

ter-m

e-mail: en

el: 01799 529529

SSex CB11

sportation

levelopment Control

Safety Audits

Proje

189

10 Inquin

Proposed Transport Distribution Point, Tile Kiln Green, Stansted

Flood Risk Assessment

on behalf of

FKY Ltd

January 2022

CONTENTS

1	INTRODUCTION	1
2	SITE LOCATION AND EXISTING CONDITIONS	4
3	POLICY AND GUIDANCE	8
4	THE PROPOSED DEVELOPEMNT	11
5	DRAINAGE STRATEGY	12
6	RISK APPRAISAL	18
7	Conclusions	22

DRAWINGS

IT1896/FRA/001	SITE LOCATION PLAN
IT1896/FRA/002 B	PROPOSED DRAINAGE STRATEGY

APPENDICES

APPENDIX A	TOPOGRAPHICAL SURVEY
APPENDIX B	INFILTRATION TESTING RESULTS
APPENDIX C	THAMES WATER SEWER ASSET INFORMATION
APPENDIX D	GREENFIELD RUNOFF CALCULATIONS
APPENDIX E	MICRO DRAINAGE CALCULATIONS
APPENDIX F	SDS AQUA-FILTER DETAILS

1 INTRODUCTION

- 1.1 Intermodal Transportation Ltd (ITL) has been commissioned by FKY Ltd to prepare a Flood Risk Assessment (FRA) report in support of a planning application for a suigeneris 'just in time' transport distribution / transfer point on land to the west of Tilekiln Green near Stansted Airport. The site development area is approximately 5.1 hectares in total.
- 1.2 The site falls within the jurisdiction of Uttlesford District Council (TDC) as the Local Planning Authority (LPA). The planning application is in outline with all matters reserved except access.
- 1.3 An earlier application (reference: UTT/21/0332/FUL) for a similar proposal was refused planning permission by Uttlesford District Council (UDC). However, the reasons for refusal for that application did not include drainage related reasons. Furthermore, ITL would confirm that the Lead Local Flood Authority (LLFA), Essex County Council (ECC) did not object to the earlier proposal.
- 1.4 The vast majority of the development site is located in a Flood Zone 1 area in terms of potential flood risk, which is the lowest classification. Therefore, the site is not predicted to be subject to fluvial (river based) or coastal flooding for a 1 in 1000 year or more frequent storm event. However, a very small part of the south west corner is identified as being in Flood Zone 3, at a higher risk due to its proximity to the Main River, Great Hallingbury Brook, running along the west of the site. Consequentially, no development is proposed in this area. This FRA considers the risks to flooding on the site and downstream as well as including a drainage strategy which outlines the design philosophy for the management of surface water and disposal of foul effluent that would arise from the site, if the proposed development is permitted by the LPA.
- 1.5 Under the Flood and Water Management Act 2010, the Lead Local Flood Authority (LLFA) is Essex County Council (ECC). Where possible, Sustainable Drainage Systems (SuDS) mechanisms are the preferred methods to minimise the run off to existing public sewers or watercourses and would be used for this development. The Environment Agency (EA) has not been approached as the proposed development at the site would be entirely located within a low flood risk area (Flood Zone 1) and, it is expected that the EA would not have a particular concern in regards to this application.

- 1.6 In producing the FRA for the earlier application, representatives of ITL visited the site. A walk over survey was undertaken, by ITL staff, on 14th May 2019 to gain a better understanding of how the site naturally drains at present. A topographical survey was undertaken by Laser Surveys Ltd in January 2016. ITL obtained sewer records from Thames Water to ascertain the existing sewer infrastructure in the vicinity of the site and to establish whether there are options to drain to any existing public sewer systems.
- 1.7 The proposed development would be situated on a field, and for the purposes of this assessment the site is to be regarded as entirely 'greenfield'. Vehicular access would be taken from Tilekiln Green to the east.
- 1.8 Revised National Planning Policy Framework (NPPF) was published in July 2021, updating the earlier NPPF of June 2019. This framework document supersedes many planning policy guidance documents including PPS25, which covered land drainage matters. The NPPF sets out the Government's planning policies and, like its predecessor documents, provides guidance for local planning authorities when considering suitable sites for appropriate development in preparing development plans. The NPPF places a greater presumption in favour of sustainable development.
- 1.9 The technical guidance to NPPF, Flood Risk Section, classifies commercial property as 'Less Vulnerable' in terms of Flood Risk Vulnerability Classification (Table 2). NPPF also defines that developments classified as 'Less Vulnerable' are appropriate in Flood Zone 1 (Table 3 Flood Risk Vulnerability and Flood Zone Compatibility).
- 1.10 The flood risk assessment for planning applications guidance section of the Gov.uk website advises that developments in excess of one hectare require a site-specific FRA. Therefore, as the total site area is approximately 5.1 hectares, an FRA report is required. This FRA and integral drainage strategy report therefore addresses issues relating to flooding as well as the surface water and foul drainage management arising from the proposed development of the site.

Plate 1.1 Existing, looking north from eastern side of site

2 SITE LOCATION AND EXISTING CONDITIONS

Site Location

- 2.1 The site is located about 1km (0.62 miles) to the east of the town of Bishop's Stortford. The centre of the site is approximately 1km southwest (as the crows flies) of London Stansted Airport.
- 2.2 The site is located directly south of the B1256 (former A120) just east of M11 Junction 8. The site is bounded to the north by the B1256 and M11 Junction 8 and to the east by Tilekiln Green. To the south the site is bounded by a ditch and disused railway line, which is also part of the Flitch Way pedestrian / cyclist route. The site's western boundary is formed by the Great Hallingbury Brook at the southern end and a green area to the north with agricultural fields and the M11 beyond.
- 2.3 The nearest watercourse to the proposed development on the site is a ditch running along the southern boundary, separating the site from the disused railway line and residential dwellings to the west of Tilekiln Green. The Strategic Flood Risk Assessment for Uttlesford District identifies this ditch as an Ordinary Watercourse and the topographical survey shows that this ditch discharges into Great Hallingbury Brook, which runs southwards to the west of the site. Great Hallingbury Brook joins the River Stort to the south of Bishops Stortford, which in turn joins the River Lea near Hoddesdon about 17.5km south west of the site. The River Lea joins the River Thames in east London. Great Hallingbury Brook, the Rivers Stort, Lea and Thames are classified as Main River by the EA.
- 2.4 Bishop's Stortford is a small to medium sized town in East Hertfordshire District, located about 2km from the south-west edge of the Stansted Airport. The site location in the local and wider context is shown on Drawing **IT1896/FRA/001** included with this report.

Plate 2.1 Existing, looking west from eastern side of site

Existing Conditions

- 2.5 The development areas of the site, within the larger site boundary, amounts to approximately 3.1 hectares on what is currently rough grassland, shrub and woodland. The site sits within a single field. Watercourses bound the site on the southern and southern part of the western side and public roads the northern and eastern side. A private vehicular access to a foul water pumping station abuts the south eastern corner of the site. Plate 2.1 shows a general view of the current conditions on site.
- 2.6 The site walkover survey on 14th May 2019 confirmed the information shown on the topographical survey, in that the existing field generally falls from northeast to southwest. Inspection of the topographical survey indicates that the lowest point of the field within the site is in the south western corner at approximately 73.5m AOD (Above Ordinance Datum). The highest point is towards the north eastern corner of the site, adjacent to Tilekiln Green at 85.0m AOD. The site has a typical gradient of between 1 in 20 and 1 in 30 from northwest to southeast. A copy of the topographical survey is provided in **Appendix A**.

Plate 2.2 Existing ditch in south western corner of site looking west

2.7 The topographical survey identifies that there is a ditch along the southern boundary of the site. Most of the ditch appears to be about 700-800mm in depth, increasing to about 1.5m below the adjacent ground at its eastern end. The survey also identified that the base of Great Hallingbury Brook to the west was between 1.0m and 1.9m below the adjacent ground and that the middle section was heavily vegetated, something the site visit verified.

Plate 2.3 Existing, Great Hallingfordbury Brook looking north from western edge of site

- 2.8 Infiltration testing was undertaken by Stansted Environment Services in May 2019. Testing found that the site was underlain by impermeable London Clay, therefore that infiltration measures would be unsuitable for disposal of surface water at both higher and deeper levels. A summary of the testing results is provided in **Appendix B**.
- 2.9 The Thames Water Services Ltd (TWS) sewer records obtained indicate the presence of a public foul water sewer in Tilekiln Green to the east of the site. The records identify that this sewer runs from south to north near the eastern side of the site and discharges to a pumping station located adjacent to the site boundary. The records state that Man Hole (MH) number 831A, located east of the pumping station in Tilekiln Green, has a cover level of 77.325m and an invert level of 74.200m AOD. No public surface water sewers are shown on the TWS records. An extract from the TWS sewer records is provided in **Appendix C**.

Plate 2.4 Foul water pumping station adjacent to eastern side of site, looking south east

3 POLICY AND GUIDANCE

National Planning Policy Framework (July 2021)

- 3.1 The latest revision to the National Planning Policy Framework (NPPF) was published in July 2021. The framework sets out the Government's planning policies for England and how the framework objectives are expected to be applied. The NPPF provides guidance for local planning authorities when preparing development plans and clarifies that there should be a presumption in favour of sustainable development. The NPPF does not propose anything dramatically new in terms of its responsibilities from the preceding PPS 25 guidance where the key principles to be applied by Authorities should:
 - include Strategic Flood Risk Assessments as part of the LDF process and include policies to manage flood risk from all sources with wide consultation with all relevant bodies. LPA's should apply a sequential approach to the location of development.
 - take climatic change into account and avoid increased vulnerability to ensure that risks can be managed where necessary;
 - inappropriate development should be avoided in areas at risk of flooding by directing development away from areas at highest risk; where development is necessary it should be made safe without increasing flood risk elsewhere;
- 3.2 The NPPF requires site-specific FRAs, application of the Sequential Test where this has not been undertaken and, for sites that are vulnerable, possible application of the Exception Test.

Planning Policy Statement 25 'Development and Flood Risk' (March 2010)

- 3.3 The last issue of PPS 25 (March 2010) has now been superseded by the NPPF. However, many of the requirements of PPS 25 have been carried forward within the Technical Guidance to the NPPF, but with an emphasis for LPA's to ensure, as far as they are able, that appropriate SuDS mechanisms are required as part of development and, in many cases, for the LPA's to maintain adoptable SuDs systems.
- 3.4 The Development and Flood Risk Practice Guide (December 2009) provided advice on the practical implementation of PPS 25, and provides additional guidance on what is

required at regional and local level. The document is still very relevant given that the NPPF is a more holistic document. The guidance is more helpful in considering regional spatial strategies, sustainability appraisals and local development documents and the roles and responsibilities for those managing individual planning applications. It also gives additional guidance on the importance of regional and strategic FRAs; the application of the sequential approach and Sequential and Exception Tests; surface water management and implementing sustainable drainage and measures to reduce flood risk.

3.5 Whilst the Environment Agency has the lead role in providing advice on flood issues, at a strategic level and in relation to planning applications, the LPA's have a duty to ensure that 'precautionary principles' in relation to flood risk and the location of vulnerable development are adopted, first using a risk based site search sequential review to avoid any risk of fluvial or sea flooding where possible and managing residual (perhaps pluvial) risks elsewhere.

Flood and Water Management Act, 2010

- 3.6 The FWMA now places significantly greater responsibility on Local Authorities to manage and lead on local flooding issues. The Act, and supporting Regulations, together bestows more responsibility onto LPA's by requiring Authorities to:
 - Develop Local Flood Risk Management Strategies (LFRMS);
 - Implementing requirements of Flood and Water Management legislation;
 - Preparation of preliminary flood risk assessments and flood risk management plans;
 - Development and implementation of drainage and flooding management strategies; and
 - Taking responsibility for approving, adopting, managing and maintaining Sustainable Drainage System (SuDS) where they serve more than one property.
- 3.7 The FWMA makes provision for a national standard to be prepared on SuDS, and developers will be required to obtain local authority approval for SuDS in accordance with the standards; this may be covered by appropriate conditions which would need to

be discharged. Supporting this, the Act requires local authorities to adopt and maintain SuDS, removing any on-going responsibility for developers to maintain SuDS.

3.8 ITL are aware that some Local Authorities have not yet taken on the responsibility to maintain SuDS systems due to differences in opinion between the LLFA and the Highway Authority in terms of maintenance liabilities.

Sewers for Adoption / Design and Construction Guide for Developers (April 2020)

3.9 Detailed design of proposed adoptable sewers should be in accordance with the above documents and the LLFA's design requirement (where feasible and viable) which are the definitive guides for those planning and designing sewers (both surface water and foul water) for subsequent adoption by the relevant water authority. This guidance provides best practice on planning, design, construction and operation of sewers, and their maintenance. The standards do not apply to private systems although the principles of the design requirements would generally be respected to ensure efficient performance of the systems from source to the identified discharge point from the site.

SuDS Design Guide, Report C753, CIRIA 2015

3.10 This detailed document provides guidance on the planning, design, construction and maintenance of Sustainable Drainage Systems (SuDS). The guide considers the benefits of managing water quality as well as quantity, amenity and biodiversity in new and existing developments. It presents a wide collection of good practice guidance from the UK and abroad to illustrate options and ideas.

