FOUL AND SURFACE WATER

DRAINAGE STRATEGY

FOR

LAND EAST OF PINES HILL, STANSTED MOUNTFITCHET

MARCH 2023

CONTENTS

1.	INTRODUCTION	2
2.	SITE CONDITIONS	3
	SITE LOCATION AND USE	
	SITE GEOLOGY	4
3.	DEVELOPMENT DESCRIPTION	6
4.	SURFACE AND FOUL WATER DRAINAGE DESIGN	7
	EXISTING	
	PROPOSED	9
5.	SUDS MAINTENANCE AND MANAGEMENT	1
6.	RECOMMENDATIONS AND CONCLUSIONS	4

APPENDICES

APPENDIX A	- EXISTING SITE LAYOUT
APPENDIX B	- PROPOSED SITE LAYOUT
APPENDIX C	- THAMES WATER SEWER RECORDS
APPENDIX D	- GREENFIELD RUNOFF RATE
APPENDIX E	- MICRODRAINAGE CALCULATIONS
APPENDIX F	- PROPOSED DRAINAGE STRATEGY
APPENDIX G	- ESSEX COUNTY COUNCIL SUDS PROFORMA
APPENDIX H	- SITE INFILTRATION TEST RESULTS

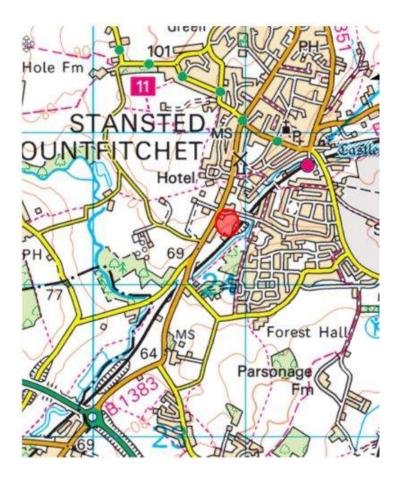
Report prepared by:

Richard James BEng (Hons) IEng MICE

1. INTRODUCTION

- 1.1. This report has been commissioned by Luxus Homes Limited to provide a East Drainage Strategy for the proposed development of Land of Pines Hill Stansted Mountfitchet. The report commissioned is an update to the previous revision (dated December 2021) that was issued as part the refused application UTT/21/2730/OP. Following the refusal, BRE 365 of Infiltration Soakaway testing was undertaken and the results are contained herein.
- 1.2. The purpose of this report is to demonstrate that a viable and sustainable strategy for the management and disposal of surface water runoff with climate change allowances for the development can be achieved whilst simultaneously achieving a viable solution for foul water disposal.
- 1.3. The proposed works comprise of redevelopment of the existing site to create 31 residential units, access road, associated hard and soft landscaping, driveways and car parking.
- 1.4. This report has been prepared using the following data/information from various sources including:
 - Brown 2 Green Phase 1 Geo- Environmental Report dated June 2021
 - Herts and Essex Site Investigation Soakaway Testing Report Dated 2nd December 2021
 - One Architecture Proposed site plan 002.21 SK05
 - The Essex Design Guide Sustainable Drainage Design Guide
- 1.5. This report has been prepared in accordance with the NPPF, local planning policies and the accompanying Technical Guidance.
- 1.6. This report has been prepared by Richard James BEng (Hons) IEng MICE.

Footnote


Confirmation has been received from Essex County Council Drainage Engineer, Alison Vaughan, that the proposals contained herein meet the requirements in terms of SUDS drainage for the site. Consequently, no further objections would be made to any subsequent planning application and any concerns arising under the holding objection raised against the previous planning application (UTT/21/2730/ OP) for this site have now been fully addressed. (Ref email dated 14/01/22 appended).

2. SITE CONDITIONS

SITE LOCATION AND USE

- 2.1 The site extends of an approximate area of 1Ha and is site is located on land East of Pines Hill Stansted Mountfitchet.
- 2.2 The site is bounded by Pines Hill to the west and Stoney Common Road to the north.
- 2.3 The site is centred on National Grid reference 550860, 224440

SITE LOCATION PLAN

2.4 The existing site is currently vacant undeveloped land and a copy of the existing site topographical survey is included in Appendix A.

SITE GEOLOGY

2.5 The conditions at the site are detailed below in Table 1 and are based on the findings noted in the Brown 2 Green Associates Ltd Phase 1 Geo-Environmental Desk Study Dated June 2021.


Formation	Description
Superficial Deposits	Glaciofluvial Deposits sand and gravel.
Solid	Lewis Nodular Chalk Formation and Seaford Chalk Formation

TABLE 1: GEOLOGICAL GROUND CONDITIONS

- 2.6 A review of Geological logs held by the British Geological Survey indicate the nearest is located immediately north of Stoney Common Road which indicates the area is underlain by approximately 1m of gravelly clay, overlying sand and gravel.
- 2.7 A borehole log for a borehole drilled 100m to the west identified the top of the chalk to be at 9.3m below ground level.
- 2.8 Hydrogeological mapping suggests that the groundwater level lies at around 62m AOD with site levels from around 72-77m AOD.
- 2.9 The Superficial Deposits are classified as a Secondary A Aquifer. The solid geology is classified as a Principal Aquifer.
- 2.10 The site does not lie within a Source Protection Zone within the vicinity of the site. The nearest is a Zone 1 located 200m to the north. The Source protection Zone surrounds an abstraction well used for the potable water supply.
- 2.11 A previous geotechnical desk study report produced in 2013 by ST Consult on the development site confirmed that the soakage potential within the sands and gravels is likely to be good.
- 2.12 Soakaway testing undertaken at the site by Herts and Essex Site Investigations obtained infiltration rates across the site that varied from 5.68x10⁻⁶m/s to 2.68x10⁻⁶m/s. Based on this information the report confirmed that soakaways would provide

a viable drainage option for the site. A copy of the test results have been included in appendix H.

2.13 The aim of sustainable drainage systems is to dispose of surface water using the following hierarchy were reasonably practicable.

TABLE 1: SURFACE WATER DISPOSAL HIERARCHY

2.14 The assessment of what is considered to be reasonably practicable in terms of sustainable drainage system provision should consider the costs associated with the design, construction, operation and maintenance of the system, and whether these are economically proportionate in relation to the consumer costs for an effective drainage system that instead connects directly to a public sewer.

3. **PROPOSED DEVELOPMENT**

- 3.1 The proposal for the site consists of the construction of 31 new residential units including the associated access road, driveways and hard and soft landscaping.
- 3.2 Refer to Appendix B for a copy of the Proposed Site Plan.

4 SURFACE AND FOUL WATER DRAINAGE DESIGN

EXISTING

- 4.1 A copy of the Thames Water sewer asset plans is included in Appendix C.
- 4.2 The records indicate that the only public surface water sewer in the area is located at the junction of Stoney Common Road and Old Bell Close.
- 4.3 The records also indicate a 450mm diameter public foul water sewer running through the site from North East to South West.

EAST EXISTING RUNOFF RATES

4.4 In Table 5 below, is a summary of the approximate greenfield run off rates for the entire developable site (1.0Ha). Refer to Appendix D for calculations.

TABLE 5: GREENFIELD RUN OFF RATES

Event	Greenfield Run Off Rate
QBar	3.1 l/s
1 in 1 year	2.6 l/s
1 in 30 year	6.9 l/s
1 in 100 year	9.7 l/s

4.5 The total site area is 1.0Ha of which it is calculated that 0.49 Ha is impermeable made up of 0.27 Ha roads and driveways and 0.22Ha buildings.

CLIMATE CHANGE ALLOWANCES

4.6 The guidance by the EA is replicated below in Table 6 where the drainage system is to be designed to accommodate a 20% climate change allowance on top of the 1 in 100-year storms. Applicants should apply a sensitivity test against the 40% climate change allowance to ensure that the additional runoff is wholly contained within the site and that there is no increase in the rate of runoff discharged from the site.

Applies across all Total potential of England change anticipated for the '2020s' (2015		Total potential change anticipated for the '2050s' (2040	Total potential change anticipated for the '2080s' (2070
	to 2039)	to 2069)	to 2115)
Upper End	10%	20%	40%
Central	5%	10%	20%

TABLE 6: PEAK RAINFALL INTENSITY CLIMATE CHANGE ALLOWANCE

LOCAL GUIDANCE

- 4.7 Essex County Council Sustainable Drainage Systems Design Guide sets out the aims to incorporate SuDS into developments to reduce surface water flood risk.
- 4.8 We reviewed the selection of drainage/attenuation and SuDS components in line with the drainage hierarchy listed in the London Plan policy 5.13 and the table below provides the justification of the SuDS measures:

SUDS technique	Adopted	Not Adopted	Reason	
Store Rainwater for later use		×	Rainwater harvesting is not proposed on the scheme due to the high initial installation cost making the provision of RWH economically unviable.	
Use infiltration technics	×		The site is underlain by sands and gravels and therefore the use of infiltration is viable. It is proposed that individual soakaways will be used for each building and permeable surfacing will be used for the roads and driveways.	
Attenuate rainwater in ponds or open water features i.e. Filter Strips / swales		×	There is not sufficient open space within the development to accommodate open water features.	
Attenuate rainwater in sealed tanks		×	Below ground attenuation is not proposed on the site due to the provision of SuDS.	
Discharge direct to a watercourse		×	There are no watercourses surrounding the site.	
Discharge to a surface water drain		×	Infiltration drainage is proposed at the site and so a connection to a surface water sewer is not required.	
Discharge to a combined sewer		×	There are no combined sewers surrounding the site.	

PROPOSED SURFACE WATER STRATEGY

- 4.9 The site is currently undeveloped and considered greenfield.
- 4.10 The site is underlain by sands and gravels and therefore the use of infiltration drainage is viable.
- 4.11 Infiltration testing undertaken has been undertaken at the site, the worst rate obtained was 2.68x10⁻⁶m/s and this rate has been used in the design of the infiltration features on the site.
- 4.12 It is proposed that the new roads and driveways will be constructed using a permeable surface with a low fines sub base storage.
- 4.13 Based on an area of 2700m³ for the impermeable area of the roads and driveways and a worst-case infiltration rate obtained on the site of 2.68x10⁻⁶m/s then a depth of sub base of 500mm is required. See attached a copy of the supporting calculations in appendix F. The design has been sized to accommodate events up to an including the 1 in 100-year event plus an allowance of 40% for climate change.
- 4.14 The surface water for each house will connect to a suitably sized soakaway. The soakaway being sized to accommodate events up to an including the 1 in 100-year event plus an allowance of 40% for climate change plus an additional allowance in area of 10% to allow for future urban creep.

