West Midlands Aggregates Working Party

Annual Monitoring Report 2021[Including data from 2019 and 2020]

Published July 2022

Correct as of this date: 26 July 2022

WMAWP Chair: Matthew Griffin, Team Leader, Staffordshire County Council. E:mat.griffin@staffordshire.gov.uk

Interim WMAWP Secretary: Vanessa Rowell, Principal Planning Consultant, Capita, vanessa.rowell@capita.com

Contents

Acronyms	4
Glossary	5
Introduction	7
Mineral Planning Authorities in WMAWP Area	8
Location of quarries and rail depots	9
Primary Aggregates	10
Sales and Imports	11
Permitted Reserves	13
Landbank in WMAWP Area	16
Secondary and Recycled Aggregates	18
Development Plans and Mineral Policies in WMAWP Area	20
Aggregates sites and planning applications in WMAWP Area	22
Local Aggregates Assessments	32
Local and National Aggregate Need	33
Trends and Analysis	34
Major Construction Projects or Developments	35
Key Conclusions	38
Appendix 1 WMAWP Meetings	39

Acronyms

AWP Aggregate Working Party

BAA British Aggregates Association

BGS British Geological Survey

BMAPA British Marine Aggregate Producers Association

CDEW Construction, Demolition and Excavation Waste

DLUHC Department of Levelling up, Housing and Communities

MPA Mineral Planning Authority

mpa Mineral Products Association

NPPF National Planning Policy Framework

SOCG Statement of Common Ground

WDI Waste Data Interrogator

WMAWP West Midlands Aggregate Working Party

Glossary

Active/Inactive sites	Sites are described as active where material was produced at any time during 2020 and as inactive when the site was not in production during that period. Inactive sites include those that have been worked in the past and those that have yet to begin. The term 'inactive' replaces the term 'dormant' used in surveys prior to AM97 as the term 'dormant' acquired a more specific meaning under the terms of the Planning & Compensation Act 1991 and the Environment Act 1995.
Aggregates	Aggregates are defined as being hard, granular materials which are suitable for use either on their own or with the addition of cement, lime or a bituminous binder in construction. The most important applications for aggregates include concrete, mortar, roadstone, asphalt, railway ballast, drainage courses and bulk fill.
Development Plan	The complete set of policies and proposals for the development and use of land and buildings in an area. This includes adopted Local Plans and neighbourhood plans, and is defined in section 38 of the Planning and Compulsory Purchase Act 2004.
Duty to Cooperate:	Collaborative working with adjoining authorities, and other public bodies, regarding strategic issues which may have significant cross boundary impacts, during the preparation of Local Plans.
Landbanks	The stock of mineral reserves with valid planning permissions for their extraction but where their extraction has yet to take place. The length of the aggregate landbank is the sum in tonnes of all permitted reserves for which valid planning permissions are extant, divided by the annual rate of future demand based on the latest annual Local Aggregate Assessment. The landbank is usually calculated at a mineral planning authority level
Local Aggregate Assessment	An annual assessment of the demand for and supply of aggregates in a mineral planning authority's area.
LAA Aggregates Provision Rate (APR)	The annual rates of provision for aggregates as detailed in the Local Aggregate Assessment which planning authorities should use as an indicator of how much should be planned for in their area.
Managed Aggregate Supply System (MASS)	This system works through national, sub-national and local partners working together to ensure a steady and adequate supply of aggregate mineral across the country
Marine Aggregates	Sand and gravel dredged offshore
Mineral Plans / Mineral Local Plan	A specialist type of Local Plan for those planning authorities with responsibilities for minerals planning, which set of a framework for decisions involving minerals development.

National and Sub National Guidelines	An indication of the total amount of aggregate provision that the mineral planning authorities, collectively within each Aggregate Working Party, should aim to provide.
Permitted Reserves	In land use planning terms, reserves are those minerals that have planning permission for extraction. It includes reserves at active and inactive quarries but does not include reserves at dormant sites or sites that have not been granted planning permission. Permitted reserves are included in the landbank calculations.
Primary Aggregates	Naturally occurring mineral deposits, extracted specifically for use as aggregates and are used for the first time. Most primary aggregates are produced from hard, strong rock formations by crushing to produce crushed rock aggregate or from naturally occurring particulate deposits such as sand and gravel.
Recycled Aggregates	Produced from various sources including the demolition or construction of buildings and structures or from asphalt planings as a result of work to resurface roads and from railway track ballast. Recycling involves the processing of the waste material so that it can be made into new materials for aggregate use.
Secondary Aggregate	Secondary aggregate is usually defined as aggregate obtained as a by-product of other quarrying and mining operations or as a by-product from industrial processes such as power station ash, glass (cullet) or railway ballast.
Statement of Common Ground	A written record of the progress made by strategic policy-making authorities during the process of planning for strategic cross boundary matters. For minerals plans, aggregate working parties are also expected to be treated as additional signatories.

Introduction

Executive Summary

The West Midlands Aggregate Working Party (WMAWP) is one of nine similar working parties throughout England and Wales established in the 1970's. The coverage of the West Midlands WMAWP is detailed in figure 1 but is made up of 15 mineral planning authorities within West Midlands, including:

- Herefordshire
- Worcestershire
- Shropshire
- Staffordshire
- Warwickshire
- Stoke-on-Trent
- Telford and Wrekin
- West Midlands Metropolitan Area
 - o Birmingham
 - Dudley
 - Sandwell
 - Walsall
 - Wolverhampton
 - Coventry
 - o Solihull

The WMAWP was established to collect data and monitor the production and supply of aggregate minerals for each of the sub regions within the West Midlands as well as the reserves of aggregate minerals covered by valid planning permissions and provide technical advice on the supply and demand for aggregates from their areas.

It is not a policymaking body but is charged with data collection to facilitate planning by Mineral Planning Authorities (MPAs), national government agencies and the industry, and to inform the general reader. Funding for the secretariat is provided by the Department for Levelling Up, Housing and Communities (DLUHC) but the members of the Aggregates Working Party provide their time on a voluntary basis.

This Annual Monitoring Report provides sales and reserve data for the calendar year 1st January – 31st December 2020. The report also contains data for 1st-January – 31st December 2019, and which been taken from the Government's Aggregate Minerals Survey 2019 (AM2019). A full report covering aggregate data in 2019 has not been undertaken at the WMAWP level, as the national AM2019 undertook this assessment of aggregate demand and supply. A copy of the full report can be viewed at: https://www.gov.uk/government/publications/aggregate-minerals-survey-for-england-and-wales-2019

The Annual Monitoring Report provides information on aggregates in the West Midlands so that the WMAWP can contribute to the monitoring of the Managed Aggregate Supply System (MASS) and assess whether the West Midlands is making a full contribution towards meeting both national and local aggregate needs.