Essex County Council Sustainable Drainage Design Guide (February 2020)

3.11 Essex County Council have published a document to set out the approach they would like to see in relation to surface water drainage design based on sustainable urban drainage principles. This document refers heavily on national and other guidance, including that noted above.

Uttlesford District Council Strategic Flood Risk Assessment, JBA Consulting (May 2016)

3.12 Uttlesford District Council commissioned JBA Consulting to produce a strategic assessment of historic and possible future flood risks across the district. This document aims to guide development to suitably consider flood risk by sharing the information gathered about the district.

4 THE PROPOSED DEVELOPMENT

- 4.1 The development proposal consists of a planning application to create an open logistics facility with associated new access, parking areas and ancillary office and amenity facilities. In essence, most of the site would be turned over to hard standing areas to park vehicles to enable transhipment. A small welfare unit / office is proposed which is understood to consist of a temporary building placed on the hardstanding. Vehicular and pedestrian access to the application site would be achieved via a new priority junction with Tilekiln Green.
- 4.2 A certain amount of ground remodelling is proposed to create flatter vehicle parking areas with steeper banks around their edges to effectively terrace the site. Outside of the main development area in the centre of the larger site it is understood a large number of trees are to be retained and ground levels kept as they are now. Drawing IT1896/FRA/002 B indicates the proposed development and shows the areas of existing landscape to be retained.
- 4.3 The development area within the site is about 3.1ha. The impermeable areas have been measured to be 2.07ha, which represents just over two thirds of the development area, with other areas generally being given over to earthworks required to achieve level hard standings. This 2.07ha area has been used to calculate the greenfield runoff rates in the Micro Drainage computer program. The results have been summarised in **Table 4.1** below. See **Appendix D** for the Micro Drainage printout of the greenfield runoff calculations.

Event	Flow (I/s) for 2.07ha
Q1 (1 in 1 year)	2.7
Q ₃₀ (1 in 1 year)	7.2
Q ₁₀₀ (1 in 1 year)	10.1

 Table 4.1 Greenfield Runoff Calculations

4.4 The CIRIA guidance suggests that an allowance is made for increases to the buildings within a development to account for future increases in impermeable area for building extensions for example. However, with no permanent building proposed, and the impermeable hard standing areas accounting for the useable surface within the development area, no additional allowance for urban creep has been assigned.

5 DRAINAGE STRATEGY

Surface Water Drainage

- 5.1 The hierarchy of disposal methods identifies that discharge to the ground is the first choice, followed by discharge to a watercourse and then to a sewer as the third choice. The soakage testing has identified that the underlaying ground is basically impermeable, therefore it would be expected that there would be very limited scope for infiltration methods for the disposal of surface water.
- 5.2 The drainage strategy presented here focuses on the collection of surface water from the impermeable areas of the site, before attenuating them prior to discharge to the ditch located at the southern edge of the site. With the existing ground sloping towards this watercourse, it is suggested that this would mimic the existing greenfield conditions in an extreme storm event if the ground were inundated. As a result, the drainage strategy focuses on the collection of water in channels, gullies and/or linear drainage systems, positively directing it to an attenuation device at the lower, south western corner of the site, after which a new conduit would direct the water at a controlled rate to the existing ordinary watercourse.
- 5.3 With much of the development site given over to impermeable hard standings, and green areas steeply sloping to provide banks between the flatter paved areas, there are limited opportunities for surface level Sustainable Drainage Systems (SuDS). Therefore, underground cellular storage is proposed to be provided underneath the lower paved parking area. A supplementary smaller underground storage area is also proposed near the head of the principal run modelled to hold some water closer to source, in order to allow a reduction in the size of drainage pipes required to deal with intense short duration storms.
- 5.4 The potential to utilise permeable paving was also explored, however with poor infiltration rates and a notable gradient across the site, it would not offer infiltration to ground or significant storage opportunities. Permeable paving has therefore not been included within the drainage strategy.
- 5.5 The 1 in 1 year greenfield runoff rate for the impermeable area of 2.07ha was calculated in Micro Drainage as 2.7l/s. To store the surface water generated up to and including a 1 in 100 year storm with a 40% allowance for climate change for this 2.07ha area, limiting discharge to the 1 in 1 year greenfield runoff rate, Micro Drainage calculated that approximately 1,720m³ of storage would be required in an attenuation device, in

addition to that stored in the system itself. A cellular crate system is specified to attenuate this volume of runoff because it offers 95% voids and is therefore more efficient that other types of underground storage devices.

- 5.6 A vortex type flow control device such as a 'Hydro Brake' is proposed between the attenuation device and the outfall into the watercourse to limit the discharge rate in accordance with the calculated greenfield runoff rate. A Hydro Brake device was selected as they are less prone to blockages than orifice type devices at low flows, such as the 2.7 l/s specified in this case.
- 5.7 The Micro Drainage calculations have identified that the 2,880 minute duration winter storm is the critical storm event, with approximately 1,722m³ stored in the main cellular structure for the 1 in 100 + 40% storm. Micro Drainage calculations for the 2,160 minute and 4,320 minute events have also been supplied to demonstrate that the storage volume requirement associated with the 2,160 minute storm is the largest, and therefore that this is the critical event. Micro Drainage calculations also indicate that the maximum storage in the cellular structure would be 320m³ and 1300m³ in the 1 in 1 and 1 in 30 year storms respectively. The 960 and 2880 minute winter storms were the critical events respectively.
- 5.8 Given that the outflow from the system is relatively low, and therefore that the attenuation device would not be able to 'half empty' within 24 hours of the peak of the critical storm, a short exercise was undertaken to calculate if the system would be able to accommodate a 1 in 10 year storm after the main critical event. Reviewing the results for the critical 1 in 100 year + 40% 2,880 minute winter storm after 24 hours of the peak, the volume retained would be approximately 170m³ less than the peak. The structure has been sized to have a total storage of 2,216m³, of which approximately 664m³ would be available 24 hours after the peak of the critical storm. The Micro Drainage calculations estimated that the 1 in 10 year storm would need about 650m³ storage in a 1,440 minute storm. As this 650m³ figure is less than that available in the structure, the system should be able to accommodate a 1 in 10 year storm following the critical 1 in 100 year +40% storm after 24 hours.
- 5.9 As the storage is proposed to be situated underground there would not be health and safety risks with people using the site. Suitable training would be required for any persons needing to maintain the structure, which should generally be carried out from the surface wherever possible and only entering manholes as the last resort.

- 5.10 It is considered that the above strategy would provide betterment over the existing situation for all storms above a 1 in 1 year event. Surface water would be stored in the attenuation device as opposed to discharging directly into the watercourse.
- 5.11 In exceedance events, above the 1 in 100 year + climate change storm, surface water would be directed along the internal paved areas towards the existing watercourse, mimicking the existing greenfield arrangements. Suitable detailing around the proposed temporary buildings would ensure that surface water would be directed around the buildings rather than towards thresholds for example.
- 5.12 **Appendix E** contains Micro Drainage calculations and Drawing **IT1896/FRA/002 B** illustrates the drainage strategy. The calculations included in Appendix E are based on the previous planning application's impermeable area of 2.09ha and the reduction in impermeable area to 2.07ha means that the calculations are slightly conservative. However, at this stage the drainage concept would not be affected by changing the area in the calculations.

Construction

5.13 It is anticipated that the storage structures and drainage system would be built as one of the first activities on site and therefore they would be available for attenuating the surface water generated during construction. As construction activities may generate higher levels of silt than ongoing operation, it is recommended that an inspection regime with increased frequency would be required and that all systems are thoroughly checked and cleaned as necessary at the end of the construction phase.

Maintenance

5.14 It is envisaged that the surface water system would be maintained by an on-site management company, paid for by the occupier.

ltem	Plan of Action	Frequency	
Vortex Flow Control Devices	Check for blockages	After initial establishment period, at least every 6 months and after any particularly severe storms	
Catchpits and gully sumps	Remove silt from sumps	At least every six months	
Below ground surface water systems	To be monitored and cleaned up when any debris/ silt reduces the cross-sectional area by 25% or more. Inspection to include both manhole inspections and silt trap/ gullies outlets.	Bi-annual Inspection	

Table 5.1 Maintenance Schedule

5.15 Suitable routes for maintenance workers and vehicles should be provided to the various features from the internal hard standing areas.

Water Quality

- 5.16 The measures described above may have a degree of cleansing effect on the water passing through them, with sumps in gullies and catchpits removing silt and other suspended solids for example. It is recommended that catchpits are installed on pipes leading to the attenuation devices to enable silt to settle out in these, where access is easier than in the cellular storage structure itself. Catchpit manholes would also enable access for CCTV inspection and jetting of the cellular structure too.
- 5.17 Consulting the CIRIA SuDS Manual 2015 **Table 26.2** gives pollution hazard indices for different land use classifications. An extract of the table is reproduced in **Table 5.2** below:

Land Use	Pollution hazard level	Total Suspended Solids (TSS)	Metals	Hydrocarbons
Sites with heavy pollution such as lorry parks	High	0.8	0.8	0.9

Table 5.2 Extract of CIRIA SuDS Manual 2015 Table 26.2 on Predicted Pollution Levels

- 5.18 Given that the system would only provide a limited degree of water cleansing it is proposed that a proprietary system is installed prior to discharge to the watercourse to attend to any pollution arising from the development. SDS's Aqua-Filter has been tested against the pollution types in Table 5.2 above and the literature advises that it is able to cleanse water to these levels. Appendix F contains details of the Aqua-Filter device. Alternative devices are available and could be used, if they meet the cleansing levels set out in the Table 5.2.
- 5.19 The preliminary drainage design that has been undertaken for the proposed development and is illustrated on Drawing **IT1896/FRA/002 B**. The Micro Drainage results for the design illustrate that for storms up to the 1 in 100 year event (including 40% climate change) the surface water from the developed area of the site should be managed on the site to ensure no surface flooding occurs or creates safety hazards.

Foul Drainage

5.20 TWU records indicate that there is a foul water pumping station adjacent to the eastern corner of the site. The local foul water network gravitates north along Tilekiln Green to the pumping station and is then pumped along a rising main south under Tilekiln Green. The records indicate that the invert of the sewer in Tilekiln Green to the east of the pumping station is 74.2m AOD. Given that this is less than the proposed site levels, it should be possible to provide a gravity connection from the temporary building proposed on the site, containing toilets and any other welfare facilities, to the sewer under Tilekiln Green. Sewer connections should not be flatter than 1:80 to accord with Building Regulations if one or more WC is connected, or no flatter than 1:40 if no WC is connected.

Approvals

- 5.21 TWU agreement would be required for any connections to their existing FW sewers Under Section 106 of the Water Industry Act 1991. If any sewers are to be offered up for adoption these would be made under a Section 104 agreement of the same Act. Both the S106 and S104 applications should be made direct to TWU and would attract fees. Suitable time should be allowed in advance of construction to allow the applications to be determined.
- 5.22 Any connections to the existing Highway drainage systems in Tilekiln Green for draining the new access bellmouth / realigned carriageway would need the Highway Authority's approval. It is likely that they would not have records of the existing systems, therefore surveys of their location and condition may be requested.

5.23 The LLFA are likely to ask the LPA to impose a condition relating to the management of the surface water on site. Any connection to an Ordinary Watercourse or works within 8m of such, would need Flood Drainage Consent (previously known as Land Drainage Consent).

6 **RISK APPRAISAL**

Flood Risk

6.1 The proposed development is situated in the lowest flood risk area, Flood Zone 1, with a very low risk of fluvial (river based) flooding. The extent of the flood contour is shown on the Gov.uk Flood Planning Service published web site, an extract of which is provided in **Figure 6.1** below, and shows the potential of fluvial flooding. Whilst the extreme southwestern corner of the application site lies within Flood Zone 3 for the Great Hallingbury Brook, development is not proposed in this corner of the site and the relative elevations would ensure that the developed part of the site would not be flooded even for the most extreme event. Therefore, there is little risk to the development, or the future occupants, arising from fluvial flooding for any storm up to and including a 1 in 1000 year storm event.

Figure 6.1 Fluvial Flood Risk Zones from Gov.uk mapping

© Environment Agency copyright and / or database rights 2018. All rights reserved. © Crown Copyright and database right 2018. Ordnance Survey licence number 100024198.

6.2 The Gov.uk maps also give an indication of surface water flood risk. The relevant plan indicates that an area of the south west corner of the site and a much smaller eastern portion of the site is at elevated surface water flood risk, due its lower lying nature adjacent to existing watercourses. **Figure 6.2**, overleaf is an extract from the Gov.uk surface water flood map. The remainder of the site is at very low surface water flood risk. With the proposed terracing within the site, the south western part of the development site would have its levels raised and therefore the surface flood risk would be considered to be suitably ameliorated.

Figure 6.2 Surface Water Flood Risk Zone from Gov.uk mapping

6.3 The Gov.uk maps identify that the site is not at risk of flooding from a reservoir. Figure6.3, overleaf, is an extract from the Gov.uk reservoir water flood map.

