

# **Testing of Vape Batteries**

The development and review of tests for assessing the safety of 18650 batteries for vaping

March 2023



#### Acknowledgements

This independent research report was produced by Jonathan Buston, Steve Goddard and Gemma Howard at the Health and Safety Executive (HSE) Science and Research Centre.

The views expressed in this report are those of the authors, not necessarily those of the Office for Product Safety and Standards or the Department for Business, Energy & Industrial Strategy (nor do they reflect Government policy).

This document replicates the content of the report 'Testing of Vape batteries', report number HMX/21/09 produced by HSE Science and Research Centre, Buxton.

This report and the work it describes were undertaken by the Health and Safety Executive (HSE) under contract to Office for Product Safety and Standards. Its contents, including any opinions and/or conclusions expressed, or recommendations made, do not supersede current HSE policy or guidance.

## Contents

| Contents                                  | 3  |
|-------------------------------------------|----|
| Executive Summary                         | 4  |
| Outcomes                                  |    |
| Recommendations                           |    |
| 1 Introduction                            | 6  |
| 2 Physical Characterisation               | 10 |
| 2.1 Initial Characterisation              | 10 |
| 2.1.1 Packaging                           | 10 |
| 2.1.2 Physical Measurement                | 11 |
| 2.2 Observations                          | 12 |
| 3 Cell Cycling                            | 13 |
| 3.1 Cell Cycling Test Method              | 13 |
| 3.2 Cell Cycling Results                  | 16 |
| 3.3 Cell Cycling Observations             | 22 |
| 3.4 Cell Cycling Recommendations          | 23 |
| 4 Pulsed Discharge                        | 24 |
| 4.1 Pulsed Discharge Test Method          | 24 |
| 4.2 Pulsed Discharge Results              | 24 |
| 4.3 Pulsed Discharge Observations         | 27 |
| 4.4 Pulsed Discharge Recommendations      | 28 |
| 5 Overcharge Test                         | 29 |
| 5.1 Overcharge Test Set-Up                | 29 |
| 5.2 Overcharge Test Results               | 32 |
| 5.3 Overcharge Test Observations          | 41 |
| 5.4 Overcharge Test Recommendations       | 41 |
| 6 Short Circuit Test                      | 43 |
| 6.1 Short Circuit Test Method             | 43 |
| 6.2 Short Circuit Test Results            |    |
| 6.3 Short Circuit Test Observations       | 53 |
| 6.4 Short Circuit Test Recommendations    | 54 |
| 7 Conclusions                             | 55 |
| Appendix A Physical Measurements on Cells | 57 |
| Appendix B Cycling Capacities             | 68 |

## **Executive Summary**

Lithium ion cells are commonly used to power vapes (e-cigarettes). Many vape devices allow for use of interchangeable batteries, so the purchasing of additional or replacement batteries is common. Furthermore, some vapers seek to modify their devices, and demand higher current flows from their batteries to enable this.

Lithium ion batteries can, under a range of conditions, enter an uncontrolled condition known as thermal runaway. This can often lead to a fire, and the cell rupturing and/or ejecting its hot contents. During thermal runaway events, cell surface temperatures of 700 °C are typical.

The Office of Product Safety and Standards (OPSS) approached HSE in order to define a suite of tests that could indicate if a cell was fit for the purposes of vaping.

HSE proposed a number of tests to OPSS that might allow the identification of lithium ion cells which were less safe for use in vapes. Some of these were selected by OPSS for initial screening.

OPSS arranged the purchase of ten batches of 18650 sized cells, which were delivered to HSE-SRC, Buxton. The cells procured were a mixture of those claiming to be from reputable manufacturers, and rebranded products. Cells were sourced online, from a range of suppliers including dedicated retailers and a variety of sellers on an online marketplace.

Since some of these cells came with unclear provenance, and unrealistic claims about their capacity, all testing was performed remotely within the battery testing facilities at HSE-SRC by experienced staff so in order to protect personnel and provide mitigation in the event of any adverse cell failure events.

#### Outcomes

'Cycling' tests (repeated charge/discharge at different rates) clearly indicated that cells that claimed clearly implausible advertised capacities did indeed fall far short of their claims. Indeed, these cells tended to be the worst performing cells on test. Furthermore, not all of the cells tested were found able to deliver capacity at the higher discharge current rates often demanded from vapes.

Using a 'pulsed discharge' to better mimic real-life vape use was, in general observed to allow more charge to be extracted from the cells.

Overcharge tests (allowing a two amp current, but with no upper voltage limit) demonstrated that all of the cells procured had some kind of internal protection built in. The minimum level of protection typically found in a cell of this type is a combined pressure relief and current interrupt device (CID). These protection components prevented all the cells tested (one from each batch) from entering a potentially dangerous thermal runaway condition which, more often than not would lead to a fire. However, high surface temperatures and damage to the cell packaging was observed in some cases; it could not be ruled out that any repetition of those tests on other cells might lead to cell failures involving fire.

Short-circuit tests (allowing the maximum current to be drained from the cells) once again demonstrated that all of the cells tested had some kind of internal protection built in. These protection components prevented all the cells tested (one from each batch) from entering a dangerous thermal runaway condition which, more often than not would lead to a fire. During testing, high surface temperatures and damage to the cell packaging was observed in some cases, with electrolyte being extruded from the cell in one case; it could not be ruled out that repetition of those tests on other cells might lead to cell failures involving fire.

#### Recommendations

Of the tests undertaken during this work, it is recommended that a future test suite should include:

- A capacity test. This may not need to be as extensive as performed here, but should include both low <u>and</u> high rates of charge and discharge cell capacities are often quoted at low rates where capacity is greater, and higher rates are more representative of cell performance in a vape device. Any marked drop-off in capacity at higher currents may suggest a cell is not suited for use with vape devices. Capacity testing could include a portion where the discharge is not continuous, but has an intermittent or pulsed profile.
- **An overcharge test**. This will help identify and verify protection mechanisms built into the cell. Where higher temperatures are observed for a particular cell type, consideration should be given to repeating the test on other specimens of that cell.
- A short circuit test. Again, this will help to help identify and verify protection mechanisms built into the cell. Where higher temperatures are observed for a particular cell type, consideration should be given to repeating the test on other specimens of that cell.

During testing, a number of cases showing significantly elevated temperatures were observed. Whilst it was not determined at which temperature these cells undergo final failure at, it is **strongly recommended** that some kind of **temperature test** is employed to determine this. Several options for determination of this value are provided.

Two other questions remain. Firstly, does a cell become more or less 'safe' with age and continued use? As a cell ages, the capacity of that cell tends to drop, and therefore it might be expected that the severity of any failure event will decrease. However, the likelihood of any failure event will reasonably increase with cell age, making the cell more prone to failure. The second question relates to the cells with dramatically over claimed capacities. Typically, the more exaggerated the claim, the more poorly performing the cell behaved in capacity measurement. But how does this translate to safety? Is the cell safer as it actually contains less electrical energy to dissipate (although the electrical energy is typically about a third of the energy released in a flaming failure event)? Or is the cell more likely to fail? Again, the testing strategies above may provide further insight.

## 1 Introduction

Lithium ion cells have been well documented to have dramatic failure modes, often (but not always) including small jet flames. The manner of the initiation of these failures is varied, but most will progress through generation of a small internal short circuit within the cell (Figure 1). This short circuit allows large currents to flow in small areas, leading to heat generation, which accelerates the failure, leading to a thermal runaway (a self-accelerating reaction which is difficult, if not impossible to bring under control).

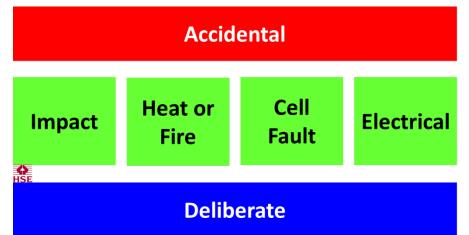
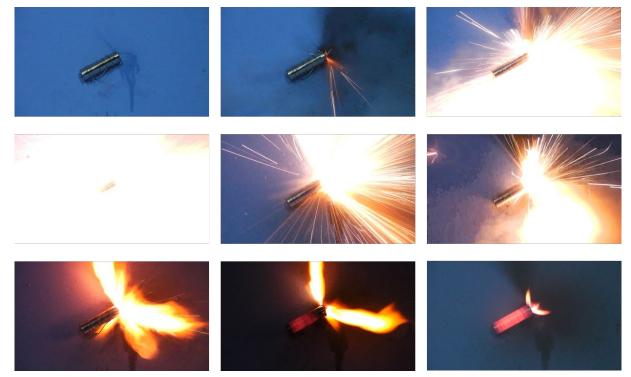




Figure 1 Causes of cell failure

Thermal runaway creates flammable gas within the cell, which eventually builds up sufficient pressure to escape through the vent or by rupturing the cell. At higher states of charge (SoC), this will most often be accompanied by self-ignition of the flammable gas produced. Figure 2 shows the typical progression of this type of thermal runaway process for an 18650 sized cell. In this test, the cell was not allowed to move, and most of the contents of the cells stayed within it; however the forces generated are able to propel the cells some distance, and cell casings rupture. These images were not captured as part of this piece of work.

Pertinent to this project, it is noted that manufacturing process can create cells with internal debris present or other means that leaves them more prone to generating internal short circuits in normal use. These faults might manifest immediately, but (due to production quality control testing) more likely only once a cell has been in use for some time. As a result, the work described in this report is not looking directly at user-generated abuse conditions, but those which might unearth or indicate internally flawed cells or design processes.

Figure 2 Thermal runaway process of a typical 18650 cell, showing the progression of the event. This cell was physically restrained during the test so that it could not move. (Images were generated during previous project work).



Vapes generally enclose their batteries further in a metal casing. This may mitigate the severity of very low level failures, but may enhance the effect of thermal runaways by confining flame, heat and gas generation into a fixed volume. Should the item rupture the casing could lead to an increased risk of generating high energy metal fragments during failure. Generation of such fragments in vape cell failure are reported to have caused serious harm (in addition to the burn injuries most commonly encountered), and, *in extremis* fatalities.

Cylindrical cells such as tested within this project may be designed with a variety of strategies to prevent these adverse outcomes. These include:

- A positive temperate coefficient (PTC) device, which increases the resistance of the device (and therefore reduces current flow) as its temperature increases. These are most often reversible; hence the cell will continue to function when it has cooled.
- A gas vent, to allow any pressure that builds up within the cell to escape in a planned manner, rather than through rupturing the cell casing.
- A current interruption device (CID) that breaks the current path once activated. These are generally combined with the gas vent, and activate at the same time. They are generally designed to be irreversible if functioning correctly, rendering the cell permanently unusable.
- Cells can be designed with different internal 'separators' (an electrically insulating membrane that separates the electrodes but allows lithium ions and often electrolyte to pass through). Some (more expensive) separators are coated with materials (often ceramic) to make them more resilient to some causes of internal short circuit. Others so-called 'shut-down' separators employ membranes that

undergo a partial melt at elevated temperatures. This blocks the pores in the membrane, stopping the passage of lithium ions, and hence current. However with continued heating from external sources, these separators fully melt, allowing uncontrolled short circuits.

• Some cells, particularly those for the consumer market, have additional 'protection'. Often this is a small round circuit board that is fitted to the end of the cell and then packaged within the plastic wrapping present on all of these cells. This circuitry can incorporate many functions, but typically will limit the voltages that can be applied to the cell (aiming to prevent both over-charge and over-discharge), and limit the current that can flow. These most often operate reversibly.

A more complete coverage of failure modes and effects of lithium ion batteries, and approaches to controlling these is provided in a recent publication<sup>1</sup>.

Cylindrical lithium ion cells, predominantly of the '18650' size, are commonly used in vapes (e-Cigarettes). The Office of Product Safety and Standards (OPSS) approached HSE in order to define a suite of tests that could indicate if a cell was fit for the purposes of vaping.

HSE proposed a number of tests to OPSS that might allow the identification of lithium ion cells which were less safe for use in vapes. Some of these were selected by OPSS for initial screening.

- **Cell cycling.** This would test the capacity (both charge and discharge) of the cells at a variety of different rates, whilst monitoring cell surface temperature. (Note that use in vapes is often associated with high current requirements, but only for short bursts). This test determines actual capacity of the cell against claimed capacity. *Selected by OPSS for initial screening.*
- **Pulsed discharge.** A fully charged cell would be discharged using short, high current bursts, interspersed by rest periods, whilst measuring cell surface temperature. This test is more representative of the duty cycle under vaping conditions than a continuous discharge test. *Selected by OPSS for initial screening*
- **Cell aging.** A sample set of cells would be cycled (a charge/discharge loop) at a fixed rate, in order to see how quickly capacity fades with use. Lower cell life is often an indicator of degradation at an electrode level. *Not selected by OPSS for initial screening.*
- **Overcharge.** Cells would be overcharged at 2 A (to simulate standard USB charge current levels), but without the normal maximum voltage limit being applied, to determine the response to poorly controlled chargers. Cell surface temperature also being monitored. *Selected by OPSS for initial screening*
- **Short circuit.** Cells would be subjected to a short circuit pathway, leading to high current flow. Cell surface temperature would be monitored. *Selected by OPSS for initial screening*
- **Temperature test.** Cells would be slowly heated to determine at what temperature the internal self-heating process that eventually leads to thermal runaway start. This test would aim to understand how close to the thermal limits cells are coming within

<sup>&</sup>lt;sup>1</sup> Li-Battery Safety, edited J. Garche and K. Brandt. Part of the Electrochemical Power Sources: Fundamentals, Systems and Applications series. 2019

the other tests, and to understand if cells with a less illustrious pedigree display lower onset temperatures. *Not selected by OPSS for initial screening.* 

OPSS arranged the purchase of ten batches of 18650 sized cells, which were delivered to HSE-SRC, Buxton. Each batch consisted of ten cells, except for the first, where twenty cells were supplied to allow any extra development of testing protocols. The cells procured were a mixture of those claiming to be from reputable manufacturers, and rebranded products. Cells were sourced online, from a range of suppliers including dedicated retailers and a variety of sellers on an online marketplace.

Since some of these cells came with unclear provenance, and unrealistic claims about their capacity, all testing was performed remotely so in order to provide mitigation. Typically this meant that cells were in a ventilated blast chamber, with HSE staff initiating and monitoring tests from a separate room.

## **2** Physical Characterisation

## 2.1 Initial Characterisation

### 2.1.1 Packaging

OPSS arranged for the supply of 10 cells of each type to HSE (20 of cell type A). For the purposes of this project, these have been designated as cells OPSS-A to OPSS-J, as shown in Table 1. When received at HSE-SRC, the cells were unpacked. It should be noted that OPSS-C cells were supplied with chargers (HSE do not believe that these were specifically ordered; it may be that these allowed the shipper to claim the supply of 'lithium ion batteries with equipment' a different shipping class).

Three of the cells (B, D and H) were found to be 'double wrapped'- that is having two separate layers of PVC wrap on each cell. Whilst it is not unusual for cells to be 'rebranded' by a proprietary wrap, the inner wrap may provide some indication of the origin of the cell.

Two of the cells (H and I) were evidently 'protected' cells- having a small round circuit board attached to the cell at the negative end. This was discernible through the packaging, both by the extra length of these cells, and by the slight ridge seen in the cell wrap.

NB: All tools used to assist in the unwrapping of the cells were non-conductive (e.g. ceramic scissors).

| Designation | Claimed Nominal Capacity | Supplier                  |
|-------------|--------------------------|---------------------------|
| OPSS-A      | 2500 mAh                 | Online retailer           |
| OPSS-B      | 4200 mAh                 | Online marketplace seller |
| OPSS-C      | 9900 mAh                 | Online marketplace seller |
| OPSS-D      | 4800 mAh                 | Online marketplace seller |
| OPSS-E      | 2600 mAh                 | Online marketplace seller |
| OPSS-F      | 6000 mAh                 | Online marketplace seller |
| OPSS-G      | 3350 mAh                 | Online retailer           |

#### Table 1: Cell Identification and Source

| OPSS-H | 3500 mAh | Online retailer |
|--------|----------|-----------------|
| OPSS-I | 3500 mAh | Online retailer |
| OPSS-J | 3000 mAh | Online retailer |

#### 2.1.2 Physical Measurement

All cells were weighed and measured on arrival. The initial open cell voltage (OCV) and internal resistance was measured using an Applent AT526B internal resistance meter. A summary of the average results obtained for each cell type is shown in Table 2; the full dataset is reported in Appendix A, in which anomalous values are also highlighted.

Table 2: Initial Recorded Measurements of Received Cell Types

| Cell Type | Average<br>or Range | Length<br>(mm) | Diameter<br>(wrapped)<br>(mm) | Weight<br>(wrapped)<br>(g) | Voltage<br>(as<br>received)<br>(V) | Internal<br>Resistance<br>(as<br>received)<br>(mΩ) |
|-----------|---------------------|----------------|-------------------------------|----------------------------|------------------------------------|----------------------------------------------------|
| OPSS-A    | Average             | 65.0           | 18.2                          | 43.8                       | 3.52                               | 13.2                                               |
|           | Range               | -              | -                             | 0.2                        | 0                                  | 1.4                                                |
| OPSS-B    | Average             | 66.8           | 18.4                          | 43.9                       | 3.86                               | 53.7                                               |
|           | Range               | -              | -                             | 0.9                        | 0.25                               | 11                                                 |
| OPSS-C    | Average             | 67.5           | 18.0                          | 34.5                       | 3.96                               | 52.8                                               |
|           | Range               | -              | -                             | 1.3                        | 0.27                               | 22.3                                               |
| OPSS-D    | Average             | 66.6           | 18.2                          | 41.4                       | 3.51                               | 36.9                                               |
|           | Range               | -              | -                             | 2.9                        | 2.97                               | 11.1                                               |
| OPSS-E    | Average             | 65.0           | 18.2                          | 46.0                       | 3.23                               | 11.2                                               |
|           | Range               | -              | -                             | 0.6                        | 2.82                               | 0.9                                                |

| OPSS-F | Average | 67.7 | 18.0 | 35.3 | 3.93 | 39.2 |
|--------|---------|------|------|------|------|------|
|        | Range   | -    | -    | 0.7  | 0.04 | 7.2  |
| OPSS-G | Average | 65.0 | 18.2 | 45.5 | 3.53 | 36.9 |
|        | Range   | -    | -    | 0.2  | 0.01 | 2.6  |
| OPSS-H | Average | 68.7 | 18.5 | 49.1 | 3.50 | 44.7 |
|        | Range   | -    | -    | 0.1  | 0    | 6.4  |
| OPSS-I | Average | 69.2 | 18.2 | 48.1 | 3.83 | 36.8 |
|        | Range   | -    | -    | 0.3  | 0.03 | 4.1  |
| OPSS-J | Average | 65.0 | 18.2 | 45.9 | 3.45 | 13.0 |
|        | Range   | -    | -    | 0.2  | 0    | 5.5  |

### 2.2 Observations

Variations in the cell length between different types of cells are because some of the cells are 'button topped' or are 'protected' cells, having the extra circuit board welded onto the bottom of the cell. Variations in the weight are less easy to explain. The two cells (Cells C and F) which are markedly lighter (*ca.* 10 g / >20% lighter) than the others should arouse suspicion.

