with each subject matter area owning its own solution, and derived requirements.

Business Activity Jettison Example

Description Jettison:Coordinator Stores Release:ParticipantAsset Transitions:ParticipantBridge:Business_Activity_Pattern

Ready1

Jettison, understanding there is a task to fulfil,
informs the participants that they are going to take part
in a collaborative activity together.

1.1
create : Context

Jettison sets the requirements and measurement criteria
and pushes these out to the participants.

1.2

object_to_be_jettisoned : Subject_Specific_Requirement

Command sent to Asset Transitions to determine a solution.1.2.1

determine_releasable_state(object_to_be_jettisoned)

Command sent to Stores Release to determine a solution.1.2.2

determine_stores_jettison_implementation(object_to_be_jettisoned)

Set2

Asset Transitions reports back that is has found a solution.2.1

releasable_state_solution : solution_specific_name

Stores Release reports back that is has found a solution.2.2
stores_jettison_solution : solution_specific_name

Score against criteria reported back to Jettison.2.3

criteria_score : Solution

Go3

Jettison commands action sequence to commence.3.1

solution_specific_name : Subject_Specific_Requirement

Command sent to Asset Transitions to execute the solution.3.1.1
execute_releasable_state

Command sent to Stores Release to execute the solution.3.1.2
command_jettison_of_stores_package

This shows a possible solution to a single transaction taken from the Jettison Management IV.

UK OFFICIAL

RCO_FUT_23_006 Page 74 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

This coordination differs from an Atomic Transaction in three key ways:

 The coordinator only owns derivation of the requirements; the participant determines how the solution is achieved, allowing it to be used at an abstract level.

 Business Activity transactions involve requirement derivation and solution determination, followed by solution selection and then a final enactment stage,

whereas the steps in an Atomic Transaction are just for the components to prepare and then commit.

 There is no requirement to be able to roll-back to a previous state, allowing it to be used for long term irreversible change such as ‘fly to this location’.

It should be noted that the pattern for solution derivation does not require 'coordination'. As in the Business Activity Jettison Example above, if the derived

requirements and solutions are independent of each other they can be treated as separate transactions. The ‘keeping track’ of the dependencies can then be considered

‘invisible’ outside of the coordinating component. Taken to its logical extreme this stops becoming so much of a coordination between participants and more a directed

series of steps, and this approach is covered in the orchestration pattern in the next section.

UK OFFICIAL

RCO_FUT_23_006 Page 75 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Figure 30: Business Activity Generic Hierarchical Example

Business Activity Generic Hierarchical Example

Atomic Transaction A

Sub-Coordinator Participant_1 : Participant Subordinate_3 : Subordinate

Coordinator

Participant_1

Business Activity B

Sub-Coordinator

Participant_1 : Participant

participant_2 : Participant

Subordinate_4

Bridge : Business_Activity_Pattern

Activator

Bridges omitted from diagram in subtask for simplicity

UK OFFICIAL

RCO_FUT_23_006 Page 76 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Appendix A.3 Orchestration

The Orchestration component interaction pattern differs from a coordination transaction in that the orchestrator owns the workflow logic, rather than just the

requirement derivation. This can be a very versatile approach, where multiple building block components can be reused in a variety of different configurations and

orders to achieve different results.

The process itself is usually data-driven, allowing a lot of flexibility, with multiple standards existing for the process execution; one example is the Web Service Business

Process Execution Language standard, Ref. [59].

The example Orchestration component interaction pattern (Figure 31) shows Asset Transitions in a role that is similar to the role it plays in the Startup IV. In this

interaction view, Asset Transitions manages the workflow of starting up an air vehicle across multiple interactions, driving out the process steps one by one to achieve

an overall result. This pattern involves orchestrating multiple component interaction patterns across multiple services, either in parallel or in series depending on the

workflow dependencies. This example involves three stages all activated by the same request.

UK OFFICIAL

RCO_FUT_23_006 Page 77 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Figure 31: Orchestration Startup Example Diagram

As can be seen in Figure 32, this component interaction pattern begins with Asset Transitions determining the correct sequence of steps and dependencies. The first

step is to check with Interlocks that the correct authorisations and interlocks have been fulfilled to allow startup. Asset Transitions doesn’t need to know the details of

what is required, just whether permission is granted or not.