Figure 6.3 Reservoir Flood Risk Zone from Gov.uk mapping

- 6.4 Consulting the Natural England 'Magic' mapping, the site is not in a Groundwater Source Protection Zone.
- 6.5 The Strategic Flood Risk Assessment (SFRA) for Uttlesford District Council, prepared by JBA Consulting in May 2016, has not identified that site's area itself has experienced historic flooding. The SFRA indicates that the risk of groundwater flooding across the District is low. Furthermore, with impermeable clay underlaying the site, the risk from this source of flooding locally is also assessed to be low. With no surface or foul water sewers under the site, these do not pose a flood risk either. The site is inland and on high ground, therefore there is no risk from sea flooding.

- 6.6 The NPPF emphasises that development should be located in the least vulnerable places and that Local Plans should look to the Strategic Flood Risk Assessments (SFRA) to inform the process and help with the sequential test. Clearly, the site would be unlikely to suffer from fluvial flooding even for a 1 in 1000 year event. Commercial development is considered to be 'less vulnerable' to flood risk as set out in Table 2 of the NPPF. However, the subsequent section of the NPPF considers that this combination of vulnerability and lowest risk, being in Flood Zone 1, is acceptable as set out in Table 3. Therefore, in planning policy terms, it can be asserted that the site would be compliant with national policy and local policies in terms of its location from a flood risk perspective.
- 6.7 As the proposed development is not at risk from fluvial or pluvial flooding, the main purpose of this assessment is to consider the management of surface water run-off and to ensure that the impact of the development does not affect downstream interests and / or properties. The drainage strategy set out in the previous chapter and shown on Drawing IT1896/FRA/002 B illustrates how, with conservative design, the surface water would be managed on site to prevent flooding within or downstream of the site in storms of up to and including the 1 in 100 year event with a 40% allowance for climate change.
- 6.8 Based upon the review and conceptual drainage strategy the risk of flooding either on site or downstream of the site would be negligible.

7 CONCLUSIONS

- 7.1 Intermodal Transportation Ltd (ITL) has been commissioned by FKY Ltd to prepare a Flood Risk Assessment (FRA) report in support of planning application for a sui-generis 'just in time' transport distribution / transfer point on land to the west of Tilekiln Green near Stansted Airport. The total site area is approximately 5.1 hectares, and is currently entirely undeveloped 'greenfield'.
- 7.2 This report considers the flood risk issues arising from the proposals for the development on land to the west of Tilekiln Green. In this report the requirements of the guidance embodied within the NPPF Framework have been considered.
- 7.3 An earlier application (reference: UTT/21/0332/FUL) for a similar proposal was refused planning permission by Uttlesford District Council (UDC). However, the reasons for refusal for that application did not include drainage related reasons. Furthermore, ITL would confirm that the Lead Local Flood Authority (LLFA), Essex County Council (ECC) did not object to the earlier proposal.
- 7.4 The proposals indicate that 2.07ha would be converted to impermeable surfaces. Soakage testing has indicated that the ground would be unsuitable for soakaways or permeable paving that infiltrates to ground due to the very low infiltration rates present in the clay subsoil. On this basis a positive discharge to the adjacent watercourse on the southern side of the site is proposed. With the field sloping towards this watercourse, it is suggested that this would mimic the existing greenfield conditions in an extreme storm event if the ground were inundated.
- 7.5 The drainage strategy focuses on the collection of water, positively directing it to a cellular, underground, attenuation device at the lower, south-western corner of the site, after which a new conduit would direct the water at a controlled rate to the existing ordinary watercourse. A supplementary smaller underground storage area is also proposed near the head of the principal run modelled to hold some water closer to source and was allow a reduction in the size of pipes required to deal with intense short duration storms.
- 7.6 The main attenuation device has been sized to store 2,216m³. The principal network has been modelled in Micro Drainage to test that it can limit discharge off site to no more than the 1 in 1 year greenfield runoff rate of 2.7l/s in the critical 1 in 100 year + 40% climate change storm, without causing flooding on or off the site. In this case the critical storm is the 2,880 minute winter event. The system has also been tested to check that it can also accommodate a 1 in 10 year storm 24 hours after the peak of the

critical storm. The calculations estimate that there would be a small amount of spare capacity in the attenuation device, therefore the system is suitably sized to deal with water generated on site, without being overdesigned.

- 7.7 As the collection and storage methods would not contribute much towards water quality improvements, a propriety treatment unit is proposed close to the outfall to deal with any on site pollution.
- 7.8 It is considered that the above strategy would provide betterment over the existing situation for all storms above a 1 in 1 year event. Surface water would be stored in the attenuation device as opposed to discharging directly into the watercourse.
- 7.9 Thames Water Utilities Ltd (TWU) records indicate that there is a possible point of connection onto the existing public Foul Water (FW) sewer network in Tilekiln Green to the east of the site. Given the ground and sewer levels, a gravity connection should be possible from the proposed temporary buildings provided minimum gradients in accordance with the appropriate Building Regulation are respected.
- 7.10 TWU consent would be required for any connections to their existing FW sewers Under Section 106 of the Water Industry Act 1991. If any sewers are to be offered up for adoption these would be made under a Section 104 agreement of the same Act. Both the S106 and S104 applications should be made direct to TWU and would attract fees. Suitable time should be allowed in advance of construction to allow the applications to be determined.
- 7.11 Any connections to the existing Highway drainage systems in Tilekiln Green for draining the new access bellmouth / realigned carriageway would need the Highway Authority's approval. It is likely that they would not have records of the existing systems, therefore surveys of their location and condition may be requested.
- 7.12 The LLFA are likely to ask the LPA to impose a condition relating to the management of the surface water on site. Any connection to an Ordinary Watercourse or works within 8m of such, would need Flood Drainage Consent (previously known as Land Drainage Consent).
- 7.13 The development part of the site is in the lowest flood risk area, Flood Zone 1, with a very low risk of fluvial (river based) flooding. The Gov.uk mapping identifies that most of the site has very low surface water flood risk. However, lower lying south western area close to the ditch, and eastern corner of the site have a slightly elevated risk. These areas are proposed to be lifted to suit the new layout, which would reduce this risk.

Therefore, there is little risk to the development, or the future occupants, arising from fluvial or surface water flooding for any storm up to and including a 1 in 1000 year storm event.

- 7.14 The Gov.uk maps identify that the site is not at risk of flooding from a reservoir. The SFRA indicates that the risk of groundwater flooding across the District is low, and underlaid by impermeable clay the local risk from this source is considered low also. The site is situated inland and on high ground, therefore the risk of flooding from the sea is very low. With no sewers under the site, these do not pose a flood risk either. The SFRA has not identified any historic flooding in the vicinity of the site.
- 7.15 It is therefore concluded that the site would be at very low risk of future flooding and in planning policy terms it can be asserted that the site would be compliant with national policy and local policies in terms of its location from a flood risk perspective.
- 7.16 A considerable amount of drainage assessment has been carried out to demonstrate that the site is suitable for commercial development in drainage terms, based upon reasonable assumptions. It is expected that further detailed modelling work would be required at the post-planning consent stage, but it can be confidently stated that a drainage scheme could be developed that would not create any surface flooding for the worst case 1 in 100 year + 40% climate change probability event and is sustainable, as far as practical, for this site.
- 7.17 Hence, it can be concluded that there would be no flood risk affecting property or the welfare of workers and visitors arising from the development of the site and that surface water discharge from the development can be adequately managed to ensure no additional risk of flooding both on site and off site, even under extreme conditions.
- 7.18 Sufficient details have been provided to satisfy the requirements of the policy guidance and, with the imposition of a suitable planning condition, the Local Lead Flood Authority and Water Authority's interests can be protected pending final detailed design and subsequent discharge of planning conditions.
- 7.19 It is therefore concluded that the development site is not at risk to fluvial or pluvial flooding and the development proposal is able to be drained sufficiently to retain the greenfield runoff rate of the existing field. It is therefore considered that from a critical drainage perspective the development proposal should not be denied planning consent.

Drawings

Appendix A

TOPOGRAPHICAL SURVEY

Appendix B

INFILTRATION TESTING RESULTS SUMMARY

Our Ref: CON134-BISH-001

13 May 2019

Mr. Justin Bass Intermodal Transportation Hunters Court Debden Road Saffron Walden Essex CB11 4AA

The Stansted Centre Parsonage Road, Takeley Essex CM22 6PU

T. 01279 873380F. 01279 873381

E. enquiries@stansted-environmental.com

Dear Mr. Bass,

Re: Trial Pit Soakaway Tests – Tile Kiln Green Road, Bishops Stortford, CM22 7TH

Stansted Environmental Services Ltd (SES) was commissioned to undertake trial pit soakaway testing at the above site on 2nd May 2019. Soakaway tests were undertaken in four trial pits (SA1 to SA4) in general accordance with the methodology specified in BRE Special Digest 365.

The trial pits were machine excavated to depths ranging from approximately 0.80m to 2.50m below ground level (bgl). Trial pits encountered topsoil ranging in thickness from approximately 0.15m to 0.68m, overlying the London Clay Formation to the base of each pit.

A trial pit location plan is included as Figure 1.

Calculated permeability characteristics of the soils over the depth of the test zones are presented in the table below:

Test	Trial pit depth (m)	Trial pit width (m)	Trial pit length (m)	Strata description over test depth	Duration of test (minutes)	Drop in water level (mm)	Permeability (m/s)
SA1	2.50	0.60	2.40	Orange, brown and grey, mottled CLAY with occasional coarse, subrounded to rounded gravel and cobbles of flint.	346	80	N/A
SA2	1.50	0.60	2.40	Orange, brown and grey, mottled CLAY with occasional coarse, subrounded to rounded gravel and cobbles of flint.	340	480	N/A
SA3	2.50	0.60	2.70	Orange, brown and grey, mottled CLAY with occasional coarse, subrounded to rounded gravel and cobbles of flint.	314	90	N/A
SA4	0.80	0.60	2.60	Orange, brown and grey, mottled CLAY with occasional coarse, subrounded to rounded gravel and cobbles of flint.	287	200	N/A

Table 1: Test Results

Soakaway test sheets are appended to this report.

Due to the poor infiltration characteristics of the underlying strata, it was not possible to complete the tests within the four trial pits, whereby the water level drops to 25% of its starting depth. Therefore, permeability rates for soils across the depth of the tests could not be calculated.

On this basis, it is considered that pit soakaways would not be suitable for surface water drainage on the site.

I hope the information presented above meets your requirements. Yours sincerely

For and on behalf of Stansted Environmental Services Limited

Robert Philip MEng FGS Geo-Environmental Consultant

Encs: Soakaway Test Location Plan Trial Pit Logs Soakaway Test Results

LT02/80/9T

SESS STANSTED ENVIRONMENTAL			Stansted Enviror The Stansted T	nmental Serv Centre, Pars ākeley,Esse	vices Limited onage Road x,CM22 5PU	J Site Tri J Land adj. Tile Kiln Road, Bishops Stortford, Hertfordshire, CM22 7TH S				
Machine : J Method : T	CB 3CX Trial Pit	Dimens 0.60m	ions x 2.40m	Ground	Level (mOD)	Client Intermodal Transportation	Ltd	Job Number CON134-BISH-0		
		Locatio Se	n e site plan	Dates 02	2/05/2019	/05/2019 Engineer Stansted Environmental Services Ltd				
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	Water	
					(0.30) 0.30 (2.20) 2.50	Brown, sandy, organic top Orange, brown and grey, r coarse, subrounded to rou [LONDON CLAY FORMAT	soil.	al flint 6		
		·			••••	Water seepage from 2.00m Trial pit backfilled with arisin	bgl gs on completion			
		·		•						
		•								
				•	•••					
						Scale (approx) 1:25	Logged By GAB	Figure No. SA01		

SESS STANSTED ENVIRONMENTAL			Stansted E The Star	invironme Insted Cent Takel	ntal Serv tre, Parso ey,Essex	ices Limited onage Road c,CM22 5PU	Site Land adj. Tile Kiln Road, B CM22 7TH	ishops Stortford, Hertfordsh	ire, SA02
Machine : J	CB 3CX rial Pit	Dimens 0.60m	ions x 2.40m		Ground	Level (mOD)	Client Intermodal Transportation	Ltd	Job Number CON134-BISH-
		Locatio Se	n e site plan		Dates 02	/05/2019	Engineer Stansted Environmental S	ervices Ltd	Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Record	s	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
Plan .						(0.15) 0.15 (1.35)	Brown, sandy, organic top: Orange, brown and grey, r coarse, subrounded to rou and rare fragments of brick FORMATION].	soil. notfled CLAY with occasion nded gravel and cobbles of (REWORKED LONDON C	
		•				•	No groundwater seepage Trial pit backfilled with arisin	gs on completion	
 	· ·			 					
			· · ·				Scale (approx)	Logged By	Figure No.
							1:25	GAB	SA02

Produced by the GEOtechnical DAtabase SYstem (GEODASY) (C) all rights reserved

STANTED EVVIRONMENTAL		Stansted Enviro The Stansted	tal Services Limited e, Parsonage Road y,Essex,CM22 5PU CM22 7TH					
Machine : JCB 3CX Method : Trial Pit	Dimens 0.60m >	ions < 2.70m	Ground Lev	el (mOD)	Client Intermodal Transportation	Ltd	Job Number CON134-BISH-001	
	Location Se	n e site plan	Dates 02/05/	2019	Engineer Stansted Environmental S	ervices Ltd	Sheet 1/1	
Depth (m) Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) lickness)	D	escription	Kater Kater	
				(0.68)	Brown, sandy, organic top	soil.		
				0.68 (1.82) 2.50	Orange, brown and grey, r coarse, subrounded to rou [LONDON CLAY FORMAT	nottled CLAY with occasion inded gravel and cobbles of TONJ.		
Plan	•			. F	Remarks No groundwater seepage			
					Trial pit backfilled with arisin	gs on completion		
				•				
				. s	Scale (approx) 1:25	Logged By GAB	Figure No. SA03	

