

© Crown Copyright 2020 UK OFFICIAL

Intelligent Ship Artificial

Intelligence Network

(ISAIN)

Progeny Task 25: WP 2.1

Developer Guide

Issue: 4.0

Document Reference: SSL/11145/DOC/0004

© Crown Copyright 2020 ii UK OFFICIAL

Conditions Of Supply - Full Rights

The document is supplied to MOD as a FULL RIGHTS VERSION under the terms of DEFCON 703 (Edn 11/02),

with ownership of the outputs herein vested in the Authority.

© Crown Copyright 2020 iii UK OFFICIAL

Authorisation

Role Name(s)

Author Carl Froom, Jacob Pennels, Ross Walker

Reviewed Mark Burnett, Emlyn Purvis, James Bloor, Adam Mo, Matt Fisher

Authorised for Release Mark Burnett

Distribution

Copy Number(s) Recipient

1 Dstl

2 CGI

Revision History

Version Date Author Description

0.1 27/02/2020 Carl Froom Initial draft

0.2 25/03/2020 Carl Froom, Jacob Pennels Updated after internal review

0.3 04/05/2020 Carl Froom Updated after internal review; Completed section 10

0.4 05/05/2020 Carl Froom Updated after internal review; Added section 5.4

1.0 06/05/2020 Carl Froom Added section 10.1.1; Initial release

1.1 29/05/2020 Carl Froom Added section 5

2.0 05/05/2020 Carl Froom Added section 11.1.2; Updated after internal review

3.0 13/07/2020 Carl Froom
Added references to the OACS and OARIS data formats as part of
ISAIN data format in section 2 and 5; Updated the architecture
overview diagram in section 2; Added appendices C and D

4.0 08/02/2022 Ross Walker Updated to reflect status at delivery of Phase 2

© Crown Copyright 2020 iv UK OFFICIAL

Table of contents

1 Introduction __ 1

1.1 BACKGROUND __ 1

1.2 PURPOSE __ 1

1.3 REFERENCES __ 1

2 Overview ___ 2

3 Software Stack __ 3

4 Source Code Repositories __ 4

5 AI/Ship System Integration Overview ___ 5

6 NiFi ___ 7

6.1 CUSTOM PROCESSORS __ 7

6.2 APPLICATION INTERFACES___ 7

6.3 DATA TYPE CONVERSION __ 9

6.4 JAVA OBJECT SERIALISATION ___ 11

7 Dataflow Configuration __ 13

8 MongoDB ___ 14

8.1 ADMIN UI __ 14

8.2 COLLECTIONS ___ 14

8.2.1 DOMAINS ___ 14

8.2.2 INTERACTIONS __ 14

8.2.3 EVENT LOG ___ 14

8.2.4 TABS ___ 14

8.2.5 REFERENCE DATA ___ 15

9 ApacheDS ___ 16

10 Console ___ 17

10.1 OVERVIEW __ 17

10.2 CONFIGURING TABS __ 17

10.3 CONFIGURING PLATFORM SPECIFIC DATA ____________________________________ 19

11 Build ___ 20

11.1 BUILD PROCESS ___ 20

11.1.1 DDS LIBRARIES __ 20

11.1.2 3RD PARTY MAVEN DEPENDENCIES ___ 20

11.2 BRANCHING STRATEGY __ 20

11.3 RELEASES __ 21

11.4 VERSIONING __ 21

12 Deployment ___ 22

12.1 SUPPORTED OPERATING SYSTEMS __ 22

© Crown Copyright 2020 v UK OFFICIAL

12.2 ISAIN COMPONENTS __ 22

12.3 SUPPORTING TOOLS __ 22

12.3.1 APACHE DIRECTORY STUDIO ___ 22

12.3.2 MONGODB COMPASS COMMUNITY __ 22

Appendix A – Glossary ___ 24

Appendix B – NiFi Built-in Processors __ 25

Appendix C – OACS IDL Files ___ 34

Appendix D – OARIS IDL Files ___ 35

Appendix E – ISAINService IDL __ 38

© Crown Copyright 2020 1 UK OFFICIAL

1 Introduction

1.1 Background

The Defence Science and Technology Laboratory (Dstl) has embarked on an Intelligent Ship programme, which

will revolutionise ship design by harnessing automation and Artificial Intelligence (AI) to transform naval doctrine.

The Intelligent Ship Artificial Intelligence Network (ISAIN) will provide Dstl with a framework to support a

programme of experimentation with AI collaboration and human-machine teaming. This will act as a ‘playground’

for AIs: a ‘sandpit’ to support inter-relationships between applications and human users, with the focus on

demonstrating innovative, challenging and revolutionary concepts and opportunities

1.2 Purpose

This document is aimed at software developers intending to integrate a new or existing ship system or AI,

(collectively referred to as applications throughout this document) into ISAIN. It describes the development, build

and deployment steps required to add a new input processor, output processor or data transformer. It assumes

the reader is familiar with the software stack described in section 3 and refers to each stack component’s own

documentation for further detailed information where appropriate.

1.3 References

ID Reference Title Version Date

1 OACS/TD/35 OACS Data Fusion IFS (Dstl GFI) 1 19/01/2016

2 formal/2016-03-02 Open Architecture Radar Interface Standard (OARIS)
(https://www.omg.org/spec/OARIS/1.0)

1.0 March 2016

Table 1 - References

https://www.omg.org/spec/OARIS/1.0

© Crown Copyright 2020 2 UK OFFICIAL

2 Overview
ISAIN provides a means to interconnect between disparate ship systems, humans and AIs, building upon the

Apache NiFi open source data flow engine, MongoDB and Docker.

Integration of a new application is achieved through configuration of a NiFi flow to include input and output

processors to connect to the new application, and the addition of appropriate data converters to/from ISAIN’s

internal data model. The internal data model currently in use is the Open Architecture Combat System (OACS)

data format (OACS Datafusion IFS [1]) and the Open Architecture Radar Interface Standard (OARIS) data format

[2], however this may be subject to change in later phases.

In addition to the out-of-the-box NiFi input and output processors, Data Distribution Service (DDS) publish and

subscribe processors built using OpenSplice Community Edition DDS and a processor to receive input from

Simulation Gateway and VBS3 have been added.

Adding a new data converter to/from ISAIN’s data model involves adding a Java implementation of the

application’s data type and implementing a single Java interface to perform the conversion. Where the

application’s data type is specified as a DDS Interface Description Language (IDL) file, the Java class(es) should

be generated using the OpenSplice tools. The compiled classes are then added as a NiFi extension.