Two cells (one each from type D and E) arrived with an OCV of less than 1 V- this would be a concern since a normal operating range for lithium ion cells is 4.2 V (100% SoC (state-of-charge)) to 2.5 or 2.75 V (0% SoC). It is not recommended to discharge cells below these lower voltage limits, and certainly not to recharge cells from such a low voltage.

The range of internal resistance values between cell types is to be expected. This is a function of cell design and construction; in general, cells designed for high power applications would have a lower internal resistance.

## 3 Cell Cycling

The aim of this initial test was to determine if cells meet their nameplate capacity (or how close they come) and are suitable and safe for further testing. Three cells of each type supplied were selected at random to be tested, so that variation within a batch supplied could be probed.

### 3.1 Cell Cycling Test Method

The cells were cycled using a Neware BTS4000 5 V, 12 A, 8 channel cell cycler (Figure 3). The cells were held in Arbin cell holders (rated for 200 A current). Due to the unexalted provenance of some of the cells, each cell was placed within a separate enclosure constructed from a fire-resistant material (Figure 4), designed to stop any fire related failure mode from propagating to other cells, each cell being contained in its own section of the enclosure. The test enclosure was positioned within a blast cell to protect staff and mitigate any energetic failure modes; in addition, the blast cell could be ventilated in the case of any adverse event. Temperatures on the surface of each cell were recorded using type-T thermocouples.

Figure 3 Cell cycler- Control and temperature unit on top, power unit (beige) showing power cable bundle going into blast cell



Figure 4 Custom built cell holding enclosure (1 cell per section)



Three cells of each type were cycled, each using two different routines, routine 1 and routine 2, which are shown in Table 3. These routines were performed sequentially on the cells but with an undefined period of rest between them –operators would manually initiate the start of routine 2 after routine 1 had completed. Routine 2 contains the more aggressive cycles; these were only initiated once the safe performance of the cell during the less aggressive routine 1 had been assessed.

Charging steps were performed using a standard constant current constant voltage (CCCV) step: charging firstly at the stated constant current to 4.2 V, then holding the voltage at 4.2 V whilst reducing the current. Charging was stopped when the current reduced to 100 mA.

Discharge steps were performed with a constant current (CC), and terminated when the cell voltage dropped to 2.75 V under load. The voltage was generally observed to recover once the load was removed.

Rest periods of 20 minutes were allowed between all charge and discharge cycles.

Note that parameters used within these routines are representative of industry specifications. Some cells have specified discharge limits of 2.5 V, and there is considerable variation in the current limits in the charge cycles. The values used here are representative and uniform.

| Step | Туре         | Charge<br>current / A | Discharge<br>current / A | Time (minutes) |
|------|--------------|-----------------------|--------------------------|----------------|
|      |              | Routine 1             |                          |                |
| 1    | CC Discharge |                       | 1                        |                |
| 2    | Rest         |                       |                          | 20             |
| 3    | CCCV Charge  | 1                     |                          |                |
| 4    | Rest         |                       |                          | 20             |
| 5    | CC Discharge |                       | 1                        |                |

#### Table 3: Cycling Routines 1 and 2

| 6        | Rest                     |           |     | 20 |
|----------|--------------------------|-----------|-----|----|
| 7        | CCCV Charge              | 1         |     | 20 |
| 8        | Rest                     | 1         |     | 20 |
| 9        | CC Discharge             |           | 1   | 20 |
| 10       | Rest                     |           | 1   | 20 |
|          |                          | 1         |     | 20 |
| 11<br>12 | CCCV Charge              | 1         |     | 20 |
|          | Rest                     |           | 0.0 | 20 |
| 13       | CC Discharge             |           | 0.2 | 00 |
| 14       | Rest                     |           |     | 20 |
| 15       | CCCV Charge              | 0.2       |     |    |
| 16       | Rest                     |           |     | 20 |
| 17       | CC Discharge             |           | 0.5 |    |
| 18       | Rest                     |           |     | 20 |
| 19       | CCCV Charge              | 0.5       |     |    |
| 20       | Rest                     |           |     | 20 |
| 21       | CC Discharge             |           | 1   |    |
| 22       | Rest                     |           |     | 20 |
| 23       | CCCV Charge              | 1         |     |    |
| 24       | Rest                     |           |     | 20 |
| 25       | CC Discharge             |           | 2   |    |
| 26       | Rest                     |           |     | 20 |
| 27       | CCCV Charge              | 2         |     |    |
| 28       | Rest                     |           |     | 20 |
| 29       | CC Discharge             |           | 3   |    |
| 30       | Rest                     |           |     | 20 |
| 31       | CCCV Charge              | 2         |     |    |
| 32       | Rest                     |           |     | 20 |
| 33       | CC Discharge             |           | 5   |    |
| 34       | Rest                     |           |     | 20 |
| 25       | CCCV Charge              | 4         |     |    |
| 35       | (NB: limited to 1Ah max) | 1         |     |    |
| 36       | Rest                     |           |     | 20 |
|          | 1                        | Routine 2 | -   | l  |
|          |                          |           |     |    |
| 1        | CCCV Charge              | 2         |     | 00 |
| 2        | Rest                     |           | 40  | 20 |
| 3        | CC Discharge             |           | 10  | -  |
| 4        | Rest                     |           |     | 5  |
| 5        | CC Discharge             |           | 1   |    |
| 6        | Rest                     |           |     | 20 |
| 7        | CCCV Charge              | 2         |     |    |
| 8        | Rest                     |           |     | 20 |
| 9        | CC Discharge             |           | 12  |    |
| 10       | Rest                     |           |     | 5  |
| 11       | CC Discharge             |           | 1   |    |
| 12       | Rest                     |           |     | 20 |
| 13       | CCCV Charge              | 5         |     |    |
| 14       | Rest                     |           |     | 20 |
| 15       | CC Discharge             |           | 1   |    |

| 16 | Rest                                    |   | 20 |
|----|-----------------------------------------|---|----|
| 17 | CCCV Charge<br>(NB: limited to 1Ah max) | 1 |    |
| 18 | Rest                                    |   | 20 |

#### 3.2 Cell Cycling Results

Table 4 shows selected outcomes of the discharge capacities measured (average value from testing three cells of each type), and how they compare to the declared nominal capacity.

| Cell<br>Type | Declared<br>Nominal<br>Capacity<br>(mAh)* | Measured<br>Capacity at 1A<br>Discharge (mAh) | % of<br>Nominal | Measured Capacity<br>at 10A Discharge<br>(mAh) | % of<br>Nominal |
|--------------|-------------------------------------------|-----------------------------------------------|-----------------|------------------------------------------------|-----------------|
| Cell A       | 2500                                      | 2440                                          | 98              | 2410                                           | 96              |
| Cell B       | 4200                                      | 1535                                          | 37              | 155                                            | 4               |
| Cell C       | 9900                                      | 920                                           | 9               | 35                                             | 0               |
| Cell D       | 4800                                      | 1220                                          | 25              | 115                                            | 2               |
| Cell E       | 2600                                      | 2415                                          | 93              | 2400                                           | 92              |
| Cell F       | 6000                                      | 1245                                          | 21              | 70                                             | 1               |
| Cell G       | 3350                                      | 2995                                          | 89              | 2405                                           | 72              |
| Cell H       | 3500                                      | 3265                                          | 93              | 2765                                           | 79              |
| Cell I       | 2900                                      | 3185                                          | 91              | 2542                                           | 73              |
| Cell J       | 3000                                      | 2895                                          | 97              | 2805                                           | 93              |

#### Table 4: Discharge Capacity Profiles for Cells A-J

\* This nominal capacity is defined by the manufacturer and is often measured at very low charge/discharge rates where the apparent capacity will be maximised.

More detailed summaries are shown in Table 5 (average value from testing three cells of each type); full details are reported in Appendix B.

| Cell<br>Type | Nominal Capacity<br>(mAh) | Charge and I<br>rates | Discharge C | apacities | (mAh) at diff | erent |
|--------------|---------------------------|-----------------------|-------------|-----------|---------------|-------|
| Cell A       | 2500                      | Rate (A)              | Charge      | %         | Discharge     | %     |
|              |                           | 0.2                   | 2526        | 101       | 2525          | 101   |
|              |                           | 0.5                   | 2467        | 99        | 2466          | 99    |
|              |                           | 1                     | 2450        | 98        | 2442          | 98    |
|              |                           | 2                     | 2387        | 84        | 2382          | 95    |
|              |                           | 3                     |             |           | 2371          | 95    |
|              |                           | 5                     | 2505        | 100       | 2386          | 95    |
|              |                           | 10                    |             |           | 2410          | 96    |
|              |                           | 12                    |             |           | 2410          | 96    |
| Cell B       | 4200                      | Rate (A)              | Charge      | %         | Discharge     | %     |
|              |                           | 0.2                   | 1588        | 38        | 1572          | 37    |
|              |                           | 0.5                   | 1556        | 37        | 1569          | 37    |
|              |                           | 1                     | 1542        | 37        | 1535          | 37    |
|              |                           | 2                     | 1340        | 30        | 1410          | 34    |
|              |                           | 3                     |             |           | 1199          | 29    |
|              |                           | 5                     | 1454        | 35        | 841           | 20    |
|              |                           | 10                    |             |           | 155           | 4     |
|              |                           | 12                    |             |           | 150           | 4     |
| Cell C       | 9900                      | Rate (A)              | Charge      | %         | Discharge     | %     |
|              |                           | 0.2                   | 963         | 10        | 963           | 10    |
|              |                           | 0.5                   | 927         | 9         | 931           | 9     |
|              |                           | 1                     | 964         | 10        | 923           | 9     |
|              |                           | 2                     | 443         | 3         | 605           | 6     |
|              |                           | 3                     |             |           | 228           | 2     |

### Table 5: Charge/Discharge Capacity Profiles at Varying Rates for Cells A-J.

|        |      | 5        | 696    | 7  | 53        | 1  |
|--------|------|----------|--------|----|-----------|----|
|        |      | 10       |        |    | 37        | 0  |
|        |      | 12       |        |    | 18        | 0  |
| Cell D | 4800 | Rate (A) | Charge | %  | Discharge | %  |
|        |      | 0.2      | 1333   | 28 | 1310      | 27 |
|        |      | 0.5      | 1320   | 28 | 1311      | 27 |
|        |      | 1        | 1234   | 26 | 1221      | 25 |
|        |      | 2        | 1150   | 24 | 1170      | 24 |
|        |      | 3        |        |    | 1096      | 23 |
|        |      | 5        | 1314   | 27 | 1083      | 23 |
|        |      | 10       |        |    | 116       | 2  |
|        |      | 12       |        |    | 90        | 2  |
| Cell E | 2600 | Rate (A) | Charge | %  | Discharge | %  |
|        |      | 0.2      | 2566   | 99 | 2559      | 98 |
|        |      | 0.5      | 2459   | 95 | 2460      | 95 |
|        |      | 1        | 2411   | 93 | 2416      | 93 |
|        |      | 2        | 2358   | 80 | 2362      | 91 |
|        |      | 3        |        |    | 2338      | 90 |
|        |      | 5        | 2543   | 98 | 2324      | 89 |
|        |      | 10       |        |    | 2397      | 92 |
|        |      | 12       |        |    | 2428      | 93 |
| Cell F | 6000 | Rate (A) | Charge | %  | Discharge | %  |
|        |      | 0.2      | 1288   | 21 | 1283      | 21 |
|        |      | 0.5      | 1272   | 21 | 1278      | 21 |
|        |      | 1        | 1234   | 21 | 1247      | 21 |
|        |      | 2        | 1030   | 13 | 1100      | 18 |

|        |      | 3                                                      |                                                |                                 | 924                                                                       | 15                                                |
|--------|------|--------------------------------------------------------|------------------------------------------------|---------------------------------|---------------------------------------------------------------------------|---------------------------------------------------|
|        |      | 5                                                      | 1091                                           | 18                              | 263                                                                       | 4                                                 |
|        |      | 10                                                     |                                                |                                 | 71                                                                        | 1                                                 |
|        |      | 12                                                     |                                                |                                 | 59                                                                        | 1                                                 |
| Cell G | 3350 | Rate (A)                                               | Charge                                         | %                               | Discharge                                                                 | %                                                 |
|        |      | 0.2                                                    | 3143                                           | 94                              | 3134                                                                      | 94                                                |
|        |      | 0.5                                                    | 3004                                           | 90                              | 2994                                                                      | 89                                                |
|        |      | 1                                                      | 3013                                           | 90                              | 2994                                                                      | 89                                                |
|        |      | 2                                                      | 2848                                           | 73                              | 2873                                                                      | 86                                                |
|        |      | 3                                                      |                                                |                                 | 2787                                                                      | 83                                                |
|        |      | 5                                                      | 3055                                           | 91                              | 2643                                                                      | 79                                                |
|        |      | 10                                                     |                                                |                                 | 2405                                                                      | 72                                                |
|        |      | 12                                                     |                                                |                                 | 1895                                                                      | 57                                                |
| Cell H | 3500 | Rate (A)                                               | Charge                                         | %                               | Discharge                                                                 | %                                                 |
|        |      | ( )                                                    | Ũ                                              |                                 | Ū                                                                         |                                                   |
|        |      | 0.2                                                    | 3364                                           | 96                              | 3361                                                                      | 96                                                |
|        |      |                                                        |                                                |                                 |                                                                           |                                                   |
|        |      | 0.2                                                    | 3364                                           | 96                              | 3361                                                                      | 96                                                |
|        |      | 0.2                                                    | 3364<br>3300                                   | 96<br>94                        | 3361<br>3289                                                              | 96<br>94                                          |
|        |      | 0.2<br>0.5<br>1                                        | 3364<br>3300<br>3269                           | 96<br>94<br>93                  | 3361<br>3289<br>3264                                                      | 96<br>94<br>93                                    |
|        |      | 0.2<br>0.5<br>1<br>2                                   | 3364<br>3300<br>3269                           | 96<br>94<br>93                  | 3361<br>3289<br>3264<br>3228                                              | 96<br>94<br>93<br>92                              |
|        |      | 0.2<br>0.5<br>1<br>2<br>3                              | 3364<br>3300<br>3269<br>3232                   | 96<br>94<br>93<br>78            | 3361<br>3289<br>3264<br>3228<br>3200                                      | 96<br>94<br>93<br>92<br>91                        |
|        |      | 0.2<br>0.5<br>1<br>2<br>3<br>5                         | 3364<br>3300<br>3269<br>3232                   | 96<br>94<br>93<br>78            | 3361<br>3289<br>3264<br>3228<br>3200<br>3154                              | 96<br>94<br>93<br>92<br>91<br>90                  |
| Cell E | 2600 | 0.2<br>0.5<br>1<br>2<br>3<br>5<br>10                   | 3364<br>3300<br>3269<br>3232                   | 96<br>94<br>93<br>78            | 3361<br>3289<br>3264<br>3228<br>3200<br>3154<br>2763                      | 96<br>94<br>93<br>92<br>91<br>90<br>79            |
| Cell E | 2600 | 0.2<br>0.5<br>1<br>2<br>3<br>5<br>10<br>12             | 3364<br>3300<br>3269<br>3232<br>3281           | 96<br>94<br>93<br>78<br>94      | 3361<br>3289<br>3264<br>3228<br>3200<br>3154<br>2763<br>2494              | 96<br>94<br>93<br>92<br>91<br>90<br>79<br>71      |
| Cell E | 2600 | 0.2<br>0.5<br>1<br>2<br>3<br>5<br>10<br>12<br>Rate (A) | 3364<br>3300<br>3269<br>3232<br>3281<br>Charge | 96<br>94<br>93<br>78<br>94<br>% | 3361<br>3289<br>3264<br>3228<br>3200<br>3154<br>2763<br>2494<br>Discharge | 96<br>94<br>93<br>92<br>91<br>90<br>79<br>71<br>% |

|        |      | 2        | 2358   | 80 | 2362      | 91 |
|--------|------|----------|--------|----|-----------|----|
|        |      | 3        |        |    | 2338      | 90 |
|        |      | 5        | 2543   | 98 | 2324      | 89 |
|        |      | 10       |        |    | 2397      | 92 |
|        |      | 12       |        |    | 2428      | 93 |
| Cell F | 6000 | Rate (A) | Charge | %  | Discharge | %  |
|        |      | 0.2      | 1288   | 21 | 1283      | 21 |
|        |      | 0.5      | 1272   | 21 | 1278      | 21 |
|        |      | 1        | 1234   | 21 | 1247      | 21 |
|        |      | 2        | 1030   | 13 | 1100      | 18 |
|        |      | 3        |        |    | 924       | 15 |
|        |      | 5        | 1091   | 18 | 263       | 4  |
|        |      | 10       |        |    | 71        | 1  |
|        |      | 12       |        |    | 59        | 1  |
| Cell G | 3350 | Rate (A) | Charge | %  | Discharge | %  |
|        |      | 0.2      | 3143   | 94 | 3134      | 94 |
|        |      | 0.5      | 3004   | 90 | 2994      | 89 |
|        |      | 1        | 3013   | 90 | 2994      | 89 |
|        |      | 2        | 2848   | 73 | 2873      | 86 |
|        |      | 3        |        |    | 2787      | 83 |
|        |      | 5        | 3055   | 91 | 2643      | 79 |
|        |      | 10       |        |    | 2405      | 72 |
|        |      | 12       |        |    | 1895      | 57 |
| Cell H | 3500 | Rate (A) | Charge | %  | Discharge | %  |
|        |      | 0.2      | 3364   | 96 | 3361      | 96 |
|        |      | 0.5      | 3300   | 94 | 3289      | 94 |

| 2 3232 78 3228                                    | 93<br>92 |
|---------------------------------------------------|----------|
|                                                   |          |
| 3 3200                                            | ~ (      |
|                                                   | 91       |
| 5 3281 94 3154                                    | 90       |
| 10 2763                                           | 79       |
| 12 2494                                           | 71       |
| Cell I   2900   Rate (A)   Charge   %   Discharge | %        |
| 0.2 3300 94 3288                                  | 94       |
| 0.5 3228 92 3231                                  | 92       |
| 1 3190 91 3183                                    | 91       |
| 2 3160 70 3166                                    | 90       |
| 3 3129                                            | 89       |
| 5 3203 92 3081                                    | 88       |
| 10 2542                                           | 73       |
| 12 50                                             | 1        |
| Cell J 3000 Rate (A) Charge % Discharge           | %        |
| 0.2 2978 99 2969                                  | 99       |
| 0.5 2940 98 2940                                  | 98       |
| 1 2903 97 2896                                    | 97       |
| 2 2900 83 2895                                    | 96       |
| 3 2879                                            | 96       |
| 5 2942 98 2855                                    | 95       |
|                                                   |          |
|                                                   | 93       |

The maximum temperature seen in several of the more demanding cycles was also recorded, and is shown in Table 6. Generally the highest temperature was seen just before the discharge/charge ended.

|           |                | Average T <sub>max</sub> (°C) |            |
|-----------|----------------|-------------------------------|------------|
| Cell Type | 10 A Discharge | 12 A Discharge                | 5 A Charge |
| A         | 42             | 48                            | 31         |
| В         | 27             | 30                            | 27         |
| С         | 25             | 23                            | 25         |
| D         | 29             | 27                            | 29         |
| E         | 37             | 42                            | 29         |
| F         | 24             | 24                            | 26         |
| G         | 57             | 59                            | 32         |
| Н         | 61             | 67                            | 37         |
| I         | 58             | 23                            | 36         |
| J         | 44             | 49                            | 31         |

#### Table 6: Average Cell-Surface Temperatures for Cells A-J During Charge/Discharge.

#### 3.3 Cell Cycling Observations

- The highest capacities on the market from the traditionally reputable brands have an upper capacity limit of around 3500 mAh for an 18650 sized cell; often less if the cell is designed to be a 'power' cell - providing higher currents. None of the cells tested exceeded that limit, whatever the claimed capacity of the cell.
- The cells that made the more outrageous capacity claims delivered the least; they were not even average cells.
- The cell types which were anomalously light (Cells C and F) had very low capacities.
- Not all cells were capable of delivering higher currents with reasonable capacity; some showed a marked drop off as the current increased. This observation could be used as being indicative that a cell is distinctly unsuited for use within a vape.