For areas up to 180m2 - 4mx3mx1m Soakaway

For areas up to 150m² - 3x4x1m Soakaway

For areas up to 100m² - 3x3x1m Soakaway

- 4.15 Drainage calculation justifying the size of each soakaway are included in Appendix E
- 4.16 The proposed drainage strategy for the site is indicated in Appendix F

PROPOSED FOUL WATER STRATEGY

4.17 The new proposed buildings will have a proposed foul water network that will convey all generated foul flows through a gravity system and connect in to the public foul water sewer running through the site.

- 4.18 The public foul water sewer will be diverted to avoid the proposed new buildings, subject to agreement with Thames Water.
- 4.19 The foul water drainage for each plot will connect to the Thames Water public foul water sewer running through the site.
- 4.20 A Thames Water pre-development enquiry will be submitted in due course which will confirm that there is capacity within the public foul sewer network to accommodate the post development flows from the site.

5 SUDS MAINTENANCE AND MANAGEMENT

5.1 The responsibility for the enacting of this SuDS Maintenance and Management Plan will be the responsibility of each property owner, the roads and the associated drainage for the roads will be maintained by a management company set up by the property owners.

GULLIES

5.2 Gullies provide a degree of pollution control in preventing silt and debris passing into the sewer network.

GULLY MAINTENANCE

MAINTENANCE SCHEDULE	REQUIRED ACTION	RECOMMENDED FREQUENCY
Regular maintenance	Clean and empty gullies.	Quarterly.

CATCHPITS

- 5.3 Catchpit chambers and manholes provide a degree of pollution control in preventing silt and debris passing forwards into the drainage network.
- 5.4 The operation and maintenance requirements are given in the table below:

CATCHPIT MAINTENANCE

MAINTENANCE SCHEDULE	REQUIRED ACTION	RECOMMENDED FREQUENCY
Regular maintenance	Clean and empty catchpits.	Quarterly.

BELOW GROUND MANHOLES AND DRAINAGE - GENERAL

5.5 Manholes and Catchpit Inspections should be frequent and regular, depending on local conditions, but at least annually. The drainage system should be cleaned / jetted as necessary.

PERMEABLE PAVING

- 5.6 Permeable block paving allows water to infiltrate through gaps between the blocks into a lined layer of granular material, from which it is collected and discharges into the below ground drainage network.
- 5.7 The operation and maintenance requirements are given the table below:

MAINTENANCE SCHEDULE	REQUIRED ACTION	RECOMMENDED FREQUENCY
Regular maintenance	Sweeping. Note: Any jointing material between the blocks that is lost or displaced as a result of sweeping must be replaced. New jointing material must be the same type as that removed or a suitable replacement.	Three times a year at the end of winter, mid- summer and after autumn lead fall. Also as required based on site-specific observations.
Occasional maintenance	Stabilise and mow contributing and adjacent areas to prevent excess sediment being washing into the paving. Removal of weed.	As required
Remedial actions	Remedial work to any depressions, rutting and cracked or broken blocks considered detrimental to the structural performance or a hazard to users. Rehabilitation of surface and underlying sand and geotextile.	As required
Monitoring	Inspect for evidence of poor operation and/or weed growth. If required take remedial action.	Monthly for three months after installation, then during regular maintenance visits.

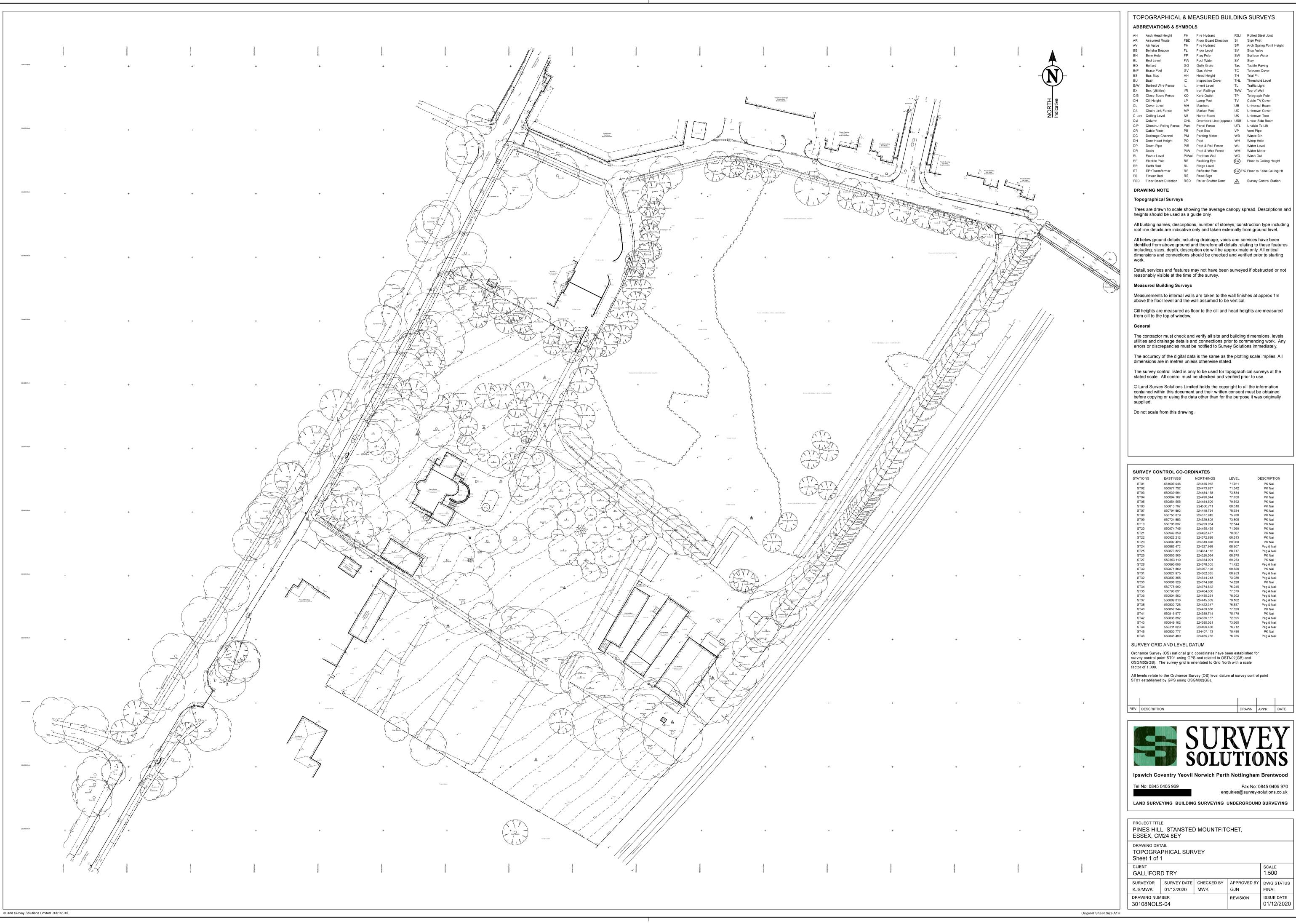
PERMEABLE PAVING MAINTENANCE

- 5.8 Over time the ability of the permeable paving to infiltrate and convey surface water run-off may degrade due to clogging of the joints by silt and other sediments.
- 5.9 All areas of permeable pavement should be regularly inspected by those responsible, preferably during and after heavy rainfall to check effective operation and to identify any areas of ponding.

MODULAR CELLULAR SOAKAWAYS

- 5.10 These plastic geocellular systems wrapped in a permeable geomembrane have a high void ratio, which is used to provide storm water storage and may allow for infiltration into the ground where soils permit.
- 5.11 Water from the proposed areas of hardstanding is routed to a cellular Soakaway tank as set out in drainage strategy drawings.
- 5.12 The operation and maintenance requirements are given in the table below:

MAINTENANCE SCHEDULE	REQUIRED ACTION	RECOMMENDED FREQUENCY
Regular maintenance	Remove sediment and debris from catchpits and geocellular crates.	Annually.
Remedial actions	Repair/rehabilitation of inlets, outlets, vents.	As required.
Monitoring	Inspect catchpits and note rate of sediment accumulation.	Monthly in the first year and then annually.


MODULAR SOAKAWAY MAINTENANCE

6 RECOMMENDATIONS AND CONCLUSIONS

- 6.1 The proposed works comprise of redevelopment of the existing site to create 31 residential units, access road, associated hard and soft landscaping, driveways and car parking.
- 6.2 Geological conditions at the site are based on the Brown 2 Green phase 1 desk study which indicates the site is underlain by superficial deposits of sands and gravels over Chalk.
- 6.3 Based on the ground conditions it is understood that infiltration drainage will be viable on the site and infiltration testing will be undertaken in order to verify the proposed design. An assumed infiltration rate of 1×10^{-5} m/s has been used as the basis for the design.
- 6.4 The proposed development site is located entirely within Flood Zone 1 land classified as Land having less than 1 in 1000 annual probability of river or sea flooding. The site is classified as 'More Vulnerable' (Flood Risk Vulnerability Classification) and therefore, the development is classified as 'appropriate'.
- 6.5 If is proposed that runoff from each property will drain to a suitably sized individual soakaway while runoff from the roads will be dealt with via permeable surfacing with sub base storage. This arrangement will also ensure that any runoff is suitably treated in line with the requirement of the SuDS manual.
- 6.6 The drainage has been sized to accommodate storm events up to and including the 1 in 100-year event plus an allowance of 40% for climate change.
- 6.7 As the buildings will be 150mm higher than the surrounding ground and the levels will be designed to ensure that falls are generally away from the buildings. This will ensure that during any exceedance event the properties will remain protected.
- 6.8 The surface water drainage design principles set out in this document will ensure that the development does not increase the risk of flooding to the surrounding area.
- 6.9 The proposed surface water drainage and SuDS design principles set out in this document will ensure that the development does not increase the risk of flooding to the surrounding area and will mimic the pre-development site.
- 6.10 Taking into account the flood risks to the site from all sources following the proposed development, the overall post-development flood risk is deemed to remain low.
- 6.11 A copy of the Essex County Council SuDS and Water Quality Proforma is included in Appendix G
- 6.12 Foul water from the development will be connected to the Thames Water public sewer running through the site. It is anticipated that there is sufficient capacity within this sewer to accommodate the development.

