

© Crown Copyright 2022 UK OFFICIAL

Intelligent Ship Artificial

Intelligence Network

(ISAIN)

Progeny Task 25: WP 2.1

Admin Guide

Issue: 2.2

Document Reference: SSL/11145/DOC/0006

© Crown Copyright 2022 ii UK OFFICIAL

Conditions of Supply - Full Rights

The document is supplied to MOD as a FULL RIGHTS VERSION under the terms of DEFCON 703 (Edn 11/02),

with ownership of the outputs herein vested in the Authority.

© Crown Copyright 2022 iii UK OFFICIAL

Authorisation

Role Name(s)

Author Jacob Pennels, Ian Brandon, Ross Walker

Reviewed Carl Froom

Authorised for Release David Wales

Distribution

Copy Number(s) Recipient

1 Dstl

2 CGI

Revision History

Version Date Author Description

0.1 09/03/2020 Jacob Pennels Initial draft

0.2 29/05/2020 Carl Froom Minor updates

0.3 01/06/2020 Jacob Pennels Updated to reflect latest functionality

0.4 04/06/2020 Carl Froom Updated during review

0.5 05/06/2020 Danny Saggo Updated during review

1.0 05/06/2020 Carl Froom Initial Release

2.0 08/02/2022 Ross Walker Updated to reflect status at delivery of Phase 2

2.1 05/04/2022 Ross Walker Updated installation procedure for ELK

2.2 13/06/2022 Carl Froom
Replaced references to IDDC goal decomposer with IDDC Dataflow
Inferrer

© Crown Copyright 2022 iv UK OFFICIAL

Table of contents

1 Introduction __ 1

1.1 BACKGROUND __ 1

1.2 PURPOSE __ 1

1.3 REFERENCES __ 1

2 Overview ___ 2

3 Software Stack __ 3

4 Installation ___ 4

5 ApacheDS __ 6

5.1 OVERVIEW ___ 6

5.2 DEFAULT USERS & GROUPS__ 6

5.3 USER CONFIGURATION __ 7

5.3.1 LDIF FILE ___ 7

5.3.2 MANUAL CONFIGURATION __ 9

6 Console ___ 11

6.1 OVERVIEW __ 11

6.2 INITIAL CONFIGURATION __ 11

6.3 CONFIGURING TABS __ 13

7 Apache NiFi ___ 16

7.1 OVERVIEW __ 16

7.2 POLICY MANAGEMENT ___ 16

7.3 VARIABLE CONFIGURATION ___ 16

7.4 NETWORKED (HOOTL) AND NON-NETWORKED (HITL) CONFIGURATION ___________ 17

7.5 SIMULATION ENVIRONMENT ___ 17

8 Elastic Stack ___ 18

8.1 ADDING A NEW COMPONENT __ 18

9 ISAIN Dynamic Dataflow Configuration (IDDC) __________________________________ 20

10 AI Integration __ 22

10.1 OVERVIEW __ 22

10.2 AI INTEGRATION ___ 22

10.2.1 AI INPUT/OUTPUT FORMAT __ 22

10.2.2 AI COMMUNICATION METHODS __ 23

10.2.2.1 DDS __ 24

11 Real Time Troubleshooting___ 26

11.1 OVERVIEW __ 26

11.2 NIFI __ 26

11.3 KIBANA ___ 28

11.4 RESETTING THE NETWORK__ 29

© Crown Copyright 2022 v UK OFFICIAL

12 Post Scenario analysis ___ 31

Appendix A - Glossary ___ 33

Appendix B – Example LDIF File ___ 34

© Crown Copyright 2022 1 UK OFFICIAL

1 Introduction

1.1 Background

The Defence Science and Technology Laboratory (DSTL) has embarked on an Intelligent Ship programme, which

will revolutionise ship design by harnessing automation and artificial intelligence to transform naval doctrine.

The Intelligent Ship Artificial Intelligence Network (ISAIN) will provide DSTL with a framework to support a

programme of experimentation with Artificial Intelligence (AI) collaboration and human-machine teaming. This will

act as a ‘playground’ for AIs: a ‘sandpit’ to support inter-relationships between applications and human users, with

the focus on demonstrating innovative, challenging and revolutionary concepts and opportunities

1.2 Purpose

This document describes the process of installing, configuring, monitoring and troubleshooting the ISAIN

application, and is aimed at the administrator of the system. The guide will cover all aspects of the application and

includes all steps that need to be taken to ensure the application runs correctly and as expected.

1.3 References

ID Reference Title Version Date

1 SSL/11145/DOC/0004 ISAIN Developer Guide 4.0 08/02/2021

2
 AdLink OpenSplice Community Edition (https://github.com/ADLINK-

IST/opensplice)
N/A

undated

Table 1: References

https://github.com/ADLINK-IST/opensplice
https://github.com/ADLINK-IST/opensplice

© Crown Copyright 2022 2 UK OFFICIAL

2 Overview
ISAIN provides a network across which disparate ship systems and AIs can communicate and coordinate

alongside human operators, who monitor and make decisions when required. Figure 2 shows the layout of the

network. This guide explains the installation process for the entire network, as well as how to configure the NiFi

flow, the console, the LDAP server and users and how to use the Kibana UI, to analyse and understand the logs

produced by the network at all points.

Figure 1: Architecture overview

© Crown Copyright 2022 3 UK OFFICIAL

3 Software Stack
ISAIN is built upon the 3rd party applications listed in Table 2.

Name Version URLs

Apache NiFi 1.11.2
https://nifi.apache.org
https://nifi.apache.org/docs/html

Apache Zookeeper 3.5.6 https://zookeeper.apache.org

ApacheDS 2.0.0.AM25 https://directory.apache.org

Apache Directory Studio 2.0.0.v20180908-M14 https://directory.apache.org/studio

MongoDB 4.2.3 https://www.mongodb.com

MongoDB Compass Community 1.20.5 https://www.mongodb.com/products/compass

Docker 18.09.7 https://www.docker.com

Elastic Stack (Elasticsearch,
Logstash, Kibana and Filebeat)

7.6.0
https://www.elastic.co
https://www.elastic.co/guide

Fast Downward 20.06 https://www.fast-downward.org

Table 2: Software stack

https://nifi.apache.org/
https://nifi.apache.org/docs/html
https://zookeeper.apache.org/
https://directory.apache.org/
https://directory.apache.org/studio
https://www.mongodb.com/
https://www.mongodb.com/products/compass
https://www.docker.com/
https://www.elastic.co/
https://www.elastic.co/guide
https://www.fast-downward.org/

© Crown Copyright 2022 4 UK OFFICIAL

4 Installation
ISAIN consists of a number of Docker containers and has been tested on Centos 7.6.1810 and Ubuntu 18.04.

Through the use of Docker, ISAIN should also be able to run on Windows 10 and Windows Server 2016, however

this has not been tested and as such, this guide assumes a Centos or Ubuntu installation

To install and run ISAIN, follow these steps:

1. Install Docker (www.docker.com) and Docker Compose (docs.docker.com/compose) either by installing

from the Centos/Ubuntu package repositories or by downloading from www.docker.com

2. Ensure that user namespaces have not been enabled in the Docker configuration file

/etc/docker/daemon.json ISAIN uses host networking which is incompatible with user namespaces

3. Load each of the Docker images. These are supplied on the USB ISAIN_2_DEL, within docker-

images.zip. There are 17 files to load, which can be done using a single command inside the ‘docker-

images’ folder:

for a in `ls`; do docker load –i $a; done;

4. On USB extract deployment-ISAIN-ELK.zip into ‘/opt’ and run these commands to correctly set file

permissions:

 sudo cd /opt

 sudo tar xvf deployment-ISAIN-ELK.tar.gz

 sudo chmod –R 777 /opt/isain

 sudo chown –R [NON-ROOT-USER]:[NON-ROOT-GROUP] /opt/isain

5. Move ELK to a separate directory:

 sudo mkdir /opt/elk

 sudo cd /opt/isain/elk

 sudo mv elasticsearch/ kibana/ logstash/ nginx/ docker-compose.yml /opt/elk/

If ELK is on a separate server, move ‘/opt/elk’ there

 sudo chmod –R 777 /opt/elk

 sudo chown –R [NON-ROOT-USER]:[NON-ROOT-GROUP] /opt/elk

6. Ensure Nginx ‘proxy_pass’ IP addresses correspond to the server they are installed on:

 /opt/isain/nginx/conf/default.conf

7. Navigate to /opt/isain and run:

 docker-compose up –d

This will start the full ISAIN stack in detached mode.