- Cell I performed well at currents up to 10 A; at 12 A the capacity was much reduced; this is likely a feature of the included extra protection circuitry limiting the discharge voltage.
- Cell C showed a significant variation between the three cells evaluated. One individual cell had a capacity *ca*. 40% higher than the other cells of the same type (albeit all were much less than the nominal capacity). With this cell type, the capacity also appeared to fade even within the relatively few cycles used.
- Cells were generally supplied at an initial SoC of 15-25% (based on nominal capacity, where the nominal capacity was reasonable, much less in those cases where the nominal capacity was unreasonably over claimed). Measured SoC appeared to be consistent across the three cells of each type evaluated. However, Cell B showed one cell with a notably higher initial SoC than the other two. This is only likely to be an issue if a device used several cells at once; having imbalanced cells would increase the strain on all cells.
- Cell I was supplied at *ca*. 55% SoC. This may be permissible for road transport, but would have been a breach of aviation shipping rules, which limits SoC to a maximum of 30% nominal capacity.
- Some of the cells reached temperatures of up to 70 °C during the most demanding discharge cycles. This should be considered close to a temperature of concern for most cells. However, it should be noted that this occurred during a continuous discharge cycle where there is no time to dissipate heat, and is therefore a worst case event.

#### 3.4 Cell Cycling Recommendations

- Some kind of capacity check would be an essential part of any assessment of cells. It may not need to be as exhaustive as that carried out here, but should encompass both low and high rate discharge phases, as well as charging at up to 2 A (as would be typical when using a USB charger).
- This testing should be carried out as a first test on any new batch of cells to determine both if it is safe to continue other testing, and as a determination of the actual capacity of the cell type.
- A number of cells from each batch should be tested to look for batch to batch variations. This would be of particular value where it was suspected that the cell was second-hand or a 're-wrap'.
- Consideration should be given to acquiring cells in several separate purchases a few weeks apart to determine if the cells originate from a single bulk batch, of if an expedient re-wrap and dispatch of whatever cells are at hand is occurring.
- It is recommended that the ageing of cells is investigated- how quickly the capacity of a cell fades with repeated charge/discharge cycles, particularly if rates typical of vape use are employed, rather than those recommended by the cell manufacturer (where given).
- It is not known if the failure of an 'aged' cell is more or less violent than that of a new cell (as capacity fades), nor if it is more or less likely (as internal damage that contributes to that reduced capacity) increases.

## 4 Pulsed Discharge

The pulsed discharge test is designed to be representative of real life use of cells in vapes, in which high currents are drawn sporadically for short periods of time. Vapes are likely to draw over 5 A in each pulse, with some 'sub-ohm' vapes drawing much more (over 15 A). It should be noted that not all 18650 cells are designed to deliver these current levels. This test was designed to probe if a cell could deliver high currents on an intermittent basis, even if it could not on a continuous discharge. It is not clear if the intermittent use would allow heat to dissipate more readily, or impose extra burdens on the cell.

### 4.1 Pulsed Discharge Test Method

These tests were performed within the same Neware BTS4000 cell cycler as detailed in section 3.1.

A fully charged cell was set to discharge at either 5 A or 12 A for two seconds, followed by an eight second rest period. Discharge voltage limits were as the standard cycling process. Cell surface temperature was measured by a type-T thermocouple.

### 4.2 Pulsed Discharge Results

The results obtained are shown in Table 7 for a 5 A discharge rate, and Table 8 for the 12 A discharge rate. The capacities for a continuous discharge are also shown for reference.

| Cell<br>Type | Number<br>of<br>pulses | Average<br>power in<br>first<br>pulse (W) | Average<br>power<br>last full<br>pulse (W) | Total<br>Discharged<br>(mAh) | % of<br>Nominal<br>Capacity | Continuous<br>Discharge<br>(mAh) | % of<br>Nominal<br>Capacity |
|--------------|------------------------|-------------------------------------------|--------------------------------------------|------------------------------|-----------------------------|----------------------------------|-----------------------------|
| A            | 883                    | 20.6                                      | 14.1                                       | 2460                         | (98 %)                      | 2386                             | (95 %)                      |
| В            | 461                    | 19.1                                      | 14.2                                       | 1284                         | (30 %)                      | 841                              | (20 %)                      |
| С            | 349                    | 18.8                                      | 14.6                                       | 972                          | (10 %)                      | 53                               | (0.5 %)                     |
| D            | 424                    | 19.6                                      | 14.3                                       | 1182                         | (25 %)                      | 1083                             | (23 %)                      |
| E            | 881                    | 20.6                                      | 14.9                                       | 2454                         | (94 %)                      | 2324                             | (89 %)                      |
| F            | 364                    | 18.9                                      | 15.0                                       | 1015                         | (17 %)                      | 263                              | (4 %)                       |

Table 7: Pulsed Discharge Capacities at 5 A Discharge Rates

| G | 1067 | 19.6 | 14.4 | 2974 | (89 %)  | 2643 | (79 %)  |
|---|------|------|------|------|---------|------|---------|
| Н | 1134 | 19.6 | 14.0 | 3161 | (90 %)  | 3154 | (90 %)  |
| I | 1100 | 19.4 | 14.0 | 3064 | (106 %) | 3081 | (106 %) |
| J | 1038 | 20.6 | 14.0 | 2893 | (96 %)  | 2855 | (95 %)  |

#### Table 8: Pulsed Discharge Capacities at 12 A Discharge Rates.

| Cell<br>Type | Number<br>of<br>pulses | Average<br>power in<br>first<br>pulse (W) | Average<br>power<br>last full<br>pulse (W) | Total<br>Discharged<br>(mAh) | % of<br>Nominal<br>Capacity | Continuous<br>Discharge<br>(mAh) | % of<br>Nominal<br>Capacity |
|--------------|------------------------|-------------------------------------------|--------------------------------------------|------------------------------|-----------------------------|----------------------------------|-----------------------------|
| A            | 363                    | 47.8                                      | 33.9                                       | 2424                         | (97 %)                      | 2410                             | (96 %)                      |
| В            | 157                    | 39.2                                      | 33.9                                       | 1049                         | (25 %)                      | 150                              | (3.6 %)                     |
| С            | 91                     | 37.0                                      | 34.7                                       | 608                          | (6 %)                       | 18                               | (0.2 %)                     |
| D            | 137                    | 41.3                                      | 34.2                                       | 915                          | (19 %)                      | 60                               | (1.3 %)                     |
| E            | 352                    | 47.9                                      | 35.1                                       | 2352                         | (90 %)                      | 2428                             | (93 %)                      |
| F            | 120                    | 39.1                                      | 34.9                                       | 801                          | (13 %)                      | 59                               | (1 %)                       |
| G            | 398                    | 42.7                                      | 33.4                                       | 2659                         | (79 %)                      | 1895                             | (57 %)                      |
| Н            | 282                    | 38.4                                      | 33.3                                       | 1884                         | (54 %)                      | 2763                             | (79 %)                      |
| I            | 150                    | 41.6                                      | 39.7                                       | 1002                         | (35 %)                      | 50                               | (1.7 %)                     |
| J            | 415                    | 47.7                                      | 33.6                                       | 2772                         | (92 %)                      | 2791                             | (93 %)                      |

Figure 5 shows how the voltage of several of these cells decays within each of the first 5 pulses. Once the load is applied there is an immediate voltage drop (which varies depending on the cell design and composition), followed by a slower drop in voltage until the load is removed. During this testing, this sequence was repeated until a voltage of 2.75 V was observed, at which point the test was automatically curtailed.

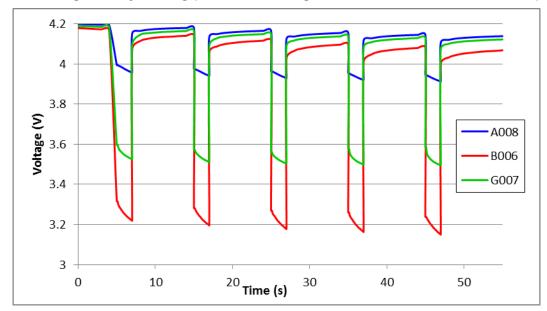
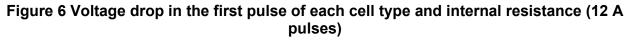
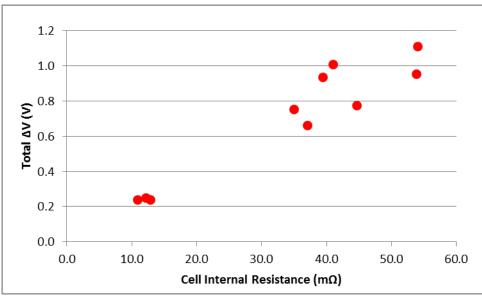





Figure 5 Voltage decay during pulsed discharge at 12 A for three cells- first 5 pulses

One of the main drivers to the voltage drop is the internal resistance of the cell. Figure 6 shows the correlation between the internal resistance (for the actual cell) and the voltage drop of the pulse for the 12 A tests.





The temperature of the cell surface was measured during these tests; the maximum temperatures observed for the 12 A pulsed discharge are shown (Table 9), together with the maximum temperatures for the corresponding continuous discharge. It should be noted that the ambient temperature of the environment was neither measured nor controlled; it was, however, an unusually warm time. Care should therefore be taken in interpreting these results.

| Cell<br>Type | Maximum observed<br>temperature, pulsed<br>discharge<br>(°C) | When observed                         | Maximum observed<br>temperature, continuous<br>discharge<br>(°C) |
|--------------|--------------------------------------------------------------|---------------------------------------|------------------------------------------------------------------|
| A            | 30                                                           | End of test                           | 48                                                               |
| В            | 40                                                           | End of test                           | 30                                                               |
| С            | 40                                                           | End of test                           | 23                                                               |
| D            | 37                                                           | End of test                           | 27                                                               |
| E            | 27                                                           | End of test                           | 42                                                               |
| F            | 39                                                           | End of test                           | 24                                                               |
| G            | 23                                                           | End of test                           | 59                                                               |
| Н            | 20                                                           | Mid test- ambient cooled<br>overnight | 67                                                               |
| I            | 34                                                           | End of test                           | 23                                                               |
| J            | 22                                                           | Mid test- ambient cooled overnight    | 49                                                               |

#### Table 9: Cell Surface Temperatures During Pulsed Discharge

#### 4.3 Pulsed Discharge Observations

- Most cells showed greater capacities during pulsed discharge than during continuous discharge. This appears to be because the rest steps allow the voltage to recover, allowing more discharge to occur before reaching the 2.75 V minimum voltage cut-off.
- Maximum observed temperatures were found not to be of concern during the pulsed discharge test. It is presumed that the additional rest time between the pulses allows heat to dissipate more effectively.
- It is not yet clear what impact pulsed discharge has on the cycle life of a cell; *i.e.* whether this method of discharge poses greater, lesser or just different strain on a cell.

#### 4.4 Pulsed Discharge Recommendations

- Pulsed discharge (being representative of real-life usage) should be included in any suite of tests for vape batteries. This test could be incorporated as part of an extended cell cycling routine.
- It is recommended that ageing of cells be compared between those aged through continuous and pulsed discharge methods. The capacity change after ageing could be compared, possibly with comparison of "point-of-no-return' temperature values from an oven or accelerating rate calorimetry (ARC) test.

## **5** Overcharge Test

### 5.1 Overcharge Test Set-Up

The aim of the overcharge tests was to investigate the behaviour of each cell when charged at a constant current of 2 A from an initial state of charge of 50%. A schematic of the overcharge test rig is shown in Figure 7.

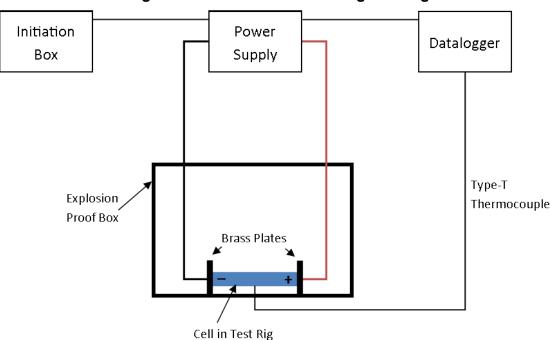



Figure 7 Schematic of overcharge test rig.

Individual, single cells were placed in the test rig horizontally, between two brass plates, and secured at the positive and negative terminals using brass screws. The cell under test was supported along its base with vertical pieces of insulating fireboard. Ring terminals were used to connect the power supply to the test rig *via* the brass screws at each end.

The power supply was set to provide a constant current of 2 A; the supplied current and cell voltage were recorded throughout the test using a Graphtec GL240 datalogger. The cell surface temperature was also measured and logged using a type-T thermocouple attached to the top of the surface of the cell. All data channels were recorded at a sampling frequency of 2 Hz.

Once initiated, the end of test was determined by the point at which the cell voltage matched the set power supply voltage (14 V). At this point, the current interrupt device (CID) of the cell was assumed to have activated, thus disconnecting the cell and forming an open-circuit with the power supply.

The overcharge test-rig is shown in Figure 8, Figure 9, Figure 10 and Figure 11.

Figure 8 Frontal view of overcharge test rig.

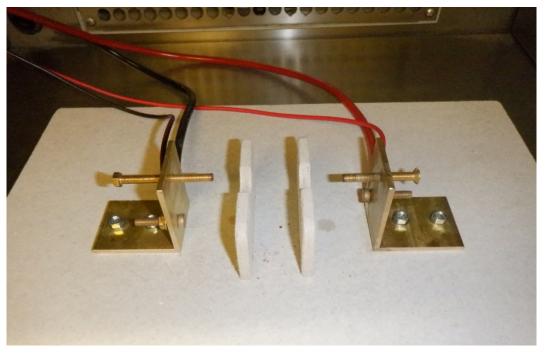
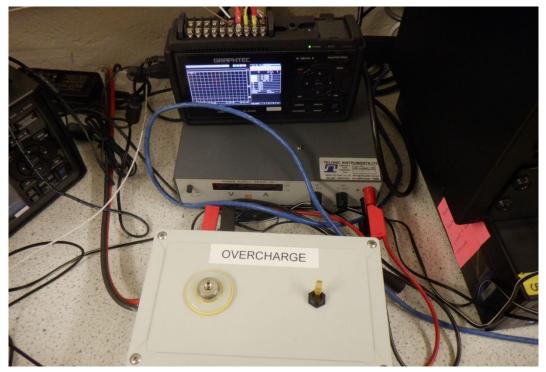




Figure 9 Initiation box, power supply and Graphtec datalogger used for the overcharge tests.





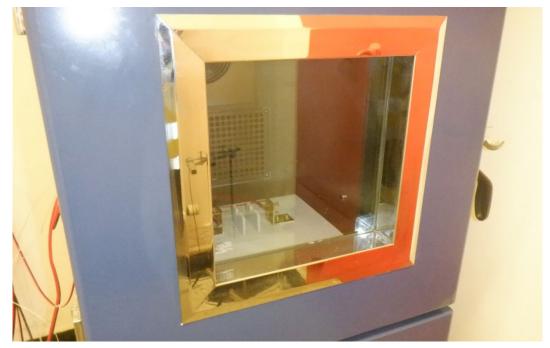
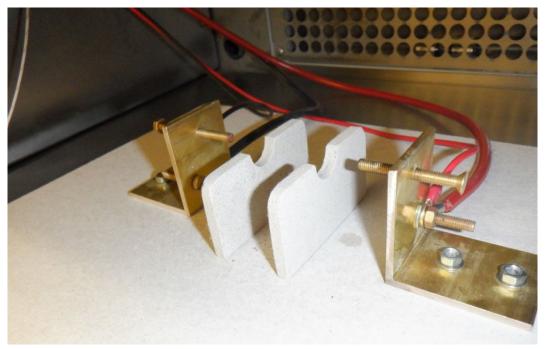




Figure 11 Side view of the overcharge test rig, showing the brass screws used to connect the positive and negative terminals of the cell



### 5.2 Overcharge Test Results

| Cell type | Maximum cell<br>voltage (V) | Maximum<br>temperature (°C) | Max. State of<br>Charge based<br>on capacity<br>recorded prior<br>to test (%) | Maximum cell<br>capacity (Ah) |
|-----------|-----------------------------|-----------------------------|-------------------------------------------------------------------------------|-------------------------------|
| Cell A    | 4.99                        | 35                          | 128                                                                           | 3.2                           |
| Cell B    | 13.34                       | 76                          | 170                                                                           | 2.6                           |
| Cell C    | 13.43                       | 110                         | 142                                                                           | 1.3                           |
| Cell D    | 11.46                       | 103                         | 193                                                                           | 2.4                           |
| Cell E    | 5.11                        | 45                          | 129                                                                           | 3.1                           |
| Cell F    | 13.83                       | 107                         | 123                                                                           | 1.5                           |
| Cell G    | 5.17                        | 61                          | 137                                                                           | 4.1                           |
| Cell H    | 4.40                        | 26                          | 102                                                                           | 3.3                           |
| Cell I    | 4.34                        | 26                          | 101                                                                           | 3.0                           |
| Cell J    | 5.04                        | 44                          | 125                                                                           | 3.6                           |

#### Table 10: Maximum Recorded Values Obtained from Overcharge Tests for Cells A-J.

#### Table 11: Cell measurements at the point of Current Interrupt Device (CID) activation.

| Cell Type | Charging<br>time until<br>the CID cut<br>in (s) | Voltage (V) | Temperature<br>(°C) | State of charge<br>based on cell<br>capacity<br>recorded prior<br>to test (%) | Cell<br>capacity<br>(Ah) |
|-----------|-------------------------------------------------|-------------|---------------------|-------------------------------------------------------------------------------|--------------------------|
| Cell A    | 3507                                            | 4.99        | 34                  | 128                                                                           | 3.2                      |
| Cell B    | 3249                                            | 13.84       | 59                  | 171                                                                           | 2.6                      |
| Cell C    | 1455                                            | 13.43       | 105                 | 140                                                                           | 1.3                      |

| Cell D | 3141 | 11.46 | 95 | 196 | 2.3 |
|--------|------|-------|----|-----|-----|
| Cell E | 3409 | 5.06  | 44 | 129 | 3.1 |
| Cell F | 1561 | 13.83 | 94 | 123 | 1.5 |
| Cell G | 4697 | 5.01  | 59 | 137 | 4.1 |
| Cell H | 2925 | 4.40  | 26 | 100 | 3.3 |
| Cell I | 2797 | 4.33  | 25 | 101 | 3.0 |
| Cell J | 3889 | 5.04  | 43 | 125 | 3.6 |

All the cells tested displayed behaviours which can be categorised in one of the following four ways:

1. Cells A, E, G and J showed a quick cut off in terms of voltage when the CID activated. However, once the CID had cut in the cells failed to recover to a similar voltage as before, instead showing no voltage reading or in some cases a much lower voltage. The current was also observed to drop back to zero once the CID had cut in, remaining at 0 A even when the power supply was switched back on. Each of these cells (A, E, G and J) showed smaller increases in cell temperature and there was no visible damage to the outside of the cell. The cells showing this type of behaviour included the more reputable branded cells A and G. Data traces for each of the cell types A, E, G and J are shown in Figure 12, Figure 13, Figure 14, and Figure 15 respectively. Note: The spikes in the voltage trace after the CID has activated show the voltage of the power supply- this was briefly turned on again to probe if the CID had permanently disconnected and allowed no further current to flow.