This report includes:

- Maps showing the geographical area covered by the WMAWP and the location of quarries and rail depots;
- Sales and reserves of primary aggregates in 2020, collected from the WMAWP Annual Monitoring Survey 2021;
- The landbank in the WMAWP area at 31st December 2020;
- Secondary and Recycled Aggregates figures in the WMAWP;
- Information on minerals plans and policies in the WMAWP area;
- Information on aggregates sites and planning applications and;
- Information on the latest Local Aggregate Assessments prepared by the Mineral Planning Authorities

The key findings of this Annual Monitoring Report including 2020 data is as follows:

Land-won Sand and Gravel

- Total Land-won Sand and Gravel Sales of 7.15mt (7.06mt in 2019).
- Total Land-won Sand and Gravel Reserves of 91.07mt (95.05mt in 2019)
- Landbank of 12.20 years (12.74 years in 2019)

This demonstrates a continued decline in the amount of sand and gravel reserves in the West Midlands

Crushed Rock

- Total Crushed Rock Sales of 5.52mt (4.9mt in 2019)
- Total Crushed Rock Reserves of 237.78mt (216.5mt in 2019).
- Landbank of years 60.19 years (54.81 years in 2019)

This demonstrates an increase in the amount of crushed rock reserves in the West Midlands

Overall Primary Aggregates figures

- Total primary aggregates sales 12.67mt (11.96mt in 2019)
- Total primary aggregates reserves 328.85mt (311.55mt in 2019)

This demonstrates that there is an overall increase primary aggregate reserves in the West Midlands

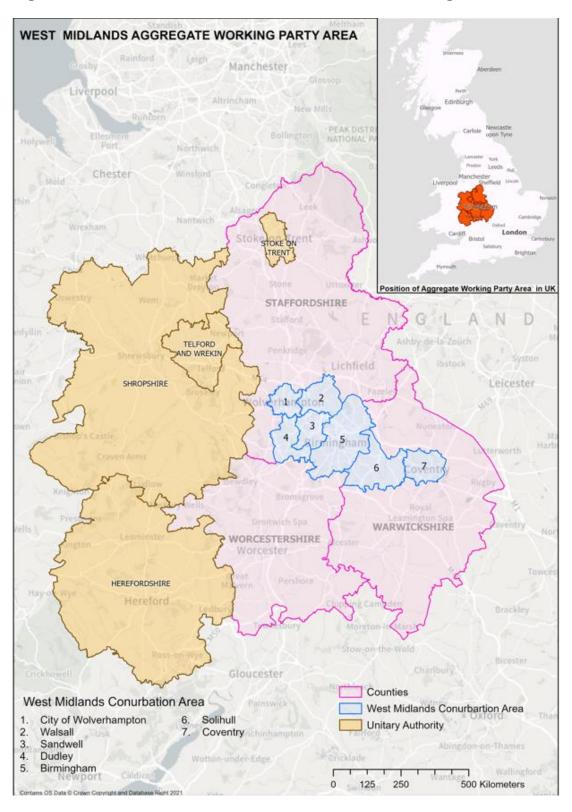
A summary of key figures for 2020 are provided in Table 1 below.

At 31 December 2020, the reserves of sand and gravel in the West Midlands overall are above the minimum 7 year landbank (at a figure of 12.2 years) and in the case of crushed rock above the minimum 10 year landbank (at a figure of 60.19 years).

The above landbank figures are however masking a fall in replenishment rates due to not enough planning applications for primary aggregate extraction coming forwards in the West Midlands region and these then being subsequently approved. In regard to sand and gravel in particular, the landbank is getting closer to the minimum 7 year requirement.

The landbanks for the West Midlands are based on a West Midlands combined LAA annual provision rate, in the absence of national and sub-national guidelines.

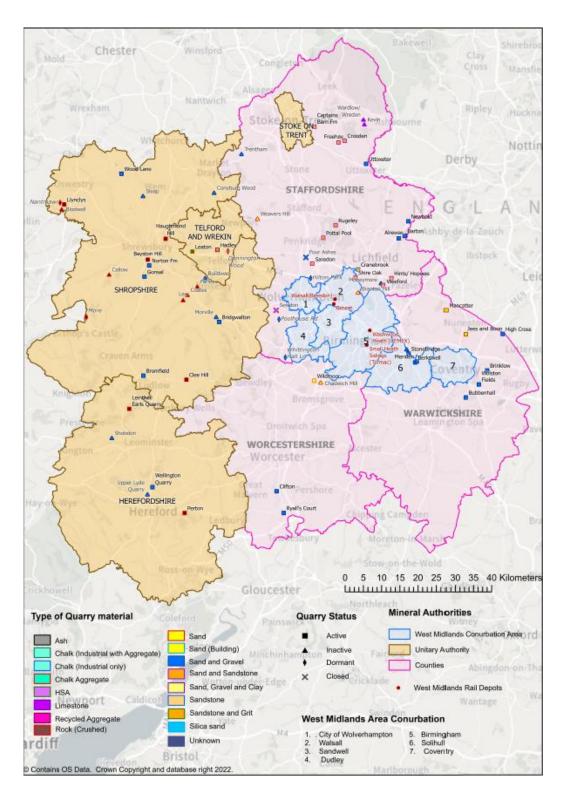
Regarding the contribution made by quarries in the West Midlands to inter-regional/ national supply, it was agreed by members of WMAWP that this is difficult to measure given the lack of up to date guidelines for sub-national aggregate provision. Referring to the findings of the Aggregate Minerals Survey 2019, sales in the West Midlands as a proportion of consumption of aggregate minerals remain similar to previous surveys (83% in 2019/80% in 2014/81% in 2009) indicating little change in meeting local/ sub-national consumption. However, it is important to note that these figures will not have captured the significant take of minerals supplying the HS2 project and therefore the ability to meet local and national needs may be compromised. It is noted, however, that West Midlands consumption is dependent on imports of crushed rock from the East Midlands and South Wales.


Table 1 Dashboard key data summary

Aggregate	Sales in 2020 (million tonnes)	Change in sales from previous year	10 year sales average (million tonnes)	3 year sales average (million tonnes)	Sales Trend	LAA annual provision (million tonnes)	Permitted reserves at 31 December 2020 (million tonnes)	Change in permitted reserves from previous year	Landbank of permitted reserves (years)	Change in Landbank from previous years
Sand and Gravel	7.15	↑	6.50	7.1	个	7.46	91.07	V	12.20	V
Crushed Rock	5.52	↑	3.95	4.93	↑	3.95	237.78	↑	60.19	↑
Marine sand and gravel	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Primary Aggregates	12.67	↑	10.45	12.03	↑	N/A	311.55	↓ ¹	N/A	N/A
Recycled and Secondary Aggregates	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

¹ This demonstrates that the overall primary reserves in the West Midlands are continuing to decline

Mineral Planning Authorities in WMAWP Area


Figure 1 West Midland WMAWP Area Mineral Planning Authorities

Primary Aggregates

Location of quarries, wharves and rail depots

Figure 2 Location of quarries, wharves and rail depots in 2020

Primary Aggregates

Sales and Imports

The sales data shown in Table 2 below has been obtained from the previous WMAWP AMRs, the AM2019 and returns received from operators during the WMAWP Survey 2021 (relating to 2020 data). It should be noted however that operator returns were poor in 2021, and all Mineral Planning Authorities have had to make sales estimates. The reason for the poor returns is maybe due to the restrictions imposed to control the COVID-19 pandemic.

The total Land-won Sand and Gravel Sales in 2020 were 7.15mt. This is an increase from 2019 sales figures which were 7.06mt. Sand and gravel sales in 2020 are above both the 10 year average and 3 year average sales figures, demonstrating that 2020 was an above average year for sand and gravel sales.

The total crushed rock sales in 2020 were 5.52mt. This is an increase from 2019 sales figures which were 4.90mt. Sales of crushed rock mainly come from Shropshire and Telford and Wrekin. As shown in Table 2, the figures for Herefordshire, Staffordshire and Warwickshire are amalgamated between 2011-2020 to maintain commercial confidentiality.

The West Midlands does not import from outside England and Wales. No imported aggregate data was collected through the WMAWP 2021 survey. The latest available data on imports was collected via the national Aggregates Minerals Survey 2019², which was undertaken jointly between the Ministry of Housing Communities and Local Government (now known as the Department of Levelling Up Homes and Communities) and the British Geological Survey (BGS).

Table 5f of the Aggregate Mineral Survey 2019 demonstrates that the largest proportion of imports of both sand and gravel and crushed rock were from the East Midlands. 0.43mt of sand and gravel was imported from the East Midlands and 2.77mt of Crushed rock was imported from the East Midlands.