When this task is complete Asset Transitions requests that Power and Propulsion both determine if they can bring basic check power online at a given time. This is done

as a business activity coordination, because power and propulsion systems may be able to start up independently but not together. Again Asset Transitions does not

need to know the details (they are outside its subject matter area), just whether a solution for initial power is in place. As a solution exists, application of limited power

to a store attachment mechanism can be started.

The last step of the process flow shown is the triggering of Inventory to do a stores fit check. In reality there will be further checks but this illustrates the pattern.

Orchestration Startup Example

Asset Transitions : [Orchestrator]

 : Activation

 : ~Coordination

Inventory : Partner

 : Simple_Action

Power : Partner

 : Requirement

Interlocks : Partner

 : Simple_Action

Propulsion : Partner

 : Requirement

: Atomic_Transaction_Pattern : Atomic_Transaction_Pattern: Business_Activity_Pattern

Activator

UK OFFICIAL

RCO_FUT_23_006 Page 78 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Figure 32: Orchestration Startup Example Sequence Diagram

Orchestration Startup Example

Description Asset Transitions:Orchestrator Inventory_Check:Atomic_Transaction_PatternPower_Systems:Business_Activity_PatternInterlocks:Atomic_Transaction_Pattern Inventory:PartnerPower:PartnerInterlocks:Partner Propulsion:Partner

Asset Transitions is instructed to activate startup. 1

Asset Transitions determines the allowable startup scheme.1.1

Asset Transitions starts the workflow by requesting
if startup interlocks are satisfied.

1.2 Initiate_interlock_check

The bridge maps this to a demand on Interlocks.1.2.1 determine_interlock_status : Specific_Instruction

Interlocks confirms that all the required prerequisites have been met.1.2.2 Confirm_Go_State : Specific_Instruction

The bridge maps this as now complete to Asset Transitions....1.2.3 interlock_check_complete
Asset Transitions moves to the next workflow step
and coordinates power system startup.

2

Asset Transitions requests Power capability.2.1 power_requirement

The bridge maps this to a demand on Power.2.1.1 determine_solution

Power confirms it has a solution.2.1.2 determine_solution : confirmed

The bridge maps this as a confirmation to Asset Transitions.2.1.3 power_solution_confirmed

Asset Transitions requests Propulsion capability.2.2 propulsion_requirement

The bridge maps this to a demand on Propulsion.2.2.1 determine_solution

Propulsion confirms it has a solution.2.2.2 determine_solution : confirmed

The bridge maps this as a confirmation to Asset Transitions.2.2.3 propulsion_solution_confirmed

Asset Transitions determines that all solutions are in place.2.3

Asset Transitions issues a demand that power is started up.2.4 power_startup

The bridge places a startup demand on Power.2.4.1 enact_solution

Asset Transitions issues a demand that propulsion is started up....2.5 propulsion_requirement

The bridge places a startup demand on Propulsion.2.5.1 enact_solution

Asset Transitions confirms power systems are go.

Asset Transitions moves to the next workflow step
and issues startup demand to Inventory.

3 initiate_inventor_check

The bridge places a demand on Inventory.3.1 specific_instruction

Inventory draws power for Role Fit Discovery from Power.3.1.1

UK OFFICIAL

RCO_FUT_23_006 Page 79 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Appendix A.4 Choreography

An important characteristic of the choreography interaction pattern is that it is about collaboration, not control. This interaction pattern is useful where the goal is to

establish the rules and limits for interactions between collaborating components. Choreographies are often used between very disparate groups of components that

operate autonomously and have not explicitly been designed to work together, for example an on-ground system of radars and facilities that may occasionally interact

with air vehicles. They can operate at relatively specific levels of detail; for example informing components of which counterpart relationships to setup when a new

store is attached to the air vehicle (e.g. different components are involved depending on whether it is a fuel tank or a missile).

The component that owns the choreography and the collaborating components need to be able to identify the context of the collaboration before the choreography

transaction itself starts. Data loaded in the components from common or at least aligned mission plans enables the collaborators to register for involvement in the

particular collaboration group, typically when a set of conditions are met (e.g. this may simply be at startup).

The transaction is initiated by the collaborators registering with the choreographer, and requesting the rules and limits. The collaborators then use the information

supplied as the basis for direct interactions, as shown in Figure 33. The choreographer knows about the different groups involved, but is unlikely to control their actions.