It is anticipated that future releases will expose the ISAIN data model for inclusion in applications, thereby

removing the need for the data converters.

Figure 1 shows the individual components that together form ISAIN. Ship systems and AIs are connected together

via data flows within Apache NiFi, with a record of AI output being written to a MongoDB collection. Where an AI

output has been configured to be Human In The Loop (HITL)1 or Human on The Loop (HOTL)2, the AI output is

approved/rejected/overridden with the ISAIN Console, whereas Human Out Of The Loop (HOOTL)3 AI output can

only be viewed with the ISAIN Console. ISAIN Console authentication is provided by the LDAP Server. The

component log files are routed to Elastic Stack to provide consolidated viewing and searching of the logs.

1 HITL – an AI system makes a recommendation, but the human involved has to make a decision and the AI system is not allowed to proceed
otherwise
2 HOTL – an AI system can make decisions by itself, but those decisions can be vetoed by a human
3 HOOTL – an AI system where a human is not required at all

Figure 1 - Architecture overview

© Crown Copyright 2020 3 UK OFFICIAL

3 Software Stack
ISAIN is built with, and upon, the software stack listed in Table 2.

Name Version URLs
Development
License
Required

Runtime
License
Required

Purpose

OpenJDK 1.8.0 https://openjdk.java.net No No
Runtime environment for
NiFi and the ISAIN
Console

Git 2.17.1 https://git-scm.com No No Source control

Jenkins LTS https://jenkins.io No No Continuous Integration

Apache Maven 3.6.3 https://maven.apache.org No No
Dependency management
and build tool

NPM 6.13.4 https://www.npmjs.com No No
Dependency management
and build tool

Apache NiFi 1.11.2
https://nifi.apache.org
https://javadoc.io/doc/org.apache.nifi

No No
Facilitates the connection
of ship systems and AIs

Apache
Zookeeper

3.5.6 https://zookeeper.apache.org No No
Orchestration manager
required by NiFi

ApacheDS 2.0.0.AM25 https://directory.apache.org No No
LDAP server for
authentication and
authorisation

Apache Directory
Studio

2.0.0.v2018
0908-M14

https://directory.apache.org/studio No No Admin UI for ApacheDS

MongoDB 4.2.3 https://www.mongodb.com No No
Database to store AI
output

MongoDB
Compass
Community

1.20.5 https://www.mongodb.com/products/compass Admin UI for MongoDB

Docker 18.09.7 https://www.docker.com No No

Facilitates distributing
each ISAIN component
along with all of its
software dependencies

Elastic Stack 7.6.0 https://www.elastic.co No No
Application log
consolidation tool

Ubuntu 18.04 LTS https://ubuntu.com No No

Base docker image upon
which the ApacheDS and
ISAIN Console docker
images are built

Spring Boot 2.2.4 https://spring.io/projects/spring-boot No No
The framework upon which
the ISAIN Console server
component is built

Angular 8.2.14 https://angular.io No No
The framework upon which
the ISAIN Console client
component is built

ADLINK
OpenSplice
Community
Edition

6.9.190925
OSS

https://github.com/ADLINK-
IST/opensplice/releases

No No
Implementation of the DDS
standard within ISAIN

Fast Downward 20.06 https://www.fast-downward.org No No
Planning system used
within the IDDC
component

NGINX TBC https://www.nginx.com No No
Web server to provide
links to the different Web
UIs

Table 2 - Software stack

https://openjdk.java.net/
https://git-scm.com/
https://jenkins.io/
https://www.npmjs.com/
https://nifi.apache.org/
https://javadoc.io/doc/org.apache.nifi
https://zookeeper.apache.org/
https://directory.apache.org/
https://directory.apache.org/studio
https://www.mongodb.com/
https://www.mongodb.com/products/compass
https://www.docker.com/
https://www.elastic.co/
https://ubuntu.com/
https://spring.io/projects/spring-boot
https://angular.io/
https://github.com/ADLINK-IST/opensplice/releases
https://github.com/ADLINK-IST/opensplice/releases
https://www.fast-downward.org/
https://www.nginx.com/

© Crown Copyright 2020 4 UK OFFICIAL

4 Source Code Repositories
The source code is maintained within separate Git repositories to facilitate easier development, with each

repository relating to a specific piece of functionality. Table 3 lists each repository at the time of writing.

Name Description

parent_pom Parent Maven pom file from which all other Maven pom files inherit

apache_ds Configuration for the ApacheDS LDAP server

console The ISAIN Console

dds_datatypes IDL files for the DDS datatypes to be supported via the DDS processors

deployment Configuration files for a deployment

mock_startle A mock STARTLE implementation

nifi_isain_processors All OFFICIAL NiFi processors

nifi_isain_processors_os All OFFICIAL SENSITIVE NiFi processors

nifi_isain_common Common supporting classes for NiFi

nifi The consolidated ISAIN NiFi component

sdk/isain_nifi_test SDK REST API tests

sdk/sdk_data_publisher Publishes sample system track, own ship position and own ship course and speed data

sdk/sdk_deployment Creates an SDK deployment release

sdk/sdk_geoserver GeoServer instance to provide map layers

sdk/sdk_mongodb Prepopulated database

sdk/sdk_nginx Web proxy for the different SDK components

sdk/sdk_postgis PostGIS database for GeoServer

sdk/sdk_rabbitmq RabbitMQ instance with predefined queues

Table 3 - Source Code Repositories

© Crown Copyright 2020 5 UK OFFICIAL

5 AI/Ship System Integration Overview
ISAIN uses Apache NiFi as its core component and therefore familiarity with NiFi is key to integrating new AIs and

ship systems. “Getting started” information is available at https://nifi.apache.org/docs/nifi-docs/html/getting-

started.html and numerous tutorials are available on YouTube. In summary, NiFi is a data flow engine that

enables users to build up complex data flows to manage the flow of information between different systems using

an extensive library of built-in processors, as well as providing a Java API allowing users to add their own. In the

case of ISAIN, these different systems are AIs, ship systems and ISAIN’s other constituent parts such as the

database.

New AIs/ship systems are integrated by adding new input and output processors to the data flow and connecting

them to the existing processors in the flow, in order for them to receive the relevant data. If a new AI/ship system

uses a data type not yet supported by ISAIN, then conversion processors are required to convert the

received/sent data between ISAIN’s data format and the AI/ship system’s data format. Currently ISAIN’s data

format consists of the Open Architecture Combat System (OACS) data format (OACS Datafusion IFS [1]) and the

Open Architecture Radar Interface Standard (OARIS) data format [2], with the addition of a hostility assessment

data type. Refer to Appendix C – OACS IDL Files, Appendix D – OARIS IDL Files and Appendix E – ISAINService

IDL for further details.