APPENDIX A

Existing Site Layout

ABBRE	VIATIONS	&	SYMBO

3BF	BREVIATIONS & SYMBOLS						
	Arch Head Height	FH	Fire Hydrant	RSJ	Rolled Steel Joist		
	Assumed Route	FBD	Floor Board Direction	SI	Sign Post		
	Air Valve	FH	Fire Hydrant	SP	Arch Spring Point Height		
	Belisha Beacon	FL	Floor Level	SV	Stop Valve		
	Bore Hole	FP	Flag Pole	SW	Surface Water		
	Bed Level	FW	Foul Water	SY	Stay		
	Bollard	GG	Gully Grate	Тас	Tactile Paving		
>	Brace Post	GV	Gas Valve	тс	Telecom Cover		
	Bus Stop	нн	Head Height	тн	Trial Pit		
	Bush	IC	Inspection Cover	THL	Threshold Level		
V	Barbed Wire Fence	IL	Invert Level	TL	Traffic Light		
	Box (Utilities)	I/R	Iron Railings	ToW	Top of Wall		
3	Close Board Fence	KO	Kerb Outlet	TP	Telegraph Pole		
	Cill Height	LP	Lamp Post	ΤV	Cable TV Cover		
	Cover Level	MH	Manhole	UB	Universal Beam		
	Chain Link Fence	MP	Marker Post	UC	Unknown Cover		
.ev	Ceiling Level	NB	Name Board	UK	Unknown Tree		
	Column	OHL	Overhead Line (approx)	USB	Under Side Beam		
)	Chestnut Paling Fence	Pan	Panel Fence	UTL	Unable To Lift		
	Cable Riser	PB	Post Box	VP	Vent Pipe		
	Drainage Channel	PM	Parking Meter	WB	Waste Bin		
	Door Head Height	PO	Post	WH	Weep Hole		
	Down Pipe	P/R	Post & Rail Fence	WL	Water Level		
	Drain	P/W	Post & Wire Fence	WM	Water Meter		
	Eaves Level	P/Wall	Partition Wall	WO	Wash Out		
	Electric Pole	RE	Rodding Eye	(XXX)	Floor to Ceiling Height		
	Earth Rod	RL	Ridge Level				
	EP+Transformer	RP	Reflector Post	(XX)F/C	Floor to False Ceiling Ht		
	Flower Bed	RS	Road Sign				
D	Floor Board Direction	RSD	Roller Shutter Door	\triangle	Survey Control Station		

STATIONS	EASTINGS	NORTHINGS	LEVEL	DESCRIPTION
ST01	551003.046	224455.912	71.011	PK Nail
ST02	550977.732	224473.827	71.542	PK Nail
ST03	550939.994	224484.138	73.834	PK Nail
ST04	550894.107	224496.044	77.700	PK Nail
ST05	550854.555	224484.509	79.592	PK Nail
ST06	550813.797	224500.711	80.510	PK Nail
ST07	550794.892	224449.794	78.634	PK Nail
ST08	550756.079	224377.942	75.786	PK Nail
ST09	550724.883	224329.805	73.805	PK Nail
ST10	550706.637	224299.954	72.544	PK Nail
ST20	550974.745	224455.435	71.369	PK Nail
ST21	550949.859	224422.477	70.667	PK Nail
ST22	550922.212	224372.888	68.513	PK Nail
ST23	550892.428	224349.878	69.060	PK Nail
ST24	550883.472	224327.998	68.907	Peg & Nail
ST25	550870.822	224314.112	68.717	Peg & Nail
ST26	550863.505	224326.034	68.975	PK Nail
ST27	550853.110	224334.091	69.253	PK Nail
ST28	550895.698	224378.305	71.422	Peg & Nail
ST30	550871.860	224367.128	69.826	PK Nail
ST31	550827.975	224302.335	68.953	Peg & Nail
ST32	550800.355	224344.243	73.086	Peg & Nail
ST33	550808.528	224374.926	74.828	PK Nail
ST34	550778.992	224374.812	76.245 77.379	Peg & Nail
ST35 ST36	550790.631 550804.502	224404.600 224430.231	78.302	Peg & Nail Peg & Nail
ST37	550809.016	224445.369	79.162	Peg & Nail
ST38	550830.728	224445.309	76.837	Peg & Nail
ST40	550857.344	224422.347	77.829	Peg & Nall PK Nail
ST40	550816.977	224389.714	75.179	PK Nail
ST42	550836.892	224356.167	72.695	Peg & Nail
ST42 ST43	550849.102	224380.021	73.665	Peg & Nail
ST44	550811.620	224406.438	76.712	Peg & Nail
ST45	550830.777	224407.113	75.486	PK Nail
ST46	550846.490	224435.755	76.785	Peg & Nail
rdnance Surv		DATUM grid coordinates hav GPS and related to (

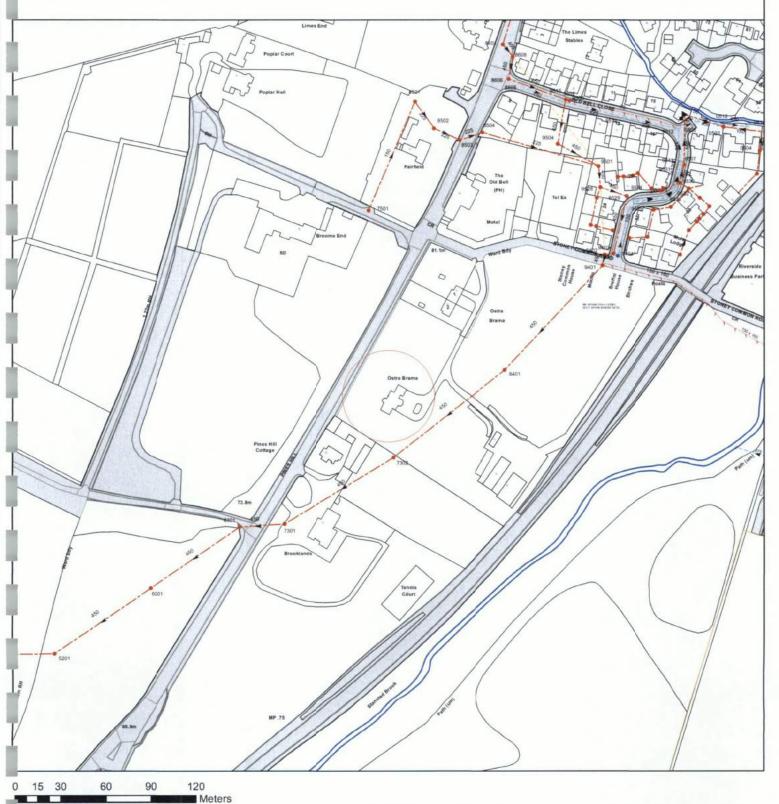
PROJECT TITLE PINES HILL, STANSTED MOUNTFITCHET, ESSEX, CM24 8EY								
DRAWING DETAIL TOPOGRAPHICAL SURVEY Sheet 1 of 1								
CLIENT GALLIFOR	D TRY			scale 1:500				
SURVEYOR KJS/MWK	DWG STATUS FINAL							
DRAWING NUMBER REVISION ISSUE DATE 01/12/2020								

APPENDIX B

Proposed Site Layout

This drawing and the design are the copyright of ON Architecture Ltd only. This drawing should not be copied or reproduced without written consent.
All dimensions are to be checked on site prior to setting out and fabrication and ON Architecture should be notified of any discrepancy prior to proceeding further.
For Construction & Fabrication Purposes – Do not scale from this drawing, use only the illustrated dimensions herein. Additional dimensions are to be requested and checked directly.

Illustrated information from 3rd party consultants/specialists is shown as indicatively only. See other consultant/specialist drawings for full information and detail.


ARC	н		
ITEC			
URE			
Canterbury Studio Logan House, St Anc Canterbury CT1 2RP	Irews Close		
info@onarchitecture	.co.uk		
Project Title Land at Pines Hil	l, Stansted Mou	untifitchet	
Client Details Luxus Homes			
Drawing Title Illustrative Maste	rplan		
BIM Number			
^{Scale} 1:500 @ A1	_{Date} August 2021	Drawn	Checked
Drawing Status			
Planning			
Project Number 002.21	Drawing Number SK20		Drawing Revision

APPENDIX C

Thames Water Sewer Records

Based on the Ordnance Survey Map with the sanction of the Controller of H.M Stationary Office License Number 10019345

DWS/DWS Standard/2012_2260234

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified before any works are undertaken. Crown copyright Reserved

Scale:	1:2526	Comments:	
Width:	500m		
Printed By:	mrajen		
Print Date:	26/06/2012		
Map Centre:	550794,224392		
Grid Reference:	TL5024SE		

APPENDIX D

Greenfield Runoff Rate

Mason Navarro Pledge			Page 1
Bancroft Court			
Hitchin			a states
Hertfordshire, SG5 1LH			Micro
Date 17/07/2021 10:53		Designed by Richard James	MICrO
File		Checked by	urainage
Innovyze		Source Control 2020.1	I
*			
	ICP	SUDS Mean Annual Flood	
		Input	
		LOO SAAR (mm) 638 Urban 0.000	
	Area (IIa) 1.0	000 Soil 0.400 Region Number Region 6	
		Results 1/s	
		QBAR Rural 3.1	
		QBAR Urban 3.1	
		Q100 years 9.7	
		01 mar 2 6	
		Ql year 2.6 Q30 years 6.9	
		Q100 years 9.7	
		Z = <i>I</i>	
		©1982-2020 Innovyze	
		ST202 2020 THHOAX9C	