² Aggregate Minerals Survey 2019 - https://www.gov.uk/government/publications/aggregate-minerals-survey-for-england-and-wales-2019

Table 2 Primary Aggregate Sales and Imports in WMAWP Area (million tonnes)

2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	10 year average	3 year average
0.65	0.64	0.66	0.63	0.73	0.74	0.67	0.71	0.37	0.89	0.669	0.65
0.63	0.00	0.00	0.52	0.54	0.40	0.46	0.6	0.65	0.38	0.54	0.54
0.07	0.62	0.62	0.1	0.1	0.13	0.15	0.19	0.31	0.17	0.24	0.22
3.82	3.4	3.74	4.18	4.47	4.61	4.74	4.84	5.04	4.85	4.36	4.91
0.42	0.4	0.21	0.28	0.32	0.33	0.33	0.39	0.43	0.47	0.35	0.43
0.4	0.46	0.49	0.5	0.53	0.58	0.48	0.36	0.26	0.39	0.44	0.33
5.99	5.52	5.72	6.21	6.69	6.79	6.83	7.09	7.06	7.15	6.50	7.1
1.65	2.41	2.88	3.13	2.76	2.68	3.09	3.01	3.62	4.2	2.94	3.58
0	0	0	0	0	0	0	0	0	0	0	0
0.81	0.71	0.82	0.66	0.61	1.23	1.27	1.38	1.28	1.32	1.00	1.32
0	0	0	0	0	0	0	0	0	0	0	0
2.46	3.12	3.7	3.79	3.37	3.91	4.36	4.39	4.90	5.52	3.95	4.93
8.45	8.64	9.42	10.00	10.06	10.70	11.19	11.48	11.96	12.67	10.09	12.03
	0.65 0.63 0.07 3.82 0.42 0.4 5.99 1.65 0 0.81 0	0.65	0.65 0.64 0.66 0.63 0.62 0.62 0.07 3.82 3.4 3.74 0.42 0.4 0.21 0.4 0.46 0.49 5.99 5.52 5.72 1.65 2.41 2.88 0 0 0 0.81 0.71 0.82 0 0 0 2.46 3.12 3.7	0.65 0.64 0.66 0.63 0.63 0.62 0.62 0.52 0.07 0.62 0.62 0.1 3.82 3.4 3.74 4.18 0.42 0.4 0.21 0.28 0.4 0.46 0.49 0.5 5.99 5.52 5.72 6.21 1.65 2.41 2.88 3.13 0 0 0 0 0.81 0.71 0.82 0.66 0 0 0 0 2.46 3.12 3.7 3.79	0.65 0.64 0.66 0.63 0.73 0.63 0.62 0.62 0.52 0.54 0.07 0.62 0.62 0.1 0.1 3.82 3.4 3.74 4.18 4.47 0.42 0.4 0.21 0.28 0.32 0.4 0.46 0.49 0.5 0.53 5.99 5.52 5.72 6.21 6.69 1.65 2.41 2.88 3.13 2.76 0 0 0 0 0 0.81 0.71 0.82 0.66 0.61 0 0 0 0 0 2.46 3.12 3.7 3.79 3.37	0.65 0.64 0.66 0.63 0.73 0.74 0.63 0.62 0.62 0.52 0.54 0.40 0.07 0.62 0.62 0.1 0.1 0.13 3.82 3.4 3.74 4.18 4.47 4.61 0.42 0.4 0.21 0.28 0.32 0.33 0.4 0.46 0.49 0.5 0.53 0.58 5.99 5.52 5.72 6.21 6.69 6.79 1.65 2.41 2.88 3.13 2.76 2.68 0 0 0 0 0 0.81 0.71 0.82 0.66 0.61 1.23 0 0 0 0 0 0 2.46 3.12 3.7 3.79 3.37 3.91	0.65 0.64 0.66 0.63 0.73 0.74 0.67 0.63 0.62 0.62 0.52 0.54 0.40 0.46 0.07 0.62 0.62 0.1 0.1 0.13 0.15 3.82 3.4 3.74 4.18 4.47 4.61 4.74 0.42 0.4 0.21 0.28 0.32 0.33 0.33 0.4 0.46 0.49 0.5 0.53 0.58 0.48 5.99 5.52 5.72 6.21 6.69 6.79 6.83 1.65 2.41 2.88 3.13 2.76 2.68 3.09 0 0 0 0 0 0 0 0.81 0.71 0.82 0.66 0.61 1.23 1.27 0 0 0 0 0 0 0 2.46 3.12 3.7 3.79 3.37 3.91 4.36	0.65 0.64 0.66 0.63 0.73 0.74 0.67 0.71 0.63 0.62 0.62 0.52 0.54 0.40 0.46 0.6 0.07 3.82 3.4 3.74 4.18 4.47 4.61 4.74 4.84 0.42 0.4 0.21 0.28 0.32 0.33 0.33 0.39 0.4 0.46 0.49 0.5 0.53 0.58 0.48 0.36 5.99 5.52 5.72 6.21 6.69 6.79 6.83 7.09 1.65 2.41 2.88 3.13 2.76 2.68 3.09 3.01 0 0 0 0 0 0 0 0 0.81 0.71 0.82 0.66 0.61 1.23 1.27 1.38 0 0 0 0 0 0 0 0 2.46 3.12 3.7 3.79 3.37 3.91 4.36 4.39	0.65 0.64 0.66 0.63 0.73 0.74 0.67 0.71 0.37 0.63 0.62 0.62 0.52 0.54 0.40 0.46 0.6 0.65 0.07 0.62 0.62 0.1 0.1 0.13 0.15 0.19 0.31 3.82 3.4 3.74 4.18 4.47 4.61 4.74 4.84 5.04 0.42 0.4 0.21 0.28 0.32 0.33 0.33 0.39 0.43 0.4 0.46 0.49 0.5 0.53 0.58 0.48 0.36 0.26 5.99 5.52 5.72 6.21 6.69 6.79 6.83 7.09 7.06 1.65 2.41 2.88 3.13 2.76 2.68 3.09 3.01 3.62 0 0 0 0 0 0 0 0 0.81 0.71 0.82 0.66 0.61 1.23	0.65 0.64 0.66 0.63 0.73 0.74 0.67 0.71 0.37 0.89 0.63 0.62 0.62 0.52 0.54 0.40 0.46 0.6 0.65 0.38 0.07 0.62 0.62 0.1 0.1 0.13 0.15 0.19 0.31 0.17 3.82 3.4 3.74 4.18 4.47 4.61 4.74 4.84 5.04 4.85 0.42 0.4 0.21 0.28 0.32 0.33 0.33 0.39 0.43 0.47 0.4 0.46 0.49 0.5 0.53 0.58 0.48 0.36 0.26 0.39 5.99 5.52 5.72 6.21 6.69 6.79 6.83 7.09 7.06 7.15 1.65 2.41 2.88 3.13 2.76 2.68 3.09 3.01 3.62 4.2 0 0 0 0 0 0 0 <td>0.65 0.64 0.66 0.63 0.73 0.74 0.67 0.71 0.37 0.89 0.669 0.63 0.62 0.62 0.52 0.54 0.40 0.46 0.6 0.65 0.38 0.54 0.07 0.62 0.62 0.1 0.1 0.13 0.15 0.19 0.31 0.17 0.24 3.82 3.4 3.74 4.18 4.47 4.61 4.74 4.84 5.04 4.85 4.36 0.42 0.4 0.21 0.28 0.32 0.33 0.33 0.39 0.43 0.47 0.35 0.4 0.46 0.49 0.5 0.53 0.58 0.48 0.36 0.26 0.39 0.44 5.99 5.52 5.72 6.21 6.69 6.79 6.83 7.09 7.06 7.15 6.50 1.65 2.41 2.88 3.13 2.76 2.68 3.09 3.01 3.62 4.2<</td>	0.65 0.64 0.66 0.63 0.73 0.74 0.67 0.71 0.37 0.89 0.669 0.63 0.62 0.62 0.52 0.54 0.40 0.46 0.6 0.65 0.38 0.54 0.07 0.62 0.62 0.1 0.1 0.13 0.15 0.19 0.31 0.17 0.24 3.82 3.4 3.74 4.18 4.47 4.61 4.74 4.84 5.04 4.85 4.36 0.42 0.4 0.21 0.28 0.32 0.33 0.33 0.39 0.43 0.47 0.35 0.4 0.46 0.49 0.5 0.53 0.58 0.48 0.36 0.26 0.39 0.44 5.99 5.52 5.72 6.21 6.69 6.79 6.83 7.09 7.06 7.15 6.50 1.65 2.41 2.88 3.13 2.76 2.68 3.09 3.01 3.62 4.2<