Figure 2 shows a simplified example invoking an AI via the DDS protocol and sending it systems tracks that have

already been received in the OACS format elsewhere in the dataflow. Figure 3 shows the DDS configuration for

the PublishDDS processor where properties such as the topic name are specified.

Figure 2 – Example AI input flow

https://nifi.apache.org/docs/nifi-docs/html/getting-started.html
https://nifi.apache.org/docs/nifi-docs/html/getting-started.html

© Crown Copyright 2020 6 UK OFFICIAL

Figure 3 – PublishDDS processor configuration

When integrating a new AI, in addition to modifying the NiFi data flow, the ISAIN Console configuration will need

to be updated if the AI belongs to a new domain, e.g. hostility, damage control, etc. Where the console

configuration already contains the domain, no configuration changes are required. An example of the console

configuration for a new domain is shown in Figure 4, this configuration is held within ISAIN’s MongoDB database.

{
 "id": "DAMAGE_CONTROL",
 "title": "Damage Control",
 "domain": "damageControl",
 "exclusive": true,
 "headers": [{
 "displayName": "Condition",
 "key": "condition",
 "selectable": true,
 "aiOptions": {
 "IBIS": [
 "RUNNING",
 "FAULTY",
 "NO POWER"
]
 }
 }, {
 "displayName": "Action",
 "key": "action",
 "selectable": true,
 "aiOptions": {
 "IBIS": [
 "MONITOR",
 "INVESTIGATE",
 "RESET FUSE",
 "EXTINGUISH"
]
 }
 }],
 "selectorKey": "location",
 "authorities: []
}

Figure 4 - Example Tab configuration

© Crown Copyright 2020 7 UK OFFICIAL

6 NiFi

6.1 Custom Processors

In addition to the processors included out of the box with NiFi, eg: ConsumeJMS, ConsumeKafka,

ConsumeAMQP, ListenHTTP, etc, Table 4 lists the additional custom processors that have been added.

Name Description Class Name

SadmNifiBridge
Connects to SADM and reads incoming
messages

uk.mod.dstl.isain.sadm.SadmNifiBridge

ConsumeDDS Consumes DDS messages uk.mod.dstl.isain.dds.ConsumeDDS

PublishDDS Publishes DDS messages uk.mod.dstl.isain.dds.PublishDDS

DataConversionProcessor Converts data from one data format to another uk.mod.dstl.isain.data.conversion.DataConversionProcessor

Table 4 - Custom Processors

6.2 Application Interfaces

Where a new application is to be integrated and input and/or output processors are not available for the

application’s Application Programming Interface (API), a new input and/or output processor will need to be added.

(ConsumeDDS and PublishDDS are examples of input and output processors.) Adding a new processor involves

extending NiFi’s org.apache.nifi.processor.AbstractProcessor class, adding the processor’s class name

to a META-INF/services/org.apache.nifi.processor.Processor file, packaging into a nar file and copying

the nar file into NiFi’s lib directory.

An example of this for a new input processor is shown in Figure 5, Figure 6, Figure 7 and Figure 8.

Figure 5 - Example custom processor Maven project layout

© Crown Copyright 2020 8 UK OFFICIAL

package com.example.nifi.processors;

import java.util.Arrays;
import java.util.Collections;
import java.util.List;
import java.util.Set;

import org.apache.nifi.annotation.behavior.InputRequirement;
import org.apache.nifi.annotation.behavior.InputRequirement.Requirement;
import org.apache.nifi.annotation.documentation.CapabilityDescription;
import org.apache.nifi.annotation.documentation.Tags;
import org.apache.nifi.annotation.lifecycle.OnStopped;
import org.apache.nifi.components.PropertyDescriptor;
import org.apache.nifi.expression.ExpressionLanguageScope;
import org.apache.nifi.processor.AbstractProcessor;
import org.apache.nifi.processor.ProcessContext;
import org.apache.nifi.processor.ProcessSession;
import org.apache.nifi.processor.Relationship;
import org.apache.nifi.processor.exception.ProcessException;
import org.apache.nifi.processor.util.StandardValidators;

@InputRequirement(Requirement.INPUT_FORBIDDEN)
@Tags({ "ingest", "my_apps_protocol", "listen" })
@CapabilityDescription("Receives incoming messages through my_apps_protocol and transforms them into
FlowFiles.")
public class MyInputProcessor extends AbstractProcessor {

 public final static Relationship REL_SUCCESS = new Relationship.Builder().name("success")
 .description("Relationship for successfully received FlowFiles").build();

 public static final PropertyDescriptor PORT = new PropertyDescriptor.Builder().name("Listening Port")
 .description("The Port to listen on for incoming connections").required(true)
 .expressionLanguageSupported(ExpressionLanguageScope.VARIABLE_REGISTRY)
 .addValidator(StandardValidators.POSITIVE_INTEGER_VALIDATOR).build();

 private static final Set<Relationship> RELATIONSHIPS;
 private static final List<PropertyDescriptor> PROPERTIES;
 static {
 RELATIONSHIPS = Collections.singleton(REL_SUCCESS);
 PROPERTIES = Arrays.asList(PORT);
 }

 @Override
 public Set<Relationship> getRelationships() {
 return RELATIONSHIPS;
 }

 @Override
 public List<PropertyDescriptor> getSupportedPropertyDescriptors() {
 return PROPERTIES;
 }

 @Override
 public void onTrigger(ProcessContext context, ProcessSession session) throws ProcessException {
 // TODO receive message and convert to FlowFile
 }

 @OnStopped
 public void cleanup() {
 // TODO close connection
 }
}

Figure 6 - Example AbstractProcessor implementation

© Crown Copyright 2020 9 UK OFFICIAL

com.example.nifi.processors.MyInputProcessor

Figure 7 - Example org.apache.nifi.processor.Processor file

Nar files can be created using the nifi-nar-maven-plugin Maven plugin and setting the POM’s packaging

attribute to nar.