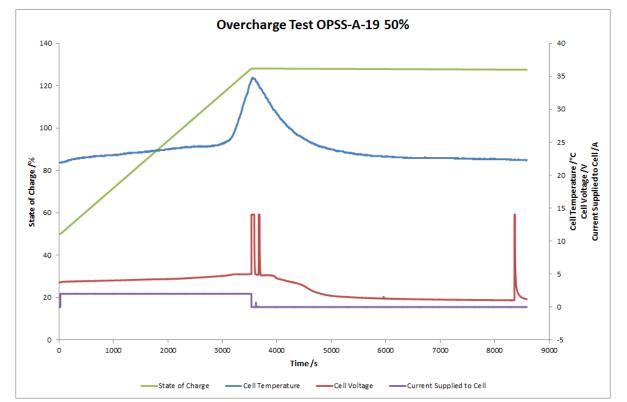
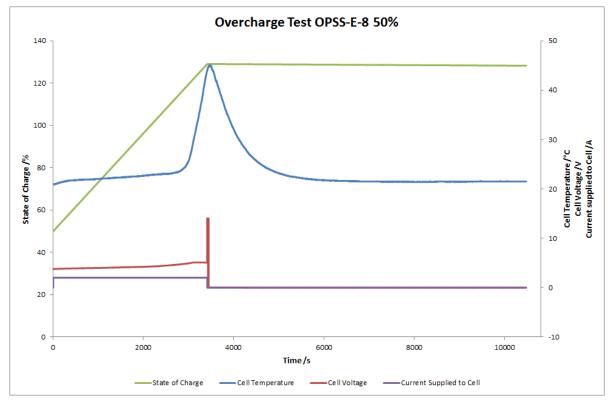




Figure 12 Cell temperature, cell voltage, state of charge and current supplied for OPSS-A-19

Figure 13 Cell temperature, cell voltage, state of charge and current supplied for OPSS-E-8



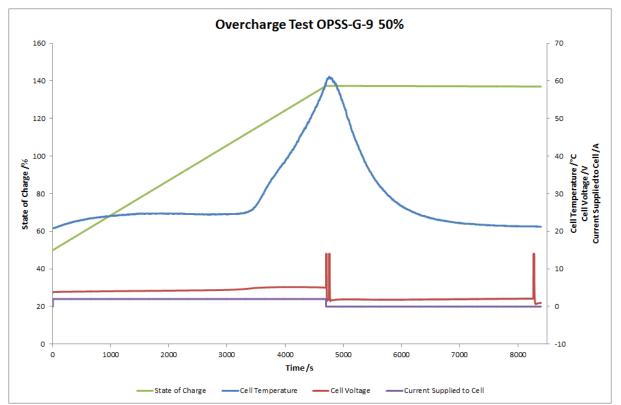
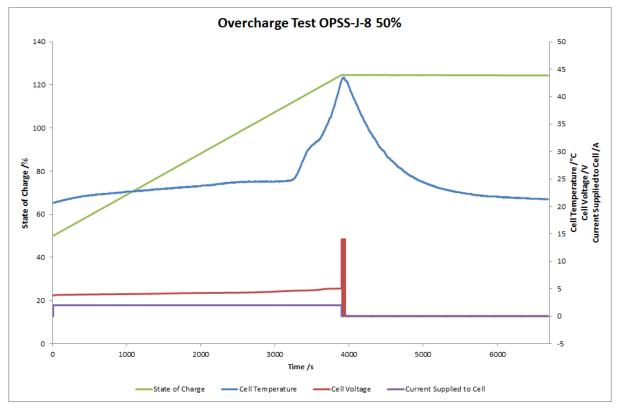




Figure 14 Cell temperature, cell voltage, state of charge and current supplied for OPSS-G-9

Figure 15 Cell temperature, cell voltage, state of charge and current supplied for OPSS-J-8



2. When charging cells B, C and F, the voltage was observed to rise rose slowly: this allowed the cells to reach a higher voltage before the CID activated (Figure 16, Figure 17, Figure 18). After the power supply had been turned off, the cell voltage recovered to a level similar to what was measured prior to CID activation; however the current remained at 0 A even when the power supply was turned back on. Cells B, C and F all showed a significant increase in temperature throughout the test, with the cell B reaching a temperature sufficient enough to result in the melting of the plastic wrapper (see Figure 19). Cells C and F showed no visible damage to the outside of the cell.

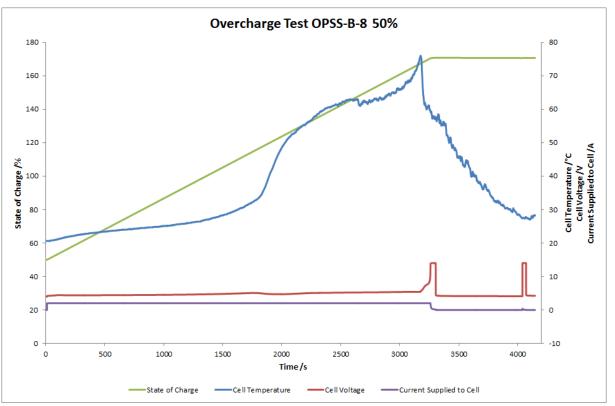



Figure 16 Cell temperature, cell voltage, state of charge and current supplied for OPSS-B-8

Figure 17 Cell temperature, cell voltage, state of charge and current supplied for OPSS-C-9

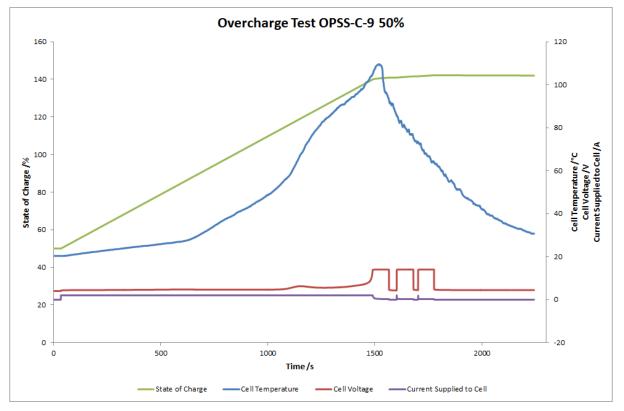



Figure 18 Cell temperature, cell voltage, state of charge and current supplied for OPSS-F-8

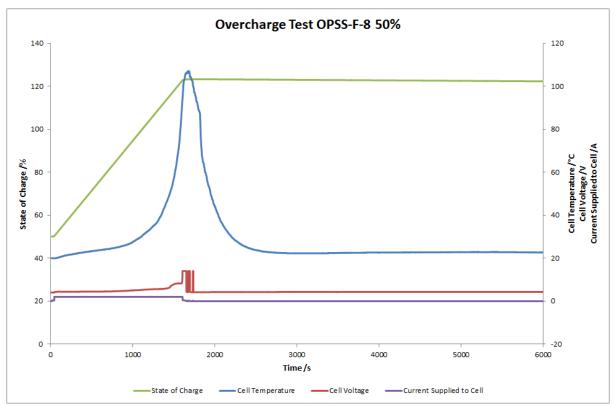
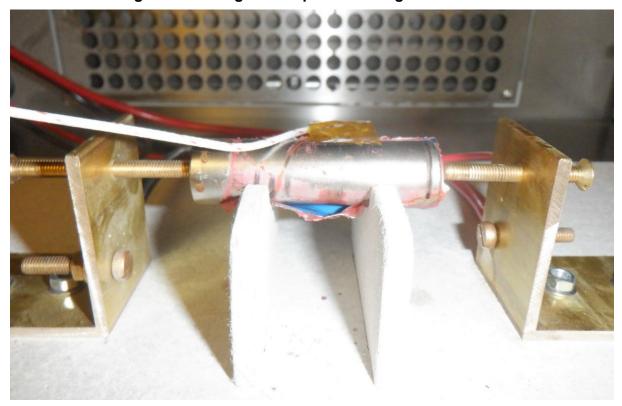
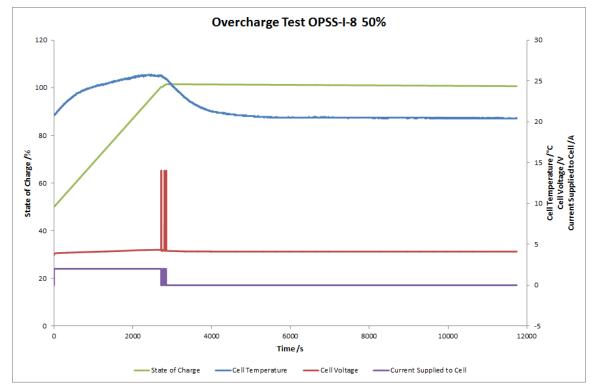





Figure 19 Damage to the plastic casing on OPSS-B-8



3. Cells I and H possessed additional protection in the form of a printed circuit board (PCB) to further protect the cell against overcharging. As a result of this added mitigation, the cell voltage rose quickly before cutting off when the cell reached a certain voltage; this prevented the CID from being activated (Note: with the experimental set-up used, this shows as the maximum set voltage of the power supply (15 V). Notably, when the power supply was switched off, the cell voltage was observed to recover to a similar level observed prior to PCB activation. The current, however, cut out and remained at 0 A, even after the power supply was turned on again. In both cell types, there was little increase in temperature, presumably due to the presence of the PCB, which prevented further charging after reaching a 100% SoC (Figure 20, Figure 21). As such, there was no visible damage to the cells.

Figure 20 Cell temperature, voltage (of cell during charge, and of maximum power supply voltage when protection circuit active and power supply still switched on), state of charge and current supplied for OPSS-I-8



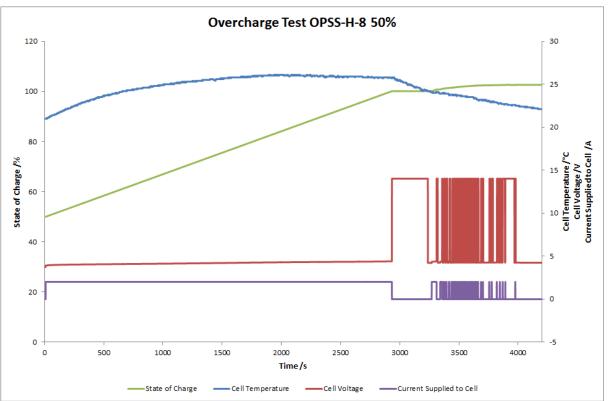
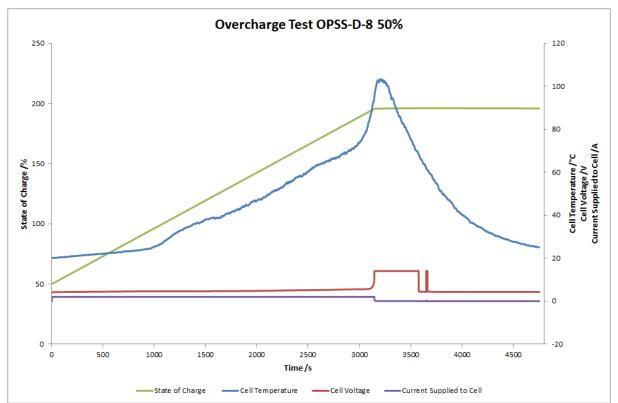




Figure 21 Cell temperature, cell voltage, state of charge and current supplied for OPSS-H-8

4. During testing of cell D, the cell voltage rose steadily until the CID activated. Once the power supply was turned off, the cell voltage recovered to a similar level observed prior to CID activation. The current dropped to 0 A after the CID was activated and continued to remain at this level for the rest of the test, even after the power supply was turned back on. Although there was no visible damage to the outside of the cell, a significant increase in temperature was observed throughout the test (Figure 22).

Figure 22 Cell temperature, cell voltage, state of charge and current supplied for OPSS-D-8



### 5.3 Overcharge Test Observations

- The functioning of a variety of cell protection mechanisms were observed within these tests.
- During testing, some temperatures high enough to cause electrolyte leakage and damage to the wrapping of the cells were observed, giving cause for concern. It should be noted that tests were not repeated.
- No cell entered a final failure condition.
- The cell surface temperature is likely to be lower than the maximum internal temperature, as the heat is generated locally within the cell and then equilibrates to the whole cell. Hence the maximum observed temperatures did not occur when the current was highest.
- It should be noted that these tests were performed with a single, uniform current (2 A, typical of the maximum designed to be seen by USB based chargers).

### 5.4 Overcharge Test Recommendations

- An overcharge test of this nature should be included within the suite used to characterise cells for vaping.
- Any cell which reaches a high temperature (for example 100 °C) or voltage (12 V) during testing should be repeated.

- Overcharge testing should be coupled with an additional test to determine the thermal runaway onset temperature for each cell type to see how close the observed maximum temperature is to that of the temperature where the cell is likely to enter thermal runaway.
- No testing was undertaken looking at higher rate charging within the permissible voltage envelopes (often called an 'over-current' test). This should be considered, but is perhaps less likely to be representative of the electrical abuse considered likely in a domestic setting.

## 6 Short Circuit Test

## 6.1 Short Circuit Test Method

The aim of the short circuit tests was to investigate cell behaviour when subjected to a low electric impedance pathway at a 100% SoC. A schematic and picture of the test rig are shown in Figure 23 and Figure 24. The conducting pathway comprised of 35 mm<sup>2</sup> cables (rated to 240 A continuous current), a bespoke cell holder (Figure 20) and a contactor (high current relay, Albright ALT/CONT19-5014) rated to 725 A DC. Every effort was made to minimise the resistance of this pathway.

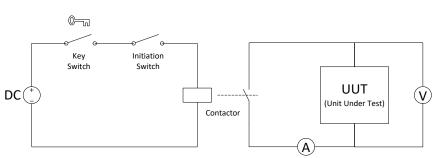
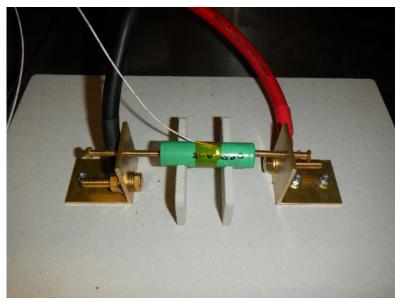
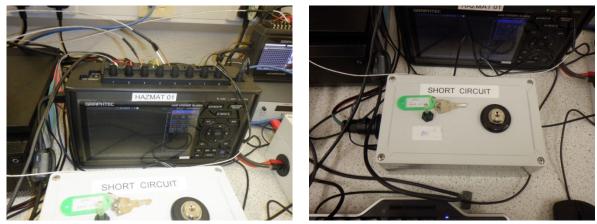




Figure 23 Schematic of short circuit test set-up.

Figure 24 Short circuit cell holder




Individual cells were placed in the rig horizontally and were secured into place at both cell terminals using brass screws. The cell was supported along its base with insulating fireboard, which had been pre-cut to accommodate the cell diameter. Two 35 mm<sup>2</sup> cables were connected to each terminal, along with two separate cables to measure the cell voltage. The rig was confined inside a blast enclosure, (Figure 25), situated within a blast chamber.

#### Figure 25 Ventilated test enclosure within blast chamber



A current transducer (rated to 300 A) was placed on the positive 35 mm<sup>2</sup> cable leading to the contactor. Prior to testing, the resistance of the cell and cabling was measured, and the initial cell voltage was noted. The cell surface temperature was measured using a type-T thermocouple. All data was logged using a Graphtec GL2000 high-speed data logger, recording at a frequency of 10 Hz (see Figure 26).

# Figure 26 Graphtec GL2000 data logger and control system for the initiation of the short circuit



Test initiation was controlled by a double switch protocol, one of which is key switch. This ensured the safety of those setting up the test (and in control of the key).

A single cell of each type was tested in this work package. Each cell was secured into the test rig inside the blast chamber. The terminals of the cell were then connected using the initiator box in an adjacent room. The current flow, cell voltage and cell temperature were monitored as the tests progressed. When the current flow reached 0 A, the test operator

turned off the initiation box, which removed the connection between the positive and negative terminals of the cell under test. After approximately ten seconds the operator would turn the initiation box on again to see if any more current would flow from the cell. This process was repeated multiple times to see if the cell protective mechanisms were having a permanent or only temporary effect. After the tests were completed the cell voltage was measured to see whether it had recovered to a similar level to that which it was before the short circuiting. The cell surface temperature is likely to be less than that achieved inside the cell, however the cell surface temperature data are likely to reflect those that occurred internally and are useful to make comparisons between different cell behaviours.

#### 6.2 Short Circuit Test Results

A summary of the results from the short circuit tests are shown in Table 12

Table 12: Summary of Results from the Testing

| Cell Type | Maximum Cell<br>Surface<br>Temperature<br>/ °C | Maximum Current<br>/ A | Duration of<br>Current / s | Charge extracted<br>/ Ah | Final cell voltage*<br>/ V | Resistance<br>pathway during<br>test**<br>/ mΩ | Nominal charge<br>extracted***<br>/ % | Any observed<br>damage? |
|-----------|------------------------------------------------|------------------------|----------------------------|--------------------------|----------------------------|------------------------------------------------|---------------------------------------|-------------------------|
| Cell A    | 84                                             | 160                    | 16.5                       | 0.45                     | 0.45                       | 2.3                                            | 18                                    | NO                      |
| Cell B    | 108                                            | 51                     | 71                         | 0.49                     | 0.0                        | 25.5                                           | 33                                    | YES                     |
| Cell C    | 105                                            | 49                     | 100                        | 0.38                     | 3.5                        | 21.9                                           | 42                                    | NO                      |
| Cell D    | 132                                            | 54                     | 79                         | 0.47                     | 0.60                       | 22.5                                           | 39                                    | YES                     |
| Cell E    | 57                                             | 189                    | 3                          | 0.11                     | 0.0                        | 12.3                                           | 5                                     | NO                      |
| Cell F    | 133                                            | 50                     | 100                        | 0.41                     | 3.8                        | 21.0                                           | 34                                    | NO                      |
| Cell G    | 48                                             | 56                     | 26                         | 0.033                    | 4.1                        | 17.1                                           | 1                                     | NO                      |
| Cell      | 51                                             | 5                      | 0.4                        | 0.00035                  | 1.5                        | 17.1                                           | 0.01                                  | NO                      |
| Cell I    | 39                                             | 1.3                    | 0.1                        | 0.000037                 | 3.1                        | 7.2                                            | 0.001                                 | NO                      |

| Cell J | 97 | 167 | 13 | 0.40 | 0.3 | 25.7 | 14 | NO |
|--------|----|-----|----|------|-----|------|----|----|
|        |    |     |    |      |     |      |    |    |

\* Final cell voltage – This was measured at the end of the testing for each cell, when the short circuit pathway was removed, to see if the voltage recovered to pre-test levels.