West Midlands AWP - AMR 2021

Total Marine Sand and Gravel Sales											
Imports (from outside of England and Wales)											
Total Imports											
Notes:											

C = confidential figure

Permitted Reserves

The permitted reserves of sand and gravel and crushed rock in the WMAWP area at 31 December 2020 are set out in Table 3 below.

The permitted reserves of sand and gravel in the West Midlands at 31 December 2020 were 91.07mt. This is an increase in permitted reserves from 2019 at a figure of 95.05mt. The largest proportions of permitted reserves of sand and gravel are from quarries in Staffordshire (65%).

The permitted reserves of crushed rock in the West Midlands at 31 December 2020 were 237.78mt. This is an increase in permitted reserves from 2019 at a figure of 216.5mt. The crushed rock reserve figures for Herefordshire, Staffordshire and Warwickshire have been amalgamated between 2014-2020 to maintain commercial confidentiality on the crushed rock reserve figures across these MPAs due to the small number of operational crushed rock quarries within those counties

Table 3 shows there had been a significant and consistent decline in the amount of total permitted reserves since 2016. However due to increases in permitted reserves in both sand and gravel and crushed rock in Shropshire and Telford and Wrekin, the overall amount of aggregate reserves has increased in 2020.

Table 3 Permitted Reserves in WMAWP Area (million tonnes)

Aggregate	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
Sand & Gravel										
Shropshire (and Telford and Wrekin)	13.55	12.86	13.95	12.27	10.43	11.29	11.34	10.93	15.24	17.05
Worcestershire	3.85	6.57	6.01	2.5	0.54	4.29	3.47	2.94	2.61	2.50
Herefordshire	2.87			2.76	2.66	2.75	2.60	2.48	2.31	2.68
Staffordshire	71.79	66.98	62.26	68.09	67.86	63.63	62.94	66.78	64.11	58.98
Warwickshire	4.51	4.33	4.96	4.44	3.87	6.69	6.36	6.2	6.07	5.60
West Midlands Conurbation	4.65	4.58	5.39	4.85	5.18	5.86	3.99	3.26	4.71	4.26
Total Sand & Gravel Permitted Reserves	101.22	95.32	92.57	94.91	90.95	94.51	90.7	92.59	95.05	91.07
Crushed Rock										
Shropshire and Telford and Wrekin	104.5	124.81	113.85	109.55	104.05	114.44	113.2	100.3	92.6	115.08
Worcestershire	0	0	0	0	0	0	0	0	0	0
Herefordshire	11.0	11.79	11.54	407.00	000.07	000.44	404.04	407.04		
Staffordshire	159.65	189.84	188.61	197.92	200.27	202.14	104.21	127.91	123.9	122.7
Warwickshire	21.0	109.04	100.01							
West Midlands Conurbation	0	0	0	0	0	0	0	0	0	0
Total Crushed Permitted Reserves	296.15	326.44	314	307.47	304.32	316.58	217.41	228.21	216.5	237.78
Total Permitted Reserves	397.37	421.76	406.57	402.38	394.86	411.09	308.11	320.8	311.55	328.85

West Midlands AWP - AMR 2021

Landbank in WMAWP Area

Aggregate landbanks are principally a monitoring tool to provide Minerals Planning Authorities with early warning of possible disruption to the provision of an adequate and steady supply of land-won aggregates in their particular area. They should be used principally as a trigger for a Mineral Planning Authority to review the current provision of aggregates in its area and consider whether to conduct a review of allocation of sites in its local minerals plan. This is of particular importance in the case of aggregates because of the scale and long term nature of the industry, as well as the length of time it may take from identifying a site to the commencement of extraction.

As stated under paragraph 213 f) of the NPPF 2021, Mineral Planning Authorities should plan for a steady and adequate supply of aggregates by maintaining landbanks of at least 7 years for sand and gravel and at least 10 years for crushed rock.

The landbanks for permitted reserves for both sand and gravel and crushed rock in the West Midlands at 31st December 2020 are shown in Table 4 below. In the absence of upto-date national and sub-national guidelines, the landbanks have been calculated by using the LAA annual provision rate which will be used by the MPAs in the LAAs they are all currently preparing.

The overall sand and gravel landbank for the West Midlands is 12.20 years (and is therefore above the minimum 7 year landbank required for sand and gravel). As demonstrated in Table 4, the only MPA in the West Midlands with a sand and gravel landbank below the minimum 7 years is Worcestershire, at a figure of 2.93. The other West Midlands MPAs have sand and gravel landbanks well above the minimum 7 years (in particularly Shropshire and Telford and Wrekin).

The overall crushed rock landbank for the West Midlands is 60.19 years (and is therefore significantly above the minimum 10 year requirement). As demonstrated in Table 4 below, the West Midlands is largely reliant upon crushed rock reserve from Shropshire and Telford and Wrekin. The West Midlands Conurbation and Worcestershire both have no crushed rock permitted reserves. As previously explained earlier in this report, the crushed rock figures for Herefordshire, Staffordshire and Warwickshire are strictly confidential due to there being a limited number of operators.

As demonstrated in previous AMRs, the sand and gravel landbank in the West Midlands is continuing to decline. There is also a falling replenishment rate due to planning applications for sand and gravel extraction not being forthcoming.

Table 4 Landbank in WMAWP Area

Mineral	Annual rate	LAA Rate	Annual Rate	Reserves (as	Landbank in
	of future demand based on the latest annual Local Aggregate Assessment	is 10 years sales average	of future demand based on 10 years sales average	of 31 st December 2020)	year (as at 31 st December 2020)
Sand & Gravel					
Shropshire and Telford and Wrekin	0.66	Yes	0.66	17.05	25.83 years
Worcestershire	0.853	No	0.54	2.50	2.93 years
Herefordshire	0.24	Yes	0.24	2.68	11.16 years
Staffordshire	5.0	No	4.36	58.98	11.8 years
Warwickshire	0.35	Yes	0.35	5.60	16.0 years
West Midlands Conurbation	0.44	Yes	0.44	4.26	9.68 years
Total Sand & Gravel	7.46	N/A	6.50	91.07	12.20 years
Crushed Rock					
Shropshire and Telford and Wrekin	2.94	Yes	2.94	115.08	39.14 years
Worcestershire	>0	No	0	0	0
Herefordshire	1.00	Yes	1.00	122.7	122.7 years
Staffordshire					
Warwickshire					
West Midlands Conurbation	0	N/A	0	0	0
Total Crushed Rock	3.95	N/A	3.95	237.78	60.35 years

Secondary and Recycled Aggregates

National Data

Within the West Midlands, a significant proportion of the wastes recycled for aggregate use are recycled at demolition/ construction sites using mobile processing plant and indeed often reused on-site.