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>
 <groupId>sandpit</groupId>
 <artifactId>sandpit</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>nar</packaging>

 <properties>
 <maven.compiler.source>1.8</maven.compiler.source>
 <maven.compiler.target>1.8</maven.compiler.target>
 <nifi.version>1.11.2</nifi.version>
 <nifi.nar.plugin.version>1.3.1</nifi.nar.plugin.version>
 </properties>

 <dependencies>
 <dependency>
 <groupId>org.apache.nifi</groupId>
 <artifactId>nifi-api</artifactId>
 <version>${nifi.version}</version>
 </dependency>
 <dependency>
 <groupId>org.apache.nifi</groupId>
 <artifactId>nifi-processor-utils</artifactId>
 <version>${nifi.version}</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.nifi</groupId>
 <artifactId>nifi-nar-maven-plugin </artifactId>
 <version>${nifi.nar.plugin.version}</version>
 <extensions>true</extensions>
 </plugin>
 </plugins>
 </build>
</project>

Figure 8 – Example Nar file Maven pom.xml

Refer to the NiFi documentation referenced in Table 2 for further information on writing custom processors.

6.3 Data Type Conversion

Conversion between different data types is performed by the generic

uk.mod.dstl.isain.data.conversion.DataConversionProcessor processor, which can be configured to

invoke a specified converter class which implements the

uk.mod.dstl.isain.data.conversion.DataConverter interface. Facilitating conversion to/from a new data

type and ISAIN’s internal data model consists of adding the necessary Plain Old Java Objects (POJOs) for the

new data type, adding an implementation of DataConverter to perform the conversions, building the classes into

a jar file and copying the jar into NiFi’s lib directory. Note that converting from DataType1 to DataType2 and vice

© Crown Copyright 2020 10 UK OFFICIAL

versa requires two separate DataConverter implementations. Figure 9 shows an example DataConverter

implementation.

package com.example.nifi.dataconverters;

import java.util.Map;

import uk.mod.dstl.isain.data.conversion.DataConverter;
import uk.mod.dstl.isain.example.DataType1;

public class MyDataConverter implements DataConverter<DataType1, DataType2> {

 @Override
 public DataType2 convert(DataType1 source) {
 DataType2 converted = new DataType2();
 // perform conversion of DataType1 (source) -> DataType2 (converted)
 return converted;
 }

 @Override
 public String getSource() {
 return DataType1.class.getName();
 }

 @Override
 public String getDestination() {
 return DataType2.class.getName();
 }

 @Override
 public void setAttributes(Map<String, String> attributes) {
 // set external attributes required for the conversion not contained within DataType1
 }
}

Figure 9 - Example DataConverter implementation

For new DDS data types, the POJOs should be generated using the OpenSplice Community Edition tooling. The

dds_datatypes repository listed in Table 3 contains an existing set of IDL files and the Maven POM has been

configured to invoke the OpenSplice Community Edition tooling in order to regenerate, compile and package the

POJOs during each build.

© Crown Copyright 2020 11 UK OFFICIAL

6.4 Java Object Serialisation

Serialisation and deserialisation of POJOs within the custom processors listed in Table 4 is done through a

combination of XStream (https://x-stream.github.io) and Underscore-java (https://github.com/javadev/underscore-

java). XStream is used to serialise the POJO into XML, the XML is passed to Underscore-java to convert into

JavaScript Object Notation (JSON), and the JSON string is converted to a UTF-8 encoded byte array. The byte

array is then written to the NiFi flow file. Deserialisation is the reverse process.

import org.apache.nifi.processor.AbstractProcessor;
import com.github.underscore.lodash.U;
import com.thoughtworks.xstream.XStream;

public class MyProcessor extends AbstractProcessor {

 private XStream xStream;

 public MyProcessor() {
 this.xStream = new XStream();
 this.xStream.setMode(XStream.NO_REFERENCES);
 }

 public byte[] serialiseObject(Object object) {
 final String xml = this.xStream.toXML(object);
 final String json = U.xmlToJson(xml);
 return json.getBytes(StandardCharsets.UTF_8);
 }

 public Object deserialiseObject(byte[] bytes) {
 final String json = new String(bytes, StandardCharsets.UTF_8);
 final String xml = U.JsonToXml(json);
 return this.xStream.fromXML(xml);
 }
}

Figure 10 - Example POJO serialisation and deserialisation

<dependencies>
 <dependency>
 <groupId>com.thoughtworks.xstream</groupId>
 <artifactId>xstream</artifactId>
 <version>1.4.7</version>
 </dependency>
 <dependency>
 <groupId>com.github.javadev</groupId>
 <artifactId>underscore</artifactId>
 <version>1.53</version>
 </dependency>
</dependencies>

Figure 11 – Example POJO serialisation Maven pom.xml dependencies

https://x-stream.github.io/
https://github.com/javadev/underscore-java
https://github.com/javadev/underscore-java

© Crown Copyright 2020 12 UK OFFICIAL

public class Person {
 private String name;
 private int age;
 private String address;
 public Person(String name, int age, String address) {
 this.name = name;
 this.age = age;
 this.address = address;
 }
 public String getName() {
 return name;
 }
 public int getAge() {
 return age;
 }
 public String getAddress() {
 return address;
 }
}

Figure 12 – Example POJO classs

{
 "uk.mod.dstl.isain.example.Person": {
 "name": "John Smith",
 "age": "30",
 "address": "1 High Street, London"
 },
 "#omit-xml-declaration": "yes"
}

Figure 13 – Example serialised POJO

This serialisation process was chosen as it provides a reliable mechanism for serialising and deserialising POJOs

into JSON without requiring the POJO’s to be modified with any annotations. This is particularly important for

generated Java classes such as DDS classes defined in IDL files as these annotations would need to be

reinstated whenever the Java classes are regenerated.

© Crown Copyright 2020 13 UK OFFICIAL

7 Dataflow Configuration
Configuration of the dataflow controlling the receiving, manipulation and routing of data is performed through the

NiFi User Interface (UI), an example which is shown in Figure 14. The default Uniform Resource Locator (URL) for

the UI is http://hostname:8080/nifi.

Figure 14 - Example NiFi Dataflow

New processors are added to the dataflow by dragging the “Processor” icon onto the canvas and selecting the

desired processor type. Existing processors are configured by right clicking on the processor and selecting

“Configure”. Processors are connected together by hovering over a processor and dragging the connector icon

to the destination processor. Individual processors are stopped and started by right clicking on them and selecting

Stop/Start. An entire dataflow is stopped and started by right clicking on the canvas and selecting Stop/Start.

NiFi writes its flow configuration to <nifi installation>/conf/flow.xml.gz. Once a flow has been modified,

this file should be added to the nifi git repository.