APPENDIX E

Microdrainage Surface Water Calculations

								Page 1
Date 05/12/2021 19:10 File Roads and Driveways.SRCX			Che	signed by ecked by				Micro Drainage
nnovyze					rol 2020.1			
	Summar	ry of Res	ults f	or 100 ye	ear Return 1	Period	(+40%)	
	Storm	:	Max	Max	Max	Max	Status	
	Event		evel 1 (m)	Depth In (m)	filtration (1/s)	Volume (m ³)		
			(111)	()	(1/5)	()		
		ummer 69 ummer 69			1.5 1.7		Flood Risk Flood Risk	
	60 min S	ummer 69	.849	0.449	1.9	96.6	Flood Risk	
	120 min S 180 min S				2.1 2.1		Flood Risk Flood Risk	
	240 min S				2.2	124.8	Flood Risk	
	360 min S 480 min S				2.2 2.2		Flood Risk Flood Risk	
	600 min S	ummer 69	.913	0.513	2.2	126.1	Flood Risk	
	720 min S 960 min S				2.2		Flood Risk Flood Risk	
	1440 min S	ummer 69	.894	0.494	2.1	117.2	Flood Risk	
	2160 min S 2880 min S				2.0 1.9		Flood Risk Flood Risk	
	4320 min S	ummer 69	.813	0.413	1.8	81.8	Flood Risk	
	5760 min S 7200 min S				1.6 1.5		Flood Risk Flood Risk	
	8640 min S				1.4		Flood Risk	
	10080 min S 15 min W	ummer 69 inter 69			1.3 1.6		Flood Risk Flood Risk	
		inter 69			1.8		Flood Risk	
	120 min W	inter 69 Minter 69			2.0 2.2		Flood Risk Flood Risk	
	180 min W 240 min W				2.3 2.3		Flood Risk Flood Risk	
	360 min W	inter 69	.952	0.552	2.4	146.0	Flood Risk	
	480 min W 600 min W				2.4 2.3		Flood Risk Flood Risk	
	720 min W	inter 69	.946	0.546	2.3	143.0	Flood Risk	
	960 min W 1440 min W				2.3		Flood Risk Flood Risk	
	2160 min W	inter 69	.892	0.492	2.1	116.4	Flood Risk	
	2880 min W 4320 min W				2.0 1.8		Flood Risk Flood Risk	
		Stor: Even		Rain (mm/hr)	Flooded ? Volume (m³)	Time-Pea (mins)	ak	
				143.169			26	
		30 min 60 min					11 70	
		120 min 180 min				12 18		
		240 min	Summer	19.481	0.0	24	14	
		360 min 480 min				36 44		
		600 min	Summer	9.254	£ 0.0	49	96	
		720 min 960 min				55 68		
		1440 min	Summer	4.519	0.0	95	58	
		2160 min 2880 min				136 176		
		4320 min	Summer	1.821	0.0	255	52	
		5760 min 7200 min				329 404		
		8640 min 0080 min				476 546		
	Ţ	15 min	Winter	143.169	0.0	2	26	
		30 min 60 min					10 58	
		120 min	Winter	33.671	0.0	12	26	
		180 min 240 min				18 24		
		360 min	Winter	14.011	0.0	35	52	
		480 min 600 min				46 56		
		720 min	Winter	7.976	5 0.0	58	30	
				6.303	8 0.0	73	54	
	:	960 min 1440 min			0.0	103	34	
	:	960 min 1440 min 2160 min	Winter Winter	4.519	5 0.0	147	76	
	:	960 min 1440 min	Winter Winter Winter	4.519 3.235 2.550	5 0.0 0 0.0		76 00	

							Page 2
							Micro
Date 05/12/2021 19:10			esigned by				Bainage
Tile Roads and Driveways.SRCX			hecked by				
nnovyze		S	ource Cont	rol 2020.1			
	Summary of	Results	for 100 ye	ear Return	Period (+40%)	
	Storm	Max	Max	Max	Max	Status	
	Event	Level (m)	Depth In (m)	filtration (1/s)	Volume (m³)		
5'	760 min Winter	69.766	0.366	1.6	64.3	Flood Risk	
	200 min Winter			1.4		Flood Risk	
	540 min Winter			1.3		O K	
100	080 min Winter	69.671	0.271	1.2	35.1	O K	
	S	torm	Rain	Flooded	Time-Pea	k	
	E	vent	(mm/hr)	Volume (m³)	(mins)		
	5760 m	nin Winte	er 1.433	0.0	346	4	
		nin Winte			418		
		nin Winte			492		
	10080 m	nin Winte	er 0.898	8 0.0	564	.8	

		Page 3
		Micro
Date 05/12/2021 19:10	Designed by	Brainage
File Roads and Driveways.SRCX	Checked by	an and reside
Innovyze	Source Control 2020.1	
Rainfall Model Return Period (years)	Rainfall Details FSR Ratio R 0.443 Cv (Winter) 0.840 100 Summer Storms Yes Shortest Storm (mins) 15	
Region England and	Wales Winter Storms Yes Longest Storm (mins) 10080 20.000 Cv (Summer) 0.750 Climate Change % +40)
	Time Area Diagram	
	Total Area (ha) 0.270	
Time (mins) Area From: To: (ha)	Time (mins) Area From: To: (ha) From: To: (ha)	
0 4 0.090	4 8 0.090 8 12 0.090	
	· ·	

				Page 4
-	-			Micro Diainage
	-	020.1		
		el (m) 70.000		
Porous Car Pa	ark Stru	cture		
ercolation (mm/hr) Percolation (l/s) Safety Factor	1000 755.6 2.0	Length (m) Slope (1:X) Depression Storage (mm)	170.0 200.0 5	
Invert Level (m)			0	
	Checked Source C Model torage is Online C <u>Porous Car P</u> icient Base (m/hr) ercolation (mm/hr) : Percolation (1/s) Safety Factor Porosity	Model Details torage is Online Cover Lev Porous Car Park Stru icient Base (m/hr) 0.00960 vercolation (mm/hr) 1000 : Percolation (1/s) 755.6 Safety Factor 2.0 Porosity 0.30	Checked by Source Control 2020.1 Model Details Storage is Online Cover Level (m) 70.000 Porous Car Park Structure Sicient Base (m/hr) 0.00960 Width (m) rercolation (mm/hr) 1000 Length (m) Percolation (1/s) 755.6 Slope (1:X) Safety Factor 2.0 Depression Storage (mm) Porosity 0.30 Evaporation (mm/day)	Checked by Source Control 2020.1 Model Details Storage is Online Cover Level (m) 70.000 Porous Car Park Structure Storecolation (mm/hr) 0.00960 Width (m) 16.0 rercolation (mm/hr) 1000 Length (m) 170.0 Safety Factor 2.0 Depression Storage (mm) 5 Porosity 0.30 Evaporation (mm/day) 3

	1					Page 1
tte 05/12/2021 19:19 le Houses up to 100m2 Revised Infiltration Rat	Chec	igned by cked by				Micro Brainage
novyze	Sour	ce Conti	rol 2020.1			
Summary of Resul	ts fo	r 100 ye	ar Return Pe	eriod (+	40%)	
Half	Drain	Time :	996 minutes.			
	Max	Max	Max	Max	Status	
	(m)	(m)	Infiltration (1/s)	(m ³)		
15 min Summer 68	.318	0.318	0.1	2.7	ОК	
30 min Summer 68 60 min Summer 68			0.1	3.5 4.2	ок ок	
120 min Summer 68	.571	0.571	0.1	4.9	ОК	
180 min Summer 68 240 min Summer 68			0.1	5.2 5.4	ОК	
360 min Summer 68	.646	0.646	0.1		ОК	
480 min Summer 68 600 min Summer 68			0.1		ок ок	
720 min Summer 68 960 min Summer 68			0.1		ок ок	
1440 min Summer 68	.578	0.578	0.1		0 K	
2160 min Summer 68 2880 min Summer 68			0.1		ОК ОК	
4320 min Summer 68	.399	0.399	0.1	3.4	ОК	
5760 min Summer 68 7200 min Summer 68			0.1	2.8 2.3	ок ок	
8640 min Summer 68	.214	0.214	0.0	1.8	ОК	
10080 min Summer 68 15 min Winter 68			0.0	1.5 3.0	ок ок	
30 min Winter 68			0.1		ОК	
60 min Winter 68 120 min Winter 68			0.1	4.7 5.5	ок ок	
180 min Winter 68 240 min Winter 68			0.1	5.9 6.1	ок ок	
360 min Winter 68			0.1		0 K	
480 min Winter 68 600 min Winter 68			0.1		O K O K	
720 min Winter 68	.742	0.742	0.1	6.3	ОК	
960 min Winter 68 1440 min Winter 68			0.1		ок ок	
2160 min Winter 68	.604	0.604	0.1	5.2	ОК	
2880 min Winter 68 4320 min Winter 68			0.1		о к о к	
Storm Event		Rain (mm/hr)	Flooded Ti Volume	me-Peak (mins)		
			(m ³)			
15 min Su 30 min Su			0.0	26 41		
30 min Su 60 min Su	mmer	92.371 56.713	0.0	41 70		
120 min Su 180 min Su		33.671 24.520	0.0	130 188		
240 min Su	mmer	19.481	0.0	246		
360 min Su 480 min Su		14.011 11.097	0.0	364 482		
600 min Su	mmer	9.254	0.0	602		
720 min Su 960 min Su	mmer	7.976 6.303	0.0	720 822		
1440 min Su 2160 min Su		4.519 3.235	0.0	1066 1472		
2880 min Su	mmer	2.550	0.0	1876		
4320 min Su 5760 min Su		1.821 1.433	0.0	2684 3464		
7200 min Su	mmer	1.190	0.0	4184		
8640 min Su 10080 min Su		1.022 0.898	0.0	4928 5648		
15 min Wi 30 min Wi	nter	143.169 92 371	0.0	26 41		
60 min Wi	nter	92.371 56.713	0.0	70		
120 min Wi 180 min Wi		33.671 24.520	0.0	128 184		
240 min Wi	nter	19.481	0.0	242		
360 min Wi 480 min Wi		14.011 11.097	0.0	358 472		
600 min Wi	nter	9.254	0.0	586		
720 min Wi 960 min Wi		7.976 6.303	0.0	698 910		
1440 min Wi	nter	4.519	0.0	1134		
2160 min Wi		3.235 2.550	0.0	1588 2044		
2880 min Wi	nter	2.550	0.0	2011		