Produced by the GEOtechnical DAtabase SYstem (GEODASY) (C) all rights reserved

SES STANSTED ENVIRONMENTAL			Stans The	ted Environm Stansted Cel Take	ental Serv ntre, Pars eley,Esse>	ices Limited onage Road ,CM22 5PU	Site Land adj. Tile Kiln Road, B CM22 7TH	ishops Stortford, Hertfords	nire, Trial Pit	ί r 1	
Machine : JO	CB 3CX	Dimens 0.60m	ions < 2.60m		Ground	Level (mOD	Client	l td	Job Numbe	r	
Method : II									CON134-BISH	CON134-BISH-001	
		Location Se	n e site plan		Dates 02	/05/2019	Engineer Stansted Environmental S	ervices Ltd	Sheet 1/1		
Depth (m)	Sample / Tests	Water Depth (m)	Field Re	cords	Level (mOD)	Depth (m) (Thickness) D	escription	Legend	Water	
Plan . 				· · · · · · · · · · · · · · · · · · ·	· · ·	().(0.33) - (0.33) - (0.33) - (0.47) - (0.	Brown, sandy, organic top: Orange, brown and grey, r coarse, subrounded to rou [LONDON CLAY FORMAT Complete at 2.50m Remarks Water seepage from 2.00m Trial pit backfilled with arisin	bgl gs on completion	al flint		
		·	· ·			•	Scale (approx)	Logged By	Figure No.		
							1:25	GAB	SA04		

Appendix C

THAMES WATER UTILITIES ASSET INFORMATION

NB. Levels quoted in metres Ordnance Newlyn Datum. The value -9999.00 indicates that no survey information is available

Manhole Reference	Manhole Cover Level	Manhole Invert Level
921C	78.899	77.49
921B	78.359	76.966
921A	78.147	76.663
931B	78.184	76.13
931A	77.339	74.405
831B	76.897	73.711
831A	77.325	74.2
831C	77.013	73.823
The position of the apparatus shown on t shown but their presence should be anticip of mains and services must be verified and	his plan is given without obligation and warranty, an bated. No liability of any kind whatsoever is accepted b established on site before any works are undertaken.	d the accuracy cannot be guaranteed. Service pipes are not y Thames Water for any error or omission. The actual position

<u>Thames Water Utilities Ltd.</u> Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E <u>searches@thameswater.co.uk 1 v</u>

Appendix D

GREENFIELD RUNOFF CALCULATIONS

Intermodal Transportation Ltd							
Hunters Court	Tilekiln Green						
Debden Road	Essex						
Saffron Walden CB11 4AA		Micro					
Date 25/03/2019 17:23	Designed by PM						
File	Checked by	Diamaye					
XP Solutions	Source Control 2018.1.1						

ICP SUDS Mean Annual Flood

Input

Return	Period	(ye	(years) 1		Soil		0.300	
	Ar	ea	(ha)	2.090		Urban	0.00	00
	SA	AR	(mm)	605	Region	Number	Region	6

Results 1/s

QBAR Rural 3.2 QBAR Urban 3.2 Q1 year 2.7 Q1 year 2.7 Q30 years 7.3 Q100 years 10.2

Intermodal Transportation Ltd							
Hunters Court	Tilekiln Green						
Debden Road	Essex						
Saffron Walden CB11 4AA		Micro					
Date 25/03/2019 17:23	Designed by PM						
File	Checked by	Diamaye					
XP Solutions	Source Control 2018.1.1						

ICP SUDS Mean Annual Flood

Input

Return	Period	(ye	(years) 1		Soil		0.300	
	Ar	ea	(ha)	2.090		Urban	0.00	00
	SA	AR	(mm)	605	Region	Number	Region	6

Results 1/s

QBAR Rural 3.2 QBAR Urban 3.2 Q1 year 2.7 Q1 year 2.7 Q30 years 7.3 Q100 years 10.2

Appendix E

MICRO DRAINAGE CALCULATIONS

Intermodal	P	age 1												
Hunters Co	urt				1 in	100 yr	+ 40%	2880mi	n win					
Debden Roa	d				Tile	Kiln Gı								
Saffron Wa	lden (CB11 4	AA		Essex						Micro			
Date 21/05	/2019 1	6:46			Desig	ned by	PM							
File SW NE	TWORK 1	7.05.	2019.M	IDX	Check	ed by					Diamaye			
XP Solutio	XP Solutions Network 2018.1.1													
	STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm													
Design Uniteria for Storm														
Pipe Sizes STANDARD Manhole Sizes STANDARD														
Maximum T	Re Maxir ime of (I Volur	eturn P num Rai Concent Foul Se netric	FSR Ra eriod (M5-6 R nfall (ration wage (1 Runoff	ainfall years) 0 (mm) atio R mm/hr) (mins) /s/ha) Coeff.	Model 100 19.600 0.434 0 30 0.000 0.750	- Englas Min Des Min Mi	Add F Add F Min: Max: Sign Dep Vel fo: .n Slope	Wales low / Cli imum Back pth for C r Auto De e for Opt	mate C drop H drop H ptimis sign c imisat	PIMP Change leight leight sation only (m, ion (1)	(%) 100 (%) 40 (m) 0.200 (m) 1.500 (m) 1.200 (s) 1.00 :x) 500			
				Designe	ed with	Level S	offits							
	Time Area Diagram for Storm													
	Time (mins)Area (ha)Time (mins)Area (mins)Time (ha)Area (mins)0-41.0364-81.0258-120.031Total Area Contributing(ha)= 2.0921000000000000000000000000000000000000													
			<u>Netv</u>	vork D	esign	Table	for St	corm						
PN	Length (m)	Fall (m)	Slope 1 (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (1) /s) (m	c HYD m) SECT	DIA S (mm)	Section	Туре			
1.000	58.525	0.244	239.9	0.264	4.00		0.0 0.6	500 o	300 I	Pipe/Com	nduit			
1.001	12.621	0.042	300.5	0.290	0.00		0.0 0.0	500 o	450 H	pipe/Co	nduit			
1.002	33.259	0.111	300.0	0.000	0.00		0.0 0.0	500 o	450 H	Pipe/Co	nduit			
1.003	42.977	0.107	401.7	0.251	0.00		0.0 0.6	500 o	450 I	pipe/Co	nduit			
				<u>Netwo</u>	ork Re	sults 1	able							
PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.A (ha	rea Σ) Flo	Base w (l/s)	Foul (1/s)	Add Flow (l/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)			
1.000	0.00	4.97	76.906	5 0.	264	0.0	0.0	0.0	1.01	71.4	0.0			
1.001	0.00	5.15	76.512	2 0.	554	0.0	0.0	0.0	1.17	185.7	0.0			
1.002	0.00	5.62	76.359) U. 9 N	334 805	0.0	0.0	0.0	1.01	160.4	0.0			
1.000	0.00	0.00				0.0	0.0	0.0		100.1	0.0			
				@100	22_201	8 Innot	1170							
				@190		0 11110/	УZG							

Intermodal	Transp	portat	ion L	td							E	Page 2	
Hunters Cou	ırt				l in	100 y	r +	40% 28	880mi1	n wi	n (
Debden Road	d				Tile	e Kiln Green							
Saffron Wal	lden (CB11 4	AA		Essex	Issex Micco							
Date 21/05,	/2019 1	6:46			Desig	ned k	y PM						
File SW NET	rwork 1	7.05.	2019.	MDX	Check	ed by						Diamaye	
XP Solution	ns				Netwo	rk 20	18.1	.1					
			Net	work D	esign	Table	e for	<u>Stor</u>	<u>m</u>				
PN	Length	Fall	Slope	I.Area	T.E.	Ba	se	k	HYD	DIA	Section	Type	
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(l/s)	(mm)	SECT	(mm)			
1 004	27 221	0 068	101 9	0 233	0 00		0 0	0 600	0	525	Pipe/Co	ndui t	
1.004	25.443	0.544	46.8	0.233	0.00		0.0	0.600	0	525	Pipe/Co	nduit	
1 006	74 287	0 186	399 4	0 315	0 00		0.0	0 600	0	600	Pipe/Co	nduit	
1 007	7 348	0.100	408 2	0.313	0.00		0.0	0.000	0	675	Pipe/Co	nduit	
1 008	16 93/	0.010	103.2	0.755	0.00		0.0	0.000	0	675	Pipe/Co	nduit	
1.008	38.739	2.169	17.9	0.000	0.00		0.0	0.600	0	150	Pipe/Co	nduit	
											1		
				<u>Netwo</u>	<u>ork Re</u>	sults	Tab	<u>le</u>					
PN Rain T.C. US/IL Σ I.Area Σ Base Foul Add Flow Vel Cap Flow													
	(mm/hr)	(mins)	(m)	(ha	a) Flo	ow (1/	s) (l	/s) (1/s)	(m/s	;) (l/s)	(l/s)	
1 004	0 00	6 7	1 76 15	1	038	0	0	0 0	0 0	1 1	1 2/0 5	0 0	
1.004	0.00	6 0.7	± 70.17	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.20	0	.0	0.0	0.0	2 2	1 240.J	0.0	
1.005	0.00	0.0	7 70.10)9 I.	252	0	.0	0.0	0.0	3.2	0 /10.1	0.0	
1.000	0.00	7.03	9 7 3.4 3		002	0	.0	0.0	0.0	1 2	1 342.0	0.0	
1.007	0.00	1.9	9 /5.22	29 Z.	092	0	.0	0.0	0.0	1.2	9 461.9	0.0	
1.008	0.00	8 1') /3.21 7 75 16		092	0	.0	0.0	0.0	2.3	0 404.0 0 12 3	0.0	
1.009	0.00	0.1	, ,0.10		092	0	• •	0.0	0.0	2.0	12.5	0.0	
		F	ree Fl	owing	Outfal	Ll De	cails	for	Storm	<u>l</u>			
		Outfai	Ll Ou	itfall C	. Level	ι ι. ι	evel	Min	D,I	w			
	P	ipe Nur	nber	Name	(m)	(n	1)	I. Leve	əl (mm) (mn	ı)		
								(m)					
		1	.009		73.400) 73	.000	73.00	00	0	0		
			04				£	0 +					
			511	IULALI	on cri	leria	101	SLOII	<u>11</u>				
	Volu Are	metric al Red Hot	Runoff uction Start	E Coeff Factor (mins)	0.840 1.000 2	Fo Additi MA	ul Se onal I DD Fa	wage pe Flow - ctor *	er hect % of 1 10m³/h	tare Fotal na Ste	(l/s) (Flow 40 orage 2	0.000 0.000 2.000	
Manhc	H le Head	ot Sta loss C	rt Leve oeff (0	el (mm) Global)	0 0.500			Output	Run T: Interv	ime (1 val (1	mins) mins)	5760 24	
Number of In Number of	nput Hyc Online	lrograp Contro	hs 0 ls 1 N	Number umber o	of Off f Stora	line (ge Str	ontro	ls 0 N es 2	umber	of Ti	lme/Area	Diagrams O	
			20	ynthet	ic Rai	infal	l Det	ails					
		Ra	infall	Model			FSR	M5-6	0 (mm)	19.6	500		
	Ret	turn Pe	eriod (years)		_	100	R	atio R	0.4	134		
				Region :	England	and V	ales	Profil	е Туре	Wint	cer		

Intermodal Transportation Ltd	Page 3	
Hunters Court	1 in 100 yr + 40% 2880min win	
Debden Road	Tile Kiln Green	
Saffron Walden CB11 4AA	Essex	Micro
Date 21/05/2019 16:46	Designed by PM	
File SW NETWORK 17.05.2019.MDX	Checked by	Diamage
XP Solutions	Network 2018.1.1	

Synthetic Rainfall Details

Cv (Summer) 0.750 Storm Duration (mins) 2880 Cv (Winter) 0.840

Intermodal Transportation Ltd	Page 4
Hunters Court	1 in 100 yr + 40% 2880min win
Debden Road	Tile Kiln Green
Saffron Walden CB11 4AA	Essex
Date 21/05/2019 16:46	Designed by PM
File SW NETWORK 17 05 2019 MDX	Checked by
XP Solutions	Network 2018 1 1
<u>Online</u> Hydro-Brake® Ontimum Manh	Controls for Storm
	t Reference MD-SHE-0071-2700-1500-2700
Desi	ign Head (m) 1.500
Design	1 Flow (1/s) 2.7
	Flush-Flo™ Calculated
	Objective Minimise upstream storage Application Surface
Sum	np Available Yes
Di	iameter (mm) 71
Inver	ct Level (m) 75.169
Minimum Outlet Pipe Di Suggested Manhole Di	lameter (mm) 100
Control Points Head (m) Flo	ow (1/s) Control Points Head (m) Flow (1/s)
Design Point (Calculated) 1.500 Flush-Flo™ 0.310	2.7 Kick-Flo® 0.635 1.8 2.3 Mean Flow over Head Range - 2.2
The hydrological calculations have be Hydro-Brake® Optimum as specified. S Hydro-Brake Optimum® be utilised them	een based on the Head/Discharge relationship for the Should another type of control device other than a n these storage routing calculations will be invalidated
Depth (m) Flow (l/s) Depth (m) Flo	ow (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s)
0.100 1.9 1.200	2.4 3.000 3.7 7.000 5.5
0.200 2.2 1.400	2.6 3.500 4.0 7.500 5.7
0.300 2.3 1.600	2.8 4.000 4.2 8.000 5.9
0.400 2.2 1.800	2.9 4.500 4.5 8.500 6.1
0.600 2.0 2.200	3.2 5.500 4.9 9.500 6.4
0.800 2.0 2.400	3.3 6.000 5.1
1.000 2.2 2.600	3.5 6.500 5.3
©19	982-2018 Innovyze