The best available data for recycled and secondary aggregates is that provided through analysis of information contained in the Environment Agency's Waste Data Interrogator (WDI). The WDI has been used to identify the amount of construction, demolition and excavation waste (CD&EW) produced and handled at licenced waste facilities within each Waste Planning Authority and is presented by sub-region in the table below. It is likely to only represent a proportion of the recycled aggregates in circulation. The most up-to-date data available from the Environment Agency Waste Data Interrogator is from 2019.

It is important to understand the data limitations associated with secondary and recycled aggregates. Most notably regarding the waste data interrogator (WDI) the data within the WDI is collected from the returns from permitted facilities and records only waste received, and waste exported from site

Secondary aggregates, where certain quality protocol specifications are met, is considered to be non-waste and is therefore not included within the waste tonnage returns. The data within the WDI does not account for mobile crushers or recycling and re-use that occurs on individual construction sites. The tonnage of recycled aggregates reported in the WDI is likely to only represent a proportion of the recycled aggregates in circulation and only presents a high-level view of CDEW in the region. These figures are only estimates and should be treated with caution.

Table 5 CD&E Waste Arisings (Environment Agency, 2019³)

Planning Authority	Amount Produced (tonnes)	Amount Managed (tonnes)
Herefordshire	121,028.925	129,385.041
Shropshire	262,254.39	269,857.06
Telford and Wrekin	123,851.56	131,624.309
Staffordshire	2,022,320.29	210,0416.13
Warwickshire	1,465,173.621	1,532,124.516
Worcestershire	485,435.803	546,229.391
West Midlands Conurbation	2,605,064.27	2,967,016.929
Stoke-on-Trent	341,842.40	357,252.562
Totals	7,426,971.26	8,033,905.94

 $^{^{3} \ \}underline{\text{https://environment.data.gov.uk/portalstg/home/item.html?id=3846ab81a365488fb6c11c0847827bf4}$

Development Plans and Mineral Policies in WMAWP Area

Local Planning Authorities are required to prepare Local Plans which include policies to aid the determination of planning applications and to set out the development of a county/borough/district over a 15-year period. This includes policies for minerals development, which mineral planning authorities must prepare. Some authorities will include mineral planning policies within their overall Local Plans, whilst others will prepare specific Minerals and Waste Local Plans. Table 6 below details the status and progress of Local Plans in the WMAWP area.

Table 6 Minerals Plans Information

Table 6 Minerals Plans Information								
Mineral Planning Authority / Authorities	Plan Name/Mineral DPD	Preparation stage / Current Status	Status in previous annual monitoring report					
Staffordshire	The Minerals Local Plan for Staffordshire (2015-2030)	Adopted in 2017	Adopted in 2017					
Worcestershire	Minerals Local Plan	Examination concluded May 2022. Anticipate adoption July 2022	Full consultation in late 2018 with presubmission programmed for Spring 2019 and adoption in 2020					
Worcestershire	Mineral Site Allocations DPD	Regulation 18	N/A					
Herefordshire	Herefordshire Minerals & Waste Local Plan	Regulation 22	Adopted Core Strategy 2015 which is in the early stages of an update process. Consultation on the publication draft of the Minerals and Waste Local Plan (MWLP) ended in May 2021.					
Dudley MBC / West midlands Conurbation	Black Country Plan (Emerging) (Produced jointly with Sandwell, Walsall and Wolverhampton Councils)	Regulation 18	Adopted their joint Black Country Core Strategy. Regulation 18 consultation scheduled for Aug/Sept 2021.					
Telford and Wrekin	Telford & Wrekin Local	Adopted 2018	Adopted 2018					

	Dlan 2011	1	
	Plan 2011- 2031		
Shropshire	Shropshire Local Plan (2016 – 2038	Regulation 19	Reviewing plan with a view to the formal submission of a replacement Local Plan at the end of 2019.
Warwickshire	Warwick District Local Plan 2011 - 2029	Adopted 2017	Revised Plan to be taken to Cabinet in June 2018, followed by a 6 week consultation period during September / October 2018.
Birmingham Development Plan	The Birmingham Development Plan (BDP) 2031	Adopted in 2017	Adopted in 2017
Telford and Wrekin	The Telford & Wrekin Local Plan 2011- 2031	Adopted in 2018	Adopted in 2018
Coventry	Coventry Local Plan(2011 - 2031)	Adopted in 2017	Adopted in 2017
Solihull	Soilhull Local Plan	EIP examinations took place October 2021 – Jan 2022	Regulation 18
Stoke-on-Trent	Stoke-on-Trent Local Plan 2020-2040	Issues and Options consultation closed 21 June 2021	Early stages of preparation

Aggregates sites and planning applications in WMAWP Area

A list of quarries producing primary aggregates in the West Midlands and rail depots importing primary aggregates are detailed in table 7 below. A map showing the location and geographical distribution of these sites are detailed in figure 2.

By the end of 2020, there were 69 quarry sites in the West Midlands. 44 were active sites in the West Midlands (i.e. they were in production for some time during 2020) and 25 inactive sites (i.e. they had valid planning permissions at one point but are not operating/producing aggregates).

Table 7 Aggregates sites in WMAWP area

Mineral Planning Authority	Site Name	Type of site	Operator	Grid Reference	Mineral	Status
Sandwell	Bescot	Railwa y ballast	Network Rail	401,607/295,3 46	Aggregat e	Active
Worcestershi re County Council	Cinetic Quarry (also known as Wildmoor Quarry)	Quarry	Wildmoor Quarry Products Ltd	SO950759	Sand	Active
	Clifton	Quarry	Tarmac	SO846455	Sand and Gravel	Active
	Ryall's Court Quarry	Quarry	Cemex UK	SO851415	Sand and Gravel	Active
Staffordshire County Council	Alrewas Quarry	Quarry	Tarmac Trading Ltd.	SK 175 125	Sand and Gravel	Active
	Barton Quarry	Quarry	Hanson UK	SK 195 155	Sand and gravel	Active
	Captains Barn Farm	Quarry	Dalecrete	SK 950 455	Sand and Gravel	Active
	Cauldon Low Quarry	Quarry	Aggregate Industries UK Ltd	SK 084 474	Limeston e	Active
	Cranebrook.	Quarry	WCL Quarries	SK 070 064	Sand	Active

1	Craydon	Ouern	Tormoo	CV 022 447	Condond	Λ otiv (o
	Croxden	Quarry	Tarmac	SK 033 417	Sand and	Active
	Quarry Freehay Quarry	Quarry	Trading Ltd. Hanson UK	SK 015 411	Gravel Sand and	Inactiv
	intechay Quality	Quality	Hallson UK	SK 013 411	Gravel	e
	Hilton Park.	Quarry	Hanson UK	SJ 952 45	Sand and	Inactiv
		Quality			Gravel	е
	Hints / Hopwas	Quarry	Tarmac	SK 163 462	Sand and	Active
	Quarry		Trading Ltd. / Cemex		Gravel	
	Kevin Quarry,	Quarry	Tarmac Trading Ltd.	SK 086 465	Limeston e	Inactiv e
	Newbold Quarry.	Quarry	Aggregate Industries UK Ltd	SK 205 195	Sand and Gravel	Active
	Poolhouse Road	Quarry	None	SO 853 927	Sand and Gravel	Inactiv e
	Pottal Pool Quarry	Quarry	Hanson UK	SJ 973 147	Sand and Gravel	Active
	Rugeley Quarry	Quarry	Cemex	SK 010 181	Sand and Gravel	Active
	Saredon Quarry	Quarry	NRS Saredon Aggregates Ltd	SJ 944 80	Sand and Gravel	Active
	Shire Oak.	Quarry	JPE Holdings	SK 063 042	sand and gravel	Active
	Trentham (Lordsley) Quarry	Quarry	Hanson UK	SJ 750 380	Sand and Gravel	Inactiv e
	Uttoxeter Quarry.	Quarry	Aggregate Industries UK Ltd	SK 097 351	Sand and Gravel	Active
	Wredon/Wardlo w Quarries	Quarry	Tarmac Trading Ltd.	SK 087 572	Limeston e	Inactiv e
	Weavers Hill Sand Pit	Quarry	GRS (Roadstone) Ltd.	SJ 794 203	Sand	Inactiv e
	Weeford (Moneymore) Quarry	Quarry	Hanson UK	SK133 026	Sand and Gravel	Active
	Weeford (Ricketts) Quarry	Quarry	H.D.Rickett s	SK 133 026	Sand and Gravel	Active
	Whittington Hall Lane	Quarry	None	SO 870 820	Sand and gravel	Inactiv e
Herefordshire Council	Leinthall Quarry	Quarry	Breedon	SO442684	Limeston e	Active
	Perton Quarry	Quarry	Elliotts of Cheltenha m Ltd	SO594397	Limeston e	Active
	Nash Quarry	Quarry	Tarmac	SO302623	Limeston e	Inactiv e
	Wellington Quarry	Quarry	Tarmac Trading Ltd	SO508474	Sand & Gravel	Active

