

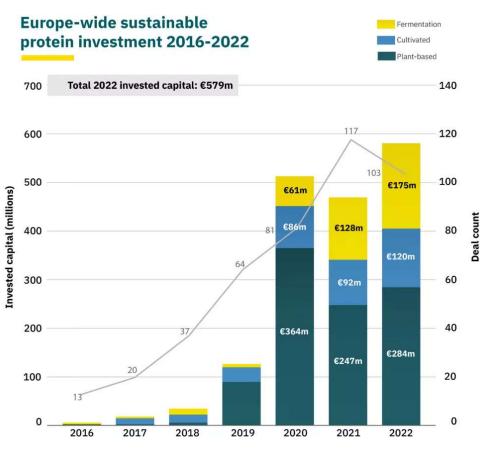
Alternative proteins: food authenticity implications

20 June 2023

Rosario Romero Fera Science Ltd

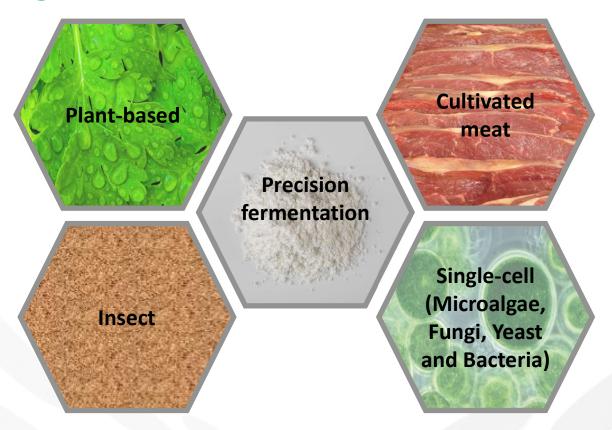
rosario.romero@fera.co.uk

Growing interest in alternative sources of proteins



Environmental impact

Health perceptions


Animal welfare

From GFI Europe

Accelerating innovations

Potential to greatly impact the food system

Challenges remain

Defra Food Authenticity Programme

Research Project - Implications of emerging novel protein sources for food authenticity

Novel sources of proteins

Novel ingredients

Regulators must guarantee food integrity and protection for industry and consumers

Novel technologies **Emerging risks for food authenticity and fraud?**

Do we have adequate analytical capabilities?

What are the research priorities in this field?

Increasingly complex food supply chain

Approach

The Future of Protein production Summit 2022 - world leading experts in the field to update on the most recent developments, technologies, policies and concepts across the food system

Light touch review of selective sources - academic and grey literature, internet sources. Focus on authenticity

Stakeholder consultations (n=10)

Findings

Authenticity issues and **methodologies** have not been an area of focus for the alternative protein sector

\approx	Ò

Food industry – higher awareness

Consumer trust

Health implications

Wider implications of fraud

Authenticity main challenges

Species of origin / Ingredient verification

Complex formulations / highly processed

products - more challenging

Supply chain may be complex / fragmented

Drivers of fraud

Conventional protein may be cheaper – substitution Adulteration with non-protein material, e.g., powders	
Some novel ingredients / raw materials may be in short supply	
Supply chain potentially more vulnerable – disruptions	
Impact of climatic events - crops	

Plant-based

Species substitution

Presence of animal ingredients

Quantification of AP in hybrid products

Substitution/dilution with nitrogen powders

Cultivated meat / seafood

Species substitution

Adulteration with conventional meat / seafood

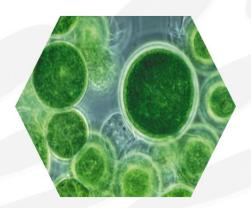
Discrimination from animal counterpart

Use of unauthorised cell lines

Quantification of AP in hybrid products

Substitution of culture medium / scaffolding ingredients

Fermentation


Species substitution (Biomass)

Presence of animal ingredients

Quantification of AP in hybrid products

Distinction from animal counterpart (Precision)

Substitution/dilution with nitrogen powders

Insects

Species substitution, wild vs farmed

Insect protein for feed used for food

Use of unauthorised / undeclared rearing substrates

Quantification of AP in hybrid products

Substitution/dilution with nitrogen powders

Anticipated analytical challenges

Species identification – genomic information	
Discrimination between AP and conventional counterpart	
dentification of gene editing	
Potential impact of novel processing techniques on performance of current methods	potential structural modification of target molecules
Databases and reference materials	

Analytical tools

Plant-based	Spectroscopy/chemometrics for powders	Neves et al., 2022 – classification soy, whey, wheat
	Sensors/AI – metabolomic fingerprints of plant-based products	
	Faller <i>et al.</i> , 2019 – ingredient identification in plant protein powders	PCR, NGS – issues with DNA integrity
		LC-MSMS – poor protein solubility in isolates
		Orthogonal methods / data fusion
	Huschek et al. 2018 - Proteomics - detection and quantification of garden pea, meat and honey in processed plant-based products	

Analytical tools

	. •
INCACT	MEATAIN
111560	protein
1113666	

PCR for species identification

Proteomics / spectral comparison – commercial insect meals (Bhelgit *et al.*, 2019)

Potential marker peptides for four species

Francis et al., 2020 – non-targeted proteomics - limited success due to lack of genomic data

These studies highlight the need for **more comprehensive genome** sequence data

Analytical tools

	_	•
Incoct	nrata	-
Insect		
1113666	$\mathbf{p}_{\mathbf{i}} \mathbf{o}_{\mathbf{i}} \mathbf{c}_{\mathbf{c}}$	

Entometabolomics (Snart et al., 2015)

Poma et al., 2022 – non-targeted metabolomic screening as a tool for traceability and authenticity monitoring "farm to fork"

complementary to proteomics/genomics

discovery of unexpected – safety

other aspects – wild vs farmed

Need for reliable databases / annotations, in silico tools for structural elucidation, shared repositories

Additional tools

Approaches to collect information about supply chains globally

AI, big data and block chain technologies, combined with other tools

Intelligent packaging

Sensors – radio frequency ID tags

DNA tags – e.g. DNAblockchain tool for traceability of olive oil

Standards and certification – guidelines

BRCGS - Plant-based Global Standard

BSI - PAS 224:2020 – 100% plant-based ingredients (composition)

ISO 23662:202 – vegetarian, vegan, definitions, criteria, labelling

IPIFF – guides on good hygiene practices and on labelling of insect products

Learning from other sectors (e.g. pharma)

Research needs

Impact of new processing technologies on performance of existing authenticity tests

Identify and address points of vulnerability in the supply chain

Methods for detection of adulteration with nitrogen compounds

Investigate biomarkers to support authenticity testing of APs

Support databases as tools for authenticity testing – genome, proteome, metabolome, spectral data, isotope ratios. Collaboration and data sharing are essential.

Acknowledgements

Fera Science

Helen Grundy

Adrian Charlton

Maureen Wakefield

Wendy Martindale

Interview participants

Defra Food Authenticity Programme

Thank you