8. Set-up Kibana by insuring all IP addresses correspond to the correct server hosting ELK in:

 /opt/elk/kibana/config/kibana.yml

 /opt/elk/nginx/conf/default.conf

9. Navigate to /opt/elk and run:

 docker-compose up –d

This will start ELK in detached mode.

© Crown Copyright 2022 5 UK OFFICIAL

10. Open Kibana in web-browser at http://localhost:5061/

 If a ‘first-time’ pop-up displays click “explore on my own”

 Click [≡] symbol in top-left to show menu

 Navigate to “Analytics” “Canvas”

 Drag “canvas.json” file onto screen (USB: ISAIN/Kibana/canvas.json)

 Click [≡] symbol in top-left to show menu

 Navigate to “Management” “Stack Management”

 In new menu navigate to “Kibana” “Saved Objects”

 On right-side import “dashboard.ndjson” (USB: ISAIN/Kibana/dashboard.json)

11. Kibana Dashboard and Canvas available in [≡] menu under “Analytics”

The containers use the host’s network when running, and this can lead to possible conflicts with other

applications. When first starting the network, monitor the logs for any of these errors, and consult the Docker

Compose documentation for how to solve any conflicts. The containers also use their own hostname, ‘isain-svr’,

which can be used to reference other containers. This keeps the network contained and stops interference with

outside applications, and it is best practise to use this value if possible when configuring.

http://localhost:5061/

© Crown Copyright 2022 6 UK OFFICIAL

5 ApacheDS

5.1 Overview

LDAP is a commonly used protocol for authentication and authorisation and is used within ISAIN. By default ISAIN

uses ApacheDS at its LDAP server.

5.2 Default Users & Groups

The ApacheDS Docker image comes supplied with a number of default users and groups that allow instant access

to the network. Table 3 shows the default users, and Table 4 shows the default groups. Note that some groups

contain whole groups as members, meaning all the users in that group are also included in the new group.

USERNAME PASSWORD

CO1 CO1password

AWO1 AWO1password

AWO2 AWO2password

PWO1 PWO1password

PWO1 PWO1password

APS1 APS1password

APS2 APS2password

EWD1 EWD1password

EWD2 EWD2password

TPD(A)1 TPD(A)1

Table 3: LDAP Default Users

GROUP NAME MEMBERS

APS APS1, APS2

AWO AWO1, AWO2

PWO PWO1, PWO2

EWD EWD1, EWD2

officers CO1, AWO, PWO

Subsurfacedomain CO1, PWO

Surfacedomain CO1, PWO

Airdomain CO1, PWO, AWO, APS, EWD, TPD(A)1

Table 4: LDAP Default Groups

© Crown Copyright 2022 7 UK OFFICIAL

5.3 User Configuration

5.3.1 LDIF File

The creation of new users and roles can be done through the importing of an LDIF file. This file defines users and

groups, that users can be member of.

The first step is to set up users. Each user has a username and password as well as some required LDAP meta

data. A set of example users is shown in Figure 2.

dn: cn=foo1, ou=isainUsers, o=dstl
objectclass: inetOrgPerson
objectclass: organizationalPerson
objectclass: person
objectclass: top
cn: foo1
description: Foo person 1
sn: foo1
mail: foo1@dstl
userpassword: foo1password

dn: cn=foo2, ou=isainUsers, o=dstl
objectclass: inetOrgPerson
objectclass: organizationalPerson
objectclass: person
objectclass: top
cn: foo2
description: Foo person 2
sn: foo2
mail: foo2@dstl
userpassword: foo2password

dn: cn=bar1, ou=isainUsers, o=dstl
objectclass: inetOrgPerson
objectclass: organizationalPerson
objectclass: person
objectclass: top
cn: bar1
description: Bar person 1
sn: bar1
mail: bar1@dstl
userpassword: bar1password

Figure 2: LDAP Users

The “dn” (distinguished name) field uniquely identifies each user, and contains their common name (cn), their

organisational unit (ou) and their organisation (o). When creating new users and groups for ISAIN, ensure that the

ou value is set as isainRoles and isainGroups respectively, and that the o value is set to dstl. Following this

standard allows new users to work with the initial configuration of the rest of the applications in the network,

allowing the users/groups to be accessed and used instantly. The objectclass fields define meta-data which

ensure the entry is created as a person. It is essential that there is a single white line between each user, as this

defines the end of one user and the beginning of another.

Once the users have been setup, they can be added to groups. Within ISAIN a user is given an ISAIN console

role by adding them to a group. An example of a simple group is shown in Figure 3. The cn field is the name of

the group and users are added to the group using the uniquemember field. It is important that the value of these

fields match the dn field of each user exactly, otherwise the user will not be added. There is no limit to the number

of uniquemember fields. Figure 4 shows a slightly more complex example of a group, where both a user and a

whole group are added to another group. When adding a group to a group, all the members in the original group

will then become members of the new group. This is a quick way of combining users together and can be useful

when wanting to share a permission over several groups whilst keeping certain permissions separate.

© Crown Copyright 2022 8 UK OFFICIAL

dn: cn=foo, ou=isainGroups, o=dstl
objectclass: top
objectclass: groupofnames
cn: foo
description: a group of all foo users
uniquemember: cn=foo1, ou=isainUsers, o=dstl
uniquemember: cn=foo2, ou=isainUsers, o=dstl

Figure 3: LDAP simple group

dn: cn=everyone, ou=isainGroups, o=dstl
objectclass: top
objectclass: groupofnames
cn: everyone
description: a group with everyone
uniquemember: cn=foo, ou=isainUsers, o=dstl
uniquemember: cn=foo2, ou=isainUsers, o=dstl
uniquemember: cn=bar, ou=isainGroups, o=dstl

Figure 4: LDAP complex group

For ease when configuring the console application to use the LDAP server, ensure that the value given to ‘ou’ is

the same for all users and groups (in this example, it is ‘isainUsers” and ‘isainGroups’ respectively). It is also

important to keep the value of ‘o’ the same for every object, be it user or group. It is also suggested that a ‘main’

or ‘root’ user is created, to act as the ‘provider’ user when configuring the console. This user shouldn’t have any

special permissions, and simply acts as an authorisation for the console application to connect to the LDAP

server. A complete example LDIF file is shown in Appendix B – Example LDIF File.

Once the file has been created, it must be imported into the LDAP server. This is completed using either Apache

Directory Studio or using 3rd party command line tools (outside the scope of this admin guide). From within

Apache Directory Studio, select File > Import and choose the LDIF into LDAP option. A pop-up window will

appear, as shown in Figure 5.