Refer to the NiFi documentation referenced in Table 2 for further information on amending and controlling data

flows.

http://hostname:8080/nifi

© Crown Copyright 2020 14 UK OFFICIAL

8 MongoDB
The MongoDB ISAIN database is used to store the output from the connected AI applications and any user

actions performed in the ISAIN Console.

A collection exists for each domain, e.g. damage control, hostility, etc, with AI output being stored in the relevant

domain collection. HITL and HOTL user interactions are stored in the interactions collection. All AI output,

including HOOTL, and user interactions are stored in an event log collection.

All collections are currently de-normalised, however this may be subject to change in a later release.

8.1 Admin UI

MongoDB Compass Community is the admin UI used to visualise data within the ISAIN database. The connection

URL for a default local installation is mongodb://localhost:27017.

8.2 Collections

8.2.1 Domains

The structure of a domain collection is shown in Figure 15.

ai: String // name of the AI
automationMethod: String, // enum (HITL, HOTL, HOOTL)
ttc: Integer // seconds from epoch time stamp
dataSpecifics: Object // values specific to the domain
 location: String
 condition: String
 action: String
justification: Object // values specific to AI
 priority: Integer
 description: String
timeRequested: Integer // epoch timestamp of when request was made (timeReceived is set by flow)

Figure 15 - Example Domain collection structure

8.2.2 Interactions

The structure of the interactions collection is shown in Figure 16.

interactionMethod: String // enum (CONFIRM, VETO)
timeInteracted: Integer // epoch time stamp of interaction
aiResponse: Object // the domain object associated with interaction

Figure 16 - Effected Responses collection structure

8.2.3 Event Log

The structure of the event log collection is shown in Figure 17.

eventTime: Integer
eventType: String // enum (RESPONSE, INTERACTION)
event: Object // the domain object associated with event- domain response or user interaction

Figure 17 - Event Log collection structure

8.2.4 Tabs

The structure of the tabs collection is shown Figure 18.

eventTime: Integer
eventType: String // enum (RESPONSE, INTERACTION)
event: Object // the domain object associated with event- domain response or user interaction

Figure 18 - Event Log collection structure

mongodb://localhost:27017/

© Crown Copyright 2020 15 UK OFFICIAL

8.2.5 Reference Data

The structure of the reference data collection is shown in Figure 19.

eventTime: Integer
eventType: String // enum (RESPONSE, INTERACTION)
event: Object // the domain object associated with event- domain response or user interaction

Figure 19 - Event Log collection structure

© Crown Copyright 2020 16 UK OFFICIAL

9 ApacheDS
ApacheDS is used as the ISAIN LDAP server. This contains the users and roles that are permitted to access the

ISAIN Console. Users and roles can be added/removed/edited through Apache Directory Studio, and a default set

of users and roles are declared in an LDAP Data Interchange Format (LDIF) file stored within the apache_ds git

repository. LDIF files can be uploaded into ApacheDS using Apache Directory Studio, or via 3rd party command

line tools.

Refer to the ApacheDS and Apache Directory Studio documentation referenced in Table 2 for further information.

© Crown Copyright 2020 17 UK OFFICIAL

10 Console

10.1 Overview

The ISAIN Console consists of a Spring Boot server component which serves an Angular web app client

component to the user’s web browser. User authentication and authorisation is performed through the use of

LDAP and JSON Web Tokens (JWT). ApacheDS is used as the LDAP provider, however it is possible to

substitute this with a different provider such as Microsoft Active Directory with minimal effort.

10.2 Configuring tabs

Each tab on the console displays the data associated with a given domain, be it hostility, damage control, etc.

Whenever an AI is added to the network that will be giving responses in a new domain, a new tab must be

configured to handle and display this domain. This configuration is defined by adding a new row to the MongoDB

tabs collection. The configuration is in the form of a JSON object describing the attributes required in order to

render the tab. An example of this configuration is shown in Figure 20.

{
 "id": "DAMAGE_CONTROL",
 "title": "Damage Control",
 "domain": "damageControl",
 "exclusive": true,
 "headers": [{
 "displayName": "Condition",
 "key": "condition",
 "selectable": true,
 "aiOptions": {
 "IBIS": [
 "RUNNING",
 "FAULTY",
 "NO POWER"
]
 }
 }, {
 "displayName": "Action",
 "key": "action",
 "selectable": true,
 "aiOptions": {
 "IBIS": [
 "MONITOR",
 "INVESTIGATE",
 "RESET FUSE",
 "EXTINGUISH"
]
 }
 }],
 "selectorKey": "location",
 "authorities: []
}

Figure 20 - Example Tab configuration

If the tabs collection is empty, for instance after a new deployment, the application is bundled with a default tab

configuration which is defined within tabs.json and the tabs collection is populated with this file when the

collection is queried and found to be empty. tabs.json is stored within the console git repository.

To create a new tab, it is easiest to copy an existing entry and modify it accordingly therefore ensuring all of the

required fields have been set. The required fields and their purpose are:

 “id” – a string that identifies the tab. Must be unique, with no whitespace, but can take any form otherwise.

Convention is that the “id” is equal to the “title”, but capitalised and using an _ for any whitespace.

© Crown Copyright 2020 18 UK OFFICIAL

 “title” – the title of the tab, as it appears on the console.

 “domain” – the domain of the tab. This must match the domain specified in the NiFi flow configuration to

ensure the correct data is displayed on the console.

 “exclusive” – should be set to either true or false. If true, then confirming one response from an AI for this

domain will automatically veto any other responses in the same group. If false, the operator can confirm

as many responses in a group as they wish.

 “headers” – this contains an array of header objects, which describe how the data specific to the chosen

domain should be interpreted and displayed on the console. The attributes associated with a header are

as follows:

o “displayName” – the name that the column will have for this header.

o “key” – the key of the associated data found in the data specifics for this domain. Must match the

key set in the NiFi configuration.

o “selectable” – this attribute is optional, and if not included, will default to false. If false, then the

operator will not be able to add a custom value for this data, whereas if true, the operator will

have the option to pick a custom option.

o “aiOptions” – this attribute is only required if “selectable” is set to true. This attribute is a list of

possible options for this data, grouped by the AI the options belong to. An example configuration

for this option is shown in Figure 21.