As you might expect, the details of the rules can be quite complex, and there are several protocols designed explicitly to express this. See Ref. [56] for a comparison of

three of the standards.

UK OFFICIAL

RCO_FUT_23_006 Page 80 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Figure 33: Choreography Generic Example

In the example shown in Figure 34 and Figure 35, the air platform is required to perform an air-to-air refuelling (AAR). The Formations component can be used to set up

a collaboration relationship between the Routes and Tactical Objects components, so as to enable Formations to coordinate a suitable rendezvous for refuelling. In this

scenario, the tanker aircraft is not a PRA based platform and cannot accept, nor provide, manoeuvring control.

Choreography Generic Example

: Choreographer
 : Choreography

: Collaborator
 : ~Ensemble

: Collaborator
 : ~Ensemble

: [Choreography_Pattern]

 : ~Choreography

 : Ensemble

 : Ensemble

: Resulting_From_Rules

Cooperation based on agreed rules

Autonomous Region 1

Autonomous Region 2

UK OFFICIAL

RCO_FUT_23_006 Page 81 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Figure 34: Choreography Refuelling Formation Example

The Formations component can provide the initial positional offset that the air vehicle should adopt before joining formation, and it is provided with an identifier for the

tanker aircraft, but not its current position. Therefore two services are required, one that can route the air vehicle to a specified location, and another that can provide

the position of the tanker aircraft to which a positional offset can be applied.

The Tactical Objects component has the capability to provide the tanker position, and the Routes component has the capability to direct the manoeuvring of the aircraft.

These capabilities are reported to the Formations component via the bridge, which then allocates the service provider based on their stated capabilities.

Since the Formations component does not need to know the actual position of the tanker, the pattern can be used to instruct Tactical Objects to transfer the positional

information directly to the Routes component. The Routes component can then use this information to generate a route to the rendezvous point and request the

manoeuvres via commands to Path Demands.

Choreography Refuelling Formation Example

Formation_Pattern : Choreography_Pattern

 : ~Choreography

 : Ensemble : Ensemble

Positional_Relationship

Formations : Choreographer

 : Choreography

Routes : [Collaborator]

 : ~Ensemble

Tactical Objects : [Collaborator]

 : ~Ensemble

Path Demands : Subordinate

UK OFFICIAL

RCO_FUT_23_006 Page 82 of 82 Issue 4.1

© Crown owned copyright 2023.

UK OFFICIAL

Figure 35: Choreography Refuelling Formation Example Sequence

Roles are allocated so that the required services are provided to Formations, and its consumption of services associated with the other components involved in the

choreography is monitored. So long as the components have the capability to provide the required services, they can be left to manoeuvre the aircraft without further

input from the Formations component.

Once the air vehicle reaches the location of the air tanker, a new positioning requirement is generated and this relationship can be removed.

Choreography Refuelling Formation Example

Description Routes Tactical Objects Path Demands:Choreography_PatternFormations Positional_Relationship

Create collaboration.1
create : Context

Register as part of collaboration.2
create : Context

Role Request.2.1 role_request : Context
Check capability and allocate role.2.2 allocate_requirement
Provide requirement for route.2.3 positional_requirement

Register as part of collaboration.3
create : Context

Role request.3.1 role_request : Context

Check capability and allocate role.3.2
allocate_requirement

Allocate requirement to provide data.3.3 provide_position
loop4

Provide tanker position.4.1 provide_position

Receive tanker position.4.2 receive_position
Maintain spacial seperation.4.3

path_demand
end loop

	EXECUTIVE SUMMARY
	CHANGE HISTORY
	TABLE OF CONTENTS
	TABLE OF FIGURES
	TABLE OF TABLES
	TERMS AND ABBREVIATIONS USED IN THIS DOCUMENT
	REFERENCES
	1 Introduction
	1.1 Scope
	1.2 Purpose
	1.3 Document Structure
	1.3.1 Platform Independent System Design
	1.3.2 Platform Independent Component Design
	1.3.3 Platform Specific System Development
	1.3.4 Platform Specific Component Development

	1.4 How to Read This Document
	1.4.1 Guidance for System Architects and Designers
	1.4.2 Guidance for Component Designers
	1.4.3 Guidance for Component Developers
	1.4.4 Guidance for System Integrators