Figure 5: Apache Directory LDIF Import Window

© Crown Copyright 2022 9 UK OFFICIAL

Use the ‘Browse’ button to select the file, and make sure the ‘Import into’ option is set to the address of the LDAP

server (if running on the same machine, leave as localhost). The ‘Continue on error’ option is best set as it will

ensure that the data is imported, though it may be left off if there are uncertainties about the validity of the data.

When all the options are set, click ‘Finish’ to import the users

5.3.2 Manual Configuration

Using an LDIF file is best suited for adding multiple users and groups to the LDAP server at once, however, if a

single new user or group has to be added, it can also be done manually. This can also be done through Apache

Directory Studio.

First, right click on “Root DSE” and select New > New Entry. This should bring up the window seen in Figure 6.

Figure 6: Apache Directory New Entry creation

Select the ‘Use existing entry as template’ option and select one of the already configured users, the click ‘Next’.

The next screen will display a list of attributes to associate with the new entry (object class, description, etc),

including the attributes associated with the entry used as template. Use the ‘Add’ and ‘Remove’ buttons to select

the relevant attributes for the desired entries, using the examples above to select which attributes are required, as

shown in Figure 7.

Figure 7: Apache Directory attribute selection

© Crown Copyright 2022 10 UK OFFICIAL

Once all the attributes have been selected, click ‘Next’. In the next window, change the cn value for the new entry,

ensuring it is not a duplicate of any existing entries, ensuring the DN Preview updates correctly, as shown in

Figure 8.

Figure 8: Apache Directory DN Configuration

Once the value has been set correctly, and the dn value matches the expected dn for the type of entry being

created, click ‘Next’. The final screen involves setting values for each of the attributes selected earlier. Use the

examples previously to deduce what the value for each attribute should be. Once complete, the window should

look like Figure 9.

Figure 9: Apache Directory Attribute configuration

Finally click ‘Finish’ to complete the process. The new entry will be added to the server, and the credentials can

now be used to enter the console. Ensure that any groups the user should be a part of are also updated following

this same process, but with the Edit Entry wizard. See the online Apache Directory Studio guide for more

information.

To add this new user to an existing group, navigate to the group entry within Apache Directory, and select the Edit

Entry option from the menu. The steps to add the user are the same as some of the previous steps (Figure 7 and

Figure 9). Adding and setting a value for the new attributes is done in the same manner as before, except for

adding a new member, just add a new uniquemember attribute for each new member to add, and set the value for

these attributes to be the dn value for the newly created user. Once this process is complete, the user will be part

of the group, and have the permissions and accesses that the group provides within the console application.

© Crown Copyright 2022 11 UK OFFICIAL

6 Console

6.1 Overview

The console serves as a window into the ISAIN processes, allowing the operator to view the responses made by

each connected AI, as well as providing their own input by deciding which AI response should be fed back into the

network. To facilitate this process, the operator can view the justifications an AI used to arrive at its decision as

well as comparing decisions and justifications from different AIs which have been given the same task.

Figure 10: Console overview

The console is accessed through a web browser using the URL http://<server name>:8085 and will run on

any modern web browser, though Google Chrome is preferred. If the browser supports it, the console is best

viewed using the full screen, as this will ensure the information displayed is clear and understandable to the

operator

6.2 Initial Configuration

To ensure the initial configuration of the console is as simple and straight forward as possible, the configuration is

mostly kept in one file, named application.properties, found in /opt/isain/console/config. Here, configuration exists

for accessing both the LDAP server and MongoDB, as well as setting the addresses for components within the

console and values that are displayed and used on the User Interface (UI) of the console. A majority of the

configuration is set to work with the default components of the network, and only need modifying if substituting in a

new components. However, this section will still cover all this configuration, as well as the other necessary

configuration.

If using the ApacheDS LDAP server and users/groups provided with the ISAIN setup, as explained in section 5, no

changes need to be made to the LDAP configuration. However, if another LDAP server is substituted in, the

© Crown Copyright 2022 12 UK OFFICIAL

corresponding console configuration options must be updated to reflect the changes. There are five properties that

must be configured for the console to properly access the users and groups. They are as follows:

 ldap.provider.url – this is the URL of the LDAP server, of the form ldap://{IP-ADDRESS}:{PORT}.

Ensure that the URL is prepended with ’ldap’, not ‘http’.

 ldap.provider.userdn – this is the user that is used to authenticate and access the server, known as the

‘provider’. The value provided should match the ‘dn’ of the ‘main’ or ‘root’ user created within the LDAP

configuration.

 ldap.provider.password – this is the password of the user being used as the ‘provider’.

 ldap.user.dn.patterns – this defines the query used when finding all the users available. The ‘cn’ value

should be left as ‘{0}’, and the ‘ou’ and ‘o’ values changed to reflect the values set in the configured users.

 ldap.group.search.base – this defines the query used when finding all the groups a user is a part of. The

‘ou’ value should match the ‘ou’ value chosen to represent groups, and the ‘o’ value should match in the

same manner.

Ensure that the security.server.address and ui.server.address are set to the same value, and the IP matches the

IP of the machine running the console docker container. These properties should be of the form

‘http://XXX.XXX.XXX.XXX, where XXX.XXX.XXX.XXX is the machine’s IP address. Changing the ports requires

changing the value in two separate locations. For the UI server, set the ui.server.port value in

application.properties, and server.port in ui.properties, ensuring they are equal. For the security server, set the

security.server.port value in application.properties and the server.port value in security.properties, once again

ensuring they are equal.

The spring.data.mongodb.uri value defines the address of the MongoDB database. If using the default MongoDB

container, then this value does not need changing. However, if a different MongoDB instance is used, this value

will need to be updated. When doing so, ensure that the address is prepended with ‘mongodb://’.

The last set of properties in the file are for the UI. The first, ui.refresh.rate determines the period at which the UI

updates all its values, in seconds. The lower this value, the more often the UI refreshes. However, a lower value

can lead to performance issues, so experimenting with different values is suggested. The default value of 1

second is often sufficient for this purpose.

The nifi.url and kibana.url should be set to the IP address of the machine that the ISAIN network is running on so

that the links within the console reference the correct addresses. When making this change, only change the IP

address – do not change the port number, as this will remain the same.

© Crown Copyright 2022 13 UK OFFICIAL

6.3 Configuring tabs

Each tab on the console displays the data associated with a given domain, be it hostility, damage control, etc.

Whenever an AI is added to the network that will be giving responses in a new domain, a new tab must be

configured to handle and display this domain. Two default tabs are included, and any new tabs must be added to

the ‘tabs’ collection of the ‘isain’ database in the MongoDB database. This can be done either through MongoDB

Compass Community or via the command line with an update script.

Tabs are defined in JSON, a commonly used data format that allows complex structures to be built in an easy to

understand fashion. Figure 11 shows an example tab configuration, showing the fields that need to be set to

correctly configure the tab.

{
 "id": "DAMAGE_CONTROL",
 "title": "Damage Control",
 "domain": "damageControl",
 "exclusive": true,
 "headers": [{
 "displayName": "Condition",
 "key": "condition",
 "selectable": true,
 "aiOptions": {
 "IBIS": [
 "RUNNING",
 "FAULTY",
 "NO POWER"
]
 }
 }, {
 "displayName": "Action",
 "key": "action",
 "selectable": true,
 "aiOptions": {
 "IBIS": [
 "MONITOR",
 "INVESTIGATE",
 "RESET FUSE",
 "EXTINGUISH"
]
 }
 }],
 "selectorKey": "location",
 "authorities: []
}

Figure 11: Example Tab configuration

The tabs are stored in the ‘tabs’ collection of the database, and adding a new tab is as simple as adding a new

entry to this collection.