"headers": [{
 "displayName": "Hostility",
 "key": "hostility",
 "selectable": true,
 "aiOptions": {
 "SYCOIEA": [
 "FRIENDLY",
 "NUETRAL",
 "SUSPECT",
 "HOSTILE"
],
 "STARTLE": [
 "CONCERN",
 "NO CONCERN",
 "THREAT"
],
 }
}]

Figure 21 - Example headers configuration

 “selectorKey” – the selectorKey refers to an attribute specific to the domain that the responses will be

grouped by. The value must match the attribute, including the same case, for the grouping to work

correctly

 “sortSelector” – if set to true, the selector for this tab on the console will be sorted numerically, in

ascending order.

 “authorities” – an array of the groups that an operator must be a part of to access this tab, as defined in

the LDAP configuration. If left empty, any operator will be able to access the tab. Each role should be

wrapped in quotes “” and will be of the form ROLE_{LDAP-GROUP-NAME}, all in upper-case. Figure 22

shows an example of the format, if the groups configured in the LDAP server are ‘officers’ and ‘airdomain’.

"authorities": [
 "ROLE_OFFICERS",
 "ROLE_AIRDOMAIN"
]

© Crown Copyright 2020 19 UK OFFICIAL

Figure 22 - Example authorities configuration

When adding a new tab to the database, the web browser page will need to be refreshed in order to display the

new tab. If configured correctly, the new tab should appear and when data is sent to the domain, it should be

displayed as expected. If there are issues with data not being displayed, then check the tabs configured and

ensure they are valid. Numerous tools are available online that can verify the syntactic correctness of JSON, for

example https://jsonlint.com/, which can be used to help if any issues persist.

Figure 23 - Example Console Screen

10.3 Configuring Platform Specific Data

Platform specific data is stored with the MongoDB referenceData collection. At the time of writing, the only

platform specific data in use is the platform name which is displayed in the bottom left corner of the screen. If the

platform name has not been set, for instance after a new deployment, a new “platformName”: “unknown” entry is

added to the referenceData collection when the collection is queried and found to be empty. An example

referenceData entry is show in Figure 24.

{
 "platformName": "HMS Dragon"
}

Figure 24 - Example Reference Data entry

https://jsonlint.com/

© Crown Copyright 2020 20 UK OFFICIAL

11 Build

11.1 Build Process

The build process for each of the source code repositories is facilitated using Apache Maven and Jenkins. For

continuous integration, Jenkins pipelines are used via a Jenkinsfile which is stored within the Git repository

alongside the source code, thus allowing the Jenkins job’s configuration to be maintained under source control.

11.1.1 DDS Libraries

In order to build the contents of the dds_datatypes repository, OpenSplice Community Edition must be installed.

The OpenSplice installation directory is specified within the dds_datatypes pom.xml files as

/opt/opensplice/HDE/x86_64.linux.

11.1.2 3rd Party Maven Dependencies

In order to build the contents of the dds_datatypes and nifi_dds_processors repositories, the jars from the

OpenSplice installations need to be uploaded into the Maven repository as the following artifacts:

 artifactId: opensplice, groupId: dcpssaj5, version: 6.9

In order to build the contents of the nifi_isain_processors_os repository, the SADM jars, which will need to be

requested as GFx from Dstl, need to be uploaded into the Maven repository as the following artefacts:

 artifactId: SADMCommon, groupId: SADMCommon, version: 1.0.0

 artifactId: SADMMsgLib, groupId: SADMMsgLib, version: 1.0.0

 artifactId: SADMSocketClient, groupId: SADMSocketClient, version: 1.0.0

 artifactId: SADMSocketCommon, groupId: SADMSocketCommon, version: 1.0.0

All other 3rd party maven dependencies are available from Maven Central.

11.2 Branching Strategy

The feature branching strategy is used, coupled with an unstable develop branch, sometimes referred to as an

integration branch. New features and bug fixes are committed to their own branch, with pull requests created

when they are ready to be merged into the develop branch. Only once the changes have been reviewed and

approved, is the feature branch merged into the develop branch. Due to the possibility of two or more subsequent

feature branches being merged into the develop branch causing a build failure, the develop branch is considered

to be unstable. Only when the develop branch builds successfully is it merged into the master branch and a

candidate release build is performed from the master branch. The master branch should always build

successfully.

feature 1 feature 2 feature 3

master

develop

tagged release tagged release

Figure 25 - Branching Strategy

© Crown Copyright 2020 21 UK OFFICIAL

11.3 Releases

Releases are performed through Jenkins from the stable master branch. Each release is given a unique version

number, with the corresponding commit in the Git repository tagged with the version number. The built artefacts

(e.g. jar files, Docker images, etc) are published to the appropriate internal repository.

11.4 Versioning

Version numbers of released artefacts are of the form YYYYMMDD.<build number>, where YYYYMMDD is the

date of the commit to the Git repository and <build number> is the distinct build number for that commit day,

indexed from 1, e.g. 20200130.2 for the second release on the 30th January 2020.

© Crown Copyright 2020 22 UK OFFICIAL

12 Deployment

12.1 Supported Operating Systems

ISAIN has been tested on Ubuntu 18.04 LTS and Centos 7.6.1810 for the server side components, and Google

Chrome 80.0 or higher on Windows 10, Ubuntu 18.04 LTS and Centos 7.6.1810 for the ISAIN Console UI.

12.2 ISAIN Components

Deployment of ISAIN is performed by running docker-compose. A docker-compose file is stored within the

deployment git repository which starts single instances of NiFi, MongoDB , Zookeeper, ApacheDS, the ISAIN

Console and each of the Elastic Stack components (Filebeat, Logstash, Elasticsearch and Kibana). A separate

Zookeeper instance is started instead of using the instance bundled in NiFi in order to facilitate possible future

clustering of NiFi using Docker Swarm.

Volume mounts are specified within the docker-compose file for the runtime data directories to enable persisting of

data once a docker container has been removed, the configuration directories to enable overriding of default

configuration files within the containers, and the log directories to enable the collating of logs with Elastic Stack.

Host networking is specified within the docker-compose file and is a requirement in order to enable DDS

multicasting, a requirement for the PublishDDS and ConsumeDDS processors. Note that user namespaces must

not be enabled within the host machine’s Docker configuration as this is incompatible with host networking.

12.3 Supporting Tools

12.3.1 Apache Directory Studio

Apache Directory Studio is used to administer the ApacheDS LDAP server. Since Apache Directory Studio has a

native UI as opposed to a web interface, it not possible to include it with the docker-compose file and must

therefore be installed separately. Note that it is a Java application and therefore Java must be installed as a pre-

requisite.

12.3.2 MongoDB Compass Community

MongoDB Compass Community is used to administer MongoDB. Since MongoDB Compass Community has a

native UI as opposed to a web interface, it not possible to include it with the docker-compose file and must

therefore be installed separately.