	Shobdon Quarry	Quarry	Tarmac Trading Ltd (until end 2021)	SO398604	Sand & Gravel	Inactiv e
	Upper Lyde Quarry	Quarry	Hereford Quarries Ltd	SO492447	Sand & Gravel	Active
Solihull MBC	Berkswell Quarry	Quarry	Cemex UK	SP422280	Sand and gravel	Active
	Meriden Quarry	Quarry	NRS Wastecare	SP423281	Sand and gravel	Active
Telford & Wrekin Council	New Hadley Quarry	Quarry	Michelmers h Brick Holdings PLC	Easting: 368400 Northing 311750	Igneous rock Sandston e	Active
	Leaton Quarry	Quarry	Breedon Trading	Easting: 361563 Northing: 311289	Igneous rock	Active
	Branton Hill Quarry Extension	Quarry	Bliss Sand & Gravel Co Ltd	SK067002	Bulk Material - Sand	Inactiv e
Birmingham City Council	Washwood Heath	Rail Depot	Cemex		Primary Aggregat e	Active
	Small Heath Sidings	Rail Depot	Tarmac		Primary Aggregat e	Active
Warwickshire CC	Wolston Fields Quarry, Rugby BC	Quarry	Smiths Concrete	SP395744	Sand and Gravel	Active
	Brinklow Quarry, Rugby BC	Quarry	Astons	SP417792	Sand and Gravel	Active
	High Cross Quarry, Rugby BC	Quarry	KSD Limited	SP465888	Sand and Gravel	Active
	Dunton Quarry	Quarry	KSD Limited	SP188931	Sand and Gravel	Inactiv e
	Bubbenhall Quarry	Quarry	Smiths Concrete	SP362713	Sand and Gravel	Inactiv e
	Mancetter Quarry	Quarry	Tarmac Trading Limited	SP309955	Crushed Rock	Active
	Hartshill Quarry	Quarry	Crown Waste Manageme nt	SP324947	Crushed Rock	Active
Shropshire	Wood Lane Quarry	Quarry	Tudor Griffiths	SJ 422 328	Sand & Gravel	Active
	Norton Farm Quarry	Quarry	Hanson	SJ 497 075	Sand & Gravel	Active
	Bromfield Quarry	Quarry	Bromfield S&G	SO 481 773	Sand & Gravel	Active

Gonsal Quarry	Quarry	Salop S&G	SJ 484 044	Sand &	Active
		-		Gravel	
Bridgwalton Quarry	Quarry	Salop S&G	SO 689 920	Sand & Gravel	Active
Woodcote Wood	Quarry	NRS Ltd	SJ 773 149	Sand & Gravel	Active
Shipley	Quarry	JPE Ltd	SO 813 963	Sand & Gravel	Inactiv e
Sleap Quarry	Quarry	Hanson Aggregates	SJ 480 265	Sand & Gravel	Inactiv e
Morville Quarry	Quarry	Tarmac	SO 685 936	Sand & Gravel	Inactiv e
Buildwas Quarry	Quarry	Harry Price Sand and Gravel	SJ 647 041	Sand & Gravel	Inactiv e
Cound Quarry*	Quarry	Hanson Aggregates	SJ 550 060	Sand & Gravel	Inactiv e
Conyburg Wood Quarry	Quarry	Hanson Aggregates	SJ 675 274	Sand & Gravel	Inactiv e
Haughmond Hill Quarry	Quarry	Aggregate Industries	SJ 542 148	Crushed Rock	Active
Clee Hill Quarry	Quarry	Hanson Aggregates	SO 599 762	Crushed Rock	Active
Llynclys Quarry	Quarry	Llynclys Aggregates Ltd	SJ 264 242	Crushed Rock	Active
Bayston Hill Quarry	Quarry	Tarmac	SJ 493 091	Crushed Rock	Active
Leaton Quarry	Quarry	Breedon Southern Limited	SJ 618 113	Crushed Rock	Active
Farley Quarry	Quarry	"non- mineral owner"	SJ 629 017	Crushed Rock	Inactiv e
Callow Quarry	Quarry	Tarmac	SJ 387 050	Crushed Rock	Inactiv e
Coates Quarry	Quarry	Aggregate Industries	SO 602 994	Crushed Rock	Inactiv e
New Hadley Quarry	Quarry	Michelmersh Brick Holdings PLC	SO 590 980	Crushed Rock	Inactiv e
More Quarry	Quarry	Tarmac	SO 325 933	Crushed Rock	Inactiv e
Blodwell Quarry	Quarry	Hanson Aggregates	SJ 257 229	Crushed Rock	Inactiv e
Nantmawr Quarry	Quarry	Midland Quarry Products Limited	SJ 253 242	Crushed Rock	Inactiv e

Planning Applications

The West Midlands WMAWP monitors the nature and outcome of planning applications for primary aggregates extraction in the West Midlands on an annual basis. Table 8 below lists the planning applications for aggregate production within the West Midlands which were either decided or pending a decision during both 2019 and 2020.

There were 6 applications granted planning permission in the 2019-2020 period (with 2 of these still awaiting for the legal agreements to be formalised). Altogether, 7.18mt of primary aggregates have been approved between 2019 and 2021 (this does not take into account those still awaiting the formalisation of the legal agreement).

Table 8 Planning Applications and Decisions in WMAWP Area

Mineral Planning Authority	Site Name and Location (Grid Reference)	Operator / Applicant	Tonnage (for aggregat e use)	Type of Applicatio n	Date Submitted	Decision
Staffordshire	Trentbridg e Farm	Mr Clayton	30,000	Full permissio n – sand extraction	28/04/201 9	Permitted 7/08/19
	Saredon	NRS Aggregate s	800,000	Full permissio n – sand and gravel	04/12/201 8	Permitted 4/06/19
	Barton	Hanson	6,000,00	Full permissio n – sand and gravel	15/12/201 8	Approved subject to legal agreement
	Alrewas	Tarmac	1,500,00	Full permissio n – sand and gravel	21/10/201	Approved subject to legal agreement
	Croxden	Tarmac	1,500,00	Full permissio n – sand and gravel	22/05/202	Undetermined
	Pyford Brook	Cemex	1,400,00	Full permissio n – sand and gravel	11/05/202 0	Undetermined
	Captains Barn Farm Quarry	Dalecrete	250,000	Gone to appeal – sand and gravel	25/11/202 0	Undetermined