It is best to create a new tab by copying one of the existing default tabs. This way, all the required fields are

available and just need to be modified accordingly. The required fields and their purpose are:

 “id” – a string that identifies the tab. Must be unique, with no whitespace, but can take any form otherwise.

Convention is that the “id” is equal to the “title”, but capitalised and substituting any white spaces for an

underscore character “_”.

 “title” – the title of the tab, as appears on the console.

 “domain” – the domain of the tab. This must match the domain specified in the NiFi flow configuration to

ensure the correct data is displayed on the console.

© Crown Copyright 2022 14 UK OFFICIAL

 “exclusive” – should be set to either true or false. If true, then confirming one response from an AI for this

domain will automatically veto any other responses in the same group. If false, the operator can confirm

as many responses in a group as they wish.

 “headers” – this contains an array of header objects, which describe how the data specific to the chosen

domain should be interpreted and displayed on the console. The attributes associated with a header are

as follows:

o “displayName” – the name that the column will have for this header.

o “key” – the key of the associated data found in the data specifics for this domain. Must match the

key set in the NiFi configuration.

o “selectable” – this attribute is optional, and if not included, will default to false. If false, then the

operator will not be able to add a custom value for this data, whereas if true, the operator will

have the option to pick a custom option.

o “aiOptions” – this attribute is only required if “selectable” is set to true. This attribute is a list of

possible options for this data, grouped by the AI the options belong to. An example configuration

for this option is shown in Figure 12.

"headers": [{
 "displayName": "Hostility",
 "key": "hostility",
 "selectable": true,
 "selectorType": "OPTIONS",
 "isainOptions": {
 "SYCOIEA": [
 "FRIENDLY",
 "NUETRAL",
 "SUSPECT",
 "HOSTILE"
]
 }
}]

Figure 12: Example headers configuration

 “selectorKey” – the selectorKey refers to an attribute specific to the domain that the responses will be

grouped by. The value must match the attribute, including the same case, for the grouping to work

correctly

 “sortSelector” – if set to true, the selector for this tab on the console will be sorted numerically, in

ascending order.

 “authorities” – an array of the groups that an operator must be a part of to access this tab, as defined in

the LDAP configuration. If left empty, any operator will be able to access the tab. Each role should be

wrapped in quotes “” and will be of the form ROLE_{LDAP-GROUP-NAME}, all in upper-case. Figure 13

shows an example of the format, if the groups configured in the LDAP server are ‘officers’ and ‘airdomain’.

"authorities": [
 "ROLE_OFFICERS",
 "ROLE_AIRDOMAIN"
]

Figure 13: Example authorities configuration

Once creating a new tab, ensure the file is saved correctly. If the console is running, it will need to be restarted

and then the browser refreshed before the changes will take effect. If configured correctly, the new tab should

appear and when data is sent to the domain, it should be displayed as expected. If there are issues with data not

© Crown Copyright 2022 15 UK OFFICIAL

being displayed, then check the tabs configured and ensure they are valid. Most software for accessing MongoDB

databases contain their own validation, and will alert you if something is incorrect. Ensure that all the mentioned

fields are present and match the default tabs provided.

To edit the tab configuration within MongoDB Compass and add a new tab, first connect to the database as

shown in Figure 14.

Figure 14: MongoDB Compass connection

Next select the “tabs” collection and select “ADD DATA -> Insert document” as shown in Figure 15.

Figure 15: MongoDB Compass add document

Alternatively, the new tab can be added to an update script that can be executed on the server running the

MongoDB Docker container as shown in Figure 16.

docker exec -i isain_mongodb_1 mongoimport -c=tabs -d=isain < <tab config file>.json

Figure 16: Running the mongoimport command line tool

The mongoimport command has many other options, such as allowing the import of a JSON array in a file, and

these options can be found with the online mongoimport documentation.

© Crown Copyright 2022 16 UK OFFICIAL

7 Apache NiFi

7.1 Overview

Apache NiFi provides the data transformation and routing that forms the backbone of ISAIN. A NiFi flow routes

input data to the relevant AI(s), passes responses to the console and then feeds the operator’s decision back into

the network. Data packets within NiFi are referred to as FlowFiles, and consist of any number of attributes and the

content block, which can take any number of formats, including JSON, XML, etc. All aspects of these FlowFiles

can be modified and accessed by NiFi Processors, allowing complex transformations of data within the flow.

The provided NiFi flow handles most of the tasks required by default, but some extra configuration is needed to

ensure that certain functions are handled by the flow, especially when adding new AIs. This section will cover the

steps that must be taken to ensure the application works correctly and performs the expected tasks.

The NiFi configuration page can be accessed from either the ISAIN console or directly by entering the NiFi

Uniform Resource Location (URL), which by default is https://<ISAIN HOSTNAME>:18085/nifi. Before continuing,

ensure you are familiar with how to navigate and edit the NiFi flow. For information on how to do this, please refer

to the Apache NiFi User Guide referenced in Table 2: Software stack. A key part of the NiFi User Guide is the

section on Data Provenance, as this will explain how to examine the movement of FlowFiles through any given

processor, which is a useful tool when debugging issues within the network, as being able to view the contents of

the file, and replay its movement through the network can help explain the issue being investigated.

7.2 Policy Management

The NiFi application included with ISAIN is secured using the same LDAP server used for the Console. This

allows control of both access to the application as a whole, as well as providing policies determining how much

users can do within the application.

When accessing the application, the user will be prompted to login, using the same username and password they

used for the Console. Once within the application, policies are separated into two groups: Policies and Access

Policies.

Policies, accessed from the Menu in the top-right of the NiFi interface, define global permissions for users. These

include viewing and modifying the interface, modifying the policies and viewing data in the flow. Access Policies

are defined on a Processor/Processor Group, and control what users can access that particular object. Access

Policies can be configured by right-clicking on the Processor and selecting the ‘Manage Access Policies’ option.

These policies define how users can interact with that particular processor, and must be set along with the global

Policies to allow a user to properly view, modify and query processors and data. It is important to remember that

Access Policies applied to a Processor Group will be shared with all the components existing in that group.

For more information on policies, their management and properties and configuring NiFi to use an LDAP server,

consult the NiFi Administration Guide, which can be found online.

7.3 Variable Configuration

NiFi allows variables to be used to share a particular value across the flow that can be configured from a single

place. The NiFi flow provided has three variables set, defining important values for interacting with the MongoDB

database. If the default MongoDB application provided is used, then these values will not need updating.

However, if a different MongoDB instance is used, these variables will need updating accordingly. They are:

 mongo_uri: this is the address of the MongoDB application. Ensure that when updating, the address is

prepended with ‘mongodb://’. By default this is ‘mongodb://isain-svr:27017’

© Crown Copyright 2022 17 UK OFFICIAL

 mongo_database: this is the database within MongoDB being used. By default this is ‘isain’

 mongo_output_collection: this is the collection that actioned responses are passed to. From here, they

can be fed back into connected AIs. By default this is ‘effectors’

Once these variables are set, the flow will begin using the instance of MongoDB they reference. Whenever adding

new processors, etc, ensure to reference these variables to make changing the values far easier when needed.