© Crown Copyright 2020 23 UK OFFICIAL

APPENDICES

© Crown Copyright 2020 24 UK OFFICIAL

Appendix A – Glossary
Acronym Description

AI Artificial Intelligence

API Application Programming Interface

DDS Data Distribution Service

Dstl Defence Science and Technology Laboratory

HITL Human In The Loop

HOOTL Human Out Of The Loop

HOTL Human On The Loop

IDL Interface Description Language

ISAIN Intelligent Ship Artificial Intelligence Network

JSON JavaScript Object Notation

JVM Java Virtual Machine

JWT JSON Web Tokens

LDAP Lightweight Directory Access Protocol

LDIF LDAP Data Interchange Format

OACS Open Architecture Combat System

OARIS Open Architecture Radar Interface Standard

POJO Plain Old Java Object

SADM Ship Air Defence Model

UI User Interface

URL Uniform Resource Locator

© Crown Copyright 2020 25 UK OFFICIAL

Appendix B – NiFi Built-in Processors
Table 5 lists the NiFi processors that are provided “out of the box” with NiFi 1.11.2; a full description of each one

can be found at https://nifi.apache.org/docs.html.

Processor Name

AttributeRollingWindow

AttributesToCSV

AttributesToJSON

Base64EncodeContent

CalculateRecordStats

CaptureChangeMySQL

CompareFuzzyHash

CompressContent

ConnectWebSocket

ConsumeAMQP

ConsumeAzureEventHub

ConsumeEWS

ConsumeGCPubSub

ConsumeIMAP

ConsumeJMS

ConsumeKafka

ConsumeKafka_0_10

ConsumeKafka_0_11

ConsumeKafka_1_0

ConsumeKafka_2_0

ConsumeKafkaRecord_0_10

ConsumeKafkaRecord_0_11

ConsumeKafkaRecord_1_0

ConsumeKafkaRecord_2_0

ConsumeMQTT

ConsumePOP3

ConsumeWindowsEventLog

ControlRate

ConvertAvroToJSON

https://nifi.apache.org/docs.html

© Crown Copyright 2020 26 UK OFFICIAL

ConvertAvroToORC

ConvertAvroToParquet

ConvertCharacterSet

ConvertExcelToCSVProcessor

ConvertJSONToSQL

ConvertRecord

CountText

CreateHadoopSequenceFile

CryptographicHashAttribute

CryptographicHashContent

DebugFlow

DeleteAzureBlobStorage

DeleteByQueryElasticsearch

DeleteDynamoDB

DeleteElasticsearch5

DeleteGCSObject

DeleteGridFS

DeleteHBaseCells

DeleteHBaseRow

DeleteHDFS

DeleteMongo

DeleteRethinkDB

DeleteS3Object

DeleteSQS

DetectDuplicate

DistributeLoad

DuplicateFlowFile

EncryptContent

EnforceOrder

EvaluateJsonPath

EvaluateXPath

EvaluateXQuery

ExecuteGroovyScript

© Crown Copyright 2020 27 UK OFFICIAL

ExecuteInfluxDBQuery

ExecuteProcess

ExecuteScript

ExecuteSparkInteractive

ExecuteSQL

ExecuteSQLRecord

ExecuteStreamCommand

ExtractAvroMetadata

ExtractCCDAAttributes

ExtractEmailAttachments

ExtractEmailHeaders

ExtractGrok

ExtractHL7Attributes

ExtractText

ExtractTNEFAttachments

FetchAzureBlobStorage

FetchDistributedMapCache

FetchElasticsearch

FetchElasticsearch5

FetchElasticsearchHttp

FetchFile

FetchFTP

FetchGCSObject

FetchGridFS

FetchHBaseRow

FetchHDFS

FetchParquet

FetchS3Object

FetchSFTP

FlattenJson

ForkRecord

FuzzyHashContent

GenerateFlowFile

© Crown Copyright 2020 28 UK OFFICIAL

GenerateTableFetch

GeoEnrichIP

GeoEnrichIPRecord

GetAzureEventHub

GetAzureQueueStorage

GetCouchbaseKey

GetDynamoDB

GetFile

GetFTP

GetHBase

GetHDFS

GetHDFSEvents

GetHDFSFileInfo

GetHDFSSequenceFile

GetHTMLElement

GetHTTP

GetIgniteCache

GetJMSQueue

GetJMSTopic

GetMongo

GetMongoRecord

GetRethinkDB

GetSFTP

GetSNMP

GetSolr

GetSplunk

GetSQS

GetTCP

GetTwitter

HandleHttpRequest

HandleHttpResponse

HashAttribute

HashContent

© Crown Copyright 2020 29 UK OFFICIAL

IdentifyMimeType

InvokeAWSGatewayApi

InvokeGRPC

InvokeHTTP

InvokeScriptedProcessor

ISPEnrichIP

JoltTransformJSON

JoltTransformRecord

JsonQueryElasticsearch

ListAzureBlobStorage

ListDatabaseTables

ListenBeats

ListenGRPC

ListenHTTP

ListenLumberjack

ListenRELP

ListenSMTP

ListenSyslog

ListenTCP

ListenTCPRecord

ListenUDP

ListenUDPRecord

ListenWebSocket

ListFile

ListFTP

ListGCSBucket

ListHDFS

ListS3

ListSFTP

LogAttribute

LogMessage

LookupAttribute

LookupRecord

© Crown Copyright 2020 30 UK OFFICIAL

MergeContent

MergeRecord

ModifyBytes

ModifyHTMLElement

MonitorActivity

MoveHDFS

Notify

ParseCEF

ParseEvtx

ParseNetflowv5

ParseSyslog

ParseSyslog5424

PartitionRecord

PostHTTP

PostSlack

PublishAMQP

PublishGCPubSub

PublishJMS

PublishKafka

PublishKafka_0_10

PublishKafka_0_11

PublishKafka_1_0

PublishKafka_2_0

PublishKafkaRecord_0_10

PublishKafkaRecord_0_11

PublishKafkaRecord_1_0

PublishKafkaRecord_2_0

PublishMQTT

PutAzureBlobStorage

PutAzureEventHub

PutAzureQueueStorage

PutBigQueryBatch

PutBigQueryStreaming

© Crown Copyright 2020 31 UK OFFICIAL

PutCassandraQL

PutCassandraRecord

PutCloudWatchMetric

PutCouchbaseKey

PutDatabaseRecord

PutDistributedMapCache

PutDynamoDB

PutElasticsearch

PutElasticsearch5

PutElasticsearchHttp

PutElasticsearchHttpRecord

PutElasticsearchRecord

PutEmail

PutFile

PutFTP

PutGCSObject

PutGridFS

PutHBaseCell