							Page 2
							Micro
ate 05/12/2021 19:19			igned by				Brainane
Tile Houses up to 100m2 Revis	ed Infiltration Rat.		cked by				in an indije.
Innovyze		Sou	rce Cont	rol 2020.1			
	Summary of Re	sults fo	or 100 ye	ear Return Pe	eriod (+	10%)	
	Storm	Max	Max	Max	Max	Status	
	Event		-	Infiltration			
		(m)	(m)	(1/s)	(m³)		
	5760 min Winter	68.314	0.314	0.1	2.7	ок	
	7200 min Winter	68.227	0.227	0.0	1.9	ОК	
	8640 min Winter			0.0		ОК	
	10080 min Winter	68.099	0.099	0.0	0.8	O K	
	Sto: Eve		Rain (mm/hr)	Flooded Ti Volume (m ³)	me-Peak (mins)		
				(
	5760 mir				3688		
	7200 mir				4408		
	8640 mir				5104		
	10080 mir	Winter	0.898	0.0	5744		

©1982-2020 Innovyze

	Page 3
e 05/12/2021 19:19 Designed by e Houses up to 100m2 Revised Infiltration Rat Checked by	Micro Drainage
ovyze Source Control 2020.1	
Rainfall Details	
Region England and Wales Winter Storms Yes Longest Storm (mins) 100	15
<u>Time Area Diagram</u>	
Total Area (ha) 0.010	
Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha) From: To: (ha)	
0 4 0.004 4 8 0.003 8 12 0.003	

																	Page	4
ate 05/12/2021 : ile Houses up to		2 Pouri	red T	nfilt	ratio	n Pat		Design Checke									n. N D	licro rainage
novyze	5 1000	Z KEVI	beu 1	111110	Tacio	n Rac.				ol 2020.1								
								Mode	l Deta	ils								
					Sto	orage	is (Online	Cover	Level (m	70.0	00						
										Structure	-							
							cient	Base	(m/hr)	68.000 0.03600 0.00960			tor ity (
Depth (m)	Area	(m²)	Inf.	Area	(m²)	Depth	ı (m)	Area	(m²)	Inf. Area	(m²)	Dept	h (m)	Area	(m²)	Inf.	Area	(m²)
0.000		9.0			9.0	1	.000		9.0		21.0	:	1.001		0.0			21.0

	1					Page 1
te 05/12/2021 19:17 le Houses up to 150m2 Revised Infiltration Rat	Cheo	igned by cked by				Micro Brainage
novyze	Sour	rce Cont	rol 2020.1			
Summary of Resul	ts fo	or 100 ye	ear Return Pe	eriod (+4	10%)	
Half	Drain	Time :	1121 minutes			
	Max	Max	Max	Max	Status	
	evei (m)	(m)	Infiltration (l/s)	(m ³)		
15 min Summer 68	3.346	0.346	0.1	3.9	ОК	
30 min Summer 68 60 min Summer 68			0.1		ок ок	
120 min Summer 68	8.625	0.625	0.1	7.1	O K	
180 min Summer 68 240 min Summer 68			0.1		ОК	
360 min Summer 68	3.713	0.713	0.1		ОК	
480 min Summer 68 600 min Summer 68			0.1		ок ок	
720 min Summer 68 960 min Summer 68			0.1		ок ок	
1440 min Summer 68			0.1		0 K	
2160 min Summer 68 2880 min Summer 68			0.1		ок ок	
4320 min Summer 68	3.465	0.465	0.1	5.3	O K	
5760 min Summer 68 7200 min Summer 68			0.1		ОК	
8640 min Summer 68	3.266	0.266	0.1	3.0	O K	
10080 min Summer 68 15 min Winter 68			0.1		ок ок	
30 min Winter 68 60 min Winter 68			0.1		ок ок	
120 min Winter 68			0.1		0 K	
180 min Winter 68 240 min Winter 68			0.1		ОК ОК	
360 min Winter 68	8.813	0.813	0.1	9.3	O K	
480 min Winter 68 600 min Winter 68			0.1		O K O K	
720 min Winter 68	8.827	0.827	0.1	9.4	O K	
960 min Winter 68 1440 min Winter 68			0.1		ОК	
2160 min Winter 68	8.689	0.689	0.1	7.9	ОК	
2880 min Winter 68 4320 min Winter 68			0.1		ОК	
Storm Event		Rain (mm/hr)	Flooded Ti Volume	.me-Peak (mins)		
		,	(m ³)			
15 min St 30 min St		143.169 92.371		26 41		
60 min Su	ummer	56.713	0.0	70		
120 min Su 180 min Su		33.671 24.520		130 188		
240 min Su	ummer	19.481	0.0	248		
360 min Su 480 min Su		14.011 11.097		366 484		
600 min Su 720 min Su	ummer	9.254 7.976	0.0	602 722		
960 min Su	ummer	6.303	0.0	868		
1440 min Su 2160 min Su		4.519 3.235		1106 1496		
2880 min Su	ummer	2.550	0.0	1904		
4320 min Su 5760 min Su		1.821 1.433		2724 3512		
7200 min Su 8640 min Su	ummer	1.190 1.022	0.0	4256 5016		
10080 min Su	ummer	0.898	0.0	5664		
15 min Wi 30 min Wi		143.169 92.371		26 41		
60 min Wi	Inter	56.713	0.0	70		
120 min Wi 180 min Wi		33.671 24.520		128 186		
240 min Wi	Inter	19.481	0.0	244		
360 min Wi 480 min Wi		14.011 11.097		360 474		
600 min Wi 720 min Wi	inter	<mark>9.254</mark> 7.976	0.0	<mark>588</mark> 700		
960 min Wi	inter	6.303	0.0	918		
	inter	4.519		1170		
1440 min Wi 2160 min Wi	Inter	3.235	0.0	10/0		
1440 min Wi 2160 min Wi 2880 min Wi 4320 min Wi	Inter	3.235 2.550 1.821	0.0	1620 2076 2940		

						Page 2
						Micro
Date 05/12/2021 19:17		igned by				Brainane
File Houses up to 150m2 Revised Infiltration Rat		cked by				
Innovyze	Sou	rce Contr	ol 2020.1			
Summary of Re	esults fo	or 100 yea	ar Return	Period (+	10%)	
Storm	Max	Max	Max	Max	Status	
Event	Level	Depth I	nfiltrati	on Volume		
	(m)	(m)	(l/s)	(m ³)		
5760 min Winter	68.388	0.388	0	.1 4.4	ок	
7200 min Winter				.1 3.3	O K	
8640 min Winter				.1 2.4	O K	
10080 min Winter			0	.1 1.7	O K	
Sto Eve		Rain (mm/hr)	Flooded Volume (m³)	Time-Peak (mins)		
	n Winter	1 400	0.0	2750		
	n Winter		0.0	3752 4536		
	n Winter		0.0	5200		
10080 mir			0.0	5856		

©1982-2020 Innovyze

										Pa	ige 3
te 05/12/2021 19:17					gned by						Micro Drainace
le Houses up to 150m2 R movyze	levised Infilt	ration	Rat		ked by ce Contr	01 2020) 1				
movyze							,.T				
				Rair	nfall Det	ails					
	ainfall Model Period (years) Regior M5-60 (mm)) 1 Engla			Summer : Winter :	Storms	Yes	Longes	Cv (Winter) t Storm (mins) t Storm (mins) imate Change %) 15) 10080	
				Time	Area Di	agram					
				Total	Area (ha) 0.015	5				
	Time From:	(mins) To:		Time From:		Area (ha)		(mins) To:	Area (ha)		
	0	4	0.005	4	8	0.005	8	12	0.005		

©1982-2020 Innovyze

									Page	4
te 05/12/2021 19:17	Design	ed by							N N	
le Houses up to 150m2 Revised Infiltration Rat novyze			ol 2020.1							sun iugu
		l Deta								
Storage is					00					
—			Structure	•						
I: Infiltration Coeffici Infiltration Coeffici	ent Base	(m/hr)			y Facto Porosit					
Depth (m) Area (m ²) Inf. Area (m ²) Depth (m) Area	(m²)	Inf. Area	(m²)	Depth (m) Ar	ea (m²)	Inf	. Area	(m²)
0.000 12.0 12.0 1.0	00	12.0		26.0	1.1	.00	0.0			26.0
			novyze							

	1					Page 1
te 05/12/2021 19:14 le Houses up to 180m2 Revised Infiltration Rat	Cheo	igned by cked by				Micro Brainage
novyze	Sour	rce Cont:	rol 2020.1			
Summary of Resul	ts fo	r 100 ye	ear Return Pe	eriod (+4	10%)	
Half	Drain	Time :	1327 minutes			
	Max	Max	Max	Max	Status	
	evel (m)	(m)	Infiltration (l/s)	(m ³)		
15 min Summer 68	3.417	0.417	0.1	4.8	ОК	
30 min Summer 68 60 min Summer 68	8.535	0.535	0.1		ок ок	
120 min Summer 68	8.757	0.757	0.1	8.6	0 K	
180 min Summer 68 240 min Summer 68			0.1	9.2 9.6	ок ок	
360 min Summer 68	8.874	0.874	0.1	10.0	ОК	
480 min Summer 68 600 min Summer 68			0.1		ОК	
720 min Summer 68			0.1		ОК	
960 min Summer 68 1440 min Summer 68			0.1		ок ок	
2160 min Summer 68 2880 min Summer 68			0.1		ок ок	
4320 min Summer 68	8.623	0.623	0.1	7.1	0 K	
5760 min Summer 68 7200 min Summer 68			0.1		ок ок	
8640 min Summer 68	8.401	0.401	0.1	4.6	O K	
10080 min Summer 68 15 min Winter 68			0.1		ок ок	
30 min Winter 68			0.1		ОК	
60 min Winter 68 120 min Winter 68			0.1	8.3 9.7	ок ок	
180 min Winter 68 240 min Winter 68			0.1	10.4 10.9	ОК ОК	
360 min Winter 68			0.1		0 K	
480 min Winter 69 600 min Winter 69			0.1		ОК ОК	
720 min Winter 69	0.045	1.045	0.1	11.7	O K	
960 min Winter 69 1440 min Winter 68			0.1		ок ок	
2160 min Winter 68	8.891	0.891	0.1	10.2	O K	
2880 min Winter 68 4320 min Winter 68			0.1		ОК	
Storm Event		Rain (mm/hr)	Flooded Ti Volume	me-Peak (mins)		
			(m ³)			
15 min St 30 min St		143.169 92.371		27 41		
60 min Su	ummer	56.713	0.0	70		
120 min Su 180 min Su		33.671 24.520		130 188		
240 min Su	ummer	19.481	0.0	248		
360 min Su 480 min Su		14.011 11.097		366 486		
600 min Su 720 min Su	ummer	9.254 7.976	0.0	604 722		
960 min Su	ummer	6.303	0.0	960		
1440 min Su 2160 min Su		4.519 3.235		1172 1544		
2880 min Su	ummer	2.550	0.0	1960		
4320 min Su 5760 min Su		1.821 1.433		2772 3576		
7200 min Su 8640 min Su	ummer	1.190 1.022	0.0	4336 5104		
10080 min Su	ummer	0.898	0.0	5856		
15 min Wi 30 min Wi		143.169 92.371		26 41		
60 min Wi	nter	56.713	0.0	70		
120 min Wi 180 min Wi		33.671 24.520		128 186		
240 min Wi	nter	19.481	0.0	244		
360 min Wi 480 min Wi		14.011 11.097		360 476		
600 min Wi 720 min Wi	nter	9.254 7.976	0.0	592 706		
960 min Wi	nter	6.303	0.0	928		
	nter	4.519		1340		
1440 min Wi 2160 min Wi	nter	3.235	0.0	1004		
1440 min Wi 2160 min Wi 2880 min Wi 4320 min Wi	nter	3.235 2.550 1.821	0.0	1664 2112 3024		