7.4 Networked (HOOTL) and Non-Networked (HITL) Configuration

The ISAIN console operates as a HITL buffer between the automatic interactions between AIs. This is to

demonstrate ‘non-networked’ mode, in order to highlight what decision processes ISAIN can remove from the

user. In order to process these interactions, everything is contained within the ‘Console Flows’ processor group in

the ISAIN NiFi flow. ISAIN is by default in ‘networked’ mode and so any communication between AIs is entirely

human out-of-the-loop (HOOTL). As AIs interact automatically, all communication is done entirely within the NiFi

flow. The console simply displays the ‘conformation’ of the interactions between the AIs, with no ability for the use

to veto/confirm themselves.

The management of what is sent to the console from NiFi, and vice versa, the HITL processor group continuously

checks the MongoDB database for any responses that have expired, and automatically confirms/vetoes the

relevant responses according to their grouping and priority.

7.5 Simulation Environment

Virtual Battle Space 3 is currently used as the simulation environment of the real-world, containing the ISAIN ship,

and surrounding vessels. Simulation Gateway obtains the relevant data from the simulation in order to generate

an input of tracks into the network. Each of these tracks has a huge array of attributes that describe every feature

about it, allowing, for example, a connected AI to make an informed decision about its hostility.

Simulation Gateway outputs the system tracks as DDS messages (see Section 10.2.2.1), to be consumed by the

NiFi dataflow and distributed to any connected AIs.

© Crown Copyright 2022 18 UK OFFICIAL

8 Elastic Stack
The Elastic Stack, formerly known as the ELK stack, is a combination of three pieces of software that together

provide a powerful but easy to use way to collate and analyse log files from a huge amount of different

applications. The stack consists of:

 ElasticSearch: Stores the logs sent to the stack, and provides efficient and effective indexing, searching

and analysis tools.

 Kibana: Kibana is a powerful data visualisation tool that makes the most of the tools provided by

ElasticSearch to provide data visualisations for the user to greater understand the data stored. Kibana can

also be used to display the raw logs in an easy to query manner.

 LogStash: Serves as a pipeline to send logs from various input sources to ElasticSearch in an efficient

manner, allowing the balancing of a huge amount of different source.

Along with these components, FileBeat is also used to read in the individual log files of each component of the

network and pass them onto LogStash, which in turn passes them to ElasticSearch.

8.1 Adding a new component

The ElasticStack provided with ISAIN is configured to read and index all the logs from each component. However,

if a new component is needed to be added, then some small amount of configuration is required to pass the logs

into the ElasticStack, with the majority of the changes being made in FileBeat.

The first step is to map the log files into the FileBeat Docker container. This can be done by editing the docker-

compose.xml file used to start/stop the network, found in /opt/isain. An example configuration of the FileBeat

container in this file can be seen in Figure 17.

 filebeat:
 image: 'uk-isain-proj01.rcnet.groupinfra.com:8082/store/elastic/filebeat:7.6.0'
 command: /usr/local/bin/docker-entrypoint --path.logs=/var/log/isain/filebeat
 volumes:
 - /opt/isain/elk/filebeat/filebeat.yml:/usr/share/filebeat/filebeat.yml:z
 - /opt/isain/nifi/logs/:/var/log/isain/nifi:z
 - /opt/isain/mongodb/logs/:/var/log/isain/mongodb:z
 - /opt/isain/elk/kibana/logs/:/var/log/isain/kibana:z
 - /opt/isain/apacheds/logs:/var/log/isain/apacheds:z
 - /opt/isain/elk/logstash/logs:/var/log/isain/logstash:z
 - /opt/isain/zookeeper/logs:/var/log/isain/zookeeper:z
 - /opt/isain/elk/elasticsearch/logs:/var/log/isain/elasticsearch:z
 - /opt/isain/console/logs:/var/log/isain/console:z
 environment:
 - path.logs=/var/log/isain/filebeat
 user: root:root
 network_mode: host
 extra_hosts:

 - "isain-svr:0.0.0.0"

Figure 17: FileBeat Docker Configuration

To map in a new log file / directory, a new entry will need to be added to the ‘volumes’ entry in the configuration.

Following the format of the other entries, including the amount of whitespace. Entries in the table are of the format

<Path to logs/directory on host>:<Path for logs/directory in container>:z. Consult the Docker Compose

documentation for more information. Make sure to remember the path the logs are found in the container, as this

is needed in the next stage of the configuration.

Once the logs have been mapped into the container, FileBeat needs to be configured to detect and send the logs

to LogStash. This configuration is done within the filebeat.yml file, found at /opt/isain/elk/filebeat/filebeat.yml.

© Crown Copyright 2022 19 UK OFFICIAL

Within this file, there is a section called ‘filebeat.inputs’, where logs to read in are defined. An example

configuration can be seen in Figure 18.

filebeat.inputs:
 - type: log
 enabled: true
 paths:
 - /var/log/isain/nifi/nifi-app.log
 - /var/log/isain/nifi/nifi-user.log
 - /var/log/isain/nifi/nifi-bootstrap.log
 fields:
 application: nifi
 fields_under_root: true
 scan_frequency: 5s
 close_inactive: 10m

 - type: log
 enabled: true
 paths:
 - /var/log/isain/mongodb/*.log
 fields:
 application: mongo
 fields_under_root: true
 scan_frequency: 5s

 close_inactive: 10m

Figure 18: FileBeat configuration example

Each entry in the filebeat.inputs list defines where a selection of log files can be found, and sets some important

information before forwarding to LogStash. When adding a new component, it is suggested that a pre-existing

entry be copy and pasted, as this keeps the format correct and saves time, as only a few changes need to be

made. The first is adding entries to the ‘paths’ field for each log file/directory that was mapped in previously. Make

sure the path matches, and use the ‘*’ operator to match all the files in a directory. The second is the ‘application’

field in the ‘fields’ section. This is a custom added field, and should be set to the name of the

application/component. This makes filtering the logs within Kibana easier.

Once the changes have been made, the FileBeat container will need restarting for the changes to be detected and

the logs forwarded.

© Crown Copyright 2022 20 UK OFFICIAL

9 ISAIN Dynamic Dataflow Configuration (IDDC)

The purpose of the ISAIN Dynamic Dataflow Configuration (IDDC) is to better integrate a new AI into ISAIN, via

the NiFi dataflow, which does not require identifying and implementing specific interactions with pre-existing AIs. It

allows ISAIN to automatically determine which AI to invoke from an arbitrary input that conforms to the Planning

Domain Definition Language (PDDL) structure. Preventing the requirement to design strict hard-wired connections

between AIs, allowing for more complex dataflows to be generated automatically.

The IDDC utilises the Fast Downward “domain-independent classical planning system” in order to find the most

appropriate path to route data though ISAIN by taking a ‘domain’ and ‘problem’ description each in the form of a

PDDL configuration. The ‘domain’ represents the set of rules to adhere to, and the ‘problem’ representing the start

and end state.

The IDDC within NiFi is able to consume from a source and route the required data to AIs already within ISAIN.

Currently the IDDC is set to route system tracks taken from Simulation Gateway, which are a representation of the

object within the simulated environment. Significantly more functionality has been incorporated into the dataflow

inferrer, but has not been implemented for this phase of the project.

As an example for routing system tracks, given the below domain and problem files in Figure 19 and Figure 20,

the IDDC is able to consume the Simulation Gateway system track and route it to the required AIs. The IDDC has

a universal input port, and given more domain and problem files the IDDC will be able to route more complex

dataflows though ISAIN automatically.