PutHBaseJSON

PutHBaseRecord

PutHDFS

PutHiveQL

PutHiveStreaming

PutHTMLElement

PutIgniteCache

PutInfluxDB

PutJMS

PutKinesisFirehose

PutKinesisStream

PutKudu

PutLambda

PutMongo

PutMongoRecord

© Crown Copyright 2020 32 UK OFFICIAL

PutParquet

PutRecord

PutRethinkDB

PutRiemann

PutS3Object

PutSFTP

PutSlack

PutSNS

PutSolrContentStream

PutSolrRecord

PutSplunk

PutSQL

PutSQS

PutSyslog

PutTCP

PutUDP

PutWebSocket

QueryCassandra

QueryDatabaseTable

QueryDatabaseTableRecord

QueryDNS

QueryElasticsearchHttp

QueryRecord

QuerySolr

QueryWhois

ReplaceText

ReplaceTextWithMapping

RetryFlowFile

RouteHL7

RouteOnAttribute

RouteOnContent

RouteText

RunMongoAggregation

© Crown Copyright 2020 33 UK OFFICIAL

ScanAttribute

ScanContent

ScanHBase

ScrollElasticsearchHttp

SegmentContent

SelectHiveQL

SetSNMP

SplitAvro

SplitContent

SplitJson

SplitRecord

SplitText

SplitXml

SpringContextProcessor

TagS3Object

TailFile

TransformXml

UnpackContent

UpdateAttribute

UpdateCounter

UpdateRecord

ValidateCsv

ValidateRecord

ValidateXml

Wait

YandexTranslate

Table 5 - "Out of the box" NiFi processors

© Crown Copyright 2020 34 UK OFFICIAL

Appendix C – OACS IDL Files
Table 6 lists the OACS IDL files, as specified within OACS Data Fusion IFS[1], that contain the data type

definitions that have been incorporated as part of the ISAIN common data format.

IDL File

CommonTypes_Types.idl

CommonTypes_Structures.idl

SensorTrackService.idl

SensorTrackService_ADSB.idl

SensorTrackService_AIS.idl

SensorTrackService_EW.idl

SensorTrackService_IFF.idl

SystemTrackService.idl

HelperFunctionService.idl

FusionService.idl

TrackManagementService.idl

Table 6 - OACS IDL files

© Crown Copyright 2020 35 UK OFFICIAL

Appendix D – OARIS IDL Files
Table 7 lists the OARIS IDL files, as specified within Open Architecture Radar Interface Standard[2], that contain

the data type definitions that have been incorporated as part of the ISAIN common data format.

IDL File

Air_Engagement_Support.idl

Clutter_Reporting.idl

Common_Types.idl

Control_Battle_Override.idl

Control_Emissions.idl

Control_Fault_Scripts.idl

Control_Recording.idl

Control_Replay.idl

Control_Simulation.idl

Coordinates_and_Positions.idl

Defint_Fault_Scripts.idl

Define_Simulation_Scenario.idl

Define_Test_Target_Scenario.idl

Delete_Sensor_Track.idl

Encyclopaedic_Support.idl

Engagement_Support.idl

Extended_Subsystem_Control.idl

Heartbeat_Signal.idl

Initiate_Track.idl

Manage_Frequency_Usage.idl

Manage_Mastership.idl

Manage_Operational_Mode.idl

Manage_Physical_Configuration.idl

Manage_Subsystem_Parameters.idl

Manage_Technical_State.idl

Manage_Tracking_Zones.idl

Manage_Transmission_Sectors.idl

Missile_Guidance.idl

Perform_Cued_Search.idl

© Crown Copyright 2020 36 UK OFFICIAL

Perform_Illumination.idl

Perform_Missile_Downlink.idl

Perform_Missile_Uplink.idl

Perform_Offline_Test.idl

Perform_Splash_Spotting.idl

Plot_Reporting.idl

Process_Target_Designation.idl

Provide_Area_with_Plot_Concentration.idl

Provide_Clutter_Assessment.idl

Provide_Health_State.idl

Provide_Interference_Reports.idl

Provide_Jammer_Assessment.idl

Provide_Nominal_Performance.idl

Provide_Performance_Assessment.idl

Provide_Projectile_Positional_Information.idl

Provide_Subsystem_Identification.idl

Receive_Encyclopaedic_Data.idl

Receive_Track_Information.idl

Recording_and_Replay.idl

Register_Interest.idl

Requests.idl

Restart.idl

Search.idl

Sensor_Control.idl

Shape_Model.idl

Shutdown.idl

Simulation_Support.idl

Startup.idl

Subsystem_Control.idl

Support_Kill_Assessment.idl

Surface_Engagement_Support.idl

System_Track.idl

Test_Target_Facility.idl

© Crown Copyright 2020 37 UK OFFICIAL

TimeBase.idl

Tracking_Control.idl

Track_Reporting.idl

Table 7 - OARIS IDL files

© Crown Copyright 2020 38 UK OFFICIAL

Appendix E – ISAINService IDL
To support integration of hostility assessment AIs, the HostilityAssessment data type shown in Figure 26 is

included as part of the ISAIN common data format.

#ifndef ISAINSERVICEDEFVAR
#define ISAINSERVICEDEFVAR

module uk {
 module mod {
 module dstl {
 module isain {
 module ISAINService {
 enum HostilityType
 {
 // SYCOIEA values
 NO_STATEMENT,
 PENDING,
 UNKNOWN,
 ASSUMED_FRIEND,
 FRIENDLY,
 NEUTRAL,
 SUSPECT,
 HOSTILE,

 // TE2 values
 CONCERN,
 NO_CONCERN,
 THREAT
 };

 struct HostilityAssessment
 {
 long trackId;
 HostilityType hostility;
 string justification;
 unsigned long long timeOfValidity; // 1 unit is 100 nanoseconds
 };

 typedef sequence<HostilityAssessment, 1000> HostilityAssessmentType;

 struct AgentOutput
 {
 string agentName; //@Key
 HostilityAssessmentType hostilityAssessments;
 long long timeStamp; //@Key
 };
 #pragma keylist AgentOutput agentName timeStamp
 };
 };
 };
 };
};
#endif

Figure 26 - ISAINService IDL