							Page 2
							Micro
Date 05/12/2021 19:14			igned by	r.			Brainage
File Houses up to 180m2 Revised Infi	lltration Rat.		cked by				
nnovyze		Sou	rce Cont	rol 2020.1			
	Summary of Re	sults fo	or 100 ye	ear Return I	Period (+	10%)	
	Storm	Max	Max	Max	Max	Status	
	Event	Level		Infiltratio			
		(m)	(m)	(1/s)	(m³)		
57	60 min Winter	68.569	0.569	0.	1 6.5	ОК	
72	00 min Winter	68.461	0.461	0.	1 5.3	O K	
86	40 min Winter	68.366	0.366	0.	1 4.2	O K	
100	80 min Winter	68.283	0.283	0.	1 3.2	ОК	
	Stor	cm	Rain	Flooded 1	Time-Deak		
	Ever		(mm/hr)	Volume	(mins)		
				(m ³)			
	5760 min				3864		
	7200 min				4680		
	8640 min				5448		
	10080 min	Winter	0.898	3 0.0	6152		

tet 05/12/2021 19:14 Designed by Checked by Designed by Checked by imovyze Source Control 2020.1 movyze Saurce Control 2020.1 Rainfall Model FSR Ratio 6 0.443 CV (Winter) 0.840 Return Period (years) DOS Summer Storms Yeas Shortest Storm (mins) 1050 M5-60 (mm) DOS Summer Storms Yeas Shortest Storm (mins) 10000 M5-60 (mm) Distance Thing Time Area Diagram Total Area (ha) 0.018 Time (mins) Area From: To: (ha) 0 4 8 0.006 0 4 8 0.006
Rainfall Details Rainfall Model FSR Ratio R 0.443 Cv (Winter) 0.840 Return Period (years) 100 Summer Storms Yes Shortest Storm (mins) 15 Region England and Wales Winter Storms Yes Longest Storm (mins) 10080 M5-60 (mm) 20.000 Cv (Summer) 0.750 Climate Change % +40 Time Area Diagram Total Area (ha) 0.018 Time (mins) Area From: To: Time (mins) Area Time (mins) Area From: To: To: (ha)
Rainfall Model FSR Ratio R 0.443 Cv (Winter) 0.840 Return Period (years) 100 Summer Storms Yes Shortest Storm (mins) 15 Region England and Wales Winter Storms Yes Longest Storm (mins) 10080 M5-60 (mm) 20.000 Cv (Summer) 0.750 Climate Change % +40 <u>Time Area Diagram</u> Total Area (ha) 0.018 <u>Time (mins) Area</u> From: To: (ha) Time (mins) Area From: To: (ha) From: To: (ha)
Return Period (years) 100 Summer Storms Yes Shortest Storm (mins) 15 Region England and Wales Winter Storms Yes Longest Storm (mins) 10080 M5-60 (mm) 20.000 Cv (Summer) 0.750 Climate Change % +40 <u>Time Area Diagram</u> Total Area (ha) 0.018 Time (mins) Area From: To: (ha) Time (mins) Area From: To: (ha)
Total Area (ha) 0.018 Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha) From: To: (ha)
Time (mins) Area Time (mins) Area Time (mins) Area From: To: (ha) From: To: (ha) From: To: (ha)
From: To: (ha) From: To: (ha) From: To: (ha)
0 4 0.006 4 8 0.006 8 12 0.005

																-	4
ate 05/12/2021 : ile Houses up to		2 Revi	sed 1	Infilt	ratio	n Rat	Design	ned by								S. N D	licro rainage
nnovyze								-	ol 2020.1								
							Mode	el Deta	ils								
					St.	orage is			Level (m	. 70 (100						
					500						500						
									Structure	-							
			Inf	iltra	tion C				68.000 0.03600		y Facto Porosit						
									0.00960			-					
Depth (m)	Area	(m²)	Inf.	Area	(m²)	Depth (m) Area	(m²)	Inf. Area	(m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.000		12.0			12.0	1.00	0	12.0		26.0	1.	100		0.0			26.0
											I						

APPENDIX F

Proposed Drainage Strategy

50m

Proposed Drainage Strategy

05/12/21 SK100 Rev P03 Scale 1:500 @ A1

APPENDIX G

Essex County Council SuDS Proforma

Introduction

This proforma identifies the information required by Essex LLFA to enable technical assessment the Designers approach to water quantity and water quality as part of SuDS design approach in compliance with Essex SuDS Design Guide.

Completion of the proforma will also allow for technical assessment against Non-statutory technical standards (NSTS) for Sustainable Drainage. The proforma will accompany the site specific Flood Risk Assessment and Drainage Strategy submitted as part of the planning application.

Please complete this form in full for full applications and the coloured sections for outline applications. This will help us identify what information has been included and will assist with a smoother and quicker application.

Instructions for use

Use the units defined for input of figures Numbers in brackets refer to accompanying notes.

Where $\dots m^3$ $\dots m^3/m^2$ are noted – both values should be filled in.

Site details

- 1.1 Planning application reference (if known)
- 1.2 Site name
- 1.3 Total application site area ⁽¹⁾
 - 1.4 Predevelopment use ⁽⁴⁾
 - 1.5 Post development use If other, please sepcify
 - 1.6 Urban creep applicable
 - 1.7 Proposed design life / planning application life
 - 1.8 Method(s) of discharge: (5)

```
Reuse Ir
```

Infiltration

Waterbody

if yes, factor applied:

ha

Storm sewer

Combined sewer

- 1.9 Is discharge <u>direct</u> to estuary / sea
- 1.10 Have agreements in principle (where applicable) for discharge been provided

Hybrid

Calculation inputs

- Area within site which is drained by SuDS ⁽²⁾ m² 2.1 m²
- Impermeable area drained pre development ⁽³⁾ 2.2
- Impermeable area drained post development (3) m² 2.3
- 2.4 Additional impermeable area (2.3 minus 2.2)
- 2.5 Method for assessing greenfield runoff rate
- 2.6 Method for assessing brownfield runoff rate
- Coefficient of runoff (Cv) (6) 2.7
- 2.8 Source of rainfall data (FEH Preferred)
- 2.9 Climate change factor applied

Attenuation (positive outlet)

Drainage outlet at risk of drowning (tidal locking, elevated water levels in watercourse/sewer) 2.10 Note: Vortex controls require conditions of free discharge to operate as per manufacturers specification.

%

m²

2.11	Invert level at final outlet	mAOD		
2.12	Design level used for surcharge water level	at point of dischar	rge ⁽¹⁶⁾	mAOD
Infiltrat	ion (Discharge to Ground)			
2.13	Have infiltration tests been undertaken			
2.14	If yes, which method has been used			
2.15	Infiltration rate (where applicable)		m/s	
2.16	Depth to highest known ground water table	e	mAOD	
2.17	If there are multiple infiltration features plea	ase specify where	they can be found in	the FRA
2.18	Depth of infiltration feature		mAOD	
2.19	Factor of safety used for sizing infiltration s	storage		

Calculation outputs Sections 3 and 4 refer to site where storage is provided by full attenuation or partial infiltration. Where all flows are infiltrated to ground go straight to Section 6.

3 .0	Greenfield runoff rates (incl. Urban Cre							
3.1	1 in 1 year rainfall	l/s/ha,		I/s for the site				
3.2	1 in 30 year rainfall	l/s/ha,		I/s for the site				
3.3	1 in 100 year rainfall + CCA	l/s/ha,		l/s for the site				
4.0	Brownfield runoff rates (incl. Urban C							
4.1	1 in 1 year rainfall		I/s for the site					
4.2	1 in 30 year rainfall		I/s for the site					
4.3	1 in 100 year rainfall + CCA		I/s for the site					
5 .0	Proposed maximum rate of runoff fror	n site (incl. Ur	ban Cr	ee p) ⁽⁷⁾				
5.1	1 in 1 year rainfall	l/s/ha,		I/s for the site				
5.2	1 in 30 year rainfall	l/s/ha,		I/s for the site				
5.3	1 in 100 year rainfall + CCA	l/s/ha,		I/s for the site				
6 .0	Attenuation storage to manage flow rate	es from site (ind	cl. Clima	ate Change Allowance (CCA) and Urban Creep)				
6.1	Storage - 1 in 100 year + CCA ⁽⁹⁾		m ³	m ³ /m ²				
6.2	50% storage drain down time 1 in 30 yea	Irs		hours				
7.0	Controlling volume of runoff from the site	10)						
7.1	Pre development runoff volume $^{(12)}$ (deve	lopment area)) m ³ for the site					
7.2	Post development runoff volume (unmitig	ated) ⁽¹²⁾	m ³ for the site					
7.3	Volume to be controlled (5.2 - 5.1)		m ³ for the site					

7.4	Volume control provided by:			
-	Interception losses ⁽¹³⁾	m ³		
-	Rain harvesting ⁽¹⁴⁾	m ³		
-	Infiltration	m ³		
-	Attenuation	m ³		
-	Separate volume designated as long te	erm storage ⁽¹⁵⁾		m ³
7.5	Total volume control (sum of inputs for	5.4)		m ³ (17)
8.0 S	ite storage volumes (full infiltration only)			
8.1	Storage - 1in 30 year + CCA ⁽⁸⁾		m ³	m^3/m^2 (of developed impermeable area)
8.2	Storage - 1 in 100 year + CCA (11)		m ³	m ³ /m ²

Design Inputs

Proposed site use

Pollution hazard category (see C753 Table 26.2)

High risk area defined as area storing fuels chemicals, refuelling area, washdown area, loading bay.