System Track Domain PDDL
{

“dataflowname": "systemtrack",
"domain":
"(define (domain simpleRouting)
(:predicates (dataItem ?di) (source ?s) (destination ?d) (dataItemAt ?di ?d))
(:action routeDataItemToApplication
 :parameters (?di ?s ?d)
 :precondition (and (dataItem ?di)
 (source ?s)
 (destination ?d))
 :effect (and (dataItemAt ?di ?d))))"
}

Figure 19: Example Domain PDDL entry

System Track Problem PDDL
{
"dataflowname": "systemtrack",
"problem": "(define (problem systemTracksSimple)
(:domain simpleRouting)
(:objects simulationGateway sycoiea knot tacnav systemTrack)
(:init (dataItem systemTrack)
 (source simulationGateway)
 (destination sycoiea)
 (destination knot)
 (destination tacnav)
)
(:goal (and (dataItemAt systemTrack sycoiea)
 (dataItemAt systemTrack knot)
 (dataItemAt systemTrack tacnav)))
)"
}

Figure 20: Example Problem PDDL entry

© Crown Copyright 2022 21 UK OFFICIAL

Figure 21: Example IDDC NiFi flow

© Crown Copyright 2022 22 UK OFFICIAL

10 AI Integration

10.1 Overview

A key feature of ISAIN is the ability to integrate other applications and AIs into the network, including any future

projects. AIs can be added to the network at any point and with minimal configuration, once the integration work is

complete. This section will cover the steps taken to add both AIs and Synthetic Environments to the network.

10.2 AI Integration

When integrating new AIs into the network, there are two features that must be considered:

 AI input/output format

 AI communication methods

It is important that each of these points are met, as only then will the AI interact correctly with the network. Each

point can be achieved via:

1. Existing NiFi processors and ISAIN NiFi extensions; or

2. The addition of new NiFi extensions in combination with (1); or

3. Modification of the AI source code in combination with (1).

This guide only covers using existing NiFi processors and ISAIN NiFi extensions. If the addition of new NiFi

extensions is required, refer to the ISAIN Developer Guide [1].

When integrating, it is good practise to make use of the Processor Groups within NiFi, which allow the creation of

a ‘black box’, where any communication and transformation for the AI are handled away from the main NiFi flow,

with just input and output ports being exposed to access the AI. This method allows AIs, once integrated, to be

connected and disconnected from the network in a consistent manner, meaning system administrators do not

require expert knowledge of how the AI is integrated to understand how to plug the AI into the network.

10.2.1 AI input/output format

The network, where possible, attempts to use common data formats found within the domain of ISAIN, most

commonly the OACS datatypes, such as SystemTrack, etc. Using these standardised formats is beneficial, as it

allows communication between the network and connected applications to be simple and consistent. Most of the

AIs within this domain that will be integrated with ISAIN are most likely already using these datatypes, but if this is

not the case, the input data must be transformed before passing to the AI, and the AI’s output must also be

transformed into the network specific format. Within the network, ISAIN expects data to be in XStream XML, but in

the JSON format.

NiFi can handle this data transformation using either the default NiFi processors the ISAIN

DataConversionProcessor. NiFi includes processors that can be utilised to transform data from one format to

another, such as:

 EvaluateJSONPath – if the content of the FlowFile is in JSON, can be used to move JSON attributes to

FlowFile attributes.

 JoltTransformJSON – uses the Jolt specification to transform in place the FlowFile content, when in

JSON. The Jolt specification allows adding and removing attributes, as well as shifting attributes and other

transformations, and all these transformations can be done at once, making this processor powerful when

dealing with JSON data.

© Crown Copyright 2022 23 UK OFFICIAL

 UpdateAttribute – NiFi includes the NiFi Expression Language, which is a basic set of tools that can

perform numerical, string and boolean transformations on FlowFile attributes, both in place and setting

new attributes. Is useful with EvaluateJSONPath and JoltTransformJSON when a more complex

transformation is required on a JSON attribute.

 ReplaceText – Finds and replaces text within the FlowFile content using a Regular Expression. This

allows either the whole content to be replaced, or only specific parts.

The online resources for these processors are the best source of information on how to utilise them correctly. It is

also worth using the online resources to familiarise with the NiFi Expression Language, as this makes these

processors even more powerful.

The DataConversionProcessor uses convertor classes, implementing a common parent interface, to convert data

from one format to another. This processor can be used at any point, and transforms the input data, in JSON, to

another format, which is also outputted as JSON. This processor is ideal for making complex transformations in a

single operation instead of chaining together multiple processors. As mentioned previously, the

DataConversionProcessor expects input in XStream XML as JSON. For information on how to create new

convertors and import them into NiFi, refer to the ISAIN Developer Guide [1].

When integrating with the NiFi flow, all responses must be sent to the AI Responses input port of the Console

Flows processor group provided with ISAIN. Before data is routed here, it is essential that a number of attributes

are set on the FlowFile beforehand. These attributes can be set using a combination of EvaluateJsonPath and

UpdateAttribute processors. The attributes are as follows:

 ai: the name of the agent who made the response.

 analysisData: any justification data provided by the agent to explain its decision – must be in JSON

format.

 inputData: the input data provided for the responses – must be in JSON format.

 dataSpecifics: this is the response itself, including the ‘selector’ field and value, as well as any other

important information associated with the data. Must be in JSON format.

 domain: the domain the response is in, should match the domain value of the corresponding tab.

 teaming: the automation the agent is in, either HITL or HOOTL.

 timeRequested: a timestamp (milliseconds since epoch) of when the request was made to the agent.

 timeReceived: a timestamp (milliseconds since epoch) of when the response was received.

 ttc: Time To Confirm. A timestamp (milliseconds since epoch) of when the response should be actioned.

Due to the bug referenced in USER GUIDE if running in HITL, the ttc is set to 15 minutes so the user will

have time to action a decision before an automatic conformation

10.2.2 AI communication methods

NiFi, by default, includes a number of input and output processors capable of communicating across a range of

common protocols including, amongst other, REST, AMQP and JMS. If for example the AI being integrated uses a

RESTful interface, the InvokeHTTP processor can be used to called the AI’s endpoints and pass the response

back to the network

Where an AI is to be integrated into ISAIN and none of the supplied NiFi input and output processors are suitable,

custom processors can be added to NiFi. Refer to the ISAIN Developer Guide [1] for details.

© Crown Copyright 2022 24 UK OFFICIAL

10.2.2.1 DDS

In addition to the standard NiFi processors, ConsumeDDS and Publish DDS input and output processors have

been added to subscribe and publish to DDS topics, using the OpenSplice DDS implementation. As DDS is a

cross vendor industry standard, these processors should work regardless of the DDS vendor used by the AI. The

data type and QOS profile names are specified as properties on the processors allowing for multiple DDS

connections across different DDS domains and topic. An example of the DDS properties is show in Figure 22.