	2 Platform Independent System Design
	2.1 Requirements Analysis
	2.2 Logical Architecting
	2.2.1 Build Set Identification
	2.2.2 Interaction Definition
	2.2.3 Design Specialisation
	2.2.3.1 Autonomy and System Constraints
	2.2.3.2 Component Scaling
	2.2.3.3 Multiple Instances of Components
	2.2.3.4 Data Synchronisation

	2.3 Component Specification
	2.3.1 Functional Requirements
	2.3.2 Services
	2.3.3 Service Dependencies

	2.4 Bridges
	2.5 Service Modelling
	2.5.1 Model Artefacts

	2.6 Data Modelling
	2.6.1 Model Artefacts
	2.6.1.1 Component Information Data Model and Data Views
	2.6.1.2 System Information Data Model

	2.7 Good Practice
	2.7.1 Do use other standards and models in conjunction with the PRA
	2.7.2 Do delegate resource conflict decisions as low as possible
	2.7.3 Do consider which component is most appropriate for managing certain calculations
	2.7.4 Do be aware of emergent properties and behaviour
	2.7.5 Do not create a stove-piped design
	2.7.6 Do not use Tasks as a stand-in for planning
	2.7.7 Do not treat Tasks component as an overseer
	2.7.8 Do not over define inter-component behaviour during system design

	2.8 Summary

	3 Platform Independent Component Design
	3.1 Component Modelling
	3.1.1 Structural Analysis from Data
	3.1.2 Data Driving
	3.1.3 Behaviour Modelling

	3.2 Design Areas of Concern
	3.2.1 Data Configuration
	3.2.2 Automation, Autonomy and Constraints
	3.2.3 Capability and Health
	3.2.4 Coordination between Nodes
	3.2.5 Safety Related Dependencies and Rely-Guarantees

	3.3 Identification of Extensions
	3.4 Good Practice
	3.4.1 Do avoid pollution
	3.4.2 Do follow S.O.L.I.D guidance
	3.4.3 Do design highly cohesive and loosely coupled services
	3.4.4 Do design reusable services
	3.4.5 Do design services that are decoupled from internal logic
	3.4.6 Do design composable services
	3.4.7 Do design independent services
	3.4.8 Do design state independent services
	3.4.9 Do consider mission planning

	3.5 Summary

	4 Platform Specific System Development
	4.1 Non-Functional Requirements
	4.2 Infrastructure Architecture
	4.2.1 Layered System Infrastructure
	4.2.2 Support for Scheduling
	4.2.3 Software Resource Allocation and Protection
	4.2.4 Time
	4.2.5 File Access
	4.2.6 Human-Machine Interface
	4.2.7 Health and Usage Monitoring
	4.2.8 Software Configuration

	4.3 Certification and Accreditation
	4.3.1 Safety Considerations
	4.3.2 Security Assurance Considerations

	4.4 Data Management Design
	4.4.1 Reconfiguration
	4.4.2 Data Synchronisation
	4.4.3 Inter-Application Communications
	4.4.4 Post Mission Data Analysis

	4.5 Component Services
	4.5.1 Service Deployment Design
	4.5.2 Architectural Alignment and Interoperability

	4.6 Infrastructure Implementation
	4.6.1 System Reuse
	4.6.2 Model Transition

	4.7 Good Practice
	4.7.1 Do bridge through middleware
	4.7.2 Do not use component variants to cater for specific uses
	4.7.3 Do use component variants where functionality is separated between platforms
	4.7.4 Do separate the concept of ‘what data is’ from how it is acquired
	4.7.5 Do use counterparts
	4.7.6 Do coordinate preparation and execution interactions
	4.7.7 Do capture and share platform specific information

	4.8 Summary

	5 Platform Specific Component Development
	5.1 Infrastructure Considerations
	5.1.1 Extensible Data
	5.1.2 Health Monitoring and Fault Management
	5.1.3 Interaction with Humans
	5.1.4 Interaction with Equipment

	5.2 Component Implementation
	5.2.1 Legacy Code Reuse
	5.2.2 Automatic Code Generation

	5.3 Working with System Integrators
	5.4 Good Practice
	5.4.1 Do consider appropriate middleware access
	5.4.2 Do manage safety artefact development

	5.5 Summary

	Appendix A Component Connection Examples
	Appendix A.1 Coordination – Atomic Transaction
	Appendix A.2 Coordination – Business Agreement
	Appendix A.3 Orchestration
	Appendix A.4 Choreography