Design Outputs

List order of SuDS techniques proposed for treatment

Note that gully pots, pipes and tanks are not accepted by Essex LLFA as a form of treatment (for justification see C753 Section 4.1, Table 26.15 and Box B.2)

Are very high pollution risk areas drained separate from SuDS to foul system

Other

Please include any other information that is relevant to your application

Notes

- 1. All area with the proposed application site boundary to be included.
- The site area which is positively drained includes all green areas which drain to the SuDS system and area of surface SuDS features. It excludes large open green spaces which do not drain to the SuDS system.
- 3. Impermeable area should be measured pre and post development. Impermeable surfaces include, roofs, pavements, driveways and paths where runoff is conveyed to the drainage system.
- 4. Predevelopment use may impact on the allowable discharge rate. The LLFA will seek for reduction in flow rates to GF (Essex SuDS Design Guide).
- 5. Runoff may be discharge via one or more methods.
- 6. Sewers for Adoption 6th Edition recommends a Cv of 100% when designing drainage for impermeable area (assumes no loss of runoff from impermeable surfaces) and 0% for permeable areas. Where lower Cv's are used the applicant should justify the selection of Cv.
- 7. It is Essex County Council's preference that discharge rates for all events up to the 1 in 100 year event plus climate change are limited to the 1 in 1 greenfield rate. This is also considered to mitigate the increased runoff volumes that occur with the introduction of impermeable surfaces. If discharge rates are limited to a range of matched greenfield flows then it is necessary to provide additional mitigation of increased runoff volumes by the provision of Long-term Storage.
- 8. Storage for the 1 in 30 year must be fully contained within the SuDS components. Note that standing water within SuDS components such as ponds, basins and swales is not classified as flooding. Storage should be calculated for the critical duration rainfall event.
- 9. Runoff generated from rainfall events up to the 1 in 100 year will not be allowed to leave the site in an uncontrolled way. Temporary flooding of designated areas to shallow depths and velocities may be acceptable.
- 10. The following information should only be provided if increased runoff volumes are not mitigated by limiting all discharge rates back to the greenfield 1 in 1 year rate.
- 11. Climate change is specified as 40% increase to rainfall intensity, unless otherwise agreed with the LLFA / EA.
- 12. To be determined using the 100 year return period 6 hour duration winter rainfall event.
- 13. Where Source Control is provided Interception losses will occur. An allowance of <u>5mm rainfall</u> <u>depth</u> can be subtracted from the net inflow to the storage calculation where interception losses are demonstrated. The Applicant should demonstrate use of subcatchments and source control techniques. Further information is available in the SuDS Design Guide.
- 14. Please refer to Rain harvesting BS for guidance on available storage.
- 15. Flows within long term storage areas should be infiltrated to the ground or discharged at low flow rate of maximum 2 l/s/ha.
- 16. Careful consideration should be used for calculations where flow control / storage is likely to be influenced by surcharged sewer or peak levels within a watercourse. Outlets can be tidally locked where discharge is direct to estuary or sea. Calculations should demonstrate that risk of downed outlet has been taken into consideration. Vortex controls require conditions of free discharge to operate as per specification.
- 17. In controlling the volume of runoff the total volume from mitigation measures should be greater than or equal to the additional volume generated.

APPENDIX H

Infiltration Testing Report

TELEPHONE

'THE OLD POST OFFICE', WELLPOND GREEN, STANDON, WARE, HERTS, SG11 1NJ E-MAIL: WEBSITE INFO@HESI.CO.UK

GEOTECHNICAL ASSESSMENTS - ENVIRONMENTAL ASSESSMENT - DESKTOP STUDY - CONTAMINATED LAND

2nd December 2021

Our Ref : CSG / 17150

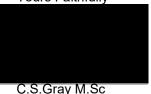
Luxus Homes Ltd 2 Dairy Yard Star Street Ware Herts SG12 7DX

For the attention of R.Evans Ltd.,

Dear Sir,

Pines Hill, Stansted, Essex, CM24 8TD : BRE 365 SOAKAWAY TESTING.

Please find enclosed details of BRE 365 testing from the above site.


Based on the results available, we would suggest that the top of the site near the main road, (to the west of the site), provides better permeability that the lower section of the site where more claybound soils are recorded.

It is viable that soakaways will form a viable drainage option for the site based on this data.

Should you require any further information or assistance, please do not hesitate to contact us.

I hope the foregoing is sufficient for your requirements, although please do not hesitate to contact us should require any further information regarding the above.

Yours Faithfully

C.S.Gray M.Sc Contract Engineer

The Old Post Office, Wellpond Green Standon, Ware, Herts. SG11 1NJ

Telephone: 01920 822233 e-mail info@hesi.co.uk Appendix No1Sheet No1Job No17150DateDec 200

Dec 2021 Pines Hill, Stansted, Essex, CM24 8TD **Existing Site Plan** Ν

The Old Post Office, Wellpond Green Standon, Ware, Herts. SG11 1NJ

,

Telephone: 01920 822233 e-mail info@hesi.co.uk Appendix No2Sheet No1Job No17DateD

1 17150 Dec 2021

Trial Pit One	σ		SS	L		2010	nlee	S.P.T		SĽ	_ ج
Description Of Stratum	Legend	Depth	Thickness (m)	Water Level	No	Type	ples Depth (m)	N-Value or Vane Strength	VOC's (ppm)	Installations	Casing Depth. (m)
Loose light brown moderately silty claybound sandy topsoil FILL with occasional to much flint gravel		0.30	0.30								
Medium dense orange brown slightly claybound SAND & GRAVEL			1.50								
		1.80									
Medium dense to dense orange brown slightly to moderately claybound fine to medium SAND & GRAVEL			0.70								
Firm to stiff light orange brown mottled grey anfd orange moderately silty CLAY with occasional flint gravel Borehole Complete at 2.50m		2.50									
3.0											
Remarks									Sc	ale 1 : 15	

The Old Post Office, Wellpond Green Standon, Ware, Herts. SG11 1NJ

,

Telephone: 01920 822233 e-mail info@hesi.co.uk Appendix No Sheet No Job No Date

2 17150 Dec 2021

2

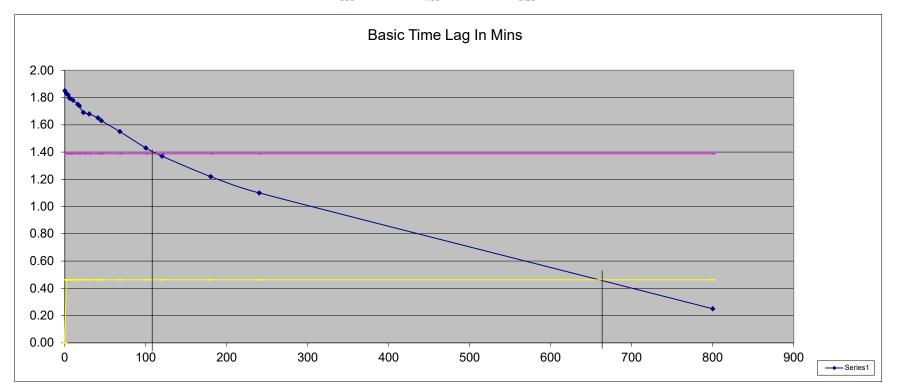
Pines Hill, Stansted, Essex, CM24 8TD											
Trial Pit Two	· · · ·								,		
Description Of Stratum	Legend	Depth	Thickness (m)	Water Level			ples	S.P.T N-Value or Vane	VOC's (ppm)	Installations	Casing Depth. (m)
	Le	ð	Thic (I	ζŢ	No	Type	Depth (m)	Strength	≥ G	Insta	Casi
Loose light brown moderately silty claybound sandy topsoil FILL with occasional to much flint gravel		0.30	0.30								
Medium dense orange brown slightly claybound SAND & GRAVEL											
rare claybound pockets by 1.00m			1.50								
 Soft orange brown very silty sandy CLAY / Medium dense orange brown sandy silty 		1.80									
GRAVEL		2.30	0.50								
Borehole Complete at 2.50m		2.30									
Remarks	1			L	1	1	I	1	Sca	ale 1 : 15	1
Key : U - Undisturbed Sample B - Bulk Sample D - Dis (100mm diameter) - Water Struck Wa			W T		iter Sar emical			N - SF V - Va	PT N-Valı ine Test,	ue (kN.m²)	