Figure 22: NiFi DDS processor properties

The QOS profiles are defined within the XML file /opt/nifi/nifi-current/ USER_QOS_PROFILES.xml within the NiFi

Docker container. This file can be updated either by replacing it with a new version using the command shown in

Figure 23, or by overriding it with a file on the Docker host by updating the docker-compose.yml file as shown in

Figure 24. Both options will require ISAIN to be restarted by executing

docker-compose down

docker-compose up –d

within the /opt/isain directory.

docker cp <path to new QOS file> isain_nifi_1:/opt/nifi/nifi-current/USER_QOS_PROFILES.xml

Figure 23: Running the mongoimport command line tool

© Crown Copyright 2022 25 UK OFFICIAL

nifi:
 image: 'uk-isain-proj01.rcnet.groupinfra.com:8082/isain/nifi:20200526.1'
 logging:
 driver: "json-file"
 options:
 max-file: "5"
 max-size: "10m"
 volumes:
 - /opt/isain/nifi:/home/nifi:z
 - /opt/isain/nifi/logs:/opt/nifi/nifi-current/logs:z
 - /opt/isain/nifi/database_repository:/opt/nifi/nifi-current/database_repository:z
 - /opt/isain/nifi/content_repository:/opt/nifi/nifi-current/content_repository:z
 - /opt/isain/nifi/flowfile_repository:/opt/nifi/nifi-current/flowfile_repository:z
 - /opt/isain/nifi/provenance_repository:/opt/nifi/nifi-current/provenance_repository:z
 - /opt/isain/nifi/state:/opt/nifi/nifi-current/state:z
 - /opt/isain/nifi/conf:/opt/nifi/nifi-current/conf:z
 - /opt/isain/nifi/lib_custom:/opt/nifi/nifi-current/lib_custom:z
 - /opt/isain/nifi/USER_QOS_PROFILES.xml:/opt/nifi/nifi-current/ USER_QOS_PROFILES.xml:z
 environment:
 HOME: '/home/nifi'
 NIFI_CLUSTER_IS_NODE: 'true'
 NIFI_CLUSTER_ADDRESS: 'isain-svr'
 NIFI_CLUSTER_NODE_PROTOCOL_PORT: '18083'
 NIFI_ZK_CONNECT_STRING: 'isain-svr:2181'
 NIFI_ELECTION_MAX_CANDIDATES: '1'
 network_mode: host
 hostname: "isain-svr"
 extra_hosts:
 - "isain-svr:0.0.0.0"
 depends_on:
 - apacheds
 - mongodb
 - zookeeper

Figure 24: Mapping in a custom USER_QOS_PROFILES.xml

Refer to the ISAIN Developer Guide [1] for details on how to add a new DDS datatype, and the AdLink Opensplice

Community Edition documentation [2] for how to configure the USER_QOS_PROFILES.xml file.

© Crown Copyright 2022 26 UK OFFICIAL

11 Real Time Troubleshooting

11.1 Overview

When integrating a new AI or application within ISAIN, it is likely that errors will occur. Therefore, it is important

that a number of tools are available to monitor, analyse and move towards fixing these issues as they occur. This

section will cover how to use both NiFi and Kibana to complete these tasks, utilising their functionality to build the

best picture of the issues as possible.

11.2 NiFi

Out of the box, NiFi provides a selection of tools and techniques that can be used to monitor and find any issues

within the flows and processors. The first of this is the Bulletin Board. This can be accessed by clicking on the

menu icon in the top-right of the NiFi display and selecting the ‘Bulletin Board’ option. This brings up the

window shown in Figure 25.

Figure 25: Apache NiFi Bulletin Board

Any errors that occur within the network are logged here, with the most recent appearing at the top of the list. If

the network does not seem to be working correctly, but the location of the error is not clear, this is the best place

to start, as it will display all error messages along with the location, allowing the issues to be found. Processors

with errors, or Processor Groups which contain Processors with errors, are marked with the icon , clearly

showing where the issue is. Hovering over the marker with the mouse pointer will display the error messages

being produced.

Once the source of an issue has been identified, NiFi provides more tools to understand the data passing through

that part of the network, and move towards identifying and fixing the issue, using the error message to understand

even further. The first is being able to view the FlowFiles in queues. To do this, right click on the connection queue

and select the ‘List Queue’ option as shown in Figure 26. A list of all the FlowFiles in the queue will be displayed,

along with information about when they arrived, and access to the actual contents and attributes of the FlowFile.

© Crown Copyright 2022 27 UK OFFICIAL

This is particularly useful if the queue is backed up, as it can give an insight as to the contents of the data and why

the processor may be rejecting them.

Figure 26: Viewing a NiFi connection queue

Another similar technique is viewing the Data Provenance of a processor. This can be achieved by right clicking

on any processor and selecting the ‘Data Provenance’ option. This will show a list of events that have occurred

within the processor, as shown in Figure 27.

© Crown Copyright 2022 28 UK OFFICIAL

Figure 27: Apache NiFi Data Provenance display

By clicking the icon on the left of each row, a new window will open displaying all the data associated with the

event, including the FlowFile attributes with modified attributes highlighted, and its content, which can be viewed

before and after the processors execution. This provides clear picture of what the processor has done at that

particular point in time. This tool is invaluable in understanding what the flow is doing at each stage, and can be

used to find and fix issues as they appear.

11.3 Kibana

Kibana forms part of Elastic Stack, a tool used to collate entries from a number of disparate log files and store

them in a single location to enable easy searching and viewing of log entries. Kibana is an analysis and

visualisation tool used to display these logs in an understandable but informative manner, and as such it plays an

important role in the real time troubleshooting of the network. Kibana can be accessed via the Console, by

selecting the ‘Kibana’ option from the menu in the top left of the console, and provides a number of ways to

narrow down the data available. Kibana is a more suitable troubleshooting tool when the perceived issue exists in

one of the components of the network, not the NiFi network itself, where NiFi’s tools are more suitable.

Within Kibana, navigate to the ‘Discover’ page. If Kibana says that no indexes exist, follow the instructions

provided to create one. If using the default setup, then the matching pattern is best set as ‘filebeat-*’. Refer to the

Kibana documentation for further instructions using the URL in Table 2. This page looks like Figure 28, and is the

best place to begin troubleshooting issues.

© Crown Copyright 2022 29 UK OFFICIAL

Figure 28: Kibana Discover page

Along the top of the screen is a search bar, where custom queries can be written and computed, and a time filter,

allowing logs for a particular period of time to be retrieved. Along the left hand side of the page are a number of

fields that can be used to filter the log entries. These filters can be built up to filter the data more narrowly. The list

of log entries that match these criteria are displayed in the centre of the screen, with a graph showing the

frequency of entries at different periods of time.

The search bar can be used to make plain-text searches, which can be used to find log entries that match a

particular query. Below the search bar, filters can be added on any of the number of attributes available. The

‘application’ field added earlier is especially useful to filter on when troubleshooting. The ‘Available fields’ column

along the left-hand side of the page can be used to change what is shown. For example, selecting and adding the

‘message’ field will only show the message in the display, with no other data cluttering the view. This option is also

very useful for troubleshooting, as it allows a clear view of the message.

11.4 Resetting the network

It can be useful to clear all the logs and data currently stored in the network between runs. This can be achieved

by deleting certain directories/files containing logs and other data that may cause unexpected behaviour in the

next run.

The first step is to stop all the containers currently running, this is done by running the ‘docker-compose down’

command in /opt/isain. After the network has been stopped, delete all the logs found in these locations:

 /opt/isain/console/logs/

 /opt/isain/nifi/logs/

 /opt/isain/zookeeper/logs/

 /opt/isain/zookeeper/data/

 /opt/isain/mongodb/logs/

© Crown Copyright 2022 30 UK OFFICIAL

 /opt/isain/elk/elasticsearch/logs/

 /opt/isain/elk/logstash/logs/

 /opt/isain/elk/kibana/logs/

To remove all the provenance and FlowFile data from NiFi, delete these directories as well:

 /opt/isain/nifi/flowfile_repository

 /opt/isain/nifi/provenance_repository

 /opt/isain/nifi/content_repository

 /opt/isain/nifi/database_repository

Once all these directories/files have been deleted, the network can be restarted and will not contain any data from

any previous runs. Steps taken before may have to be taken again, like re-importing the NiFi template, or adding

indexes to Kibana, so make sure any relevant backups are made and saved before clearing this data.