\*\* The resistance pathway is the resistance of the circuitry external to the cell which was used in the process of short circuiting. The cables that formed the resistance pathway were 35 mm<sup>2</sup> which ran through the current transducer.

\*\*\* This is based on the figure calculated from the cell cycling part of this work package, not the capacity stated on the cell itself.

All the cells tested displayed behaviours which can be categorised in one of the following four ways:

5. Cells A, B, E and J had evidence of irreversible change after the short circuit test. This is demonstrated by final open cell voltage after the short circuit was applied of close to 0 V (Figure 27, Figure 28, Figure 29 and Figure 30 respectively). They reached temperatures of around 100°C (except cell E) and had a current draw of around 180 A (except cell B). The current profiles of cells A, E and J and also the fact that the voltage didn't recover are evidence that a CID operated and quickly terminated the current flow, whilst that of B would be indicative of a PTC device since the current declined gradually. Cell B also suffered some physical damage, including leakage of electrolyte (Figure 31).

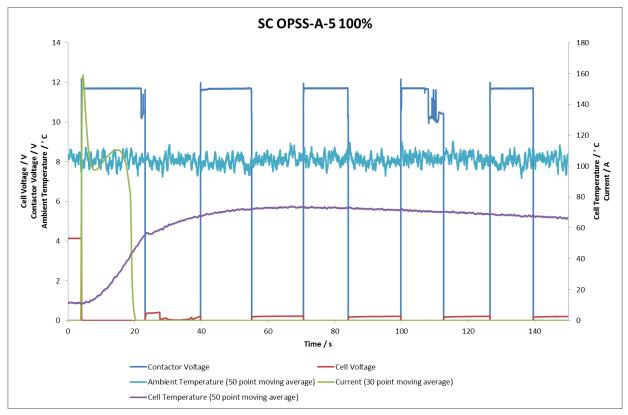
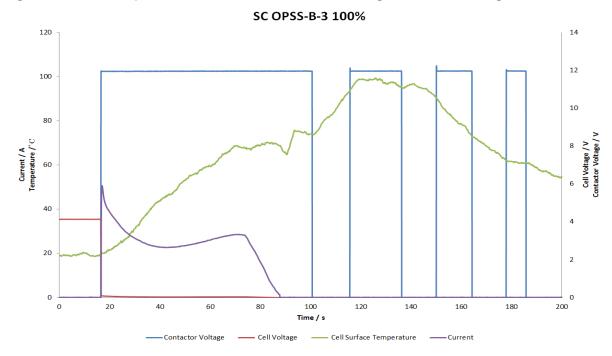




Figure 27 Cell temperature, current, contactor voltage and cell voltage for OPSS-A-5

Figure 28 Cell temperature, current, contactor voltage and cell voltage for OPSS-B-3



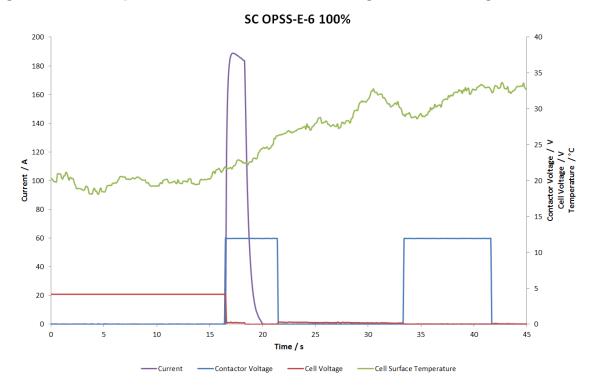



Figure 29 Cell temperature, current, contactor voltage and cell voltage for OPSS-E-6

Figure 30 Cell temperature, current, contactor voltage and cell voltage for OPSS-J-3

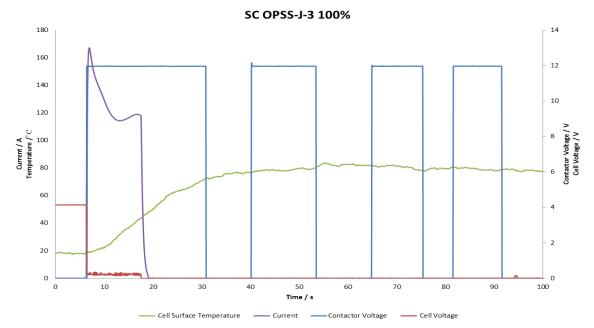
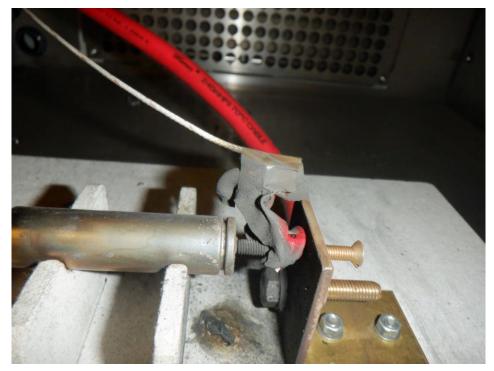




Figure 31 Cell B post-test. A different B cell was weighed (unwrapped) and had a mass of 43.33g. After the test, this cell had a mass of 32.55g, indicating that electrolyte was lost.



6. Cells C, D and F displayed a post-test cell voltage slightly lower than pre-test levels (not 0 V). Each of cells C, D and F reached a temperature in the range 100°C – 120°C and displayed a current draw of *ca*. 50 A (Figure 32, Figure 33 and Figure 34). In all 3 cases the current was observed to: initially spike before dropping, followed sequentially by gradual increase ahead of a more rapid decline (as the temperature increased and the resistance increased). This might be typical of a PTC device operating. After the first short circuiting no further current would flow. The cell label wrap was damaged in the case of cell D (Figure 35).

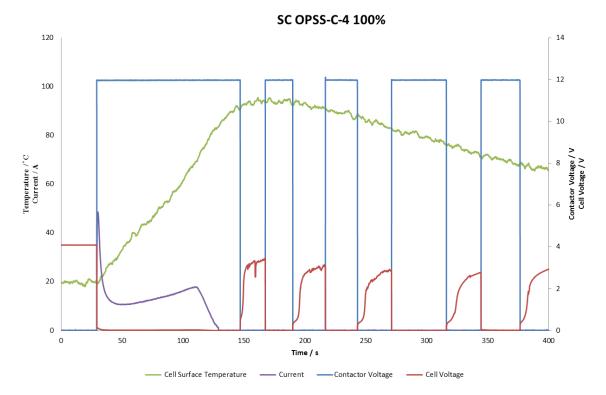
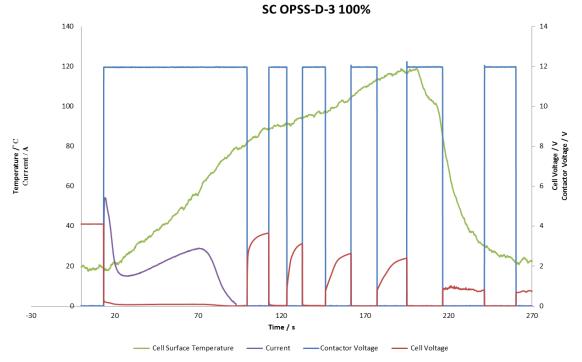




Figure 32 Cell temperature, current, contactor voltage and cell voltage for OPSS-C-4

Figure 33 Cell temperature, current, contactor voltage and cell voltage for OPSS-D-3



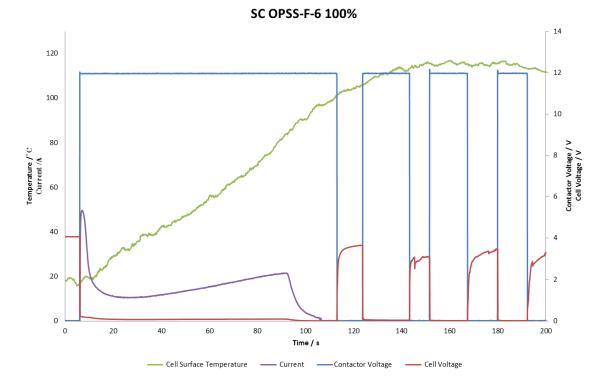
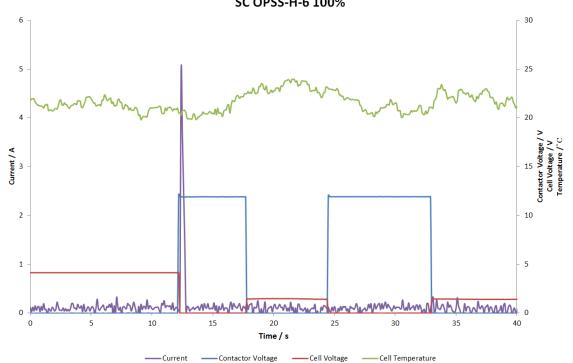
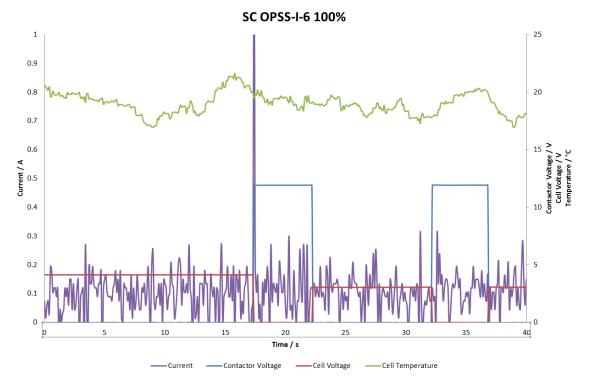



Figure 34 Cell temperature, current, contactor voltage and cell voltage for OPSS-F-6

Figure 35 Cell D post-test



 Cells H and I had additional inbuilt protection so only a very small current flow occurred. The cell voltage recovered each time the operator removed the short circuit pathway and the temperature changed very little (Figure 36 and Figure 37).

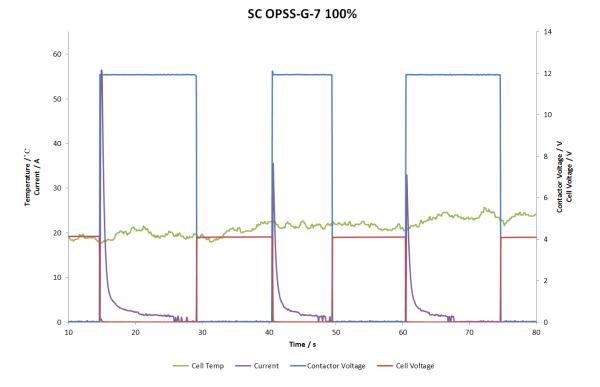


Figure 36 Cell temperature, current, contactor voltage and cell voltage for OPSS-H-6 SC OPSS-H-6 100%

Figure 37 Cell temperature, current, contactor voltage and cell voltage for OPSS-I-6



8. Cell G – The test operator initiated the connection between the positive and negative terminals. There was a large spike in current followed by an initial rapid decline, followed by a period of gradual decline until the current reached 0 A. The operator then removed the short circuit pathway and the voltage was observed to recover. The operator then re-initiated the short circuit, and the current profile matched the first (but with diminished magnitude). On subsequent removal of the short circuit pathway, the cell voltage again recovered. A third short circuiting event was initiated, producing a further current flow profile similar to that following the second short circuit, with voltage recovering once again on removal of the short circuit pathway (Figure 38).

#### Figure 38 Cell temperature, current, contactor voltage and cell voltage for OPSS-G-7



#### 6.3 Short Circuit Test Observations

- The functioning of a variety of cell protection mechanisms were observed within these tests.
- Some temperatures high enough to cause electrolyte leakage and damage to the wrapping of the cells were observed. This should be of concern. These tests were not repeated.
- No cell entered final failure.
- It is worth noting that the observed cell surface temperatures are very likely to be lower than the maximum internal temperature within the cell, as heat is generated locally within the cell and then radiates / equilibrates throughout the whole cell. As a result maximum observed temperatures do not coincide with when the highest recorded current value occurred.

## 6.4 Short Circuit Test Recommendations

- A short circuit test should be included within any suite of tests used to characterise cells for vaping.
- In any cases where high cell surface temperatures are observed, the test should be repeated with other specimens of the same cell type.
- It may be that allowing the lowest possible resistance pathway does not lead to the worst case outcome as this allows the early activation of any protection mechanisms. Higher resistance paths may lead to current flows which, although lower than some recorded peak values, are significantly over the safe designed current for the cell. Any long duration, high current flow event is deemed likely to lead to elevated cell temperatures being observed. The extent of the relationship between high current flow and cell temperature could be established through a series of tests carried out at fixed resistance values in order to determine the likely maximum cell temperatures observed.
- Short circuit testing should be carried out in conjunction with a test to determine the thermal runaway onset temperature for each cell type to see how close the observed maximum temperature is to that of the temperature where the cell is likely to enter thermal runaway.

## 7 Conclusions

This series of tests performed on a range of cell types have provided some insight into the variety of cells available on the UK market for vaping. It is clear that not all cells are entirely authentic, and do not deliver the advertised power or energy; indeed some of the advertised capacities are simply not plausible.

Of the tests undertaken in this work, it is recommended that any future test suite to evaluate cells being used in vapes should include:

- A capacity test. This may not need to be as extensive as performed here, but should include both low rates of charge and discharge (as cell capacities are often quoted at low rates where they are greatest), and higher rates which are more relevant to cell performance in a vape device. Any marked drop-off in capacity at higher currents may suggest a cell is not suited for use with vape devices. The capacity test could include an element where the discharge is not continuous, but has an intermittent or pulsed profile.
- **An overcharge test**. This will help identify and verify protection mechanisms built into the cell. Where higher temperatures were seen for a particular cell type, consideration should be given to repeating the test on other specimens of that cell.
- A short circuit test. Again, this will help to help identify and verify protection mechanisms built into the cell. Where higher temperatures were seen for a particular cell type, consideration should be given to repeating the test on other specimens of that cell.

Significantly elevated temperatures were observed in a number of cases during the testing performed. It has not been determined for these cells at what temperature these cells undergo final failure. At this point, it is strongly recommended that some kind of temperature test is employed to help inform / determine this. Several options for this are possible:

- **An ARC test** in an adiabatic calorimeter system. Likely to be the most accurate option, ARC testing will allow measurement of the onset temperature leading to self-heating and thermal runaway. ARC will also aid the determination of likely maximum cell temperature values and an estimation of the total heat evolved.
- **A heat ramp test**, where the cell is heated at a set rate. Likely to be quicker than an ARC test, but less accurate at determining onset temperatures.
- An open-field test where the cell is heated by heating element. Less accurate at determining onset temperatures, but would allow filming of the event. This could help to qualitatively indicate the severity of an event.

Two further questions remain.

Firstly, does a cell become more or less 'safe' with age and/or continued use? As a cell ages, the capacity of that cell tends to drop, therefore it might be expected that the severity of any failure event decrease. However, the likelihood of that event may increase with age as the cell may before more prone to failure. The capacity fade of a cell is fairly easy to

measure through repeated cycling (although some consideration would have to be given to the charge/discharge rates employed). Characterising the severity of the final failure is also tricky- either an ARC type test can be employed, or an open field test with subjective descriptions.

The second question relates to how to deal with cells with dramatically over claimed capacities. Typically, the more exaggerated the claim, the more poorly performing the cell in the capacity measurement. But how does this translate to safety? Is the cell safer as it actually contains less electrical energy to dissipate (although the electrical energy is typically about a third of the energy released in a flaming failure event)? Or is the cell more likely to fail? Again, the testing strategies outlined above may give some indications here.