Intermodal Transportation Ltd		Page 5
Hunters Court	1 in 100 yr + 40% 2880min win	
Debden Road	Tile Kiln Green	
Saffron Walden CB11 4AA	Essex	Micco
Date 21/05/2019 16:46	Designed by PM	
File SW NETWORK 17.05.2019.MDX	Checked by	Drainage
XP Solutions	Network 2018.1.1	
<u>Storage</u>	Structures for Storm	
<u>Cellular Stora</u>	ge Manhole: 1, DS/PN: 1.000	
Inve: Infiltration Coefficient Infiltration Coefficient	rt Level (m) 76.906 Safety Factor 2.0 Base (m/hr) 0.00000 Porosity 0.95 Side (m/hr) 0.00000	
Depth (m) Area (m²) Inf. Are	ea (m²) Depth (m) Area (m²) Inf. Area	(m²)
0.000 145.0 0.400 145.0	0.0 0.401 0.0	0.0
<u>Cellular Stora</u>	ge Mannole: /, DS/PN: 1.006	
Inve Infiltration Coefficient Infiltration Coefficient	rt Level (m) 75.490 Safety Factor 2.0 Base (m/hr) 0.00000 Porosity 0.95 Side (m/hr) 0.00000	
Depth (m) Area (m ²) Inf. Ar	ea (m²) Depth (m) Area (m²) Inf. Area	(m²)
0.000 1944.0	0.0 1.201 0.0	0.0
1.200 1944.0	0.0	
©198	32-2018 Innovyze	

Intermo	dal Tr	canspor	rtatior	Ltd						Page 6
Hunters	Court				1 in 10)0 yr +	- 40% 28	80min wi	n	
Debden 1	Road				Tile Ki	ln Gre	een			
Saffron	Walde	en CB?	11 4AA		Essex					Micco
Date 21	/05/20)19 16	:46		Designe	ed by E	M			
File SW	NETWO	DRK 17	.05.201	9.MDX	Checked	l by				Digingda
XP Solu	tions				Network	2018.	1.1			
	<u>Sur</u>	mmary	of Resi	ults for	2880 mi	nute 1	00 year	Winter	(Storn	<u>n)</u>
	M	argin f	or Flood	l Risk Warn	ing (mm)	0 5 0	1 -	. (5.)	300.0	
				Analysis	Timestep	2.5 Sec	cond incre	ement (Ext	ended): OFF	
				DY	D Status				ON	
				Inerti	a Status				ON	
			Water	Surcharged	Flooded				Pipe	
	US/MH	US/CL	Level	Depth	Volume	Flow /	Overflow	Maximum	Flow	
PN	Name	(m)	(m)	(m)	(m³)	Cap.	(l/s)	Vol (m³)	(l/s)	Status
1 000	1	78 106	76 953	-0 253	0 000	0 06		6 471	4 0	OK
1.000	2	80.213	76.584	-0.378	0.000	0.06		0.095	8.3	OK
1.002	3	80.384	76.536	-0.384	0.000	0.05		0.170	8.3	OK
1.003	4	80.058	76.446	-0.363	0.000	0.08		0.372	12.1	OK
1.004	5	78.434	76.419	-0.283	0.000	0.08		1.727	15.6	OK
1.005	6 7	77.760	76.419	-0.215	0.000	0.03		1721.824	2.5	SURCHARGED
1.007	8	77.403	76.440	0.536	0.000	0.01		22.711	2.7	SURCHARGED
1.008	9	77.368	76.442	0.555	0.000	0.01		4.258	2.5	SURCHARGED
1.009	10	77.099	76.451	1.132	0.000	0.06		7.780	2.5	SURCHARGED

Intermodal	Transp	portat	ion Lt	d						P	age 1
Hunters Co	urt				1 in	100 yr	+ 40%	2160mi	n win		
Debden Roa	d				Tile	Kiln Gı	reen				
Saffron Wa	lden (CB11 4	AA		Essex						Micro
Date 21/05	/2019 1	L6:51			Desig	ned by	PM				
File SW NETWORK 17.05.2019.MDX Checked by											Diamaye
XP Solutio											
	ST	ORM SE	EWER DE	ESIGN	by the	Modif	ied Ra	ational	Metho	<u>ed</u>	
			<u>D</u>	<u>esign</u>	Crite	<u>ria for</u>	<u>Stor</u>	<u>m</u>			
		I	Pipe Siz	zes STA	NDARD N	Manhole (Sizes S	STANDARD			
Maximum T	Re Maxir 'ime of (I Volur	eturn P num Rai Concent Foul Se netric	FSR Ra eriod (M5-6 R nfall (ration wage (1 Runoff	ainfall years) 0 (mm) atio R mm/hr) (mins) /s/ha) Coeff.	Model 100 19.600 0.434 0 30 0.000 0.750	- Englax Min Des Min Mi	nd and Add F Min Max Sign Dep Vel fo: .n Slop	Wales low / Cli imum Back imum Back pth for C r Auto De e for Opt	mate C drop H drop H ptimis sign c imisat	PIMP Change leight leight sation only (m, ion (1)	(%) 100 (%) 40 (m) 0.200 (m) 1.500 (m) 1.200 (s) 1.00 (s) 500
				Designe	ed with	Level S	offits				
			<u>Ti</u>	me Are	ea Dia	gram fo	or Sto	rm			
			Time (mins) 0-4 Tota Tota	Area (ha) 1.036 1 Area otal Pip	Time (mins) 4-8 Contrik	Area (ha) (ha) 1.025 puting (1 me (m ³)	Time (mins) 8-12 (ma) = 2 = 60.0	Area (ha) 0.031 .092 71			
			Netv	vork D	esign	Table	for St	lorm			
PN	Length (m)	Fall (m)	Slope 1 (1:X)	I.Area (ha)	T.E. (mins)	Base Flow (l] /s) (m	c HYD m) SECT	DIA S (mm)	Section	Туре
1.000	58.525	0.244	239.9	0.264	4.00		0.0 0.0	500 o	300 H	Pipe/Con	nduit
1.001	12.621	0.042	300.5	0.290	0.00		0.0 0.0	500 o	450 H	pipe/Co	nduit
1.002	33.259	0.111	300.0	0.000	0.00		0.0 0.0	500 o	450 H	Pipe/Co	nduit
1.003	42.977	0.107	401.7	0.251	υ.00		U.U U.0	0 000	450 I	ripe/Co	nduit
				<u>Netwo</u>	ork Re	sults 1	<u>able</u>				
PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.A (ha	rea Σ) Flo	Base w (l/s)	Foul (1/s)	Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (l/s)
1.000	0.00	4.97	76.906	5 0.	264	0.0	0.0	0.0	1.01	71.4	0.0
1.001	0.00	5.15	76.512	2 0.	554	0.0	0.0	0.0	1.17	185.7	0.0
1.002	0.00	5.62	76.359) U. 9 N	334 805	0.0	0.0	0.0	1.01	160.4	0.0
1.000	0.00	0.00				0.0	0.0	0.0		100.1	0.0
				@100	22_201	8 Innot	1170				
				@190		0 11110/	УZG				

Intermodal	Transp	portat	ion L	td								Page 2
Hunters Cou	ırt				l in	100 3	r +	40% 23	160mi1	n wi	n	
Debden Road	d				Tile	Kiln	Gree	n				
Saffron Wal	lden (СВ11 4	AA		Essex							Micco
Date 21/05,	/2019 1	L6:51			Desig	ned k	y PM	[
File SW NET	IWORK 1	L7.05.	2019.	MDX	Check	ed by	7					DIGINGQG
XP Solution	ns				Netwo	rk 20)18.1	.1				
			<u>Net</u>	work D	esign	Tabl	e foi	r Stor	<u>m</u>			
PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	Ba Flow	.se (1/s)	k (mm)	HYD SECT	DIA (mm)	Section	n Type
1 004	07 001	0 0 0 0	401 0	0 000	0 00		0 0	0 600		505	Disa (C	
1.004	27.331	0.068	401.9	0.233	0.00		0.0	0.600	0	525	Pipe/Co	onduit
1.005	74.287	0.186	399.4	0.315	0.00		0.0	0.600	0	600	Pipe/Co	onduit
1.007	7.348	0.018	408.2	0.739	0.00		0.0	0.600	0	675	Pipe/Co	onduit
1.008	16.934	0.042	403.2	0.000	0.00		0.0	0.600	0	675	Pipe/Co	onduit
1.009	38.739	2.169	17.9	0.000	0.00		0.0	0.600	0	150	Pipe/Co	onduit
				Netwo	ork Re	sults	Tab	<u>le</u>				
PN	Rain	тс	IIS/T	т. 5:т А	rea	. Base	F	A Luc	d Flow	Vel	Can	Flow
	(mm/hr)	(mins)) (m)	(ha	i) Flo	ow (1/	s) (1	/s) (1/s)	(m/s) (1/s)) (1/s)
1 004		6 8					~					
1.004	0.00	6.74	4 /6.1. 7 76 10	// I.	038	0	.0	0.0	0.0	1.1	1 240.5	
1.005	0.00	0.0	7 70.10 75 70)9 I. 20 1	US0 353	0	.0	0.0	0.0	3.2 1.2	1 3/2 9	
1 007	0.00	7.03	9 75 22	20 1.	092	0	0	0.0	0.0	1 2	9 461 9	9 0.0
1.008	0.00	8.20	75.21	1 2.	092	0	.0	0.0	0.0	1.3	0 464.8	3 0.0
1.009	0.00	8.4	7 75.10	59 2.	092	0	.0	0.0	0.0	2.3	9 42.3	3 0.0
		Fi	ree Fl	owing	<u>Outfa</u>	ll De	tails	s for	Storm	<u>ı</u>		
							_					
	P	Outfal ipe Nur	ll Ou mber	itfall C Name	(m)	L I. I (1	evel n)	Min I. Leve	D,I el (mm	. W) (mm	ı)	
								(111)				
		1.	.009		73.400) 73	.000	73.00	00	0	0	
			Si	mulatio	on Cri	teria	for	Stor	n			
					011 011	00110		00011	<u></u>			
Manhc	Volu Are Hole Head	metric al Red Hot ot Sta loss C	Runoff uction Start rt Leve oeff (0	E Coeff Factor (mins) el (mm) Global)	0.840 1.000 0 0 0.500	Fc Additi MA	ul Se onal DD Fa	wage pe Flow - ctor * Output	er hect % of 7 10m³/H Run T: Interv	tare Total ha Sto ime (1 val (1	(l/s) Flow 4 orage mins) mins)	0.000 0.000 2.000 4320 24
Number of In Number of	nput Hyd Online	lrograp Contro	hs 0 ls 1 N	Number Number o	of Off f Stora	line (ge Sti	Contro ructur	ols 0 N ces 2	lumber	of Ti	.me/Area	a Diagrams O
			2	Synthet	ic Ra:	infal	l Det	<u>tails</u>				
		Da	infoll	Model			FCD	M5-6	∩ (mm)	10 4	500	
	Rot	Ka Tirn Pe	riod (vears)			100	0-CM 9	o (IIIII) atio P	19.0	134	
	rei	JULII É	(rears, Region '	England	and T	Vales	Profil	e Tvpe	Wint	er	
					50				11-0			

Intermodal Transportation Ltd	Page 3	
Hunters Court	1 in 100 yr + 40% 2160min win	
Debden Road	Tile Kiln Green	
Saffron Walden CB11 4AA	Essex	Micro
Date 21/05/2019 16:51	Designed by PM	
File SW NETWORK 17.05.2019.MDX	Checked by	Diamada
XP Solutions	Network 2018.1.1	