© Crown Copyright 2022 31 UK OFFICIAL

12 Post Scenario analysis
After an experiment/scenario is completed, it is important that the results can be analysed. To achieve this, the

same techniques used in the previous section on real time troubleshooting can be used. NiFi’s Data Provenance

view can be used to understand the actions of a particular processor, possible uncovering issues that led to

unexpected behaviour throughout the run, as well as simply analysing how the network handled the inputs and

outputs from the Console, AIs and Synthetic Environments. The route these events made throughout the network

can be viewed using the icon on the provenance event, which displays a graph of the route that particular

FlowFile followed, both prior to and after it arrived at the current processor. This can be invaluable in

understanding and analysing how the network handles different types of data.

The same can be said for Kibana. The techniques described previously can be used to collate and analyse the

logs of all the components of the network, allowing an understanding of each components actions to be made.

The Console Event Log can be used in tandem with Kibana to understand how AI Responses were handled

during the scenario. The entries in the Console Event Log can also be found in Kibana, as they are written to the

NiFi log file, and the log files entries contain more information about the event, such as all the attributes

associated with the response or interaction, so Kibana should be used in place for the Console Event Log if a

deeper understanding is required.

© Crown Copyright 2022 32 UK OFFICIAL

APPENDICES

© Crown Copyright 2022 33 UK OFFICIAL

Appendix A - Glossary
Acronym Description

AI Artificial Intelligence

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

DDS Data Distribution Service

Dstl Defence Science and Technology Laboratory

HITL Human In The Loop

HOOTL Human Out Of The Loop

HOTL Human On The Loop

ISAIN Intelligent Ship Artificial Intelligence Network

JMS Java Message Service

JSON JavaScript Object Notation

LDAP Lightweight Directory Access Protocol

OACS Open Architecture Combat System

REST REpresentational State Transfer

SADM Ship Air Defence Model

UI User Interface

URL Uniform Resource Locator

© Crown Copyright 2022 34 UK OFFICIAL

Appendix B – Example LDIF File

File rnusers.ldif

dn: cn=AWO1,ou=isainUsers,o=dstl
objectclass: inetOrgPerson
objectclass: organizationalPerson
objectclass: person
objectclass: top
cn: AWO1
description: Air Warfare Officer account one
sn: AWO1
mail: AWO1@dstl
userpassword: AWO1password

dn: cn=AWO2,ou=isainUsers,o=dstl
objectclass: inetOrgPerson
objectclass: organizationalPerson
objectclass: person
objectclass: top
cn: AWO2
description: Air Warfare Officer account two
sn: AWO2
mail: AWO2@dstl
userpassword: AWO2password

dn: cn=PWO1,ou=isainUsers,o=dstl
objectclass: inetOrgPerson
objectclass: organizationalPerson
objectclass: person
objectclass: top
cn: PWO1
description: Principal Warfare Officer account one
sn: PWO1
mail: PWO1@dstl
userpassword: PWO1password

dn: cn=PWO2,ou=isainUsers,o=dstl
objectclass: inetOrgPerson
objectclass: organizationalPerson
objectclass: person
objectclass: top
cn: PWO2
description: Principal Warfare Officer account two
sn: PWO2
mail: PWO2@dstl
userpassword: PWO2password

dn: cn=CO1,ou=isainUsers,o=dstl
objectclass: inetOrgPerson
objectclass: organizationalPerson
objectclass: person
objectclass: top
cn: CO1
description: Commanding Officer account two
sn: CO1
mail: CO1@dstl
userpassword: CO1password

dn: cn=TPD(A)1,ou=isainUsers,o=dstl
objectclass: inetOrgPerson
objectclass: organizationalPerson
objectclass: person
objectclass: top
cn: TPD(A)1
description: Air Tactical Picture Director account one

© Crown Copyright 2022 35 UK OFFICIAL

sn: TPD(A)1
mail: TPD(A)1@dstl
userpassword: TPD(A)1password

dn: cn=APS1,ou=isainUsers,o=dstl
objectclass: inetOrgPerson
objectclass: organizationalPerson
objectclass: person
objectclass: top
cn: APS1
description: Air Picture Supervisor account one
sn: APS1
mail: APS1@dstl
userpassword: APS1password

dn: cn=EWD1,ou=isainUsers,o=dstl
objectclass: inetOrgPerson
objectclass: organizationalPerson
objectclass: person
objectclass: top
cn: EWD1
description: Electronic Warfare Director account one
sn: EWD1
mail: EWD1@dstl
userpassword: EWD1password

dn: cn=APS2,ou=isainUsers,o=dstl
objectclass: inetOrgPerson
objectclass: organizationalPerson
objectclass: person
objectclass: top
cn: APS2
description: Air Picture Supervisor account two
sn: APS2
mail: APS2@dstl
userpassword: APS2password

dn: cn=EWD2,ou=isainUsers,o=dstl
objectclass: inetOrgPerson
objectclass: organizationalPerson
objectclass: person
objectclass: top
cn: EWD2
description: Electronic Warfare Director account two
sn: EWD2
mail: EWD2@dstl
userpassword: EWD2password

dn: cn=AWO,ou=isainRoles,o=dstl
objectclass: top
objectclass: groupofnames
cn: AWO
description: Air Warfare Officers
member: cn=AWO1,ou=isainUsers,o=dstl
member: cn=AWO2,ou=isainUsers,o=dstl

dn: cn=PWO,ou=isainRoles,o=dstl
objectclass: top
objectclass: groupofnames
cn: PWO
description: Principal Warfare Officers
member: cn=PWO1,ou=isainUsers,o=dstl
member: cn=PWO2,ou=isainUsers,o=dstl

dn: cn=APS,ou=isainRoles,o=dstl
objectclass: top
objectclass: groupofnames
cn: APS
description: Air Picture Supervisors

© Crown Copyright 2022 36 UK OFFICIAL

member: cn=APS1,ou=isainUsers,o=dstl
member: cn=APS2,ou=isainUsers,o=dstl

dn: cn=EWD,ou=isainRoles,o=dstl
objectclass: top
objectclass: groupofnames
cn: EWD
description: Electonic Warfare Directors
member: cn=EWD1,ou=isainUsers,o=dstl
member: cn=EWD2,ou=isainUsers,o=dstl

dn: cn=officers,ou=isainRoles,o=dstl
objectclass: top
objectclass: groupofnames
cn: officers
description: officer personnel
member: cn=PWO,ou=isainRoles,o=dstl
member: cn=AWO,ou=isainRoles,o=dstl
member: cn=CO1,ou=isainUsers,o=dstl

dn: cn=airdomain,ou=isainRoles,o=dstl
objectclass: top
objectclass: groupofnames
cn: airdomain
description: operators in the air domain
member: cn=AWO,ou=isainRoles,o=dstl
member: cn=PWO,ou=isainRoles,o=dstl
member: cn=CO1,ou=isainUsers,o=dstl
member: cn=TPD(A)1,ou=isainUsers,o=dstl
member: cn=APS,ou=isainRoles,o=dstl
member: cn=EWD,ou=isainRoles,o=dstl

dn: cn=surfacedomain,ou=isainRoles,o=dstl
objectclass: top
objectclass: groupofnames
cn: surfacedomain
description: operators in the surface domain
member: cn=PWO,ou=isainRoles,o=dstl
member: cn=CO1,ou=isainUsers,o=dstl

dn: cn=subsurfacedomain,ou=isainRoles,o=dstl
objectclass: top
objectclass: groupofnames
cn: subsurfacedomain
description: operators in the sub-surface domain
member: cn=PWO,ou=isainRoles,o=dstl
member: cn=CO1,ou=isainUsers,o=dstl