# Appendix A Physical Measurements on Cells

## A.1 OPSS-A

| Cell      | Length<br>(mm) | Diameter<br>(wrapped)<br>(mm) | Weight<br>(wrapped)<br>(g) | Voltage<br>(as received)<br>(V) | Internal<br>Resistance<br>(as received)<br>(mΩ) |
|-----------|----------------|-------------------------------|----------------------------|---------------------------------|-------------------------------------------------|
| OPSS-A-1  | 65.0           | 18.2                          | 43.9                       | 3.52                            | 12.9                                            |
| OPSS-A-2  | 65.0           | 18.2                          | 43.9                       | 3.52                            | 13.3                                            |
| OPSS-A-3  | 65.0           | 18.2                          | 43.8                       | 3.52                            | 13.0                                            |
| OPSS-A-4  | 65.0           | 18.2                          | 43.8                       | 3.52                            | 12.5                                            |
| OPSS-A-5  | 65.0           | 18.2                          | 43.8                       | 3.52                            | 13.5                                            |
| OPSS-A-6  | 65.0           | 18.2                          | 43.7                       | 3.52                            | 13.0                                            |
| OPSS-A-7  | 65.0           | 18.2                          | 43.9                       | 3.52                            | 13.9                                            |
| OPSS-A-8  | 65.0           | 18.2                          | 43.8                       | 3.52                            | 12.9                                            |
| OPSS-A-9  | 65.0           | 18.2                          | 43.9                       | 3.52                            | 13.1                                            |
| OPSS-A-10 | 65.0           | 18.2                          | 43.7                       | 3.52                            | 12.8                                            |
| OPSS-A-11 | 65.0           | 18.2                          | 43.9                       | 3.52                            | 13.6                                            |
| OPSS-A-12 | 65.0           | 18.2                          | 43.8                       | 3.52                            | 13.3                                            |
| OPSS-A-13 | 65.0           | 18.2                          | 43.8                       | 3.52                            | 13.2                                            |
| OPSS-A-14 | 65.0           | 18.2                          | 43.7                       | 3.52                            | 13.1                                            |
| OPSS-A-15 | 65.0           | 18.2                          | 43.7                       | 3.52                            | 13.3                                            |

| OPSS-A-16 | 65.0 | 18.2 | 43.9 | 3.52 | 13.6 |
|-----------|------|------|------|------|------|
| OPSS-A-17 | 65.0 | 18.2 | 43.7 | 3.52 | 13.3 |
| OPSS-A-18 | 65.0 | 18.2 | 43.8 | 3.52 | 12.6 |
| OPSS-A-19 | 65.0 | 18.2 | 43.8 | 3.52 | 13.8 |
| OPSS-A-20 | 65.0 | 18.2 | 43.9 | 3.52 | 13.5 |
| Average   | 65.0 | 18.2 | 43.8 | 3.52 | 13.2 |
| Range     | N/A  | N/A  | 0.2  | 0    | 1.4  |

## A.2 OPSS-B

| Cell      | Length<br>(mm) | Diameter<br>(wrapped)<br>(mm) | Weight<br>(wrapped)<br>(g) | Voltage<br>(as received)<br>(V) | Internal<br>Resistance<br>(as received)<br>(mΩ) |
|-----------|----------------|-------------------------------|----------------------------|---------------------------------|-------------------------------------------------|
| OPSS-B-1  | 66.8           | 18.4                          | 44.0                       | 3.85                            | 55.0                                            |
| OPSS-B-2  | 66.9           | 18.4                          | 43.8                       | 3.86                            | 54.7                                            |
| OPSS-B-3  | 66.7           | 18.4                          | 43.9                       | <mark>4.03</mark>               | <mark>61.1</mark>                               |
| OPSS-B-4  | 66.8           | 18.4                          | 44.2                       | 3.83                            | 50.1                                            |
| OPSS-B-5  | 66.8           | 18.4                          | 43.8                       | 3.86                            | 52.1                                            |
| OPSS-B-6  | 66.9           | 18.4                          | 44.0                       | 3.84                            | 53.9                                            |
| OPSS-B-7  | 66.9           | 18.4                          | 43.3                       | 3.84                            | 50.3                                            |
| OPSS-B-8  | 66.8           | 18.4                          | 43.9                       | 3.83                            | 52.1                                            |
| OPSS-B-9  | 66.8           | 18.5                          | 43.8                       | 3.86                            | 51.2                                            |
| OPSS-B-10 | 66.8           | 18.4                          | 43.9                       | 3.78                            | 56.2                                            |
| Average   | 66.8           | 18.4                          | 43.9                       | 3.86                            | 53.7                                            |
| Range     | N/A            | N/A                           | 0.9                        | 0.25                            | 11                                              |

## A.3 OPSS-C

| Cell      | Length<br>(mm) | Diameter<br>(wrapped)<br>(mm) | Weight<br>(wrapped)<br>(g) | Voltage<br>(as received)<br>(V) | Internal<br>Resistance<br>(as received)<br>(mΩ) |
|-----------|----------------|-------------------------------|----------------------------|---------------------------------|-------------------------------------------------|
| OPSS-C-1  | 67.5           | 18.0                          | 34.5                       | 3.73                            | 56.8                                            |
| OPSS-C-2  | 67.5           | 18.0                          | 35.4                       | 4.00                            | <mark>49.4</mark>                               |
| OPSS-C-3  | 67.7           | 18.0                          | 34.3                       | 3.99                            | <mark>62.1</mark>                               |
| OPSS-C-4  | 67.7           | 18.0                          | 34.3                       | 3.98                            | 55.4                                            |
| OPSS-C-5  | 67.5           | 17.9                          | 34.4                       | 3.99                            | 54.1                                            |
| OPSS-C-6  | 67.5           | 18.0                          | 34.5                       | 3.97                            | 51.3                                            |
| OPSS-C-7  | 67.5           | 18.0                          | 34.4                       | 3.99                            | 54.6                                            |
| OPSS-C-8  | 67.5           | 18.0                          | 34.6                       | 3.99                            | 39.8                                            |
| OPSS-C-9  | 67.5           | 18.0                          | 34.1                       | 3.97                            | 51.1                                            |
| OPSS-C-10 | 67.5           | 18.0                          | 34.9                       | 3.98                            | 53.6                                            |
| Average   | 67.5           | 18.0                          | 34.5                       | 3.96                            | 52.8                                            |
| Range     | N/A            | N/A                           | 1.3                        | 0.27                            | 22.3                                            |

## A.4 OPSS-D

| Cell      | Length<br>(mm) | Diameter<br>(wrapped)<br>(mm) | Weight<br>(wrapped)<br>(g) | Voltage<br>(as received)<br>(V) | Internal<br>Resistance<br>(as received)<br>(mΩ) |
|-----------|----------------|-------------------------------|----------------------------|---------------------------------|-------------------------------------------------|
| OPSS-D-1  | 66.4           | 18.2                          | 42.3                       | 3.87                            | 37.4                                            |
| OPSS-D-2  | 66.6           | 18.2                          | 41.3                       | 3.86                            | 34.8                                            |
| OPSS-D-3  | 66.7           | 18.2                          | 41.1                       | 3.83                            | 40.6                                            |
| OPSS-D-4  | 66.5           | 18.2                          | 41.6                       | 3.87                            | 37.9                                            |
| OPSS-D-5  | 66.6           | 18.2                          | 39.4                       | 0.90                            | 35.0                                            |
| OPSS-D-6  | 66.6           | 18.1                          | 41.5                       | 3.40                            | 33.6                                            |
| OPSS-D-7  | 66.6           | 18.2                          | 41.6                       | 3.82                            | 44.7                                            |
| OPSS-D-8  | 66.5           | 18.2                          | 41.7                       | 3.83                            | 35.1                                            |
| OPSS-D-9  | 66.5           | 18.2                          | 41.4                       | 3.85                            | 36.2                                            |
| OPSS-D-10 | 66.6           | 18.2                          | 41.7                       | 3.83                            | 33.6                                            |
| Average   | 66.6           | 18.2                          | 41.4                       | 3.51                            | 36.9                                            |
| Range     | N/A            | N/A                           | 2.9                        | 2.97                            | 11.1                                            |

## A.5 OPSS-E

| Cell      | Length<br>(mm) | Diameter (mm)<br>(wrapped) | Weight (g)<br>(wrapped) | Voltage (V)<br>(as received) | Internal<br>Resistance<br>(mΩ)<br>(as received) |
|-----------|----------------|----------------------------|-------------------------|------------------------------|-------------------------------------------------|
| OPSS-E-1  | 65.0           | 18.2                       | 46.0                    | 3.52                         | 11.0                                            |
| OPSS-E-2  | 65.1           | 18.2                       | 45.8                    | 3.52                         | 10.9                                            |
| OPSS-E-3  | 65.0           | 18.3                       | 46.4                    | 3.52                         | 11.0                                            |
| OPSS-E-4  | 65.0           | 18.2                       | 46.1                    | 0.71                         | 11.8                                            |
| OPSS-E-5  | 65.0           | 18.2                       | 46.0                    | 3.53                         | 11.3                                            |
| OPSS-E-6  | 65.1           | 18.2                       | 46.1                    | 3.52                         | 11.1                                            |
| OPSS-E-7  | 65.0           | 18.2                       | 46.0                    | 3.52                         | 10.9                                            |
| OPSS-E-8  | 65.1           | 18.3                       | 45.9                    | 3.52                         | 11.7                                            |
| OPSS-E-9  | 65.0           | 18.2                       | 45.8                    | 3.52                         | 11.2                                            |
| OPSS-E-10 | 65.0           | 18.3                       | 45.8                    | 3.42                         | 11.2                                            |
| Average   | 65.0           | 18.2                       | 46.0                    | 3.23                         | 11.2                                            |
| Range     | N/A            | N/A                        | 0.6                     | 2.82                         | 0.9                                             |

## A.6 OPSS-F

| Cell      | Length<br>(mm) | Diameter<br>(wrapped)<br>(mm) | Weight<br>(wrapped)<br>(g) | Voltage<br>(as received)<br>(V) | Internal<br>Resistance<br>(as received)<br>(mΩ) |
|-----------|----------------|-------------------------------|----------------------------|---------------------------------|-------------------------------------------------|
| OPSS-F-1  | 67.7           | 18.0                          | 35.5                       | 3.92                            | 35.4                                            |
| OPSS-F-2  | 67.7           | 18.0                          | 35.3                       | 3.90                            | 38.1                                            |
| OPSS-F-3  | 67.7           | 18.0                          | 35.3                       | 3.94                            | 38.9                                            |
| OPSS-F-4  | 67.7           | 18.0                          | 35.0                       | 3.94                            | 39.4                                            |
| OPSS-F-5  | 67.8           | 18.0                          | 35.3                       | 3.93                            | 39.5                                            |
| OPSS-F-6  | 67.5           | 18.1                          | 35.1                       | 3.94                            | 38.9                                            |
| OPSS-F-7  | 67.7           | 18.1                          | 35.6                       | 3.93                            | 40.2                                            |
| OPSS-F-8  | 67.5           | 18.0                          | 35.3                       | 3.93                            | 40.5                                            |
| OPSS-F-9  | 67.7           | 18.1                          | 35.3                       | 3.94                            | <mark>42.6</mark>                               |
| OPSS-F-10 | 67.8           | 18.0                          | 35.7                       | 3.92                            | 38.9                                            |
| Average   | 67.7           | 18.0                          | 35.3                       | 3.93                            | 39.2                                            |
| Range     | N/A            | N/A                           | 0.7                        | 0.04                            | 7.2                                             |

## A.7 OPSS-G

| Cell      | Length<br>(mm) | Diameter<br>(wrapped)<br>(mm) | Weight<br>(wrapped)<br>(g) | Voltage<br>(as received)<br>(V) | Internal<br>Resistance<br>(as received)<br>(mΩ) |
|-----------|----------------|-------------------------------|----------------------------|---------------------------------|-------------------------------------------------|
| OPSS-G-1  | 65.0           | 18.2                          | 45.5                       | 3.53                            | 37.2                                            |
| OPSS-G-2  | 65.0           | 18.2                          | 45.6                       | 3.52                            | 38.1                                            |
| OPSS-G-3  | 65.0           | 18.2                          | 45.5                       | 3.53                            | 36.5                                            |
| OPSS-G-4  | 65.0           | 18.2                          | 45.6                       | 3.52                            | 36.5                                            |
| OPSS-G-5  | 65.0           | 18.2                          | 45.5                       | 3.53                            | 37.0                                            |
| OPSS-G-6  | 65.0           | 18.2                          | 45.5                       | 3.53                            | 37.3                                            |
| OPSS-G-7  | 65.0           | 18.2                          | 45.6                       | 3.53                            | 37.1                                            |
| OPSS-G-8  | 65.0           | 18.2                          | 45.4                       | 3.53                            | 36.8                                            |
| OPSS-G-9  | 65.0           | 18.2                          | 45.5                       | 3.53                            | 36.9                                            |
| OPSS-G-10 | 65.2           | 18.2                          | 45.5                       | 3.53                            | 35.5                                            |
| Average   | 65.0           | 18.2                          | 45.5                       | 3.53                            | 36.9                                            |
| Range     | N/A            | N/A                           | 0.2                        | 0.01                            | 2.6                                             |

### A.8 OPSS-H

| Cell      | Length<br>(mm) | Diameter<br>(wrapped)<br>(mm) | Weight<br>(wrapped)<br>(g) | Voltage<br>(as received)<br>(V) | Internal<br>Resistance<br>(as received)<br>(mΩ) |
|-----------|----------------|-------------------------------|----------------------------|---------------------------------|-------------------------------------------------|
| OPSS-H-1  | 68.7           | 18.6                          | 49.1                       | 3.50                            | 42.7                                            |
| OPSS-H-2  | 68.8           | 18.5                          | 49.0                       | 3.50                            | 41.2                                            |
| OPSS-H-3  | 68.7           | 18.5                          | 49.0                       | 3.50                            | 47.4                                            |
| OPSS-H-4  | 68.7           | 18.6                          | 49.1                       | 3.50                            | 47.0                                            |
| OPSS-H-5  | 68.7           | 18.5                          | 49.1                       | 3.50                            | 43.9                                            |
| OPSS-H-6  | 68.7           | 18.5                          | 49.1                       | 3.50                            | 41.0                                            |
| OPSS-H-7  | 68.8           | 18.5                          | 49.1                       | 3.50                            | 43.7                                            |
| OPSS-H-8  | 68.8           | 18.5                          | 49.1                       | 3.50                            | 45.5                                            |
| OPSS-H-9  | 68.8           | 18.6                          | 49.1                       | 3.50                            | 47.3                                            |
| OPSS-H-10 | 68.7           | 18.6                          | 49.0                       | 3.50                            | 46.9                                            |
| Average   | 68.7           | 18.5                          | 49.1                       | 3.50                            | 44.7                                            |
| Range     | N/A            | N/A                           | 0.1                        | 0                               | 6.4                                             |

## A.9 OPSS-I

| Cell      | Length<br>(mm) | Diameter<br>(wrapped)<br>(mm) | Weight<br>(wrapped)<br>(g) | Voltage<br>(as received)<br>(V) | Internal<br>Resistance<br>(as received)<br>(mΩ) |
|-----------|----------------|-------------------------------|----------------------------|---------------------------------|-------------------------------------------------|
| OPSS-I-1  | 69.2           | 18.3                          | 48.0                       | 3.83                            | 35.8                                            |
| OPSS-I-2  | 69.1           | 18.1                          | 48.0                       | 3.84                            | 36.8                                            |
| OPSS-I-3  | 69.2           | 18.2                          | 48.1                       | 3.82                            | 37.9                                            |
| OPSS-I-4  | 69.2           | 18.2                          | 48.0                       | 3.83                            | 39.1                                            |
| OPSS-I-5  | 69.2           | 18.2                          | 48.1                       | 3.82                            | 35.4                                            |
| OPSS-I-6  | 69.2           | 18.0                          | 47.9                       | 3.83                            | 36.7                                            |
| OPSS-I-7  | 69.3           | 18.2                          | 48.2                       | 3.85                            | 35.0                                            |
| OPSS-I-8  | 69.1           | 18.2                          | 48.1                       | 3.84                            | 36.3                                            |
| OPSS-I-9  | 69.1           | 18.2                          | 48.1                       | 3.83                            | 38.2                                            |
| OPSS-I-10 | 69.2           | 18.1                          | 48.0                       | 3.84                            | 36.8                                            |
| Average   | 69.2           | 18.2                          | 48.1                       | 3.83                            | 36.8                                            |
| Range     | N/A            | N/A                           | 0.3                        | 0.03                            | 4.1                                             |

## A.10 OPSS-J

| Cell      | Length<br>(mm) | Diameter<br>(wrapped)<br>(mm) | Weight<br>(wrapped)<br>(g) | Voltage<br>(as received)<br>(V) | Internal<br>Resistance<br>(as received)<br>(mΩ) |
|-----------|----------------|-------------------------------|----------------------------|---------------------------------|-------------------------------------------------|
| OPSS-J-1  | 65.0           | 18.2                          | 45.9                       | 3.45                            | 17.3                                            |
| OPSS-J-2  | 65.0           | 18.2                          | 46.0                       | 3.45                            | 11.8                                            |
| OPSS-J-3  | 65.0           | 18.2                          | 45.9                       | 3.45                            | 12.1                                            |
| OPSS-J-4  | 65.0           | 18.2                          | 45.9                       | 3.45                            | 11.8                                            |
| OPSS-J-5  | 65.0           | 18.2                          | 45.9                       | 3.45                            | 12.1                                            |
| OPSS-J-6  | 65.0           | 18.2                          | 45.9                       | 3.45                            | 11.9                                            |
| OPSS-J-7  | 65.0           | 18.2                          | 45.9                       | 3.45                            | 12.2                                            |
| OPSS-J-8  | 65.0           | 18.2                          | 46.0                       | 3.45                            | 12.1                                            |
| OPSS-J-9  | 65.0           | 18.2                          | 45.8                       | 3.45                            | <mark>16.8</mark>                               |
| OPSS-J-10 | 65.0           | 18.2                          | 46.0                       | 3.45                            | 11.8                                            |
| Average   | 65.0           | 18.2                          | 45.9                       | 3.45                            | 13.0                                            |
| Range     | N/A            | N/A                           | 0.2                        | 0                               | 5.5                                             |

# Appendix B Cycling Capacities

## B.1 OPSS-A

|         | OPSS-A-1  |      |         |      |      | OPSS-A-2 |      |      | DPSS-A-3 | 3    | OPSS-A Average |         |      |
|---------|-----------|------|---------|------|------|----------|------|------|----------|------|----------------|---------|------|
| Current | Charge/   | Ah   | %       | Wh   | Ah   | %        | Wh   | Ah   | %        | Wh   | Ah             | %       | Wh   |
|         | Discharge |      | Nominal |      |      | Nominal  |      |      | Nominal  |      |                | Nominal |      |
| 1 A     | Discharge | 445  | 18      | 1459 | 436  | 17       | 1430 | 428  | 17       | 1403 | 436            | 17      | 1430 |
| 1 A     | Charge    | 2476 | 99      | 9463 | 2470 | 99       | 9443 | 2474 | 99       | 9455 | 2473           | 99      | 9454 |
| 1 A     | Discharge | 2460 | 98      | 9026 | 2451 | 98       | 8998 | 2453 | 98       | 9009 | 2454           | 98      | 9011 |
| 1 A     | Charge    | 2460 | 98      | 9394 | 2451 | 98       | 9364 | 2454 | 98       | 9372 | 2455           | 98      | 9377 |
| 1 A     | Discharge | 2458 | 98      | 9020 | 2448 | 98       | 8989 | 2449 | 98       | 8996 | 2452           | 98      | 9002 |
| 1 A     | Charge    | 2456 | 98      | 9379 | 2447 | 98       | 9347 | 2448 | 98       | 9352 | 2450           | 98      | 9359 |
| 0.2 A   | Discharge | 2529 | 101     | 9370 | 2522 | 101      | 9351 | 2524 | 101      | 9364 | 2525           | 101     | 9362 |
| 0.2 A   | Charge    | 2530 | 101     | 9525 | 2522 | 101      | 9498 | 2524 | 101      | 9502 | 2526           | 101     | 9509 |

| 0.5 A | Discharge | 2473 | 99  | 9133 | 2462 | 98  | 9099 | 2463 | 99  | 9103 | 2466 | 99  | 9112 |
|-------|-----------|------|-----|------|------|-----|------|------|-----|------|------|-----|------|
| 0.5 A | Charge    | 2474 | 99  | 9375 | 2463 | 99  | 9344 | 2463 | 99  | 9344 | 2467 | 99  | 9355 |
| 1 A   | Discharge | 2428 | 97  | 8907 | 2418 | 97  | 8873 | 2417 | 97  | 8875 | 2421 | 97  | 8885 |
| 1 A   | Charge    | 2428 | 97  | 9285 | 2417 | 97  | 9252 | 2417 | 97  | 9251 | 2421 | 97  | 9263 |
| 2 A   | Discharge | 2389 | 96  | 8679 | 2379 | 95  | 8645 | 2379 | 95  | 8650 | 2382 | 95  | 8658 |
| 2 A   | Charge    | 2399 | 96  | 9293 | 2390 | 96  | 9261 | 2387 | 95  | 9251 | 2392 | 96  | 9268 |
| 3 A   | Discharge | 2378 | 95  | 8550 | 2367 | 95  | 8513 | 2367 | 95  | 8514 | 2371 | 95  | 8526 |
| 2 A   | Charge    | 2390 | 96  | 9255 | 2379 | 95  | 9222 | 2377 | 95  | 9212 | 2382 | 95  | 9230 |
| 5A    | Discharge | 2393 | 96  | 8465 | 2384 | 95  | 8431 | 2382 | 95  | 8430 | 2386 | 95  | 8442 |
| Break | Evaluate  |      |     |      |      |     |      |      |     |      |      |     |      |
| 10 A  | Discharge | 2414 | 97  | 8316 | 2406 | 96  | 8290 | 2412 | 96  | 8316 | 2410 | 96  | 8307 |
| 12 A  | Discharge | 2411 | 96  | 8212 | 2406 | 96  | 8201 | 2412 | 96  | 8229 | 2410 | 96  | 8214 |
| 5 A   | Charge    | 2509 | 100 | 9813 | 2502 | 100 | 8927 | 2505 | 100 | 9795 | 2505 | 100 | 9512 |
|       |           |      |     |      |      |     |      |      |     |      |      |     |      |