Synthetic Rainfall Details

Cv (Summer) 0.750 Storm Duration (mins) 2160 Cv (Winter) 0.840

Intermodal Trans	sporta	tion I	Ltd								Pa	ge 4
Hunters Court	-				1 in 1	100 yı	<u>+</u>	40%	2160m	in win		-
Debden Road				r	Tile 1	Kiln (Gree	n				
Saffron Walden	CB11	4AA			Essex							licco
Date 21/05/2019	16:51			1	Desig	ned by	7 PM	I				
File SW NETWORK	17 05	2019	мрх	ζ (Check	ed by		-				rainage
XP Solutions	1,.00			<u> </u>	Netwo	rk 201	8 1	1				
						201		• +				
Uudro-Pr		ntimu	<u>Onl</u>	<u>ine (</u>	Contro	ols fo	or S	<u>torm</u>	9 V.	11mo (m ³). 9	9
<u>Hyaro-Br</u>	<u>ake® (</u>	ptimu	<u>m Ma</u>	annoi	.e: 10	, DS/	PN:	1.00	9, VC	olume (m ³): 8	<u>. 9</u>
M:	inimum (Suggest	Dutlet ted Man	I Des Ir Pipe	Unit Design Sign F Ap Sump Diam Nvert e Diam e Diam	Refere Head Tow (1 Tush-F Object Object Availa Availa Level Level Meter (ence MD (m) ./s) lo™ .ive M .ion .ble mm) (m) .mm) .mm)	-SHE	-0071	-2700- C pstrea	1500-2700 1.500 2.7 alculated m storage Surface Yes 71 75.169 100 1200		
Control Poin	ts	Head	(m)	Flow	(1/s)		Cont	rol P	oints	Head	(m) 1	Flow (l/s)
										-1 -0 -0		
Design Point (Calo	ulated)) 1. ™ 0	310		2.7	Mean 1	Flow	over	Kick- Head F	-Flo® 0 Range	.635	1.8
The hydrological Hydro-Brake® Opt Hydro-Brake Opti	calcul imum as mum® be	ations specif utilis	hav fied sed	e beer . Sho then t	n based ould an these s	d on th nother storage	ne He type e rou (m)	ead/Di e of c uting	scharg ontrol calcul	device of ations will	hship ther t ll be	for the han a invalidated
	(1/3)	Depen	(111)	110#	(1/3)	Depth	(111)	1104	(1,3)	Depen (m)	110#	(1/5)
0.100	1.9	1.	.200		2.4	3	.000		3.7	7.000		5.5
0.200	2.2	1.	.400		2.6	3	.500		4.0	7.500		5.7
0.300	2.3	1	800		2.0	4	500		4.2	8.000		5.9
0.500	2.2	2.	.000		3.1	5	.000		4.7	9.000		6.2
0.600	2.0	2.	.200		3.2	5	.500		4.9	9.500		6.4
0.800	2.0	2.	400		3.3	6	.000		5.1			
1.000	2.2	2.	600		3.5	6	.500		5.3			
				©1983	2-201	8 Inno)VV7.	е				
1				ST 20'	$z = z \cup I$		JVYZ	0				

Intermodal Transportation Ltd		Page 5
Hunters Court	1 in 100 yr + 40% 2160min win	
Debden Road	Tile Kiln Green	
Saffron Walden CB11 4AA	Essex	Micco
Date 21/05/2019 16:51	Designed by PM	
File SW NETWORK 17.05.2019.MDX	Checked by	Dialitacje
XP Solutions	Network 2018.1.1	
<u>Storage</u>	Structures for Storm	
<u>Cellular Stora</u> Inve Infiltration Coefficient Infiltration Coefficient	ge Mannole: 1, DS/PN: 1.000 rt Level (m) 76.906 Safety Factor 2 Base (m/hr) 0.00000 Porosity 0.9 Side (m/hr) 0.00000	.0 95
Depth (m) Area (m²) Inf. Ar	ea (m²) Depth (m) Area (m²) Inf. Area	(m²)
0.000 145.0 0.400 145.0	0.0 0.0	0.0
<u>Cellular Stora</u>	ge Manhole: 7, DS/PN: 1.006	
Inve Infiltration Coefficient Infiltration Coefficient	rt Level (m) 75.490 Safety Factor 2 Base (m/hr) 0.00000 Porosity 0.9 Side (m/hr) 0.00000	.0 95
Depth (m) Area (m²) Inf. Ar	ea (m²) Depth (m) Area (m²) Inf. Area	(m²)
0.000 1944.0 1.200 1944.0	0.0 0.0	0.0
©19	82-2018 Innovyze	

Intermo	dal Ti	ranspo	rtatio	n Ltd						Page 6
Hunters	Court	ī.			1 in 10)0 yr 4	40% 21	60min wi	n	
Debden 1	Road				Tile Ki	ln Gre	een			
Saffron	Walde	en CBI	11 4AA		Essex					Micco
Date 21	/05/20	019 16	:51		Designe	ed by H	PM			
File SW	NETWO	DRK 17	.05.203	19.MDX	Checked	l by				Drainage
XP Solu	tions				Network	2018.	1.1			
	Su	mmary	of Res	ults for 2	2160 mi	nute 1	00 year	Winter	(Storn	<u>n)</u>
	M	argin f	or Floo	d Risk Warn	ing (mm) Timostop	2 5 50	and Incre	mont (Evt	300.0)
				DT	S Status	2.5 500		INCIIC (EAC	OFF	,
				DV	D Status				ON	I
				Inerti	a Status				ON	I
			Water	Surcharged	Flooded				Pipe	
	US/MH	US/CL	Level	Depth	Volume	Flow /	Overflow	Maximum	Flow	
PN	Name	(m)	(m)	(m)	(m³)	Cap.	(1/s)	Vol (m³)	(l/s)	Status
1.000	1	78.106	76.960	-0.246	0.000	0.07		7,430	5.0	OK
1.001	2	80.213	76.594	-0.368	0.000	0.08		0.111	10.5	OK
1.002	3	80.384	76.546	-0.374	0.000	0.07		0.197	10.5	OK
1.003	4	80.058	76.457	-0.352	0.000	0.11		0.419	15.3	OK
1.004	5	78.434	76.412	-0.290	0.000	0.10		1.600	19.8	OK
1.005	6	78.166	76.411	-0.223	0.000	0.03		3.084	19.8	OK
1.006	/	//./60	76.411	0.321	0.000	0.01		1/0/.389	2.5	SURCHARGED
1 008	9	77 368	76 428	0.524	0.000	0.01		4 234	2.7	SURCHARGED
1.009	10	77.099	76.438	1.119	0.000	0.06		7.756	2.5	SURCHARGED

Intermodal	Transp	portat	ion Lt	d						E	Page 1
Hunters Co	urt				1 in 1	LOO yr	+ 40%	4320mi	n win	·	
Debden Roa	d				Tile H	Kiln Gı	reen				
Saffron Wa	lden (СВ11 4	AA		Essex						Mirro
Date 21/05	/2019 1	6:53			Design	ned by	PM				
File SW NETWORK 17.05.2019.MDX Checked by											Dialitage
XP Solution											
	STO	ORM SE	WER DE	SIGN	by the	Modif	ied Ra	ational	Metho	od	
			D	<u>esign</u>	Crite	ria for	<u>Stor</u>	<u>m</u>			
		F	Pipe Siz	es STA	NDARD M	anhole	Sizes S	STANDARD			
			FSR Ra	ainfall	Model	- Engla	nd and	Wales			
	Re	eturn P	eriod (years)	100					PIMP	(%) 100
			М5-6 Р	∪ (mm) atio P	19.600 19.600		Add F.	10W / Cli imum Back	.mate (drop 4	Change Height	(き) 40 (m) 0.200
	Maxin	num Rai	nfall (1	mm/hr)	0		Max	imum Back	drop H	Height	(m) 1.500
Maximum T	ime of (Concent	ration	(mins)	30	Min Des	sign Dej	pth for C	ptimis	sation	(m) 1.200
	I I I I I I I I I I I I I I I I I I I	Foul Se	wage (l	/s/ha)	0.000	Min	Vel for	r Auto De	esign d	only (m	/s) 1.00
	volun	uetric .	RUHOLL	COEIL.	0.750	1413	п этор	e rot opt	. ini sal	LTOU (1	
				Designe	ed with	Level S	offits				
			<u>Ti</u>	me Are	ea Diag	gram fo	or Sto	rm			
			Time (mins)	Area (ba)	Time (mins)	Area (ba)	Time (mins)	Area			
			(1.020	(1.005	0.10	(114)			
			0-4	1.036	4-8	1.025	8-12	0.031			
			Tota	l Area	Contrib	uting (ha) = 2	.092			
			То	tal Pip	pe Volur	ne (m³)	= 60.0	71			
			Netw	ork D	esign	Table	for St	corm			
PN	Length	Fall	Slope 1	.Area	T.E.	Base	3	c HYD	DIA	Section	Туре
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (l	/s) (m	m) SECT	(mm)		
1.000	58.525	0.244	239.9	0.264	4.00		0.0 0.0	500 o	300	Pipe/Co	nduit
1.001	12.621	0.042	300.5	0.290	0.00		0.0 0.0	500 o	450	Pipe/Co	nduit
1.002	33.259	0.111	300.0	0.000	0.00		0.0 0.0	500 o	450	Pipe/Co	nduit
1.003	42.9//	0.10/	401./	U.201	0.00		U.U U.(0 000	430	ripe/Co	παυττ
				<u>Netwo</u>	ork Res	ults 1	<u>able</u>				
PN	Rain	T.C.	US/IL	ΣI.A	rea Σ	Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha) Flo	w (l/s)	(l/s)	(1/s)	(m/s)	(1/s)	(1/s)
1.000	0.00	4.97	76.906	0.	264	0.0	0.0	0.0	1.01	L 71.4	0.0
1.001	0.00	5.15	76.512	0.	554	0.0	0.0	0.0	1.17	7 185.7	0.0
1.002	0.00	5.62	76.470	0.	554	0.0	0.0	0.0	1.17	7 185.8	0.0
1.003	0.00	6.33	76.359	0.	805	0.0	0.0	0.0	1.01	L 160.4	0.0
						-					
				©198	32-2018	3 Innov	vyze				

Intermodal	Transp	portat	ion L	td							E	Page 2
Hunters Court 1 in 100 yr + 40% 4320min win												
Debden Road	d				Tile	Kiln	Gree	n				
Saffron Wal	lden (СВ11 4	AA		Essex							Micco
Date 21/05,	/2019 1	L6:53			Desig	ned k	y PM	[
File SW NET	IWORK 1	L7.05.	2019.	MDX	Check	ed by	,					vrainage
XP Solution	ns				Netwo	rk 20	18.1	.1				
			Net	work D	esign	Tabl	e foi	<u>s Stor</u>	<u>m</u>			
PN	Length	Fall	Slope	I.Area	T.E.	Ва	se	k	HYD	DIA	Section	Type
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)		
1	07 001	0 0 0 0	401 0	0 000	0 00		0 0	0 600		505	D: /0	
1.004	27.331	0.068	401.9	0.233	0.00		0.0	0.600	0	525	Pipe/Co	onduit
1 006	74 287	0.186	399 4	0.315	0.00		0.0	0.600	0	600	Pipe/Co	nduit
1.007	7.348	0.018	408.2	0.739	0.00		0.0	0.600	0	675	Pipe/Co	nduit
1.008	16.934	0.042	403.2	0.000	0.00		0.0	0.600	0	675	Pipe/Co	nduit
1.009	38.739	2.169	17.9	0.000	0.00		0.0	0.600	0	150	Pipe/Co	onduit
				Netwo	ork Re	sults	Tab	le				
PN	Rain	т.с.	US/I	LΣI.A	irea 1	E Base	Fo	oul Ad	d Flow	Vel	Cap	Flow
	(mm/hr)	(mins)) (m)	(ha	I) FIG	\L) ₩C	s) (1	/s) (1/s)	(m/s) (1/s)	(1/s)
1.004	0.00	6.74	4 76.17	17 1.	038	0	.0	0.0	0.0	1.1	1 240.5	0.0
1.005	0.00	6.8	7 76.10)9 1.	038	0	.0	0.0	0.0	3.2	8 710.1	0.0
1.006	0.00	7.89	9 75.49	90 1.	353	0	.0	0.0	0.0	1.2	1 342.8	0.0
1.007	0.00	7.99	9 75.22	29 2.	092	0	.0	0.0	0.0	1.2	9 461.9	0.0
1.008	0.00	8.20	75.21	2.	092	0	.0	0.0	0.0	1.3	0 464.8	0.0
1.009	0.00	8.4	7 75.16	59 2.	092	0	.0	0.0	0.0	2.3	9 42.3	0.0
		Fi	ree Fl	owing	Outfal	Ll De	tails	s for	Storm	<u>1</u>		
							-					
	P	Outfal	LL Oi mber	itfall C Name	(m)	L I. L (m	evel	Min T Leve	D,I al (mm	_ W) (mm		
	-	rbe nu			()	(-	-,	(m)		, (-,	
		1.	.009		73.400) 73	.000	73.00	0 0	0	0	
			c ; ;		on Cri	toria	for	Storr	~			
			511	IIIUIALIO		LEIIC	. 101	51011	<u>11</u>			
Manhc	Volu Are H Dle Head	metric al Red Hot ot Sta loss C	Runoff uction Start rt Leve oeff (0	E Coeff Factor (mins) el (mm) Global)	0.840 1.000 0 0 0.500	Fo Additi MA	ul Se onal DD Fa	wage pe Flow - ctor * Output	er hect % of 7 10m³/1 Run T: Interv	tare Iotal ha Sto ime (1 val (1	(l/s) (Flow 4(orage 2 mins) mins)	0.000 0.000 2.000 8640 24
Number of In Number of	nput Hyd Online	lrograp Contro	ohs O ls 1 N	Number Number o	of Off f Stora	line (ge Str	Contro ructur	ols 0 N ces 2	lumber	of Ti	.me/Area	Diagrams O
			2	Synthet	ic Rai	infal	l Det	<u>cails</u>				
		_							^			
		Ra	infall	Model			FSR	M5-6	U (mm)	19.6	000	
	Ket	.urn P∈	erlod (years) Region	England	and M	100 Jalos	Profil	atio R	U.4 Win+	ij4 Ter	
				1.091011	Ligranu		.u_C3		C TYPE			