The Old Post Office, Wellpond Green Standon, Ware, Herts. SG11 1NJ

,

Telephone: 01920 822233 e-mail info@hesi.co.uk Appendix No2Sheet No3Job No1DateD

3 17150

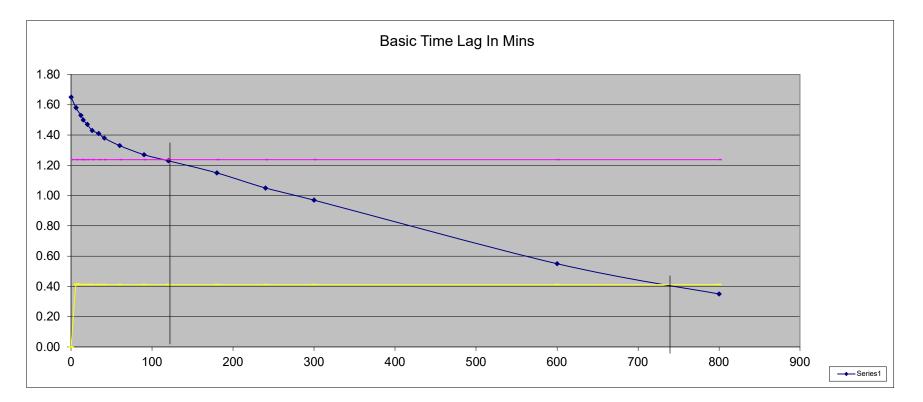

Description Of Stratum Perspective Samples Notate of Stratum Notate of Str	Tri	al Pit Three								1			
Loose light brown moderately silty claybound sandy topsoil FILL with occasional to much flint gravel 0.30 Medium dense orange brown slightly claybound SAND & GRAVEL 0.70 Firm to stiff light yellow brown moderately silty sandy CLAY with occasional flint gravel 0.50 Medium dense /Firm to stiff light yellow brown motiled orange brown very claybound silty SAND and occasional flint gravel 0.50 Firm to stiff / stiff light orange yellow brown very silty sandy CLAY with flint gravel 0.50 0.50 0.50 0.50 0.50			end	th	ness)	ter /el		Sam	ples		C's 1)	ations	j.
Loose light brown moderately silty claybound sandy topsoil FILL with occasional to much flint gravel 0.30 Medium dense orange brown slightly claybound SAND & GRAVEL 0.70 Firm to stiff light yellow brown moderately silty sandy CLAY with occasional flint gravel 0.50 Medium dense /Firm to stiff light yellow brown mottled orange brown very claybound silty SAND and occasional flint gravel 0.50 Firm to stiff / stiff light orange yellow brown very silty sandy CLAY with flint gravel 0.50 0.50 CLAY with flint gravel 0.50 CLAY with flint		Description Of Stratum	Leg	Dep	Thicki (m	Wa. Lev	No	Type	Depth (m)	or Vane	VO(DDr	Installa	Casing
SAND & GRAVEL 0.70 Firm to stiff light yellow brown moderately silty sandy CLAY with occasional flint gravel 0.50 Medium dense /Firm to stiff light yellow brown mottled orange brown very claybound silty SAND and occasional flint gravel with clay pockets 0.50 Firm to stiff / stiff light orange yellow brown very silty sandy CLAY with flint gravel 0.50 Sandow CLAY with flint gravel 0.50 Amount of the set o	-	sandy topsoil FILL with occasional to much flint		0.30				-					
1.00 Firm to stiff light yellow brown moderately silty sandy CLAY with occasional flint gravel 1.50 Medium dense /Firm to stiff light yellow brown mottled orange brown very claybound silty SAND and occasional flint gravel with clay pockets 2.10 Firm to stiff / stiff light orange yellow brown very silty sandy CLAY with flint gravel 0.50 2.10													
Firm to stiff light yellow brown moderately silty sandy CLAY with occasional flint gravel 1.50 Medium dense /Firm to stiff light yellow brown mottled orange brown very claybound silty SAND and occasional flint gravel with clay pockets 2.10 Firm to stiff / stiff light orange yellow brown very silty sandy CLAY with flint gravel 2.60 0.5				1.00	0.70								
sandy CLAY with occasional flint gravel 0.50 1.50 1.50 Medium dense /Firm to stiff light yellow brown mottled orange brown very claybound silty SAND and occasional flint gravel with clay pockets 0.50 Firm to stiff / stiff light orange yellow brown very silty sandy CLAY with flint gravel 0.50 2.10 0.50	.0	Firm to stiff light vellow brown moderately silty		1.00									
Medium dense /Firm to stiff light yellow brown mottled orange brown very claybound silty SAND and occasional flint gravel with clay pockets 0.50 20 2.10 Firm to stiff / stiff light orange yellow brown very silty sandy CLAY with flint gravel 0.50 2.60 0.50					0.50								
mottled orange brown very claybound silty SAND and occasional flint gravel with clay pockets 0.50 2.10 Firm to stiff / stiff light orange yellow brown very silty sandy CLAY with flint gravel 0.50 2.60	-			1.50									
Prime to stiff / stiff light orange yellow brown very silty sandy CLAY with flint gravel 0.50 2.10 0.50 2.10 0.50	1	mottled orange brown very claybound silty SAND			0.50								
Firm to stiff / stiff light orange yellow brown very silty sandy CLAY with flint gravel 0.50 2.60	0												
silty sandy CLAY with flint gravel 0.50 2.60	1			2.10									
2.60													
	-				0.50								
Borehole Complete at 2.60m				2.60									
		Borehole Complete at 2.60m											
Remarks Scale 1 : 15	0	Remarks									Sc	ale 1 : 15	

The Old post Office, Wellpond Green, Ware	Telepl : Ware (01920) 822233
Hertfordshire SG11 1NJ	Fax : Ware (01920) 822200

DETERMINATION OF PERMEABILITY VALUE THE PL

THE PINES, STONEY HILL ROAD, STANSTED, ESSEX

B.R.E 365	SOAKAWAY 1		Start Time	Depth of Water Drop	Depth of Water	Value to Note time at	Time Equals		
			(Mins)	(m)	(m)	(m)	(Mins)		
Depth of Test Ho	ble	2.50 m							
			0	0.00	1.85	1.39	110	=	t75
Dimensions of T	est Hole Width	0.60 m	2	0.02	1.83	0.46	665	=	t25
	Length	2.30 m	4	0.03	1.82				
			6	0.06	1.80				
Depth to Top of	Water at Start of Test	0.65 m	10	0.07	1.78				
Depth to dischar	ge Drain	0.90 m	16	0.10	1.75				
	-		18	0.11	1.74				
75%	1.39		23	0.16	1.69				
25%	0.46		30	0.17	1.68				
V75%-25%	1.28		41	0.20	1.65				
a p50	6.745		45	0.22	1.63				
tp75-25	555		68	0.30	1.55				
			100	0.42	1.43				
Soil Infiltration	Rate is 5.68	E-06	120	0.48	1.37				
			180	0.63	1.22				
			240	0.75	1.10				
			800	1.60	0.25				

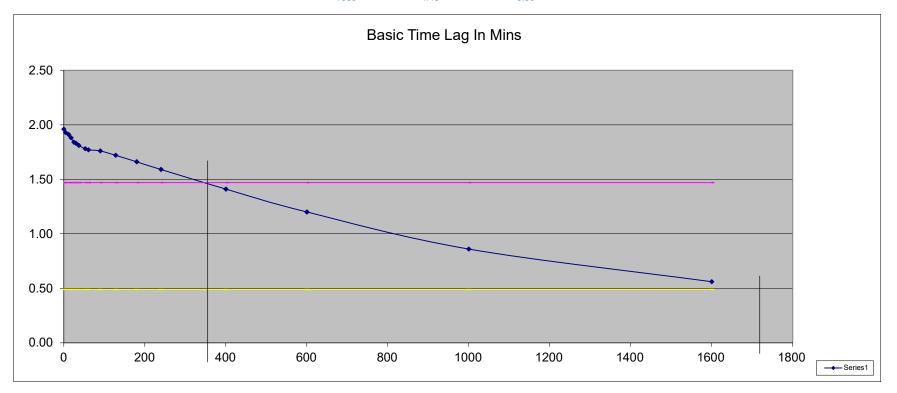


The Old post Office, Wellpond Green, Ware	Telepl : Ware (01920) 822233
Hertfordshire SG11 1NJ	Fax : Ware (01920) 822200

DETERMINATION OF PERMEABILITY VALUE THE PINES, S

THE PINES, STONEY HILL ROAD, STANSTED, ESSEX

B.R.E 365	SOAKAWAY 2		Start Time	Depth of Water Drop	Depth of Water	Value to Note time at	Time Equals	
			(Mins)	(m)	(m)	(m)	(Mins)	
Depth of Test H	lole	2.30 m						
			0	0.00	1.65	1.24	120	= t75
Dimensions of	Test Hole Width	0.60 m	6	0.07	1.58	0.41	760	= t25
	Length	2.30 m	12	0.12	1.53			
			15	0.15	1.50			
Depth to Top of	Depth to Top of Water at Start of Test 0.65 m		20	0.18	1.47			
Depth to discha	rge Drain	0.90 m	26	0.22	1.43			
			34	0.24	1.41			
75%	1.24		41	0.27	1.38			
25%	0.41		60	0.32	1.33			
V75%-25%	1.14		90	0.38	1.27			
a p50	6.165		120	0.42	1.23			
tp75-25	640		180	0.50	1.15			
			240	0.60	1.05			
Soil Infiltration Rate is 4.81E-06		E-06	300	0.68	0.97			
			600	1.10	0.55			
			800	1.30	0.35			



The Old post Office, Wellpond Green, Ware	Telepl : Ware (01920) 822233
Hertfordshire SG11 1NJ	Fax : Ware (01920) 822200

DETERMINATION OF PERMEABILITY VALUE

THE PINES, STONEY HILL ROAD, STANSTED, ESSEX

B.R.E 365		SOAKAWAY 3		Start Time (Mins)	Depth of Water Drop (m)	Depth of Water (m)	Value to Note time at (m)	Time Equals (Mins)		
Depth of Test Hol	e		2.60 m	(101115)	(111)	(11)	(11)	(101115)		
			2.00	0	0.00	1.96	1.47	290	=	t75
Dimensions of Te	est Hole	Width	0.60 m	4	0.03	1.93	0.49	1480	=	t25
		Length	2.30 m	12	0.05	1.91				
				18	0.08	1.88				
Depth to Top of V	Depth to Top of Water at Start of Test 0.64 m		0.64 m	25	0.12	1.84				
Depth to discharge Drain 0.90 r		0.90 m	30	0.13	1.83					
				37	0.15	1.81				
75%	1.47			53	0.18	1.78				
25%	0.49			61	0.19	1.77				
V75%-25%	1.35			90	0.20	1.76				
a p50	7.064			128	0.24	1.72				
tp75-25	1190			180	0.30	1.66				
				240	0.37	1.59				
Soil Infiltration R	Rate is	2.68E-06		400	0.55	1.41				
				600	0.76	1.20				
				1000	1.10	0.86				
				1600	1.40	0.56				

-----Original Message-----From: Suds <Suds@essex.gov.uk> Sent: Friday, January 14, 2022 3:03 PM To: Cliff Turnbull

Subject: RE: Automatic reply: FW: Drainage Strategy - Pines Hill - Stansted Mountfitchet.

Hi Cliff and Ross

I can advise that it is not possible to withdraw the holding objection on application UTT/21/2730/OP, as the decision has already been made in respect of this. However, I can state that the drainage strategy submitted with this application along with the infiltration testing results would support any future outline application sufficiently with regard to sustainable drainage.

I hope this helps.

Kind Regards

Alison

Alison Vaughan Development & Flood Risk Officer Climate Adaptation and Mitigation Environment & Climate Action Essex County Council

Essex County Council | C422- C428 County Hall | Chelmsford | CM1 1QH