	I	I	1		T	<u> </u>
Worcestershir	Bow Farm	M C Cullimore	1.5mt	Full permissio	01/11/201	Donding
e County Council	Bow Faiiii	(Gravels)		n – sand and gravel	9	Pending
	Lea Castle Farm	NRS Aggregate s Ltd	3mt	Full permissio n – sand and gravel	01/01/202	Pending
	Pinches 4	MV Kelly Ltd	1mt	Full permissio n – sand and gravel	01/01/202	Pending
Shropshire	Land near Shipley, Bridgnorth	JPE Holdings Ltd	3.5m tonnes	Full permissio n – sand and gravel	9/11/2017	Permitted 17/05/19
	Extension to	Hanson	2.854	Full permissio n – extension to sand and	18/03/201 9	
	Condover Quarry		million tonnes	gravel quarry		Permitted 13/05/21
	Land east of Much Wenlock Road, Buildwas,	Harworth Group Plc		Full permissio n – sand and gravel	19/12/201 9	
	near Ironbridge		1.9m tonnes			Pending

Local Aggregate Assessments

Mineral Planning Authorities are required to prepare a Local Aggregate Assessments (LAAs) every year as a contribution towards the Managed Aggregate Supply System (MASS). The purpose of LAAs is to assess the demand and supply of aggregates within the Mineral Planning Authority area.

Mineral Planning Authorities can decide to either base their LAA figure (the demand figure used to calculate the landbank of both sand and gravel and crushed rock) on a rolling average of 10 years sales data, 3 year average sales data, or an uplift to the 10 years or 3 years sales data which takes into account 'other relevant local information.'

Table 9 below sets out the date of each MPAs latest LAA.

For those authorities where a 10 year sales average is used, but the LAA is out of date, the most recent 10 year average sales figure has been used. As previously explained, the crushed rock sales data for Herefordshire, Staffordshire and Warwickshire has been amalgamated for commercial confidentiality reasons.

Table 9 Local Aggregate Assessments in WMAWP Region

Mineral Planning	Latest LAA Date	LAA Figure		Calculation
Authority		Sand and Gravel (mt)	Crushed Rock (mt)	Method
Shropshire and Telford and Wrekin	2018-2019	0.664	2.94	10 years sales average
Worcestershire	2022 (draft up to 2020)	0.853	>0	10 year sales + 50% uplift to take into account 'other local relevant information' for sand and gravel 10 year sales + 'other local relevant information' for crushed rock
Herefordshire	2019	0.245		10 year sales average for sand and gravel and crushed rock
Staffordshire	2019	5.0 ⁶	1.0	Sand and gravel LAA rate based on provision identified in the adopted Minerals Local Plan. 10

⁴ Based on latest 10 year average sales rather than that given in the 2018-2019 LAA

⁵ Based on 10 year average sales for the purposes of this AMR, however Herefordshire is progressing their LAA where the LAA rate will be based on 10 year sales plus an uplift to take into account other relevant local information. The exact figure has not yet been calculated, and therefore cannot be included in this report. Will be deciding whether the uplift is needed.

⁶ Based on information submitted by Staffordshire CC for the purposes of preparing this AMR

Warwickshire	2017	0.357		year sales average for crushed rock 10 year sales average for sand and gravel and crushed rock.
West Midlands Metropolitan Area	2015	0.448	n/a	10 year sales average for sand an gravel

Local and National Aggregate Need

The annual rates of provision for aggregates in the West Midlands are 7.46mt for sand and gravel per annum and 3.95mt for crushed rock per annum. The sand and gravel combined LAA rate comprises of a mix of 10 year average sales and locally derived LAA rates. Please see Table 9 above and Table 4 for those MPAs who apply a locally derived sand and gravel LAA rate. The crushed rock combined LAA rate is based upon 10 year average sales

The combined LAA annual provision rate for the West Midlands exceeds the 10 years sales average for sand and gravel by 0.96mt. In the case of Crushed rock, the LAA *provision rate is* based on the 10 year average sales for Shropshire and Telford and Wrekin in 2020 and the combined 10 year sales average for Herefordshire, Staffordshire and Warwickshire. As previously explained in this report, the crushed rock sales and reserves information for these MPAs has been amalgamated to maintain commercial confidentiality.

The current national and sub-national guidelines for aggregates provision are now out of date and are currently under review by DLUHC. As the national and sub-national guidelines are out of date, the WMAWP do not consider them to be a robust baseline to assess whether the West Midlands and its Mineral Planning Authorities are making an appropriate contribution to local and national aggregate need. The combined LAA annual provision rate is the most robust baseline available and has therefore been used instead.

⁷ Based on the latest 10 year average sales rather than that given in the 2017 LAA

⁸ Based on the latest 10 year average sales than that given in the 2015 LAA

Trends and Analysis

Primary aggregate sales

Sales of sand and gravel and crushed rock increased in 2020 in comparison to 2019.

Overall sales of sand and gravel have been steadily increasing since 2012 The 3 year average sales for sand and gravel is above the 10 year average sales figure, demonstrating that there has been a an overall increase in sales in recent years.

In the case of crushed rock, sales have been steady since 2016. The 3 year average sales are also higher than the 10 year average sales, again demonstrating the increase in crushed rock sales in recent years.

Primary aggregate reserves

In the West Midlands reserves of sand and gravel decreased from 92.59mt in 2019 to 91.07mt in 2020. There was an increase in sand and gravel reserves in 2018 and 2019, however there was a fall in 2020 by 3.98mt

Permitted reserves of crushed rock in the West Midlands increased from 216.5mt in 2019 to 237.78mt in 2020. Reserves of crushed rock in the West Midlands were decreasing steadily between 2012 and 2016. However there was a large decrease in reserves in 2017 by 97.93mt due to a reassessment of reserves at a quarry in Staffordshire.

Secondary and recycled aggregates

The most up to date information of secondary and recycled aggregate is from the Waste Data Interrogator 2019.

The data from the WDI showed that a total of 7.42mt of recycled aggregate was produced in the West Midlands and 8.03mt was managed.

It is important to understand the data limitations associated with secondary and recycled aggregates. Most notably regarding the waste data interrogator (WDI) the data within the WDI is collected from the returns from permitted facilities and records only waste received, and waste exported from site

The data within the WDI does not account for mobile crushers or recycling and re-use that occurs on individual construction sites. The tonnage of recycled aggregates reported in the WDI is likely to only represent a proportion of the recycled aggregates in circulation.

Major Construction Projects or Developments

Major construction projects have a significant effect on the aggregate supply within a region. The West Midlands has large development growth aspirations, particularly within and surrounding Birmingham. The construction of HS2 phases 1, 2a and 2b will have a

major impact on aggregate demand in the West Midlands region, with construction on phase 2b expected to finish in 2038.

Table 10 below outlines the major construction projects or developments that are proposed within the West Midlands.