Intermodal Transportation Ltd	Page 3	
Hunters Court	1 in 100 yr + 40% 4320min win	
Debden Road	Tile Kiln Green	
Saffron Walden CB11 4AA	Essex	Micro
Date 21/05/2019 16:53	Designed by PM	
File SW NETWORK 17.05.2019.MDX	Checked by	Diamage
XP Solutions	Network 2018.1.1	

Synthetic Rainfall Details

Cv (Summer) 0.750 Storm Duration (mins) 4320 Cv (Winter) 0.840

Intermodal Transportation Ltd	Page 4												
Hunters Court	1 in 100 yr + 40% 4320min win												
Debden Road	Tile Kiln Green												
Saffron Walden CB11 4AA	Essex												
Date 21/05/2019 16:53	Designed by PM												
File SW NETWORK 17 05 2019 MDX	Checked by												
XP Solutions	Network 2018 1 1												
<u>Online</u>	Controls for Storm												
Unit Desig	c Reference MD-SHE-0071-2700-1500-2700												
Design	Flow (1/s) 2.7												
	Flush-Flo™ Calculated												
7	Objective Minimise upstream storage												
Sump	Available Yes												
Dia	ameter (mm) 71												
Invert	z Level (m) 75.169												
Minimum Outlet Pipe Dia Suggested Manhole Dia	ameter (mm) 100 ameter (mm) 1200												
	110001 (nun) 1200												
Control Points Head (m) Flow	w (l/s) Control Points Head (m) Flow (l/s)												
Design Point (Calculated) 1.500 Flush-Flo™ 0.310	2.7 Kick-Flo® 0.635 1.8 2.3 Mean Flow over Head Range - 2.2												
The hydrological calculations have been hydro-Brake® Optimum as specified. Sh Hydro-Brake Optimum® be utilised then	en based on the Head/Discharge relationship for the hould another type of control device other than a these storage routing calculations will be invalidated												
Depth (m) Flow (1/s) Depth (m) Flow	w (l/s) Depth (m) Flow (l/s) Depth (m) Flow (l/s)												
0.100 1.9 1.200	2.4 3.000 3.7 7.000 5.5												
0.200 2.2 1.400	2.6 3.500 4.0 7.500 5.7												
0.300 2.3 1.600	2.8 4.000 4.2 8.000 5.9												
0.400 2.2 1.800	2.9 4.500 4.5 8.500 6.1												
	3.1 5.000 4.7 9.000 6.2												
0.800 2.0 2.400	3.3 6.000 5.1												
1.000 2.2 2.600	3.5 6.500 5.3												
@100	82-2018 Innovyze												

Intermodal Transportation Ltd		Page 5
Hunters Court	1 in 100 yr + 40% 4320min win	
Debden Road	Tile Kiln Green	
Saffron Walden CB11 4AA	Essex	Micco
Date 21/05/2019 16:53	Designed by PM	
File SW NETWORK 17.05.2019.MDX	Checked by	Urainage
XP Solutions	Network 2018.1.1	
<u>Storage</u>	Structures for Storm	
<u>Cellular Stora</u>	ge Manhole: 1, DS/PN: 1.000	
Inve Infiltration Coefficient Infiltration Coefficient	rt Level (m) 76.906 Safety Factor 2.0 Base (m/hr) 0.00000 Porosity 0.95 Side (m/hr) 0.00000	
Depth (m) Area (m²) Inf. Ar	ea (m²) Depth (m) Area (m²) Inf. Area ((m²)
0.000 145.0 0.400 145.0	0.0 0.0	0.0
<u>Cellular Stora</u>	ge Manhole: 7, DS/PN: 1.006	
Inve Infiltration Coefficient Infiltration Coefficient	rt Level (m) 75.490 Safety Factor 2.0 Base (m/hr) 0.00000 Porosity 0.95 Side (m/hr) 0.00000	
Depth (m) Area (m²) Inf. Ar	rea (m ²) Depth (m) Area (m ²) Inf. Area ((m²)
0.000 1944.0	0.0 1.201 0.0	0.0
1.200 1944.0	0.0	
©19	82-2018 Innovvze	

Intermo	dal Ti	canspo	rtatio	n Ltd						Page 6
Hunters	Court	-			1 in 10)0 yr +	- 40% 43	20min wi	n	
Debden 1	Road				Tile Ki	ln Gre	een			
Saffron	Walde	en CB2	11 4AA		Essex					Micro
Date 21,	/05/20	019 16	:53		Designe	ed by E	PM			
File SW	NETWO	DRK 17	.05.202	19.MDX	Checked	l by				Diamaye
XP Solut	tions				Network	2018.	1.1			
	Su	mmary	of Res	ults for .	4320 mi	nute 1	00 year	Winter	(Storn	<u>n)</u>
	M	owain f		d Diels News					200 0	
	141	argin i	OL FIOO	Analysis '	Timestep	2.5 Sec	cond Incre	ement (Ext	ended)	
				DT	S Status			,	OFF	
				DV	D Status				ON	
				Inerti	a Status				ON	
			Water	Surcharged	Flooded				Pipe	
	US/MH	US/CL	Level	Depth	Volume	Flow /	Overflow	Maximum	Flow	
PN	Name	(m)	(m)	(m)	(m³)	Cap.	(1/s)	Vol (m³)	(l/s)	Status
1.000	1	78.106	76.945	-0.261	0.000	0.04		5.443	2.8	OK
1.001	2	80.213	76.572	-0.390	0.000	0.04		0.079	6.0	OK
1.002	3	80.384	76.526	-0.394	0.000	0.04		0.140	6.0	OK
1.003	4	80.058	76.430	-0.379	0.000	0.06		0.300	8.7	OK
1.004	5	78 166	76.407	-0.295	0.000	0.00		3 019	11.2	OK
1.005	7	77.760	76.407	0.317	0.000	0.02		1700.067	2.5	SURCHARGED
1.007	8	77.403	76.429	0.524	0.000	0.01		22.691	2.7	SURCHARGED
1.008	9	77.368	76.429	0.543	0.000	0.01		4.236	2.5	SURCHARGED
1.009	10	77.099	76.437	1.117	0.000	0.06		7.754	2.5	SURCHARGED

Intermodal	Transpo	ortat	ion Lt	d						P	age 1
Hunters Co	urt				1 in 1	.0yr 14	40min	win			
Debden Roa	d				Tile F	Kiln Gr	reen				
Saffron Wa	lden CE	311 4.	AA		Essex						Micro
Date 21/05	/2019 16	6:55			Desigr	ned by	PM				
File SW NE	TWORK 17	7.05.	2019.M	DX	Checke	ed by					Jialilaye
XP Solution	ns				Networ	k 2018	3.1.1				
	STO	RM SE	WER DE	SIGN }	by the	Modif	ied Ra	tional	Method	1	
			De	esign	Criter	ia for	Stor	<u>n</u>			
		F	vipe Siz	es STAI	NDARD M	anhole :	Sizes S	TANDARD			
			FSR Ra	ainfall	Model	- Engla	nd and	Wales			
	Ret	curn P	eriod (years)	100	j				PIMP	(%) 100
			M5-60	0 (mm)	19.600		Add F	Low / Cli	mate Ch	nange	(%) 40
	N	·	Ra	atio R	0.434		Mini	Lmum Back	drop He	eight	(m) 0.200
Maximum T	Maximu ime of Co	un Kali oncent:	niall (I ration	(mins)	U R	Min Des	Maxi an Der	umum Back oth for ∩	urop He ptimisa	tion ∙	(m) 1.200
	Fc	oul Se	wage (1,	/s/ha)	0.000	Min	Vel foi	Auto De	sign or	nly (m/	(s) 1.00
	Volume	etric 1	Runoff (Coeff.	0.750	Mi	n Slope	e for Opt	imisati	on (1:	:X) 500
				D		T					
				Designe	ea with	Level S	OIIIUS				
			Tir	me Are	a Diac	ram fo	or Sto:	rm			
					a pra	2 0111 2 0					
			Time	Area	Time	Area	Time	Area			
			(mins)	(ha)	(mins)	(ha)	(mins)	(ha)			
			0-1	1 036	1-8	1 025	8-12	0 031			
			0 4	1.050	-0	1.025	0 12	0.031			
			Total	Area (Contrib	uting (1	na) = 2	.092			
				1 D		- (3)	<u> </u>	7.1			
			10	tai Pip	be volum	le (III°)	= 60.0	1			
			<u>Netw</u>	ork De	esign	Table	for St	orm			
						_	-				_
PN	Length (m)	Fall (m)	Slope I $(1 \cdot x)$	(ha)	T.E. (mins)	Base Flow (1	k /s) (m	HYD m) SECT	DIA Se	ection	Туре
	()	()	()	()			, _, (11	, 5001	(/		
1.000	58.525 (0.244	239.9	0.264	4.00		0.0 0.6	00 o	300 Pi	ipe/Cor	nduit
1.001	12.621 (0.042	300.5	0.290	0.00		0.0 0.6	600 o	450 Pi	lpe/Cor	nduit
1.002	42.977 (0.107	401.7	0.251	0.00		0.0 0.0	500 O	450 Pi	ipe/Con	nduit.
										1 2, 001	
				<u>Netwo</u>	ork Res	ults I	<u>able</u>				
		_		_		_				_	
PN	Rain	T.C.	US/IL	Σ I.A	rea Σ	Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/nr)	(mins)	(m)	(na)	, ғ.то	w (1/S)	(1/8)	(1/8)	(m/s)	(1/S)	(1/5)
1.000	0.00	4.97	76.906	0.2	264	0.0	0.0	0.0	1.01	71.4	0.0
1.001	0.00	5.15	76.512	0.5	554	0.0	0.0	0.0	1.17	185.7	0.0
1.002	0.00	5.62	76.470	0.5	554	0.0	0.0	0.0	1.17	185.8	0.0
1.003	0.00	6.33	/6.359	0.8	805	0.0	0.0	0.0	1.01	160.4	0.0
				©198	2-2018	Innov	yze				

Intermodal	Transp	portat	ion L	td							P	age 2
Hunters Co	urt				l in	10yr	1440)min w	in		[
Debden Roa	d				Tile	Kiln						
Saffron Wa	lden (СВ11 4	AA		Essex			Micco				
Date 21/05	/2019 1	16:55			Desig	ned k	oy PN	1				
File SW NE	TWORK 1	L7.05.	2019.	MDX	Check	ed by	7					Digiligada
XP Solutio	ns				Netwo	rk 20)18.1	.1				
			Net	work D	esign	Tabl	e fo	r Stor	<u>rm</u>			
PN	Length	Fall	Slope	I.Area	T.E.	Ba	ise	k (mm)	HYD	DIA (mm)	Section	Туре
	(111)	(11)	(1:1)	(IIa)	(mins)	FIOW	(1/5)	(11111)	SECI	(11111)		
1.004	27.331	0.068	401.9	0.233	0.00		0.0	0.600	0	525	Pipe/Co	nduit
1.005	25.443	0.544	46.8	0.000	0.00		0.0	0.600	0	525	Pipe/Co	nduit
1.006	74.287	0.186	399.4	0.315	0.00		0.0	0.600	0	600	Pipe/Co	nduit
1.007	7.348	0.018	408.2	0.739	0.00		0.0	0.600	0	675	Pipe/Co	nduit
1.008	16.934	0.042	403.2	0.000	0.00		0.0	0.600	0	675	Pipe/Co	nduit
1.009	38.739	2.169	17.9	0.000	0.00		0.0	0.600	0	150	Pipe/Co	nduit
				Netwo	ork Re	sults	s Tak	ole				
PN	Rain	T.C.	us/I	L ΣΙ.A	rea 2	E Base	F	oul Ad	d Flow	Vel	Сар	Flow
	(mm/hr)	(mins)	(m)	(ha	a) Flo	ow (1/	's) (]	L/s)	(1/s)	(m/s)) (1/s)	(1/s)
1 004	0 00	6 7		1	0.2.0	~		0 0	0 0	1 1 1		0.0
1.004	0.00	6.74	+ /6.1/	1 I.	038			0.0	0.0	1.11	L 240.5	0.0
1.005	0.00	6.8	/ /6.10	19 I.	038			0.0	0.0	3.20	3 /10.1	0.0
1.006	0.00	/.85	9 /5.49	90 I.	353	C	.0	0.0	0.0	1.21	L 342.8	0.0
1.007	0.00	7.99	9 75.22	29 2.	092	C	.0	0.0	0.0	1.29	9 461.9	0.0
1.008	0.00	8.20) 75.21	.1 2.	092	C	.0	0.0	0.0	1.30) 464.8	0.0
1.009	0.00	8.4	/ 75.16	og 2.	092	C	.0	0.0	0.0	2.39	9 42.3	0.0
		Fi	ree Fl	owing	<u>Outfa</u>	<u>ll De</u>	tail	s for	Storm	<u>.</u>		
		Outfa	L1 Ou	itfall C	. Level	L I. I	evel	Min	D,L	. w		
	P	ipe Nur	nber :	Name	(m)	(1	n)	I. Lev (m)	el (mm)) (mm)		
		1	.009		73.400) 73	.000	73.0	00 (0 0	C	
			Si	mulati	on Cri	teri:	a for	Stor	m			
			011	IULUCI	UII UII		A LOI	DCOIL	<u></u>			
	Volu Are	umetric eal Rec Hot	Runof luction Start	f Coeff Factor (mins)	0.840 1.000 0	F Addit M	oul S ional ADD F	ewage p Flow - actor *	er hec % of 10m³/	tare Total ha Sto ime (r	(l/s) 0 Flow 0 orage 2 mins)	.000 .000 .000 2880
Manh	ole Head	dloss (Coeff (Global)	0.500			Output	Inter	val (r	mins)	24
Number of I Number of	nput Hyc Online	lrograp Contro	hs 0 ls 1 N	Number umber o	of Off f Stora	line (ge St	Contro ructu:	ols 0 N res 2	Jumber	of Tin	me/Area	Diagrams O
			2	ynthet	ic Rai	infal	<u>l De</u>	tails				
		- T	infall	Model			FOR	ME C	(mm)	10 0	0.0	
	D ~ 4	Ka	ried (Model			1 O	d-CM	oo (mm)	TA.0	31	
	Ket	lurn P€	erioa (years) Pogion	Fnaland	and 1	UL Colew	Profil	alio R	U.4. Wi~+	04 07	
				INCYIUII .	LIIYLAIIO	anu	mares	LIOLII	с туре	VV III U	CT.	