## B.2 OPSS-B

|         |           | C    | PSS-B-1 |      | C    | DPSS-B-2 | 2    | (    | OPSS-B-3 |      |      | OPSS-B Average |      |  |
|---------|-----------|------|---------|------|------|----------|------|------|----------|------|------|----------------|------|--|
| Current | Charge/   | Ah   | %       | Wh   | Ah   | %        | Wh   | Ah   | %        | Wh   | Ah   | %              | Wh   |  |
|         | Discharge |      | Nominal |      |      | Nominal  |      |      | Nominal  |      |      | Nominal        |      |  |
| 1 A     | Discharge | 456  | 11      | 1599 | 1317 | 31       | 4821 | 490  | 12       | 1729 | 754  | 18             | 2716 |  |
| 1 A     | Charge    | 1512 | 36      | 6242 | 1609 | 38       | 6664 | 1534 | 37       | 6325 | 1552 | 37             | 6410 |  |
| 1 A     | Discharge | 1496 | 36      | 5546 | 1607 | 38       | 5987 | 1520 | 36       | 5656 | 1541 | 37             | 5730 |  |
| 1 A     | Charge    | 1509 | 36      | 6226 | 1603 | 38       | 6638 | 1530 | 36       | 6301 | 1547 | 37             | 6388 |  |
| 1 A     | Discharge | 1502 | 36      | 5573 | 1588 | 38       | 5908 | 1523 | 36       | 5673 | 1538 | 37             | 5718 |  |
| 1 A     | Charge    | 1508 | 36      | 6226 | 1584 | 38       | 6566 | 1528 | 36       | 6296 | 1540 | 37             | 6362 |  |
| 0.2 A   | Discharge | 1537 | 37      | 5951 | 1623 | 39       | 6304 | 1556 | 37       | 6039 | 1572 | 37             | 6098 |  |
| 0.2 A   | Charge    | 1561 | 37      | 6208 | 1628 | 39       | 6494 | 1576 | 38       | 6272 | 1588 | 38             | 6325 |  |
| 0.5 A   | Discharge | 1548 | 37      | 5907 | 1596 | 38       | 6100 | 1563 | 37       | 5980 | 1569 | 37             | 5996 |  |
| 0.5 A   | Charge    | 1538 | 37      | 6221 | 1576 | 38       | 6405 | 1553 | 37       | 6278 | 1556 | 37             | 6301 |  |

| 1 A   | Discharge | 1510 | 36 | 5602 | 1537 | 37 | 5696 | 1528 | 36 | 5689 | 1525 | 36 | 5663 |
|-------|-----------|------|----|------|------|----|------|------|----|------|------|----|------|
| 1 A   | Charge    | 1513 | 36 | 6250 | 1540 | 37 | 6393 | 1531 | 36 | 6311 | 1528 | 36 | 6318 |
| 2 A   | Discharge | 1404 | 33 | 4983 | 1384 | 33 | 4914 | 1443 | 34 | 5150 | 1410 | 34 | 5016 |
| 2 A   | Charge    | 1442 | 34 | 6053 | 1407 | 34 | 5912 | 1484 | 35 | 6225 | 1444 | 34 | 6063 |
| 3 A   | Discharge | 1181 | 28 | 4105 | 1161 | 28 | 3902 | 1255 | 30 | 4387 | 1199 | 29 | 4131 |
| 2 A   | Charge    | 1216 | 29 | 5107 | 1196 | 28 | 5026 | 1295 | 31 | 5433 | 1235 | 29 | 5189 |
| 5A    | Discharge | 905  | 22 | 2869 | 685  | 16 | 2101 | 932  | 22 | 3015 | 841  | 20 | 2662 |
| Break | Evaluate  |      |    |      |      |    |      |      |    |      |      |    |      |
| 10 A  | Discharge | 149  | 4  | 461  | 170  | 4  | 528  | 147  | 3  | 468  | 155  | 4  | 486  |
| 12 A  | Discharge | 140  | 3  | 427  | 146  | 3  | 447  | 164  | 4  | 511  | 150  | 4  | 462  |
| 5 A   | Charge    | 1468 | 35 | 6170 | 1498 | 36 | 4971 | 1396 | 33 | 5873 | 1454 | 35 | 5671 |

## B.3 OPSS-C

|         |           | OPSS-C-1 |         |      | C    | OPSS-C-2 |      |     | OPSS-C-3 |      |      | OPSS-C Average |      |  |
|---------|-----------|----------|---------|------|------|----------|------|-----|----------|------|------|----------------|------|--|
| Current | Charge/   | Ah       | %       | Wh   | Ah   | %        | Wh   | Ah  | %        | Wh   | Ah   | %              | Wh   |  |
|         | Discharge |          | Nominal |      |      | Nominal  |      |     | Nominal  |      |      | Nominal        |      |  |
| 1 A     | Discharge | 5        | 0       | 16   | 598  | 6        | 2136 | 473 | 5        | 1653 | 359  | 4              | 1268 |  |
| 1 A     | Charge    | 1004     | 10      | 4199 | 1245 | 13       | 5175 | 943 | 10       | 3948 | 1064 | 11             | 4441 |  |
| 1 A     | Discharge | 825      | 8       | 2941 | 1232 | 12       | 4556 | 880 | 9        | 3178 | 979  | 10             | 3559 |  |
| 1 A     | Charge    | 868      | 9       | 3627 | 1246 | 13       | 5155 | 898 | 9        | 3755 | 1004 | 10             | 4179 |  |
| 1 A     | Discharge | 778      | 8       | 2835 | 1257 | 13       | 4675 | 776 | 8        | 2832 | 937  | 9              | 3447 |  |
| 1 A     | Charge    | 781      | 8       | 3271 | 1251 | 13       | 5178 | 769 | 8        | 3227 | 934  | 9              | 3892 |  |
| 0.2 A   | Discharge | 831      | 8       | 3185 | 1280 | 13       | 4954 | 777 | 8        | 2981 | 963  | 10             | 3707 |  |
| 0.2 A   | Charge    | 838      | 8       | 3373 | 1286 | 13       | 5122 | 764 | 8        | 3088 | 963  | 10             | 3861 |  |
| 0.5 A   | Discharge | 784      | 8       | 2927 | 1275 | 13       | 4862 | 733 | 7        | 2737 | 931  | 9              | 3509 |  |
| 0.5 A   | Charge    | 783      | 8       | 3237 | 1268 | 13       | 5132 | 731 | 7        | 3034 | 927  | 9              | 3801 |  |

| 1 A   | Discharge | 685 | 7 | 2474 | 1222 | 12 | 4549 | 648 | 7 | 2339 | 852 | 9 | 3121 |
|-------|-----------|-----|---|------|------|----|------|-----|---|------|-----|---|------|
| 1 A   | Charge    | 692 | 7 | 2901 | 1216 | 12 | 5030 | 658 | 7 | 2763 | 855 | 9 | 3565 |
| 2 A   | Discharge | 409 | 4 | 1320 | 991  | 10 | 3364 | 414 | 4 | 1341 | 605 | 6 | 2008 |
| 2 A   | Charge    | 449 | 5 | 1889 | 1012 | 10 | 4254 | 440 | 4 | 1850 | 634 | 6 | 2664 |
| 3 A   | Discharge | 80  | 1 | 271  | 525  | 5  | 1670 | 80  | 1 | 271  | 228 | 2 | 737  |
| 2 A   | Charge    | 108 | 1 | 453  | 547  | 6  | 2300 | 105 | 1 | 443  | 253 | 3 | 1066 |
| 5A    | Discharge | 45  | 0 | 147  | 67   | 1  | 230  | 47  | 0 | 151  | 53  | 1 | 176  |
| Break | Evaluate  |     |   |      |      |    |      |     |   |      |     |   |      |
| 10 A  | Discharge | 37  | 0 | 110  | 49   | 0  | 156  | 27  | 0 | 79   | 37  | 0 | 115  |
| 12 A  | Discharge | 12  | 0 | 34   | 37   | 0  | 112  | 5   | 0 | 15   | 18  | 0 | 54   |
| 5 A   | Charge    | 543 | 5 | 2287 | 1074 | 11 | 2511 | 470 | 5 | 1979 | 696 | 7 | 2259 |

#### B.4 OPSS-D

|         |           | O    | PSS-D-1 |      | C    | DPSS-D-2 | 2    | C    | DPSS-D-3 | 3    | OPS  | S-D Avei | rage |
|---------|-----------|------|---------|------|------|----------|------|------|----------|------|------|----------|------|
| Current | Charge/   | Ah   | %       | Wh   | Ah   | %        | Wh   | Ah   | %        | Wh   | Ah   | %        | Wh   |
|         | Discharge |      | Nominal |      |      | Nominal  |      |      | Nominal  |      |      | Nominal  |      |
| 1 A     | Discharge | 432  | 9       | 1519 | 357  | 7        | 1229 | 326  | 7        | 1142 | 371  | 8        | 1297 |
| 1 A     | Charge    | 1279 | 27      | 5223 | 1175 | 24       | 4788 | 1188 | 25       | 4826 | 1214 | 25       | 4946 |
| 1 A     | Discharge | 1256 | 26      | 4692 | 1106 | 23       | 4149 | 1162 | 24       | 4372 | 1175 | 24       | 4404 |
| 1 A     | Charge    | 1287 | 27      | 5246 | 1152 | 24       | 4697 | 1201 | 25       | 4880 | 1213 | 25       | 4941 |
| 1 A     | Discharge | 1283 | 27      | 4818 | 1158 | 24       | 4364 | 1201 | 25       | 4537 | 1214 | 25       | 4573 |
| 1 A     | Charge    | 1291 | 27      | 5266 | 1173 | 24       | 4777 | 1216 | 25       | 4941 | 1227 | 26       | 4995 |
| 0.2 A   | Discharge | 1359 | 28      | 5261 | 1313 | 27       | 5063 | 1259 | 26       | 4878 | 1310 | 27       | 5067 |
| 0.2 A   | Charge    | 1375 | 29      | 5448 | 1351 | 28       | 5352 | 1273 | 27       | 5042 | 1333 | 28       | 5280 |
| 0.5 A   | Discharge | 1360 | 28      | 5217 | 1311 | 27       | 5007 | 1261 | 26       | 4842 | 1311 | 27       | 5022 |
| 0.5 A   | Charge    | 1366 | 28      | 5474 | 1328 | 28       | 5328 | 1266 | 26       | 5067 | 1320 | 28       | 5290 |

| 1 A   | Discharge | 1321 | 28 | 4976 | 1260 | 26 | 4750 | 1244 | 26 | 4704 | 1275 | 27 | 4810 |
|-------|-----------|------|----|------|------|----|------|------|----|------|------|----|------|
| 1 A   | Charge    | 1324 | 28 | 5389 | 1264 | 26 | 5140 | 1254 | 26 | 5084 | 1281 | 27 | 5204 |
| 2 A   | Discharge | 1232 | 26 | 4487 | 1124 | 23 | 4138 | 1156 | 24 | 4255 | 1170 | 24 | 4293 |
| 2 A   | Charge    | 1251 | 26 | 5191 | 1139 | 24 | 4724 | 1176 | 25 | 4873 | 1189 | 25 | 4930 |
| 3 A   | Discharge | 1152 | 24 | 4110 | 1048 | 22 | 3786 | 1088 | 23 | 3924 | 1096 | 23 | 3940 |
| 2 A   | Charge    | 1167 | 24 | 4850 | 1061 | 22 | 4405 | 1103 | 23 | 4579 | 1110 | 23 | 4612 |
| 5A    | Discharge | 1159 | 24 | 3814 | 958  | 20 | 3314 | 1131 | 24 | 3721 | 1083 | 23 | 3616 |
| Break | Evaluate  |      |    |      |      |    |      |      |    |      |      |    |      |
| 10 A  | Discharge | 114  | 2  | 372  | 132  | 3  | 427  | 102  | 2  | 339  | 116  | 2  | 379  |
| 12 A  | Discharge | 92   | 2  | 295  | 94   | 2  | 294  | 86   | 2  | 279  | 90   | 2  | 289  |
| 5 A   | Charge    | 1333 | 28 | 5595 | 1345 | 28 | 4659 | 1265 | 26 | 5312 | 1314 | 27 | 5189 |

#### **B.5 OPSS-E**

|         |           | C    | PSS-E-1 |      | C    | OPSS-E-2 | 2    | C    | DPSS-E-3 | 3    | OPS  | S-E Avei | rage |
|---------|-----------|------|---------|------|------|----------|------|------|----------|------|------|----------|------|
| Current | Charge/   | Ah   | %       | Wh   | Ah   | %        | Wh   | Ah   | %        | Wh   | Ah   | %        | Wh   |
|         | Discharge |      | Nominal |      |      | Nominal  |      |      | Nominal  |      |      | Nominal  |      |
| 1 A     | Discharge | 384  | 15      | 1260 | 374  | 14       | 1226 | 378  | 15       | 1239 | 379  | 15       | 1242 |
| 1 A     | Charge    | 2421 | 93      | 9255 | 2405 | 92       | 9190 | 2401 | 92       | 9177 | 2409 | 93       | 9207 |
| 1 A     | Discharge | 2439 | 94      | 9004 | 2424 | 93       | 8951 | 2423 | 93       | 8954 | 2429 | 93       | 8969 |
| 1 A     | Charge    | 2436 | 94      | 9288 | 2421 | 93       | 9222 | 2420 | 93       | 9221 | 2426 | 93       | 9244 |
| 1 A     | Discharge | 2409 | 93      | 8891 | 2396 | 92       | 8849 | 2395 | 92       | 8849 | 2400 | 92       | 8863 |
| 1 A     | Charge    | 2405 | 92      | 9184 | 2392 | 92       | 9127 | 2391 | 92       | 9126 | 2396 | 92       | 9145 |
| 0.2 A   | Discharge | 2575 | 99      | 9564 | 2554 | 98       | 9489 | 2549 | 98       | 9478 | 2559 | 98       | 9510 |
| 0.2 A   | Charge    | 2581 | 99      | 9701 | 2561 | 99       | 9622 | 2554 | 98       | 9589 | 2566 | 99       | 9637 |
| 0.5 A   | Discharge | 2473 | 95      | 9172 | 2456 | 94       | 9113 | 2453 | 94       | 9104 | 2460 | 95       | 9129 |
| 0.5 A   | Charge    | 2472 | 95      | 9354 | 2455 | 94       | 9289 | 2451 | 94       | 9279 | 2459 | 95       | 9307 |

| 1 A   | Discharge | 2426 | 93 | 8955 | 2414 | 93 | 8913 | 2413 | 93 | 8915 | 2418 | 93 | 8928 |
|-------|-----------|------|----|------|------|----|------|------|----|------|------|----|------|
|       |           |      |    |      |      |    |      |      |    |      |      |    |      |
| 1 A   | Charge    | 2424 | 93 | 9243 | 2412 | 93 | 9186 | 2411 | 93 | 9186 | 2416 | 93 | 9205 |
| 2 A   | Discharge | 2370 | 91 | 8676 | 2358 | 91 | 8646 | 2359 | 91 | 8656 | 2362 | 91 | 8659 |
| 2 A   | Charge    | 2377 | 91 | 9171 | 2366 | 91 | 9112 | 2365 | 91 | 9114 | 2369 | 91 | 9132 |
| 3 A   | Discharge | 2344 | 90 | 8510 | 2333 | 90 | 8485 | 2337 | 90 | 8495 | 2338 | 90 | 8497 |
| 2 A   | Charge    | 2353 | 91 | 9090 | 2343 | 90 | 9033 | 2343 | 90 | 9037 | 2347 | 90 | 9053 |
| 5A    | Discharge | 2329 | 90 | 8325 | 2320 | 89 | 8317 | 2323 | 89 | 8322 | 2324 | 89 | 8322 |
| Break | Evaluate  |      |    |      |      |    |      |      |    |      |      |    |      |
| 10 A  | Discharge | 2400 | 92 | 8376 | 2391 | 92 | 8375 | 2401 | 92 | 8397 | 2397 | 92 | 8383 |
| 12 A  | Discharge | 2431 | 93 | 8401 | 2422 | 93 | 8402 | 2432 | 94 | 8427 | 2428 | 93 | 8410 |
| 5 A   | Charge    | 2555 | 98 | 9937 | 2535 | 97 | 8871 | 2538 | 98 | 9848 | 2543 | 98 | 9552 |

#### B.6 OPSS-F

|         |           | C    | PSS-F-1 |      | (    | OPSS-F-2 | 2    | (    | DPSS-F-3 | 3    | OPS  | S-F Aver | age  |
|---------|-----------|------|---------|------|------|----------|------|------|----------|------|------|----------|------|
| Current | Charge/   | Ah   | %       | Wh   | Ah   | %        | Wh   | Ah   | %        | Wh   | Ah   | %        | Wh   |
|         | Discharge |      | Nominal |      |      | Nominal  |      |      | Nominal  |      |      | Nominal  |      |
| 1 A     | Discharge | 512  | 9       | 1833 | 491  | 8        | 1753 | 495  | 8        | 1762 | 499  | 8        | 1783 |
| 1 A     | Charge    | 1209 | 20      | 4997 | 1221 | 20       | 5056 | 1153 | 19       | 4787 | 1194 | 20       | 4947 |
| 1 A     | Discharge | 1214 | 20      | 4507 | 1231 | 21       | 4583 | 1178 | 20       | 4343 | 1208 | 20       | 4478 |
| 1 A     | Charge    | 1225 | 20      | 5047 | 1244 | 21       | 5124 | 1187 | 20       | 4898 | 1219 | 20       | 5023 |
| 1 A     | Discharge | 1298 | 22      | 4873 | 1291 | 22       | 4852 | 1233 | 21       | 4606 | 1274 | 21       | 4777 |
| 1 A     | Charge    | 1293 | 22      | 5300 | 1287 | 21       | 5284 | 1230 | 21       | 5064 | 1270 | 21       | 5216 |
| 0.2 A   | Discharge | 1310 | 22      | 5086 | 1301 | 22       | 5056 | 1238 | 21       | 4793 | 1283 | 21       | 4978 |
| 0.2 A   | Charge    | 1312 | 22      | 5214 | 1305 | 22       | 5192 | 1246 | 21       | 4956 | 1288 | 21       | 5121 |
| 0.5 A   | Discharge | 1302 | 22      | 4993 | 1295 | 22       | 4972 | 1237 | 21       | 4724 | 1278 | 21       | 4896 |
| 0.5 A   | Charge    | 1296 | 22      | 5212 | 1289 | 21       | 5191 | 1232 | 21       | 4973 | 1272 | 21       | 5125 |

| 1 A   | Discharge | 1281 | 21 | 4814 | 1278 | 21 | 4811 | 1216 | 20 | 4547 | 1258 | 21 | 4724 |
|-------|-----------|------|----|------|------|----|------|------|----|------|------|----|------|
| 1 A   | Charge    | 1277 | 21 | 5229 | 1274 | 21 | 5220 | 1211 | 20 | 4975 | 1254 | 21 | 5141 |
| 2 A   | Discharge | 1125 | 19 | 3970 | 1123 | 19 | 4016 | 1051 | 18 | 3713 | 1100 | 18 | 3900 |
| 2 A   | Charge    | 1142 | 19 | 4774 | 1139 | 19 | 4768 | 1065 | 18 | 4462 | 1115 | 19 | 4668 |
| 3 A   | Discharge | 886  | 15 | 2991 | 986  | 16 | 3321 | 899  | 15 | 3007 | 924  | 15 | 3106 |
| 2 A   | Charge    | 905  | 15 | 3796 | 1006 | 17 | 4216 | 922  | 15 | 3869 | 944  | 16 | 3960 |
| 5A    | Discharge | 154  | 3  | 528  | 459  | 8  | 1447 | 176  | 3  | 595  | 263  | 4  | 857  |
| Break | Evaluate  |      |    |      |      |    |      |      |    |      |      |    |      |
| 10 A  | Discharge | 69   | 1  | 224  | 65   | 1  | 207  | 80   | 1  | 258  | 71   | 1  | 230  |
| 12 A  | Discharge | 58   | 1  | 184  | 55   | 1  | 171  | 65   | 1  | 205  | 59   | 1  | 187  |
| 5 A   | Charge    | 1102 | 18 | 4634 | 1100 | 18 | 3532 | 1072 | 18 | 4507 | 1091 | 18 | 4224 |