Table 10 Major Construction Projects or Developments

Table 10 Major Construction Projects or Developments					
Project/Development Name and Location	Time Scale (estimated start and end date)	Comments			
Wednesbury to Brierley Hill Metro Extension. By the Midland Metro Alliance (MMA). In Dudley and Sandwell boroughs.	On-site works commenced Feb 2020. Passenger services anticipated to commence in 2023	Deemed to have planning permission under the Midland Metro (Wednesbury to Brierley Hill and Miscellaneous Amendments) Transport and Works Act (TWA) Order 2005. See also Midland Metro Alliance: https://metroalliance.co.uk/projects/wednesbury-to-brierley-hill-extension/			
Dudley Transport Interchange (site of existing Dudley bus station and environs). By Transport for West Midlands as part of the West Midlands Combined Authority (WMCA)	On site works to commence during 2021, and completion anticipated June 2022.	Outline planning permission granted March 2019 (ref P18/1730).			
Black Country and Marches Institute of Technology. By Dudley College of Technology and a range of partners. (Located at land to west of Tipton Road, Dudley)	On site work commenced February 2020, and facility expected to be operational during September 2021	Planning permission (reserved matters, ref P19/1391) approved January 2020.			
Portersfield major mixed use development (Dudley town centre) - Land north of Duncan Edwards Way and either side of Trindle Road (Portersfield), Dudley, West Midlands	Demolition of the large and long-vacant Cavendish House office building started March 2020.	Outline planning application submitted (ref P18/0590) and now recommended for approval subject to a s106 Agreement.			
Dudley Leisure Centres (By Dudley MBC, in partneship with Alliance Leisure) - A New build 'Sport England Option D' Leisure Centre on Flood Street in central Dudley and refurbishment of Halesowen and Stourbridge leisure centres.	Work commenced on-site during January 2020, and the Dudley facility is expected to become operational during late 2021.	Planning permission granted December 2019 at car park site between Martin Hill Street, Constitution Hill and New Mill Street, Dudley (P19/1327).			

	T =	· · · · · · · · · · · · · · · · · · ·
Black Country Living Museum - 'Forging Ahead'. The single largest capital development project in the Museum's history, to include a new visitor welcome area, dedicated learning centre, and other works.	On site from Feb 2020. New visitor welcome area expected to be completed by spring 2021. Total project completion anticipated by spring 2022.	Various planning permissions granted.
High Speed 2 (Phase 1)	Phase 1 will open	National High Speed railway connecting
	between 2029 and 2033 [HS2 website - Oct 2021].	London with Birmingham (and connection with West Coast Main line at Handsacre)
High Speed 2 (Phase 2a)	Phase 2a will open between 2029 and 2033. [HS2 website - Oct 2021]	National High Speed railway connecting London with Crewe (connection with Phase 1 at Handsacre). This section of the Scheme includes proposals for borrow pits within Staffordshire.
High Speed 2 (Phase 2b)	Government plans to publish an Integrated Rail Plan for the North and Midlands shortly which will consider how to deliver HS2 phase 2b.	National High Speed railway from the West Midlands to Leeds (connection with phase 1 at Marston, Warwickshire) Note: This phase has now been cancelled.
Meaford Energy Centre	A decision on the application for a Development Consent Order for Meaford Energy Centre was taken on 19 July 2016	Combined cycle gas turbine (CCGT) power station with a nominal generating capacity of 299MW and associated electricity connection, gas connection pipeline and highway. Note: As of November 2021, it is understood that this permission may now have lapsed.
Willington C Gas Pipeline	A decision on the application for a Development Consent Order for Willington C Gas Pipeline was taken on 17 December 2014.	The application is for gas pipeline approximately 27km in length, buried for its entire length, with an above ground installation at the start point.
West Midlands Interchange	A decision on the application for a Development Consent Order for West Midlands Interchange was taken on 04 May 2020.	Whilst the detailed proposals are still evolving, the West Midlands Interchange is likely to include the following principal elements: An intermodal freight terminal; Rail served warehousing; Connection to the West Coast Main Line; New road infrastructure; Structural earthworks
M6 junction 13 to junction 15 smart motorway	2017/2018- 2021/2022.	To improve the M6 by making it a smart motorway between junctions 13 and 15.

M54 to M6 Link Road	A decision on the	Droposing a link road between the MEA and the
	application for a Development	Proposing a link road between the M54 and the M6.
	Consent Order is expected within	On 21 October 2021, Highways England reported that the SoS had asked for more time
	the next 3 months [from July 2021]	to make a final decision.
A500 Etruria Widening	Work commenced February 2019	Widening the A500 between Wolstanton and Porthill junctions near the Etruria Valley development
M6 Junction 10 Improvements	Jan 2020, with work to be completed in 2022.	Further information from Walsall MBC
South West Rugby Housing Development	During Plan period	5,000 dwellings and 35 ha gross of employment land
Rugby Mast Site Housing Development	During Plan period	6000 dwellings
Greenfield sites on the edge of Coventry	During Plan period	3750 dwellings
South Warwick and Whitnash Leamington Housing Development	During Plan period	4904 dwellings
New settlement at Long Marston (Stratford DC)	During Plan period	2100 dwellings
New Settlement at Lighthorne Heath (Stratford DC)	During Plan period	2300 dwellings
Employment Development at Lighthorne Heath	During Plan period	104 hecatres
Land in the vicinity of Coventry Airport Referred to in the LAA as Coventry & Warwickshire Gateway Now known as Segro	During Plan period	235 hectares
Park Coventry Gateway (B1,B2and B8 uses)	During Dian paried	40 hostovo
Adjacent to the adjoining Horiba MIRA Technology Park &	During Plan period	42 hectares
Enterprise Zone in Hinkley and Bosworth		
Borough	D : 5: : :	1070 111
Land west of Robey's Lane, adjacent Tamworth	During Plan period	1270 dwellings
Construction of 4 Parkway rail stations	2029-2034	Nuneaton, Polesworth, Rugby and Stockingford
A5 Comprehensive corridor improvements	During Plan period	North Warks and Nuneaton and Bedworth BC
A46 Corridor improvements	During Plan period	Stratford, Warwick and Rugby BC

Key Conclusions

At 31 December 2020, the reserves of sand and gravel in the West Midlands overall are above the minimum 7 year landbank (at a figure of 12.2 years) and in the case of crushed rock above the minimum 10 year landbank (at a figure of 60.19 years).

This is based on a West Midlands combined LAA annual provision rate, in the absence of national and sub-national guidelines.

The WMAWP is not making an appropriate contribution to local and national needs based on the fact that Table 1 of the AM2019 shows that the West Midlands only represents 83% of consumption of sales within the region.

Regarding the contribution made by quarries in the West Midlands to inter-regional/ national supply, it was agreed by members of WMAWP that this is difficult to measure given the lack of up to date guidelines for sub-national aggregate provision. Referring to the findings of the Aggregate Minerals Survey 2019, sales in the West Midlands as a proportion of consumption of aggregate minerals remain similar to previous surveys (83% in 2019/80% in 2014/81% in 2009) indicating little change in meeting local/ sub-national consumption. However, it is important to note that these figures will not have captured the significant take of minerals supplying the HS2 project and therefore the ability to meet local and national needs may be compromised. It is noted, however, that West Midlands consumption is dependent on imports of crushed rock from the East Midlands and South Wales.

Appendix 1 WMAWP Meetings

In 2020, the WMAWP held one meeting. A summary of some of the key points raised are summarised in table 11.

Table 11 WMAWP Region WMAWP Meetings

Meeting Date	Link to minutes of the	Summary of Key Points
23 April 2020	meeting	Update on the 2019 Aggregates survey DLUHC confirmed that BGS were awarded the contract to carry out the 2019 AM survey which will be carried out online. BGS were in the process of reviewing the survey and analysing pilot data to make sure they can process and analyse survey results with the previous survey.
		HS2 – MPA questioned whether HS2 has been appropriately factored into LAAS. MPAs felt that this has only been referenced as there is insufficient information available to consider this in more detail. It was noted that from an industry perspective, the majority of sand and gravel for the northern section of HS2 will come from the West Midlands.
		Trend based forecasting – forecasting future demand is difficult and a consistent approach to do this is needed. The current basic approach uses a ten-year average which factors in some unknowns to moderate the average, however, it was noted that major growth opportunities and growth plans should be taken into consideration and forecasts adjusted accordingly. It was suggested a new approach should be considered and put forward to DLUHC to send out to AWPs across the country. A shared approach is needed.
		LAAs – Agreed that 2019 data should provide a combined 2019/2020 report.
		Update from Industry – a lot of industry staff has been furloughed as a result of