Intermodal Transportation Ltd		Page 3
Hunters Court	1 in 10yr 1440min win	
Debden Road	Tile Kiln Green	
Saffron Walden CB11 4AA	Essex	Micro
Date 21/05/2019 16:55	Designed by PM	
File SW NETWORK 17.05.2019.MDX	Checked by	Diamade
XP Solutions	Network 2018.1.1	

Synthetic Rainfall Details

Cv (Summer) 0.750 Storm Duration (mins) 1440 Cv (Winter) 0.840

Intermodal '	Trans	porta	tion 1	Ltd									Pa	ge 4
Hunters Cour	rt					1 in 1	10yr 1	1440	min t	vin				
Debden Road					1	Tile 1	Kiln (Gree	en					
Saffron Wale	den (CB11	4AA			Essex							N	licco
Date 21/05/2	2019 3	16:55				Desig								
File SW NET	WORK 1	17.05	.2019	. MD>	X I	Check		ldll IdlJ						
XP Solution	s					Netwo	rk 201	18.1	.1					
				Onl	ino	Contr	ole f	or c	torm					
					THE .		<u>JIS I(</u>	<u>) I S</u>	COIM					
Hydr	o-Bra	ke® 0	ptimu	m Ma	anhol	.e: 10	, DS/	PN:	1.00	9, Vc	lume	(m ³): 8.	. 9
					Unit	Pefere	nce ME	-945	-0071.	-2700-	1500-2	700		
				Ι	Design	Head	(m)	-SHE	-0071	-2700-	1.100-2	500		
				Des	sign F	'low (l	/s)					2.7		
					F	lush-F	'lo™			С	alcula	ted		
					٦٣	Object	ive M	linim	uise uj	pstrea	m stor	age		
					Sump	Availa	ble				SUIL	Yes		
					Diam	eter (mm)					71		
				Ir	nvert	Level	(m)				75.	169		
	Mir	nimum (Dutlet	Pipe	e Diam	eter (mm)					100		
		Suggest	ted Mar	nhole	e Diam	eter (mm)				1	200		
Control	Point	S	Head	(m)	Flow	(l/s)		Cont	rol P	oints	I	lead	(m) I	[low (l/s
Design Point	(Calcu Flus	ulated) sh-Flo ^m) 1 ™ 0	.500 .310		2.7 2.3	Mean 1	Flow	over	Kick- Head H	-Flo® Range	0.	635 -	1. 2.
The hydrolo	gical	calcul	ations	hav	e beei	n based	' 1 on th	ne He	ad/Di	scharg	e rela	tion	ship	for the
Hydro-Brake	® Optin	mum as	speci	fied	. She	ould an	nother	type	e of c	ontrol	devic	e ot	her t	han a
Hydro-Brake	Optim	um® be	utili	sed	then	these a	storage	e rou	uting	calcul	ations	wil	l be	invalidat
Depth (m)	Flow	(1/s)	Depth	(m)	Flow	(1/s)	Depth	(m)	Flow	(1/s)	Depth	(m)	Flow	(1/s)
0.100)	1.9	1	.200		2.4	3	.000		3.7	7	.000		5.5
0.200)	2.2	1	.400		2.6	3	.500		4.0	7	.500		5.7
0.300)	2.3	1	.600		2.8	4	.000		4.2	8	.000		5.9
0.400)	2.2		008.		2.9	4 5	000		4.5	8	000		6.1 6.2
0.500)	2.2	2	.200		3.2	5	.500		4.9	9	.500		6.4
0.800)	2.0	2	.400		3.3	6	.000		5.1				
1.000)	2.2	2	.600		3.5	6	.500		5.3				
					~ ~ ~ ~		<u> </u>							
Intermodal Transportation Ltd		Page 5												
--	--	----------	--	--	--	--								
Hunters Court	ers Court 1 in 10vr 1440min win													
Debden Road	Tile Kiln Green													
Saffron Walden CB11 4AA	Essex													
Date 21/05/2019 16:55	Designed by PM													
Filo SW NETWORK 17 05 2010 MDV	Checked by	Drainage												
VD Colutions	Natura who 2010 1 1	J												
	Network 2010.1.1													
Storage	Structures for Storm													
	berdetailes for Storm													
Cellular Stora	ge Manhole: 1, DS/PN: 1.000													
Inve	rt Level (m) 76.906 Safety Factor 2.0													
Infiltration Coefficient	Base (m/hr) 0.00000 Porosity 0.95													
Infiltration Coefficient	Siae (m/hr) 0.00000													
Depth (m) Area (m ²) Inf. Ar	ea (m²) Depth (m) Area (m²) Inf. Area (m	n²)												
0.000 145.0	0.0 0.401 0.0 0	0.0												
0.400 145.0	0.0													
Cellular Stora	ge Manhole: 7, DS/PN: 1.006													
	<u></u>													
Inve	rt Level (m) 75.490 Safety Factor 2.0													
Infiltration Coefficient	Base (m/hr) 0.00000 Porosity 0.95													
Infiltration Coefficient	Side (m/hr) 0.00000													
Depth (m) Area (m ²) Inf. Ar	rea (m^2) Depth (m) Area (m^2) Inf. Area (m^2)	n²)												
		- ,												
0.000 1944.0	0.0 1.201 0.0 (0.0												
1.200 1944.0	0.0													
©1982-2018 Innovyze														

Intermodal Transportation Ltd						Page 6				
Hunters Court 1 in 10yr 1440min win										
Debden Road Tile Kiln Green										
Saffron Walden CB11 4AA Essex				Micco						
Date 21/05/2019 16:55 Designed by PM						MILIU				
File SW NETWORK 17.05.2019.MDX Checked by					Drainage					
VP Solutions Network 2018 1 1										
Network 2010.1.1										
	Su	ummarv	of Res	ults for	1440 mi	.nute 1	.0 vear 1	Winter (Storm)
		- 1						,		<u></u>
	М	argin f	or Flood	d Risk Warn	ing (mm)				300.0	
				Analysis	Timestep	2.5 Sec	cond Incre	ement (Ext	ended)	
				DT	S Status				OFF	
				DV Tnerti	D Status a Status				ON	
				11101.01	a beacab				011	
			Water	Surcharged	Flooded	,			Pipe	
-	US/MH	US/CL	Level	Depth	Volume	Flow /	Overflow	Maximum	Flow	Other have
PN	Name	(m)	(m)	(m)	(m ³)	Cap.	(1/S)	VOT (m ²)	(1/S)	Status
1.000	1	78.106	76.947	-0.259	0.000	0.05		5.695	3.1	OK
1.001	2	80.213	76.575	-0.387	0.000	0.05		0.083	6.5	OK
1.002	3	80.384	76.528	-0.392	0.000	0.04		0.147	6.5	OK
1.003	4	80.058	76.434	-0.375	0.000	0.07		0.318	9.5	OK
1.004	5	78.166	76.162	-0.441	0.000	0.00		0.223	12.3	OK
1.006	7	77.760	75.841	-0.250	0.000	0.01		648.945	1.9	OK
1.007	8	77.403	75.841	-0.064	0.000	0.01		17.028	2.5	OK
1.008	9	77.368	75.841	-0.046	0.000	0.01		2.929	2.4	OK
1.009	10	77.099	75.840	0.520	0.000	0.06		6.272	2.3	SURCHARGED
	©1982-2018 Innovyze									

Appendix F SDS AQUA-FILTER DETAILS

SDS Aqua-FilterTM Hydrodynamic Vortex Separator & Filtration Unit

Water Infrastructure Systems

SDS Aqua-Filter[™] uses hydrodynamic and gravitational forces to remove gross pollutants from surface water runoff. It then filters out fine sediments, nutrients, heavy metals and hydrocarbons through percolation, adsorption, biological breakdown and ionic exchange, prior to final conveyance.

SDS Aqua–Filter[™] is designed to work in an offline configuration to mitigate washout of the contained pollutants and should be installed in sequence immediately following an SDS Aqua–Swirl[™] unit. It is able to deal with large volume surface water runoff, removing very fine silts and dissolved pollutants that are contained in the initial flush. The treatment flow rate of the SDS Aqua–Filter[™] system is engineered to meet or exceed the local water quality treatment criteria and form an intrinsic part of the SuDS solution train.

- \rightarrow No moving parts
- ightarrow HDPE plastic construction
- ightarrow Twin access manholes
- ightarrow Small footprint design
- ightarrow Filtration media supplied in bags
- ightarrow Available in a range of lengths
- ightarrow Lifting eyelets and handling cables
- ightarrow Bespoke sizing available

sdslimited.com

Features	Benefits
Manufactured from HDPE with no moving parts.	Offers a durable, light weight and low cost alternative to concrete. Easy and quick to install resulting in substantial cost savings.
Large volume treatment capacity.	Can be sized for connection to more than one SDS Aqua-Swirl™.
Twin access manholes with built-in ladder.	Provides easy access to recovered sediments and filtration elements.
Small footprint design.	Reduces ground excavation and product installation costs.
Dedicated filtration media supplied in small bags.	Suitable to each type of pollutant including small suspended particles, nutrients, heavy metals, hydrocarbons and poly aromatic hydrocarbons.
Lifting eyelets.	Easy installation without the need for expensive heavy machinery.
Available in a range of lengths.	Can be used in a variety of water quality filtration flows.
Bespoke units can be manufactured.	Satisfies even the most demanding installations.

SPECIFICATIONS

SDS Aqua-Filter™ model	Number of Filter Rows	Filtration Treatment Tank length metres	Filter Media m²	Filtration Rate litres/sec
AF-X.1	1	2.9	0,72	14
AF-X.2	2	3.7	1.44	28
AF-X.3	3	4.4	2.16	43
AF-X.4	4	5.1	2.88	57
AF-X.5	5	5.7	3.60	71
AF-X.6	6	6.4	4.32	85
AF-X.7	7	7.2	5.04	99
AF-X.8	8	7.9	5.76	113
AF-X.9	9	8.6	6.48	127
AF-X.10	10	9.3	7.20	141
AF-X.11	11	10.0	7.92	155
AF-X.12	12	10.9	8.64	169

Note: Values above are approximate and may change without notice. For assistance in design and specific sizing using historical rainfall data, please contact SDS. CAD details and specifications are available on request.

A-F DS/0516

sdslimited.com

Mitigation Indices:

Device	Total suspended solids mitigation	Total metals mitigation index	Soluble metals mitigation index ¹	Hydrocarbons ³
	index	5	U	
Aquaswirl™ vortex grit separator	0.8	0.54	The Aquaswirl™ is not designed to remove soluble pollutants	0.7 ³
Aquafilter™ stormwater filtration unit	0.8	0.9	0.6	0.9 ³
Aquaswirl™ and Aquafilter™ in sequence	1.2 ²	0.9	0.6	1.1 ^{2,3}

¹ When drainage schemes are designed for road developments in accordance with the Design Manual for Roads and Bridges, the mitigation index for soluble metals is required because particulate metals are considered separately in the total suspended solids assessment

² When designing in accordance with the SuDS Manual (Ciria C753), when two devices are used in sequence to target the same pollutant, half of the mitigation index of the second component should be allowed in the calculation.

³ The test procedures applied to manufactured treatment devices do not include measurement of hydrocarbon removal. Therefore, we have estimated that the Aquaswirl[™] removes free-phase hydrocarbons by flotation, and also removes hydrocarbons that are adhered to suspended solids. However, hydrocarbons are known to preferentially adhere to the smaller particles so the Aquafilter[™] will remove a higher proportion of those hydrocarbons as it is more effective at removing smaller suspended particles.

⁴ Where metals are present in the runoff in particulate form, particularly from vehicle emissions, the Aquaswirl[™] will effectively remove those particles in admixture with other suspended solids.