### B.7 OPSS-G

|         |           | 0    | PSS-G-1 |       | C    | DPSS-G-2 | 2     | C    | DPSS-G- | 3     | OPS  | S-G Ave | rage  |
|---------|-----------|------|---------|-------|------|----------|-------|------|---------|-------|------|---------|-------|
| Current | Charge/   | Ah   | %       | Wh    | Ah   | %        | Wh    | Ah   | %       | Wh    | Ah   | %       | Wh    |
|         | Discharge |      | Nominal |       |      | Nominal  |       |      | Nominal |       |      | Nominal |       |
| 1 A     | Discharge | 565  | 17      | 1798  | 564  | 17       | 1793  | 567  | 17      | 1802  | 565  | 17      | 1798  |
| 1 A     | Charge    | 3070 | 92      | 11923 | 3076 | 92       | 11958 | 3067 | 92      | 11921 | 3071 | 92      | 11934 |
| 1 A     | Discharge | 3020 | 90      | 10836 | 3037 | 91       | 10885 | 3017 | 90      | 10819 | 3025 | 90      | 10846 |
| 1 A     | Charge    | 3018 | 90      | 11703 | 3039 | 91       | 11783 | 3017 | 90      | 11705 | 3024 | 90      | 11730 |
| 1 A     | Discharge | 2973 | 89      | 10682 | 3011 | 90       | 10805 | 2980 | 89      | 10702 | 2988 | 89      | 10730 |
| 1 A     | Charge    | 2970 | 89      | 11530 | 3007 | 90       | 11669 | 2975 | 89      | 11555 | 2984 | 89      | 11584 |
| 0.2 A   | Discharge | 3119 | 93      | 11521 | 3159 | 94       | 11676 | 3124 | 93      | 11553 | 3134 | 94      | 11584 |
| 0.2 A   | Charge    | 3130 | 93      | 11853 | 3168 | 95       | 12002 | 3132 | 93      | 11880 | 3143 | 94      | 11912 |
| 0.5 A   | Discharge | 2982 | 89      | 10893 | 3027 | 90       | 11047 | 2975 | 89      | 10867 | 2994 | 89      | 10936 |
| 0.5 A   | Charge    | 2989 | 89      | 11455 | 3038 | 91       | 11632 | 2985 | 89      | 11443 | 3004 | 90      | 11510 |

| 1 A   | Discharge | 2953 | 88 | 10627 | 3008 | 90 | 10815 | 2950 | 88 | 10612 | 2970 | 89 | 10685 |
|-------|-----------|------|----|-------|------|----|-------|------|----|-------|------|----|-------|
| 1 A   | Charge    | 2958 | 88 | 11454 | 3010 | 90 | 11646 | 2953 | 88 | 11447 | 2974 | 89 | 11516 |
| 2 A   | Discharge | 2860 | 85 | 10089 | 2908 | 87 | 10223 | 2851 | 85 | 10045 | 2873 | 86 | 10119 |
| 2 A   | Charge    | 2869 | 86 | 11371 | 2926 | 87 | 11597 | 2867 | 86 | 11373 | 2887 | 86 | 11447 |
| 3 A   | Discharge | 2770 | 83 | 9533  | 2831 | 85 | 9729  | 2759 | 82 | 9490  | 2787 | 83 | 9584  |
| 2 A   | Charge    | 2784 | 83 | 11063 | 2858 | 85 | 11347 | 2782 | 83 | 11060 | 2808 | 84 | 11157 |
| 5A    | Discharge | 2634 | 79 | 8720  | 2675 | 80 | 8847  | 2621 | 78 | 8680  | 2643 | 79 | 8749  |
| Break | Evaluate  |      |    |       |      |    |       |      |    |       |      |    |       |
| 10 A  | Discharge | 2313 | 69 | 7197  | 2480 | 74 | 7722  | 2420 | 72 | 7539  | 2405 | 72 | 7486  |
| 12 A  | Discharge | 1784 | 53 | 5428  | 1937 | 58 | 5909  | 1964 | 59 | 5974  | 1895 | 57 | 5770  |
| 5 A   | Charge    | 3035 | 91 | 12360 | 3090 | 92 | 10473 | 3039 | 91 | 12380 | 3055 | 91 | 11738 |

#### B.8 OPSS-H

|         |           | O    | PSS-H-1 |       | C    | DPSS-H-2 | 2     | C    | DPSS-H- | 3     | OPS  | S-H Ave | rage  |
|---------|-----------|------|---------|-------|------|----------|-------|------|---------|-------|------|---------|-------|
| Current | Charge/   | Ah   | %       | Wh    | Ah   | %        | Wh    | Ah   | %       | Wh    | Ah   | %       | Wh    |
|         | Discharge |      | Nominal |       |      | Nominal  |       |      | Nominal |       |      | Nominal |       |
| 1 A     | Discharge | 594  | 17      | 1878  | 603  | 17       | 1907  | 595  | 17      | 1879  | 597  | 17      | 1888  |
| 1 A     | Charge    | 3277 | 94      | 12764 | 3287 | 94       | 12797 | 3273 | 94      | 12779 | 3279 | 94      | 12780 |
| 1 A     | Discharge | 3258 | 93      | 11731 | 3262 | 93       | 11758 | 3235 | 92      | 11641 | 3251 | 93      | 11710 |
| 1 A     | Charge    | 3257 | 93      | 12654 | 3261 | 93       | 12666 | 3232 | 92      | 12585 | 3250 | 93      | 12635 |
| 1 A     | Discharge | 3261 | 93      | 11753 | 3261 | 93       | 11768 | 3233 | 92      | 11656 | 3252 | 93      | 11725 |
| 1 A     | Charge    | 3275 | 94      | 12686 | 3275 | 94       | 12687 | 3245 | 93      | 12599 | 3265 | 93      | 12657 |
| 0.2 A   | Discharge | 3370 | 96      | 12490 | 3367 | 96       | 12507 | 3345 | 96      | 12430 | 3361 | 96      | 12475 |
| 0.2 A   | Charge    | 3374 | 96      | 12806 | 3370 | 96       | 12804 | 3349 | 96      | 12741 | 3364 | 96      | 12784 |
| 0.5 A   | Discharge | 3299 | 94      | 12107 | 3295 | 94       | 12109 | 3273 | 94      | 12029 | 3289 | 94      | 12082 |
| 0.5 A   | Charge    | 3310 | 95      | 12673 | 3307 | 94       | 12667 | 3284 | 94      | 12593 | 3300 | 94      | 12644 |

| 1 A   | Discharge | 3297 | 94 | 11930 | 3295 | 94 | 11941 | 3271 | 93 | 11847 | 3288 | 94 | 11906 |
|-------|-----------|------|----|-------|------|----|-------|------|----|-------|------|----|-------|
| 1 A   | Charge    | 3292 | 94 | 12721 | 3291 | 94 | 12716 | 3266 | 93 | 12641 | 3283 | 94 | 12693 |
| 2 A   | Discharge | 3232 | 92 | 11453 | 3241 | 93 | 11498 | 3210 | 92 | 11358 | 3228 | 92 | 11436 |
| 2 A   | Charge    | 3244 | 93 | 12793 | 3260 | 93 | 12846 | 3227 | 92 | 12745 | 3243 | 93 | 12795 |
| 3 A   | Discharge | 3203 | 92 | 11124 | 3216 | 92 | 11195 | 3181 | 91 | 11038 | 3200 | 91 | 11119 |
| 2 A   | Charge    | 3217 | 92 | 12694 | 3240 | 93 | 12771 | 3203 | 92 | 12654 | 3220 | 92 | 12706 |
| 5A    | Discharge | 3160 | 90 | 10626 | 3182 | 91 | 10727 | 3121 | 89 | 10471 | 3154 | 90 | 10608 |
| Break | Evaluate  |      |    |       |      |    |       |      |    |       |      |    |       |
| 10 A  | Discharge | 2895 | 83 | 9145  | 2498 | 71 | 7776  | 2895 | 83 | 9186  | 2763 | 79 | 8702  |
| 12 A  | Discharge | 2429 | 69 | 7565  | 2796 | 80 | 8460  | 2257 | 64 | 7136  | 2494 | 71 | 7720  |
| 5 A   | Charge    | 3290 | 94 | 13353 | 3294 | 94 | 11334 | 3258 | 93 | 13225 | 3281 | 94 | 12637 |

## **B.9 OPSS-I**

|         |           | C    | OPSS-I-1 |       | (    | OPSS-I-2 | 2     |      | OPSS-I-3 | 3     | OPS  | SS-I Aver | rage  |
|---------|-----------|------|----------|-------|------|----------|-------|------|----------|-------|------|-----------|-------|
| Current | Charge/   | Ah   | %        | Wh    | Ah   | %        | Wh    | Ah   | %        | Wh    | Ah   | %         | Wh    |
|         | Discharge |      | Nominal  |       |      | Nominal  |       |      | Nominal  |       |      | Nominal   |       |
| 1 A     | Discharge | 1929 | 55       | 6590  | 1958 | 56       | 6694  | 1923 | 55       | 6567  | 1937 | 55        | 6617  |
| 1 A     | Charge    | 3209 | 92       | 12448 | 3211 | 92       | 12460 | 3218 | 92       | 12476 | 3213 | 92        | 12461 |
| 1 A     | Discharge | 3185 | 91       | 11502 | 3193 | 91       | 11523 | 3193 | 91       | 11533 | 3190 | 91        | 11519 |
| 1 A     | Charge    | 3176 | 91       | 12321 | 3184 | 91       | 12353 | 3186 | 91       | 12356 | 3182 | 91        | 12343 |
| 1 A     | Discharge | 3158 | 90       | 11401 | 3167 | 90       | 11425 | 3168 | 91       | 11435 | 3164 | 90        | 11420 |
| 1 A     | Charge    | 3160 | 90       | 12264 | 3168 | 91       | 12297 | 3169 | 91       | 12297 | 3166 | 90        | 12286 |
| 0.2 A   | Discharge | 3284 | 94       | 12167 | 3289 | 94       | 12187 | 3292 | 94       | 12209 | 3288 | 94        | 12188 |
| 0.2 A   | Charge    | 3296 | 94       | 12512 | 3301 | 94       | 12531 | 3302 | 94       | 12525 | 3300 | 94        | 12523 |
| 0.5 A   | Discharge | 3227 | 92       | 11853 | 3231 | 92       | 11867 | 3234 | 92       | 11882 | 3231 | 92        | 11867 |
| 0.5 A   | Charge    | 3224 | 92       | 12346 | 3229 | 92       | 12366 | 3231 | 92       | 12369 | 3228 | 92        | 12360 |

| 1 A   | Discharge | 3187 | 91 | 11533 | 3198 | 91 | 11562 | 3200 | 91 | 11579 | 3195 | 91 | 11558 |
|-------|-----------|------|----|-------|------|----|-------|------|----|-------|------|----|-------|
| 1 A   | Charge    | 3192 | 91 | 12341 | 3203 | 92 | 12386 | 3205 | 92 | 12383 | 3200 | 91 | 12370 |
| 2 A   | Discharge | 3158 | 90 | 11220 | 3170 | 91 | 11253 | 3171 | 91 | 11277 | 3166 | 90 | 11250 |
| 2 A   | Charge    | 3170 | 91 | 12484 | 3183 | 91 | 12534 | 3180 | 91 | 12509 | 3178 | 91 | 12509 |
| 3 A   | Discharge | 3120 | 89 | 10846 | 3133 | 90 | 10880 | 3133 | 90 | 10899 | 3129 | 89 | 10875 |
| 2 A   | Charge    | 3135 | 90 | 12367 | 3149 | 90 | 12420 | 3143 | 90 | 12385 | 3142 | 90 | 12391 |
| 5A    | Discharge | 3077 | 88 | 10325 | 3079 | 88 | 10328 | 3087 | 88 | 10383 | 3081 | 88 | 10346 |
| Break | Evaluate  |      |    |       |      |    |       |      |    |       |      |    |       |
| 10 A  | Discharge | 2506 | 72 | 7976  | 2256 | 64 | 7227  | 2865 | 82 | 9085  | 2542 | 73 | 8096  |
| 12 A  | Discharge | 29   | 1  | 97    | 14   | 0  | 47    | 108  | 3  | 363   | 50   | 1  | 169   |
| 5 A   | Charge    | 3190 | 91 | 12943 | 3198 | 91 | 11173 | 3220 | 92 | 13049 | 3203 | 92 | 12388 |

# B.10 OPSS-J

|         |           | OPSS-J-1 |         |       | OPSS-J-2 |         |       | OPSS-J-3 |         |       | OPSS-J Average |         |       |
|---------|-----------|----------|---------|-------|----------|---------|-------|----------|---------|-------|----------------|---------|-------|
| Current | Charge/   | Ah       | %       | Wh    | Ah       | %       | Wh    | Ah       | %       | Wh    | Ah             | %       | Wh    |
|         | Discharge |          | Nominal |       |          | Nominal |       |          | Nominal |       |                | Nominal |       |
| 1 A     | Discharge | 444      | 15      | 1391  | 421      | 14      | 1314  | 433      | 14      | 1353  | 433            | 14      | 1353  |
| 1 A     | Charge    | 2919     | 97      | 11187 | 2888     | 96      | 11076 | 2935     | 98      | 11244 | 2914           | 97      | 11169 |
| 1 A     | Discharge | 2894     | 96      | 10506 | 2858     | 95      | 10389 | 2933     | 98      | 10665 | 2895           | 96      | 10520 |
| 1 A     | Charge    | 2895     | 96      | 11094 | 2858     | 95      | 10964 | 2935     | 98      | 11218 | 2896           | 97      | 11092 |
| 1 A     | Discharge | 2892     | 96      | 10497 | 2857     | 95      | 10382 | 2923     | 97      | 10623 | 2891           | 96      | 10501 |
| 1 A     | Charge    | 2897     | 97      | 11099 | 2862     | 95      | 10974 | 2924     | 97      | 11182 | 2894           | 96      | 11085 |
| 0.2 A   | Discharge | 2972     | 99      | 10984 | 2942     | 98      | 10880 | 2991     | 100     | 11060 | 2969           | 99      | 10975 |
| 0.2 A   | Charge    | 2981     | 99      | 11265 | 2952     | 98      | 11158 | 3002     | 100     | 11343 | 2978           | 99      | 11255 |
| 0.5 A   | Discharge | 2942     | 98      | 10817 | 2911     | 97      | 10717 | 2967     | 99      | 10909 | 2940           | 98      | 10814 |
| 0.5 A   | Charge    | 2941     | 98      | 11161 | 2911     | 97      | 11057 | 2968     | 99      | 11252 | 2940           | 98      | 11157 |

| 1 A   | Discharge | 2907 | 97 | 10576 | 2875 | 96 | 10471 | 2927 | 98 | 10655 | 2903 | 97 | 10567 |
|-------|-----------|------|----|-------|------|----|-------|------|----|-------|------|----|-------|
| 1 A   | Charge    | 2911 | 97 | 11129 | 2879 | 96 | 11015 | 2927 | 98 | 11185 | 2906 | 97 | 11110 |
| 2 A   | Discharge | 2900 | 97 | 10449 | 2870 | 96 | 10351 | 2914 | 97 | 10490 | 2895 | 96 | 10430 |
| 2 A   | Charge    | 2910 | 97 | 11251 | 2879 | 96 | 11139 | 2926 | 98 | 11304 | 2905 | 97 | 11231 |
| 3 A   | Discharge | 2881 | 96 | 10287 | 2854 | 95 | 10199 | 2903 | 97 | 10373 | 2879 | 96 | 10286 |
| 2 A   | Charge    | 2896 | 97 | 11200 | 2868 | 96 | 11097 | 2918 | 97 | 11268 | 2894 | 96 | 11188 |
| 5A    | Discharge | 2854 | 95 | 10006 | 2832 | 94 | 9940  | 2880 | 96 | 10126 | 2855 | 95 | 10024 |
| Break | Evaluate  |      |    |       |      |    |       |      |    |       |      |    |       |
| 10 A  | Discharge | 2805 | 94 | 9608  | 2785 | 93 | 9542  | 2819 | 94 | 9661  | 2803 | 93 | 9604  |
| 12 A  | Discharge | 2792 | 93 | 9466  | 2772 | 92 | 9401  | 2808 | 94 | 9533  | 2791 | 93 | 9466  |
| 5 A   | Charge    | 2944 | 98 | 11560 | 2924 | 97 | 10419 | 2957 | 99 | 11602 | 2942 | 98 | 11193 |

© Crown copyright 2022

This publication is licensed under the terms of the Open Government Licence v3.0 except where otherwise stated.

To view this licence, visit <u>www.nationalarchives.gov.uk/doc/open-governmentlicence/version/3/</u> or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: <u>psi@nationalarchives.gsi.gov.uk</u>. Where we have identified any third-party copyright information you will need to obtain permission from the copyright holders concerned.

Contact us if you have any enquiries about this publication, including requests for alternative formats, at: <u>OPSS.enquiries@beis.gov.uk</u>

#### **Office for Product Safety and Standards**

Department for Business, Energy and Industrial Strategy 4th Floor, Cannon House, 18 The Priory Queensway, Birmingham B4 6BS <u>https://www.gov.uk/government/organisations/office-for-product-safety-and-standards</u>